

Development of Python API for a Network

Switch

Project report submitted in partial fulfilment of the requirement for the

degree of Bachelor of Technology

in

Computer Science and Engineering

By

Archit Singh (151276)

Under the supervision of

Mr. Rangarajan Ramalingam

to

Department of Computer Science & Engineering and Information

Technology

Jaypee University of Information Technology Waknaghat,

Solan-173234, Himachal Pradesh

i | P a g e

Acknowledgements

I express my profound gratitude and indebtedness to of Mr Rangarajan Ramalinagm

Lead Architect Wipro limited for introducing the present topic and for their inspiring

intellectual guidance, constructive criticism and valuable suggestion throughout this

journey.

I am also thankful to all Mr Vijay Natarajan Competency Manager Wipro Limited for

his constant motivation and helping me bring in improvements in the project.

Finally I would like to thank my family and friends for their constant support. Without

their contribution it would have been impossible to complete my work.

Date

Archit Singh

ii | P a g e

Table of Contents

Certificate i

Acknowledgement ii

List of Figures iii

Abstract iv

1. Introduction

1.1 Introduction 1

1.1 Problem Statement 5

1.2 Objective 6

2. Literature Survey 7

2.1 Methodology 7

2.2 Cisco Python Package 9

3. Commands and Configuration

3.1 Installation of nexus 1000v 10

3.2 Connections 11

3.3 Port-Profiles 12

3.4 User 12

3.5 VxLAN 13

3.5 CURL Commands 13

4. Language Used

4.1 Python 18

5. Results

5.1 Python API Response 20

5.2 Supported HTTP Methods 21

6. Conclusion

6.1 Conclusion 25

6.2 Future Scope 26

7. References 28

8. Appendices 29

iii | P a g e

LIST OF FIGURES

Fig.1.1 Cisco Nexus 1000v Architecture 2

Fig.1.2 Nexus 1000v VEM and VSM connections 4

Fig.1.3 REST API Network Flow 5

Fig.1.4 REST API Interface 6

Fig.2.1 CRUD 7

Fig. 3.1 Connection between Windows and Ubuntu 11

Fig. 3.2 Connection between Ubuntu and VSM 11

Fig. 3.3 System Configuration in VMware 12

Fig 3.4 JSON Response through CURL 14

Fig 3.5 XML response using CURL 14

Fig. 3.6 GET response using CURL 15

Fig.3.7 POST response using CURL 15

Fig. 3.5 DELETE Response using CURL 16

Fig. 3.9 Adding a new user using CURL 16

Fig. 3.10 DELETE user using CURL 17

Fig.4.1 Hardware layout of the system 19

Fig 5.1 JSON response using Python API 20

Fig 5.2 XML Response using Python API 21

Fig 5.3 GET Method Using Python API 21

Fig 5.4 POST Port-Profile Method using Python API 22

iv | P a g e

Fig 5.5 DELETE Port-Profile Method using Python API 22

Fig. 5.6 Adding User using Python API 23

Fig. 5.7 Deleting User using Python API 24

Fig. 5.8 Creating a new VLAN using Python API 24

v | P a g e

 Abstract

The Cisco Nexus 1000v Switch is a software developed by Cisco in collaboration

with VMware, Citrix and Redhat for VMware environments, Which runs inside

VMware hypervisor (ESX), and supports Cisco server virtualization technology. It

has two Components, The Virtual Module (VEM) and Virtual Supervisor Module

(VSM). VEM executes commands inside the hypervisor and VSM manages the

VEMs, as there are plenty of VEMs inside the Switch.

The existing CURL commands allow user to work with APIs but user actually has to

get into the switches and execute the commands but by using python APIs we can

automate the switches and use the methods accordingly.

In this project we were working on building REST APIs using Python language for

accessing our network switch and managing Port Profiles, CLIs, VxLANs etc.

Designing an API that has a built-in authentication mechanism that uses

authentication calls to create a secure session and prevent unauthorized users from

gaining access. An API that adheres to the principles of REST does not require the

client to know anything about the structure of API. Rather the server needs to provide

whatever information the client needs to interact with the service.

All the documentations and citations were referred from the official site of Cisco and

all the related libraries were downloaded and used accordingly.

1 | P a g e

 Chapter 1. Introduction

1.1 Introduction

Application Programming Interface(API) is an intermediate that enables two

applications to converse with one another. In essential terms, it goes about as a

separation that passes on a requesting to the provider that is referenced and starting

their response is delivered back. For example, Google or Facebook auto login features

in many of the websites, and applications like Goibibo or MakeMyTrip, which uses

same concept, getting details from different flights and showing it in a sorted way and

then redirecting to that same flight where you want to book your seats.

Representational State Transfer (REST).It is an Application Program Interface

(API) which uses HTTP requests, and also XML and JSON formats to Read

(GET),Write (POST), Update(PUT) and Remove (DELETE) any data from the server

side. There are so many methods to use an API like SOAP (Simple Object Access

Protocol) and REST. But REST is more favorable as it uses less bandwidth, which

makes it more suitable for Interanet.

In this project we have developed Python APIs for the Cisco Nexus 1000v Switch,

which provides,

● Policy-based virtual machine (VM) connectivity.

● Mobile VM security and network policy.

● Non-disruptive operational model for your server virtualization, and networking

teams.

It is fully integrated with VMware Virtual Infrastructure. We can use the Cisco Nexus

1000v to manage their VM connectivity and integrate the server virtualization

https://searchmicroservices.techtarget.com/definition/application-program-interface-API

2 | P a g e

infrastructure. Since virtual servers are not managed the same way as any physical

servers, Server virtualization is treated as a special deployment, with longer deployment

time and great connectivity over network, among servers, storage and administrators. But

in Cisco Nexus 1000v switch we can have a predictable systems administration include

set and provisioning process right from the VM to the access, accumulation, and center

switches. Your virtual servers can utilize a similar network configuration, tools,

operational models security arrangement policies as physical servers.

Virtualization Administrators can use predefined arrange approach of network policy that

pursues the Virtual Machine and spotlights on VM organization. This extensive

arrangement of capacities encourages you to send server virtualization quicker and

understand its advantages sooner.

The Cisco Nexus 1000v Switch has two major components, named as the Virtual

Ethernet Module (VEM) and Virtual Supervisor Module (VSM). VEM executes inside

the hypervisor and on the other hand VSM manages the VEMs.[1]

Fig. 1.1 Cisco Nexus 1000v Architecture

3 | P a g e

I. VEM(Virtual Ethernet Module)-

It is just a line card same as NIC, which runs inside the hypervisor. It relies on VSM used

for Data forwarding. The VEM takes configuration information from the VSM and

performs switching functions like-

 Security: Access Control Lists, Private VLAN, Cisco TrustSec

architecture.

 QOS (Quality of service)

 Monitoring: In case of loss of communication with the Virtual

Supervisor Module, the VEM has Nonstop Forwarding ability to keep

on exchanging traffic dependent on last known setup. To put it plainly,

the VEM provides advanced switching with data-center for the server

virtualization environment. For example-NetFlow, RSPAN(Remote

SPAN), SPAN(Switched Port Analyzer), it copies traffic over switches

and forwards it out the SPAN. We can monitor the traffic via seeing

incoming and outgoing traffic through a port.

II. VSM(Virtual Supervisor Module)-

VSM controls various VEMs as one coherent particular switch. Rather than physical line

card modules, the Virtual Supervisor Module supports VEMs running in programming

inside servers. It gives insight to switch and furthermore get to the single administration

point. A couple of excess VSM can oversee upto 64 VEMs, which is equal to a chassis

you exchanged with 64 line cards in it. VSM has 3 interfaces, Control, Management and

Packet, and these are used in different operations when we configure our VSM and this is

being layer 2 and layer 3. It comes in two mode, like one as VM that we can install on our

VMware environment which we did in our project, and the second one is, it can be a

VSA(Virtual Service Appliance) on a dedicated cisco Nexus 1010 or 1100 servers. All

4 | P a g e

the configuration has been made on VSM and the VSM applies those configurations to

the VEMs. We can see the tight integration between VSM and vCenter or VEM.

So instead of configuring every time inside the hypervisor on host, administrators can

define configurations for instant use on all VEMs via VSM. As all the configurations and

setups are performed via VSM and automatically transferred to all the VEMs

Fig.1.2 Nexus 1000v VEM and VSM connection

These are some benefits of Nexus 1000v Switch-

● High availability: Redundant and Synchronized Supervisors enable fast and

stateful failover.

● Scalability and Flexibility: By configuring the ports by category we can scale up

the number of ports. Including LAN, SAN or WAN a common application will be

able to run all the areas of data center.

5 | P a g e

● Manageability: We can access or configure this switch through CLI (Command

Line Interface), SNMOP(Simple Network Management Protocol) and XML or REST

API. Much the same as the remainder of the Cisco Nexus family, the Cisco Nexus

1000V can likewise be overseen utilizing the far reaching devices of Cisco Data

Center Network Manager.

1.2 Problem Statement

The main purpose of this project is to develop Python APIs for a Network Switch

(Nexus 1000v) that can control the switch and eliminate the use of existing

commands such as CURL. To access or configure any hardware switch, every

network administrator has to deal with that in person but there are millions of

switches and VLANs in our internet working from the server side, so instead of this

Cisco implemented the virtual Switches which may run inside any computer where

we access as many VLANs as we(customers) want.

Fig. 1.3 REST API Network flow

 1.3 Objective-

Fig. 1.3 REST API Network flow

As the scope in networking area goes high such as software defined networking, We

can incorporate and control many system switches from a single dashboard and

choice layers. In this project we were working on building REST APIs using Python

6 | P a g e

language for accessing our network switch and managing Port Profiles, CLIs,

VxLANs etc. Structuring an API that has a worked in verification mechanism that

utilizes validation calls to make a safe session and keep unapproved clients from

obtaining entrance. An API that clings to the standards of REST does not require the

customer to know anything about the structure of API. Or maybe the server needs to

give whatever data the customer needs to collaborate with the administration. The

coding is done in Python language in Ubuntu environment which was installed inside

the Oracle virtual box and then used.

Fig. 1.4 REST API interface

7 | P a g e

Chapter 2. Literature Survey

2.1 Methodology-

Let‟s take an example of HTML form, suppose you are a client, and want to access a

webpage from abc.com website through your Web-Browser. But the browser does not

know in the first place from where to access that web page you have been asking for.

So whenever we go to some URL it automatically transfers us to the server, from

there all the information have been gathered. But all the date which is stored at the

server side is in XML or HTML or JSON format, so it returns the data in an

appropriate format regardless of whether client side is able to read that HTML or

XML or JSON format or not. To resolve this problem, REST API came into

existence, as it returns only the state objects of the data that you have asked for. So

what makes it happen? The answer for this is- GET, POST PUT DELETE methods.

There is a well Organized method called CURD abbreviated as CREAT, UPDATE,

READ and DELETE, which is done by POST, PUT, GET and DELETE respectively.

Fig. 2.1 CURD

8 | P a g e

GET- It is READ-ONLY Method. We do a GET Request to do GET a message with a

particular ID, it returns a representation in XML or JSON format with the HTTP response

code of 200, which means result is [OK]. Whenever we want some date from the server

we make a GET request to the server, in response, server understands that request and if

you are an authorized user then it will send back the web page to the client. In GET

request most the error happens from the server side not from the client side, Server side

error code are 404[NOT FOUND] and 400[BAD Request].

So what does an API do is, it make cache for every GET Request we make, so that

whenever we want to access the same webpage of date, it would not compute every time

which create less latency. This caching only happens with the GET method because it

doesn‟t change anything on the server side. So we can make as many GET requests as we

want.

POST- POST is the method to create new resources on the webpage. It is not repeatable

method, as we make the same POST request multiple times it may create duplicates of it.

So to tackle this problem, what an API does is just make some safeguards for it, for

example if you submitted a form on website, which is a POST request and then you hit

refresh ,it will ask, “you‟ve already submitted this data, want to continue?” it happens

only to prevent the duplicates. Whenever a POST is done, normally the body is included

in the requests that means sending along some sequence of bytes some data defining the

object or record you are creating.

PUT- PUT is the method to update any information on the website. It is also repeatable

method, as whenever you make the same call it updates the data every time.

DELETE- DELETE is also a save method as it removes the resource that a user want to

delete from the website

9 | P a g e

Fig. 2.2 XML and JSON response from the server.

2.2 Cisco Python Package-

Python is a simple to adapt, powerful programming language which has proficient

high-level data structures and suitable approach to object oriented programming.

Python's rich linguistic structure and dynamic composing, together with its

deciphered nature, make it a perfect language for scripting and fast application

improvement in numerous regions on generally stages. The Python interpreter and

the broad standard library are openly accessible in source for every single significant

stage from the Python website.

We have used Cisco Python SDK which provides a python package by which we can

configure so many core network devices, and their modules such as Ports, Interfaces,

Routes, ACL(Access Control List), VLANs(Virtual Area Network). Some source

files and methods are for internal use and do not have embedded documentation

10 | P a g e

 Chapter 3. Command and Configurations

3.1 Installation of Nexus 1000v-

Step 1. Make sure that all of the VMware prerequisites have been met. ·

Step 2. Make sure that all of the Cisco Nexus 1000V prerequisites have been met. ·

Step 3. Read and follow the guidelines and limitations for the Cisco Nexus 1000V.

Step 4. Make topology decisions and gather any necessary information.

Step 5. Download the Cisco Nexus 1000V software.

Step 6. (Optional) Verify the authenticity of the Cisco Nexus 1000V image.

Step 7. Install the Virtual Supervisor Module (VSM) software from an ISO image,

OVA image, or on a Cisco Nexus Cloud Services Platform. ·

Step 8. If you installed the VSM software on a CSP, proceed to the next step. If you

installed the VSM software on a VM using an ISO or OVA image, you need to

establish the SVS connection and configure the VM startup and shutdown parameters.

Step 9. Add the VEM hosts to the Distributed Virtual Switch.

Step 10. If you want to install the VEM software on a stateless ESXi host, proceed to

the next step. Otherwise, install the VEM software using VUM, the Cisco Nexus

1000VCLI, or the VMware ESXi CLI.

 Step 11. Install the VEM software on a stateless ESXi host

11 | P a g e

3.2 Connection among Windows, Ubuntu and Switch-

IP Addresses of these systems are- 192.168.56.1 (Windows), 192.168.56.2 (Ubuntu),

192.168.56.3 (VSM)-

Fig. 3.1 Connection between Windows and Ubuntu

Fig. 3.2 Connection between Ubuntu and VSM

12 | P a g e

Fig. 3.3 System Configuration in VMware

3.3 Port Profiles-

In Virtual switches Port Profiles are used to configure interfaces. It can be assigned to

multiple interfaces to give them all the same configuration. If we make any changes

to port profile, it directly propagated to the configuration of any interface assigned to

it.

Same as any port works in a network device, Port profile also works for VMware

vCenter server. In a port profile we can assign multiple vEthernet or Ethernet

interfaces, because of the following reasons:

 Setting up a port configuration on the

basis of policy.

 Large number of ports comes across a

single policy.

 It supports both vEthernet and Ethernet.

13 | P a g e

3.4 User-

The API exposes methods that are user-related and that can be manipulated by users

only.

3.5 VxLAN-

A VxLAN(Virtual Extensible LAN) creates LAN components by using MAC-in-

UDP Encapsulation. Whenever an encapsulated MAC frames are sent over the

network, each VEM is assigned an IP address which is used as the source IP address.

A VxLAN ID is assigned within a port profile configuration of the Vnic, when the

VM connects to the network. It also supports 3 different mode of operation as-

Broadcast, MAC distribution transfer and Multicast.

3.6 Curl Commands-

Curl commands allow us to GET / POST / PUT / DELETE data from any website

from the command line itself. This is the best way test REST API. It gives the

information of any kind of extension or protocols like HTTP,HTTPS, TELNET,

FTP, SSH etc by transferring from or to a server. The REST API plug-in supports the

JavaScript Object Notation (JSON) format for a response.

Some of the commands that we have used in our project are-

>>curl [options] [http://]

I. JSON and XML response through CURL-

 curl -u <user>:<password> <vsm-ip>/api/n1k/port-profile -H

 "Accept:application/json”

14 | P a g e

Fig 3.4 JSON Response through CURL

The REST API plug-in also supports the XML format for a response. For XML response,

specify Accept: application/xml in the HTTP header as:

Fig 3.5 XML response using CURL

15 | P a g e

II. Port-Profile-

 GET method to receive the Port-Profile information using CURL-

curl -u admin:password 192.168.56.3/api/n1k/port-profile/profile1 –H "Accept:

application/json

Fig. 3.6 GET response using CURL

 POST method to create Port-Profile using CURL-

curl -X POST -u admin:password 192.168.56.3/api/n1k/port-profile -d '{"name" :

"profile1", "switchportMode" : "access", "shutdown" : false}

Fig.3.7 POST response using CURL

16 | P a g e

 DELETE method to remove Port-Profile using CURL:

curl -u admin:password –X DELETE 192.168.56.3/api/port-profile/profile1

Fig. 3.8 DELETE Response using CURL

III. User-

 POST method to add new user information using CURL-

Fig. 3.9 Adding a new user using CURL

17 | P a g e

 DELETE method to remove user using CURL:

Fig. 3.10 DELETE user using CURL

18 | P a g e

Chapter 4. Language Used

4.1 Python-

Python is a high level, general purpose and integrated language. It was designed by

Guido van Rossum and first released in 1991. It follows OOPs approach and allows

user to create logical code for large and small python based projects.

Python is a procedural object oriented language and is called dynamically-typed

and garbage-collected. Due to its libraries it is often called „battery-included.

Python 2.0 released in 2000, introduced features like list comprehensions and a

garbage collection system which is capable of collecting reference cycles. Python 3.0

which is released in 2008, was a major revision of the language that is not completely

backward-compatible, and much Python 2 code does not run unmodified on Python

3.

Libraries used:

 1. Requests

It is a standard library for making HTTP requests in Python. It is a very beautiful

command, so that user can focus on interacting with services and consuming data

in the application.

To use the package we first installed the package using the command

>>Pip install requests

Once, the library is installed we can use it use it.

https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)
https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)
https://en.wikipedia.org/wiki/Backward_compatibility
https://en.wikipedia.org/wiki/Backward_compatibility

19 | P a g e

>>Import requests

2. JSON-

JSON, is widely used for information exchange. It is used to pass the data around. It is

used to deal with object literal syntax and it stands for Java Script Object Notation. It is

easily readable.

To use the package first we have to install the package

>>pip install json

To use this command-

>>import json

3. Xmltodict-

It is a very convenient library which gives a feeling that one is working with XML while

actually executing commands in JSON.

To install the package, command that were used:

>>pip install xmltodict

To use this command-

>>import xmltodict

20 | P a g e

Fig.4.1 Hardware layout of the system

21 | P a g e

Chapter 5. Results

5.1 Python API Response

JSON Format-

The REST API plug-in supports the JavaScript Object Notation (JSON) format for a

response. To specify the JSON response format through Python API, use the

following:

The following output shows the response received in the JSON format:

Fig 5.1 JSON response using Python API

XML Format-

The REST API plug-in supports the XML format for a response. For XML response,

specify Accept: application/xml in the HTTP header

To specify the XML response format through Python

The following output shows the response received in the XML format

22 | P a g e

Fig 5.2 XML Response using Python API

5.2 Supported HTTP Methods-

I. Port-Profile-

 GET Method-

The GET method lists the entities in a specific resource

The following is an output of the GET method in Python API:

.

Fig 5.3 GET Method Using Python API

23 | P a g e

 POST Method-

 The POST method creates a new instance of a resource or updates the identified

instance.

 The following is an output of the POST method in Python API:

Fig 5.4 POST Port-Profile Method using Python API

 DELETE Method-

The DELETE method deletes the specified instance.

The following is an output of the DELETE method in Python:

24 | P a g e

Fig 5.5 DELETE Port-Profile Method using Python API

II. User-

POST Method-

User can be added through python API. The expiration and the role can also

be specified for the user in the network switch. The following is the output for

adding the user-

Fig. 5.6 Adding User using Python API

25 | P a g e

DELETE method:

Fig. 5.7 Deleting User using Python API

III. VLAN-

POST Method- It creates new VLANs to the users.

Fig. 5.8 Creating a new VLAN using Python API

26 | P a g e

DELETE Method- It removes specific VLANs that a user wants.

Fig. 5.9 Deleting VLAN using Python API

27 | P a g e

Chapter 6. Conclusion and Future Scope

6.1 Conclusion-

This Python API has the job of connecting the operating system to the network switches

.The project work proposes a new aspect and approach to fasten the procedure of

accessing the networks switches.

6.2 Future Scope-

In future many Python scripts can be developed for Cisco Nexus 1000v with capabilities

of:

 Run a script to verify configuration on switch

 boot-up. Back up a configuration.

 Proactive congestion management by monitoring and responding to buffer

utilization characteristics.

 Ability to perform a job at a specific time interval.

 Programmatic access to the switch command line interface (CLI) to perform

various tasks.

28 | P a g e

Chapter 7. References

 https://www.cisco.com/c/dam/global/en_sg/trainingevents/datacentertechbyte/asse

ts/pdfs/n1000_datasheet.pdf

 https://www.cisco.com/c/en/us/products/collateral/switches/nexus-7000-series-

switches/fundamentals-of-vxlan.html

 https://www.cisco.com/c/en/us/support/switches/nexus-1000v-switch-vmware-

vsphere/products-installation-and-configuration-guides-list.html

 https://www.cisco.com/c/en/us/support/switches/nexus-1000v-switch-vmware-

vsphere/products-installation-guides-list.html

 https://www.youtube.com/watch?v=pgksWMUBmcI

https://www.cisco.com/c/dam/global/en_sg/trainingevents/datacentertechbyte/assets/pdfs/n1000_datasheet.pdf
https://www.cisco.com/c/dam/global/en_sg/trainingevents/datacentertechbyte/assets/pdfs/n1000_datasheet.pdf
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-7000-series-switches/fundamentals-of-vxlan.html
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-7000-series-switches/fundamentals-of-vxlan.html
https://www.cisco.com/c/en/us/support/switches/nexus-1000v-switch-vmware-vsphere/products-installation-and-configuration-guides-list.html
https://www.cisco.com/c/en/us/support/switches/nexus-1000v-switch-vmware-vsphere/products-installation-and-configuration-guides-list.html
https://www.cisco.com/c/en/us/support/switches/nexus-1000v-switch-vmware-vsphere/products-installation-guides-list.html
https://www.cisco.com/c/en/us/support/switches/nexus-1000v-switch-vmware-vsphere/products-installation-guides-list.html
https://www.youtube.com/watch?v=pgksWMUBmcI

29 | P a g e

Chapter 8. Appendices

8.1 Port-Profile

1. create port-profile

2. Get port-profile

30 | P a g e

3. Delete port-profile

8.2 User

1. Create user

31 | P a g e

2. Delete user

8.3 VLAN

1. Create VLAN

32 | P a g e

2. Delete VLAN

