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Chapter-1. Introduction 

 

 As we all know computer based "von Neumann Architecture" are designed to achieve 

100% efficiency, i.e. Generation of any random data states that the computation went wrong. 

That is why for the generation of random numbers, programmers and mathematicians have 

been designing complex algorithms with a large period for the generation of pseudo-random 

numbers. 

 

  The word ‘pseudo’ means the pseudo-random numbers are not purely random in a 

way you might expect, at least not if it is compared to dice rolls or lottery tickets. Essentially, 

pseudo-random numbers generators are algorithms that use some kind of mathematical 

formula or just a pre-calculated tables to generate sequences of numbers that appear to be 

randomly generated. An example of a pseudo-random numbers generator can be the linear 

congruential methodology.  

 

 In comparison with pseudo-random numbers generators, true random numbers 

generators take into account randomness from some physical phenomena and introduce its 

reading into the computer. You can imagine an example of a trivial die connected to a 

computer, but generally, people use a phenomenon that is simple to connect to the computer 

as compared to a die. The physical phenomenon can be very general, like the slight variations 

in the movement of mouse or time lag between keystrokes while typing on the keyboard. 

But, you should be careful about which source you are choosing. For instance, it can be 

difficult to use keystrokes in this fashion, the reason being keystrokes are often buffered into 

the computer's operating system memory, that means several keystrokes are collected into the 

buffer before they can be sent to the program waiting for data to process. From the side of 

program waiting for the keystroke data, it might seem as all the keys are pressed almost at the 

same time, and there will now not be a lot of difference there after all. 
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The table below provides a characteristic comparison between the Pseudo-Random Number 

Generators and Pure-Random Number Generators. 

 

Table 1.1: Comparison between PRNG and TRNG 

Characteristic  

Features 
PRNG TRNG 

Efficiency of Generation Excellent efficiency Poor efficiency 

Determinism of Numbers Deterministic in nature Nondeterministic in nature 

Periodicity in data Periodic in nature Aperiodic in nature 

 

 These features thus make True-Random Number Generators suitable for roughly the 

set of applications that Pseudo-Random Number Generators are not suitable for, for instance 

data encryption, games, and gambling. Although, the poor generation efficiency and 

nondeterministic nature of True-Random Number Generators make them less suitable for 

simulation and modeling type of applications, which often needs more data than it is feasible 

to computes with any True-Random Number Generator. 

 

1.1 About Random Number Generators 

 

This section explains the basic concepts behind the random number generation. 

 

1.1.1       Random Number Generators (RNGs) 

 

 A random Number Generators is a software or hardware of any type that can produce 

a sequence of numbers between any interval [min, max] such that values appear are pure not 

deterministic in nature .  

 

 Each and every new value has to be mathematically independent of any previous 

value or data. I.e. given a computed sequence of numbers, a particular data is not more likely 
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to follow after it as the next value of the Random Number Generator's random sequence. The 

overall series of numbers chosen between the interval shall be uniformly distributed. In other 

words,  all the numbers(or values) should be equally likely and none should be more 

"popular" or occur more occasionally within the Random Number Generator’s output than 

the others. 

  

 The sequence should also be unpredictable in nature. An attacker should not be able 

guess some or all of the numbers in a computed sequence. Predictability can take some form 

of forward prediction and backtracking. 

 

 As the computing systems are deterministic by nature, producing quality random 

numbers that have these features is much more tougher than it might look. Taking the 

second's value from the computer system clock, a general method, may seem random, but the 

method of process scheduling and other system effects may lead in some values occurring far 

more occasionally than the others. External data sources as the interval between keystrokes 

or movement of the mouse may likewise, upon extensive analysis, show that numbers do not 

distribute evenly across the interval of all possible. Beyond these characteristics, some other 

desirable random number generator features include: 

 

• The random number generator should be quick in computing  a value and can cater a 

large number of requests in a short interval of time. 

• The random number generator should secure against attackers. 

 

1.1.2       Pseudo-Random Number Generators (PRNGs) 

 

 One broadly used approach for getting good Random Number Generators statistical 

behavior is to leverage statistical modeling in the creation of a Pseudo-Random Number 

Generator. A Pseudo-Random Number Generators is a predictable algorithm, typically 

implemented in software that generates a series of numbers that looks random. A Pseudo-

Random Number Generators needs a seed value that has to be used to set the state of the 
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given model. Once seeding is done, it can then compute a series of value that exhibit a better 

statistical behavior. 

Pseudo-Random Number Generators exhibit periodicity that is size dependent on its internal 

state model. I.e., after computing a long series of values, all variations in the internal state 

will be exhausted and the series of values to follow shall reoccur an earlier series. The best 

Pseudo-Random Number Generators algorithms available today, too large and complex that 

this drawback could practically be unseen. For example, the Mersenne Twister MT19937 

Pseudo-Random Number Generator has 32-bit word length has a high periodicity of 219937- 

1.A key feature of all Pseudo-Random Number Generators is that they are predictable. I.e, 

given a certain seed value, the same Pseudo-Random Number Generators will always 

produce the exact same series of "random" values. The reason behind this is that, a Pseudo-

Random Number Generators is computing the successive value based upon a certain internal 

state and a pre-defined algorithm. So, while a generated series of numbers  exhibits the 

mathematical properties of randomness, the cumulative behavior of the Pseudo-Random 

Number Generators is entirely deterministic. 

 

In situations, the deterministic nature of Pseudo-Random Number Generators is an 

advantage. For instance, in some simulation and experimental, researchers would may want 

to examine the outcome of different approaches using the same series of input values. 

Pseudo-Random Number Generators provide a way to compute a large series of random data 

inputs that are repeatable by using the same Pseudo-Random Number Generator, seeded with 

the repeated value. 

 

In other situations, however, this determinism is highly unwanted. for instance a server 

application that computes random numbers that are to be used as cryptographic keys in 

information exchanges among client applications over secure communication network. An 

attacker who knows the Pseudo-Random Number Generator in use and also knew the seed 

value would quickly be able to guess each and every key that is being generated by the 

Pseudo-Random Number Generator. Even with a highly sophisticated seeding algorithms, an 

attacker who has the information about the Pseudo-Random Number Generator in use can 
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deduce the state of the Pseudo-Random Number Generator by observing the series of 

generated values.  

 

Pseudo-Random NumberTGeneratorsTresearchersThaveTresearchedTtoTsolveTthisTproblemTby 

creatingTwhatTareTknownTasTCryptographicallyTSecureTPseudo-RandomTNumber Generator or 

theTCSPRNGs.TManyTcomplexTtechniquesThaveTbeenTdesignedTinTthisTfield, for instance, 

applyingTaTcryptographicThashTtoTaTseriesTofTconsecutiveTintegerTnumbers,Tusing a block cipher 

toTencryptTaTseriesTofTconsecutiveTintegerTnumbers,TandTXORingTa stream of Pseudo-Random 

NumberTGeneratorTgeneratedTnumbersTwithTplaintext.TSuchTmethodsTimprove the problem of 

inferringTaTPseudo-RandomTNumberTGeneratorTandTitsTstateTbyTexponentiallyTTincreasing its 

computational complexity, but the final values may or may not have the correct statistical 

features needed for a good random number generator. Further, an attacker can find any 

deterministic algorithm  by a number of methods (e.g., memory attacks, sophisticated, a 

disgruntled employee, disassemblers etc). Even more simpler, attackers can find or infer 

Pseudo-Random Number Generator seeding by narrowing down its range of possible 

numbers or by surfing the memory in any manner. Once the algorithm in use and its seed 

values are known, an attacker is be able to guess each and every random number computed, 

both in past as well as in future. 

 

1.1.3       True Random Number Generators (TRNGs) 

 

For situations where the predictable nature of Pseudo-Random Number Generators is a 

problem to be avoided (for example, computer security and gaming), a better way is that of 

True Random Number Generators. 

 

Instead of implementing a any mathematical model to deterministically compute numbers 

that look random and have the correct statistical features, a True Random Number Generators 

extracts entropy from any physical phenomenon and then uses the values to generate random 

values. The physical phenomenon is also called an entropy source and can be selected among 

a wide range of physical phenomenon that are naturally available, or is made usable, to the 

computing device using the True Random Number Generators. For example, one can try to 
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use the time interval between users consecutive keystrokes or movement of mouse as an 

entropy source. As stated earlier, this method is crude in practice and resulting value series 

usually fail to meet desired features. Selection of an entropy source in a True Random 

Number Generators is a key problem facing True Random Number Generators designers. 

 

Beyond desired features, True Random Number Generators should be scalable and fast. This 

poses a serious challenge for many True Random Number Generators, the reason for that is 

sampling an entropy source that is external to the computing device usually needs device I/O 

and large delay relative to the computing  efficiency of today's computers. Thus, sampling 

any entropy source in True Random Number Generators is slow with respect to the 

computation needed by a Pseudo Random Number Generators to simply compute its 

successive random value.  Unlike Pseudo Random Number Generators, however, True 

Random Number Generators are not predictable. That is, a True Random Number Generators 

need not be seeded, and its selection of random numbers in any given series is almost 

unpredictable. An attacker cannot  observe of a particular random value series to guess 

successive values in an efficient way. This feature also implies that True Random Number 

Generators have no periodicity. Although repeats in the random values are possible, they 

cannot be guessed in any manner. 

 

1.1.4       Cascade Construction RNGs 

 

A general method implemented by modern operating systems and cryptographic algorithms 

is to take input values from an entropy source to create pool of entropy. This entropy pool is 

used to supply non-deterministic random values that regularly seeds a Cryptographically 

Secure Pseudo Random Number Generators. This Cryptographically Secure Pseudo Random 

Number Generators generates cryptographically secure random values that appear truly 

random. 

 

The main advantage of this method is performance efficiency. It was previously stated that 

sampling of any entropy source is usually slow and generally additional waiting for a real-

time sampling work to transpire. In comparison, Cryptographically Secure Pseudo Random 
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Number Generators computations are efficient since they are computation-based and 

sidelines  entropy source delays. This method usually leads to improved performance: a slow 

entropy source periodically sending a fast Cryptographically Secure Pseudo Random Number 

Generators capable of computing  a large number of random numbers from a single seed 

value. 

 

1.2 Problem Statement 

 

 As discussed in introduction the pseudo-random number generation is not a full proof 

method of generation of random number because of its property of reverse engineering 

ability. Random numbers generators should not use a seed value and generated a number  

which cannot be predicted at all costs. 

 

1.3 Objective 

 

1. Study of  the existing Random number generators. 

2. To design a "Pure Random Number Generator ". 

3. To study a performance analysis of designed "Pure Random Number Generator ". 

  

1.4 Methodology  

 The data is first collected from a physical phenomenon probably non periodic and 

storing it as entropy poll. This entropy poll is then accessed by an algorithm to generate  

random numbers as per requirements of a system of a user. 

 

1.5 Organization 

 Chapter 2 deals with the first objective of study of existing Random number generator 

and finding a comparative statistics of advantages and drawbacks. Chapter 3 shows the 

system development of pure random number generated designed in the project. Chapter 4 

deals with the performance analysis and applications of Pure Random Number Generator. 

Chapter 5 defines the final conclusion followed by Appendix. 
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Chapter-2. Literature Survey 

2.1. Intel® Digital Random Number Generator (DRNG) 

 

The "Digital Random Number Generator" or DRNG is an efficient and innovative hardware 

approach for generation of high-quality, high-performance entropy and random number. It 

comprises of the new Intel 64 Architecture instructions the 'RDRAND' and the 'RDSEED' 

and an underlying Digital Random Number Generator hardware implementation. 

In context to the Random Number Generator taxonomy stated above, the Random Number 

Generator follows the cascade construction Value Generator model, using a processor 

resident entropy source to periodically seed a hardware-implemented Cryptographically 

Secure Pseudo Random Number Generators. Unlike the software methods, it includes a high-

quality entropy source usage that can be sampled quickly enough to repeatedly seed the 

Cryptographically Secure Pseudo Random Number Generators with high-quality entropy 

values. It also represents a self-stationed hardware module that is isolated from any king of 

software attacks on its internal state. This results in a solution that achieves Random Number 

Generator objectives with considerable features. 

This method of digital random number computation is not same in its process with respect to 

true random number computation in that it is implemented into the processor and can be 

accessed using Intel 64 instruction set. The response times are comparable to those of 

competing Pseudo-Random Number Generators approaches implemented in any software. 

This method is scalable enough for the demanding applications to use it as an extensive 

source of random values and not merely a high quality seed for a software-based Pseudo-

Random Number Generators. Software running at all privilege levels can access random 

values through the instruction set, ignoring any intermediate software or libraries. 

 Applications for the Digital Random Number Generator 

Information security is a key application that utilizes the DRNG. Cryptographic protocols 

rely on RNGs for generating keys and fresh session values (e.g., a nonce) to prevent replay 

attacks. In fact, a cryptographic protocol may have considerable robustness but suffer from 

widespread attack due to weak key generation methods underlying it (e.g., the 

Debian*/OpenSSL* fiasco (3)). The DRNG can be used to fix this weakness, thus 

significantly increasing cryptographic robustness. 
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Closely related are government and industry applications. Due to information sensitivity, 

many such applications must demonstrate their compliance with security standards like 

FISMA,THIPPA,TPCIAA,Tetc.TRDRANDThasTbeenTengineeredTtoTmeetTexisting security 

standardsTlikeTFIPST140-2TandTNISTTSP800-90TandTthusTprovidesTanTunderlyingTRNG solution 

thatTcanTbeTleveragedTinTdemonstratingTcomplianceTwithTinformation security standards. 

Other uses of the D-Random Number Generator include: 

• Communication protocols 

• Bulk entropyTapplicationsTlikeTsecureTdiskTwipingTorTdocumentTshredding 

• Monte Carlo simulations and scientific computing 

• Gaming applications 

• ProtectingTonlineTservicesTagainstTRandomTNumberTGeneratorTattacks 

• SeedingTsoftware-basedTPseudo-RandomTNumberTGeneratorsTofTarbitrary width 

 

Digital Random Number Generator Overview 

This section, describes in 

some detail the components 

of the DRNG using the 

"RDRAND" and "RDSEED" 

instructions and their 

interaction. 

 Processor View: Figure 

provides a high-level 

schematic of the RDRAND 

and RDSEED Random 

Number Generators. As 

shown, the DRNG appears as 

a hardware module on the 

processor. An interconnect 

bus connects it with each 

core. 
Figure 1 : Digital Random Generator Overview 
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The RDRANDTandTRDSEEDTinstructionsT(detailedTinTsectionT4)TareThandled by microcode on 

eachTcore.TThisTincludesTanTRNGTmicrocodeTmoduleTthatThandlesTinteractions with the DRNG 

hardware module on the processor. 

Component Architecture:TTAsTshownTinTfigureTtheTDRNGTcanTbeTthoughtTofTasTthree logical 

componentsTformingTanTasynchronousTproductionTpipeline:TanTentropyTsourceT(ES) that 

producesTrandomTbitsTfromTaTnondeterministicThardwareTprocessTat around 3 Giga bits per sec, 

a conditionerTthatTusesTAESTinTCBC-MACTmodeTtoTdistillTtheTentropy into high-quality 

nondeterministic random numbers, and two parallel outputs: 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. The random bit generator which is seeded from the conditioner. 

2. AnTenhanced,TnondeterministicTrandomTnumberTgeneratorTthatTprovides seeds from the 

entropy conditioner. 

Figure 2 : Digital Random Generator Component Architecture 
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NoteTthatTtheTconditionerTdoesTnotTsendTtheTTTsameTseedTvaluesTtoTTTTTbothTtheTTTTTDRBG and the 

ENRNG. ThisTpathwayTcanTbeTthoughtTofTasTanTalternatingTswitch,TwithToneTseed going to the 

DRGBTandTtheTnextTseedTgoingTtoTtheTTTTENRNG.TTTTTThisTconstructionTTTTTTensuresTthatTa software 

applicationTcanTneverTobtainTtheTvalueTusedTtoTseedTtheTDRBG,TnorTcanTitTinitiate a Denial of 

ServiceTattackTagainstTtheTDRBGTthroughTrepeatedTexecutionsTofTtheTRDSEEDTinstruction. 

The conditionerTcanTbeTequatedTtoTtheTentropyTpoolTinTtheTcascadeTconstructionTRNG described 

previously.THowever,TTsinceTTitTisTfedTbyTaTTThigh-quality,TTThigh-speed, continuous stream of 

entropy thatTisTfedTfasterTthanTdownstreamTprocessesTcanTconsume,TitTdoes not need to maintain 

an entropy pool.TInstead,TitTisTalwaysTconditioningTfreshTentropyTindependent of past and 

future entropy. 

The final two stages are: 

1. A hardware CSPRNGTthatTisTbasedTonTAESTinTCTRTmodeTandTisTcompliantTwithTSP800-90A. 

In SP800-90ATterminology,TTTthisTisTTTreferredTtoTasTTTaTDRBG,TaTTTtermTTTusedTTthroughout the 

remainder of this document. 

2. An ENRNG that is compliant with SP800-90B and C. 

 

Entropy Source (ES) 

TheTTTall-digitalTTTEntropyTTSourceTTalsoTTTknownTTTasTTTaTTTnon-deterministicTTrandom bit generator 

(NRBG),TprovidesTaTserialTstreamTofTentropicTdataTinTtheTformTofTzeroes and ones. 

TheTESTasynchronouslyTrunsTonTaTcircuitTwhichTisTself-timedTandTusesTthermalTnoiseTtoToutput a 

randomTstreamTTTofTTTTbitsTatTTTTtheTTTrateTofTT3TTGigaTTHertz. TTheTEntropyTSourceTdoesTnotTneedTany 

dedicatedTexternalTpowerTsupply.TTheTEntropyTSourceTisTdesignedTtoTfunctionTTproperlyTTover a 

wideTrangeTofToperatingTconditions,TexceedingTtheTnormalToperating range of the processor. 

BitsTfromTtheTESTareTpassedTtoTtheTconditionerTforTfurtherTprocessing. 

The Deterministic Random Bit Generator 

The primaryTroleTofTthisTgeneratorTisTtoTspreadTTaTconditionedTentropyTsampleTintoTa large set of 

randomTTTvalues,TthusTincreasingTtheTamountTofTTTrandomTTTnumbersTavailableTTTbyTT the hardware 

module. ThisTisTdoneTbyTemployingTaTstandards-compliantTDRBGTandTcontinuouslyTreseeding 

it with the conditioned entropy samples. 
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The DRBGTchosenTforTthisTfunctionTisTtheTCTR_DRBGTdefinedTinTsectionT10.2.1Tof NIST SP 

800-90AT(6),TusingTtheTAESTblockTcipher.TValuesTthatTareTproducedTfillTaTFIFO output buffer 

thatTisTthenTusedTinTrespondingTtoTRDRANDTrequestsTforTrandomTnumbers. 

TheTDRBGTautonomouslyTdecidesTwhenTitTneedsTtoTbeTreseededTtoTrefresh the random number 

poolTinTtheTbufferTandTisTbothTunpredictableTandTtransparentTtoTtheTRDRAND caller. An upper 

boundTofT511T128-bitTsamplesTwillTbeTgeneratedTperTseed.TThatTis,TnoTmoreTthan 511*2=1022 

sequentialTDRNGTrandomTnumbersTwillTbeTgeneratedTfromTtheTsameTseedTvalue. 

Enhanced Non-deterministic Random Number Generator 

The roleTofTtheTenhancedTnon-deterministicTrandomTnumberTgeneratorTisTtoTmake conditioned 

entropy samples directly available to software for use as seeds to other software-based 

DRBGs.  

ValuesTcomingToutTofTtheTENRNGThaveTmultiplicativeTbrute-forceprediction resistance, which 

meansTthatTsamplesTcanTbeTconcatenatedTandTtheTbrute-forceTprediction resistance will scale 

withTTthem.TWhenTtwoT64-bitTsamplesTareTconcatenatedTtogether, the resultingT128-bit value 

willThaveT128TbitsTofTbrute-forceTpredictionTresistance (264 * 264 = 2128). This operation can 

beTrepeatedTTindefinitelyTTandTTcanTbeTTusedTtoTeasilyTTproduceTTrandomTseedsTTof arbitrary size. 

BecauseTofTthisTproperty,TtheseTvaluesTcanTbeTusedTtoTseedTaTDRBG of any size. 

Robustness and Self-Validation 

ToTensureTtheTTDRNGTTfunctionsTTwithTTaTThighTTdegreeTTofTTreliabilityTandTTrobustness,Tvalidation 

featuresTThaveTTbeenTTTincludedTTthatTToperateTinTanTTongoingTTmannerTTat system startup. These 

includeTtheTDRNGTOnlineTHealthTTestsT(OHTs)TandTBuilt-InTSelfTTests (BISTs), respectively. 

Both are shown. 

 

Figure 3 : Robustness and Self-Validation 
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Online Health Tests (OHTs) 

OnlineTHealthTTestsT(OHTs)TareTdesignedTtoTmeasureTtheTqualityTof entropy generated by the 

ESTusingTbothTperTsampleTandTslidingTwindowTstatisticalTtestsTinThardware. 

PerTsampleTtestsTcompareTbitTpatternsTagainstTexpectedTpatternTarrivalTdistributionsTasTspecifiedT

byTaTmathematicalTmodelTofTtheTES.TAnTESTsampleTTTthatTTTfailsTTTthisTtestTis marked "unhealthy." 

Using this distinction, the conditioner can ensure that at least two healthy samples are mixed 

into each seed. This defends against hardware attacks that might seek to reduce the entropic 

content of the ES output. 

SlidingTwindowTtestsTlookTatTsampleThealthTacrossTmanyTsamplesTto verify they remain above a 

required threshold.TTheTslidingTwindowTsizeTisTlargeT(65536Tbits)TandTmechanismsTensure that 

the ESTisToperatingTcorrectlyToverallTbeforeTitTissuesTrandomTnumbers. In the rare event that the 

DRNG failsTduringTruntime,TitTTwouldTceaseTtoTissueTrandomTnumbersTTratherTTthanTTissue poor 

quality random numbers. 

2.2. Quantium based Random Number Generator 

 

 There are two primary sources of 

practical quantum mechanical 

randomness: thermal noise  and quantum 

mechanics at the sub-atomic or atomic 

level. Quantum mechanics guesses that 

various physical phenomena, such as the 

nuclear decay of an atoms, are 

fundamentally random  in nature and 

cannot exactly be predicted.  And, as we 

live at a temperature above 0 Kelvin or 

the absolute zero, every single system has 

slight random variation; for instance, 

molecules of gasses constituting  air 

constantly bounce off each other in a random fashion. This randomness is one of the quantum 

phenomenon and thus unpredictable. 

Figure 4 : Quantium based Random Number Generator 
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Because the final state value of quantum  events cannot in principle be computation, they are 

the perfect standard for random number generation. Some quantum phenomena used are as 

follows: 

 

• Shot noise:  A quantum noise source in electronic circuits. A simple instance can be a 

photodiode biased lamp shine. Arriving photons generate noise in the implemented 

circuit, according to the principle  of uncertainty in quantum mechanics. 

• A nuclear decay radiation source: 

• Photons traveling through a semi-transparent mirror. It is a mutually exclusive 

event (reflection/transmission) are detected and clubbed  together as ‘0’ or ‘1’ bit to 

represent values respectively. 

• Signal amplification on the base of a reverse-biased transistor. The emitter of the 

transistor is saturated with electrons and once in a while they will pass through the 

band-gap and exit via the base of the transistor. This signal is then further amplified 

using a few more transistors and the result fed into a computer to represent zeros and 

ones. 

• Schmitt trigger. In a degenerate optical parametric oscillator, the binary phase state 

selection due to spontaneous parametric down-conversion leading to the binary phase 

state selection. 

  

First pointed out in 2001, and certified to the highest levels of entropy testing, Quantis 

delivers reliable randomness at rates up to 16 Mega bits per second. It is a family of random 

number generating hardware which use the random nature of quantum physics as a source of 

true randomness.  

 

The product version in existence compatible with most platforms are: 

1. USB device 

2. PCI Express (PCIe) board  
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2.3. True Random Number Generator Using a Metastability-Based Quality Control 

 

 ItTisTaTtrueTrandomTnumberTgeneratorTbasedTonTmetastabilityTthatTachievesThighTTTentropy

TandTpassesTrandomnessTtests.TByTmeasuringTtheTmetastableTresolutionTtimeTtheTgeneratorTmeas

uresTtheTdegreeTofTrandomnessTregardlessTofTtheToutputTbits.TTheTsystemTcomputesTtheToriginalTr

andomTnoiseTlevelTatTtheTtimeTofTmetastabilityTandTtunesTTitselfTtoTaTchieveTaTThighTprobabilityTofT

TTTrandomness.TDynamicTcontrolTenablesTtheTsystemTtoTrespondTtoTdeterministicTnoiseTandTaTqual

ifierTmoduleTgradesTtheTindividualTmetastableTeventsTtoTproduceTaThigh-entropyTrandomTbit-

stream.  

 

TheTgradingTmoduleTallowsTtheTuserTtoTtradeToffToutputTbitrateTwithTtheTqualityTofTtheTbitstream. 

ATfullyTintegratedTtrueTrandomTnumberTgeneratorTwasTTTfabricatedTinTaT0.13TTTmomTTTbulkT CMOS 

technologyTwithTanTareaTofT0.145Tmm2. 

 

2.4. True Random Number Generator based on compact chaotic oscillator 

 TrueTRandomTNumberTGeneratorT(TRNG)TbasedTonTCMOSTdesignedTcompactTdiscrete-

timeTchaoticTTToscillatorTTTisTTpresented.TTheTchaoticTTTTToscillatorTwasTdesignedTusingT3Ttransistors 

TapTTcircuitTTTinTTTorderTTTtoTconstructTTTanTapproximateTTTVTshapeTcharacteristicTTTT(inverseTtentTmap

).TSimulationTofTtheTchaoticToscillatorTwasTdescribedTandTexaminedTinTtermsTofTbifurcationTdiagr

amTandTtransientTwaveformTtoTshowTthatTitThasTaTdesirableToutputTandTsuitabilityTforTTRNG.TThe

TTRNGThasTbeenTusedTaTchaoticToscillatorTtoTgenerateTaTrandomTsignalTandTincreaseTtheTrandom-

nessTofTtheToutputTsignalTthroughTaTdualToscillatorTsamplingTTTmethodTandTXOR.TTheTcircuitTwas

TdesignedTandTsimulatedTinT0.18μmTCMOSTtechnologyTwithT1.8TvoltageTsupply.TFurthermore,Tit

TwasTtestedTtoTbeTfunctionalTforToutputTbitTrateT23TMbpsTandTpassedTallTtestTmethodsTinTNISTTsuit

Tstandard.TTheTproposedTTRNGTexposesTaTpotentialTalternativeTinTbothTcompactTandTrobustTrand

omTbitTsequenceTthatTsuitableTtoTvariousTotherTapplicationsTinTsecurity. 

 

2.5. A truly random number generator based on thermal noise 

 ATsimpleTcircuitTtoTgenerateTtrulyTrandomTnumbers,TwhichTisTbasedTonTtheTthermalTnoise

TofTtheTresistor,TisTpresented,TasTwellTasTsomeTTTTsimulationTresults.TTTTTheTcircuitTcanTbeTfabricated 

using standard CMOS process. 
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2.6. SimpleTtrueTrandomTnumberTgeneratorTforTanyTsemiconductorTtechnology 

 TrueTrandomTnumberTgeneratorsT(TRNGs)TareTneededTinTcryptographyTforTkeyTgenerati

on,TinTchallengeTresponseTauthenticationTproceduresTandTforTcountermeasuresTagainstTpowerTan

alysisTattacks.TSuchTtrueTrandomnessTrequiresTutilizingTrandomTphysicalThardwareTeffects.TItTTisT 

theTgoalTtoTmakeTtheTTRNGTusableTforTdifferentTsemiconductorTTTtechnologies.TThisTapproachTis

TbasedTonTringToscillatorsTwithTmultipleTtapsTTTTinTcombinationTwithTaTsimpleTpostTTTprocessingTby

T exclusiveTORTTTTambivalenceT(XOR)TTTTcompression.TVerificationsTTTwithTaTtestTchipTandTseveralT 

FPGATimplementationsTTTTTshowedTthatTstandardTdigitalTTTTlibraryTelementsTandTtheTdigitalTdesign

T flowTcanTbeTusedTwithoutTanyTconstraintsTforTTTTcompilationTTTandTspecialTlayoutTrules.TATproperT 

choiceTofTsamplingTfrequencyTandTcompressionTTTcoefficientTensuresTaTrandomTTTToutputTwithTanT 

extremelyTlowTbiasTforTdifferentTtechnologiesTwhichTTTcanTbeTcheckedTonlineTeasily.TItTwasTshow

nTthatTforTpassingTtheTTTonlineTtestTwithTaTTTTgivenTbiasTlimitTtheTgeneratedTrandomTdataTpassesTthe

T statistical tests. 

 

2.7. TRNG Based on ROPUF Circuit 

TheTmethodTofTgeneratingTtrueTrandomTnumbersTutilizingTtheTcircuitTprimarilyTdesignedTasTPUF

TbasedTonTTTTringTTTToscillators.TTheTgoalTTTisTTTtoTproveTthatTitTisTpossibleTTTTtoTdesignTtheTTTTuniversalT 

cryptosystem,TthatTcanTbeTusedTforTvariousTapplicationsTtheTPUFTcanTbeTutilizedTforTasymmetricT

cryptographyTandTgeneratingTasymmetricTkeys,TTTTTRNGTforTsymmetricTcryptography,Tnonce'sT 

and salts. 

2.8. A TRNG algorithm from digital camera image noise for varying lighting conditions 

 ThisTTrueTRandomTNumberTGeneratorT(TRNG)TusingTtheTimagesTtakenTbyTtheTwebTorT 

mobileTphoneTcameras.TTheTthreeTRGBTcolorTchannelsTtoTobtainTtheTrandomTnumbersTwhereasT

previousTstudiesTusedTonlyTone.TTheTalgorithmTexcludesTeachTpixel'sTsaturatedTvaluesTtoTgetTitsT

unbiasedTbits.TAnTadditionalTtransposingToperationTshufflesTtheTrawTsequenceTtoTachieveTbetter 

randomness. 
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TheTfinalTsequenceTpassesTallTofTtheTNISTTrandomnessTtests.TTheTalgorithmTinvolvesTveryTfewT 

calculationsTandTisTespeciallyTsuitableTforTsmartphones.TWithTmodernTmobileTcameras,TitTcanT 

workTonTtheTgoTandTachieveTaTfastTbitTrate.TWithTreadilyTTTTavailableTcommodityThardwareTwithT 

noThardwareTchanges,TweTobserveTaTrandomTnumberTgenerateTaTrateTofT60TMbps. 

2.9 The Mersenne Twister 

TheTMersenneTTwisterTisTaTTTTpseudoTTTrandomTnumberTTTTgeneratorT(PRNG).TItTisTbyTfarTtheTmostT 

widelyTusedTTTTgeneralTTTTpurposeTPRNG.TItsTnameTTTTderivesTfromTtheTfactTthatTitsTperiodTlengthTis

T chosen  Tto be a Mersenne prime. 

TheTMersenneTTwisterTwasTdevelopedTinT1997TbyTMakotoTMatsumotoTandTTakujiTNishimura.TIt

TwasTdesignedTspecificallyTtoTTTTrectifyTmostTofTtheTTTTflawsTfoundTinTolderTPRNGs.TItTwasTtheTfirst

T PRNGTtoTprovideTfastTgenerationTofThigh-qualityTpseudorandomTintegers. 

TheTmostTcommonlyTusedTversionTofTtheTMersenneTTwisterTalgorithmTisTbasedTonTtheTMersenne

TprimeT219937−1.TTheTstandardTimplementationTofTthat,TMT19937,TusesTaT32-bitword length. 

ThereTisTanotherTimplementationTthatTusesTaT64-bitTwordTlength,TMT19937-64; it generates a 

different sequence. 

Advantages 

TheTcommonlyTusedTversionTofTMersenneTTwister,TMT19937,Twhich produces a sequence of  32-

bit integers, has the following desirable properties: 

1. 1.ItThasTaTveryTlongTperiodTofT219937T−T1.TWhileTaTlongTperiodTisTnotTaTguaranteeTofT 

quality in a random number generator, short periods can be problematic. 

2. 2.ItTisTk-distributedTtoT32-bitTaccuracyTforTeveryT1T≤TkT≤T623T(seeTdefinitionTbelow). 

3. 3.ItTpassesTnumerous tests for statistical randomness, including the "Diehard tests. 

Disadvantages 

TheTlargeTstateTspaceTcomesTwithTaTperformanceTcost:TtheT2.5TKiB state buffer will place a load 

onTtheTmemoryTTTTcaches.TInT2011,TTTTSaitoT&TTTTMatsumotoTproposedTaTTTTversionTofTthe Mersenne 

Twister  to  addressTthisTissue.TTheTtinyTversion,TTinyMT,TusesTjustT127TbitsTofTstateTspace. 
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By Ttoday'sTTTTstandards,TTTTtheTTTTMersenneTTwisterTTTTisTTTTsomewhatTTTTslowTTTTTTunlessTTTTthe SFMTT 

implementationTisTusedT.TItTpassesTmost,TbutTnotTall,TofTtheTstringentTTestU01TrandomnessTtests.T

MultipleTMersenneTTwisterTinstancesTthatTTTTdifferTonlyTinTseedTvalueT(butTnotTotherTparameters)T 

areTnotTgenerallyTappropriateTTTforTMonteTTTCarloTsimulationsTthatTrequireTTTTindependentTrandom

T number generators, thoughTthereTexistsTTTTaTmethodTforTTTTchoosingTmultipleTTTTsetsTofTparameters. 

ItTcanTtakeTaTlongTtimeTtoTstartTgeneratingToutputTthatTpassesTrandomnessTtests,Tif the initial state 

isThighlyTnonTrandomTparticularlyTifTtheTinitialTstateThasTmanyTzeros.TA consequence of this is 

thatTtwoTinstancesTofTtheTgenerator,TstartedTwithTinitialTstatesTthatTareTalmost the same, will 

usuallyToutputTnearlyTtheTsameTsequenceTTTforTmanyTiterations,TbeforeTeventuallyTdiverging.TThe

T2002TupdateTtoTtheTMTTTTTalgorithmThasTTTTimprovedTTTTinitialization,TsoTthatTbeginningTTwithTsuch

TaT state is very unlikely. 

2.10 Yarrow algorithm 

TheTYarrowTalgorithmTisTaTfamilyTofTcryptographicTpseudorandomTnumberTgeneratorsTdevisedT

byTJohnTKelsey,TBruceTSchneierTandTNielsTFerguson.TTheTYarrowTalgorithmTisTexplicitlyTunpat

ented,royaltyTfreeTandTopenTsource;TnoTlicenseTisTrequiredTtoTuseTit.TYarrowTTTisTincorporatedTTTTin

T iOSTandTMacTOSTXTforTtheirT/dev/randomTdevices,TasTdidTFreeBSDTinTtheTpast.T 

AnTimprovedTdesignTfromTFergusonTandTSchneier,TFortuna,TisTdescribedTinTtheirTbook,TPractical

T Cryptography, and FreeBSD has  now  moved  to  using  this. 

Principles 

OneTofTtheTmostTimportantTTTprinciplesTofTYarrowTisTtoTTTTmakeTaTPRNGTthatTisTbetterTatTresistingT 

realTworldTattack.TTheTformerTwidelyTTTTusedTdesignsTsuchTasTANSITX9.17,TRASREFT2.0TPRNG,

ThaveTloopholesTthatTprovideTTTTattackersTTTTopportunitiesTunderTsomeTcircumstances.TSomeTofTthe

mTareTnotTintentionallyTdesignedTtoTfaceTrealTworldTattacks.TTAnotherTprincipleTofTYarrowTisTthat

TsystemTdesignersTwithTlittleTknowledgeTTTTaboutThowTtheTTTTPRNGTworksTTTcanTincorporateTitTinto

T their  own  real  world  product  fairly  easily. 

Components 
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TheTdesignTofTYarrowTconsistsTofTfourTTmajorTTcomponentsTTincludingTanTTentropyTaTTTccumulator

,T reseed mechanism, generation  mechanism and reseed control. 

YarrowTaccumulatesTentropyTintoTtwoTpools:TtheTfastTpool,TwhichTTTprovidesTfrequentTreseedsTofT 

theTkeyTtoTkeepTtheTdurationTofTkeyTTTTcompromisesTTTTasTTTTshortTasTpossible;theTslowTTpool,Twhich

TprovidesTrareTbutTconservativeTTTTreseedsTofTtheTkey.TThisTmakesTTTTsureTthatTtheTreseedTisTsecured

T evenTwhenTtheTentropyTestimatesTareTveryTveryToptimisticTinTnature. 

TheTTTreseedTTTTmechanismTTTTconnectsTtheTentropyTTTaccumulatorTTTtoTTtheTTTTgeneratingTmechanism

.ReseedingTfromTtheTfastTpoolTusesTtheTTTTcurrentTTTTkeyTTTandTtheThashTofTallTinputsTtoTtheTfastTpool

T sinceTstartupTtoTgenerateTaTnewTkey;TreseedingTfromTtheTslowTpoolTTbehavesTsimilarly,TexceptTitT 

alsoTusesTtheThashTofTallTinputsTtoTtheTTslowTTpoolTTtoTTgenerateTaTTnewTkey.TBothTofTtheTreseedings

T resetTtheTentropyTestimationTofTtheTfastTpoolTtoTzero,TbutTtheTlastToneTalsoTsetsTtheTestimationTofT 

theTslowTpoolTtoTzero.TTheTreseedingTmechanismTupdatesTTTtheTkeyTconstantly,TsoTthatTevenTifTthe

TkeyTofTpoolTinformationTisTknownTtoTtheTattackerTbeforeTtheTreseed,Tthey will be unknown to the 

attacker  after  the  reseed. 

TheTreseedTcontrolTTcomponentTisTTleveragingTTbetweenTTfrequentTTreseeding,Twhich  is  desirable 

butTmightTallowiterativeTguessingTattacks,TandTTinfrequentTreseeding,TwhichTcompromisesTmore

TinformationTforTanTattackerTwhoThasTtheTkey.YarrowTusesTtheTfastTpoolTtoTTreseedTwheneverTTTthe 

TsourceTpassesTsomeTthresholdTvalues,TandTusesTtheTslowTpoolTtoTreseedTwheneverTatTleastTtwoTof

TitsTsourcesTpassTsomeTotherTthresholdTvalue. The specific threshold values are  mentioned  in  the  

Yarrow-160Tsection. 

Generation 

Yarrow160TusesTthreekeyTtripleDESTinTcounterTmodeTtoTgenerateToutputs.TC is an  nbit  counter  

value; K is the key. In order to generate the next output block, Yarrow follows  the functions  

shown  here. 

YarrowTkeepsTTTcountTofTtheToutputTblock,TbecauseTonceTtheTkeyTisTcompromised,TtheTleakTofTthe

ToldTToutputTTTbeforeTTTtheTTTcompromisedTTTToneTcanTTTbeTstoppedTimmediately.TOnceTsomeTsystemT 

securityTparameterTPgTisTreached,TtheTTTalgorithmTTTwillTTgenerateTkTbitsTofTPRNGToutputTandTuseT 

themTasTtheTnewTkey.TInTYarrow160,TtheTsystemTsecurityTparameterTisTsetTtoTbeT10,TwhichTmeans
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TPgT=T10.TTheTparameterTisTintentionallyTsetTtoTbeTlowTto minimize the number of outputs that  can  

be  backtracked. 

Reseed 

TheTreseedTmechanismTofTYarrow160TusesTSHA1TandTtripleDESTasTtheThashTfunctionTandTblock

Tcipher.TTheTdetailsTstepsTareTinTtheToriginalTpaper. 

ImplementationTofTYarrow-160 

Yarrow160TcanTbeTimplementedTinTJava,TandTFreeBSD.TTheTexamplesTcanTbeTfoundTinT"AnTimp

lementationTofTtheTYarrowTPRNGTforTFreeBSD"TbyTMarkTR.TV.TMurray. 

Pros  and  cons  of  Yarrow 

•Yarrow reuses existing building blocks. 

•Compared to previous PRNGs, Yarrow is reasonably efficient. 

•YarrowTcanTbeTusedTbyTprogrammersTwithTnoTcryptographyTbackground in a reasonably 

secureTway.TYarrowTisTportableTandTpreciselyTdefined.TTheTinterfaceTisTsimple and clear. 

TheseTfeaturesTsomewhatTdecreaseTtheTchancesTofTimplementationTerrors. 

•Yarrow was created using an attack-oriented design process. 

•TheTentropyTestimationTofTYarrowTisTveryTconservative,TthusTpreventingTexhaustive search  

attacks.TItTisTveryTcommonTthatTPRNGsTfailTinTrealTworldTapplicationsTdueTtoTentropyT 

overestimation  and  guessable  starting  points. 

•The reseeding process of Yarrow is relatively computationally expensive, thus the cost of 

attempting to guess the PRNG’s key is higher. 

•YarrowTusesTfunctionsTtoTsimplifyTtheTmanagementTofTseedTfiles,TthusTtheTfilesTareTconstantlyT 

updated. 

•ToThandleTcryptanalyticTattacks,TYarrowTisTdesignedTtoTbeTbasedTonTaTblockTcipherTthatTisT 

secured.TTheTlevelTofTsecurityTofTtheTgenerationTmechanismTdependsTonTtheTblockTcipher. 

•It tries to avoid data dependent execution paths. This is done to prevent side channel  

attacksTsuchTasTtimingTattacksTandTpowerTanalysis.TThisTisTanTimprovementTcomparedTtoTearlierT

PRNGs,TforTexampleTRSAREFT2.0TPRNG,TthatTwillTcompletelyTfallTapartTonceTadditionalT 

informationTaboutTtheTinternalToperationsTareTnoTlongerTsecuredTinTnature. 
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•YarrowTusesTcryptographicThashTfunctionsTtoTprocessTinputTsamples,TandTthenTusesTaTsecureTup

dateTfunctionTtoTcombineTtheTsamplesTwithTtheTexistingTkey.TThisTmakesTsureTthatTtheTattackerT 

cannotTeasilyTmanipulateTtheTinputTsamples.TPRNGsTsuchTasTRSAREFT2.0TPRNGTdoTnotThaveT 

the ability to resist this kind of chosen-input attack. 

•UnlikeTANSITX9.17TPRNG,TYarrowThasTtheTabilityTtoTrecoverTfromTaTkeyTcompromise.TThisTm

eansTthatTevenTwhenTtheTkeyTisTcompromised,TtheTattackerTwillTnotTbeTableTtoTpredictTfutureT 

outputsTforever.TThisTisTdueTtoTtheTreseedingTmechanismTofTYarrow. 

•YarrowThasTtheTentropyTsamplesTpoolTseparatedTfromTtheTkey,TandTonlyTreseedsTtheTkeyTwhenTt

heTentropyTpoolTcontentTisTcompletelyTunpredictable.TThisTdesignTpreventsTiterativeTguessingTat

tacks,TwhereTanTattackerTwithTtheTkeyTguessTtheTnextTsampleTandTchecksTtheTresultTbyTobservingT

theTnextToutput. 

Cons 

•SinceTtheToutputsTofTYarrowTareTcryptographicallyTderived,TtheTsystemsTthatTuseTthoseToutputsT

canTonlyTbeTasTsecureTasTtheTgenerationTmechanismTitself.TThatTmeansTtheTattackerTwhoTcanT 

breakTtheTgenerationTmechanismTwillTeasilyTbreakTaTsystemTthatTdependsTonTYarrow’sToutputs.T

ThisTproblemTcannotTbeTsolvedTbyTincreasingTentropyTaccumulation. 

•YarrowTrequiresTentropyTestimation,TwhichTisTaTveryTbigTchallengeTforTimplementation.TItTisT 

hardTtoTbeTsureThowTmuchTentropyTtoTcollectTbeforeTusingTitTtoTreseedTtheTPRNG.TThisTproblemT 

isTsolvedTbyTFortunaT(PRNG),TanTimprovementTofTYarrow.TFortunaThasT32TpoolsTtoTcollectT 

entropy and removed the entropy estimator completely. 

•Yarrow'sTstrengthTisTlimitedTbyTtheTsizeTofTtheTkey.TForTinstance,TYarrow160ThasTanTeffectiveT 

keyTsizeTofT160Tbits.TIfTtheTsecurityTrequiresT256Tbits,TYarrow160TisTnotTcapableTofTdoingTtheTjob 
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Chapter-3 SYSTEM DEVELOPMENT 

 

The System development of "Pure Random Number Generator are as follows; 

 

3.1 Broad-Scale Distribution of Working Process 

The process starts with data collection from the mobile sensors. Then the data is recorded on 

the mobile device in csv format and then moves over to the server for analysis and 

processing. Once the processing is done the data is moved to the entropy pool, which is used 

as the source for the random number generation. the flowchart  below on this page depicts 

the flow of data from mobile sensors to the entropy pool. 

3.1.1 Step1: Data Collection 

An android application is used to read the values returned from the sensor of a mobile 

handset.  

The program then segregates and transforms the data into a comma separated values (.csv) 

format. And stores it over the mobile storage on each cellular unit.  
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3.1.2 Step2: Moving Database to Server 

 

This data set is then passed on to the A MySQL Server for processing. The data will be 

processed and passed as requested by the user.  

3.1.3 Step3: Extraction of meaningful information 

 

PHP is used and a server side language. The algorithm on the server side splits the decimal 

sensor value and takes 3 to 7 the digit making it the random number for that sensor at that 

point of time. 

3.1.4 Step4: Range Optimization 

 

This random number is processed by a ranged algorithm that forces it to lie in a given 

interval keeping the unpredictability intact. Now this generated random number is made to 

fall on the graph and results are shown as below The code for each shall be included in the 

last section of the report. 

3.2 Modular Distribution  

 

3.2.1 MODULE 1: Android Application for Sensor Data 

Collection 

 

Each mobile nowadays is equipped with some sensors even if it 

ranges as low as 3000 bucks. The android application uses specific 

classes to extract data from the handset's Sensor. 

 

Figure 5 : Android App UI 
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Figure 6 : Android code snippit 

 

The Android Application asks for the 

sampling rated from the user in seconds and 

the data recording interval. It also gives a list 

of sensors in the form of a checklist of sensors 

to be chosen for data recording. This session is 

recorded corresponding to a specific session 

ID. 

  

3.2.2 MODULE 2: Recording Data Using SQLite 

 

What is SQLite? 

 

SQLite is open source Structured Query Language database that stores values to a text file on 

any device. Android devices already comes in with built in SQLite. It supports all the 

Figure 7 : Android App Live Graph 
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RDBMS features. In order to access this database, you do not need any kind of connections 

for it like JDBC,ODBC etc 

 

Database - Package 

The main package is "android.database.sqlite". The package contains the classes to manage 

your databases in form of tables. 

 

 

After completion of working of this module the data is stored locally to the device and is 

ready to be transferred to server for processing. 

 

3.2.3 MODULE 3: Server-Side Scripting for extraction of meaningful information. 

 

Once the server receives the data it processes it is ready to be process. 

Instances of Raw data is as follows. 

1. Game Rotation Vector [While Climbing Stairs]  

 

Graph 1 : Raw sensor data of Game Rotation Vector [While Climbing Stairs] 
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Figure 8 : Sampling Database Screenshot 
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2. GeoMagnetic Rotation Vector [While Walking] 

 

Graph 1 : Raw sensor data of  GeoMagnetic Rotation Vector [While Walking] 

 

As we can observe that though this data is not predictable in any sense but it is not scattered 

in a range and has some of the other pattern . This tells us that the raw data needs to be 

processed more than this. 

 

 

The above codes stripes the numeric data and take some of the digits. Lets observe the 

behavior and pattern of the data after processing. 

 

1. Game Rotation Vector [While Climbing Stairs] 

 

Graph 3 : Processed data of Game Rotation Vector [While Climbing Stairs] 
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2. GeoMagnetic Rotation Vector [While Walking] 

 

Graph 4 : Processed sensor data of GeoMagnetic Rotation Vector [While Walking] 

 

Similar results were obtained while walking running and stationary device. and thus can be 

used for to fill the entropy pool.  

 

3.2.4 MODULE 4: Entropy pool generator 

 

Entropy pool helps us to work in offline mode i.e. when sensors are offline.Entropy generator 

picks up the values from sensor database lists it in a table. 

 

 

This entropy pool is used to get random number as per requirement. 

The count flag keeps a count of used and used data. 

 

 

 

 

 

3.2.5 MODULE 5: Range optimization 
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The purpose of this module is to generate the value under a give interval. 

 

 

Figure 9 : Screenshot of range optimizer UI 

 

The above interface takes the upper range and lower range, optimizes the seed within the 

range and displays the output. 

 

The code snippet shows a how the number has been manipulated. 
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Chapter-4 PERFORMANCE ANALYSIS 

 

4.1 Algorithmic Complexity 

 

All the algorithms used in any module of the project is O(n) for n random numbers. This 

shows the random number generating algorithms are not CPU intensive. And as the server is 

multithread it can cater to large number of requests at the same time. The feature out rules the 

drawback of low data rate of pre-existing Pure Random number generators 

 

4.2 Resource Utilization at Runtime 

 

This stress testing tells us the processor requirement of entropy collection algorithm when 

implemented in a mobile device under load. Here we can see that 20% of Ram is required to 

collect data for 10 seconds at very high sampling rate of 0.002 sec/sample. Data collection 

for 10 seconds gives a set of 4000 random numbers. 

 

 

Figure 10 :  Resource Utilization at Runtime 
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4.3 Applications and Contributions  

 

4.3.1 Caesar Cipher 

InTcryptography,TaTCaesarTcipher,TalsoTknownTasTshiftTcipher,TCaesar's cipher, Caesar's code or 

CaesarTshift,TisToneTofTtheTsimplestTandTmostTwidelyTknownTencryption techniques. It is a type  

ofTsubstitutionTcipherTinTwhichTeachTletterTinTtheTplaintextTisTTshifted' a certain number of places 

downTtheTalphabet.TForTinstance,TwithTaTshiftTofT1,TATwouldTbeTreplaced by B, B would become 

C,TandTsoTon.TTheTmethodTisTnamedTafterTJuliusTCaesar,TwhoTapparently used it to communicate 

with his generals. 

MoreTcomplexTencryptionTschemesTsuchTasTtheTvigenereTcipherTemploy the Caesar cipher as 

oneTelementTofTtheTencryptionTprocess.TTheTwidelyTknownTROT13TTencryption' is simply a 

Caesar cipherTwithTanToffsetTofT13.TAsTwithTallTsingle-alphabet substitution ciphers, the Caesar 

cipher isTeasilyTbrokenTandTinTmodernTpracticeToffersTessentiallyTnoTcommunicationTsecurity. 

TheTencryptionTofTCaesarTcipherTcanTbeTrepresentedTusingTmodularTarithmetic by first  

transforming the letters into numbers, according to the scheme, A = 0, B = 1,..., Z = 25. 

EncryptionTofTaTletterTxTbyTaTshiftTnTcanTbeTdescribedTmathematicallyTas, 

 

Decryption is performed similarly, 

 

  

Instance: 

ToTpassTanTencryptedTmessageTfromToneTpersonTtoTanother,TitTisTfirstTnecessary that both parties 

haveTtheTTkey'TforTtheTcipher,TsoTthatTtheTsenderTmayTencryptTitTandTtheTreceiver may decrypt it. 

ForTtheTCaesarTcipher,TtheTkeyTisTtheTnumberTofTcharactersTtoTshift the cipher alphabet. 
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Security: 

Caesar cipher isTnotTaTsecureTcryptosystemTbecauseTthereTareTonlyT26Tpossible keys to try out, 

weTcanTsimplyTtryTeachTpossibilityTandTseeTwhichToneTresultsTinTaTpiece of readable text. If you 

happenTtoTknowTwhatTaTpieceTofTtheTciphertextTis,TorTyouTcanTguessTaTpiece, then this will allow 

you to immediately find the key. 

IfTthisTisTnotTpossible,TaTmoreTsystematicTapproachTisTtoTmatchTupTtheTfrequencyTdistribution of 

the letters.TByTgraphingTtheTTTfrequenciesTTTofTTTlettersTTTinTTTtheTTTciphertext,TandTbyTTknowing the 

expected distributionTTTofTTTthoseTlettersTinTTtheToriginalTTTlanguageTofTtheTplaintext,TaTTThuman can 

easilyTspotTtheTvalueTofTtheTshiftTbyTlookingTatTtheTdisplacementTof particular features of the 

graph.  his is known as frequency analysis. For instance, in the English language the 

plaintextTfrequenciesTofTtheTlettersTE,TT,T(usuallyTmostTfrequent),TandTQ,TZT(typicallyTleastTfrequ

ent)Tare particularly distinctive. 

Implementation:  
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We can use the randomly generated value as encryption key for Caesar cipher or and other 

similar encryption algorithm.  

4.3.2 Games 

Unpredictable were first investigated in the context of gambling developing, sometimes, 

pathological forms like apophenia. Many randomizing devices such as dice, shuffling playing 

cardsTwheelsTseemTtoThaveTTTbeenTTTdevelopedTTTforTTTuseTinTgamesTofTchance.ElectronicTgambling 

equipmentcannotTuseTTtheseTandTsoTTTtheoreticalTTTproblemsTareTlessTeasyTTTtoTavoid;TTTmethodsTTTof

TcreatingTthemTareTsometimesTregulatedTbyTgovernmentalTgamingTcommissions. 

ModernTelectronicTTcasinoTgamesTTTcontainToftenToneTorTmoreTrandomTnumberTgeneratorsTwhich

T decideTtheToutcomeTofTaTtrialTinTtheTgame.TEvenTinTmodernTslotTmachines, where mechanical  

reelsTseemTtoTspinTonTtheTscreen,TtheTreelsTareTactuallyTspinningTfor entertainment value only.  

TheyTeventuallyTstopTexactlyTwhereTtheTmachine'sTsoftwareTdecidedTthey would stop when 

theTThandleTwasTTTTTfirstTpulled.TItTTThasTTbeenTallegedTTTthatTsomeTTTgamingTTTmachines'TsoftwareTTTis 

deliberately biasedTtoTpreventTtrueTrandomness,TinTtheTinterestsTofTmaximizingTtheir owners' 

revenue;TtheThistoryTofTbiasedTmachinesTinTtheTgamblingTindustryTisTtheTreasonTgovernmentTinsp

ectorsT 

attemptTtoTsuperviseTtheTmachinesTelectronicTequipmentThasTextended the range of supervision.  

SomeTtheftsTfromTcasinosThaveTusedTcleverTmodificationsTofTinternalTsoftwareTtoTbiasTtheToutco

mesTofTtheTmachinesTatTleastTinthoseTTTTTwhichThaveTTTbeenTdiscovered.TGamblingTestablishmentsT 

keepTcloseTtrackTofTmachineTpayoutsTinTanTattemptTtoTdetectTsuchTalterations. Random draws are 

oftenTusedTtoTmakeTaTdecisionTwhereTnoTrationalTorTfairTbasisTexists for making a deterministic 

decision. 

 

4.3.3TScience 

ManyTmethodsTofTstatisticalTanalysis,TsuchTasTtheTbootstrapTmethod,TrequireTrandomTnumbers.T

MonteTCarloTmethodsTinTphysicsTandTcomputerTscienceTrequireTrandomTnumbers. 

RandomTnumbersTareToftenTusedTinTparapsychologyTasTaTtestTofTprecognition. 

Statistical sampling 
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StatisticalTpracticeTisTbasedTonTstatisticalTtheoryTwhichTis,Titself,Tfounded on the concept of  

randomness.TTTManyTTTelementsTTTofTTTstatisticalTTTpracticeTTTdependTTTonTTTrandomness via random  

numbers.TWhereTthoseTrandomTTnumbersTTTfailTtoTbeTactuallyTrandom,Tany subsequent statistical  

analysisTmayTTTsufferTfromTTTsystematicTTTbias.TElementsTofTstatisticalTpractice that depend on  

randomnessTinclude:TchoosingTaTTrepresentativeTTTsampleTofTTTtheTTTpopulation being examined,  

disguisingTtheTprotocolTofTaTTTstudyTfromTaTTTparticipantT(seeTTTrandomized controlled trial) and  

Monte Carlo simulation. 

TheseTapplicationsTareTusefulTinTauditingT(forTdeterminingTsamplesTsuchTasTinvoices)TandT 

experimentalTdesignT(forTinstanceTinTtheTcreationTofTdouble-blindTtrials). 

Analysis 

ManyTexperimentsTinTphysicsTrelyTonTaTstatisticalTanalysisTofTtheir output. For instance, an  

experimentTmightTcollectTXraysTfromTanTastronomicalTsourceTandTthenTanalyze the result for 

periodicTsignals.TSinceTrandomTnoiseTcanTbeTexpectedTtoTappearTtoThave faint periodic signals  

embeddedTinTit,TstatisticalTanalysisTisTrequiredTtoTdetermineTtheTlikelihood that a detected signal 

actuallyTrepresentsTaTgenuineTsignal.TSuchTanalysisTmethodsTrequires the generation of random 

numbers.TIfTtheTstatisticalTmethodTisTextremelyTsensitiveTtoTpatternsTinTtheTdata (such as those 

used toTsearchTforTbinaryTpulsars),TveryTlargeTamountsTofTdataTwithTnoTrecognizableTpatternTareT 

needed. 

Simulation 

InTmanyTscientificTandTengineeringTfields,TcomputerTsimulationsTTTofTTTrealTTTphenomena are  

commonlyTused.TWhenTtheTrealTphenomenaTareTaffectedTbyTunpredictableTprocesses,TsuchTasT 

radioTnoiseTorTday-to-dayTweather,TtheseTprocessesTcanTbeTsimulatedTusing random or pseudo-

random numbers. 

PseudoTrandomTnumbersTareTfrequentlyTusedTinTsimulationTofTstatisticalTevents, a very simple 

instanceTbeingTtheToutcomeTofTtossingTaTcoin.TMoreTTTcomplicatedTTTsituations are simulation 

ofTpopulationTgenetics,TorTtheTbehaviorTofTsubatomicTparticles.TSuchTsimulation methods, often 

called stochastic methods, have many  applications in computer simulation of real-world 

processes. 

 



34  

 

Chapter-5 Conclusion  

 

5.1 Conclusions  

The above developed model successfully generates pure random numbers for any give finite 

range.  It is not fully dependent on online connectivity with the physical phenomenon i.e. 

random numbers can be generated at any point of time. The model also shows the ability to 

use these random  number as per requirements. The model also over comes the major 

drawback of  low bit rate with no extra load on the processor as the algorithm used  is O(1). 
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Chapter -6. Appendix   

6.1 Android Application  [MainActivity.java] 
"package simplicial.software.sensor_suite.application; 

 

import android.annotation.SuppressLint; 

import android.app.Activity; 

import android.app.AlertDialog.Builder; 

import android.app.FragmentManager; 

import android.app.FragmentTransaction; 

import android.os.Build.VERSION; 

import android.os.Bundle; 

import android.os.Environment; 

import android.view.Menu; 

import android.view.MenuInflater; 

import android.view.MenuItem; 

import android.view.View; 

import java.io.File; 

import java.io.IOException; 

import java.util.ArrayList; 

import java.util.List; 

import simplicial.software.sensor_suite.models.b; 

import simplicial.software.sensor_suite.models.l; 

import simplicial.software.sensor_suite.models.o; 

import simplicial.software.sensor_suite.models.s;" 

 

public class MainActivity 

  extends Activity 

  implements ak 

{ 

  public List a = new ArrayList(); 

  public double b = 0.1D; 

  public s c = null; 

  public l d = null; 

   

  public void a() 

  { 

    if (this.d != null) { 

      this.d.a(System.currentTimeMillis()); 

    } 

  } 

   

  protected void onCreate(Bundle paramBundle) 

  { 

    simplicial.software.sensor_suite.models.a.b().a(this); 

    o.a = new o(this); 

    super.onCreate(paramBundle); 

    setContentView(2130903040); 

    if (paramBundle == null) { 

      getFragmentManager().beginTransaction().add(2131296256, new p()).commit(); 

    } 

  } 

   

  public boolean onCreateOptionsMenu(Menu paramMenu) 
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  { 

    getMenuInflater().inflate(2131230720, paramMenu); 

    return true; 

  } 

   

  protected void onDestroy() 

  { 

    simplicial.software.sensor_suite.models.a.b().b(this); 

    super.onDestroy(); 

  } 

   

  @SuppressLint({"InlinedApi", "NewApi"}) 

  public boolean onOptionsItemSelected(MenuItem paramMenuItem) 

  { 

    Object localObject; 

    switch (paramMenuItem.getItemId()) 

    { 

    default:  

    case 2131296296:  

    case 2131296299:  

    case 2131296298:  

      for (;;) 

      {" 

        return super.onOptionsItemSelected(paramMenuItem); 

        if (findViewById(2131296258).getVisibility() != 8) { 

          findViewById(2131296258).setVisibility(8); 

        } 

        for (;;) 

        { 

          return true; 

          findViewById(2131296258).setVisibility(0); 

        } 

        getFragmentManager().beginTransaction().replace(2131296256, new u(al.a(this))).addToBackStack(null).commit(); 

        return true; 

        if (this.c == null) { 

          break; 

        } 

        b.a(this, this.c); 

      } 

      if (!simplicial.software.a.a.a.a()) 

      {" 

        paramMenuItem = new AlertDialog.Builder(this); 

        paramMenuItem.setTitle("Error"); 

        paramMenuItem.setMessage("External storage is not writeable."); 

        paramMenuItem.show(); 

        return false; 

      } 

      if (Build.VERSION.SDK_INT >= 19) {} 

      for (localObject = new File(Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_DOCUMENTS) + "/Exported Sensor 

Data/");; localObject = new File(Environment.getExternalStorageDirectory() + "/Exported Sensor Data/")) 

      { 

        ((File)localObject).mkdirs(); 

        localObject = new File((File)localObject, "sensor_data.db"); 

        try 

        { 

          simplicial.software.a.a.a.a(getDatabasePath("sensor_data.db"), (File)localObject); 
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          AlertDialog.Builder localBuilder = new AlertDialog.Builder(this); 

          localBuilder.setTitle("Exported"); 

          localBuilder.setMessage("Database copied to:\n" + localObject); 

          localBuilder.show(); 

        } 

        catch (IOException paramMenuItem) 

        { 

          localObject = new AlertDialog.Builder(this); 

          ((AlertDialog.Builder)localObject).setTitle("Error"); 

          ((AlertDialog.Builder)localObject).setMessage(paramMenuItem.getMessage()); 

          ((AlertDialog.Builder)localObject).show(); 

          return false; 

        } 

      } 

    case 2131296297:  

      new ac(this).show(getFragmentManager(), null); 

      return true; 

    case 2131296300:  

      getFragmentManager().beginTransaction().replace(2131296256, new ag()).addToBackStack(null).commit(); 

      return true; 

    } 

    int i = 0; 

    for (;;) 

    { 

      if (i >= getFragmentManager().getBackStackEntryCount()) { 

        return true; 

      } 

      getFragmentManager().popBackStack(); 

      i += 1; 

    } 

  } 

} 

 

6.2 Entopy Pool Developer 

<?php 

 

 set_time_limit(1000); 

    

 $host="localhost"; 

 $username="root"; 

 $password=""; 

 $database="project"; 

    

 

 $sensor=array( "Game Rotation Vector",       "Game 

Rotation Vector -Wakeup Secondary", 

 "GeoMagnetic Rotation Vector", 

 "GeoMagnetic Rotation Vector -Wakeup Secondary", 

 "Gravity","Gravity -Wakeup Secondary", 

 "Linear Acceleration",  

 "Linear Acceleration -Wakeup Secondary", 

 "LSM6DS3 Accelerometer",       

 "LSM6DS3 Accelerometer -Wakeup Secondary", 

 "LSM6DS3 Gyroscope",        

 "LSM6DS3 Gyroscope -Wakeup Secondary", 
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 "LSM6DS3 Gyroscope Uncalibrated",     

 "LSM6DS3 Gyroscope Uncalibrated -Wakeup Secondary", 

 "Motion Acce",          

 "Orientation", 

 "Orientation -Wakeup Secondary",     

 "Rotation Vector", 

 "Rotation Vector -Wakeup Secondary", 

 "SensorTimestamp (seconds)", 

  "Step Counter",          

 "Step Counter -Wakeup Secondary", 

 "stk3x1x alsprx",         

 "stk3x1x alsprx -Non Wakeup Secondary", 

 "stk3x1x alsprx -Wakeup Secondary",     

 "YAS537 Magnetometer", 

 "YAS537 Magnetometer -Wakeup Secondary",   

 "YAS537 Magnetometer Uncalibrated", 

 "YAS537 Magnetometer Uncalibrated -Wakeup Secondary"); 

        

    

 mysql_connect($host,$username,$password); 

 @mysql_select_db($database) or die( "Unable to select database"); 

      

 $datatype="Processed"; 

 $pool_count=0; 

      

 for($loop_2=0;$loop_2<=19;$loop_2++) 

 { 

  $query="select * from test_4 where `COL 1`= '$sensor[$loop_2]'"; 

  $run=mysql_query($query); 

      

  echo "<center><table border=\"01\" width=\"100%\">"; 

  while ($row=mysql_fetch_array($run)) 

  { 

   echo "<tr>"; 

   for($loop_1=2;$loop_1<=4;$loop_1++) 

   { 

    echo "<td>"; 

    if($loop_1>1) 

    { 

     if($datatype=="Processed") 

     { 

      $pool_count++; 

      list($p1, $p2) = explode(".", $row[$loop_1]); 

      $digits = substr($p2, 2, 5); 

      echo $digits; 

           

      $query_2="INSERT INTO pool (sno,value) VALUES    

    ($pool_count,'$digits')"; 

             

      $digits!=""?mysql_query($query_2):$pool_count--; 

           

     } 

     else 

     { 

      echo $row[$loop_1]; 

         } 



5 APPENDIX 

 

     } 

    else  

    { 

     echo $row[$loop_1]; 

    } 

    echo "</td>"; 

   } 

         

   echo "</tr>"; 

  } 

  echo "</table></center>"; 

      

  echo "</br></br>"; 

 

 } 

?> 

 

2.3 Range Optimizer  
 

$min= intval($_GET['min']); 

 $max= intval($_GET['max']); 

  

 if($min >= $max ) 

  echo " redefine range "; 

 else 

 { 

  $host="localhost"; 

  $username="root"; 

  $password=""; 

  $database="project"; 

  mysql_connect($host,$username,$password); 

  @mysql_select_db($database) or die( "Unable to select database"); 

   

  $query="select * from flag where 1"; 

  $run=mysql_query($query); 

   

  $row=mysql_fetch_array($run); 

  //echo $row[1]; 

   

  $flag=intval($row[1])+1; 

  $flagg=(string)$flag; 

  $sql = "UPDATE `flag` SET value = $flagg WHERE flag = 'count'"; 

  mysql_query($sql); 

   

  $query="select * from pool where sno = $flagg"; 

   

  $run=mysql_query($query); 

   

  $row=mysql_fetch_array($run); 

   

  $rand_seed=intval($row[1]); 

  $normalizer=$rand_seed%($max-$min+1); 

  $number=$min+$normalizer; 
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  echo $number; 

   

 } 

?> 

 

 

2.4  Cipher 
 

 
require_once('rand.php'); 

   

  $obj = new true_random(); 

  $rand_key = $obj->true_rand(1,26); 

 

 function Cipher($ch, $key) 

 { 

  if (!ctype_alpha($ch)) 

   return $ch; 

 

  $offset = ord(ctype_upper($ch) ? 'A' : 'a'); 

  return chr(fmod(((ord($ch) + $key) - $offset), 26) + $offset); 

 } 

 

 function Encipher($input, $key) 

 { 

  $output = ""; 

 

  $inputArr = str_split($input); 

  foreach ($inputArr as $ch) 

   $output .= Cipher($ch, $key); 

 

  return $output; 

 } 

 

 function Decipher($input, $key) 

  return Encipher($input, 26 - $key); 

   

 $str="A b7jh*o"; 

 echo "Random Key : ".$rand_key."</br>"; 

 echo "String : ".$str."</br>"; 

  

 $enc = Encipher($str, $rand_key); 

 echo "Encipher : ".$enc."</br>"; 

  

 $dec = Decipher($enc, $rand_key); 

 echo "Decipher : ".$dec."</br>"; 

 ?> 


