HAND GESTURE RECOGNITION USING OPENCV

Project report submitted in partial fulfilment of the requirement for the degree of Bachelor of Technology

In

Computer Science and Engineering

By

Arunish Sharma(161264)
Paritosh Sharma(161270)

Under the supervision of

(Praveen Modi)
Assistant Professor

To

Department of Computer Science & Engineering and Information Technology

Jaypee University of Information Technology Waknaghat, Solan-173234, Himachal Pradesh
Candidate’s Declaration

I hereby declare that the work presented in this report entitled “Hand Gesture Recognition using OpenCV” in partial fulfilment of the requirements for the award of the degree of Bachelor of Technology in Computer Science and Engineering/Information Technology submitted in the department of Computer Science & Engineering and Information Technology, Jaypee University of Information Technology Waknaghat is an authentic record of my own work carried out over a period from August 2019 to December 2019 under the supervision of (Praveen Modi) (Assistant Professor (Grade-I), Computer Science).

The matter embodied in the report has not been submitted for the award of any other degree or diploma.

(Student Signature) (Student Signature)

Arunish Sharma, Paritosh Sharma,

161264 161270

This is to certify that the above statement made by the candidate is true to the best of my knowledge.

(Supervisor Signature)

Praveen Modi

Assistant Professor (Grade-I)

Computer Science and Engineering/Information Technology

Dated: 04/06/2020
ACKNOWLEDGEMENT

We have taken efforts in this project. However, it would not have been possible without the kind support and help of many individuals and organizations. We would like to extend our sincere thanks to all of them.

We are highly indebted to Praveen Modi for their guidance and constant supervision as well as for necessary information regarding the project and for their support in completing the project.

We would like to express our gratitude towards our parents and Jaypee University of Information Technology for their kind co-operation and encouragement, which helped us in completion of this project.

Our thanks and appreciations go to our colleague in developing the project and people who have willingly helped us out with their abilities.
TABLE OF CONTENT

1. **CHAPTER - 1INTRODUCTION**
 - Introduction 1
 - Problem Statement 3
 - Objectives 5
 - Methodology 7
 - Organization 8

2. **CHAPTER – 2LITERATURESURVEY**

3. **CHAPTER – 3SYSTEMDEVELOPMENT**
 - Analytical 16
 - Computational 17
 - Experimental 23

4. **CHAPTER – 4PERFORMANCEANALYSIS**

5. **CHAPTER-5CONCLUSIONS**

iii
LIST OF FIGURES

1. Figure 1 Gestures classification 3
2. Figure 2 Body parts used for gesturing 5
3. Figure 3 Steps for hand gesture recognition 6
4. Figure 4 Flowchart 7
5. Figure 5 CMOS camera 9
6. Figure 6 Flex sensors 10
7. Figure 7 Leaf switches 11
8. Figure 8 Stages for algorithm 17
9. Figure 9 Dataset 18
10. Figure 10 Selected hand gestures 18
11. Figure 11 Detailed flowchart for algorithm 19
12. Figure 12 Boundary drawn around the image 20
13. Figure 13 Player and team recognition using OpenCV 20
14. Figure 14 OpenCV library in use 21
15. Figure 15 NumPy Functions 22
16. Figure 16: NumPy Description 22
17. Figure 17 Example Picture 23
18. Figure 18 Architecture 29
19. Figure 19 Movement based identification in different light 31
20. Figure 20 Movement based identification 31
21. Figure 21 Skin division hand identification in same light 32
22. Figure 22 Skin division hand identification in different light 33
23. Figure 23 Proposed Method for Gesture Recognition 34
24. Figure 24 Histogram Box 35
LIST OF GRAPHS

1. Graph 1 Examplepicturehistograms 24
2. Graph 2 Histogram for dark, mid and light tone 26
3. Graph 3 More histograms 27
4. Graph 4 Histogram for dark, mid and light tone coloured 28
ABSTRACT

Gesture Recognition is the most favored and practicable solution to improve human interaction with computers and has been widely accepted in recent years thanks to its practice in gaming devices such as Xbox, ps4, etc. as well as other devices such as laptops, smartphone, etc. of gestures and particularly the recognition of hand gestures is utilized in various applications such as accessibility support, crisis management, medicine etc. This report depicts our fourth year project "Acknowledgment of gestures", describing the diverse directions and methods that are utilized for hand gesture recognition. Additionally, it portrays many methods utilized for evolution and its precise description, shows the output gathered and the tests executed to test the refined software artefact. Since hand gesture recognition linked to two main machine learning and image processing fields, the report further describes different APIs and tools that can be utilized to execute different approaches and methodologies in such areas.
CHAPTER - 1 INTRODUCTION

Introduction to gesture Recognition

Gesture
A gesture is a development of a body part, which can be a hand, head, neckorsome othertoexpressanyemblematicportrayalofinformation. It is essentially a method for interfacing in a non-verbal way utilizing our body parts to convey the ideal message. It incorporates different developments, for example, head developments, hand developments or other body parts developments. It is the utilization of hand motions utilized to express the non-verbal correspondence with the PCinterface.

Gesture Recognition
Gesture Recognition is characterized as the procedure to recognize the different movements structured by the client and are encouraged to the machine, which can be a PC, Tablet, or some other machine. Gesture Recognition can be examined utilizing two techniques. The first is static motion acknowledgment and the second is dynamic motion acknowledgment. Utilizing Static motion acknowledgment, the predefined signals put away in database can be distinguished while Dynamic motion acknowledgment is progressively founded on down to earth circumstances. With greater reasonableness comes more trouble.

As we probably are aware, the vision-based procedure of hand motion acknowledgment is a significant piece of human computer interaction (HCI). In the most recent decades, the console and mouse assume a significant job in human-PC cooperation. Be that as it may, because of the quick advancement of equipment and programming, new kinds of HCI techniques are required. Specifically, innovations, for example, speech acknowledgment and motion acknowledgment pull in a great deal of consideration in the region of HCI. There are 2 types of gestures: static and dynamic. It is altogether different from customary equipment based techniques what's more, can achieve human-PC association with the help of signal acknowledgment. Motionacknowledgment decides the expectation of the client through acknowledgment of gesturesormovementofthebodyorbody
parts. Through the previous decades, numerous scientists have been putting forth attempts to upgrade hand motion acknowledgment strategies. Hand motion acknowledgment is of incredible incentive in numerous apps, for example, acknowledgment of communication via gestures, enlarged reality (computer generated reality), gesture based communication mediators for the handicapped, and robot control.

Gesture recognition features:

More accurate

High security/stability

Time saving to unlock a device

Some of the applications of hand gesture recognition are applied in the following sectors: Automotive sector

Consumer electronics sector Transit sector

Gaming sector

To unlock smartphones Defence

Home automation

Automated sign language translation

Motion acknowledgment can be led with procedures from PC vision and picture preparing.

The Gestures can be classified into two sub-classes

- Static Gestures
DynamicGestures

![Gestures Classification Diagram]

Figure 1: Gestures Classification

Problem Statement
With growth and expansion in computing, client communication by keyboard, mouse and other input devices are not enough. These devices have certain limitations and henceforth the usable commands that can be directed to the machine have become limited. Moreover, it has become quite difficult for the blind and deaf to communicate with others. Gesture Recognition allows solving these problems by having a predefined data set. The gesture fed to the devices is used as the input to invoke the command stored in the database and the corresponding output is displayed on the screen.
The primary step is to discover and track the hands, which includes getting the required picture or video and pre-processing it to recognize the hand by applying different procedures in various frames of recorded video. The second stage includes filtering the unwanted attributes to determine the signal generated by the hand. Handling pictures, retrieval of information, recreating the picture can be utilized to generate the hand gesture.

We lay an efficient and productive procedure to identify hand gestures. The hand area is distinguished with the help of background removing procedure. Then, palms and finger are divided so that the fingers can be recognized. After all fingers are identified, the hand gestures can be categorized through a simple rule classifier.

The oddity of the suggested technique is recorded as:

(I) The primary oddity of the suggested technique is that hand signal acknowledgment depends on the result of finger acknowledgment. In this manner, approval is practiced by a straightforward and productive standard classifier rather than refined and complex classifiers, for example, SVM and CRF.

(ii) Some past work expected users to wear information gloves to get hand motion information. Nonetheless, information glove explicit sensors are costly and block its across the board application, in actuality. In the work, the creators utilize the TOF camera, the Kinect sensor, to catch an uncommon tape worn in the wrist to recognize the profundity and hand zone of the earth. Our methodology just uses a typical camera to catch locate data of the hand motion, in the interim unique tape help isn't required to recognize hand territories.

(iii) The method proposed is fir for real time applications and is highly efficient.
Figure 2: Body parts used for Gesturing

Gesture Recognition Objectives

The various objectives are:

- Tracking the handsignal
- Improving time related constraints
- Improving accuracy related constraints
- Extracting the desired features
- Identification of gesture
Figure 3: Steps for Hand Gesture Recognition

Tracking the hand signal
This phase focuses to find and observe the various hand patterns by analysing the video frames to determine the hands of various skin colours in different environment and lighting conditions.

Extracting the desired features
The subsequent stage incorporates isolating the basic highlights from the undesirable highlights and finding the features to shape the motion with its necessary properties.

Identification of Gesture
This phase includes two phases: The first phase is to compare the filtered signal with the predefined dataset. The second phase is to get the recognized gesture in highest precision for better comparisons and error avoidance.
Figure 4: The above figures depicts the flowchart for gesture recognition

Methodology

There are different strategies to distinguish a static gesture; however, the primary situation is to manage dynamic motions that shows dynamic changes with time. The procedure to select rely upon the client and the situations utilized as need to decide the gesture.
Organization

The report contains of various sections. The first section contains the introduction to the gesture recognition and gives an overview to it. The second section contains the various trending technologies used for gesture recognition. The third section talks about the various data sets and inputs. The fourth section talks about the implemented algorithms. The fifth section talks about the various interpreted and generated results, the sixth gives a reflection the work and the scopes in future.
CHAPTER -2 LITERATURE SURVEY

2.1 Background

The literature survey led gives a knowledge into the various techniques that can be received and executed to accomplish hand motion acknowledgment. Additionally helps in understanding the points of interest and drawbacks related with the different procedures.

The usually utilized techniques for catching info that has been watched are information gloves, hand belts and cameras.

Digital Gloves Design

The leadership of the literature survey gives a knowledge in various techniques that can be acquired and accepted hand movements. Also helps to understand points of interest and shortcomings related to various processes. Using CMOS Camera

• Leaf switches based glove
• Flex sensors based glove

Using CMOS Camera

At first hand signal picture is caught by CMOS camera as appeared in figure then we get limit of hand motion distinguished by edge location rule in Figure 5.

Figure 5: CMOS Camera
Drawbacks:

- Approximately 8 seconds are taken by CMOS camera to click increasingly costly image.
- Each picture takes about 50 kb memory.
- Programming complexities.

Flex Sensors Based Glove

Sensor citations an electrical device, that converts physical energy into current. Flex suggests that ‘bend’ or ‘curve’. Flex sensing element acts as a resistive sensing element, that amendments its opposition according to the adjustment in twist or ebb and flow of it into analogy voltage. Resistance changes from 45k to 75k by increasing the curvature from zero degree to ninety degree.

Figure 6: Flex Sensors

Drawbacks:
• We go through draw resistors so as to acquire solid rationale levels; solid rationale levels are not acquired.
• Low range of analogy output from flexsensor.
• Less accurate analogy outputs from flex sensors.
• Increased circuits.
• Expensive

2.2.3. Leaf switches based glove

Like typical switches, anyway when these are arranged with the goal that when weight is put on the switch, the two completions make contact and the switch to be closed. Exactly when these leaf switches close, the switch will be closed. The switches are put on the fingers of the glove with the ultimate objective that 2 ends of switch make contact when the finger is bowed.

Figure 7: Leaf Switches

Drawback:

The drawback related is that when used for long, the switch as opposed to being open once the finger is straight, it'll be shut prompting ill-advised carriage of signal.
3. APPLICATION AREAS OF HAND SIGNALS SYSTEM

Hand signal recognition systems have been put into different applications on different zones, as described in it; Silent Language Conversion, Virtual Environments, SmartServivation, Robot Controls, Medical Systems etc.

A. Silent Language Recognition:
Since communication through signing is utilized to clarify and explain a specific subject during refinement, it has gotten exceptional consideration. Numerous frameworks have been proposed utilizing various kinds of gesture based communications. For instance utilizing approved communication through signing ASL limit histograms, MLP neural systems and dynamic programming coordinating. Japanese Sign Language JSL utilizing two distinct sorts of neural systems, incompletely and completely Recreate Neural Networks utilizing the Recurrent Neural Network, 42 letters in order and 10 words recognized Arabic Sign Language ArSL..

B. Robot Controls:
Controlling the robot used motions, taken into account as one of the interesting applications with regards to this field, proposes an arrangement of numbering to check five fingers to control the robot utilizing hand present sign. Employments. Robots are requested to play out a specific capacity, where each sign has a particular importance and speaks to an alternate capacity, for instance, "one" signifies "continue", "five". Signifying "halting, etc.

C. Graphic Editor Control:
Realistic editorial manager the board framework needs the hand motion to be half-track and arranged as a preprocessing activity utilized twelve unique motions for drawing and redaction realistic framework. Shapes for drawing are; triangle, rectangular, circle, circular segment, even and vertical line for drawing, and directions for redaction realistic framework are; duplicate, erase, move, swap, fix, and close.
D. Virtual Environments (VEs):
One of the elegant applications in signal acknowledgment framework is virtual conditions VEs, for correspondence media frameworks. provided 3D advise motion acknowledgment for characteristic human pc communication HCI in a very timeframe from binocular perspectives. The arranged framework is right and liberated of client attributes and ecological adjustments. binocular sees. The proposed structure is exact and free of customer characteristics and biological changes.

E. Numbers Recognition:
Another progressing use of hand movement is seeing numbers. arranged partner programmed framework that may seclude and recognize a pregnant signal from hand motion of Arabic numbers from zero to nine of every an undeniable time framework misuse HMM.

F. TV Control:
Hand positions and gestures region unit used for prevailing the television gadget. In a gathering of hand gesture zone unit acclimated the board the TV exercises, such as terminating the TV on and, increasing and decreasing the volume, quieting the sound, and dynamical the channel abuse open and shut hand.

G. 3D Modelling
To fabricate 3D display, promise of hand shapes region unit required to frame, designed and look at 3D type of the hand. A few frameworks designed the second and 3D objects misuse hand outline. 3D hand displaying are frequently used for this reason conjointly that still a promising field of investigation.

Performance Characterization in Gesture Recognition
The complexity in anticipating how a given algorithm perform on another issue makes the exhibition portrayal in PC vision testing.
Another measurement called Gesture Recognition Performance Score (GRPS) is presented which takes into account a wide scope of elements for execution assessment of motion acknowledgment calculations. In light of GRPS the motion acknowledgment calculations are positioned. GRPS is determined by taking three gatherings of factors,

i) the algorithm performance,

ii) evaluation methodology followed, and

iii) the nature of the dataset used (how testing the dataset is to test the count). GRPS estimates the credibility of a computation to be productive in its actual execution. It urges the computation maker to seek after the recommended strategies to make the figuring productive in authentic applications.

Evaluation of a movement affirmation computation with affirmation exactness alone isn't sufficient to anticipate its achievement in authentic applications. Elements, for instance, the amount of classes the count can see, its individual opportunity, and its capacity to racket and difficult conditions are in like manner to be taken into account while checking movement affirmation estimations. Multi-issue benchmarks exist for the presentation connection of gear and programming portions like CPUs and compilers. Such app based benchmarks give a predominant extent of this present reality execution of a given system. We gathered the factors disturbing the efficiency of a movement affirmation structure from a survey of counts declared in the past 15 years.
LITERATURE REVIEW OF GESTURE RECOGNITION SYSTEMS

The picture of the given hand is dissected utilizing two distinct strategies; The skin

Colour-based division by applying HSV colour models and grouping edge strategies. The altered course examination calculation is received to discover the connection between the unsteadied parameters (variance and covalent) from the information, and is utilized to ascertain the item (hand) incline and pattern by identifying the heading of the handsignal.
CHAPTER – 3 SYSTEM DESCRIPTION

PROPOSED ALGORITHM VIA SYSTEM DESCRIPTION

USE OF CAMERA

The essential capacity of this framework is to perceive hand signal. Here, motion picture is taken utilizing the camera, the picture will be handled utilizing techniques for forms and in the wake of recognizing, the motion and a yield will be given on the showcase screen.

HARDWARE DETAILS

The experiment is performed on HP Pavilion having specifications:

- RAM – 8GB
- 4 Core CPU @ 2.30GHz
- Video Memory – 2 GBNVIDIA

PREPROCESSING STAGE

- InputStage
- ProcessingStage
- OutputStage

INPUT STAGE

- A high definition camera is used to capture images.
- The image captured must be as clear as possible to lower the occurrence of error.
- The input image is transferred to the raspberry pi module for further processing.

PROCESSING STAGE

- It has the main role in gesture recognition.
- Major steps performed in this stage include:
 1. The background of the image is removed.
 2. The RGB image is converted to grey scale image.
3. The contour of image is recorded.
4. The contour is compared with the already fed input.
5. The corresponding result of the recorded gesture is transferred to the display for output.

OUTPUT STAGE

- The output is displayed on the screen.

![Diagram](image)

Figure 8: Stages for Proposed Algorithm

DATA SET

The most significant piece of the whole report spins around the predefined dataset, which incorporates the motions to be perceived by means of information signal. The informational index has been taken from the CAMBRIDGE HAND FLAG LIST as appeared in fig.9
In this endeavour, we use four classes for seeing manual flags that are showed up in Figure 10. We use the important, the fourth, the sixth and the ninth signal as showed up in figure 9.

Figure 10: Selected hand gestures for recognition
Figure 11: Detailed Flowchart for Proposed Algorithm.

LIBRARIES

a) **OPEN CV**

OpenCV is a Python library which is intended to tackle PC vision issues. It supports various languages and has been the most important library to deal with recognition type projects where frame or video needs to be captured and dealt with whether it is object detection or motion detection.
Figure 12: Boundary drawn around the image.

OpenCV is a python library which is very helpful in calculating hand tracing and it is equipped with certain functions which are the steps towards creating a model having signal identification and those functions include video capturing, background removal, image editing like (resizing, rotation), plotting motion detection graph etc.

Figure 13: Player and team recognition using OpenCV.
b) NumPy

NumPy is a Python module. The name NumPy represents :Numerical Python and it is utilized. It is an expansion module for Python, generally written in C. This guarantees the precompiled logical and numerical limits and functionalities of Numpy guarantee remarkable execution speed.

Numpy is mostly used for performing calculations using certain functions it provides like multiply, divide, power etc. It is basically used for performing complex calculations with ease like dot product, summation etc. It is a very efficient module and makes the work easier.
Figure 15: NumPy Functions.

Figure 16: NumPy Description.
IMAGE FILTERING USING HISTOGRAM

A histogram is a graph or an arrangement that addresses the movement of the pixel powers in a portrayal. In this post we are going to focus on the RGB concealing space (see here in case you need an explanation about the difference between some concealing spaces, for instance, RGB and Lab), consequently the power of a pixel is in the range [0,255].

A histogram can be resolved both for the grayscale picture and for the concealed picture. In the fundamental case, we have a lone channel, from this time forward an independent histogram.

Figure 17: Example Picture.
TYPES OF IMAGE FILTERING:

- Grayscale histogram
 How about we begin by considering the histogram of the grayscale adaptation of the above example pictures in Figure 12. We can compose the accompanying partner capacity to show utilizing matplotlib the histogram of the grayscale rendition of a picture:

```python
import cv2
from matplotlib import pyplot as plt

def show_grayscale_histogram(image):
    grayscale_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    plt.hist(grayscale_image.ravel(), bins=256, range=(0, 256), histtype='step', cumulative=False)
    plt.show()
```

In the event that we execute this capacity for the example pictures, we get the resulting histograms as shown.

Graph 1: Example picture histograms
We should now examine this plot and see what sort of information’s we can extract from them.

From the first we can surmise that the every one of the pixels of the relating picture have low force as their practically all in the [0, 60] area around. From the second one we can see that the conveyance of the pixel powers is still increasingly twisted over the darker side, as the middle esteem is around 80;however, the difference is a lot bigger.

At that point, from the last one we can gather that the relating picture is a lot lighter yet in addition have some dim areas.
Graph 2: Histogram for dark, mid and light tone

Colour histogram

How about we currently move onto the histograms of the shaded example pictures in Figure 12. Indeed, even for this situation we can compose the accompanying assistant capacity to show utilizing matplotlib the histogram picture:

```python
import cv2
from matplotlib import pyplot as plt

def show_color_histogram(image):
    for i, col in enumerate(['b', 'g', 'r']):
        draw_image_histogram(image, [i], color=col)
    plt.show()
```

In the event that we execute this capacity for the example pictures, we get the resulting histograms as shown in below:
Graph 3 : Histogram

The plots are in a similar request of the example pictures. As we could have anticipated from the main plot we can see that every one of the channels have low powers relating to exceptionally dim red, green and blue. We likewise need to think about that the shading dark, which is given by (zero, 0, 0) in RGB, is bounteous in the comparing picture and that may clarify why everyone of the divertshavetops in the lowersomeportion of the Xpivot.

Sample image with dark tones and histogram (colored)

Cont.
Graph 4: Histogram for dark, mid and light tone coloured
4. Proposed Hand Gesture Recognition System:

The system comprises of 2 main ends: the front end and the back end. The back end comprises of three modules:

- Cameramodule
- Detectionmodule
- Interfacemodule

![Figure 18: Architecture Module of Camera](image)

In order to capture the input received from various image detectors and then transmitting the data to the Module of detection for further pre-processing, Module of camerais used. Some of the available methods that can be used to capture the input data are available in the market. They are data gloves, camera etc. In our project, we have used an inbuilt webcam camera that is cost effective and can detect static gestures easily. USB based cameras are also available at higher cost.
Module of Detection

The information got from the module of camera is prepared through different stages, for example, transformation of shading, evacuation of undesirable commotion, evolving frequencies, extraction of different rgb outlines and so on. This may bring about two situations: Image with Defect and Image with no Defect.

On the off chance that the signal is dynamic in nature, at that point outlines with five consistent developments become possibly the most important factor.

Utilizing this strategy we get the accompanying outcome, as found in figure 16 and figure 17, the discovery isn't exceptionally precise, we attempted particular qualities for edge yet the outcomes were not exact, this might be because of the interaction of shadow which considerably changes the foundation, likewise the entire hand isn't in movement making it hard to recognize it, consequently we took a choice of not using this technique in the product.
The other philosophy we utilized was skin division, as showed in segment 3.1.3.1 we utilized the Lab Shading space to rather than RGB shading space for skin affirmation this is by virtue of Lab separate the picture into 3 pathway L A and b as said in an area 3.1.3.1 we can utilize a and b pathway to see shading without them being affected by condition due to lighting.
We start by altering the shading space of the picture to Lab utilizing OpenCV and a short time later utilize the estimations of pathway a and b which are 8 piece redirect and as such have a propelling power from 0 to 255, to the extent likely characteristics to use for thresholding the picture and pass on appropriated picture displaying hands as appeared as tracks.

Register these edge esteems in light of the hand for the most part used characteristics for portraying skin shading in Lab shading space and on investigation. Figure 18,19 shows results assembled from this methodology. Later we procure incredible results;likewise, we use the skin shading detachment system in the item.

Figure 21: Skin division hand identification of a signal in similar light
Module of Interface

The activities must be passed to the proper application. This module is in charge of mapping the recognized hand motion to their related activities. The forward part comprises of 3 windows. The main window comprises of the video input that is caught from the camera with the relating name of the motion recognized. The second shows the forms found inside the information pictures. What's more, the first window shows the smooth thresholder variant of the picture. The edge and form window are a piece of the Graphical UI as a result of the including them the client mindful of the foundation irregularities that would influence the contribution to the framework and accordingly, they can alter their workstation or work area web camera so as to maintain a strategic distance from them. This would result in better execution.
Figure 23: Proposed Method for Our Gesture Recognition.
CHAPTER -5 RESULT AND CONCLUSIONS

CAPTURE CAMERA INPUT

To capture the input camera, we have used the following code.

```python
cap = cv2.VideoCapture(0)
```

```python
ret, frame = cap.read()
```

The program will first detect the background, which will avoid the detection of any objects kept at rest. The objects around the hand histogram are avoided.

To apply histogram, the client needs to evacuate their hand or anyone part from the ideal box and ten needs to tap the necessary key on console to identify any undesirable items. To apply histogram the client at that point puts the deliver the histogram box and afterward press thenecessarykey.

![Histogram Box](image)

Figure 24: Histogram Box
STORE IMAGE INPUT

Camera feed contribution is taken and put away in a NumPy exhibit named 'outline'. Foundation is ejected from the picture by taking the foundation model we just made and running the accompanying line:

```python
frame = cv2.flip(frame, 1)
kern = np.ones((3, 3), np.uint8)
```

DEFINE RANGE

Currently, 'outline' contains a casing without background.

A client characterized 'hand threshold' work does the accompanying assignments:

- Foggy spots the information casing to diminish commotion.
- Convert edge to HSV.
Apply edge to produce a paired picture from the back projection. This edge is utilized as a veil to isolate out the hand from the remainder of the casing.

- Separate out the part contained in the square shape catch region and dispose of the rest.

```python
lower_skin = np.array([0, 20, 70], dtype=np.uint8)
upper_skin = np.array([20, 255, 255], dtype=np.uint8)
hsv = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV)

# extract skin color image
mask = cv2.inRange(hsv, lower_skin, upper_skin)

# extrapolate the hand to fill dark spots within
mask = cv2.dilate(mask, kernel, iterations=4)

APPLY GAUSSIAN AND FIND CONTOURS
```

- Apply morphology and smoothing methodology (Gaussian and Middle cloudiness) to the back projection made.

```python
# blur the image
mask = cv2.GaussianBlur(mask, (5, 5), 100)
```

- First find all states of the image and after that support the greatest structure to check on the remote possibility that it organizes the profile of a hand or not.

```python
contours, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
print(contours)
print(hierarchy)
# find contour of max area (hand)
cnt = max(contours, key=lambda x: cv2.contourArea(x))
```
• Dispose off all arched frame focuses far or excessively near the hand center got previously.

```python
# make convex hull around hand
hull = cv2.convexHull(cnt)

# define area of hull and area of hand
areahull = cv2.contourArea(hull)
areacnt = cv2.contourArea(cnt)
```

• Find the level(%) of area not covered by hand in convexhull.

FINDING DEFECTS

• Find the imperfections in convex hull as of hand.

```python
# find the defects in convex hull with respect to hand
hull = cv2.convexHull(approx, returnPoints=False)
defects = cv2.convexityDefects(approx, hull)
```

EXPERIMENT 1
HCI is one of the advanced techniques for directly interfacing with computers as compared to keyboard and mouse. Hand gestures are communicated through dynamic movements such as hand waving or static gestures such as victory signs. Initially, the hand is separated from the background using back projection and gray scale histogram making only the skin color detection matching the profile of a hand and getting a binary image as shown above.

RESULTS

This is the limitation where only white background allows for detection of gesture properly as histogram approach is based on colors.
Gesture 1 representing the digit 1 and on top of screen the gesture is displayed as such.

Gesture 2 representing digit 2 and if the gap between fingers is proper then only the gesture is recognized as and when there is clear separation.
Gesture 3 representing digit 3.

Gesture 4 representing digit 4.
Gesture of best of luck represented by pumped fist with thumbs up.

Gesture OK with random fingers.
CONCLUSION

Sign language can be applied to communicate; The goal should be to perform sign language, which is not always possible. Silent indication is one of practical way for reducing communication among silent communities and general society. Therefore, our project reduces such barriers. The task was a model to look at the possibility of perceiving communication through signing. With this task, tragically challenged networks (deaf and dumb) can utilize gloves to make signals as indicated by communication through signing and motions will be changed over to speech.

REFLECTION

As showed in Background locale, Signal affirmation discussed in the paper are irregular in their own specific way with all of them having their advantages and disadvantages. Vision-based methodology is additional substance and fathomable while sensor-based strategy being progressively overpowering with respect to hardware and restrictions on trademark hand development. Vision based is additionally isolated into appearance based and model-based methodology. To the degree picture dealing with we got some answers concerning the unquestionable head approach for removing essential data from portrayal and techniques similar to versatile thresholding, thinking structure and second, we additionally discovered around specific concealing spaces and their fittingness for specific functionalities and with and explicit extreme objective these and different systems we got some answers concerning OpenCV and the unmistakable limit it gives.
PROJECT CONCLUSION

Motion based correspondence can be realized to give, the target individual must have an idea of the correspondence through marking which is unimaginable dependably. Motion based correspondence is one of the accommodating devices to encourage the correspondence between the in need of a hearing aide and calm systems and conventional society. Consequently, our assignment cuts down such limits. This endeavor was expected to be a prototype to check the chance of seeing motion based correspondence. With this endeavor, nearly deaf and unfit to talk systems can use the gloves to shape signs to outline movements according to correspondence through marking and the movements will be changed over to discourse.

LIMITATION

As assessed over couple of presumption were made for the endeavor, at any rate the framework has couple of obstructions not withstanding that, similar to its weakness to recognize and track hand if the foundation is in a general sense proportionate to skin shading, to see and trace insane conditions of lighting. In addition, the assertion compose requires client obstruction as decided already.

FUTURE SCOPE

The undertaking further can be join with a GUI in context of python with talk office. We can develop the structure later on to update ID and following to vanquish the constraints, for instance rather than utilizing skin shading for area, we can utilize different systems for following and particularly we can wear out influencing the insistence to sort out more independent and see the movements continually besides.
LIST OF REFERENCES

1) C. L. NEHANIV. K J DAUTENHAHN M KUBACKI M. HAEGELEC.

2) M. KRUEGER Artificial reality II Addison-Wesley Reading (Ma)1991.

8) M. Bhuiyan R. Picking "Gesture Control User Inter-face What Have We Done andWhat's Next?”,2009.

12) G. GOMEZ "On selecting colour components for skin detection. Pattern Recognition 2002".
import traceback
import cv2
import numpy as np
import math

cap = cv2.VideoCapture(0)

while (1):
 try: # an error comes if it does not find anything in window as it cannot find contour of max area
 ret, frame = cap.read()
 frame = cv2.flip(frame, 1)
 kernel = np.ones((3, 3), np.uint8)

 # define region of interest
 roi = frame[100:300, 100:300]

 cv2.rectangle(frame, (100, 100), (300, 300), (0, 255, 0), 0)
 hsv = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV)

 # define range of skin color in HSV
 lower_skin = np.array([0, 20, 70], dtype=np.uint8)
 upper_skin = np.array([20, 255, 255], dtype=np.uint8)

 # extract skin color imagw
 mask = cv2.inRange(hsv, lower_skin, upper_skin)

 # extrapolate the hand to fill dark spots within
 mask = cv2.dilate(mask, kernel, iterations=4)

 # blur the image
 mask = cv2.GaussianBlur(mask, (5, 5), 100)

 # find contours
 contours, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
 print(contours)
 print(hierarchy)

 # find contour of max area(hand)
 cnt = max(contours, key=lambda x: cv2.contourArea(x))
approx the contour a little
epsilon = 0.0005 * cv2.arcLength(cnt, True)
approx = cv2.approxPolyDP(cnt, epsilon, True)

make convex hull around hand
hull = cv2.convexHull(cnt)

define area of hull and area of hand
areahull = cv2.contourArea(hull)
areacont = cv2.contourArea(cnt)

find the percentage of area not covered by hand in convex hull
arearatio = ((areahull - areacont) / areacont) * 100

find the defects in convex hull with respect to hand
hull = cv2.convexHull(approx, returnPoints=False)
defects = cv2.convexityDefects(approx, hull)

l = no. of defects
l = 0

code for finding no. of defects due to fingers
for i in range(defects.shape[0]):
 s, e, f, d = defects[i, 0]
 start = tuple(approx[s][0])
 end = tuple(approx[e][0])
 far = tuple(approx[f][0])
 pt = (100, 180)

 # find length of all sides of triangle
 a = math.sqrt((end[0] - start[0]) ** 2 + (end[1] - start[1]) ** 2)
 b = math.sqrt((far[0] - start[0]) ** 2 + (far[1] - start[1]) ** 2)
 c = math.sqrt((end[0] - far[0]) ** 2 + (end[1] - far[1]) ** 2)
 s = (a + b + c) / 2
 ar = math.sqrt(s * (s - a) * (s - b) * (s - c))

 # distance between point and convex hull
d = (2 * ar) / a

 # apply cosine rule here
angle = math.acos((b ** 2 + c ** 2 - a ** 2) / (2 * b * c)) * 57
ignore angles > 90 and ignore points very close to convex hull(they generally come due to noise)
if angle <= 90 and d > 30:
 l += 1
 cv2.circle(roi, far, 3, [255, 0, 0], -1)

draw lines around hand
 cv2.line(roi, start, end, [0, 255, 0], 2)

l += 1

print corresponding gestures which are in their ranges
 font = cv2.FONT_HERSHEY_SIMPLEX
 if l == 1:
 if areacnt < 2000:
 cv2.putText(frame, 'Put hand in the box', (0, 50), font, 2, (0, 0, 255), 3, cv2.LINE_AA)
 else:
 if arearatio < 12:
 cv2.putText(frame, '0', (0, 50), font, 2, (0, 0, 255), 3, cv2.LINE_AA)
 elif arearatio < 17.5:
 cv2.putText(frame, 'Best of luck', (0, 50), font, 2, (0, 0, 255), 3, cv2.LINE_AA)
 else:
 cv2.putText(frame, '1', (0, 50), font, 2, (0, 0, 255), 3, cv2.LINE_AA)
 elif l == 2:
 cv2.putText(frame, '2', (0, 50), font, 2, (0, 0, 255), 3, cv2.LINE_AA)
 elif l == 3:
 if arearatio < 27:
 cv2.putText(frame, '3', (0, 50), font, 2, (0, 0, 255), 3, cv2.LINE_AA)
 else:
 cv2.putText(frame, 'ok', (0, 50), font, 2, (0, 0, 255), 3, cv2.LINE_AA)
 elif l == 4:
 cv2.putText(frame, '4', (0, 50), font, 2, (0, 0, 255), 3, cv2.LINE_AA)
 elif l == 5:
 cv2.putText(frame, '5', (0, 50), font, 2, (0, 0, 255), 3, cv2.LINE_AA)
elif l == 6:
 cv2.putText(frame, 'reposition', (0, 50), font, 2, (0, 0, 255), 3, cv2.LINE_AA)
else:
 cv2.putText(frame, 'reposition', (10, 50), font, 2, (0, 0, 255), 3, cv2.LINE_AA)

 # show the windows
 cv2.imshow('mask', mask)
 cv2.imshow('frame', frame)
 except Exception:
 traceback.print_exc()
 pass

 # break

k = cv2.waitKey(5) & 0xFF
if k == 27:
 break

cv2.destroyAllWindows()
cap.release()
Plagiarism Report

Project Report

Originality Report

<table>
<thead>
<tr>
<th>Source Type</th>
<th>Similarity Index</th>
<th>Internet Sources</th>
<th>Publications</th>
<th>Student Papers</th>
</tr>
</thead>
<tbody>
<tr>
<td>5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Primary Sources

1. **Submitted to Engineers Australia**
 - Student Paper
 - 3%

2. **"Computer Vision - ACCV 2014 Workshops"**,
 - Springer Nature, 2015
 - Publication
 - 1%

3. **Submitted to Yeditepe University**
 - Student Paper
 - 1%

4. **en.wikipedia.org**
 - Internet Source
 - <1%

Exclude quotes: Off
Exclude bibliography: Off
Exclude matches: Off