
final project
by Saksham R

Submission date: 25-Jun-2020 07:33PM (UTC+0530)

Submission ID: 1349533407

File name: 161364Finalreport.pdf (305.94K)

Word count: 4371

Character count: 22618

final project
ORIGINALITY REPORT

SIMILARITY INDEX INTERNET SOURCES PUBLICATIONS STUDENT PAPERS

PRIMARY SOURCES

■ 251 eac70a0b4ddddc93142c2ee8c9d 1 d08c26b8a.goe11llec
Internet Source O %

developer. apple. com
Internet Source

■
www.interviewsortout.com
Internet Source

docs.swift.erg
Internet Source 2%

II reactnative .dev
Internet Source 2%

II mrmacintosh.com
Internet Source

■
shrikar.com
Internet Source <1%

www.code-brew.com
Internet Source

II stackoverflow. com
Internet Source <1%

m Submitted to University of North Texas <1% Student Paper

ID Submitted to Asia Pacific lnstutute of <1%
Information Technology
Student Paper

m vishnukrish.blogspot.com <1% Internet Source

II Submitted to University of Newcastle upon Tyne < 1 % Student Paper

m Submitted to Kazakh-British Technical < 1 %
University
Student Paper

m smibusiness.com.au <1% Internet Source

Exclude quotes Off Exclude matches Off

Exclude bibliography On

 iOS APP DEVELOPMENT

Industrial Training Report

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF

THE DEGREE OF

BACHELOR OF ENGINEERING

IN

COMPUTER SCIENCE ENGINEERING
 By

 Sakshum Kalsotra (161364)

 UNDER THE GUIDANCE OF

 Dr.Rajni Mohana

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

 May 2020

1

DECLARATION

We hereby declare that the work reported in the B.Tech Project Report entitled IOS APP

DEVELOPMENT submitted at Jaypee University of Information Technology, Waknaghat ,

India is an authentic record of our work carried out under the supervision of Dr.Rajni Mohana

We have not submitted this work elsewhere for any other degree or diploma

Signature of the Student

Sakshum Kalsotra

161364

This is to certify that the above statement made by the candidates is correct to the best of my knowledge

Signature of the Supervisor

 Dr.Rajni Mohana

Date:

 Head of the Department /Project Coordinator

2

 ACKNOWLEDGEMENT

It is my privilege to thank all the people who contributed to make this internship period a great

and unforgettable experience of my life.

First of all I would like to thank Jaypee University of Information Technology, Waknaghat

for providing me the golden opportunity of gaining practical industry knowledge through

internship training at CODEBREW LABS. I take this opportunity to express my sincere

gratitude and deep regards to my Mentor, Mrs Gurleen Kaur for her exemplary guidance,

monitoring and constant encouragement throughout the course of this internship. I also thank

all my team members for sharing the knowledge and experience of their respective fields which

assisted me in the successfully blend in the ongoing live project.

Finally I thank each and every member of the CodeBrew family in technical, non-technical

fields and support staff who have directly or indirectly helped me. This internship program

provided me a lot of opportunities to work in different settings and exposed me to interaction

with different sets of people globally. I was able to utilize and enhance different skills in me

like decision making, communication, teamwork and coordination.

3

 ABSTRACT

Code Brew Labs is specialized in Design, Development, Branding & Online Marketing. As a

well established leading Web Development Company in India they have mastered the art of

translating client ideas and expectations into high quality deliverable services. They believe in

simplicity and prioritize every client's requirements with a great deal of commitment.

Moreover, their services are backed up with sound knowledge and skills of technology, along

with cost effective plans. Their global clientele is diverse and ranges from small startups to

large enterprises.

Role: IOS APP DEVELOPER

iOS is Apple’s mobile OS that runs on an iPhone, iPad, iPod Touch hardware. Apple provides

tools and resources for creating iOS apps and accessories for these devices. As an iOS

developer, you can program in native languages such as Swift or Objective-C or build cross-

platform native applications using React Native (JavaScript) or Xamarin (C# & F#).

Our team of iOS developers is responsible for developing applications for mobile devices

powered by Apple's IOS operating system.

Responsibilities

• Design and build applications for the IOS platform

• Ensure the performance, quality, and responsiveness of applications

• Collaborate with a team to define, design, and ship new features

• Identify and correct bottlenecks and fix bugs

• Help maintain code quality, organization, and automatization.

4

LIST OF FIGURES

1. Illustration 1: Grintafy

2. Illustration 2: Gradeup

3. Illustration 3: Sml Isuzu

4. Illustration 4: Business Goals

5. Illustration 5: AppDesign

6. Illustration 6: Swift vs Objective c

7. Illustration 7: XCODE

8. Illustration 8: AppDelegate LifeCycle

9. Illustration 9: View LifeCycle

10. Illustration 10: MVC Architecture

5

INDEX

DECLARATION 1

ACKNOWLEDGEMENT 2

ABSTRACT 3

LIST OF FIGURES 4

COMPANY PROFILE 6

METHODOLOGY 10

Chapter 1 INTRODUCTION TO SWIFT 11

1.1 Features of Swift

1.2 Swift Overview

1.3 Swift vs Objective C

Chapter 2 INTRODUCTION TO XCODE 15

2.1 Introduction

2.2 General Operations

2.3 CocoaPods

2.4 Podfile

Chapter 3 Application Life Cycles & Architecture 19

3.1 App Delegate LifeCycle

3.2 View LifeCycle

3.3 Scene Delegate LifeCycle

3.4 MVC Architecture

Conclusion 26

References 27

6

 COMPANY PROFILE

Code Brew Labs is specialized in Design, Development, Branding & Online Marketing. As

a well established leading Mobile And Web Development Company in India they have

mastered the art of translating client ideas and expectations into high quality deliverable

services. They believe in simplicity and prioritize every client's requirements with a great

deal of commitment. Moreover, their services are backed up with sound knowledge and skills

of technology, along with cost effective plans. Their global clientele is diverse and ranges

from small startups to large enterprises. Code Brew Labs is a firm specializing in

technological solutions for businesses - the ones that exist, and the ones that are still in their

nascent stages. We make technology an invaluable asset for your business - be it a startup, an

SMB or an enterprise - all of these are included in their expanding repertoire. They have

dabbled in Business Analytics, IoT based infrastructure, cloud-based computing and

solutions, along with forays into the world of AR and VR.

They extend this expertise to many industry verticals, be it Fintech, EduTech, Healthcare, Social

Networking, Chat Apps, Mobile Games, Marketplaces and Food Delivery - to name a few. Mobile

App Development, iPhone App development, Android App development, 2D / 3D game

development, Mobile Strategy, Minimum Viable Product for Startups, App Monetization and

Engagement, App Store Optimization, React Native are some of the technologies they excel in.

 SERVICES

Accelerated Mobile Page:- An open source project created to improve the performance of web

pages for mobile devices. The technology behind AMP enables lightweight pages that load more

quickly for Smartphones and tablets users. With the help of this technology, you will be able to

publish content much faster. It does not matter where your business is situated as the project

allows us to implement the system and adapt it to all kind of audiences.

Top Mobile App Development Services for Startups & Enterprises

Code Brew Labs is a top-notch Mobile App Development company in India that offers some of

the best development services. Whether you are a startup or an enterprise company, you can avail

our highly coveted iPhone and Android App development services which will be intuitive,

powerful and engaging.

7

Digital Marketing

Digital Marketing has become the core of all the businesses, irrespective of their size. Code

Brew Labs is proud to be one of the best Digital Marketing Company in India, where we

practice all the latest white hat techniques in order to make a business visible on internet.

Top Mobile Game Development Services

Code Brew Labs is one of the most promising and delivering Mobile App Game development

company in India. We have years of experience in creating quality and augmented gaming

applications.

Products:

A) GRINTAFY

An extraordinary application solely for football darlings in Middle East which permits clients

to make and advance profiles, play with companions, and let different players participate

with 100k+downloads taking fever of football to the following level.

 Illustration 1: GRINTAFY

B) RED VAULT

A Rewarding App for each gamer In Middle East. Super-dazzling designs and intuitive UI let

the players play and gain more. Red vault effectively handles 90 percent of gaming business

sector of GCC with 100K+downloads.

8

C) GRADEUP :-An Exam Preparation App, Subsidiary of Times Internet.

One of the largest & most effective platforms for competitive exam preparation in India with

10M+ downloads. Learning made accessible and affordable!

 Illustration 2 : GradeUp

D) ERP SOLUTION FOR SML ISUZU:-ERP Solution to the commercial vehicle

manufacturer.SML ISUZU is a renowned commercial vehicle manufacturer, specializing in

buses, ambulances and customized vehicles.SML Isuzu Limited is a commercial vehicle

manufacturer established in 1983.SMLI produces and sells buses, ambulances and

customized vehicles.

 Illustration 3 : SML ISUZU

9

The ‘BREW’ Procedure Helps Exceed the Business Goals

Briefing Of The Business Idea

Examining the ideas & details, we propose the best possible solutions that will meet

your brand requirements indeed.

• Thorough research to keep you ahead of your competitors

• A framework for your customized app with specific features

Researching A Perfect Architecture

Browsing our stack of latest technologies, our brewers create a fully-customized

solution, made just for your business

• An exceptional UI design for better customer experience

• Development of the core functionality with advanced features Evolving Bug-Free

Business App.

 METHEDOLOGY

Methodologies for building iOS apps are systematic ways of developing software systems

(the how) while considering all the other relevant aspects (the why, what, when, who, and

where) of these systems.

Basic Design Stages for iOS Apps:- To To see how to configuration forms, you should

comprehend configuration stages for iOS applications. Programming improvement steps are

requested in time by stages, beginning from a phase of small understanding and moving to

phases of logically expanded information and consistency, with the exercises beginning with

the patrons or the visionaries and moving to the advancement group and afterward to the

client. There are four phases:

• Inception: The inception stage is where things are being figured out — an approximate vision; a

business case; scope; a high-level, potential architecture; and high-level estimates of efforts and cost.

10

• Elaboration: This is the stage where you refine the vision, validate the core architecture, and resolve

risks. In fact, you might say that elaboration is all about the resolution of the risks. This is where most

of the requirements identification is done and (with hope) realistic project management estimates are

created.

• Construction: The stage where you iteratively implement any remaining features and prepare for

deployment. The construction stage is where the tasks are steadily adding more and more features.

Plenty of detailed OO design, implementation, and testing takes place here.

• Transition: This is the stage where you deploy a finished released. Here, the software is turned over to

users. Incidentally, you might also beta test a system in this stage. Activities from the deployment,

testing, and maintenance phases take place here.

 Illustration 5 :APPDESIGN

 CHAPTER : 1

 INTRODUCTION TO SWIFT

Swift is another programming language for iOS, macOS, watchOS, and tvOS application

improvement. In any case, numerous pieces of Swift will be recognizable from your experience

of creating in C and Objective-C.Swift gives its own renditions of all essential C and Objective-

C types, including Int for whole numbers, Double and Float for coasting point esteems, Bool

for Boolean qualities, and String for literary information. Quick likewise gives ground-

breaking variants of the three essential assortment types, Array, Set, and Dictionary

Quick is a sort safe language, which implies the language causes you to be clear about the

kinds of qualities your code can work with. On the off chance that piece of your code requires

a String, type security keeps you from passing it an Int accidentally. In like manner, type

11

security keeps you from incidentally passing a discretionary String to a bit of code that requires

a non-discretionary String. Type security encourages you catch and fix blunders as ahead of

schedule as conceivable in the improvement procedure.

Swift also introduces optional types, which handle the absence of a value. Optionals say either

“there is a value, and it equals x” or “there isn’t a value at all”. Using optionals is similar to

using nil with pointers in Objective-C, but they work for any type, not just classes. Not only

are optionals safer and more expressive than nil pointers in Objective-C, they’re at the heart of

many of Swift’s most powerful features.

Notwithstanding recognizable sorts, Swift presents propelled types not found in Objective-C,

for example, tuples. Tuples empower you to make and go around groupings of qualities. You

can utilize a tuple to restore different qualities from a capacity as a solitary compound worth.

1.1 Features of Swift

Swift Supports Dynamic Libraries

Dynamic libraries are executable pieces of code that can be connected to an application. This

component permits current Swift applications to interface against fresher adaptations of the

Swift language as it develops after some time. Dynamic libraries in Swift are legitimately

transferred to the memory, eliminating the underlying size of the application and eventually

expanding application execution.

Safer Platform

In the competitive mobile app marketplace, developing a secure app should be a priority.

Swift’s syntax and language constructions exclude the several types of mistakes possible in

Objective-C. This stability means that there will be fewer crashes and cases of problematic

behavior. It doesn’t prevent programmers from writing bad code, but rather makes it less

likely to make mistakes. This adds an extra layer of quality control during development.

Less Code & Less Legacy

With Objective-C, there are numerous issues that cause application crashes. Swift gives code

that is less mistake inclined as a result of its inline support for controlling content strings and

information. Moreover, classes aren't partitioned into two sections; the interface and the

execution. This cuts the quantity of documents in the undertaking fifty-fifty, which makes it

a lot simpler to deal with.

12

Automatic Reference Counting (ARC)

Swift uses Automatic Reference Counting (ARC) to track and manage your app’s memory

usage. In most cases, this means that memory management “just works” in Swift, and you do

not need to think about memory management yourself. ARC automatically frees up the

memory used by class instances when those instances are no longer needed.

1.2 Swift Overview

Closures:-

Closures are self-contained blocks of functionality that can be passed around and used in

your code. Closures in Swift are similar to blocks in C and Objective-C and to lambdas in

other programming languages.Closures can capture and store references to any constants and

variables from the context in which they are defined. This is known as closing over those

constants and variables. Swift handles all of the memory management of capturing for you.

Enumerations:-

Enumerations in Swift are five star types in their own right. They receive numerous

highlights generally bolstered uniquely by classes, for example, figured properties to give

extra data about the identification's present worth, and case strategies to give usefulness

identified with the qualities the specification speaks to. Lists can likewise characterize

initializers to give an underlying case esteem; can be reached out to extend their usefulness

past their unique execution; and can comply with conventions to give standard usefulness

Optional Chaining:-

Optional chaining is a process for querying and calling properties, methods, and subscripts

on an optional that might currently be nil. If the optional contains a value, the property,

method, or subscript call succeeds; if the optional is nil, the property, method, or subscript

call returns nil. Multiple queries can be chained together, and the entire chain fails gracefully

if any link in the chain is nil.

Protocols:- A protocol defines a blueprint of methods, properties, and other requirements

that suit a particular task or piece of functionality. The protocol can then be adopted by a

class, structure, or enumeration to provide an actual implementation of those requirements.

Any type that satisfies the requirements of a protocol is said to conform to that protocol.

Generics:-Generics are one of the most powerful features of Swift, and much of the Swift

13

standard library is built with generic code. In fact, you’ve been using generics throughout

the Language Guide, even if you didn’t realize it. For example,

Swift’s Array and Dictionary types are both generic collections. You can create an array that

holds Int values, or an array that holds String values, or indeed an array for any other type

that can be created in Swift.

Subscripts:- Classes, structures, and specifications can describe Subscripts, which are

backup courses of action for getting to the part segments of a combination, overview, or

progression. You use Subscripts to set and recuperate values by record without requiring

separate strategies for setting and recuperation. For example, you get to parts in an Array

case as someArray[index] and segments in a Dictionary event as someDictionary[key]

ARC:-Swift uses Automatic Reference Counting (ARC) to track and manage your app’s

memory usage. In most cases, this means that memory management “just works” in Swift,

and you do not need to think about memory management yourself. ARC automatically frees

up the memory used by class instances when those instances are no longer needed.

14

1.3 Why swift over objective C for IOS App Development ?000JN /

Illustration 6:SWIFT VS OBJECTIVEC

15

 CHAPTER 2

 INTRODUCTION TO XCODE

2.1 Introduction

XCode is an organized improvement condition made to manage Mac working structures. It

contains a set-up of programming progression gadgets made by apple. XCode urges us to make

programming for macOS, tvOS, iOS, and watchOS. The latest stable appearance of XCode is

11.3.2, which is available on the Mac App Store for all the customers of macOS Mojave. Xcode

11 is open in the Mac App Store and consolidates SDKs for iOS 13, macOS Catalina 10.15,

watchOS 6, and tvOS 13. Xcode 11 sponsorships progression for contraptions running iOS

13.1. Xcode 11 sponsorships on-contraption researching for iOS 8 and later, tvOS 9 and later,

and watchOS 2 and later

2.2 General Operations

16

Xcode 11 supports development with SwiftUI.

 Xcode 11 adds support for Mac Catalyst to bring iPad apps to the Mac.

 You can now change the appearance of Xcode independently of the

system appearance setting.

 Xcode supports uploading apps from the Organizer window or from the

command line with xcodebuild or xcrun altool. Application Loader is no

longer included with Xcode.

17

 LaunchServices on macOS now regards the chose Xcode when propelling

Instruments, Simulator, and other designer devices installed inside Xcode.

For instance, when you double tap an Instruments follow in Finder, the

rendition of Instruments for the chose Xcode dispatches. Change which

Xcode is utilized with xcode-select from the order line.

 Editors can be added to any window without needing the Assistant Editor.

Editors are added using the “Add Editor” button in the jump bar or the File >

New > Editor command. Each editor can independently show its own

assistant or canvas via commands in the Editor or Editor Options menus.

Illustration 7 : XCODE

These two modes will automatically show relevant content when available.

When using multiple editors, the View > Editor > Focus command can be

used to temporarily expand the active editor to fill the entire window, hiding

other editors. Additionally, “Show Editor Only” will reset a given editor,

turning off any extra views that have been enabled in that editor. For source

control support, the Code Review button in the Toolbar replaces the

Comparison Editor. The “Show Authors” command is now available from

the Source Editor’s Editor menu. The SCM Log is now in the Inspector

Area.

2.3 CocoaPods:-

Cocoapods is a reliance supervisor used to introduce conditions for quick and target C

extends in XCode. It is like the expert or frying pan, which are utilized to introduce

conditions in Java. Notwithstanding, a reliance supervisor is an apparatus that deals with the

arrangement of structures to make life a couple of simpler for the engineers

In iOS, Cocoapods introduces outsider libraries like Firebase, Alamofire, and so on. In any

case, in the event that we don't utilize Cocoapods to introduce an outsider library like

Firebase, we have to introduce it physically, which is a dull procedure. Here, we have to

introduce all the conditions of firebase alongside firebase, and in the event that Firebase

makes changes to its SDK, at that point we have to redownload it into our task. CocoaPods is

18

built with Ruby and it will be installable with the default Ruby available on macOS. You can

use a Ruby Version manager, however we recommend that you use the standard Ruby

available on macOS unless you know what you're doing.

Using the default Ruby install will require you to use sudo when installing gems. (This is

only an issue for the duration of the gem installation, though.)

$ sudo gem install cocoapods

2.4<What is a Podfile?

The Podfile is a determination that depicts the conditions of the objectives of at least one

Xcode ventures. The document ought to just be named Podfile. All the models in the aides

depend on CocoaPods adaptation 1.0 and onwards.

How to use a PodFile?

To create a new project with CocoaPods, follow these simple steps:-

• Create a new project in Xcode as you would normally.

• Open a terminal window, and $ cd into your project directory.

• Create a Podfile. This can be done by running $ pod init.

• Open your Podfile. The first line should specify the platform and version

supported.platform :ios, '9.0'

• In order to use CocoaPods you need to define the Xcode target to link them to. So

for example if you are writing an iOS app, it would be the name of your app.Create

a target section by writing target '$TARGET_NAME' do and an end a few lines

after.

• Add a CocoaPod by specifying pod '$PODNAME' on a single line inside your

target.

Question: What is Podfile.lock?

https://guides.cocoapods.org/using/the-podfile.html#what-is-a-podfile

19

This record is produced after the main run of case introduce, and tracks the variant

of each Pod that was introduced. For instance, envision the accompanying reliance

determined in the Podfile.

 Chapter 3

 Application Life Cycles & Architecture

3.1 APPDELEGATE LIFE CYCLE:-

Illustration 8: APPDELEGATE LIFECYCLE

The primary concern of section into iOS applications is UIApplicationDelegate.

UIApplicationDelegate is a convention that your application needs to actualize to get told

20

about client occasions, for example, application dispatch, app goes into background or

foreground, app is terminated, a push notification was opened, etc.

When an iOS app is launched the first thing called is application:

willFinishLaunchingWithOptions:-> Bool. This method is intended for initial application

setup. Storyboards have already been loaded at this point but state restoration hasn’t occurred

yet.

LAUNCH

• application: didFinishLaunchingWithOptions: -> Bool is called next. This

callback method is called when the application has finished launching and

restored state and can do final initialization such as creating UI.

• applicationWillEnterForeground: is called

after application: didFinishLaunchingWithOptions: or if your app becomes

active again after receiving a phone call or other system interruption.

• applicationDidBecomeActive: is called

after applicationWillEnterForeground: to finish up the transition to the

foreground.

Termination

• applicationWillResignActive: is called when the app is about to become

inactive (for example, when the phone receives a call or the user hits the Home

button).

• applicationDidEnterBackground: is considered when your app enters a

foundation state subsequent to getting latent. You have approximately five

seconds to run any assignments you have to back things up on the off chance

that the app gets ended later or just after that.

• applicationWillTerminate: is called when your app is about to be purged

from memory. Call any final cleanups here.

21

Both application: willFinishLaunchingWithOptions: and application:

didFinishLaunchingWithOptions: can possibly be impelled with decisions

recognizing that the application was called to manage a spring up message or url or

something else. You need to return substantial if your application can manage the

given activity or url.

Knowing your app’s lifecycle is important to properly initialize and set up your

app and objects. You don’t have to run everything in

 application: didFinishLaunchingWithOptions, which often becomes a kitchen

sink of setups and initializations of some sort.

3.2 VIEWDELEGATE LIFE CYCLE:-

iOS calls the UIViewController methods as follows:

• viewDidLoad()-: Considered when the view controller's substance see (the highest

point of its view chain of command) is made and stacked from a storyboard. The

view controller's outlets are ensured to have legitimate qualities when this technique

is called. Utilize this technique to play out any extra arrangement required by your

view controller.

• viewWillAppear()-: Called not long before the view controller's substance see is

added to the application's view chain of importance. Utilize this strategy to trigger

any activities that need to happen before the substance see is introduced onscreen.

Notwithstanding the name, on the grounds that the framework calls this strategy, it

doesn't ensure that the substance view will get obvious.

• viewDidAppear()-: Called soon after the view controller's substance see has been

added to the application's view chain of importance. Utilize this strategy to trigger

any activities that need to happen when the view is introduced onscreen, for example,

getting information or appearing an animation.

• viewWillDisappear()-: called not long before the view controller's substance see is

expelled from the application's view chain of importance. Utilize this technique to

perform cleanup errands like submitting changes or leaving the person on call status.

22

• viewDidDisappear()-: Called soon after the view controller's substance see has been

expelled from the application's view progression. Utilize this strategy to play out

extra teardown exercises. In spite of the name, the framework doesn't call this

strategy on the grounds that the substance see has gotten covered up or clouded. This

strategy is possibly considered when the substance see has been expelled from the

application's view chain of command.

Illustration 9 : VIEW LIFECYCLE

3.3 SCENEDELEGATE LIFE CYCLE:-

A scene agent's most significant capacity is scene(_:willConnectTo:options:). As it were, it's

generally like the job of the application(_:didFinishLaunchingWithOptions:) work on iOS

12. The capacity is considered when a scene is added to the application, so it's the ideal point

to design that scene. In the above code, we're physically setting up the view controller stack,

however progressively about that later.

 The SceneDelegate also has these functions:

23

• sceneDidDisconnect(_:) is called when a scene has been disconnected from the app

(Note that it can reconnect later on.)

• sceneDidBecomeActive(_:) is called when the user starts interacting with a scene, such

as selecting it from the app switcher

• sceneWillResignActive(_:) is called when the user stops interacting with a scene, for

example by switching to another scene

• sceneWillEnterForeground(_:) is called when a scene enters the foreground, i.e. starts

or resumes from a background state

• sceneDidEnterBackground(_:) is called when a scene enters the background, i.e. the

app is minimized but still present in the background

3.3 MVC ARCHITECTURE:-

The MVC — Model View Controller Architecture Design Pattern is the most well-known

engineering found in iOS applications and is suggested by Apple.

MVC represents Model-View-Controller. It is an engineering or a product configuration

design that makes making enormous applications simple. It doesn't have a place with explicit

programming language or system, yet it is an idea that you can use in making any sort of

utilization or programming in any programming language.

For example, if you are developing an application in PHP, you can use structures like Laravel

or Codeigniter that uses MVC building to help you with making applications snappy and

direct. It might be to some degree hard to get your head around the MVC structure from the

beginning if you have made amazingly direct applications without using any kind of

designing or framework. In any case, this guide is to reveal you how to work on MVC

structure. At the point when you will perceive how it capacities, you will basically love

managing MV

An app which adopts the MVC pattern typically has 3 main layers.

24

1. Model -: Models are portrayals of your application's information. For instance, objects like

Users or Posts would be models of information. A User class or struct could hold data

attached to a particular client like username, birthdate, and so on. Model works legitimately

with the database. It doesn't need to manage UI or information handling. In certifiable

situation, you will basically utilize model to get, supplement, refresh and erase information

from your database.

2. View :- Views are objects that users of your app can see and interact with. View objects

should be reusable and flexible. Things like UI Labels which can show any kind of text are

views.

3. Controller :- Controllers mediate between the View and the Model. Controllers set up views

with the data from models and update models when users interact with views.

Advantages of MVC architecture:

o Development of the application becomes fast.

o Easy for multiple developers to collaborate and work together.

o Easier to Update the application.

o Easier to Debug as we have multiple levels properly written in the application.

There is not much in the disadvantages part of the architecture. And the disadvantages are not

so huge and are very easy to ignore in comparison with all the benefits we get.

25

 ILLUSTRATION 10: MVC ARCHITECTURE

 CONCLUSION

• Learnt Swift which is a general-purpose, multi-paradigm, compiled

programming language developed by Apple Inc. for iOS, iPadOS, macOS,

watchOS, tvOS, Linux, and z/OS.

• Had an incredible involvement with finding out about the different

advancements which can be utilized to make our iOS applications

26

considerably progressively powerful and client intuitive.

• Learnt how the backend is an essential support for an app and how various

API models are formed and mapped in our apps

• Hands on understanding to investigate/troubleshoot the issues or heighten

issues to the concerned groups.

• Experience to deal with industry related apparatuses and gradually picking up

ability on incorporating them to tweak an inventive application.

• Hands on experience to analyze/debug the code in Xcode and VisualStudio

• Hands-on experience to analyze/debug the issues or escalate issues to

concernedteams.

• Experience of working on a Real time App Suzo which has a market base and

learnt about the apps’s transition from initial to its deployment stage.

• Implemented the MVC Architecture for my project and designed the UI

alongwith fetching data for the design using Moya.

• Hands on experience to analyze/debug the code in Xcode and VisualStudio

• Hands-on experience to analyze/debug the issues or escalate issues to concerned

 teams.

• Experience of taking a shot at activities, for example, the coures application and

Kashkol and found out about the applications' change from starting to its

sending stage.

• Learnt how to integrate facebook login and google loogin within an app as

User friendly options

• Implemented the MVC Architecture for my project and designed the UI

alongwith fetching data for the design using Moya.

27

 REFERENCES

• https://www.code-brew.com/

• https://swift.org/documentation/

• https://developer.apple.com/xcode/

• https://cocoapods.org/

• https://medium.com/@hacknicity/how-to-switch-your-ios-app-and-scene-

delegate

• https://developer.apple.com/documentation/objectivec

• https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/

ProgrammingWithObjectiveC/Introduction/Introduction.html

https://www.code-brew.com/
https://developer.apple.com/xcode/
https://cocoapods.org/
https://medium.com/@hacknicity/how-to-switch-your-ios-app-and-scene-delegate
https://medium.com/@hacknicity/how-to-switch-your-ios-app-and-scene-delegate
https://developer.apple.com/documentation/objectivec

