
Android Applications

Project report submitted in partial fulfillment of the requirement for the

degree of Bachelor of Technology

in

Computer Science and Engineering

By

(Deepanker Jain(121318))

(Shashwat Singh(123207))

Under the supervision of

Dr. Sakshi Babbar

to

Department of Computer Science & Engineering and Information

Technology

Jaypee University of Information Technology Waknaghat, Solan-

173234, Himachal Pradesh

CERTIFICATE

Candidate’s Declaration

I hereby declare that the work presented in this report entitled “Android Applications” in partial

fulfillment of the requirements for the award of the degree of Bachelor of Technology in

Computer Science and Engineering/Information Technology submitted in the department of

Computer Science & Engineering and Information Technology, Jaypee University of Information

Technology Waknaghat is an authentic record of my own work carried out over a period from

August 2015 to May 2016 under the supervision of Dr. Sakshi Babbar, Assistant Professor

(Senior Grade) of CSE Department.

The matter embodied in the report has not been submitted for the award of any other degree or

diploma.

(Student Signature)

Deepanker Jain(121318)

Shashwat Singh(123207)

This is to certify that the above statement made by the candidate is true to the best of my

knowledge.

(Supervisor Signature)

Dr.Sakshi Babbar

Assistant Professor(Senior Grade)

Computer Science Department

Dated:

ACKNOWLEDGEMENT

We would like to express our special thanks of gratitude to our supervisor Dr. Sakshi

Babbar who gave us the golden opportunity to do this wonderful project on Android

Applications, which also helped us in doing a lot of research and we came to know about so

many new things about android. We are really thankful to her.

Date: Name of the students:

 Deepanker Jain

 Shashwat Singh

CONTENTS

CERTIFICATE……………………………………………………………………………...i

ACKNOWLEDGEMENT…………………………………………………………………..ii

LIST OF FIGURES…………………………………………………………………………iii

ABSTRACT………………………………………………………………………………….iv

1. INTRODUCTION

1.1. INTRODUCTION………………………………………………………………..1

 1.2)PROBLEM STATEMENT……...……………………………………………………6

 1.3)OBJECTIVES……...…………………………………………………………………6

 1.4)METHODOLGY……………………………………………………………………...7

 1.5)ORGANISATION…………………………………………………………………….8

 2) LITEATURE SURVEY..9

 3.) SYSTEM DEVLOPMENT…………………………………………………………..14

4.) PERFORMANCE ANALYSIS:……………………………………………………..55

5.) CONCLUSION………………………………………………………………………59

6.) REFERENCES………………………………………………………………………60

S.No.

List of Figures

Title

Page No.

1. Android Logo 2

2. Android Architecture 3

3. Android Studio Logo 5

4. Architecture of multimedia player software platform 11

5. Android media framework 12

6.
System processes of media player

 12

7. Android Architecture 13

8. System Flow Chart 27

9. Media Layer Structure 28

10. State Diagram of Audio player 34

ABSTRACT

In recent years, the emergence of smart phones has changed the definition of mobile phones. Phone

is no longer just a communication tool, but also an essential part of the people's communication

and daily life. Various applications added unlimited fun for people's lives. It is certain that the

future of the network will be the mobile terminal. Now the Android system in the electronics

market is becoming more and more popular, especially in the smartphone market. Because of the

open source, some of the development tools are free, so there are plenty of applications generated.

So our aim is to develop an android application to give information about the details of

International Conference on Image Information Processing and to develop a media player which

can run almost any media content in any form.

CHAPTER 1: INTRODUCTION

1.1 Introduction

In recent years, the emergence of smart phones has changed the definition of mobile phones. Phone

is no longer just a communication tool, but also an essential part of the people's communication

and daily life. Various applications added unlimited fun for people's lives. It is certain that the

future of the network will be the mobile terminal. Now the Android system in the electronics

market is becoming more and more popular, especially in the smartphone market. Because of the

open source, some of the development tools are free, so there are plenty of applications generated.

This greatly inspired the people to use the Android system. In addition, it provides a very

convenient hardware platform for developers so that they can spend less effort to realize their

ideas. This makes Android can get further development . As the smart phones and Android system

getting popular, the operations like listening to music, watching videos, tweeting and some others

can be moved from the computer to a phone now. The applications on the market today are mostly

commercial applications, and contain a large number of built-in advertising. If the user prefers to

remove the built-in advertising, a certain price must be paid to reach that and this is not convenient.

Meanwhile, because of the unfair competition of IT, many applications built illegal program to

steal user information and cause some damage to user’s personal privacy. Sometimes, users will

pay more attention to the user experience of software. Therefore, the development of the

application can not only be limited to the function, more attention should be paid to the user's

experience. After studying some previous Android applications and access to large amounts of

materials, we utilize the Java language, the Eclipse platform, Android ADT and the Android SDK

to develop these three mobile applications. These systems have a nice interface and smooth

operation. These Apps won’t steal any personal information, but can exclude useless information

and bring a wonderful user experience.

1.1.1 Android

Android is a mobile operating system (OS) currently developed by Google, based on the Linux

kernel and designed primarily for touchscreen mobile devices such as smartphones and tablets.

Android's user interface is mainly based on direct manipulation, using touch gestures that loosely

https://en.wikipedia.org/wiki/Mobile_operating_system
https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/Linux_kernel
https://en.wikipedia.org/wiki/Linux_kernel
https://en.wikipedia.org/wiki/Touchscreen
https://en.wikipedia.org/wiki/Smartphone
https://en.wikipedia.org/wiki/Tablet_computer
https://en.wikipedia.org/wiki/User_interface
https://en.wikipedia.org/wiki/Direct_manipulation_interface

correspond to real-world actions, such as swiping, tapping and pinching, to manipulate on-screen

objects, along with a virtual keyboard for text input. In addition to touchscreen devices, Google

has further developed Android TV for televisions, Android Auto for cars, and Android Wear for

wrist watches, each with a specialized user interface. Variants of Android are also used

on notebooks, game consoles, digital cameras, and other electronics.Initially developed by

Android, Inc., which Google bought in 2005, Android was unveiled in 2007, along with the

founding of the Open Handset Alliance – a consortium of hardware, software, and

telecommunication companies devoted to advancing open standards for mobile devices. As of July

2013, the Google Play store has had over one million Android applications ("apps") published, and

over 50 billion applications downloaded. An April–May 2013 survey of mobile application

developers found that 71% of developers create applications for Android, and a 2015 survey found

that 40% of full-time professional developers see Android as their priority target platform.

 Figure1.Android Logo

1.1.2 Android Architecture

We studied the Android system architecture. Android system is a Linux-based system, Use of the

software stack architecture design patterns . As shown in Figure 1, the Android architecture

consists of four layers: Linux kernel, Libraries and Android runtime, Application framework and

Applications [5-8]. Each layer of the lower encapsulation, while providing call interface to the

upper.

https://en.wikipedia.org/wiki/Virtual_keyboard
https://en.wikipedia.org/wiki/Android_TV
https://en.wikipedia.org/wiki/Android_Auto
https://en.wikipedia.org/wiki/Android_Wear
https://en.wikipedia.org/wiki/Laptop
https://en.wikipedia.org/wiki/Video_game_console
https://en.wikipedia.org/wiki/Digital_camera
https://en.wikipedia.org/wiki/Open_Handset_Alliance
https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/Open_standard
https://en.wikipedia.org/wiki/Google_Play

Figure2. Android Architecture

A) Applications:

 Android app will be shipped with a set of core applications including client, SMS program,

calendar, maps, browser, contacts, and others. All these application programs are

developed in Java.

B) Application Framework :

The developer is allowed to access all the API framework of the core programs. The

application framework simplifies the reuse of its components. Any other app can release

its functional components and all other apps can access and use this component (but have

to follow the security of the framework). Same as the users can be able to substitute the

program components with this reuse mechanism

C) Libraries and Android Runtime

 The library is divided in to two components: Android Runtime and Android Library.

Android Runtime is consisted of a Java Core Library and Dalvik virtual machine. The

Core Library provides Java core library with most functions. Dalvik virtual machine is

register virtual machine and makes some specific improvements for mobile device.

Android system library is support the application framework, it is also an important link

connecting between application framework and Linux Kernel. This system library is

developed in C or C++ language. These libraries can also be utilized by the different

components in the Android system. They provide service for the developers through the

application framework.

D) Linux Kernel

 The kernel system service provided by Android inner nuclear layer is based on Linux 2.6

kernel, Operations like internal storage, process management, internet protocol, bottom-

drive and other core service are all based on Linux kernel.

1.1.3 Software Development Kit(SDK)

A software development kit (SDK or "devkit") is typically a set of software development tools that

allows the creation of applications for a certain software package, software framework, hardware

platform, computer system, video game console, operating system, or similar development

platform. To create applications you have to download this software development kit. For example,

if you want to create an Android app you require an SDK with java programming, for iOS apps

you require an iOS SDK with swift language, and to develop MS Windows apps you require the

.net language. There are also SDKs that are installed in apps to provide analytics and data about

activity. Prominent examples include Google and Facebook.

https://en.wikipedia.org/wiki/Software_development
https://en.wikipedia.org/wiki/Application_software
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Software_framework
https://en.wikipedia.org/wiki/Computer_system
https://en.wikipedia.org/wiki/Video_game_console
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/Facebook

1.1.4 Android Studio

Android Studio is an integrated development environment (IDE) for developing for

the Android platform. It was announced on May 16, 2013 at the Google I/O conference. Android

Studio is freely available under the Apache License 2.0. Android Studio was in early access

preview stage starting from version 0.1 in May 2013, then entered beta stage starting from version

0.8 which was released in June 2014. The first stable build was released in December 2014, starting

from version 1.0. Based on JetBrains' IntelliJ IDEA software, Android Studio is designed

specifically for Android development. It is available for download on Windows, Mac OS

X and Linux, and replaced Eclipse Android Development Tools (ADT) as Google's primary IDE

for native Android application development.

Figure3.Android Studio Logo

1.2 Problem Statement:

1.2.1 To develop an android application to give information about the details of International

Conference on Image Information Processing. This application will allow all users to

receive all kinds of information regarding ICIIP such as Program schedule, Keynote

Speakers, Important Dates, etc. User can access this application anywhere and anytime

using his or her Smartphone.

1.2.2 Many users like to watch video and listen to music using their mobile phone, but the media

player has many limitations. With a rapid development of communication and network,

multimedia based technology is adopted in media player. So our aim is to develop a

media player which can run almost any media content in any form.

https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Android_(operating_system)
https://en.wikipedia.org/wiki/Google_I/O
https://en.wikipedia.org/wiki/Apache_License
https://en.wikipedia.org/wiki/JetBrains
https://en.wikipedia.org/wiki/IntelliJ_IDEA
https://en.wikipedia.org/wiki/Windows
https://en.wikipedia.org/wiki/Mac_OS_X
https://en.wikipedia.org/wiki/Mac_OS_X
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Eclipse_(software)#Eclipse_ADT_.28Android_Development_Tools.29

1.3 Objective

There are 5 objectives in this project:

1. To setup Android software development kit.

2. To write a program that can do various tasks such as running media(audio & video),

displaying information, sending notifications, Bitmapping, asynchronous multi-tasking.

3. Crash handling and debugging.

4. Generating signed APK.

5. Upload application on Google Playstore.

1.4 Methodology

This project is made by using Android studio, Virtual emulator and Photoshop. The

programming languages used for building the application are Java, XML and C++.

User interface is handled using XML codes. Backend programming is handled mainly through

set of java codes. Native libraries are accessed through set of predefined C++ codes.

The other libraries required are:

 Android SDK tools

 Android SDK platform tools

 Android SDK build tools

 SDK platform

 ARM EABI v7a System Image

 Intel x86 Atom_64 System Image

 Google APIs

 Google APIs ARM EABI v7a System Image

 GPU Debugging tools

 Android Support Library

 Google play services

 Google USB drivers

 Google Web drivers

 Intel x86 Emulator Acclerator(HAXM installer)

1.5 Organization:

As an overview, the structure of this report is organized as follows:

Chapter 1 Describes a general introduction of the project, problem statement project aims and

project scope.

Chapter 2 Provides details literature review that includes an introduction to some basic concepts

and a survey of existing works in the areas of developing the android application. This chapter

explains in detail all the researches, studies, theories and gathering that have been make throughout

the project.

Chapter 3 Discusses the system and design of the project which provides a detailed description

of the design to develop an application.

Chapter 4 Discusses about the result and Screenshots.

Chapter 5 Concludes the project and gives suggestions for future work.

CHAPTER 2 : LITERATURE REVIEW

Paper 1: Research and Development of Mobile Application for

Android Platform

The authors in [1] have tested the app in three environments including hardware, software and

network. Test hardware environment is Lenovo Y460 laptop and millet M1 phone; software

environment is windows 7 and phone system environment is android 4.0.3. Network environment

is China Mobile which is 10M broadband, WIFI LAN and China Mobile GPRS network.By testing

each function on mobile phone and the computer simulator, the result showed that video player

and audio player run well and no advertising. Sina weibo client can successfully complete

OAuth2.0 certificate authority and login and collect the basic data of the user information from

sina server and no redundant information. Expected effect is achieved after testing all the functions.

They says that since the Weibo client has to access to the network, when tested on an android

phone, the performance under the environment of WIFI network and mobile 2G GPRS network

can meet the expected requirements.

Paper 2: Research on Development of android Applications.

This article [2] gives a detailed introduction of android application framework and the working

principal of android applications. Finally, a music player on the android platform was put forward

as an example to illustrate this mechanism.

Paper 3: The android Application Development College Challenge

The authors in [3] say that android application development college challenge has only been held

two times, but it greatly encourages and promotes the creativity of the college students. With more

and more competitive teams participating the contest, it will be harder to win an award. However,

many exciting applications will be presented in the contest. This challenge gives us an opportunity

to learn about that a lot of ideas we think about can be implemented on android platform. At the

same time, the contest provides a stage for android developer to discuss and communicate with

each other. This can effectively promote the development of android and attract more software

engineers to develop applications on android platform.

Paper 4: A model driven approach for android applications development

This paper [4] proposes a MDE approach for android applications development, which addresses

how to model specific aspects of android applications, as intent and a data/service request, using

standard UML notations. Moreover, it supports static and behavioral code generation from UML

class and sequence diagrams, according to the rules imposed by the android platform. To

demonstrate our approach, a case study was conducted, in which an android application was

modeled in UML and code was generated from it. To generate code, the extension of GenCode

was used. However, the actual version of GenCode tool that supports the proposed approach, only

made an automatic transformation from UML class and sequence diagrams to the target android

Java code, without consider any optimization in the generated code. As future work, we plan to

extend this tool in order to consider the good practices for android development , and thus

generating efficient code.

Paper 5: Design of Android based Media Player

This paper[5] proposes that many users like to watch video by a mobile phone, but the media

player has many limitations. With a rapid development of communication and network,

multimedia based technology is adopted in media player. Different approaches of media player

shown in this paper are plug-in extension technology, multimedia based on hierarchy, media player

based on file browser, media player based on FFmpeg (Fast Forward Moving Picture Expert

Group), media player based on file server.

Figure 4. Architecture of multimedia player software platform

Figure 5. Android media framework

Figure 6. System processes of media player

Paper 6: The Android - A Widely Growing Mobile Operating System With its Mobile based

Applications[6]

Android operating system is one of the most widely used mobile Operating System these days and also

enhancing its use for making betterment in different areas of life. Android mobile operating system is based

on the Linux kernel and is developed by Google and primarily designed for smartphones and tablets.

Android Operating System consist of four main layers, the specifying architecture is given in this paper.

The advanced Smart applications of android in mobile, real-time and wireless sensor network are widening

their service areas. Android is a disruptive technology, which was introduced initially on mobile handsets,

but has much wider potential. In this paper we are studying, one of the smart and enhancing Android

operating system application which are based on Automated and tracking from remote distance. These

application helps students, teachers, parents, patients and users of home appliance as anytime and anywhere

basis. Being part of today’s advance world, using fastest acceptable and mobile Android Operating System

it’s possible to develop automated attendance system, secure transferring of medical data and automated

home appliance monitoring system.

Figure 7.Android Architecture

CHAPTER 3:SYSTEM DEVELOPMENT

3.1 Designing navigation drawer

To add a navigation drawer, declare wer user interface with aDrawerLawet object as the root view

of werlawet. Inside theDrawerLawet, add one view that contains the main content for the screen

(wer primary lawet when the drawer is hidden) and another view that contains the contents of the

navigation drawer.

For example, the following lawet uses a DrawerLawet with two child views: a FrameLawet to

contain the main content (populated by a Fragment at runtime), and a ListView for the navigation

drawer.

 <FrameLawet

 android:id="@+id/content_frame"

 android:lawet_width="match_parent"

 android:lawet_height="match_parent"/>

 <ListViewandroid:id="@+id/left_drawer"

 android:lawet_width="240dp"

 android:lawet_height="match_parent"

 android:lawet_gravity="start"

 android:choiceMode="singleChoice"

 android:divider="@android:color/transparent"

 android:dividerHeight="0dp"

 android:background="#111"/>

This lawet demonstrates some important lawet characteristics:

http://developer.android.com/reference/android/support/v4/widget/DrawerLayout.html
http://developer.android.com/reference/android/support/v4/widget/DrawerLayout.html
http://developer.android.com/reference/android/support/v4/widget/DrawerLayout.html
http://developer.android.com/reference/android/widget/FrameLayout.html
http://developer.android.com/reference/android/app/Fragment.html
http://developer.android.com/reference/android/widget/ListView.html

 The main content view (the FrameLawet above) must be the first child in

the DrawerLawet because the XML order implies z-ordering and the drawer must be on top of

the content.

 The main content view is set to match the parent view's width and height, because it represents

the entire UI when the navigation drawer is hidden.

 The drawer view (the ListView) must specify its horizontal gravity with

the android:lawet_gravityattribute. To support right-to-left (RTL) languages, specify the value

with "start" instead of "left" (so the drawer appears on the right when the lawet is RTL).

 The drawer view specifies its width in dp units and the height matches the parent view. The

drawer width should be no more than 320dp so the user can always see a portion of the main

content.

Initialize the Drawer List

In wer activity, one of the first things to do is initialize the navigation drawer's list of items. How

we do so depends on the content of wer app, but a navigation drawer often consists of a ListView,

so the list should be populated by an Adapter (such as ArrayAdapter or SimpleCursorAdapter).

For example, here's how we can initialize the navigation list with a string array:

 mPlanetTitles=getResources().getStringArray(R.array.planets_array);

 mDrawerLawet=(DrawerLawet)findViewById(R.id.drawer_lawet);

 mDrawerList=(ListView)findViewById(R.id.left_drawer);

 mDrawerList.setAdapter(newArrayAdapter<String>(this,

 R.lawet.drawer_list_item,mPlanetTitles));

 mDrawerList.setOnItemClickListener(newDrawerItemClickListener());

 ...

http://developer.android.com/reference/android/widget/FrameLayout.html
http://developer.android.com/reference/android/support/v4/widget/DrawerLayout.html
http://developer.android.com/reference/android/widget/ListView.html
http://developer.android.com/reference/android/widget/ListView.html
http://developer.android.com/reference/android/widget/Adapter.html
http://developer.android.com/reference/android/widget/ArrayAdapter.html
http://developer.android.com/reference/android/widget/SimpleCursorAdapter.html
http://developer.android.com/guide/topics/resources/string-resource.html#StringArray

 }

}

This code also calls setOnItemClickListener() to receive click events in the navigation drawer's

list. The next section shows how to implement this interface and change the content view when

the user selects an item.

Handle Navigation Click Events

When the user selects an item in the drawer's list, the system calls onItemClick() on

theOnItemClickListener given to setOnItemClickListener().

What we do in the onItemClick() method depends on how we've implemented wer app structure.

In the following example, selecting each item in the list inserts a different Fragment into the main

content view (theFrameLawet element identified by the R.id.content_frame ID):

privateclassDrawerItemClickListenerimplementsListView.OnItemClickListener{

 @Override

 publicvoidonItemClick(AdapterView parent,Viewview,int position,long id){

 selectItem(position);

 }

}

privatevoidselectItem(int position){

 Fragmentfragment=newPlanetFragment();

 Bundleargs=newBundle();

 args.putInt(PlanetFragment.ARG_PLANET_NUMBER, position);

 fragment.setArguments(args);

 FragmentManagerfragmentManager=getFragmentManager();

 fragmentManager.beginTransaction()

 .replace(R.id.content_frame, fragment)

http://developer.android.com/reference/android/widget/AdapterView.html#setOnItemClickListener(android.widget.AdapterView.OnItemClickListener)
http://developer.android.com/reference/android/widget/AdapterView.OnItemClickListener.html#onItemClick(android.widget.AdapterView<?>, android.view.View, int, long)
http://developer.android.com/reference/android/widget/AdapterView.OnItemClickListener.html
http://developer.android.com/reference/android/widget/AdapterView.html#setOnItemClickListener(android.widget.AdapterView.OnItemClickListener)
http://developer.android.com/reference/android/widget/AdapterView.OnItemClickListener.html#onItemClick(android.widget.AdapterView<?>, android.view.View, int, long)
http://developer.android.com/design/patterns/app-structure.html
http://developer.android.com/reference/android/app/Fragment.html
http://developer.android.com/reference/android/widget/FrameLayout.html

 .commit();

 mDrawerList.setItemChecked(position,true);

 setTitle(mPlanetTitles[position]);

 mDrawerLawet.closeDrawer(mDrawerList);

}

@Override

publicvoidsetTitle(CharSequence title){

 mTitle= title;

 getActionBar().setTitle(mTitle);

}

Listen for Open and Close Events

To listen for drawer open and close events, call setDrawerListener() on wer DrawerLawet and pass

it an implementation of DrawerLawet.DrawerListener. This interface provides callbacks for

drawer events such asonDrawerOpened() and onDrawerClosed().

However, rather than implementing the DrawerLawet.DrawerListener, if wer activity includes

the action bar, we can instead extend the ActionBarDrawerToggle class.

The ActionBarDrawerToggle implementsDrawerLawet.DrawerListener so we can still override

those callbacks, but it also facilitates the proper interaction behavior between the action bar icon

and the navigation drawer (discussed further in the next section).

As discussed in the Navigation Drawer design guide, we should modify the contents of the action

bar when the drawer is visible, such as to change the title and remove action items that are

contextual to the main content. The following code shows how we can do so by

overriding DrawerLawet.DrawerListener callback methods with an instance of

the ActionBarDrawerToggle class:

http://developer.android.com/reference/android/support/v4/widget/DrawerLayout.html#setDrawerListener(android.support.v4.widget.DrawerLayout.DrawerListener)
http://developer.android.com/reference/android/support/v4/widget/DrawerLayout.html
http://developer.android.com/reference/android/support/v4/widget/DrawerLayout.DrawerListener.html
http://developer.android.com/reference/android/support/v4/widget/DrawerLayout.DrawerListener.html#onDrawerOpened(android.view.View)
http://developer.android.com/reference/android/support/v4/widget/DrawerLayout.DrawerListener.html#onDrawerClosed(android.view.View)
http://developer.android.com/reference/android/support/v4/widget/DrawerLayout.DrawerListener.html
http://developer.android.com/guide/topics/ui/actionbar.html
http://developer.android.com/reference/android/support/v4/app/ActionBarDrawerToggle.html
http://developer.android.com/reference/android/support/v4/app/ActionBarDrawerToggle.html
http://developer.android.com/reference/android/support/v4/widget/DrawerLayout.DrawerListener.html
http://developer.android.com/design/patterns/navigation-drawer.html
http://developer.android.com/reference/android/support/v4/widget/DrawerLayout.DrawerListener.html
http://developer.android.com/reference/android/support/v4/app/ActionBarDrawerToggle.html

 @Override

 publicvoidonCreate(BundlesavedInstanceState){

 super.onCreate(savedInstanceState);

 setContentView(R.lawet.activity_main);

 ...

 mTitle=mDrawerTitle=getTitle();

 mDrawerLawet=(DrawerLawet)findViewById(R.id.drawer_lawet);

 mDrawerToggle=newActionBarDrawerToggle(this,mDrawerLawet,

 R.drawable.ic_drawer,R.string.drawer_open,R.string.drawer_close){

 publicvoidonDrawerClosed(View view){

 super.onDrawerClosed(view);

 getActionBar().setTitle(mTitle);

 invalidateOptionsMenu(); }

 publicvoidonDrawerOpened(ViewdrawerView){

 super.onDrawerOpened(drawerView);

 getActionBar().setTitle(mDrawerTitle);

 invalidateOptionsMenu(); }

 };

 mDrawerLawet.setDrawerListener(mDrawerToggle);

 }

 @Override

 publicbooleanonPrepareOptionsMenu(Menu menu){

 booleandrawerOpen=mDrawerLawet.isDrawerOpen(mDrawerList);

 menu.findItem(R.id.action_websearch).setVisible(!drawerOpen);

 returnsuper.onPrepareOptionsMenu(menu);

 }

}

3.2 Creating another activity

Respond to the Send Button

1. In Android Studio, from the res/lawet directory, edit thecontent_my.xml file.

2. Add the android:onClick attribute to the <Button>element.

res/lawet/content_my.xml

<Button

 android:lawet_width="wrap_content"

 android:lawet_height="wrap_content"

 android:text="@string/button_send"

 android:onClick="sendMessage"/>

The android:onClick attribute’s value, "sendMessage", is the name of a method in wer

activity that the system calls when the user clicks the button.

3. In the java/com.shashwat.iciip directory, open the MainActivity.java file.

4. Within the MainActivity class, add the sendMessage() method stub shown below.

MainActivity.java

publicvoidsendMessage(View view){

}

In order for the system to match this method to the method name given to android:onClick,

the signature must be exactly as shown. Specifically, the method must:

o Be public

o Have a void return value

http://developer.android.com/reference/android/view/View.html#attr_android:onClick
http://developer.android.com/reference/android/widget/Button.html
http://developer.android.com/reference/android/view/View.html#attr_android:onClick
http://developer.android.com/reference/android/view/View.html#attr_android:onClick

o Have a View as the only parameter (this will be the View that was clicked)

Next, we’ll fill in this method to read the contents of the text field and deliver that text to another

activity.

Build an Intent

1. In MainActivity.java, inside the sendMessage() method, create an Intent to start an activity

calledDisplayMessageActivity with the following code:

java/com.shashwat.iciip/MainActivity.java

publicvoidsendMessage(View view){

 Intentintent=newIntent(this,DisplayMessageActivity.class);

}

The constructor used here takes two parameters:

o A Context as its first parameter (this is used because the Activity class is a subclass

of Context)

o The Class of the app component to which the system should deliver the Intent (in this case,

the activity that should be started)

Android Studio indicates that we must import the Intent class.

2. At the top of the file, import the Intent class:

MainActivity.java

importandroid.content.Intent;

3. Inside the sendMessage() method, use findViewById() to get the EditText element.

MainActivity.java

publicvoidsendMessage(View view){

 Intentintent=newIntent(this,DisplayMessageActivity.class);

http://developer.android.com/reference/android/view/View.html
http://developer.android.com/reference/android/view/View.html
http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/reference/android/content/Context.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/content/Context.html
http://developer.android.com/reference/java/lang/Class.html
http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/reference/android/app/Activity.html#findViewById(int)
http://developer.android.com/reference/android/widget/EditText.html

 EditTexteditText=(EditText)findViewById(R.id.edit_message);

}

4. At the top of the file, import the EditText class.

In Android Studio, press Alt + Enter (option + return on Mac) to import missing classes.

5. Assign the text to a local message variable, and use the putExtra() method to add its text value

to the intent.

MainActivity.java

publicvoidsendMessage(View view){

 Intentintent=newIntent(this,DisplayMessageActivity.class);

 EditTexteditText=(EditText)findViewById(R.id.edit_message);

 String message =editText.getText().toString();

 intent.putExtra(EXTRA_MESSAGE, message);

}

An Intent can carry data types as key-value pairs called extras. The putExtra() method takes the

key name in the first parameter and the value in the second parameter.

6. At the top of the MyActivity class, add the EXTRA_MESSAGE definition as follows:

MainActivity.java

publicclassMyActivityextendsAppCompatActivity{

 publicfinalstaticString EXTRA_MESSAGE ="shashwat.com.iciip.MESSAGE";

 ...

}

For the next activity to query the extra data, we should define the key for wer intent's extra

using a public constant. It's generally a good practice to define keys for intent extras using wer

app's package name as a prefix. This ensures the keys are unique, in case wer app interacts with

other apps.

http://developer.android.com/reference/android/widget/EditText.html
http://developer.android.com/reference/android/content/Intent.html#putExtra(java.lang.String, android.os.Bundle)
http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/reference/android/content/Intent.html#putExtra(java.lang.String, android.os.Bundle)

7. In the sendMessage() method, to finish the intent, call the startActivity() method, passing it

theIntent object created in step 1.

With this new code, the complete sendMessage() method that's invoked by the Send button now

looks like this:

MainActivity.java

publicvoidsendMessage(View view){

 Intentintent=newIntent(this,DisplayMessageActivity.class);

 EditTexteditText=(EditText)findViewById(R.id.edit_message);

 String message =editText.getText().toString();

 intent.putExtra(EXTRA_MESSAGE, message);

 startActivity(intent);

}

The system receives this call and starts an instance of the Activity specified by the Intent. Now we

need to create the DisplayMessageActivity class in order for this to work.

Create the Second Activity

1. In Android Studio, in the java directory, select the package, com.mycompany.iciip, right-

click, and select New > Activity > Blank Activity.

2. In the Choose options window, fill in the activity details:

o Activity Name: DisplayMessageActivity

o Lawet Name: activity_display_message

o Title: My Message

o Hierarchical Parent: com.mycompany.myfirstapp.MyActivity

o Package name: com.mycompany.myfirstapp

Click Finish.

http://developer.android.com/reference/android/app/Activity.html#startActivity(android.content.Intent)
http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/content/Intent.html

3. Open the DisplayMessageActivity.java file.

The class already includes an implementation of the required onCreate() method. We update

the implementation of this method later.

If we're developing with Android Studio, we can run the app now, but not much happens. Clicking

the Send button starts the second activity, but it uses a default "Hello world" lawet provided by the

template. We'll soon update the activity to instead display a custom text view.

Receive the Intent

Every Activity is invoked by an Intent, regardless of how the user navigated there. We can get

the Intentthat started wer activity by calling getIntent() and retrieve the data contained within the

intent.

1. In the mainactivity directory, edit the DisplayMessageActivity.java file.

2. Get the intent and assign it to a local variable.

Intentintent=getIntent();

3. At the top of the file, import the Intent class.

4. Extract the message delivered by MyActivity with the getStringExtra() method.

String message =intent.getStringExtra(MyActivity.EXTRA_MESSAGE);

Display the Message

1. In the res/lawet directory, edit the content_display_message.xml file.

2. Add an android:id attribute to the RelativeLawet. We need this attribute to reference the object

from wer app code.

<RelativeLawetxmlns:android="http://schemas.android.com/apk/res/android"

...

http://developer.android.com/reference/android/app/Activity.html#onCreate(android.os.Bundle)
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/reference/android/app/Activity.html#getIntent()
http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/reference/android/content/Intent.html#getStringExtra(java.lang.String)

android:id="@+id/content">

</RelativeLawet>

3. Switch back to editing DisplayMessageActivity.java.

4. In the onCreate() method, create a TextView object.

TextViewtextView=newTextView(this);

5. Set the text size and message with setText().

textView.setTextSize(40);

textView.setText(message);

6. Add the TextView to the RelativeLawet identified by R.id.content.

RelativeLawetlawet=(RelativeLawet)findViewById(R.id.content);

lawet.addView(textView);

7. At the top of the file, import the TextView class.

In Android Studio, press Alt + Enter (option + return on Mac) to import missing classes.

http://developer.android.com/reference/android/app/Activity.html#onCreate(android.os.Bundle)
http://developer.android.com/reference/android/widget/TextView.html
http://developer.android.com/reference/android/widget/TextView.html#setText(char[], int, int)
http://developer.android.com/reference/android/widget/TextView.html
http://developer.android.com/reference/android/widget/RelativeLayout.html
http://developer.android.com/reference/android/widget/TextView.html

3.3 Video Player

Video Player is achieved through the Android Studio platform.It begins with the study of operating

mechanism, Android platform media layer structure, xml customizable interface, Content

Providers achieves file scanning to get a list of media files, MediaPlayer class, file parsing, Surface

Flinger interface. After that, we could develop an Android-based mobile video player. Realize

media library, video player, file opening, audio, video, photographs and other functions. Figure

below is system flow chart.

Figure 8.System Flow Chart

The software interface is defined through XML files. XML layout files control view, is not only

simple, but also isolated the View control logic from Java code and controlled by inserted into

XML files. Reflects the MVC principle in a better way and also reflects the principle of

separation of logic and views. This software obtains the list of media files by scanning through

Content Providers. Content Providers is recognized as a bridge between the data storing and

searching across programs. The function is to achieve data sharing among different Apps, it is

the only way to share data with other apps. Figure below shows the media layer structure.

Figure 9.Media Layer Structure

The upper applications of Android-MediaPlayer are implemented by JAVA, realized logic

processing. JAVA program realizes the playback of video file and online video by calling the

underlying media library libmedi.so through JNI interface. MediaPlayer can be roughly divided

into two parts at run time: Client and Server. They are running in two separated processes. Binder

used between them to achieve IPC communication. Mediaplayerservice in Figure 3 is a server-

side implementation repository. MediaPlayer calls media playback capabilities provided by

Opencore to implement video file playback, Opencore responsible media file format parsing,

decoding audio and video data, and outputs the media data. Opencore calls SurfaceFlinger

interface to realize the showing of video data and by applying AudioFlinger interface to realize the

playback of audio data.

In the Android media layer, the most important class is MediaPlayer. MediaPlayer class and its

associated structures are shown in Figure below.

Vitamio is an open multimedia framework for Android, with hardware accelerated decoder and

renderer. Vitamio can play 720p/1080p HD mp4,mkv,m4v,mov,flv,avi,rmvb,rm,ts,tp and many

other video formats in Android and iOS. Almost all popular streaming protocols are supported

by Vitamio, including HLS(m3u8), MMS, RTSP, RTMP, and HTTP.

 Integrating SDK into your application

 Create a New Android project

 import vitamiolibrary.jar into your applicaiton project /libs directory

 Add libvitamio.so into your application project /libs directory

 Copy the recourse like class,picture from Demo into app project

 Initializing vitamio SDK

//set the video cache path

if (DeviceUtils.isZte()) {

 if(Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_ DCIM).exists()) {

 Vitamio.setVideoCachePath(Environment.getExternalStoragePublicDirectory

(Environment.DIRECTORY_DCIM) + "/Camera/VitamioDemo/");

 } else {

 Vitamio.setVideoCachePath(Environment.getExternalStoragePublicDirectory

(Environment.DIRECTORY_DCIM).getPath().replace("/sdcard/", "/sdcard-ext/")

+"/Camera/VitamioDemo/");

 }

} else {

 Vitamio.setVideoCachePath(Environment.getExternalStoragePublicDir ectory

(Environment.DIRECTORY_DCIM) + "/Camera/VitamioDemo/");

}

//open log output,FFmpeg output into logcat

Vitamio.setDebugMode(true);

//initializing Vitamio SDK is essential

Vitamio.initialize(this);

Initializing MediaRecorder

mMediaRecorder = new MediaRecorder();

mMediaRecorder.setOnErrorListener(this);

if (NetworkUtils.isWifiAvailable(this)) {

 mMediaRecorder.setVideoEncodingBitRate(MediaRecorder.VIDEO_BITRAT E_MEDIUM);

 //800 Bit rate on Wifi

 }else{

 mMediaRecorder.setVideoEncodingBitRate(MediaRecorder.VIDEO_BITRATE_NORMAL);

 // 600 bit rate on 2G/3G

}

String recordFile = Vitamio.getVideoCachePath() + System.currentTimeMillis();

// + Constants.RECORD_VIDEO_EXT;

mMediaRecorder.setOutputDirectory(recordFile);

//set the output path

mMediaRecorder.setSurfaceView(mSurfaceView);

mMediaRecorder.setCameraFilter(MediaRecorder.CAMERA_FILTER_NO);

//reset filter

mMediaRecorder.prepare();

 Post-progressing

UtillityAdapter provide FFmpegRun to executive FFmpeg command.

API Description

1. Recording

/** Video Bit rate 400kbps */

public static final int VIDEO_BITRATE_LOW = 400;

/** Video Bit rate 600kbps */

public static final int VIDEO_BITRATE_NORMAL = 600;

/** Video bit rate 800kbps(default) */

public static final int VIDEO_BITRATE_MEDIUM = 800;

/** Video bit rate 1024kbps */

public static final int VIDEO_BITRATE_HIGH = 1024;

/* set bit rate, parameter range between 400~2014. Proposal to set 800K in Wifi, 600 in other condition.*/

public void setVideoEncodingBitRate(int bitRate)

/* change the front-facing camera and rear camera, rear camera is default */

public void switchCamera()

/* toggle the flash light, closed default */

public boolean toggleFlashMode()

/**

* Set Video temporary cache folder

*

*@ param key video output name, unique in the same contents. Generally will get the system local time

*@param path folder path

*@return record information object

*/

public MediaObject setOutputDirectory(String key, String path)

/* support front-facing camera or not */

public static boolean isSupportFrontCamera()

/* recording finished,start to transcode into mp4 temporary files */

public boolean startEncoding()

/* start preparation */

public void prepare()

/* start to record,return the video partitioning information，it pairs with method stop() */

public MediaPart start()

/* Stop recording . it pairs with method start(), support section shooting many times. */

public void stop()

/* Recording finished, release recourses. */public void release()

2. MediaRecorderFilter

/** no filter */

public static final String CAMERA_FILTER_NO = "";

/** blackwhite filter*/

public static final String CAMERA_FILTER_BLACKWHITE = "blackWhite";

/** sharpen filter */

public static final String CAMERA_FILTER_SHRRPEN = "pro";

/**old film filter*/

public static final String CAMERA_FILTER_OLD_PHOTOS = "oldFilm";

/*neon lights filter*/

public static final String CAMERA_FILTER_NEON_LIGHT = "edge";

/** anti-color filter */

public static final String CAMERA_FILTER_ANTICOLOR = "antiColor";

/** trough filter */

public static final String CAMERA_FILTER_THROUGH = "radial";

/** mosaic filter*/

public static final String CAMERA_FILTER_MOSAICS = "earlyBird";

/** reminiscence filter*/

public static final String CAMERA_FILTER_REMINISCENCE = "lomo";

3. FFmpegUtils FFmpeg Utility Classes

/** Volume 100% */

public static final float AUDIO_VOLUME_HIGH = 1F;

/** Volume 66% */

public static final float AUDIO_VOLUME_MEDIUM = 0.66F;

/** Volume 33% */

public static final float AUDIO_VOLUME_LOW = 0.33F;

/** Volume closed */

public static final int AUDIO_VOLUME_CLOSE = 0;

/**

* video screenshot

*

* @param videoPath video path

* @param outputPath screenshot output path

* @param wh screenshot size,such as 84*84

* @param ss screenshot start time

* @return

*/

public static boolean captureThumbnails(String videoPath, String outputPath, String wh, String ss)

/**

* transcoding

*

* @param mMediaObject Video data object storage，including theme, video clips.

* @param targetPath target path

* @param videoWidth video width

* @param complexWatermark complex theme or not (preview page and theme music)

* @return

*/

public static boolean videoTranscoding(MediaObject mMediaObject, String targetPath, int videoWidth, boolean complexWatermark)

/**

* transfer picture into video (used as import picture)

*/

public static boolean convertImage2Video(MediaPart part)

4. Underlying Utility Classes

/**

* execute FFmpeg commands

*

* @param strtag The unique identification of task. It will be run as blocked if marked as “” or

NULL, otherwise will be run as asynchronous.

* @param strcmd string command

* @return return executed results

*/

public static native int FFmpegRun(String tag, String cmd);

/** get current transcoding completion time */

public static native int FFmpegVideoGetTransTime(int flag);

/** get current video rotation information */

public static native int VideoGetMetadataRotate(String filename);

 3.4 AUDIO PLAYER

MediaPlayer class can be used to control playback of audio files and streams.

State Diagram

Playback control of audio/video files and streams is managed as a state machine. The following

diagram shows the life cycle and the states of a MediaPlayer object driven by the supported

playback control operations. The ovals represent the states a MediaPlayer object may reside in.

The arcs represent the playback control operations that drive the object state transition. There are

two types of arcs. The arcs with a single arrow head represent synchronous method calls, while

those with a double arrow head represent asynchronous method calls.

Figure 10.State Diagram of audio player

From this state diagram, one can see that a MediaPlayer object has the following states:

 When a MediaPlayer object is just created using new or after reset() is called, it is in

the Idle state; and after release() is called, it is in the Endstate. Between these two states is the

life cycle of the MediaPlayer object.

o There is a subtle but important difference between a newly constructed MediaPlayer object

and the MediaPlayer object after reset() is called. It is a programming error to invoke

methods such

as getCurrentPosition(), getDuration(), getVideoHeight(), getVideoWidth(),setAudioStrea

mType(int), setLooping(boolean), setVolume(float,

float), pause(), start(), stop(), seekTo(int), prepare() orprepareAsync() in the Idle state for

both cases. If any of these methods is called right after a MediaPlayer object is

constructed, the user supplied callback method OnErrorListener.onError() won't be called

https://developer.android.com/reference/android/media/MediaPlayer.html#reset()
https://developer.android.com/reference/android/media/MediaPlayer.html#release()
https://developer.android.com/reference/android/media/MediaPlayer.html#reset()
https://developer.android.com/reference/android/media/MediaPlayer.html#getCurrentPosition()
https://developer.android.com/reference/android/media/MediaPlayer.html#getDuration()
https://developer.android.com/reference/android/media/MediaPlayer.html#getVideoHeight()
https://developer.android.com/reference/android/media/MediaPlayer.html#getVideoWidth()
https://developer.android.com/reference/android/media/MediaPlayer.html#setAudioStreamType(int)
https://developer.android.com/reference/android/media/MediaPlayer.html#setAudioStreamType(int)
https://developer.android.com/reference/android/media/MediaPlayer.html#setLooping(boolean)
https://developer.android.com/reference/android/media/MediaPlayer.html#setVolume(float, float)
https://developer.android.com/reference/android/media/MediaPlayer.html#setVolume(float, float)
https://developer.android.com/reference/android/media/MediaPlayer.html#pause()
https://developer.android.com/reference/android/media/MediaPlayer.html#start()
https://developer.android.com/reference/android/media/MediaPlayer.html#stop()
https://developer.android.com/reference/android/media/MediaPlayer.html#seekTo(int)
https://developer.android.com/reference/android/media/MediaPlayer.html#prepare()
https://developer.android.com/reference/android/media/MediaPlayer.html#prepareAsync()

by the internal player engine and the object state remains unchanged; but if these methods

are called right after reset(), the user supplied callback method OnErrorListener.onError()

will be invoked by the internal player engine and the object will be transfered to

the Error state.

o It is also recommended that once a MediaPlayer object is no longer being used,

call release() immediately so that resources used by the internal player engine associated

with the MediaPlayer object can be released immediately. Resource may include singleton

resources such as hardware acceleration components and failure to call release() may cause

subsequent instances of MediaPlayer objects to fallback to software implementations or

fail altogether. Once the MediaPlayer object is in the End state, it can no longer be used

and there is no way to bring it back to any other state.

o Furthermore, the MediaPlayer objects created using new is in the Idle state, while those

created with one of the overloaded convenient createmethods are NOT in the Idle state. In

fact, the objects are in the Prepared state if the creation using create method is successful.

 In general, some playback control operation may fail due to various reasons, such as

unsupported audio/video format, poorly interleaved audio/video, resolution too high,

streaming timeout, and the like. Thus, error reporting and recovery is an important concern

under these circumstances. Sometimes, due to programming errors, invoking a playback

control operation in an invalid state may also occur. Under all these error conditions, the

internal player engine invokes a user supplied OnErrorListener.onError() method if an

OnErrorListener has been registered beforehand

via setOnErrorListener(android.media.MediaPlayer.OnErrorListener).

o It is important to note that once an error occurs, the MediaPlayer object enters

the Error state (except as noted above), even if an error listener has not been registered by

the application.

o In order to reuse a MediaPlayer object that is in the Error state and recover from the

error, reset() can be called to restore the object to its Idlestate.

o It is good programming practice to have your application register a OnErrorListener to

look out for error notifications from the internal player engine.

https://developer.android.com/reference/android/media/MediaPlayer.html#reset()
https://developer.android.com/reference/android/media/MediaPlayer.html#release()
https://developer.android.com/reference/android/media/MediaPlayer.html#release()
https://developer.android.com/reference/android/media/MediaPlayer.html#setOnErrorListener(android.media.MediaPlayer.OnErrorListener)
https://developer.android.com/reference/android/media/MediaPlayer.html#reset()

o IllegalStateException is thrown to prevent programming errors such as

calling prepare(), prepareAsync(), or one of the overloadedsetDataSource methods in an

invalid state.

 Calling setDataSource(FileDescriptor), or setDataSource(String), or setDataSource(Context,

Uri), or setDataSource(FileDescriptor, long, long),

or setDataSource(MediaDataSource) transfers a MediaPlayer object in the Idle state to

the Initialized state.

o An IllegalStateException is thrown if setDataSource() is called in any other state.

o It is good programming practice to always look out

for IllegalArgumentException and IOException that may be thrown from the

overloadedsetDataSource methods.

 A MediaPlayer object must first enter the Prepared state before playback can be started.

o There are two ways (synchronous vs. asynchronous) that the Prepared state can be

reached: either a call to prepare() (synchronous) which transfers the object to

the Prepared state once the method call returns, or a call

to prepareAsync() (asynchronous) which first transfers the object to the Preparing state

after the call returns (which occurs almost right way) while the internal player engine

continues working on the rest of preparation work until the preparation work completes.

When the preparation completes or when prepare() call returns, the internal player engine

then calls a user supplied callback method, onPrepared() of the OnPreparedListener

interface, if an OnPreparedListener is registered beforehand

via setOnPreparedListener(android.media.MediaPlayer.OnPreparedListener).

o It is important to note that the Preparing state is a transient state, and the behavior of

calling any method with side effect while a MediaPlayer object is in the Preparing state is

undefined.

o An IllegalStateException is thrown if prepare() or prepareAsync() is called in any other

state.

https://developer.android.com/reference/android/media/MediaPlayer.html#prepare()
https://developer.android.com/reference/android/media/MediaPlayer.html#prepareAsync()
https://developer.android.com/reference/android/media/MediaPlayer.html#setDataSource(java.io.FileDescriptor)
https://developer.android.com/reference/android/media/MediaPlayer.html#setDataSource(java.lang.String)
https://developer.android.com/reference/android/media/MediaPlayer.html#setDataSource(android.content.Context, android.net.Uri)
https://developer.android.com/reference/android/media/MediaPlayer.html#setDataSource(android.content.Context, android.net.Uri)
https://developer.android.com/reference/android/media/MediaPlayer.html#setDataSource(java.io.FileDescriptor, long, long)
https://developer.android.com/reference/android/media/MediaPlayer.html#setDataSource(android.media.MediaDataSource)
https://developer.android.com/reference/android/media/MediaPlayer.html#prepare()
https://developer.android.com/reference/android/media/MediaPlayer.html#prepareAsync()
https://developer.android.com/reference/android/media/MediaPlayer.html#prepare()
https://developer.android.com/reference/android/media/MediaPlayer.html#setOnPreparedListener(android.media.MediaPlayer.OnPreparedListener)
https://developer.android.com/reference/android/media/MediaPlayer.html#prepare()
https://developer.android.com/reference/android/media/MediaPlayer.html#prepareAsync()

o While in the Prepared state, properties such as audio/sound volume,

screenOnWhilePlaying, looping can be adjusted by invoking the corresponding set

methods.

 To start the playback, start() must be called. After start() returns successfully, the

MediaPlayer object is in the Started state. isPlaying() can be called to test whether the

MediaPlayer object is in the Started state.

o While in the Started state, the internal player engine calls a user supplied

OnBufferingUpdateListener.onBufferingUpdate() callback method if a

OnBufferingUpdateListener has been registered beforehand

via setOnBufferingUpdateListener(OnBufferingUpdateListener). This callback allows

applications to keep track of the buffering status while streaming audio/video.

o Calling start() has not effect on a MediaPlayer object that is already in the Started state.

 Playback can be paused and stopped, and the current playback position can be adjusted.

Playback can be paused via pause(). When the call topause() returns, the MediaPlayer object

enters the Paused state. Note that the transition from the Started state to the Paused state and

vice versa happens asynchronously in the player engine. It may take some time before the

state is updated in calls to isPlaying(), and it can be a number of seconds in the case of

streamed content.

o Calling start() to resume playback for a paused MediaPlayer object, and the resumed

playback position is the same as where it was paused. When the call to start() returns, the

paused MediaPlayer object goes back to the Started state.

o Calling pause() has no effect on a MediaPlayer object that is already in the Paused state.

 Calling stop() stops playback and causes a MediaPlayer in

the Started, Paused, Prepared or PlaybackCompleted state to enter the Stopped state.

o Once in the Stopped state, playback cannot be started until prepare() or prepareAsync() are

called to set the MediaPlayer object to the Preparedstate again.

o Calling stop() has no effect on a MediaPlayer object that is already in the Stopped state.

https://developer.android.com/reference/android/media/MediaPlayer.html#start()
https://developer.android.com/reference/android/media/MediaPlayer.html#start()
https://developer.android.com/reference/android/media/MediaPlayer.html#isPlaying()
https://developer.android.com/reference/android/media/MediaPlayer.html#setOnBufferingUpdateListener(android.media.MediaPlayer.OnBufferingUpdateListener)
https://developer.android.com/reference/android/media/MediaPlayer.html#start()
https://developer.android.com/reference/android/media/MediaPlayer.html#pause()
https://developer.android.com/reference/android/media/MediaPlayer.html#pause()
https://developer.android.com/reference/android/media/MediaPlayer.html#isPlaying()
https://developer.android.com/reference/android/media/MediaPlayer.html#start()
https://developer.android.com/reference/android/media/MediaPlayer.html#start()
https://developer.android.com/reference/android/media/MediaPlayer.html#pause()
https://developer.android.com/reference/android/media/MediaPlayer.html#stop()
https://developer.android.com/reference/android/media/MediaPlayer.html#prepare()
https://developer.android.com/reference/android/media/MediaPlayer.html#prepareAsync()
https://developer.android.com/reference/android/media/MediaPlayer.html#stop()

 The playback position can be adjusted with a call to seekTo(int).

o Although the asynchronuous seekTo(int) call returns right way, the actual seek operation

may take a while to finish, especially for audio/video being streamed. When the actual

seek operation completes, the internal player engine calls a user supplied

OnSeekComplete.onSeekComplete() if an OnSeekCompleteListener has been registered

beforehand via setOnSeekCompleteListener(OnSeekCompleteListener).

o Please note that seekTo(int) can also be called in the other states, such

as Prepared, Paused and PlaybackCompleted state.

o Furthermore, the actual current playback position can be retrieved with a call

to getCurrentPosition(), which is helpful for applications such as a Music player that need

to keep track of the playback progress.

 When the playback reaches the end of stream, the playback completes.

o If the looping mode was being set to truewith setLooping(boolean), the MediaPlayer

object shall remain in the Started state.

o If the looping mode was set to false , the player engine calls a user supplied callback

method, OnCompletion.onCompletion(), if a OnCompletionListener is registered

beforehand via setOnCompletionListener(OnCompletionListener). The invoke of the

callback signals that the object is now in the PlaybackCompleted state.

o While in the PlaybackCompleted state, calling start() can restart the playback from the

beginning of the audio/video source.

Classes for audio player

interface MediaStore.Audio.AlbumColumns

Columns representing an album

Class MediaStore.Audio.Albums

Contains artists for audio files

https://developer.android.com/reference/android/media/MediaPlayer.html#seekTo(int)
https://developer.android.com/reference/android/media/MediaPlayer.html#seekTo(int)
https://developer.android.com/reference/android/media/MediaPlayer.html#setOnSeekCompleteListener(android.media.MediaPlayer.OnSeekCompleteListener)
https://developer.android.com/reference/android/media/MediaPlayer.html#seekTo(int)
https://developer.android.com/reference/android/media/MediaPlayer.html#getCurrentPosition()
https://developer.android.com/reference/android/media/MediaPlayer.html#setLooping(boolean)
https://developer.android.com/reference/android/media/MediaPlayer.html#setOnCompletionListener(android.media.MediaPlayer.OnCompletionListener)
https://developer.android.com/reference/android/media/MediaPlayer.html#start()
https://developer.android.com/reference/android/provider/MediaStore.Audio.AlbumColumns.html
https://developer.android.com/reference/android/provider/MediaStore.Audio.Albums.html

interface MediaStore.Audio.ArtistColumns

Columns representing an artist

Class MediaStore.Audio.Artists

Contains artists for audio files

interface MediaStore.Audio.AudioColumns

Columns for audio file that show up in multiple tables.

Class MediaStore.Audio.Genres

Contains all genres for audio files

interface MediaStore.Audio.GenresColumns

Columns representing an audio genre

Class MediaStore.Audio.Media

Class MediaStore.Audio.Playlists

Contains playlists for audio files

interface MediaStore.Audio.PlaylistsColumns

Columns representing a playlist

Class MediaStore.Audio.Radio

Public constructors

MediaStore.Audio()

Public methods

staticString keyFor(String name)

Converts a name to a "key" that can be used for grouping, sorting and searching.

https://developer.android.com/reference/android/provider/MediaStore.Audio.ArtistColumns.html
https://developer.android.com/reference/android/provider/MediaStore.Audio.Artists.html
https://developer.android.com/reference/android/provider/MediaStore.Audio.AudioColumns.html
https://developer.android.com/reference/android/provider/MediaStore.Audio.Genres.html
https://developer.android.com/reference/android/provider/MediaStore.Audio.GenresColumns.html
https://developer.android.com/reference/android/provider/MediaStore.Audio.Media.html
https://developer.android.com/reference/android/provider/MediaStore.Audio.Playlists.html
https://developer.android.com/reference/android/provider/MediaStore.Audio.PlaylistsColumns.html
https://developer.android.com/reference/android/provider/MediaStore.Audio.Radio.html
https://developer.android.com/reference/android/provider/MediaStore.Audio.html#MediaStore.Audio()
https://developer.android.com/reference/java/lang/String.html
https://developer.android.com/reference/android/provider/MediaStore.Audio.html#keyFor(java.lang.String)
https://developer.android.com/reference/java/lang/String.html

Features

1.Equalizer

An Equalizer is used to alter the frequency response of a particular music source or of the main

output mix.

An application creates an Equalizer object to instantiate and control an Equalizer engine in the

audio framework. The application can either simply use predefined presets or have a more

precise control of the gain in each frequency band controlled by the equalizer.

The methods, parameter types and units exposed by the Equalizer implementation are directly

mapping those defined by the OpenSL ES 1.0.1 Specification

(http://www.khronos.org/opensles/) for the SLEqualizerItf interface. Please refer to this

specification for more details.

To attach the Equalizer to a particular AudioTrack or MediaPlayer, specify the audio session ID

of this AudioTrack or MediaPlayer when constructing the Equalizer.

Classes for equalizer

interface Equalizer.OnParameterChangeListener

The OnParameterChangeListener interface defines a method called by the Equalizer when a parameter value has changed.

Class Equalizer.Settings

The Settings class regroups all equalizer parameters.

creating an equalizer

Equalizer equalizer = new Equalizer(0,mediaplayer.getAudioSessionId());

equalizer.setEnabled(true);

equalizer.getNumberOfBands();

https://developer.android.com/reference/android/media/audiofx/Equalizer.OnParameterChangeListener.html
https://developer.android.com/reference/android/media/audiofx/Equalizer.Settings.html

equalizer.getNumberOfPresets();

2.Voice search

public class MainActivity extends SherlockActivity {

 private SlidingMenu slidingMenu;

 private SlidingMenu slidingMenuRight;

 private String mFilterArrays[];

 public long lastScrollTime=0; /** En son kaydırma ne zaman yapıldı*/

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 }

 public boolean onCreateOptionsMenu(Menu menu) {

 //Create the search view

 SearchView searchView = new

SearchView(getSupportActionBar().getThemedContext());

 searchView.setQueryHint("Search...");

 menu.add("Search")

 .setIcon(R.drawable.ic_search_inverse)

 .setActionView(searchView)

 .setShowAsAction(MenuItem.SHOW_AS_ACTION_IF_ROOM |

MenuItem.SHOW_AS_ACTION_COLLAPSE_ACTION_VIEW);

 return true;

 }

}

Mainfest

<activity

 android:name="com.paea.bcp.MainActivity"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="com.paea.bcp.MainActivity" />

 <category android:name="android.intent.category.DEFAULT" />

 <action android:name="android.intent.action.SEARCH" />

 </intent-filter>

</activity>

3.Cross fade

private Runnable mUpdateTimeTask = new Runnable() {

 public void run() {

 long totalDuration = 0;

 long currentDuration = 0;

 if(musicPlayer.isPlaying()) {

 totalDuration = musicPlayer.getDuration();

 currentDuration = musicPlayer.getCurrentPosition();

 // Updating progress bar

 int progress = (utils.getProgressPercentage(currentDuration, totalDuration));

 trackPb.setProgress(progress);

 if (!trackDownloaded && currentDuration > 100) {

 Log.i(TagsContainer.MUSIC_PLAYER_TAG,"next track download started");

 trackDownloaded = true;

 new TrackLoader().execute();

 }

 long crossFadeValue = currentDuration + CROSSFADE_DURATION;

 if (crossFadeValue > totalDuration && !fadeStarted && currentDuration > 100) {

 fadeStarted = true;

 crossFade();

 }

 // Running this thread after 100 milliseconds

 }

 mHandler.postDelayed(this, 100);

 }

 };

Crossfade's functions look like this:

private void crossFade() {

 fadeOut(musicPlayer, CROSSFADE_DURATION);

 fadeIn(musicPlayer2, CROSSFADE_DURATION);

 }

 public void fadeOut(final MediaPlayer _player, final int duration) {

 final float deviceVolume = getDeviceVolume();

 final Handler h = new Handler();

 h.postDelayed(new Runnable() {

 private float time = duration;

 private float volume = 0.0f;

 @Override

 public void run() {

 if (!_player.isPlaying())

 _player.start();

 // can call h again after work!

 time -= 100;

 volume = (deviceVolume * time) / duration;

 _player.setVolume(volume, volume);

 if (time > 0)

 h.postDelayed(this, 100);

 else {

 _player.stop();

 _player.release();

 }

 }

 }, 100); // 1 second delay (takes millis)

 }

 public void fadeIn(final MediaPlayer _player, final int duration) {

 final float deviceVolume = getDeviceVolume();

 final Handler h = new Handler();

 h.postDelayed(new Runnable() {

 private float time = 0.0f;

4.Fade on play/pause

One way to do it is to use MediaPlayer.setVolume(right, left) and have these values decrement

after every iteration.

float volume = 1;

float speed = 0.05f;

public void FadeOut(float deltaTime)

{

 MediaPlayer.setVolume(volume, volume);

 volume -= speed* deltaTime

}

public void FadeIn(float deltaTime)

{

 MediaPlayer.setVolume(volume, volume);

 volume += speed* deltaTime

}

5.Shake Control

package com.grifball.info;

import com.grifball.info.ShakeDetector.OnShakeListener;

import android.app.Activity;

import android.content.Context;

import android.hardware.Sensor;

import android.hardware.SensorManager;

import android.media.MediaPlayer;

import android.os.Bundle;

public class HammerActivity extends Activity {

private ShakeDetector mShakeDetector;

private SensorManager mSensorManager;

// Declare the MediaPlayer object

private MediaPlayer mMediaPlayer;

@Override

public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.hammer_page);

 // ShakeDetector initialization

 mSensorManager = (SensorManager) getSystemService(Context.SENSOR_SERVICE);

 mShakeDetector = new ShakeDetector();

 mShakeDetector.setOnShakeListener(new ShakeDetector.OnShakeListener() {

 public void onShake() {

 // Initialize media player

 mMediaPlayer = MediaPlayer.create(HammerActivity.this, R.raw.hammer);

 // Add OnCompletionListener to release the

 mMediaPlayer.setOnCompletionListener(new MediaPlayer.OnCompletionListener() {

 @Override

 public void onCompletion(MediaPlayer mp) {

 mMediaPlayer.release();

 }

 });

 mMediaPlayer.start();

 });

 };

 @Override

 protected void onResume() {

 super.onResume();

 mSensorManager.registerListener(mShakeDetector,

 mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER),

 SensorManager.SENSOR_DELAY_UI);

 }

 @Override

 protected void onPause() {

 mSensorManager.unregisterListener(mShakeDetector);

 super.onStop();

 }}

This is my ShakeDetector code.

package com.grifball.info;

import android.hardware.Sensor;

import android.hardware.SensorEvent;

import android.hardware.SensorEventListener;

import android.hardware.SensorManager;

/**Listener that detects shake gesture.

 */

public class ShakeDetector implements SensorEventListener {

 /** Minimum movement force to consider. */

 private static final int MIN_FORCE = 10;

 /**Minimum times in a shake gesture that the direction of movement needs tochange.

 */

 private static final int MIN_DIRECTION_CHANGE = 3;

 /** Maximum pause between movements. */

 private static final int MAX_PAUSE_BETHWEEN_DIRECTION_CHANGE = 200;

 /** Maximum allowed time for shake gesture. */

 private static final int MAX_TOTAL_DURATION_OF_SHAKE = 400;

 /** Time when the gesture started. */

 private long mFirstDirectionChangeTime = 0;

 /** Time when the last movement started. */

 private long mLastDirectionChangeTime;

 /** How many movements are considered so far. */

 private int mDirectionChangeCount = 0;

 /** The last x position. */

 private float lastX = 0;

 /** The last y position. */

 private float lastY = 0;

 /** The last z position. */

 private float lastZ = 0;

 /** OnShakeListener that is called when shake is detected. */

 private OnShakeListener mShakeListener;

 /**Interface for shake gesture.

 */

 public interface OnShakeListener {

 /**Called when shake gesture is detected.

 */

 void onShake();

 }

 public void setOnShakeListener(OnShakeListener listener) {

 mShakeListener = listener;

 }

 @Override

 public void onSensorChanged(SensorEvent se) {

 // get sensor data

 float x = se.values[SensorManager.DATA_X];

 float y = se.values[SensorManager.DATA_Y];

 float z = se.values[SensorManager.DATA_Z];

// calculate movement

float totalMovement = Math.abs(x + y + z - lastX - lastY - lastZ);

if (totalMovement > MIN_FORCE) {

 // get time

 long now = System.currentTimeMillis();

 // store first movement time

 if (mFirstDirectionChangeTime == 0) {

 mFirstDirectionChangeTime = now;

 mLastDirectionChangeTime = now;

 }

 // check if the last movement was not long ago

 long lastChangeWasAgo = now - mLastDirectionChangeTime;

 if (lastChangeWasAgo < MAX_PAUSE_BETHWEEN_DIRECTION_CHANGE) {

 // store movement data

 mLastDirectionChangeTime = now;

 mDirectionChangeCount++;

 // store last sensor data

 lastX = x;

 lastY = y;

 lastZ = z;

 // check how many movements are so far

 if (mDirectionChangeCount >= MIN_DIRECTION_CHANGE) {

 // check total duration

 long totalDuration = now - mFirstDirectionChangeTime;

 if (totalDuration < MAX_TOTAL_DURATION_OF_SHAKE) {

 mShakeListener.onShake();

 resetShakeParameters();

 }

 }

 } else {

 resetShakeParameters();

 }

}

 }

 /**Resets the shake parameters to their default values.

 */

 private void resetShakeParameters() {

 mFirstDirectionChangeTime = 0;

 mDirectionChangeCount = 0;

 mLastDirectionChangeTime = 0;

 lastX = 0;

 lastY = 0;

 lastZ = 0;

 }

 @Override

 public void onAccuracyChanged(Sensor sensor, int accuracy) {

 }

}

OnCompletionListener code. package com.grifball.info;

import android.media.MediaPlayer;

public class OnCompletionListener {

public void onCompletion(MediaPlayer mp) {

 // TODO Auto-generated method stub

}

}

6.Sleep timer

 Create one service, which is going to be used for countdown of time.

 By default android broadcasts one intent call ACTION_TIME_TICK at every minute

Register that intent in your service.

 Increment your count at every minute.

public int onStartCommand (Intent intent, int flags, int startId)

{

 context.registerReceiver(new TickReceiver(), new

ntentFilter(Intent.ACTION_TIME_TICK));

 public class TickReceiver extends BroadcastReceiver {

 @Override

 public void onReceive(Context context, Intent intent) {

 if(intent.getAction().compareTo(Intent.ACTION_TIME_TICK) == 0){

 count++;

 if(count==5 && (PlayActivity.mediaPlayer!=null)){

 PlayActivity.mediaPlayer.stop();

 PlayActivity.mediaPlayer.release();

 }

 }

}

PlayActivity.java

static MediaPlayer mediaPlayer;

@Override

public void onCreate(){

super.onCreate();

 mediaPlayer=new MediaPlayer();

 mediaPlayer.setDataSource(YOUR_PATH);

 mediaPlayer.prepare();

 mediaPlayer.exception();

 Intent ServiceIntent=new Intent(this,TimeCounterService.class);

 StartService(ServiceIntent);

}

.

3.5 System Requirements For Android Studio

WINDOWS

 Microsoft® Windows® 8/7/Vista (32 or 64-bit)

 2 GB RAM minimum, 4 GB RAM recommended

 400 MB hard disk space

 At least 1 GB for Android SDK, emulator system images, and caches

 1280 x 800 minimum screen resolution

 Java Development Kit (JDK) 7

 Optional for accelerated emulator: Intel® processor with support for Intel® VT-x, Intel®

EM64T (Intel® 64), and Execute Disable (XD) Bit functionality.

Mac OS X

 Mac® OS X® 10.8.5 or higher, up to 10.9 (Mavericks)

 2 GB RAM minimum, 4 GB RAM recommended

 400 MB hard disk space

 At least 1 GB for Android SDK, emulator system images, and caches

 1280 x 800 minimum screen resolution

 Java Runtime Environment (JRE) 6

 Java Development Kit (JDK) 7

 Optional for accelerated emulator: Intel® processor with support for Intel® VT-x, Intel®

EM64T (Intel® 64), and Execute Disable (XD) Bit functionality

Linux

 GNOME or KDE desktop

 GNU C Library (glibc) 2.15 or later

 2 GB RAM minimum, 4 GB RAM recommended

 400 MB hard disk space

 At least 1 GB for Android SDK, emulator system images, and caches

 1280 x 800 minimum screen resolution

 Oracle® Java Development Kit (JDK) 7

Mobile Recquirements To Run Application

 Android OS 4.0 or above

 512MB RAM

 Screen Size 3.5 inch or above

CHAPTER 4: PERFORMANCE ANALYSIS

A)Screenshots of Conference Application

B)Screenshots Of Media Player

CHAPTER 5: CONCLUSION

Android as a full, open and free mobile device platform, with its powerful function and good user

experience rapidly developed into the most popular mobile operating system. This report gives an

overview of the different challenges and issues faced in android app development The experience

of developing an android app is quite challenging, motivating as well as satisfying.

 This report shows an approach for designing of media player. Media player should consider the

improvement in scenario such as decode efficiency needs to be improved, synchronization between

multiple media streams, and display of the original data. Use of FFmpeg decode library seems to

be an alternative method. Research shows FFmpeg supports most media formats which gives a

high decode efficiency. Different approaches that can be considered are plug-in extension

technology, multimedia based on hierarchy, media player based on file browser, media player

based on FFmpeg, media player based on file server, etc.

There is a vast scope of improvement in this field.

REFRENCES

[1] Ma, Li, Lei Gu, and Jin Wang. "Research and Development of Mobile Application for android

Platform." (2014).

[2] Liu, Jianye, and Jiankun Yu. "Research on Development of android Applications." Fourth

International conference on Intelligent Networks and Intelligent Systems. 2011.

 [3] Peng, Bin, Jinming Yue, and Chen Tianzhou. "The android Application Development College

Challenge." High Performance Computing and Communication & 2012 IEEE 9th International

Conference on Embedded Software and Systems (HPCC-ICESS), 2012 IEEE 14th International

Conference on. IEEE, 2012

[4] Parada, Abilio G., and Lisane B. de Brisolara. "A model driven approach for android

applications development." Computing System Engineering (SBESC), 2012 Brazilian Symposium

on. IEEE, 2012.

[5] Nikhil S. Sakhare , R. W. Jasutkar. “Design of Android based Media Player”. International

Journal of Science and Research (IJSR), India Online ISSN: 2319‐7064, February 2013.

[6] Amit M. Farkade, Miss. Sneha. R. Kaware. “The Android - A Widely Growing Mobile

Operating System With its Mobile based Applications” International Journal of Computer Science

and Mobile Applications, Vol.3 Issue. 1, January- 2015, pg. 39-45

