
Pure Random Number Generator

Project Report submitted in partial fulfillment of the requirement for the

degree of Bachelor of Technology.

in

Computer Science and Engineering/Information Technology

By

Abhijit Srivastava (131307)

under the Supervision of

Dr. Yashwant Singh

to

Department of Computer Science & Engineering and Information

Technology

Jaypee University of Information Technology Waknaghat,

Solan-173234, Himachal Pradesh

ii

Candidate’s Declaration

" I hereby declare that the work presented in this report entitled “Pure Random

Number Generator” in partial fulfillment of the requirements for the award of

the degree of Bachelor of Technology in Computer Science and

Engineering submitted in the department of Computer Science & Engineering

and Information Technology, Jaypee University of Information Technology

Waknaghat is an authentic record of my own work carried out over a period

from August 2016 to May 2017 under the supervision of Dr. Yashwant Singh,

Associate Professor Computer Science Department. The matter embodied in

the report has not been submitted for the award of any other degree or

diploma."

Abhijit Srivastava

131307

This is to certify that the above statement made by the candidate is true to the

best of my knowledge.

Dr. Yashwant Singh Associate Professor

Department of Computer Science

Dated:

iii

 Acknowledgement

I take this opportunity to express my profound gratitude and deep regards to my guide Mr.

Yashwant Singh for his exemplary guidance, monitoring and constant encouragement throughout

the course of this project. The blessing, help and guidance given by his time to time shall carry

me a long way in the journey of life on which I am about to embark.

The in-time facilities provided by the Computer Science department throughout the project

development are also equally acknowledgeable.

At the end I would like to express my sincere thanks to all my friends and others who helped me

directly or indirectly during this project work.

Date: April 30th, 2017 Abhijit Srivastava

 131307

iv

Table of Contents

Serial
Number

Topics
Page

Numbers

1 Chapter-1. Introduction 1

2 1.1 About Random Number Generators 2

2 1.1.1 Random Number Generators (RNGs) 2

3 1.1.2 Pseudo-Random Number Generators (PRNGs) 3

4 1.1.3 True Random Number Generators (TRNGs) 5

5 1.1.4 Cascade Construction RNGs 6

6 1.2 Problem Statement 7

7 1.3 Objective 7

8 1.4 Methodology 7

9 2. Literature Survey 8

10 2.1. Intel® Digital Random Number Generator (DRNG) 8

11 2.2. Quantis Random Number Generator 13

12
2.3. True Random Number Generator With a Metastability-
Based Quality Control

15

13
2.4. True Random Number Generator based on compact
chaotic oscillator

15

14
2.5. A truly random number generator based on thermal
noise

15

15
2.6. Simple true random number generator for any
semiconductor technology

16

16
2.7. True Random Number Generator Based on ROPUF
Circuit

16

17
2.8. A True Random Number Generator algorithm from
digital camera image noise for varying lighting conditions

16

18
2.9 The Mersenne Twister is a pseudorandom number
generator

17

19 2.10 Yarrow algorithm 18

23 Chapter-3 System Development 22

24 3.1 Broad-Scale Distribution of Working Process 22

25 3.2 Modular Distribution 23

26
3.2.1 MODULE 1: Android Application for Sensor Data
Collection

23

v

27 3.2.2 MODULE 2: Recording Data Using SQLite 24

28
3.2.3 MODULE 3: Server-Side Scripting for extraction of
meaningful information.

25

29 3.2.4 MODULE 4: Entropy pool generator 27

30 3.2.5 MODULE 5: Range optimization 27

31 Chapter-4 Performance Annalysis 29

32 4.1 Algorithmic Complexity 29

33 4.2 Resource Utilization at runtime 29

39 4.3 Applications Contributions 30

40 4.3.1 Caesar Cipher 30

41 4.3.2 Games 32

42 4.3.3 Science 32

34 Chapter-5 Conclusion 34

35 5.1 Conclusions 34

43 5.2 References 35

vi

List of Figures, Graphs and tables

S. No. Tables, Figures and Graphs
Page
Number

1 Table 1.1: Comparison between PRNG and TRNG 2

2 Figure 1 : Digital Random Generator Overview 9

3 Figure 2 : Digital Random Generator Component Architecture 10

4 Figure 3 : Robustness and Self-Validation 12

5 Figure 4 : Quantium based Random Number Generator 13

6 Figure 5 : Android code snippit 23

7 Figure 6 : Android App Live Graph 24

8 Figure 7 : Android App UI 24

9 Figure 8 : Sampling Database Screenshot 25

10 Figure 9 : Screenshot of range optimizer UI 28

11 Figure 10 : Resource Utilization at Runtime 29

12
Graph 1 : Raw sensor data of Game Rotation Vector [While
Climbing Stairs] 25

13
Graph 2 : Raw sensor data of GeoMagnetic Rotation Vector
[While Walking] 26

14
Graph 3 : Processed data of Game Rotation Vector [While
Climbing Stairs] 26

15
Graph 4 : Processed sensor data of GeoMagnetic Rotation
Vector [While Walking] 27

1

Chapter-1. Introduction

 As we all know computer based "von Neumann Architecture" are designed to achieve

100% efficiency, i.e. Generation of any random data states that the computation went wrong.

That is why for the generation of random numbers, programmers and mathematicians have

been designing complex algorithms with a large period for the generation of pseudo-random

numbers.

 The word ‘pseudo’ means the pseudo-random numbers are not purely random in a

way you might expect, at least not if it is compared to dice rolls or lottery tickets. Essentially,

pseudo-random numbers generators are algorithms that use some kind of mathematical

formula or just a pre-calculated tables to generate sequences of numbers that appear to be

randomly generated. An example of a pseudo-random numbers generator can be the linear

congruential methodology.

 In comparison with pseudo-random numbers generators, true random numbers

generators take into account randomness from some physical phenomena and introduce its

reading into the computer. You can imagine an example of a trivial die connected to a

computer, but generally, people use a phenomenon that is simple to connect to the computer

as compared to a die. The physical phenomenon can be very general, like the slight variations

in the movement of mouse or time lag between keystrokes while typing on the keyboard.

But, you should be careful about which source you are choosing. For instance, it can be

difficult to use keystrokes in this fashion, the reason being keystrokes are often buffered into

the computer's operating system memory, that means several keystrokes are collected into the

buffer before they can be sent to the program waiting for data to process. From the side of

program waiting for the keystroke data, it might seem as all the keys are pressed almost at the

same time, and there will now not be a lot of difference there after all.

2

The table below provides a characteristic comparison between the Pseudo-Random Number

Generators and Pure-Random Number Generators.

Table 1.1: Comparison between PRNG and TRNG

Characteristic

Features
PRNG TRNG

Efficiency of Generation Excellent efficiency Poor efficiency

Determinism of Numbers Deterministic in nature Nondeterministic in nature

Periodicity in data Periodic in nature Aperiodic in nature

 These features thus make True-Random Number Generators suitable for roughly the

set of applications that Pseudo-Random Number Generators are not suitable for, for instance

data encryption, games, and gambling. Although, the poor generation efficiency and

nondeterministic nature of True-Random Number Generators make them less suitable for

simulation and modeling type of applications, which often needs more data than it is feasible

to computes with any True-Random Number Generator.

1.1 About Random Number Generators

This section explains the basic concepts behind the random number generation.

1.1.1 Random Number Generators (RNGs)

 A random Number Generators is a software or hardware of any type that can produce

a sequence of numbers between any interval [min, max] such that values appear are pure not

deterministic in nature .

 Each and every new value has to be mathematically independent of any previous

value or data. I.e. given a computed sequence of numbers, a particular data is not more likely

3

to follow after it as the next value of the Random Number Generator's random sequence. The

overall series of numbers chosen between the interval shall be uniformly distributed. In other

words, all the numbers(or values) should be equally likely and none should be more

"popular" or occur more occasionally within the Random Number Generator’s output than

the others.

 The sequence should also be unpredictable in nature. An attacker should not be able

guess some or all of the numbers in a computed sequence. Predictability can take some form

of forward prediction and backtracking.

 As the computing systems are deterministic by nature, producing quality random

numbers that have these features is much more tougher than it might look. Taking the

second's value from the computer system clock, a general method, may seem random, but the

method of process scheduling and other system effects may lead in some values occurring far

more occasionally than the others. External data sources as the interval between keystrokes

or movement of the mouse may likewise, upon extensive analysis, show that numbers do not

distribute evenly across the interval of all possible. Beyond these characteristics, some other

desirable random number generator features include:

• The random number generator should be quick in computing a value and can cater a

large number of requests in a short interval of time.

• The random number generator should secure against attackers.

1.1.2 Pseudo-Random Number Generators (PRNGs)

 One broadly used approach for getting good Random Number Generators statistical

behavior is to leverage statistical modeling in the creation of a Pseudo-Random Number

Generator. A Pseudo-Random Number Generators is a predictable algorithm, typically

implemented in software that generates a series of numbers that looks random. A Pseudo-

Random Number Generators needs a seed value that has to be used to set the state of the

4

given model. Once seeding is done, it can then compute a series of value that exhibit a better

statistical behavior.

Pseudo-Random Number Generators exhibit periodicity that is size dependent on its internal

state model. I.e., after computing a long series of values, all variations in the internal state

will be exhausted and the series of values to follow shall reoccur an earlier series. The best

Pseudo-Random Number Generators algorithms available today, too large and complex that

this drawback could practically be unseen. For example, the Mersenne Twister MT19937

Pseudo-Random Number Generator has 32-bit word length has a high periodicity of 219937-

1.A key feature of all Pseudo-Random Number Generators is that they are predictable. I.e,

given a certain seed value, the same Pseudo-Random Number Generators will always

produce the exact same series of "random" values. The reason behind this is that, a Pseudo-

Random Number Generators is computing the successive value based upon a certain internal

state and a pre-defined algorithm. So, while a generated series of numbers exhibits the

mathematical properties of randomness, the cumulative behavior of the Pseudo-Random

Number Generators is entirely deterministic.

In situations, the deterministic nature of Pseudo-Random Number Generators is an

advantage. For instance, in some simulation and experimental, researchers would may want

to examine the outcome of different approaches using the same series of input values.

Pseudo-Random Number Generators provide a way to compute a large series of random data

inputs that are repeatable by using the same Pseudo-Random Number Generator, seeded with

the repeated value.

In other situations, however, this determinism is highly unwanted. for instance a server

application that computes random numbers that are to be used as cryptographic keys in

information exchanges among client applications over secure communication network. An

attacker who knows the Pseudo-Random Number Generator in use and also knew the seed

value would quickly be able to guess each and every key that is being generated by the

Pseudo-Random Number Generator. Even with a highly sophisticated seeding algorithms, an

attacker who has the information about the Pseudo-Random Number Generator in use can

5

deduce the state of the Pseudo-Random Number Generator by observing the series of

generated values.

Pseudo-Random NumberTGeneratorsTresearchersThaveTresearchedTtoTsolveTthisTproblemTby

creatingTwhatTareTknownTasTCryptographicallyTSecureTPseudo-RandomTNumber Generator or

theTCSPRNGs.TManyTcomplexTtechniquesThaveTbeenTdesignedTinTthisTfield, for instance,

applyingTaTcryptographicThashTtoTaTseriesTofTconsecutiveTintegerTnumbers,Tusing a block cipher

toTencryptTaTseriesTofTconsecutiveTintegerTnumbers,TandTXORingTa stream of Pseudo-Random

NumberTGeneratorTgeneratedTnumbersTwithTplaintext.TSuchTmethodsTimprove the problem of

inferringTaTPseudo-RandomTNumberTGeneratorTandTitsTstateTbyTexponentiallyTTincreasing its

computational complexity, but the final values may or may not have the correct statistical

features needed for a good random number generator. Further, an attacker can find any

deterministic algorithm by a number of methods (e.g., memory attacks, sophisticated, a

disgruntled employee, disassemblers etc). Even more simpler, attackers can find or infer

Pseudo-Random Number Generator seeding by narrowing down its range of possible

numbers or by surfing the memory in any manner. Once the algorithm in use and its seed

values are known, an attacker is be able to guess each and every random number computed,

both in past as well as in future.

1.1.3 True Random Number Generators (TRNGs)

For situations where the predictable nature of Pseudo-Random Number Generators is a

problem to be avoided (for example, computer security and gaming), a better way is that of

True Random Number Generators.

Instead of implementing a any mathematical model to deterministically compute numbers

that look random and have the correct statistical features, a True Random Number Generators

extracts entropy from any physical phenomenon and then uses the values to generate random

values. The physical phenomenon is also called an entropy source and can be selected among

a wide range of physical phenomenon that are naturally available, or is made usable, to the

computing device using the True Random Number Generators. For example, one can try to

6

use the time interval between users consecutive keystrokes or movement of mouse as an

entropy source. As stated earlier, this method is crude in practice and resulting value series

usually fail to meet desired features. Selection of an entropy source in a True Random

Number Generators is a key problem facing True Random Number Generators designers.

Beyond desired features, True Random Number Generators should be scalable and fast. This

poses a serious challenge for many True Random Number Generators, the reason for that is

sampling an entropy source that is external to the computing device usually needs device I/O

and large delay relative to the computing efficiency of today's computers. Thus, sampling

any entropy source in True Random Number Generators is slow with respect to the

computation needed by a Pseudo Random Number Generators to simply compute its

successive random value. Unlike Pseudo Random Number Generators, however, True

Random Number Generators are not predictable. That is, a True Random Number Generators

need not be seeded, and its selection of random numbers in any given series is almost

unpredictable. An attacker cannot observe of a particular random value series to guess

successive values in an efficient way. This feature also implies that True Random Number

Generators have no periodicity. Although repeats in the random values are possible, they

cannot be guessed in any manner.

1.1.4 Cascade Construction RNGs

A general method implemented by modern operating systems and cryptographic algorithms

is to take input values from an entropy source to create pool of entropy. This entropy pool is

used to supply non-deterministic random values that regularly seeds a Cryptographically

Secure Pseudo Random Number Generators. This Cryptographically Secure Pseudo Random

Number Generators generates cryptographically secure random values that appear truly

random.

The main advantage of this method is performance efficiency. It was previously stated that

sampling of any entropy source is usually slow and generally additional waiting for a real-

time sampling work to transpire. In comparison, Cryptographically Secure Pseudo Random

7

Number Generators computations are efficient since they are computation-based and

sidelines entropy source delays. This method usually leads to improved performance: a slow

entropy source periodically sending a fast Cryptographically Secure Pseudo Random Number

Generators capable of computing a large number of random numbers from a single seed

value.

1.2 Problem Statement

 As discussed in introduction the pseudo-random number generation is not a full proof

method of generation of random number because of its property of reverse engineering

ability. Random numbers generators should not use a seed value and generated a number

which cannot be predicted at all costs.

1.3 Objective

1. Study of the existing Random number generators.

2. To design a "Pure Random Number Generator ".

3. To study a performance analysis of designed "Pure Random Number Generator ".

1.4 Methodology

 The data is first collected from a physical phenomenon probably non periodic and

storing it as entropy poll. This entropy poll is then accessed by an algorithm to generate

random numbers as per requirements of a system of a user.

1.5 Organization

 Chapter 2 deals with the first objective of study of existing Random number generator

and finding a comparative statistics of advantages and drawbacks. Chapter 3 shows the

system development of pure random number generated designed in the project. Chapter 4

deals with the performance analysis and applications of Pure Random Number Generator.

Chapter 5 defines the final conclusion followed by Appendix.

8

Chapter-2. Literature Survey

2.1. Intel® Digital Random Number Generator (DRNG)

The "Digital Random Number Generator" or DRNG is an efficient and innovative hardware

approach for generation of high-quality, high-performance entropy and random number. It

comprises of the new Intel 64 Architecture instructions the 'RDRAND' and the 'RDSEED'

and an underlying Digital Random Number Generator hardware implementation.

In context to the Random Number Generator taxonomy stated above, the Random Number

Generator follows the cascade construction Value Generator model, using a processor

resident entropy source to periodically seed a hardware-implemented Cryptographically

Secure Pseudo Random Number Generators. Unlike the software methods, it includes a high-

quality entropy source usage that can be sampled quickly enough to repeatedly seed the

Cryptographically Secure Pseudo Random Number Generators with high-quality entropy

values. It also represents a self-stationed hardware module that is isolated from any king of

software attacks on its internal state. This results in a solution that achieves Random Number

Generator objectives with considerable features.

This method of digital random number computation is not same in its process with respect to

true random number computation in that it is implemented into the processor and can be

accessed using Intel 64 instruction set. The response times are comparable to those of

competing Pseudo-Random Number Generators approaches implemented in any software.

This method is scalable enough for the demanding applications to use it as an extensive

source of random values and not merely a high quality seed for a software-based Pseudo-

Random Number Generators. Software running at all privilege levels can access random

values through the instruction set, ignoring any intermediate software or libraries.

 Applications for the Digital Random Number Generator

Information security is a key application that utilizes the DRNG. Cryptographic protocols

rely on RNGs for generating keys and fresh session values (e.g., a nonce) to prevent replay

attacks. In fact, a cryptographic protocol may have considerable robustness but suffer from

widespread attack due to weak key generation methods underlying it (e.g., the

Debian*/OpenSSL* fiasco (3)). The DRNG can be used to fix this weakness, thus

significantly increasing cryptographic robustness.

9

Closely related are government and industry applications. Due to information sensitivity,

many such applications must demonstrate their compliance with security standards like

FISMA,THIPPA,TPCIAA,Tetc.TRDRANDThasTbeenTengineeredTtoTmeetTexisting security

standardsTlikeTFIPST140-2TandTNISTTSP800-90TandTthusTprovidesTanTunderlyingTRNG solution

thatTcanTbeTleveragedTinTdemonstratingTcomplianceTwithTinformation security standards.

Other uses of the D-Random Number Generator include:

• Communication protocols

• Bulk entropyTapplicationsTlikeTsecureTdiskTwipingTorTdocumentTshredding

• Monte Carlo simulations and scientific computing

• Gaming applications

• ProtectingTonlineTservicesTagainstTRandomTNumberTGeneratorTattacks

• SeedingTsoftware-basedTPseudo-RandomTNumberTGeneratorsTofTarbitrary width

Digital Random Number Generator Overview

This section, describes in

some detail the components

of the DRNG using the

"RDRAND" and "RDSEED"

instructions and their

interaction.

 Processor View: Figure

provides a high-level

schematic of the RDRAND

and RDSEED Random

Number Generators. As

shown, the DRNG appears as

a hardware module on the

processor. An interconnect

bus connects it with each

core.
Figure 1 : Digital Random Generator Overview

10

The RDRANDTandTRDSEEDTinstructionsT(detailedTinTsectionT4)TareThandled by microcode on

eachTcore.TThisTincludesTanTRNGTmicrocodeTmoduleTthatThandlesTinteractions with the DRNG

hardware module on the processor.

Component Architecture:TTAsTshownTinTfigureTtheTDRNGTcanTbeTthoughtTofTasTthree logical

componentsTformingTanTasynchronousTproductionTpipeline:TanTentropyTsourceT(ES) that

producesTrandomTbitsTfromTaTnondeterministicThardwareTprocessTat around 3 Giga bits per sec,

a conditionerTthatTusesTAESTinTCBC-MACTmodeTtoTdistillTtheTentropy into high-quality

nondeterministic random numbers, and two parallel outputs:

1. The random bit generator which is seeded from the conditioner.

2. AnTenhanced,TnondeterministicTrandomTnumberTgeneratorTthatTprovides seeds from the

entropy conditioner.

Figure 2 : Digital Random Generator Component Architecture

11

NoteTthatTtheTconditionerTdoesTnotTsendTtheTTTsameTseedTvaluesTtoTTTTTbothTtheTTTTTDRBG and the

ENRNG. ThisTpathwayTcanTbeTthoughtTofTasTanTalternatingTswitch,TwithToneTseed going to the

DRGBTandTtheTnextTseedTgoingTtoTtheTTTTENRNG.TTTTTThisTconstructionTTTTTTensuresTthatTa software

applicationTcanTneverTobtainTtheTvalueTusedTtoTseedTtheTDRBG,TnorTcanTitTinitiate a Denial of

ServiceTattackTagainstTtheTDRBGTthroughTrepeatedTexecutionsTofTtheTRDSEEDTinstruction.

The conditionerTcanTbeTequatedTtoTtheTentropyTpoolTinTtheTcascadeTconstructionTRNG described

previously.THowever,TTsinceTTitTisTfedTbyTaTTThigh-quality,TTThigh-speed, continuous stream of

entropy thatTisTfedTfasterTthanTdownstreamTprocessesTcanTconsume,TitTdoes not need to maintain

an entropy pool.TInstead,TitTisTalwaysTconditioningTfreshTentropyTindependent of past and

future entropy.

The final two stages are:

1. A hardware CSPRNGTthatTisTbasedTonTAESTinTCTRTmodeTandTisTcompliantTwithTSP800-90A.

In SP800-90ATterminology,TTTthisTisTTTreferredTtoTasTTTaTDRBG,TaTTTtermTTTusedTTthroughout the

remainder of this document.

2. An ENRNG that is compliant with SP800-90B and C.

Entropy Source (ES)

TheTTTall-digitalTTTEntropyTTSourceTTalsoTTTknownTTTasTTTaTTTnon-deterministicTTrandom bit generator

(NRBG),TprovidesTaTserialTstreamTofTentropicTdataTinTtheTformTofTzeroes and ones.

TheTESTasynchronouslyTrunsTonTaTcircuitTwhichTisTself-timedTandTusesTthermalTnoiseTtoToutput a

randomTstreamTTTofTTTTbitsTatTTTTtheTTTrateTofTT3TTGigaTTHertz. TTheTEntropyTSourceTdoesTnotTneedTany

dedicatedTexternalTpowerTsupply.TTheTEntropyTSourceTisTdesignedTtoTfunctionTTproperlyTTover a

wideTrangeTofToperatingTconditions,TexceedingTtheTnormalToperating range of the processor.

BitsTfromTtheTESTareTpassedTtoTtheTconditionerTforTfurtherTprocessing.

The Deterministic Random Bit Generator

The primaryTroleTofTthisTgeneratorTisTtoTspreadTTaTconditionedTentropyTsampleTintoTa large set of

randomTTTvalues,TthusTincreasingTtheTamountTofTTTrandomTTTnumbersTavailableTTTbyTT the hardware

module. ThisTisTdoneTbyTemployingTaTstandards-compliantTDRBGTandTcontinuouslyTreseeding

it with the conditioned entropy samples.

12

The DRBGTchosenTforTthisTfunctionTisTtheTCTR_DRBGTdefinedTinTsectionT10.2.1Tof NIST SP

800-90AT(6),TusingTtheTAESTblockTcipher.TValuesTthatTareTproducedTfillTaTFIFO output buffer

thatTisTthenTusedTinTrespondingTtoTRDRANDTrequestsTforTrandomTnumbers.

TheTDRBGTautonomouslyTdecidesTwhenTitTneedsTtoTbeTreseededTtoTrefresh the random number

poolTinTtheTbufferTandTisTbothTunpredictableTandTtransparentTtoTtheTRDRAND caller. An upper

boundTofT511T128-bitTsamplesTwillTbeTgeneratedTperTseed.TThatTis,TnoTmoreTthan 511*2=1022

sequentialTDRNGTrandomTnumbersTwillTbeTgeneratedTfromTtheTsameTseedTvalue.

Enhanced Non-deterministic Random Number Generator

The roleTofTtheTenhancedTnon-deterministicTrandomTnumberTgeneratorTisTtoTmake conditioned

entropy samples directly available to software for use as seeds to other software-based

DRBGs.

ValuesTcomingToutTofTtheTENRNGThaveTmultiplicativeTbrute-forceprediction resistance, which

meansTthatTsamplesTcanTbeTconcatenatedTandTtheTbrute-forceTprediction resistance will scale

withTTthem.TWhenTtwoT64-bitTsamplesTareTconcatenatedTtogether, the resultingT128-bit value

willThaveT128TbitsTofTbrute-forceTpredictionTresistance (264 * 264 = 2128). This operation can

beTrepeatedTTindefinitelyTTandTTcanTbeTTusedTtoTeasilyTTproduceTTrandomTseedsTTof arbitrary size.

BecauseTofTthisTproperty,TtheseTvaluesTcanTbeTusedTtoTseedTaTDRBG of any size.

Robustness and Self-Validation

ToTensureTtheTTDRNGTTfunctionsTTwithTTaTThighTTdegreeTTofTTreliabilityTandTTrobustness,Tvalidation

featuresTThaveTTbeenTTTincludedTTthatTToperateTinTanTTongoingTTmannerTTat system startup. These

includeTtheTDRNGTOnlineTHealthTTestsT(OHTs)TandTBuilt-InTSelfTTests (BISTs), respectively.

Both are shown.

Figure 3 : Robustness and Self-Validation

13

Online Health Tests (OHTs)

OnlineTHealthTTestsT(OHTs)TareTdesignedTtoTmeasureTtheTqualityTof entropy generated by the

ESTusingTbothTperTsampleTandTslidingTwindowTstatisticalTtestsTinThardware.

PerTsampleTtestsTcompareTbitTpatternsTagainstTexpectedTpatternTarrivalTdistributionsTasTspecifiedT

byTaTmathematicalTmodelTofTtheTES.TAnTESTsampleTTTthatTTTfailsTTTthisTtestTis marked "unhealthy."

Using this distinction, the conditioner can ensure that at least two healthy samples are mixed

into each seed. This defends against hardware attacks that might seek to reduce the entropic

content of the ES output.

SlidingTwindowTtestsTlookTatTsampleThealthTacrossTmanyTsamplesTto verify they remain above a

required threshold.TTheTslidingTwindowTsizeTisTlargeT(65536Tbits)TandTmechanismsTensure that

the ESTisToperatingTcorrectlyToverallTbeforeTitTissuesTrandomTnumbers. In the rare event that the

DRNG failsTduringTruntime,TitTTwouldTceaseTtoTissueTrandomTnumbersTTratherTTthanTTissue poor

quality random numbers.

2.2. Quantium based Random Number Generator

 There are two primary sources of

practical quantum mechanical

randomness: thermal noise and quantum

mechanics at the sub-atomic or atomic

level. Quantum mechanics guesses that

various physical phenomena, such as the

nuclear decay of an atoms, are

fundamentally random in nature and

cannot exactly be predicted. And, as we

live at a temperature above 0 Kelvin or

the absolute zero, every single system has

slight random variation; for instance,

molecules of gasses constituting air

constantly bounce off each other in a random fashion. This randomness is one of the quantum

phenomenon and thus unpredictable.

Figure 4 : Quantium based Random Number Generator

14

Because the final state value of quantum events cannot in principle be computation, they are

the perfect standard for random number generation. Some quantum phenomena used are as

follows:

• Shot noise: A quantum noise source in electronic circuits. A simple instance can be a

photodiode biased lamp shine. Arriving photons generate noise in the implemented

circuit, according to the principle of uncertainty in quantum mechanics.

• A nuclear decay radiation source:

• Photons traveling through a semi-transparent mirror. It is a mutually exclusive

event (reflection/transmission) are detected and clubbed together as ‘0’ or ‘1’ bit to

represent values respectively.

• Signal amplification on the base of a reverse-biased transistor. The emitter of the

transistor is saturated with electrons and once in a while they will pass through the

band-gap and exit via the base of the transistor. This signal is then further amplified

using a few more transistors and the result fed into a computer to represent zeros and

ones.

• Schmitt trigger. In a degenerate optical parametric oscillator, the binary phase state

selection due to spontaneous parametric down-conversion leading to the binary phase

state selection.

First pointed out in 2001, and certified to the highest levels of entropy testing, Quantis

delivers reliable randomness at rates up to 16 Mega bits per second. It is a family of random

number generating hardware which use the random nature of quantum physics as a source of

true randomness.

The product version in existence compatible with most platforms are:

1. USB device

2. PCI Express (PCIe) board

15

2.3. True Random Number Generator Using a Metastability-Based Quality Control

 ItTisTaTtrueTrandomTnumberTgeneratorTbasedTonTmetastabilityTthatTachievesThighTTTentropy

TandTpassesTrandomnessTtests.TByTmeasuringTtheTmetastableTresolutionTtimeTtheTgeneratorTmeas

uresTtheTdegreeTofTrandomnessTregardlessTofTtheToutputTbits.TTheTsystemTcomputesTtheToriginalTr

andomTnoiseTlevelTatTtheTtimeTofTmetastabilityTandTtunesTTitselfTtoTaTchieveTaTThighTprobabilityTofT

TTTrandomness.TDynamicTcontrolTenablesTtheTsystemTtoTrespondTtoTdeterministicTnoiseTandTaTqual

ifierTmoduleTgradesTtheTindividualTmetastableTeventsTtoTproduceTaThigh-entropyTrandomTbit-

stream.

TheTgradingTmoduleTallowsTtheTuserTtoTtradeToffToutputTbitrateTwithTtheTqualityTofTtheTbitstream.

ATfullyTintegratedTtrueTrandomTnumberTgeneratorTwasTTTfabricatedTinTaT0.13TTTmomTTTbulkT CMOS

technologyTwithTanTareaTofT0.145Tmm2.

2.4. True Random Number Generator based on compact chaotic oscillator

 TrueTRandomTNumberTGeneratorT(TRNG)TbasedTonTCMOSTdesignedTcompactTdiscrete-

timeTchaoticTTToscillatorTTTisTTpresented.TTheTchaoticTTTTToscillatorTwasTdesignedTusingT3Ttransistors

TapTTcircuitTTTinTTTorderTTTtoTconstructTTTanTapproximateTTTVTshapeTcharacteristicTTTT(inverseTtentTmap

).TSimulationTofTtheTchaoticToscillatorTwasTdescribedTandTexaminedTinTtermsTofTbifurcationTdiagr

amTandTtransientTwaveformTtoTshowTthatTitThasTaTdesirableToutputTandTsuitabilityTforTTRNG.TThe

TTRNGThasTbeenTusedTaTchaoticToscillatorTtoTgenerateTaTrandomTsignalTandTincreaseTtheTrandom-

nessTofTtheToutputTsignalTthroughTaTdualToscillatorTsamplingTTTmethodTandTXOR.TTheTcircuitTwas

TdesignedTandTsimulatedTinT0.18μmTCMOSTtechnologyTwithT1.8TvoltageTsupply.TFurthermore,Tit

TwasTtestedTtoTbeTfunctionalTforToutputTbitTrateT23TMbpsTandTpassedTallTtestTmethodsTinTNISTTsuit

Tstandard.TTheTproposedTTRNGTexposesTaTpotentialTalternativeTinTbothTcompactTandTrobustTrand

omTbitTsequenceTthatTsuitableTtoTvariousTotherTapplicationsTinTsecurity.

2.5. A truly random number generator based on thermal noise

 ATsimpleTcircuitTtoTgenerateTtrulyTrandomTnumbers,TwhichTisTbasedTonTtheTthermalTnoise

TofTtheTresistor,TisTpresented,TasTwellTasTsomeTTTTsimulationTresults.TTTTTheTcircuitTcanTbeTfabricated

using standard CMOS process.

16

2.6. SimpleTtrueTrandomTnumberTgeneratorTforTanyTsemiconductorTtechnology

 TrueTrandomTnumberTgeneratorsT(TRNGs)TareTneededTinTcryptographyTforTkeyTgenerati

on,TinTchallengeTresponseTauthenticationTproceduresTandTforTcountermeasuresTagainstTpowerTan

alysisTattacks.TSuchTtrueTrandomnessTrequiresTutilizingTrandomTphysicalThardwareTeffects.TItTTisT

theTgoalTtoTmakeTtheTTRNGTusableTforTdifferentTsemiconductorTTTtechnologies.TThisTapproachTis

TbasedTonTringToscillatorsTwithTmultipleTtapsTTTTinTcombinationTwithTaTsimpleTpostTTTprocessingTby

T exclusiveTORTTTTambivalenceT(XOR)TTTTcompression.TVerificationsTTTwithTaTtestTchipTandTseveralT

FPGATimplementationsTTTTTshowedTthatTstandardTdigitalTTTTlibraryTelementsTandTtheTdigitalTdesign

T flowTcanTbeTusedTwithoutTanyTconstraintsTforTTTTcompilationTTTandTspecialTlayoutTrules.TATproperT

choiceTofTsamplingTfrequencyTandTcompressionTTTcoefficientTensuresTaTrandomTTTToutputTwithTanT

extremelyTlowTbiasTforTdifferentTtechnologiesTwhichTTTcanTbeTcheckedTonlineTeasily.TItTwasTshow

nTthatTforTpassingTtheTTTonlineTtestTwithTaTTTTgivenTbiasTlimitTtheTgeneratedTrandomTdataTpassesTthe

T statistical tests.

2.7. TRNG Based on ROPUF Circuit

TheTmethodTofTgeneratingTtrueTrandomTnumbersTutilizingTtheTcircuitTprimarilyTdesignedTasTPUF

TbasedTonTTTTringTTTToscillators.TTheTgoalTTTisTTTtoTproveTthatTitTisTpossibleTTTTtoTdesignTtheTTTTuniversalT

cryptosystem,TthatTcanTbeTusedTforTvariousTapplicationsTtheTPUFTcanTbeTutilizedTforTasymmetricT

cryptographyTandTgeneratingTasymmetricTkeys,TTTTTRNGTforTsymmetricTcryptography,Tnonce'sT

and salts.

2.8. A TRNG algorithm from digital camera image noise for varying lighting conditions

 ThisTTrueTRandomTNumberTGeneratorT(TRNG)TusingTtheTimagesTtakenTbyTtheTwebTorT

mobileTphoneTcameras.TTheTthreeTRGBTcolorTchannelsTtoTobtainTtheTrandomTnumbersTwhereasT

previousTstudiesTusedTonlyTone.TTheTalgorithmTexcludesTeachTpixel'sTsaturatedTvaluesTtoTgetTitsT

unbiasedTbits.TAnTadditionalTtransposingToperationTshufflesTtheTrawTsequenceTtoTachieveTbetter

randomness.

17

TheTfinalTsequenceTpassesTallTofTtheTNISTTrandomnessTtests.TTheTalgorithmTinvolvesTveryTfewT

calculationsTandTisTespeciallyTsuitableTforTsmartphones.TWithTmodernTmobileTcameras,TitTcanT

workTonTtheTgoTandTachieveTaTfastTbitTrate.TWithTreadilyTTTTavailableTcommodityThardwareTwithT

noThardwareTchanges,TweTobserveTaTrandomTnumberTgenerateTaTrateTofT60TMbps.

2.9 The Mersenne Twister

TheTMersenneTTwisterTisTaTTTTpseudoTTTrandomTnumberTTTTgeneratorT(PRNG).TItTisTbyTfarTtheTmostT

widelyTusedTTTTgeneralTTTTpurposeTPRNG.TItsTnameTTTTderivesTfromTtheTfactTthatTitsTperiodTlengthTis

T chosen Tto be a Mersenne prime.

TheTMersenneTTwisterTwasTdevelopedTinT1997TbyTMakotoTMatsumotoTandTTakujiTNishimura.TIt

TwasTdesignedTspecificallyTtoTTTTrectifyTmostTofTtheTTTTflawsTfoundTinTolderTPRNGs.TItTwasTtheTfirst

T PRNGTtoTprovideTfastTgenerationTofThigh-qualityTpseudorandomTintegers.

TheTmostTcommonlyTusedTversionTofTtheTMersenneTTwisterTalgorithmTisTbasedTonTtheTMersenne

TprimeT219937−1.TTheTstandardTimplementationTofTthat,TMT19937,TusesTaT32-bitword length.

ThereTisTanotherTimplementationTthatTusesTaT64-bitTwordTlength,TMT19937-64; it generates a

different sequence.

Advantages

TheTcommonlyTusedTversionTofTMersenneTTwister,TMT19937,Twhich produces a sequence of 32-

bit integers, has the following desirable properties:

1. 1.ItThasTaTveryTlongTperiodTofT219937T−T1.TWhileTaTlongTperiodTisTnotTaTguaranteeTofT

quality in a random number generator, short periods can be problematic.

2. 2.ItTisTk-distributedTtoT32-bitTaccuracyTforTeveryT1T≤TkT≤T623T(seeTdefinitionTbelow).

3. 3.ItTpassesTnumerous tests for statistical randomness, including the "Diehard tests.

Disadvantages

TheTlargeTstateTspaceTcomesTwithTaTperformanceTcost:TtheT2.5TKiB state buffer will place a load

onTtheTmemoryTTTTcaches.TInT2011,TTTTSaitoT&TTTTMatsumotoTproposedTaTTTTversionTofTthe Mersenne

Twister to addressTthisTissue.TTheTtinyTversion,TTinyMT,TusesTjustT127TbitsTofTstateTspace.

18

By Ttoday'sTTTTstandards,TTTTtheTTTTMersenneTTwisterTTTTisTTTTsomewhatTTTTslowTTTTTTunlessTTTTthe SFMTT

implementationTisTusedT.TItTpassesTmost,TbutTnotTall,TofTtheTstringentTTestU01TrandomnessTtests.T

MultipleTMersenneTTwisterTinstancesTthatTTTTdifferTonlyTinTseedTvalueT(butTnotTotherTparameters)T

areTnotTgenerallyTappropriateTTTforTMonteTTTCarloTsimulationsTthatTrequireTTTTindependentTrandom

T number generators, thoughTthereTexistsTTTTaTmethodTforTTTTchoosingTmultipleTTTTsetsTofTparameters.

ItTcanTtakeTaTlongTtimeTtoTstartTgeneratingToutputTthatTpassesTrandomnessTtests,Tif the initial state

isThighlyTnonTrandomTparticularlyTifTtheTinitialTstateThasTmanyTzeros.TA consequence of this is

thatTtwoTinstancesTofTtheTgenerator,TstartedTwithTinitialTstatesTthatTareTalmost the same, will

usuallyToutputTnearlyTtheTsameTsequenceTTTforTmanyTiterations,TbeforeTeventuallyTdiverging.TThe

T2002TupdateTtoTtheTMTTTTTalgorithmThasTTTTimprovedTTTTinitialization,TsoTthatTbeginningTTwithTsuch

TaT state is very unlikely.

2.10 Yarrow algorithm

TheTYarrowTalgorithmTisTaTfamilyTofTcryptographicTpseudorandomTnumberTgeneratorsTdevisedT

byTJohnTKelsey,TBruceTSchneierTandTNielsTFerguson.TTheTYarrowTalgorithmTisTexplicitlyTunpat

ented,royaltyTfreeTandTopenTsource;TnoTlicenseTisTrequiredTtoTuseTit.TYarrowTTTisTincorporatedTTTTin

T iOSTandTMacTOSTXTforTtheirT/dev/randomTdevices,TasTdidTFreeBSDTinTtheTpast.T

AnTimprovedTdesignTfromTFergusonTandTSchneier,TFortuna,TisTdescribedTinTtheirTbook,TPractical

T Cryptography, and FreeBSD has now moved to using this.

Principles

OneTofTtheTmostTimportantTTTprinciplesTofTYarrowTisTtoTTTTmakeTaTPRNGTthatTisTbetterTatTresistingT

realTworldTattack.TTheTformerTwidelyTTTTusedTdesignsTsuchTasTANSITX9.17,TRASREFT2.0TPRNG,

ThaveTloopholesTthatTprovideTTTTattackersTTTTopportunitiesTunderTsomeTcircumstances.TSomeTofTthe

mTareTnotTintentionallyTdesignedTtoTfaceTrealTworldTattacks.TTAnotherTprincipleTofTYarrowTisTthat

TsystemTdesignersTwithTlittleTknowledgeTTTTaboutThowTtheTTTTPRNGTworksTTTcanTincorporateTitTinto

T their own real world product fairly easily.

Components

19

TheTdesignTofTYarrowTconsistsTofTfourTTmajorTTcomponentsTTincludingTanTTentropyTaTTTccumulator

,T reseed mechanism, generation mechanism and reseed control.

YarrowTaccumulatesTentropyTintoTtwoTpools:TtheTfastTpool,TwhichTTTprovidesTfrequentTreseedsTofT

theTkeyTtoTkeepTtheTdurationTofTkeyTTTTcompromisesTTTTasTTTTshortTasTpossible;theTslowTTpool,Twhich

TprovidesTrareTbutTconservativeTTTTreseedsTofTtheTkey.TThisTmakesTTTTsureTthatTtheTreseedTisTsecured

T evenTwhenTtheTentropyTestimatesTareTveryTveryToptimisticTinTnature.

TheTTTreseedTTTTmechanismTTTTconnectsTtheTentropyTTTaccumulatorTTTtoTTtheTTTTgeneratingTmechanism

.ReseedingTfromTtheTfastTpoolTusesTtheTTTTcurrentTTTTkeyTTTandTtheThashTofTallTinputsTtoTtheTfastTpool

T sinceTstartupTtoTgenerateTaTnewTkey;TreseedingTfromTtheTslowTpoolTTbehavesTsimilarly,TexceptTitT

alsoTusesTtheThashTofTallTinputsTtoTtheTTslowTTpoolTTtoTTgenerateTaTTnewTkey.TBothTofTtheTreseedings

T resetTtheTentropyTestimationTofTtheTfastTpoolTtoTzero,TbutTtheTlastToneTalsoTsetsTtheTestimationTofT

theTslowTpoolTtoTzero.TTheTreseedingTmechanismTupdatesTTTtheTkeyTconstantly,TsoTthatTevenTifTthe

TkeyTofTpoolTinformationTisTknownTtoTtheTattackerTbeforeTtheTreseed,Tthey will be unknown to the

attacker after the reseed.

TheTreseedTcontrolTTcomponentTisTTleveragingTTbetweenTTfrequentTTreseeding,Twhich is desirable

butTmightTallowiterativeTguessingTattacks,TandTTinfrequentTreseeding,TwhichTcompromisesTmore

TinformationTforTanTattackerTwhoThasTtheTkey.YarrowTusesTtheTfastTpoolTtoTTreseedTwheneverTTTthe

TsourceTpassesTsomeTthresholdTvalues,TandTusesTtheTslowTpoolTtoTreseedTwheneverTatTleastTtwoTof

TitsTsourcesTpassTsomeTotherTthresholdTvalue. The specific threshold values are mentioned in the

Yarrow-160Tsection.

Generation

Yarrow160TusesTthreekeyTtripleDESTinTcounterTmodeTtoTgenerateToutputs.TC is an nbit counter

value; K is the key. In order to generate the next output block, Yarrow follows the functions

shown here.

YarrowTkeepsTTTcountTofTtheToutputTblock,TbecauseTonceTtheTkeyTisTcompromised,TtheTleakTofTthe

ToldTToutputTTTbeforeTTTtheTTTcompromisedTTTToneTcanTTTbeTstoppedTimmediately.TOnceTsomeTsystemT

securityTparameterTPgTisTreached,TtheTTTalgorithmTTTwillTTgenerateTkTbitsTofTPRNGToutputTandTuseT

themTasTtheTnewTkey.TInTYarrow160,TtheTsystemTsecurityTparameterTisTsetTtoTbeT10,TwhichTmeans

20

TPgT=T10.TTheTparameterTisTintentionallyTsetTtoTbeTlowTto minimize the number of outputs that can

be backtracked.

Reseed

TheTreseedTmechanismTofTYarrow160TusesTSHA1TandTtripleDESTasTtheThashTfunctionTandTblock

Tcipher.TTheTdetailsTstepsTareTinTtheToriginalTpaper.

ImplementationTofTYarrow-160

Yarrow160TcanTbeTimplementedTinTJava,TandTFreeBSD.TTheTexamplesTcanTbeTfoundTinT"AnTimp

lementationTofTtheTYarrowTPRNGTforTFreeBSD"TbyTMarkTR.TV.TMurray.

Pros and cons of Yarrow

•Yarrow reuses existing building blocks.

•Compared to previous PRNGs, Yarrow is reasonably efficient.

•YarrowTcanTbeTusedTbyTprogrammersTwithTnoTcryptographyTbackground in a reasonably

secureTway.TYarrowTisTportableTandTpreciselyTdefined.TTheTinterfaceTisTsimple and clear.

TheseTfeaturesTsomewhatTdecreaseTtheTchancesTofTimplementationTerrors.

•Yarrow was created using an attack-oriented design process.

•TheTentropyTestimationTofTYarrowTisTveryTconservative,TthusTpreventingTexhaustive search

attacks.TItTisTveryTcommonTthatTPRNGsTfailTinTrealTworldTapplicationsTdueTtoTentropyT

overestimation and guessable starting points.

•The reseeding process of Yarrow is relatively computationally expensive, thus the cost of

attempting to guess the PRNG’s key is higher.

•YarrowTusesTfunctionsTtoTsimplifyTtheTmanagementTofTseedTfiles,TthusTtheTfilesTareTconstantlyT

updated.

•ToThandleTcryptanalyticTattacks,TYarrowTisTdesignedTtoTbeTbasedTonTaTblockTcipherTthatTisT

secured.TTheTlevelTofTsecurityTofTtheTgenerationTmechanismTdependsTonTtheTblockTcipher.

•It tries to avoid data dependent execution paths. This is done to prevent side channel

attacksTsuchTasTtimingTattacksTandTpowerTanalysis.TThisTisTanTimprovementTcomparedTtoTearlierT

PRNGs,TforTexampleTRSAREFT2.0TPRNG,TthatTwillTcompletelyTfallTapartTonceTadditionalT

informationTaboutTtheTinternalToperationsTareTnoTlongerTsecuredTinTnature.

21

•YarrowTusesTcryptographicThashTfunctionsTtoTprocessTinputTsamples,TandTthenTusesTaTsecureTup

dateTfunctionTtoTcombineTtheTsamplesTwithTtheTexistingTkey.TThisTmakesTsureTthatTtheTattackerT

cannotTeasilyTmanipulateTtheTinputTsamples.TPRNGsTsuchTasTRSAREFT2.0TPRNGTdoTnotThaveT

the ability to resist this kind of chosen-input attack.

•UnlikeTANSITX9.17TPRNG,TYarrowThasTtheTabilityTtoTrecoverTfromTaTkeyTcompromise.TThisTm

eansTthatTevenTwhenTtheTkeyTisTcompromised,TtheTattackerTwillTnotTbeTableTtoTpredictTfutureT

outputsTforever.TThisTisTdueTtoTtheTreseedingTmechanismTofTYarrow.

•YarrowThasTtheTentropyTsamplesTpoolTseparatedTfromTtheTkey,TandTonlyTreseedsTtheTkeyTwhenTt

heTentropyTpoolTcontentTisTcompletelyTunpredictable.TThisTdesignTpreventsTiterativeTguessingTat

tacks,TwhereTanTattackerTwithTtheTkeyTguessTtheTnextTsampleTandTchecksTtheTresultTbyTobservingT

theTnextToutput.

Cons

•SinceTtheToutputsTofTYarrowTareTcryptographicallyTderived,TtheTsystemsTthatTuseTthoseToutputsT

canTonlyTbeTasTsecureTasTtheTgenerationTmechanismTitself.TThatTmeansTtheTattackerTwhoTcanT

breakTtheTgenerationTmechanismTwillTeasilyTbreakTaTsystemTthatTdependsTonTYarrow’sToutputs.T

ThisTproblemTcannotTbeTsolvedTbyTincreasingTentropyTaccumulation.

•YarrowTrequiresTentropyTestimation,TwhichTisTaTveryTbigTchallengeTforTimplementation.TItTisT

hardTtoTbeTsureThowTmuchTentropyTtoTcollectTbeforeTusingTitTtoTreseedTtheTPRNG.TThisTproblemT

isTsolvedTbyTFortunaT(PRNG),TanTimprovementTofTYarrow.TFortunaThasT32TpoolsTtoTcollectT

entropy and removed the entropy estimator completely.

•Yarrow'sTstrengthTisTlimitedTbyTtheTsizeTofTtheTkey.TForTinstance,TYarrow160ThasTanTeffectiveT

keyTsizeTofT160Tbits.TIfTtheTsecurityTrequiresT256Tbits,TYarrow160TisTnotTcapableTofTdoingTtheTjob

22

Chapter-3 SYSTEM DEVELOPMENT

The System development of "Pure Random Number Generator are as follows;

3.1 Broad-Scale Distribution of Working Process

The process starts with data collection from the mobile sensors. Then the data is recorded on

the mobile device in csv format and then moves over to the server for analysis and

processing. Once the processing is done the data is moved to the entropy pool, which is used

as the source for the random number generation. the flowchart below on this page depicts

the flow of data from mobile sensors to the entropy pool.

3.1.1 Step1: Data Collection

An android application is used to read the values returned from the sensor of a mobile

handset.

The program then segregates and transforms the data into a comma separated values (.csv)

format. And stores it over the mobile storage on each cellular unit.

23

3.1.2 Step2: Moving Database to Server

This data set is then passed on to the A MySQL Server for processing. The data will be

processed and passed as requested by the user.

3.1.3 Step3: Extraction of meaningful information

PHP is used and a server side language. The algorithm on the server side splits the decimal

sensor value and takes 3 to 7 the digit making it the random number for that sensor at that

point of time.

3.1.4 Step4: Range Optimization

This random number is processed by a ranged algorithm that forces it to lie in a given

interval keeping the unpredictability intact. Now this generated random number is made to

fall on the graph and results are shown as below The code for each shall be included in the

last section of the report.

3.2 Modular Distribution

3.2.1 MODULE 1: Android Application for Sensor Data

Collection

Each mobile nowadays is equipped with some sensors even if it

ranges as low as 3000 bucks. The android application uses specific

classes to extract data from the handset's Sensor.

Figure 5 : Android App UI

24

Figure 6 : Android code snippit

The Android Application asks for the

sampling rated from the user in seconds and

the data recording interval. It also gives a list

of sensors in the form of a checklist of sensors

to be chosen for data recording. This session is

recorded corresponding to a specific session

ID.

3.2.2 MODULE 2: Recording Data Using SQLite

What is SQLite?

SQLite is open source Structured Query Language database that stores values to a text file on

any device. Android devices already comes in with built in SQLite. It supports all the

Figure 7 : Android App Live Graph

25

RDBMS features. In order to access this database, you do not need any kind of connections

for it like JDBC,ODBC etc

Database - Package

The main package is "android.database.sqlite". The package contains the classes to manage

your databases in form of tables.

After completion of working of this module the data is stored locally to the device and is

ready to be transferred to server for processing.

3.2.3 MODULE 3: Server-Side Scripting for extraction of meaningful information.

Once the server receives the data it processes it is ready to be process.

Instances of Raw data is as follows.

1. Game Rotation Vector [While Climbing Stairs]

Graph 1 : Raw sensor data of Game Rotation Vector [While Climbing Stairs]

-0.4

-0.2

0

0.2

0.4

0 20 40 60 80

Series2

Series3

Series4

Figure 8 : Sampling Database Screenshot

26

2. GeoMagnetic Rotation Vector [While Walking]

Graph 1 : Raw sensor data of GeoMagnetic Rotation Vector [While Walking]

As we can observe that though this data is not predictable in any sense but it is not scattered

in a range and has some of the other pattern . This tells us that the raw data needs to be

processed more than this.

The above codes stripes the numeric data and take some of the digits. Lets observe the

behavior and pattern of the data after processing.

1. Game Rotation Vector [While Climbing Stairs]

Graph 3 : Processed data of Game Rotation Vector [While Climbing Stairs]

-1

-0.5

0

0.5

0 20 40 60

Series2

Series3

Series4

0

50000

100000

150000

0 10 20 30 40 50 60

Series1

Series2

Series4

27

2. GeoMagnetic Rotation Vector [While Walking]

Graph 4 : Processed sensor data of GeoMagnetic Rotation Vector [While Walking]

Similar results were obtained while walking running and stationary device. and thus can be

used for to fill the entropy pool.

3.2.4 MODULE 4: Entropy pool generator

Entropy pool helps us to work in offline mode i.e. when sensors are offline.Entropy generator

picks up the values from sensor database lists it in a table.

This entropy pool is used to get random number as per requirement.

The count flag keeps a count of used and used data.

3.2.5 MODULE 5: Range optimization

0

20000

40000

60000

80000

100000

120000

0 0.2 0.4 0.6 0.8 1

Series1

Series2

Series3

28

The purpose of this module is to generate the value under a give interval.

Figure 9 : Screenshot of range optimizer UI

The above interface takes the upper range and lower range, optimizes the seed within the

range and displays the output.

The code snippet shows a how the number has been manipulated.

29

Chapter-4 PERFORMANCE ANALYSIS

4.1 Algorithmic Complexity

All the algorithms used in any module of the project is O(n) for n random numbers. This

shows the random number generating algorithms are not CPU intensive. And as the server is

multithread it can cater to large number of requests at the same time. The feature out rules the

drawback of low data rate of pre-existing Pure Random number generators

4.2 Resource Utilization at Runtime

This stress testing tells us the processor requirement of entropy collection algorithm when

implemented in a mobile device under load. Here we can see that 20% of Ram is required to

collect data for 10 seconds at very high sampling rate of 0.002 sec/sample. Data collection

for 10 seconds gives a set of 4000 random numbers.

Figure 10 : Resource Utilization at Runtime

30

4.3 Applications and Contributions

4.3.1 Caesar Cipher

InTcryptography,TaTCaesarTcipher,TalsoTknownTasTshiftTcipher,TCaesar's cipher, Caesar's code or

CaesarTshift,TisToneTofTtheTsimplestTandTmostTwidelyTknownTencryption techniques. It is a type

ofTsubstitutionTcipherTinTwhichTeachTletterTinTtheTplaintextTisTTshifted' a certain number of places

downTtheTalphabet.TForTinstance,TwithTaTshiftTofT1,TATwouldTbeTreplaced by B, B would become

C,TandTsoTon.TTheTmethodTisTnamedTafterTJuliusTCaesar,TwhoTapparently used it to communicate

with his generals.

MoreTcomplexTencryptionTschemesTsuchTasTtheTvigenereTcipherTemploy the Caesar cipher as

oneTelementTofTtheTencryptionTprocess.TTheTwidelyTknownTROT13TTencryption' is simply a

Caesar cipherTwithTanToffsetTofT13.TAsTwithTallTsingle-alphabet substitution ciphers, the Caesar

cipher isTeasilyTbrokenTandTinTmodernTpracticeToffersTessentiallyTnoTcommunicationTsecurity.

TheTencryptionTofTCaesarTcipherTcanTbeTrepresentedTusingTmodularTarithmetic by first

transforming the letters into numbers, according to the scheme, A = 0, B = 1,..., Z = 25.

EncryptionTofTaTletterTxTbyTaTshiftTnTcanTbeTdescribedTmathematicallyTas,

Decryption is performed similarly,

Instance:

ToTpassTanTencryptedTmessageTfromToneTpersonTtoTanother,TitTisTfirstTnecessary that both parties

haveTtheTTkey'TforTtheTcipher,TsoTthatTtheTsenderTmayTencryptTitTandTtheTreceiver may decrypt it.

ForTtheTCaesarTcipher,TtheTkeyTisTtheTnumberTofTcharactersTtoTshift the cipher alphabet.

31

Security:

Caesar cipher isTnotTaTsecureTcryptosystemTbecauseTthereTareTonlyT26Tpossible keys to try out,

weTcanTsimplyTtryTeachTpossibilityTandTseeTwhichToneTresultsTinTaTpiece of readable text. If you

happenTtoTknowTwhatTaTpieceTofTtheTciphertextTis,TorTyouTcanTguessTaTpiece, then this will allow

you to immediately find the key.

IfTthisTisTnotTpossible,TaTmoreTsystematicTapproachTisTtoTmatchTupTtheTfrequencyTdistribution of

the letters.TByTgraphingTtheTTTfrequenciesTTTofTTTlettersTTTinTTTtheTTTciphertext,TandTbyTTknowing the

expected distributionTTTofTTTthoseTlettersTinTTtheToriginalTTTlanguageTofTtheTplaintext,TaTTThuman can

easilyTspotTtheTvalueTofTtheTshiftTbyTlookingTatTtheTdisplacementTof particular features of the

graph. his is known as frequency analysis. For instance, in the English language the

plaintextTfrequenciesTofTtheTlettersTE,TT,T(usuallyTmostTfrequent),TandTQ,TZT(typicallyTleastTfrequ

ent)Tare particularly distinctive.

Implementation:

32

We can use the randomly generated value as encryption key for Caesar cipher or and other

similar encryption algorithm.

4.3.2 Games

Unpredictable were first investigated in the context of gambling developing, sometimes,

pathological forms like apophenia. Many randomizing devices such as dice, shuffling playing

cardsTwheelsTseemTtoThaveTTTbeenTTTdevelopedTTTforTTTuseTinTgamesTofTchance.ElectronicTgambling

equipmentcannotTuseTTtheseTandTsoTTTtheoreticalTTTproblemsTareTlessTeasyTTTtoTavoid;TTTmethodsTTTof

TcreatingTthemTareTsometimesTregulatedTbyTgovernmentalTgamingTcommissions.

ModernTelectronicTTcasinoTgamesTTTcontainToftenToneTorTmoreTrandomTnumberTgeneratorsTwhich

T decideTtheToutcomeTofTaTtrialTinTtheTgame.TEvenTinTmodernTslotTmachines, where mechanical

reelsTseemTtoTspinTonTtheTscreen,TtheTreelsTareTactuallyTspinningTfor entertainment value only.

TheyTeventuallyTstopTexactlyTwhereTtheTmachine'sTsoftwareTdecidedTthey would stop when

theTThandleTwasTTTTTfirstTpulled.TItTTThasTTbeenTallegedTTTthatTsomeTTTgamingTTTmachines'TsoftwareTTTis

deliberately biasedTtoTpreventTtrueTrandomness,TinTtheTinterestsTofTmaximizingTtheir owners'

revenue;TtheThistoryTofTbiasedTmachinesTinTtheTgamblingTindustryTisTtheTreasonTgovernmentTinsp

ectorsT

attemptTtoTsuperviseTtheTmachinesTelectronicTequipmentThasTextended the range of supervision.

SomeTtheftsTfromTcasinosThaveTusedTcleverTmodificationsTofTinternalTsoftwareTtoTbiasTtheToutco

mesTofTtheTmachinesTatTleastTinthoseTTTTTwhichThaveTTTbeenTdiscovered.TGamblingTestablishmentsT

keepTcloseTtrackTofTmachineTpayoutsTinTanTattemptTtoTdetectTsuchTalterations. Random draws are

oftenTusedTtoTmakeTaTdecisionTwhereTnoTrationalTorTfairTbasisTexists for making a deterministic

decision.

4.3.3TScience

ManyTmethodsTofTstatisticalTanalysis,TsuchTasTtheTbootstrapTmethod,TrequireTrandomTnumbers.T

MonteTCarloTmethodsTinTphysicsTandTcomputerTscienceTrequireTrandomTnumbers.

RandomTnumbersTareToftenTusedTinTparapsychologyTasTaTtestTofTprecognition.

Statistical sampling

33

StatisticalTpracticeTisTbasedTonTstatisticalTtheoryTwhichTis,Titself,Tfounded on the concept of

randomness.TTTManyTTTelementsTTTofTTTstatisticalTTTpracticeTTTdependTTTonTTTrandomness via random

numbers.TWhereTthoseTrandomTTnumbersTTTfailTtoTbeTactuallyTrandom,Tany subsequent statistical

analysisTmayTTTsufferTfromTTTsystematicTTTbias.TElementsTofTstatisticalTpractice that depend on

randomnessTinclude:TchoosingTaTTrepresentativeTTTsampleTofTTTtheTTTpopulation being examined,

disguisingTtheTprotocolTofTaTTTstudyTfromTaTTTparticipantT(seeTTTrandomized controlled trial) and

Monte Carlo simulation.

TheseTapplicationsTareTusefulTinTauditingT(forTdeterminingTsamplesTsuchTasTinvoices)TandT

experimentalTdesignT(forTinstanceTinTtheTcreationTofTdouble-blindTtrials).

Analysis

ManyTexperimentsTinTphysicsTrelyTonTaTstatisticalTanalysisTofTtheir output. For instance, an

experimentTmightTcollectTXraysTfromTanTastronomicalTsourceTandTthenTanalyze the result for

periodicTsignals.TSinceTrandomTnoiseTcanTbeTexpectedTtoTappearTtoThave faint periodic signals

embeddedTinTit,TstatisticalTanalysisTisTrequiredTtoTdetermineTtheTlikelihood that a detected signal

actuallyTrepresentsTaTgenuineTsignal.TSuchTanalysisTmethodsTrequires the generation of random

numbers.TIfTtheTstatisticalTmethodTisTextremelyTsensitiveTtoTpatternsTinTtheTdata (such as those

used toTsearchTforTbinaryTpulsars),TveryTlargeTamountsTofTdataTwithTnoTrecognizableTpatternTareT

needed.

Simulation

InTmanyTscientificTandTengineeringTfields,TcomputerTsimulationsTTTofTTTrealTTTphenomena are

commonlyTused.TWhenTtheTrealTphenomenaTareTaffectedTbyTunpredictableTprocesses,TsuchTasT

radioTnoiseTorTday-to-dayTweather,TtheseTprocessesTcanTbeTsimulatedTusing random or pseudo-

random numbers.

PseudoTrandomTnumbersTareTfrequentlyTusedTinTsimulationTofTstatisticalTevents, a very simple

instanceTbeingTtheToutcomeTofTtossingTaTcoin.TMoreTTTcomplicatedTTTsituations are simulation

ofTpopulationTgenetics,TorTtheTbehaviorTofTsubatomicTparticles.TSuchTsimulation methods, often

called stochastic methods, have many applications in computer simulation of real-world

processes.

34

Chapter-5 Conclusion

5.1 Conclusions

The above developed model successfully generates pure random numbers for any give finite

range. It is not fully dependent on online connectivity with the physical phenomenon i.e.

random numbers can be generated at any point of time. The model also shows the ability to

use these random number as per requirements. The model also over comes the major

drawback of low bit rate with no extra load on the processor as the algorithm used is O(1).

35

5.3TReferencesT

1. Intel® Digital Random Number Generator (DRNG)

Reference URL: https://software.intel.com/en-us/articles/intel-digital-random-

number-generator-drng-software-implementation-guide.

Revision 2.0 : May 15, 2014

Accessed on: September 7th, 2016

2. Quantis Random Number Generator

Reference URL: http://www.idquantique.com/random-number-

generation/quantis-random-number-generator/

Data of Issue: 2015-01-29

Accessed on: September 7th, 2016

3. Carlos Tokunaga; David Blaauw; Trevor Mudge, "True Random Number

Generator With a Metastability-Based Quality Control", IEEE Journal of Solid-

State Circuits, Volume: 43, Issue: 1, Pages: 78 - 85,

4. Huang Zhun; Chen Hongyi, "A truly random number generator based on

thermal noise" ASICON 2001. 2001 4th International Conference on ASIC

Proceedings, Volume: 35, Issue: 1, Pages: 862 - 864, Year: 2001

5. Simona Buchovecká; Róbert Lórencz; Filip Kodýtek; Jirí Bucek, " True

Random Number Generator Based on ROPUF Circuit", 2016 Euromicro

Conference on Digital System Design (DSD), Volume: 31, Issue: 1, Pages: 519

- 523, Year: 2016

6. C.S. Petrie, J.A. Connelly, "noise-based random bit generator IC for

applications in cryptography", Proceedings of the 1998 IEEE International

Symposium on Circuits and Systems, Cat. No.98CH36187, Year: 1998

1 APPENDIX

Chapter -6. Appendix

6.1 Android Application [MainActivity.java]
"package simplicial.software.sensor_suite.application;

import android.annotation.SuppressLint;

import android.app.Activity;

import android.app.AlertDialog.Builder;

import android.app.FragmentManager;

import android.app.FragmentTransaction;

import android.os.Build.VERSION;

import android.os.Bundle;

import android.os.Environment;

import android.view.Menu;

import android.view.MenuInflater;

import android.view.MenuItem;

import android.view.View;

import java.io.File;

import java.io.IOException;

import java.util.ArrayList;

import java.util.List;

import simplicial.software.sensor_suite.models.b;

import simplicial.software.sensor_suite.models.l;

import simplicial.software.sensor_suite.models.o;

import simplicial.software.sensor_suite.models.s;"

public class MainActivity

 extends Activity

 implements ak

{

 public List a = new ArrayList();

 public double b = 0.1D;

 public s c = null;

 public l d = null;

 public void a()

 {

 if (this.d != null) {

 this.d.a(System.currentTimeMillis());

 }

 }

 protected void onCreate(Bundle paramBundle)

 {

 simplicial.software.sensor_suite.models.a.b().a(this);

 o.a = new o(this);

 super.onCreate(paramBundle);

 setContentView(2130903040);

 if (paramBundle == null) {

 getFragmentManager().beginTransaction().add(2131296256, new p()).commit();

 }

 }

 public boolean onCreateOptionsMenu(Menu paramMenu)

2 APPENDIX

 {

 getMenuInflater().inflate(2131230720, paramMenu);

 return true;

 }

 protected void onDestroy()

 {

 simplicial.software.sensor_suite.models.a.b().b(this);

 super.onDestroy();

 }

 @SuppressLint({"InlinedApi", "NewApi"})

 public boolean onOptionsItemSelected(MenuItem paramMenuItem)

 {

 Object localObject;

 switch (paramMenuItem.getItemId())

 {

 default:

 case 2131296296:

 case 2131296299:

 case 2131296298:

 for (;;)

 {"

 return super.onOptionsItemSelected(paramMenuItem);

 if (findViewById(2131296258).getVisibility() != 8) {

 findViewById(2131296258).setVisibility(8);

 }

 for (;;)

 {

 return true;

 findViewById(2131296258).setVisibility(0);

 }

 getFragmentManager().beginTransaction().replace(2131296256, new u(al.a(this))).addToBackStack(null).commit();

 return true;

 if (this.c == null) {

 break;

 }

 b.a(this, this.c);

 }

 if (!simplicial.software.a.a.a.a())

 {"

 paramMenuItem = new AlertDialog.Builder(this);

 paramMenuItem.setTitle("Error");

 paramMenuItem.setMessage("External storage is not writeable.");

 paramMenuItem.show();

 return false;

 }

 if (Build.VERSION.SDK_INT >= 19) {}

 for (localObject = new File(Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_DOCUMENTS) + "/Exported Sensor

Data/");; localObject = new File(Environment.getExternalStorageDirectory() + "/Exported Sensor Data/"))

 {

 ((File)localObject).mkdirs();

 localObject = new File((File)localObject, "sensor_data.db");

 try

 {

 simplicial.software.a.a.a.a(getDatabasePath("sensor_data.db"), (File)localObject);

3 APPENDIX

 AlertDialog.Builder localBuilder = new AlertDialog.Builder(this);

 localBuilder.setTitle("Exported");

 localBuilder.setMessage("Database copied to:\n" + localObject);

 localBuilder.show();

 }

 catch (IOException paramMenuItem)

 {

 localObject = new AlertDialog.Builder(this);

 ((AlertDialog.Builder)localObject).setTitle("Error");

 ((AlertDialog.Builder)localObject).setMessage(paramMenuItem.getMessage());

 ((AlertDialog.Builder)localObject).show();

 return false;

 }

 }

 case 2131296297:

 new ac(this).show(getFragmentManager(), null);

 return true;

 case 2131296300:

 getFragmentManager().beginTransaction().replace(2131296256, new ag()).addToBackStack(null).commit();

 return true;

 }

 int i = 0;

 for (;;)

 {

 if (i >= getFragmentManager().getBackStackEntryCount()) {

 return true;

 }

 getFragmentManager().popBackStack();

 i += 1;

 }

 }

}

6.2 Entopy Pool Developer

<?php

 set_time_limit(1000);

 $host="localhost";

 $username="root";

 $password="";

 $database="project";

 $sensor=array("Game Rotation Vector", "Game

Rotation Vector -Wakeup Secondary",

 "GeoMagnetic Rotation Vector",

 "GeoMagnetic Rotation Vector -Wakeup Secondary",

 "Gravity","Gravity -Wakeup Secondary",

 "Linear Acceleration",

 "Linear Acceleration -Wakeup Secondary",

 "LSM6DS3 Accelerometer",

 "LSM6DS3 Accelerometer -Wakeup Secondary",

 "LSM6DS3 Gyroscope",

 "LSM6DS3 Gyroscope -Wakeup Secondary",

4 APPENDIX

 "LSM6DS3 Gyroscope Uncalibrated",

 "LSM6DS3 Gyroscope Uncalibrated -Wakeup Secondary",

 "Motion Acce",

 "Orientation",

 "Orientation -Wakeup Secondary",

 "Rotation Vector",

 "Rotation Vector -Wakeup Secondary",

 "SensorTimestamp (seconds)",

 "Step Counter",

 "Step Counter -Wakeup Secondary",

 "stk3x1x alsprx",

 "stk3x1x alsprx -Non Wakeup Secondary",

 "stk3x1x alsprx -Wakeup Secondary",

 "YAS537 Magnetometer",

 "YAS537 Magnetometer -Wakeup Secondary",

 "YAS537 Magnetometer Uncalibrated",

 "YAS537 Magnetometer Uncalibrated -Wakeup Secondary");

 mysql_connect($host,$username,$password);

 @mysql_select_db($database) or die("Unable to select database");

 $datatype="Processed";

 $pool_count=0;

 for($loop_2=0;$loop_2<=19;$loop_2++)

 {

 $query="select * from test_4 where `COL 1`= '$sensor[$loop_2]'";

 $run=mysql_query($query);

 echo "<center><table border=\"01\" width=\"100%\">";

 while ($row=mysql_fetch_array($run))

 {

 echo "<tr>";

 for($loop_1=2;$loop_1<=4;$loop_1++)

 {

 echo "<td>";

 if($loop_1>1)

 {

 if($datatype=="Processed")

 {

 $pool_count++;

 list($p1, $p2) = explode(".", $row[$loop_1]);

 $digits = substr($p2, 2, 5);

 echo $digits;

 $query_2="INSERT INTO pool (sno,value) VALUES

 ($pool_count,'$digits')";

 $digits!=""?mysql_query($query_2):$pool_count--;

 }

 else

 {

 echo $row[$loop_1];

 }

5 APPENDIX

 }

 else

 {

 echo $row[$loop_1];

 }

 echo "</td>";

 }

 echo "</tr>";

 }

 echo "</table></center>";

 echo "</br></br>";

 }

?>

2.3 Range Optimizer

$min= intval($_GET['min']);

 $max= intval($_GET['max']);

 if($min >= $max)

 echo " redefine range ";

 else

 {

 $host="localhost";

 $username="root";

 $password="";

 $database="project";

 mysql_connect($host,$username,$password);

 @mysql_select_db($database) or die("Unable to select database");

 $query="select * from flag where 1";

 $run=mysql_query($query);

 $row=mysql_fetch_array($run);

 //echo $row[1];

 $flag=intval($row[1])+1;

 $flagg=(string)$flag;

 $sql = "UPDATE `flag` SET value = $flagg WHERE flag = 'count'";

 mysql_query($sql);

 $query="select * from pool where sno = $flagg";

 $run=mysql_query($query);

 $row=mysql_fetch_array($run);

 $rand_seed=intval($row[1]);

 $normalizer=$rand_seed%($max-$min+1);

 $number=$min+$normalizer;

6 APPENDIX

 echo $number;

 }

?>

2.4 Cipher

require_once('rand.php');

 $obj = new true_random();

 $rand_key = $obj->true_rand(1,26);

 function Cipher($ch, $key)

 {

 if (!ctype_alpha($ch))

 return $ch;

 $offset = ord(ctype_upper($ch) ? 'A' : 'a');

 return chr(fmod(((ord($ch) + $key) - $offset), 26) + $offset);

 }

 function Encipher($input, $key)

 {

 $output = "";

 $inputArr = str_split($input);

 foreach ($inputArr as $ch)

 $output .= Cipher($ch, $key);

 return $output;

 }

 function Decipher($input, $key)

 return Encipher($input, 26 - $key);

 $str="A b7jh*o";

 echo "Random Key : ".$rand_key."</br>";

 echo "String : ".$str."</br>";

 $enc = Encipher($str, $rand_key);

 echo "Encipher : ".$enc."</br>";

 $dec = Decipher($enc, $rand_key);

 echo "Decipher : ".$dec."</br>";

 ?>

