
(Time Token Generator)

Project report submitted in partial fulfillment of the requirement for

the degree of Bachelor of Technology

in

Computer Science and Engineering/Information Technology

By

(Shubham Gupta (161322))

Under the supervision of

(Mr. Surjeet Singh)

to

Department of Computer Science & Engineering and Information

Technology

Jaypee University of Information Technology Waknaghat,

Solan-173234, Himachal Pradesh

2

Candidate’s Declaration

I hereby declare that the work presented in this report entitled “ Token Generator” in

partial fulfillment of the requirements for the award of the degree of Bachelor of

Technology in Computer Science and Engineering/Information Technology

submitted in the department of Computer Science & Engineering and Information

Technology, Jaypee University of Information Technology Waknaghat is an authentic

record of my own work carried out over a period from May 2020 to June 2020 under the

supervision of Surjeet Singh Computer Science Department.

The matter embodied in the report has not been submitted for the award of any other

degree or diploma.

Shubham Gupta, 161322.

This is to certify that the above statement made by the candidate is true to the best of my

knowledge.

Supervisor Name: Mr. Surjeet Singh

Designation: Assistant Professor (Grade-I)

Department name: CSE&IT

Dated:

3

ACKNOWLEDGEMENT

I would like to take the opportunity to thank and express my deep sense of gratitude to

my

mentor and project guide Mr. Surjeet Singh for his immense support and valuable

guidance

without which it would not have been possible to reach at this stage of our minor project.

We have grown both academically and personally from this experience and are very

grateful

for having had the opportunity to conduct this study

I am also obliged to all my faculty members for their valuable support in their respective

fields which helped me in reaching at this stage of my project.

Finally, we like to thank our family and friends for their constant support. Without their

contribution it would have been impossible to complete our work.

Date:

4

Contents
Chapter 1 INTRODUCTION ... 6

1.1 Introduction .. 8

1.2 Problem Statement .. 9

1.3 Objectives ... 9

1.4 Methodology ... 10

Chapter 2 LITERATURE SURVEY .. 10

2.1 Dart .. 10

2.1.1 dart:core library ... 10

2.2 Flutter .. 14

2.2.1 Features ... 16

2.2.2 Advanteges .. 17

2.2.3 Widgets ... 17

2.2.4 Flutter Framework ... 19

2.2.5 User Interaction ... 20

2.3 Flutter Layout... 21

2.3.1 Create and Display a widget ... 23

2.3.2 Layout for Multiple Widget ... 24

2.3.3 Sizing of widget ... 26

2.3.4 Nesting of Rows and Columns ... 29

2.3.5 Common Layout widgets .. 30

2.4 Packages in Flutter .. 31

2.4.1 http Package .. 32

2.4.2 Location Package ... 33

2.5 API (Application Programming Interface) ... 34

2.5.1 Google Maps API ... 35

2.5.2 Places API .. 36

2.5.3 Directions API ... 37

2.6 Firebase ... 37

2.6.1 Cloud Firestore: .. 37

Chapter 3 SYSTEM DEVELOPMENT ... 39

3.1 Silvers .. 39

5

3.2 OnPressed .. 40

3.3 Location ... 42

3.4 Navigate to next screen .. 43

3.4 Algorithm ... 48

3.8 Hardware Requirements ... 50

3.9 Software Requirements .. 50

Chapter 4 PERFORMANCE ANALYSIS.. 51

4.1 Home Page of the Application ... 51

4.2 Add Time ... 53

4.3 Result Page .. 54

Chapter 5 CONCLUSIONS ... 57

5.1 Conclusions .. 57

5.2 Future Work ... 57

5.2.1 Application .. 57

References ... 58

6

List of Figures

1. Construction of variables from literals [3]

2. Assigning a sequence of characters to String variable[3]

3. Regular expression that match up with a string having 1 or more digits[3]

4. Example of List[3]

5. Example of Sets[3]

6. Example of Maps[3]

7. Example to create DateTime object[3]

8. Example to create duration object specifying the individual time units. [3]

9. Example of uri object[3]

10. Flutter Application Example (Android)[6]

11. Flutter Application Example (iOS)[6]

12. Broad class hierarchy of Widgets[6]

13. Flutter System overview[7]

14. Example of Stateful widget for user interaction[15]

15. Screeen Grab of a simple flutter UI

16. Widget Tree for above UI [7]

17. Text visible widget is incorporated in center layout widget[7]

18. Layout widget in body of Scaffold[7]

19. Layout widget using Column and row[9]

20. Alignment of widgets[9]

21. Overflowing row in a widget resulting a yellow and black striped

pattern[9]

22. Widget Wrapped in Expanded to prevent overflowing

23. Widget Wrapped in Expanded with Flex: 2 to double its size[9]

24. . Nesting of widgets marked with box with red outline[9]

25. The widget tree for nesting of rows and columns[9]

26. Example of Usage of http Package[17]

27. Example on usage of Location package in flutter [16]

7

28. Example of API[12]

29. Example of Cloud Firestore[19]

30. Home Page of the application (home.dart {1})

31. Home Page of the application (home.dart {2})

32. Home Page of the application (home.dart {3})

33. Code to retrieve location from device (location.dart)

34. code to ask user to add time he will spend addTime.dart{1}

35. code to ask user to add time he will spend addTime.dart{2}

36. code to ask user to add time he will spend addTime.dart{3}

37. Algorithm to find Time user reaches and leaves the store{1}

38. Algorithm to find Time user reaches and leaves the store{2}

39. Snapshots of application with home page(when location is not available)

40. Snapshots of application with home page(when location is available)

41. Snapshots of application with page to add max time user will spend at the

store

42. Snapshots of application with result page giving details about your journey

43. Snapshots of application with result page giving details about your journey

(With TIme)

8

Chapter 1 INTRODUCTION

1.1 Introduction

Dart is a client-based programming language for applications development on multiple

platforms. It is created by Google and is utilized to make mobile applications, desktop

applications, web applications and servers.[1]

Dart is an class based and object-oriented language with garbage collection language with

C like syntax. It supports abstracts classes, interfaces, reified generics, type inference and

mixins.[1]

Dart SDK comes with the Dart VM as its compiler. The Dart-SDK also includes a utility

tool - dart2js, which is a transpiler that is used to convert dart code to JavaScript code by

generating JavaScript equivalent of a Dart Script.[2]

Dart has a rich set of core libraries that gives us essential code for lots of daily

programming tasks like (dart:collection) helps in working on collections of objects,

(dart:math) is used for making calculations and (dart:convert) is for encoding and

decoding data.[3]

Dart has following core libraries:

dart:core: They are theBuilt-in types, assortments, and other center usefulness. This

library is consequently brought into each Dart program.

9

dart:io: I/O for programs that can use the Dart VM, including servers, Shudder

applications, and request line scripts.

dart:html: DOM and distinctive APIs for program based applications. HTML parts and

various resources for online applications that need to team up with the program and the

DOM (Archive Item Model)

dart:math: Numerical constants and limits, notwithstanding a self-assertive number

generator.

dart:convert: Encoders and decoders for changing over between different data depictions,

including JSON and UTF-8.

dart:async: Includes support for offbeat programming it incorporates classes like Stream

and Future.

[4]

1.2 Problem Statement

In this project, i would like to make an application that works on multiple platforms and

explore various ways to reduce the number of people in a local shop. In this application

we take input from the user on the nearby local shop user want to visit and approximate

time user will take to shop the desired item. App will respond to user with the time he

needs to leave his house which will include the travel time for the user to reach the shop

such that crowd inside the shop could be controlled.

1.3 Objectives

Our objective is to achieve an effective way to reduce number of people at a particular

shop with least impact on owner’s business. We also explore newer and better ways of

crowd reducing where people can gather.

10

1.4 Methodology

The idea behind this project is to use Flutter toolkit to create an application that works on

multiple platform and can have native like performance in real world scenario. This

Application takes time user could spend in a local store and find the time he should leave

his residence and time he would be done from shopping using this data, we can calculate

number of people in a store and reduce the crowd in store by assigning time for user to

leave the store and we can later in future implement ML algorithms to automatically

guess the time taken by user to shop a particular item.

Chapter 2 LITERATURE SURVEY

2.1 Dart

Dart is an open-source widely accommodating programming language. It is from the start

progressed by Google. Dart is another coding language proposed for the server

correspondingly as the program. Presented by Google, the Dart SDK ships with its

compiler which is called DartVM The SDK in like way combines an utility - dart to js, a

transpiler that makes js similitude a Dart Content. This instructional exercise gives a

fundamental level comprehension of the Dart programming language.[1]

2.1.1 dart:core library

This library includes built in types, collection, and other center usefulness for each Dart

program. This library is naturally imported in every dart program.

A few classes in this library, for example, String and num, and support Dart's built in

information types. Different classes, for example, List and Map, give information

structures to overseeing assortments of items. What's more, still different classes speak to

11

generally utilized sorts of information, for example, URIs, dates and times, and

blunders.[3]

2.1.1.1 Numbers and booleans

int and double offer help for Dart's worked in numerical data types: whole numbers and

double precision floating point numbers, separately. An object of type bool is either

obvious or bogus. variables of these sorts can be developed from literals.[3]

2.1.1.2 Strings and regular expressions

String is immutable and characterizes an arrangement of characters. For example[3]

RegExp executes Dart normal articulations, which give a syntax to coordinating examples

inside content. For instance, here's a customary articulation that coordinates a string of at

least one digits: [3]

Figure 2. Assigning a sequence of characters to String

variable

Figure 3. Regular expression that match up with a string having

1 or more digits[3]

Figure 1. Construction of variables from literals[3]

12

Dart regular expressions have a similar language structure and semantics as JavaScript

normal articulations.

2.1.1.3 Collections

The dart:core library gives fundamental collections, for example, List, Map, and Set.

List:

A List is an arranged collection of items, with a length. Records are here and there called

clusters. Utilize a List when you have to get to objects by file.

Set:

A Set is an unordered collection of various variables or objects. You can't get item from

set by using index (position). Including a duplicating thing has no impact.

Map:

A Map is an unordered collection of key-esteem sets. Maps are some of the time called

cooperative exhibits since maps partner a key to some an incentive for simple recovery.

Figure 4. Example of List[3]

Figure 4. Example of Sets[3]

13

Keys are one of a kind. Utilize a Map when you have to get to objects by a one of a kind

identifier.[3]

Notwithstanding these classes, dart:core contains Iterable, an interface that characterizes

usefulness regular in collections of articles. Models remember the capacity to run a

capacity for every component in the collection, to apply a test to every component, to

recover an article, and to decide length.[2]

2.1.1.4 Date and time

Use DateTime to speak to a point in time and Duration to speak to a range of time.

You can make DateTime objects with constructors or by parsing an effectively designed

string.[3]

Figure 6. Example of Maps[3]

Figure 7. Example to create DateTime object[3]

Figure 8. Example to create duration object specifying the

individual time units.[3]

14

2.1.1.5 Uri

A Uri object speaks to a uniform Resourse identifier, which recognizes an asset on the

web.[3]

2.1.1.6 Errors

The Error class speaks to the event of a error during runtime. Subclasses of this class

speak to explicit sorts of errors.[4]

2.2 Flutter

Flutter is made by Google as a user interface toolkit for helping developers making

lovely, natively compiled applications for versatile, web, and work area from a one single

code for multiple platforms. [6] The objective is to empower developers to make

applications with beautiful user interface that works as fast as native applications. We

grasp contrasts in looking over practices, typography, symbols, and then some.[8] Flutter

incorporates a cutting edge react- style framework, which is a 2D rendering engine,

instant widgets, and development tools. These parts cooperate to enable you to

configuration, fabricate, test, and troubleshoot applications. Everything is composed

around a couple of center standards.[6]

Figure 9. Example of uri object.[3]

15

Figure 10. Flutter Application Example (Android).[6]

16

2.2.1 Features

 Expressive, beautiful UIs

Flutter's includes built in wonderful Material Design and Cupertino (iOS like

design style) widgets, smooth common looking over, rich motion APIs and stage

mindfulness.

 Fast development :

Flutter has hot reload feature which helps you quickly and easily conduct tests

with your app and build UIs, add features, and fix bugs faster without restarting

app every time you change something in code.

 Native Performance

Flutter's widgets includes all basic stage features like for example,

scrolling,looking over, navigation, symbols and fonts to provide high performance

on the Web, iOS, Android.[8]

Figure 11. Flutter Application Example (iOS).[6]

17

2.2.2 Advanteges

 Be highly productive by creating iOS and Android application from single

codebase

 Accomplish more with less code, even on a native OS, with an advanced,

expressive language and a revelatory methodology

 Model and emphasize without any problem. Make changes to code and reloading

your application as it runs on your device (with hot reload)

 Acknowledge custom, excellent, brand-driven plans, without the restrictions of

OEM gadget sets

 Advantage from a rich arrangement of Material Design and Cupertino (iOS-

flavor) gadgets manufactured utilizing Flutter's own system[8]

2.2.3 Widgets

In Flutter Everything is made up of a widget including flutter itself. Widgets are the

essential structure squares of a Flutter application's USER INTERFACE. Every widget is

an unchanging statement of part of the USER INTERFACE. Not at all like different

frameworks that different perspectives, see controllers, formats, and different properties,

Flutter has a reliable, bound together object model: the widget. Widgets structure a chain

of importance dependent on arrangement. Every widget settles inside, and acquires

properties from, its parent. There is no different "application" object. Rather, the root

widget serves this job.

Widgets are themselves regularly made out of some other widgets that consolidate to

deliver incredible impacts. For instance, Container, a regularly utilized widget, is

comprised of a few widgets liable for design, painting, situating, and measuring. In

particular, Container is comprised of LimitedBox, ConstrainedBox, Align, Padding,

DecoratedBox, and Transform widgets.[6]

How Widgets are build:

18

You characterize the one of a kind qualities of a widget by executing a form() work that

profits a tree (or progression) of widgets. This tree speaks to the widget's a piece of the

USER INTERFACE in progressively solid terms. For instance, a toolbar widget may

have a form work that profits an even design of some content and different catches. The

framework at that point recursively solicits each from these widgets to work until the

procedure bottoms out in completely solid widgets, which the framework at that point

fastens together into a tree.

A widget's assemble capacity ought to be liberated from reactions. At whatever point it is

approached to manufacture, the widget should restore another tree of widgets paying little

mind to what the widget recently returned. The framework does the truly difficult work of

contrasting the past form and the current form and figuring out what adjustments should

be made to the USER INTERFACE.

This mechanized correlation is very powerful, empowering superior, intelligent

applications. What's more, the plan of the assemble work rearranges your code by

concentrating on announcing what a widget is made of, as opposed to the complexities of

refreshing the USER INTERFACE starting with one state then onto the next. [6]

19

2.2.4 Flutter Framework

The Flutter framework is sorted out into a progression of layers, with each layer

expanding upon the past layer.

The upper layers of the framework are utilized more every now and again than the lower

layers. For the total arrangement of libraries that make up the Flutter's layered framework,

see our API documentation.

The objective of this structure is to assist you with accomplishing more with less code.

For instance, the Material layer is worked by making fundamental widgets from the

widgets layer, and the widgets layer itself is worked by organizing lower-level objects

from the rendering layer.

The layers offer numerous alternatives for building applications. Pick an altered way to

deal with open the full expressive intensity of the framework, or use building hinders

from the widgets layer, or blend and match. You can form the instant widgets Flutter

gives, or make your own custom widgets utilizing similar tools and procedures that the

Flutter group used to assemble the framework.[7]

Figure 12 Broad class hierarchy of Widgets [6]

20

2.2.5 User Interaction

On the off chance that the one of a kind attributes of a widget need to change

dependent on client communication or different components, that widget is

stateful. For instance, if a widget has a counter that increases at whatever point the

client taps a catch, the estimation of the counter is the state for that widget. At the

point when that worth changes, the widget should be reconstructed to refresh the

USER INTERFACE.

These widgets subclass StatefulWidget (as opposed to StatelessWidget) and store

their variable state in a subclass of State. [6]

At whatever point you mutate a State object (for instance, by augmenting the counter),

you should call setState() to flag the framework to refresh the USER INTERFACE by

Figure 7 Flutter System overview [7]

21

calling the State's fabricate technique once more. For a case of overseeing state, see the

MyApp format which is made with each new Flutter project.

2.3 Flutter Layout

The main part of anything in flutter is a widgets. Everything you see, every design

pattern every layout every margin every padding, is a widget. The pictures, icons, and text

that you find in a Flutter apps are also most part widgets. In Flutter, nearly everything is a

widget-even design style/pattern are widgets.

You make a design by making widgets to amass progressively complex widgets. For

example, the principal screen catch underneath shows 3 images with an imprint under

each one portraying it's capacity:[7]

Figure 14 Example of Stateful widget for user interaction

[15]

22

In this model, every Text widget is put in a Container to include edges. The whole

Row is likewise positioned in a Container to include cushioning around the row.

Figure 15 Screeen Grab of a simple flutter UI [7]

Figure 16 Widget Tree for above UI [7]

23

Utilize the Text.style property to set the textual style, its shading, weight, etc. The

remainder of the USER INTERFACE in this model is constrained by features. Set an Icon

symbol's shading utilizing its shading feature. Columns and rows have properties that

permit you to indicate how their youngsters are aligned vertically or evenly, and how

much space the kids ought to possess.[7]

2.3.1 Create and Display a widget

1. Choose any widget with layout: You can opt from various different types layout

widget provided by flutter based on alignment and constraints on your widget.

These characters aare also incorporated in widget passed in layout widget.

2. Create visible widget: It displays text , image, icon or any other graphic item on

your screen.

3. Incorporate visible widget in layout widget:

4. N

o

w

 to Adding Layout widget in your screen: when you create flutter app it’s a one

widget, and and most widgets have a build () strategy. Starting up and restoring a

widget in the application's assemble() strategy shows the widget.

For a Material application, you can utilize a Framework widget; it gives a default

standard, foundation shading, and has Programming interface for including

drawers, café, and base sheets. At that point you can add the Middle widget

legitimately to the body property for the landing page [7]

Figure 17 Text visible widget is incorporated in center layout widget [7]

24

2.3.2 Layout for Multiple Widget

1. Layout widgets vertical and on a level plane: One of the most notable

structure plans is to organize widgets vertical or on a level plane. You can use a

Line widget to arrange various widgets equally, and a Section widget to organize

widgets vertically.

To make a line or segment in Flutter, you incorporate an overview of child

widgets to a Line or Section widget. The going with model exhibits how it is

possible to settle lines or sections inside lines or segments. This arrangement is

sifted through as a Line. The line contains two kids: a segment on the left, and an

image on the right. Along these lines, each youngster would itself have the option

to be a line or section, and so forth. [8]

Figure 18 Layout widget in body of Scaffold[7]

25

1. Alignment of widget:

mainAxisAlignment and crossAxisAlignment properties helps you to align

widgets within column or row and also helps in maintaining space within widgets,

they can be set to many values depending on hpw you would like your widgets to

be displayed.

Example in rows, the principle hub goes on a level plane and the cross pivot goes

upright.

Example in columns, the principle hub operates upright and the cross hub goes

parallel.[9]

Figure 19 Layout widget using Column and row [9]

26

2.3.3 Sizing of widget

At the point when a design is too enormous to even think about fitting a gadget, a yellow

and dark striped example shows up along the influenced side. Here is a case of a row

which is excessively wide

Figure 20 Alignment of widgets[9]

27

You can use Expanded widget to fit various different widgets in rows and columns and

prevent them from leaking through your screen. In past, where the line of pictures is

excessively wide for its renderer, create each image included within an Extended widget.

Widgets can be estimated to fit inside a line or segment by using the Extended widget. [9]

Figure 21. Overflowing row in a widget resulting a yellow and black striped

pattern [9]

28

On the off chance that you need a widget to consume 2x as much space as its kin. For

this, utilization the widget called Expanded widget having property called flex property, a

whole number which decides the flex component for that containing widget. The default

flex factor is 1. The accompanying code adjusts the flex of the center picture to two.[9]

Figure 22. Widget Wrapped in Expanded to prevent overflowing[9]

29

2.3.4 Nesting of Rows and Columns

The format structure of flutter permits you to add as many as rows and columns within

rows and columns as you are willing.

Figure 23. Widget Wrapped in Expanded with Flex: 2 to double its size[9]

30

The illustrated segment is actualized as two rows. The appraisals row contains column

with stars of the rating and the quantity of surveys. The symbols row contains 3 columns

of symbols and text.

The rating variable makes a row including a littler row of five Stars symbols, and bit of

text.

1.3.5 Common Layout widgets

Fl Flutter has a rich library of plan widgets. Here are two or three those most normally

used. The desire is to prepare you for activity as quick as could be normal considering the

present situation, rather than overwhelm you with an absolute summary. For information

Figure 24. Nesting of widgets marked with box with red outline[9]

Figure 26. The widget tree for nesting of rows and columns [9]

31

on other open widgets, imply the Widget list, or use the Hunt encase the Programming

interface reference docs. Also, the widget pages in the Programming interface docs

consistently make proposition about similar widgets that may better suit your

prerequisites.

The going with widgets fall into two classes: widgets from the widgets library called

standard widgets, and widgets called explicit that are from the MaterialLibrary. Any

application can use the widgets library anyway.15]

1.4 Packages in Flutter

Flutter emphasizes on utilizing various different packages developed by different

developers working of flutter or dart applications. This permits faster assembling an

application without creating everything from scratch. They are similar to libraries in

other programing language.

All of the Packages are distributed from pub.dev . The Flutter home page on the

given website shows all of the top and best packages that are working with Flutter ,

and boosts looking among every distributed package.

Top choices page on pub.dev records the modules and bundles that have been

recognized as bundles you ought to at first consider using when forming your

application. For additional information on being a Flutter Top choice, see the Flutter

Top picks program.

You can likewise peruse the bundles on pub.dev by isolating on iOS modules ,

Android modules , web modules, or any blend thereof.[14]

32

Add Package to your Application:

To include the package, abc, in an application:

1 Open the pubspec.yaml document situated inside the application organizer,

and include abc: under dependencies.

2 Go to terminal and run following command

OR

In Android Studio/IntelliJ:

Open “pubspec.yaml.” Click pub get button

 OR

In VS Code:

Choose get packages situated in right side of the activity strip at the highest

point of “pubspec.yaml”.

3 Import it in your required dart file

4 Stop and restart the application, if essential [14]

2.4.1 http Package

This package contains a lot of elevated level capacities and classes that make it simple to

devour HTTP assets. It's foundation autonomous, and can be utilized on both the order

line and the browser.

The least demanding approach to utilize this library is by means of the top-level

capacities. They permit you to make singular HTTP demands with negligible

problem:[17]

33

2.4.2 Location Package

This plugin for Flutter handles getting area on Android and iOS. It additionally gives

callbacks when area is changed.

In order to request location, you should all the time check manually for the Location

Service status and Permission status from your android device.[16]

Figure 26. Example of Usage of http Package [17]

34

1.5 API (Application Programming Interface)

Application Programming Interface is what API is the abbreviation for, which acts

like middle man between two applications and helps them to talk to one another

without contacting each other and middle man keeps working of each party a secret.

Each time you try to work with an app like Facebook, google, weather app or send a

message, or check the weather using internet, you would be using some form of an

API. [13]

Figure 27. Example on usage of Location package in flutter

[16]

35

Exactly when you use an application on your PDA, the application interface with the

Web and sends some data to a server in far away area. The server by then recuperates

that data, disentangles it, plays out the crucial exercises and sends it back to your cell

phone. The application by then unravels that data and presents you with the

information you required in a noticeable way. This is what a Programming interface is

- the total of this occurs through Programming interface. [13]

Your phone's data is never at any point totally introduced legitimately to the server, and in

like way the server is rarely totally introduced or associated with your phone. Or maybe,

each talks with little packages of data, sharing only that which is significant—like

mentioning takeout.[12]

2.5.1 Google Maps API

Programming interface keys are required for applications and ventures that utilization the

Google Maps Platform APIs and SDKs.Programming interface keys are venture driven

accreditations that fill two needs:

 project Identification. - Recognize the application or the undertaking that is

making a call to the API or SDK.

 project Authorization. - Check whether the calling application has been

conceded access to call the API or SDK and has empowered the API or SDK

in the task.

Figure 28. Example of API[12]

36

At the point when an API key is made, it is related with a task. By distinguishing the

calling venture, an API key empowers utilization data to be related with that task, and

guarantees calls from different undertakings are dismissed.

The Maps API lets you tweak maps with your own substance and symbolism for show on

web pages and internet devices.[12]

2.5.2 Places API

The Places API is an assistance that gives data about places utilizing HTTP requests.

Places are characterized inside this API as establishment, geographic areas, or interest

points.

Places API has following place requests:

Place Details - returns increasingly nitty gritty data about a particular place, including

client surveys.

Place Autocomplete - naturally fills in the name or potentially address of a place as user

type.

Place Search - restores a rundown of places dependent on a client's area or search string.

Place Photos – allows you access to the a many place related photos that are included in

database made by google.

Every one of the services is gotten to as a http requests returns either a JSON file or XML

file as a reaction.

The Places API utilizes a place ID to interestingly distinguish a place.[10]

37

2.5.3 Directions API

The Directions API is an assistance that ascertains directions among two or more

different places. You can look for directions for a few methods of transportation,

including travel, driving, strolling, or cycling.

You get to the Directions API through a HTTP interface, with demands built as a URL

string, utilizing text strings or scope/longitude directions to recognize the areas, alongside

your API key.[11]

2.6 Firebase

Firebase is a versatile and web application development platform created by Firebase, Inc.

in 2011. Later in 2014 it was bought by Google Inc.

A Firebase venture is the top-level substance for Firebase. In your undertaking, you can

include Firebase applications that can be iOS, Android, or Web applications. After you

arrange your applications to utilize Firebase, you would then be able to include the

Firebase SDKs for any number of Firebase items, as Analytics, Cloud Firestore,

Performance Monitoring, or Remote Config.[18]

2.6.1 Cloud Firestore:

It store and sync data by using versatile, adaptable NoSQL cloud database for server side

unexpected turn of events.

It is a versatile, adaptable database for invaluable, web and webserver progress from

Google Cloud Stage and firebase. Like firebase Realtime Database, it in like way keeps

your information in a condition of sync across different various applications through

persistent customers/clients and offers speedier and less mind boggling help for being

developed so you can without an entirely striking stretch make responsive-applications

38

that work distributing basically no remaining to filter through inaction or your structure.

Cloud Firestore other than offers steady perception with different Firebase things and

other GCP things.

Firebase offers 2 cloud based, client accessible database plans that help to get predictable

data and work on that:

Cloud Firestore: It is firebase most current database for versatile application/web

improvement. It develops the achievements of the past Reatime Database with another,

constantly instinctual data model. Cloud Firestore in like manner unites significantly

increasingly snappier, liberal requests and scales farther than the Realtime Database. [20]

Realtime Database: It is one of Firebase excellent database. It\'s a profitable, less-inaction

answer for versatile applications that require balanced states around clients in authentic

time.[21]

Figure 29. Example of Cloud Firestore [19]

39

Chapter 3 SYSTEM DEVELOPMENT

3.1 Silvers

A sliver is a part of a scrollable area. You can utilize slivers to accomplish custom

scrolling effects. For data on actualizing slivers in Flutter, including SliverList,

SliverGrid, and SliverAppBar. You can sort of consider Slivers a lower-level interface,

giving better grained control on actualizing scrollable area. Since slivers can sluggishly

construct every thing similarly as it scrolls into see, slivers are especially valuable for

productively scrolling through huge quantities of children.

These sliver Components go inside a CustomScrollView. You can reinvent a ListView by

putting a SliverList inside a CustomScrollView.

SliverAppBar:

It is a app bar with material design that comes under CustomScrollView.This aapbar

consists of toolbar and many other widgets like tabBar and a FlexibleSpaceBar.appBar is

then followed by popup memubutoon for less common operations.

Sliver application bars are commonly utilized as the primary child of a

CustomScrollView, which lets the application bar coordinate with the scroll see so it can

change in stature as per the scroll balance or buoy over the other substance in the scroll

see. For a fixed-tallness application bar at the highest point of the screen see AppBar,

which is utilized in the Scaffold.appBar space.

The AppBar shows the toolbar widgets, driving, title, and activities, over the base

(assuming any). On the off chance that a flexibleSpace widget is indicated, at that point it

is stacked behind the toolbar and the base widget.

SliverList:

A sliver that places various box children in a straight cluster along the primary hub.

Every child is compelled to have the SliverConstraints.crossAxisExtent in the cross hub

yet decides its own primary hub degree. SliverList decides its scroll counterbalance by

"dead reckoning" since children outside the noticeable piece of the sliver are not

materialized, which implies SliverList can't become familiar with their fundamental hub

degree. Rather, recently materialized children are set nearby existing children.[22]

40

3.2 OnPressed

On the off chance that onPressed is set, at that point this callback will be considered when

the client taps on the name or symbol parts of the chip. On the off chance that onPressed

is invalid, at that point the chip will be impaired.

Following is the home screen of the application:[22]

.

.

Figure 30. Home Page of the application (home.dart {1})

41

Figure 31. Home Page of the application (home.dart {2})

42

3.3 Location

To retrieve location of the device add the following package to your pubspec.yaml file:

Like below:

dependencies:

 location: ^3.0.0

To retrieve location in your screen import the package using following line

import 'package:location/location.dart';

Figure 32. Home Page of the application (home.dart {3})

43

3.4 Navigate to next screen

Most applications contain a few screens for showing various kinds of data. For instance,

an application may have a screen that shows items. At the point when the client taps the

picture of an item, another screen shows insights regarding the item.

In Flutter, screens and pages are called routes. The rest of this formula alludes to routes.

In Android, a route is comparable to an Activity. In iOS, a route is comparable to a

ViewController. In Flutter, a route is only a widget.

This formula utilizes the Navigator to explore to another route.

Figure 33. Code to retrieve location from device (location.dart)

44

The following not many areas tell the best way to explore between two routes, utilizing

these means:

-Make two routes(Screens).

-Explore to the subsequent route utilizing Navigator.push().

-Come back to the principal route utilizing Navigator.pop().

Navigator.push():

To change to another route, utilize the Navigator.push() technique. The push() technique

adds a Route to the stack of routes oversaw by the Navigator. You can make your own, or

utilize a MaterialPageRoute, which is helpful on the grounds that it advances to the new

route utilizing a platform-explicit animation. [23]

For Example:

onPressed: () {

 Navigator.push(

 context,

 MaterialPageRoute(builder: (context) => SecondRoute()),

);

}

Navigator.pop():

To go back to previous route use Navigator.pop() method, the pop method removes the

current route from the given stack of routes managed by the navigator.

For Example:

onPressed: () {

 Navigator.pop(context);

}

45

Figure 34. code to ask user to add time he will spend addTime.dart{1}

46

Figure 35. code to ask user to add time he will spend addTime.dart{2}

47

Figure 36. code to ask user to add time he will spend addTime.dart{3}

48

3.4 Algorithm

Algorithm to find the time user reach the store and user will leave store and add that to

the collective database.

We use get requests to get the required data from google maps API using a custom API

Key.

We firebase plugin and cloud firestore plugin to store the required data in firebase no-sql

database on cloud.

Figure 37: Algorithm to find Time user reaches and leaves the store{1}

49

Figure 38: Algorithm to find Time user reaches and leaves the store{2}

50

3.8 Hardware Requirements

1. OS- Windows/Ubuntu/Mac

2. RAM- 6 GB or higher

3. GPU- Intel integrated Gpu or higher

4. Processor- Quad-Core i3 or higher

5. 8 GB Disk Space or higher

3.9 Software Requirements

1. Android Studio or any other IDE

2. Dart Plugin

3. Flutter Plugin

4. Flutter SDK

5. Android SDK

6. Web Browser

7. Android Virtual Device

51

Chapter 4 PERFORMANCE ANALYSIS

4.1 Home Page of the Application

Home of the Application displays nothing till location of the device is received by my

application. It only displays a button on top to manually try to get location of device if

user denies to give permission first time.

52

Once Location of device is received it displays the nearby stores at your location within

radius of 1 KM. You can select which location you want o visit next, from this screen of

the application

Figure 39. Snapshots of application with home page(when location is not

available)

53

4.2 Add Time

Once you have selected the location you want to visit by tapping on the location icon.

You will be sent to next screen where you can add the maximum time you will spend in

the given selected store once You have selected the time by pressing the plus and minus

icon present on the screen. You can Click next to go on next screen.

Figure 40 Snapshots of application with home page(when location is

available)

54

4.3 Result Page

This pagedisplays the time you can leave your house to get to your destination on time.

Time to reach the store you have selected.

Figure 41. Snapshots of application with page to add max time user will

spend at the store

55

Once More than 5 People will be present in store it will give you the next time you need

to leave your house to get to store in time.

Figure 42. Snapshots of application with result page giving details about

your journey

56

Figure 43. Snapshots of application with result page giving details about

your journey(With Time)

57

Chapter 5 CONCLUSIONS

5.1 Conclusions

We propose a working application that can get you to the store and tell you the

approximate time to reach the store and prevent the local stores from being overcrowded.

This application will allow at max 5 people at one single store and person who will come

after 5th will be given time the earliest person will leave and So on on for the next users

who click on the same store.

5.2 Future Work

I will add a cleaner USER INTERFACE, increase to total performance of the application.

More features could be added to application like integration of google maps within the

application.

Add notification options, making it visually more beautiful and with a tutorial for the

usage of the application.

implementing search option within the app and making a cancel button if user is

unwilling to the store.

5.2.1 Application

It will reduce the number of people in the store at a time of epidemic, and making social

distancing possible in small stores.

58

References

1. “A tour of the Dart language,” Dart, 2020. [Online]. Available:

https://dart.dev/guides/language/language-tour.

2. “Dart programming language,” Dart, 2020. [Online]. Available:

https://dart.dev/.

3. “Commonly used packages,” Dart, 2020. [Online]. Available:

https://dart.dev/guides/libraries/useful-libraries

4. “Dart API docs,” Dart, 2020. [Online]. Available:

https://api.dart.dev/stable/2.8.4/index.html.

5. “core library,” dart, 2020. [Online]. Available:

https://api.dart.dev/stable/2.8.4/dart-core/dart-core-library.html

6. “Technical overview,” Flutter, 2020. [Online]. Available:

https://flutter.dev/docs/resources/technical-overview

7. “Layouts in Flutter,” Flutter, 2020. [Online]. Available:

https://flutter.dev/docs/development/ui/layout.

8. “Beautiful native apps in record time,” Flutter, 2020. [Online]. Available:

https://flutter.dev/.

9. “Building layouts,” Flutter, 2020. [Online]. Available:

https://flutter.dev/docs/development/ui/layout/tutorial.

10. “Overview | Places API | Google Developers,” Google, 2020. [Online].

Available: https://developers.google.com/places/web-service/intro.

11. Google, 2020. [Online]. Available:

https://developers.google.com/maps/documentation/directions/start.

12. Google, 2020. [Online]. Available:

https://developers.google.com/maps/documentation/javascript/tutorial.

13. “What is an API? (Application Programming Interface),” MuleSoft, 2020.

[Online]. Available: https://www.mulesoft.com/resources/api/what-is-an-

api.

https://flutter.dev/docs/development/ui/layout
https://flutter.dev/
https://developers.google.com/places/web-service/intro
https://developers.google.com/maps/documentation/directions/start
https://developers.google.com/maps/documentation/javascript/tutorial
https://www.mulesoft.com/resources/api/what-is-an-api
https://www.mulesoft.com/resources/api/what-is-an-api

59

14. “Using packages,” Flutter, 2020. [Online]. Available:

https://flutter.dev/docs/development/packages-and-plugins/using-

packages.

15. “Introduction to widgets,” Flutter, 2020. [Online]. Available:

https://flutter.dev/docs/development/ui/widgets-intro.

16. “location: Flutter Package,” Dart packages, 03-Apr-2020. [Online].

Available: https://pub.dev/packages/location.

17. “http: Dart Package,” Dart packages, 27-Apr-2020. [Online]. Available:

https://pub.dev/packages/http.

18. Google, 2020. [Online]. Available: https://firebase.google.com

19. Google Accounts, 2020. [Online]. Available:

https://console.firebase.google.com/

20. “Cloud Firestore | Firebase,” Google, 2020. [Online]. Available:

https://firebase.google.com/docs/firestore.

21. “Firebase Realtime Database,” Google, 2020. [Online]. Available:

https://firebase.google.com/docs/database.

22. “Slivers,” Flutter, 2020. [Online]. Available:

https://flutter.dev/docs/development/ui/advanced/slivers.

23. “Navigate to a new screen and back,” Flutter, 2020. [Online]. Available:

https://flutter.dev/docs/cookbook/navigation/navigation-basics.

https://flutter.dev/docs/development/packages-and-plugins/using-packages
https://flutter.dev/docs/development/packages-and-plugins/using-packages
https://pub.dev/packages/location
https://pub.dev/packages/http
https://firebase.google.com/
https://console.firebase.google.com/
https://firebase.google.com/docs/firestore
https://firebase.google.com/docs/database
https://flutter.dev/docs/development/ui/advanced/slivers
https://flutter.dev/docs/cookbook/navigation/navigation-basics

	Chapter 1 INTRODUCTION
	1.1 Introduction
	1.2 Problem Statement
	1.3 Objectives
	1.4 Methodology

	Chapter 2 LITERATURE SURVEY
	2.1 Dart
	2.1.1 dart:core library
	2.1.1.1 Numbers and booleans
	2.1.1.2 Strings and regular expressions
	2.1.1.3 Collections
	2.1.1.4 Date and time
	2.1.1.5 Uri
	2.1.1.6 Errors

	2.2 Flutter
	2.2.1 Features
	2.2.2 Advanteges
	2.2.3 Widgets
	2.2.4 Flutter Framework
	2.2.5 User Interaction

	2.3 Flutter Layout
	2.3.1 Create and Display a widget
	2.3.2 Layout for Multiple Widget
	2.3.3 Sizing of widget
	2.3.4 Nesting of Rows and Columns
	1.3.5 Common Layout widgets

	1.4 Packages in Flutter
	2.4.1 http Package
	2.4.2 Location Package

	1.5 API (Application Programming Interface)
	2.5.1 Google Maps API
	2.5.2 Places API
	2.5.3 Directions API

	2.6 Firebase
	2.6.1 Cloud Firestore:

	Chapter 3 SYSTEM DEVELOPMENT
	3.1 Silvers
	3.2 OnPressed
	3.3 Location
	3.4 Navigate to next screen
	3.4 Algorithm
	3.8 Hardware Requirements
	3.9 Software Requirements

	Chapter 4 PERFORMANCE ANALYSIS
	4.1 Home Page of the Application
	4.2 Add Time
	4.3 Result Page

	Chapter 5 CONCLUSIONS
	5.1 Conclusions
	5.2 Future Work
	5.2.1 Application

	References

