Prf. P.B. Bernan

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT B.Tech. (CSE, ECE, IT) VI Semester

COURSE CODE: 10B11PH611

MAX. MARKS: 25

COURSE NAME: MATERIALS SCIENCE

COURSE CREDITS: 04

MAX. TIME: 1.5 HR

Note: All questions are compulsory. Carrying of mobile phone during examinations will be treated as case of unfair means. Scientific calculator is allowed.

- 1. (a) On being polarized an oxygen atom produces a dipole moment of 0.5 x 10^{-22} Gem. If the distance of the centre of the negative charge cloud from the nucleus is 4 x 10⁻¹⁷ m, Calculate the polarizability of the 3 marks [CO-3] oxygen atom.
- (b) Discuss the technique to introduce piezoelectric behaviour in ceramic materials.

2 marks [CO-4]

2. (a) Compute from the tabulated data for C₃H₆, the number average molecular weight, weight average molecular weight, degree of polymerization and poly dispersity index;

Mol. Wt. range (g/mol)	xi	Wi
15000-45000	0.11	0.05
45000-75000	0.42	0.35
75000-105000	0.36	0.43
105000-135000	0.11	0.17

4 marks [CO-3]

- (b) Mention the types of copolymers. Determine the ratio of C₄H₆ and C₈H₈ mer units in a copolymer having number average molecular weight 3,50,000 g/mol and degree of polymerization is 4425. Determine 3 marks [CO-2] the type of copolymer.
- 3. (a) Derive an expression for Larmor precessional frequency for an electron orbiting nucleus in an atom in the presence of a magnetic field. Also discuss its significance. 4 marks [CO-1]
- (b) Calculate the diamagnetic susceptibility for copper by assuming only one electron per atom 3 marks [CO-3] contribution. Assume FCC crystallinity with radius 0.1 nm.
- 4. (a) Discuss the role of different types of energies contributing towards the creation of domains in 3 marks [CO-1] ferromagnetic materials.
- (b) A paramagnetic system of electron spins is placed in an external field of 10⁵ A/m. Calculate the average magnetic moment per dipole at room temperature. Also calculate the fractional number of spins which are 3 marks [CO-2] parallel to the field.