

PATTERN RECOGNITION USING

NEURAL NETWORKS

Project Report submitted in partial fulfillment of the requirement for the

degree of B.Tech

BACHELOR OF TECHNOLOGY

IN

ELECTRONICS AND COMMUNICATION

ENGINEERING

By

DHRUV BATRA 131018
GUNDEEP SINGH 131044
ACHMN SHUKLA 131104

UNDER THE GUIDANCE OF

Dr. Neeru Sharma

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

May, 2017

i

TABLE OF CONTENTS

 Page

 Number

DECLARATION BY SUPERVISOR iii

SUPERVISOR’S CERTIFICATE iv

ACKNOWLEDGEMENT v

LIST OF FIGURES vi

LIST OF TABLES vii

ABBREVATIONS USED viii

ABSTRACT ix

CHAPTER-1

INTRODUCTION 1

1.1 What Is Machine Learning? 1

1.2 Classifications 3

1.2.1 Supervised Learning 3

1.2.2 Learning Multiple Class 4

1.2.3 Unsupervised Learning 6

1.2.4 Reinforced Learning 6

1.3 Model Selection Procedure 7

1.3.1 Cross Validation 7

1.3.2 Structural Risk Minimization 9

1.3.3 Minimum Description Length 9

 1.4 Organization of the report 10

CHAPTER-2

LITERATURE REVIEW

11

2.1 Multilayer Perceptron 11

2.1.1 Neurons 11

2.1.2 Understanding The Brain 12

2.1.3 Neural Networks & Parallel Processing 13

ii

2.2 The Perceptron 14

2.3 Training Perceptron 15

2.4 Learning Boolean Function 16

CHAPTER-3

IMPLEMENTATION

19

3.1 Back Propagation 19

3.2 Training Procedure 20

3.2.1 Improving Convergence 20

3.2.2 Overtraining 21

3.2.3 Structuring The Network 22

3.3 Tools For Design 23

3.3.1 Raspberry pi 23

3.3.2 Processor 24

3.4 Steps in Optical Character Recognition 25

3.5 Input 27

3.6 Training 27

3.7 Testing and Output 28

CHAPTER-4

RESULTS AND CONCLUSION 29

REFERENCES 30

iii

DECLARATION

We hereby declare that the work reported in the B-Tech thesis entitled “Pattern

Recognition Using Neural Networks” submitted at Jaypee University of

Information Technology, Waknaghat India, is an authentic record of our work

carried out under the supervision of Dr. Neeru Sharma. We have not submitted this work

elsewhere for any other degree or diploma.

DHRUV BATRA (131018)

GUNDEEP SINGH KALRA (131044)

ACHMN SHUKLA (131104)

Department of Electronics and communication

Jaypee University of Information Technology, Waknaghat, India

May 2, 2017

iv

SUPERVISOR’S CERTIFICATE

This is to certify that the work reported in the B-Tech. thesis entitled “Character

Recognition Using Neural Network”, submitted by Dhruv Batra (131018),

Gundeep Singh (131044), Achmn Shukla (131104) at Jaypee University of

Information Technology, Waknaghat, India, is a bonafide record of their original

work carried out under my supervision. This work has not been submitted elsewhere for any

other degree or diploma

(Signature of Supervisor)

Dr. Neeru Sharma

2 May, 2015

v

ACKNOWLEDGEMENT

We have taken efforts in this project. However, it would not have been possible without the

kind support and help of our guide and many other individuals. I would like to extend my

sincere thanks to all of them.

We are highly indebted to Dr. Neeru Sharma (Assistant Professor, JUIT) for

her guidance and constant supervision as well as for providing necessary information

regarding the project and also for her immense support in completion of the project.

We would like to express our gratitude towards Mr Kamlesh for regularly helping us and

making everything available during our difficult times.

We would like to express our special gratitude and thanks to Department of Electronics

and Communication, Jaypee University of Information and Technology for providing us with

all the resources and amazing faculty members who have always been our guiding light.

Our thanks and appreciations also go to my colleague for giving in their important

reviews about the project and people who have willingly helped me out with their abilities.

vi

LIST OF FIGURES

Figure

Number

 Caption Page

Number

1.1 Training set for “family car” 4

1.2 Example of Hypothesis class 4

1.3 Instance example from 3 classes 5

1.4 Function Description 8

1.5 Error vs. Polynomial error 8

1.6 Error vs. Polynomial error 9

2.1 Typical Neural Network 12

2.2 A simple perceptron 14

2.3 K parallel perceptrons 15

2.4 Perceptron training algorithm 16

2.5 Perceptron implementing AND gate 17

2.6 XOR gate geometric interpretation 18

3.1 Mean square error vs. Hidden units 21

3.2 Mean square error vs. training epochs 22

3.3 Weight sharing under network structure 23

3.4 Raspberry Pi III 24

3.5 Raspberry Pi pin out diagram 25

3.6 Steps in OCR 26

3.7 Input data 27

3.8 Example training set 28

4.1 Output 29

vii

LIST OF TABLES

Table 2.1: AND gate input and output 17

Table 2.2: XOR gate input and output 17

viii

ABBREVIATIONS USED

ANN Artificial Neural Network

CPU Central Processing Unit

GPU Graphics Processing Unit

HDMI High-Definition Multimedia Interface

HOG Histogram of Oriented Gaussians

MDL Minimum Description Length

MIMD Multiple instructions multiple data

MLP Minimum Description Length

OCR Optical Character Recognition

SRM Structural Risk Minimization

SVM Support Vector Machine

ix

ABSTRACT

Character recognition is just one part of the pattern recognition existing in the world. The major

advantage of doing the pattern recognition using artificial intelligence and unsupervised learning

is that with the use of correct data set you can teach it to recognize every pattern that exists. Our

mind can do pattern recognition or handwritten character deciphering very efficiently and easily,

simply because our mind is made up of a large set of neural networks.

Doing it in real time is another challenge but we have considered challenges as stages of success

rather than considering them as hurdles in achieving our goal. Thus using non biological neural

networks we have implemented character recognition using raspberry PI. The problem still

exists because of the competition between the efficiency and speed.

A camera is used for image acquisition in the real time and after filtering the noisy data and

preprocessing it is passed on. Feature extraction is another important part of the procedure in

which differentiation between the characters is done. It helps recognizing the characters. The

characters in the photo are stored as an image of matrix of pixels. Back propagation algorithm

is used to optimize the results achieved so that our output is closer to the results expected.

Weights and biases of the neural network are automatically adjusted according to the back

propagation which further helps in improving the results.

1

CHAPTER 1

 INTRODUCTION

1.1 What Is Machine Learning?

We are in the period of "Big data". Once just organizations used to have data and the data was

put away and handled on computer centers. With the landing of PCs and the widespread

utilization of wireless communications, we all moved towards becoming producers of data.

Each time we rent a movie, purchase an item, visit a site page, post on the online networking

sites, and compose a blog or, even when we simply walk or drive around, we are creating data.

Each one of us is a generator as well as a customer of data. We want to have services and

products specialized for us. We want our needs to be understood and interests to be anticipated.

For example, a supermarket chain stores the details of each and every transaction: date, client

id, merchandise purchased and their sum, total money spent, etc. This leads to production of

a great amount of data every day. To maximize sales and profit, the supermarket chain must

be able to anticipate which client is probably going to purchase which item. Likewise client

wants to find the products, best matching his/her needs.

This task is not apparent. Weidon't knowiprecisely whichiindividualsiare probably going to

purchaseithis dessertior theifollowingibookiof thisiwriter, seeithis newimovie, or visitithis

city. Client behavior changes in time and by geographic area. Yet, what we know is that it is

not totally arbitrary. Individuals don't go to supermarkets and purchase things arbitrarily.

Thereiareicertain patternsiin theidataiwhich are toibeifound and used for predicting the future

transactions of the clients. To tackleia problemion aicomputer, we require anialgorithm. iA

setiofiinstructionsithat should to beicarriediout on the inputitoiproduce a desired output is

called an algorithm. For instance, an algorithm for finding the smallest number in a set of

numbers. Theiinputiis a sei ofinumbers and theioutput is theismallestinumber. Forisimilar

tasks there mightibeidifferentialgorithmsibut weiare keen on finding the most effective one.

For a few tasks, we don't have an algorithm. Predicting client behavior is one. Another case is

separating spam messages from legal ones. The inputyis anyemail document, ywhich is ayfile

ofycharacters. The output is ayyes/noydemonstrating whetherytheymessage isyspam orynot.

However, we don't have a means by which toychange theyinput toytheyoutput. What is

considered spamychanges withytime and fromyperson toyperson. Butywhat we lack in

knowledge we compensateyfor inydata. We can easily incorporate a large number of case

messages, someyofywhich weyknowytoybeyspam, and we "learn"ywhat constitutesyspam

2

fromythem. In other words, weyneedythe computeryto extractyautomatically theyalgorithm

forythisytask. There is no reason to learn how to find the smallest number since we have many

algorithms devised for that. Yet there are numerous applications for which we don't have an

algorithm but have loads of data. Identifying the process completely is not be possible, but a

decent and helpful estimation can be built. In spite of the fact that identifying the complete

process may not be possible, identifying certainypatterns oryregularities mayybe helpful. This

is the niche of machine learning. Suchypatterns mayyhelp us understandytheyprocedure, or to

make predictions and these predictions can be relied upon assuming the near future to be

almost same as the time of collecting data. Utilization of machine learning strategies to huge

databases is called data mining. In data mining, a huge volume of data is processed to build a

basic model with significant use, for instance, having high predictive precision. Its application

territories are abundant: In finance, banks break down their past information to assemble

models to use in credit applications, fraud discovery, and stock markets. In manufacturing,

learning models are utilized for optimization, control, and troubleshooting. In medicine,

learning projects are utilized for medical diagnostics. In telecommunications, call patterns are

examined for system enhancement and boosting the quality of service (QoS). In science, a

large amount of data in physics, astronomy, and biology can only be analyzed fast enough by

computers. The World Wide Web is vast and continually growing. Therefore, manual

searching of required information is not possible.

Machine learning isba databasebproblem as well as a partbof artificial intelligence. A system

in abchangingbenvironment should have the abilitybtoblearn from thebexperience to

bebcalled intelligent. Prediction for every single conceivable circumstance is not necessary if

the system itself learns and adjust to such changes. Machine learning is likewise useful in

finding solutions to many problems in vision, speech recognition, and robotics. For instance,

take recognition of faces. Daily we meet our friends or relatives, or see their photographs and

can recognize them effortlessly. If the procedure is asked, we can't clarify thus not able to

compose a computer program for this. Additionally, webrealize that abface image is notbjust

abrandom collectionbofbpixels, the face hasbabstructure, andbit isbsymmetric. A face has

eyes, nose, and mouth, situated in specific spots. Every individual's face is a pattern made out

of a specific blend of these. A learning program, by analyzing sample face images of a person,

captures the pattern particular to the individual and recognizes by checking for this pattern in

a given image. This is one example of pattern recognition.

Another example is optical character recognition, which is recognition ofbcharacterbcodes

from theirbimages. It is an interesting case when the characters are written by hand—for

3

instance, amounts on checks or postal address on envelopes. Different individuals have

distinctive handwriting styles and there may be many possible images for the same character.

In spite of the fact that writing is a human invention, a system which is as accurate as human

reader is yet to be designed. Webdon’tbhave a formalbdescription of "A" thatbcovers all 'A's.

We takebsamples frombwriters and learn of thebA-b from these samples. What we want is to

extract the commonness in all those distinct ‘A’s from the examples by extracting the most

common feature that is there in each A. The machine can then be trained accordingly.

The theory of statistics is utilized as a part of building mathematical models in machine

learning. There is a twofold part of computer science: First, in training, an efficient algorithm

is utilized to tackle the issue of optimization, and furthermore tobstoreband processbtheblarge

amountbof databwebgenerally have. Second, once abmodel is learned, thebrepresentation and

algorithmicbsolution for inferencebmust alsobbebefficient.

1.2 Classification

Machine Learning is classified depending on the learning algorithms used. There are majorly

three types of machine learning –Supervised learning, Unsupervised learning and Reinforced

learning.

1.2.1 Supervised Learning

The machine learningbtask of working out abfunctionbfrom labeledbtrainingbdata, which

consist of absetbofbtrainingbexamples is called supervised learning. Each example under

supervised learning is a pairbof anbinputbobject (typically a vector) and the desiredboutput

value (also called the supervisory signal). By analyzing the training data through absupervised

learningbalgorithmbwe formulate a function which can be used for mapping new examples.

For inconspicuous instances, an optimal situation will take into account the algorithm to

accurately decide thebclass labels. This requires the learningbalgorithmbto generalizebfrom

the training data to unseen situations in a "reasonable" way.[1]

EXAMPLE

Suppose we want to learn about family cars and create a class, C, which describes them.

A set of cars is taken and shown to a group people whom we gather to conduct the survey. Their

responses are gathered and the results are then simulated. Positive examples are those to which

the people points at as what they believe is a familybcar andbthebnegative examples areball

otherbcars. Then class learning is done in which we gather the description of positive examples

and group those descriptions and call that class as “family cars”. Doing this, we can make a

forecast: Given a car that we havebnot seenbbefore, we will bebable tobsaybwhetherbit is a

4

familyfcar orbnot by checkingbwith bdescription learned. Or, thenbagain we can do

learningbextraction: This review might bebsupported by abcar company, and the point is to

comprehend what the individuals’bdesire from abfamily car.

1.2.2 Learning Multiple Classes

In the previous example ofblearning a class for family cars, positivebexamples belong with the

class family cars and the negativebexamples to every other cars. This is abtwo-classbproblem.

In the generalbcase, we havebKbclasses signified as Ci, i = 1, . . . , K and anbinputbinstance

belongsbwith oneband precisely onebof them. The training setbis nowbofbthe form

𝑋 = {𝑥𝑡 , 𝑟𝑡}𝑡=1
𝑁 (1.1)

5

wherebrbhas Kbdimensionsband

𝑟𝑖
𝑡 = {

1, 𝑥𝑡 ∊ 𝐶𝑖

0, 𝑥𝑡 ∊ 𝐶𝑗, 𝑗 ≠ 𝑖
 (1.2)

An example is given in figure 1.3

The boundary isolating thebinstances of one classbfrom the instances of everybsingle different

class inblearnt inbmachineblearning for thebclassification. In this manner, a K-class

classification problem is taken as Kbtwo-class problems. The trainingbexamples belonging to

Ci are the positive instances of hypothesis hi and the examples of allbother classes are the

negativebinstancesbof hi. Thus in a K-classbproblem, we have K hypotheses to learnbsuch that

ℎ𝑖(𝑥𝑡) = {
1, 𝑥𝑡 ∊ 𝐶𝑖

0, 𝑥𝑡 ∊ 𝐶𝑗 , 𝑗 ≠ 𝑖
 (1.3)

The totalbempiricalberror takesba sumbover thebpredictions forball classes overball

instances:

 𝐸({ℎ𝑖}𝑖=1
𝐾 |𝑋) = ∑ ∑ 1(ℎ𝑖(𝑥𝑡) ≠ 𝑟𝑖

𝑡)𝐾
𝑖=1

𝑁
𝑡=1 (1.4)

Ideally onlybone of ℎ𝑖(x), i = 1, . . . , K is 1, for abgivenbx, and webcanbchoosebabclass.

We cannot choose or reject a class when none, or two or more, ℎ𝑖(x) is 1. Thebclassifierbrejects

such doubtful cases. In the example of learning a class for family cars, bonlybonebhypothesis

was usedbtobmodelbonlybthe positive examples. Sometimesbbuilding twobhypotheses is

preferable, one for thebpositivebinstances and the other for the negativebinstances,

assumingbabstructure for the negative instances also. bSeparation familybcars from sports cars

6

isbanbexample; each class has a structure of its own. bThe advantage isbthat if the input is

abluxurybsedan, we can reject the input as bothbhypothesesbdecidebnegative.

1.2.3 Unsupervised Learning

Thebcorrect values for mappingbofbinput to the outputbisbprovided by absupervisorbwhen

supervisedblearning is used. But in unsupervisedblearning there is just inputbinformation and

no supervisor. Finding the regularities in thebinformation is the primarybpoint here. There are

more frequentboccurrencesbof certain patterns thanbothers, andbsuch patternsbneed to be

identified. Thisbmethod is called densitybestimation inbstatistics. Clusteringbis one of the

strategiesbused forbdensitybestimation wherebdiscoveringbclusters or groupings of info is the

aim. For anborganization with anbinformation of pastbclients, the

clientbinformationbincludes the transactionsbby the clients with theborganization in past. The

organization may want to see the distribution of the profile of its customers to see describe

frequentlybvisiting clients. Alongbthese lines clients with similar attributes are allocated the

same group by thebclustering model; this is called customerbsegmentation. Onbformation of

such groups, organizationsbmay decidebstrategies specific to these groups; this is known as

customer relationshipbmanagement. Machineblearning techniques are likewisebutilized as a

part of bioinformatics.

1.2.4 Reinforced Learning

“In somebapplications, a sequence ofbactions determinesbthe outputbof a system. A single

rightbaction is notbimportant in such cases but a sequencebof right actions, i.e., thebpolicy.

Therebis nobsuch thing as the bestbaction; the action is good if it is a part of a goodbpolicy.

Thebgoodness ofbpolicies must be accessed by the machineblearningbprogram and generate

a policybbyblearning from past good actionbsequences. Such learningbreinforcement

techniques are called reinforcementblearningbalgorithms. A decent example is game playing

where a solitary move by itself is not that essential; it is the sequence of right moves that is

good. A move is good if it is a part of a good game playing policy. Game playing is a research

area imperativebinbbothbartificial intelligence and machine learning. This is because games

are easy to describe and in the meantime, they are very hard to play well. A game like chess

has fewbguidelines yetbverybdifficult to playbbecause of a huge number of moves in the game

with an extensive number of conceivable moves at each state. Onblearning algorithmsbthat

knows how to play gamesbwell, they can be applied tobapplications with

morebobviousbeconomic utility.

Another application range of reinforcement learning is a robot exploring an environment in

search of an objective area. The robot can choose and move in any direction at a given instance

7

of time. But after various trial runs, the right sequence of actions to reach the objective state

from an underlying statebshouldbbe learned whichbhelpsbthe robot in doing the task as

quickly as possible andbwithout hittingbany of thebobstacles.

An examplebis a robotbequipped with abcamcorder having inadequatebdataband thusbatbany

time is in abpartiallybobservable state. So it must choose its actionbtakingbinto recordbthis

uncertainty; for instance, it may not know itsbexactblocation in a room but rather just that

there is a wall to its right. Simultaneousboperation of multiple agent may be required in some

tasks. An example is a group ofbrobotsbplayingbsoccer.”

1.3 Model Selection Procedures

There are various strategies we can use to calibrate the model complexity.

1.3.1 Cross Validation

“Cross validation technique is used in finding the optimal complexity for a model. The bias

and fluctuation for a model can't be calculated. Thus total error is calculated by first separating

the given dataset intobtwobparts: training set and validation set; thenbtrainingbcandidate

modelsbofbvarious complexitiesbonbthe training setbandblast testing their error on the

validationbsetbleft out amidbtraining. On increasing thebmodel complexity, training error

diminishes. But the error on thebvalidation setbdiminishes onlybto a specificbcomplexity

level, after which there is no furtherbdiminishing; the errorbcanbeven increasebifbthere is

noise in the data. This “elbow” correspondsbtobthe optimal complexityblevel (see figure 1.6).

Practically the bias and thus the error can’t be computed as method used in figure 1.5; the

validation error of figure 1.5 is estimate of this and also the variance of noise”: Even having a

correct model with no bias and sufficiently large data for variance to be immaterial does not

guarantees zero validation error; there may be some nonzero validation error still present. The

approval mistake of figure 1.6 is not as V-shaped asbthe error in figure 1.5 because of former

usingbmore training data which constrains the variance. bIt is found in figure 1.5 that a fifth-

orderbpolynomial acts as a third-orderbpolynomial where there is morebdata – it is not as

exact at the twobextremes where there is less data. [2]

8

9

1.3.2 Structural Risk Minimization

Structural risk minimization (SRM) utilizes an arrangement of models minimization ordered

in terms of their complexities. A case is polynomials of increasing order. The number of free

parameters gives the complexity. VC dimension can be used as another measure of model

complexity. SRM finds the model simplest in terms of order and best in terms of empirical

error on the data. [2]

1.3.3 Minimum Description Length

Minimum description length (MDL) is description length in view of an information theoretic

measure. MDL of a dataset is characterized as the shortest description of the data which can

be easily understood. In the event of data being simple, it has a short complexity; for instance,

if it is a sequence of '0's, we can simply state "0" and the length of the sequence. No description

shorter than the data can be found if the data is totally random. A suitable model for the data

has a solid match to the data, and rather than the data, we can send/store the model description.

Out of the considerable number of models portraying the data, we need to have the least

complex model with the goal that it fits the shortest description. So we again have a trade-off

between keeping the model simple and good description of data.

10

1.4 Organization of report

Chapter 2: This chapter is dedicated to literature review where we have discussed about how

the human brain works and how by simulating the human brain behavior we can solve the real

time problems.

Chapter 3: Various steps involved in implementing the proposed work is explained in this

chapter. It contains information about the microprocessor we are using and the steps involved.

Chapter 4: Results are shown in this chapter and the work is concluded here.

11

 CHAPTER 2

LITERATURE REVIEW

The term ‘neural network’ came up in attempts to find mathematical representations of

information processing in biological systems. Without a doubt, it has been extensively utilized

in covering a wider scope of various models, many of which have been the subject of claims

regarding their biological credibility. Inbpattern recognition biological realism force entirely

unnecessary constraints. Accordingly, neural systems are viewed as efficient models for

statistical pattern recognition. Our study will thus be confined tobthe particular class of neural

networks, the multilayer perceptron.[1]

2.1 Multilayer Perceptron

As animals havebthe ability of recognizing various things and sense out of large amount of

visual information, without much effort. Thus, understandingbthese tasks done by animals

using simulation techniques can be of high practical use for development of the system. Thus

the study and simulation of ArtificialbNeuralbNetwork necessary. ANN models, have been

majorly influenced by the humanbbrain. Cognitivebscientists and neuroscientistsbare the ones

who understandbthe functioning of the band build models of the naturalbneural networks in

the brain and makebsimulation studies. We believebthat artificialbintelligence may help us

build better computer systems. The brainbprocessesbinformation and hasbsome amazing

abilities that cannot be compared tobengineeringbsystems—for example, vision, speech

recognition, band learning, bto just namebthree. These applications if implemented on

machines in the right manner have great economic opportunity. Understandingbhow

thesebfunctions are performedbby the brain, and bringing in solutions to these tasks in the

form of algorithms does make the task easier.

2.1.1 Neurons

The human brain is amazinglybdifferent from a computer. The brainbis composed of a very

large (1011) numberbof processing units, namely, neurons, whichboperates in parallel as

compared to 1 processor of the computer. These processing units are much simpler and slower

than a processor in a computer. The largebconnectivity of these neurons is what provides the

brain with its computationalbpower and makes it differentbfrom abcomputer. A neuron in the

brain have connectionsbwith around 10,000 other neurons, each of which is called a synapse.

12

In the brain, neural networkvcomprises of bothvthe memoryvand processor; neuronsvdo the

processing, andvthe memory is invthe synapses between the neurons while in avcomputer, the

processorvis active and the memory isvseparate andvpassive. In NeuralvNetwork, a simple

computation is performed byveach node (neuron) and a signal from onevnode to another,

labeledvby a numbervcalled the “connection strength” or weight, is conveyedvby a connection.

For differentvweights used, the network evaluates differentvfunctions. In a network with

initialvweights, and givenvthat we know what is tovbevdone by thevnetwork, in order to get

the values of the weight that will be requiredvfor the desired task, a learningvalgorithm must

be used. Algorithm invwhich thevsystem learns itself certifies thevcomputer systemvto be

called Artificial NeuralvNetwork. [4]

Fig 2.1: Typical Neural Network

Designingbof a typical pattern recognitionbsystem uses two pass, the first pass is a feature

extractor that finds specificbfeatures within the data to solve thebdesired task. The second

pass is the classifier which is more of generalbpurpose and neural network can be employed

to train them. Clearly, more design effort is required by the feature extractor as it

always should be hand-made based on what thevapplication isvtryingvtovachieve.

2.1.2 Understanding the Brain

There are three levels in understanding an informationbprocessing system, called the levels of

analysis:

1. Computationalbtheory corresponding to the goal of computationband an abstract definition

of the task.

2. Representation and algorithm corresponding to the representationbof the input and the

output and about the algorithm’s specification.

3. Hardwarebimplementation corresponding to the actual physicalbrealization of the system.

13

Let us take sorting forvan example. The aimvis to ordervavgivenvset ofvelements. Integers

mayvbe usedvas representation, andvQuicksort as thevalgorithm. After compilation, the

suitable code for a specificvprocessorvsorting numbersvdepicted invbinary is onevhardware

implementation. Thevthought isvthat for a similarvprocessvtheory, there could

bevmultiple representationvand algorithms manipulatingvsymbols in thatvrepresentation.

Similarly, for any givenvrepresentation andvalgorithm, there couldvalso bevmultiple

hardwarevimplementations. We arevable to usevone amongstvvaried sortingvalgorithms, and

even a similarvrule will bevcompiled on computers with totallyvdifferent processors and result

in different hardwarevimplementations. The brain isvone hardware implementationvfor

learning or patternvrecognition. If from thisvparticular implementation, we can dovreverse

engineeringvandvextract the representation and the algorithmvused, and if from that in turn,

we can getvthe computationalvtheory, we canvthen use anothervrepresentation and algorithm,

and invturn avhardwarevimplementation morevsuited to thevmeans and constraints we have.

Onevhopes ourvimplementation will bevcheaper, faster, and morevaccurate. [4]

2.1.3 Neural Networks and Parallel Processing

Since thev1980s, computervsystems withvthousands of processors have been commercially

available. The softwarevforvsuch parallelvarchitectures, however, has notvadvanced as

quickly asvhardware. The reason for this isvthat almost all ourvtheory ofvcomputation up to

that pointvwas based onvserial, one-processorvmachines. We arevnot able to usevthe parallel

machines we havevefficiently becausevwe cannotvprogram themvefficiently.

There are mainly two paradigms for parallel processing: Invsingle instruction, multiple data

(SIMD) machines, allvprocessors executevthe samevinstruction but on differentvpieces of data.

In multiplevinstruction, multiplevdata (MIMD) machines, different processorsvmay execute

different instructions onvdifferent data. SIMDvmachines are easiervto program asvthere's just

one program tovwrite down. However, issuesvseldom have such a dailyvstructure

that they'll be parallelizedvover a SIMDvmachine. MIMD machinesvare

more general, howevervit's not a simplevtask to writevdown separatevprogramsvfor all the

individualvprocessors; extravissues are associated withvsynchronization, information transfer

between processors, and sovforth. SIMD machinesvare also easiervto build, andvmachines

with more processors can bevconstructed if they are SIMD. In MIMD machines, processors

are more complex, and a morevcomplex communication network should be constructed for the

processors to exchange datavarbitrarily.

The problem now is tovdistribute a task over a network of such processors and to determine

the local parametervvalues. Thisvisvwhere learningvcomes into play: We do not need to

14

program such machines and determinevthe parameter valuesvourselves if suchvmachines can

learnvfrom examples. Thus, artificialvneural networks are a wayvto makevuse of the parallel

hardware wevcan buildvwith currentvtechnology and—thanks to learning—they need not be

programmed. Therefore, we also savevourselves the effort of programming them.

2.2 The Perceptron

Fig 2.2 A SimplevPerceptron xj, j =1, . . . , d arevthe input units. x0vis the biasvunit
that alwaysvhasvthe value 1. yvis the output unit. wj isvthe weight of the directed
connection fromvinput xj to the output.[9]

Thevperceptronvis thevbasic processingvelement. It has inputs that may come from the

environment orvmay bevthe outputs of other perceptrons. Associated with each input,𝑥𝑗 ∈ ℜ,

j=1,…….,d, is a connection weight, vor synaptic weight 𝑤𝑗 ∈ ℜ andvthe output, y, invthe

simplest case is a weighted sumvof the inputs (see figure 2.2):

𝑦 = ∑ 𝑤𝑗𝑥𝑗 + 𝑤𝑂

𝑑

𝑗=1

 (2.1)

wO is the interceptvvalue toimake the modelvmore general; it isvgenerally bias unit modeled

as the weight comingifrom aniextra bias unit, xO, which is always +1. We can write the output

of the perceptron as aidot product

𝑦 = 𝑤𝑇𝑥 (2.2)

where 𝑤 = [𝑤𝑂 , 𝑤1, ⋯ , 𝑤𝑑]𝑇 and 𝑥 = [1, 𝑥1, ⋯ , 𝑥𝑑]𝑇 are augmented vectors to include also

the biasiweight and input.

Duringitesting, withigiven weights, w, for input x, weicompute the outputiy. To implement a

given task, we need to learn theiweights w, the parameters of the system, such that correct

outputsiare generatedigiven the inputs.

When d = 1iandix is fed fromithe environmentithrough an input unit, weihave

𝑦 = 𝑤𝑥 + 𝑤0 (2.3)

15

which isithe equation ofia line with wias the slope and w0 as the intercept. Thus this perceptron

with oneiinput andione output can be used toiimplement a linear fit. With more than one input,

the lineibecomes a (hyper) iplane, and theiperceptron with more than one input can be used to

implementimultivariate linear fit.[9]

Fig 2.3 Kiparallel perceptrons. xj, j =0, .. . , d are theiinputs and yi, i=

1, . . . ,Kiare theioutputs. wijiis the weightiof theiconnection from input xj to

output yi.

.

𝑦𝑖 = ∑ 𝑤𝑖𝑗𝑥𝑗 + 𝑤𝑖𝑂 = 𝑤𝑖
𝑇𝑥 (2.4)

𝑑

𝑗=1

𝑦 = 𝑊𝑥 (2.5)

When there are K>2 outputs, thereiare K perceptrons, eachiof whichihas aiweight vector wi

where wij is the weightifrom input xj to output yi.W is the K ×(d+1) weight matrix of wij whose

rows are the weightivectors of the K perceptrons.

2.3 Training a Perceptron

The perceptronidefines a hyper plane, and also the neural network perceptron is simply some

way ofiimplementing theihyper plane. Given a data sample, the weight values can be

calculatedioffline and theniwhen they are plugged in, ithe perceptron canibe usedito calculate

the output values.[5]

Initrainingineural networks, we generallyiuse onlineilearningiwhere weiareinot givenithe

whole sample, but weiare giveniinstances oneiby one andiwould likeithe network toiupdateiits

parameters afterieach instance, adaptingiitself slowly initime. Suchianiapproach is interesting

for ainumber of reasons:

1. It saves us the cost of storing the training sample in an external memory and storing the

intermediate results during optimization. An approach like support vector machines may be

quite costly with large samples, and in some applications, we may prefer a simpler approach

16

where we do not need to store the whole sample and solve a complex optimization problem

on it.

2. The problembmay be changing in time, which means that the sample distribution is not

fixed, and a training set cannot be chosen abpriority. For example, we maybebimplementing

a speechbrecognitionbsystem that adapts itself to its user.

3. There may be physicalbchanges in thebsystem. For example, in a roboticbsystem, the

componentsbof the system may wear out, or sensorsbmay degrade.

In online learning, the errorifunction isinot written over the whole sample but on individual

instances. Start from randomiinitial weights, adjust theiparameters a little bit atieach iteration

to minimize theierror, and doinot forget what weihaveilearned previously. If thisierrorifunction

is differentiable, iwe can useigradient descent.

For example, in regressionithe error onithe single instanceipair with index t, (𝑥𝑡 , 𝑟𝑡) is

𝐸𝑡(𝑤|𝑥𝑡 , 𝑟𝑡) =
1

2
(𝑦𝑡 − 𝑟𝑡)2 =

1

2
(𝑟𝑡 − (𝑤𝑡𝑥𝑡))2 (2.5)

and for j = 0, . . . , d, the online update is

 ∆𝑤𝑖𝑗
𝑡 = 𝜂(𝑟𝑖

𝑡 − 𝑦𝑖
𝑡)𝑥𝑗

𝑡 (2.6)

whereiη isithe learningifactor, whichiis gradually decreased initime foriconvergence. This is

known asistochasticigradient descent.

This equation has the form

𝑈𝑝𝑑𝑎𝑡𝑒 = 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝐹𝑎𝑐𝑡𝑜𝑟 ⋅ (𝐷𝑒𝑠𝑖𝑟𝑒𝑑𝑂𝑢𝑡𝑝𝑢𝑡 − 𝐴𝑐𝑡𝑢𝑎𝑙𝑂𝑢𝑡𝑝𝑢𝑡) ⋅ 𝐼𝑛𝑝𝑢𝑡

Fig 2.4 Perceptron trainingialgorithmiimplementing stochastic online

gradient descentifor theicase with K > 2 classes.[3]

17

2.4 Learning Boolean Functions

Here, the inputs areibinary and theioutput is 1 if the correspondingifunctionivalue is true and 0

otherwise. Therefore, itican beiseen as a two-class classificationiproblem. As an example, two

inputs AND, the table ofiinputs and requiredioutputs is given in table 2.1.

Table 2.1 AND gate

and aniexample of aiperceptron that implementsiAND, and its geometric interpretation in two

dimensions isigiveniin figurei2.5. The discriminant is

𝑦 = 𝑠(𝑥1 + 𝑥2 − 1.5) (2.7)

that is, 𝑥 = [1, 𝑥1, 𝑥2]𝑇 and , 𝑤 = [−1.5,1,1]𝑇 .

 Fig 2.5 Theiperceptron thatiimplements AND and itsigeometriciinterpretation.

Though Boolean functions like AND and OR are linearly separable and are solvable using the

perceptron, certain functions like XOR are not. The table for XOR is given in table 2.2.

Table 2.2 XOR gate

18

and its geometric representation is given in fig 2.6

A perceptron having aisingle layer ofiweights can only approximate linear functions of the

input and cannot solve problemsilike the XOR, where the discriminant to be estimated is

nonlinear. Similarly, a perceptronicannot be used forinonlinear regression. This limitation does

not apply to feediforward networks withiintermediate or hidden layers between the input and

the output layers. If used for classification, such multilayeriperceptrons (MLP) can implement

nonlinear discriminantsiand, if used for regression, caniapproximate nonlinear functions of the

input.

Fig 2.6 XORiproblem is notilinearly separable. We cannotidraw a line

where the emptyicircles are onione side anditheifilled circles on the other side.[3]

19

CHAPTER 3

 IMPLEMENTATION

3.1 Back propagation Algorithm

“Training a MLP is the same as training a perceptron with the only difference of the

output being a nonlinear function of the input due to the nonlinear basis function in the hidden

units. The hidden units is taken as inputs, while the second layer as a perceptron and it is

already know how to update the parameters, 𝑣𝑖𝑗 in this case, given the inputs 𝑧ℎ.” Chain rule

is used to calculate the gradient for the first layer weights 𝑤ℎ𝑗:

𝜕𝐸

𝜕𝑤ℎ𝑗
=

𝜕𝐸

𝜕𝑦𝑖

𝜕𝑦𝑖

𝜕𝑧ℎ

𝜕𝑧ℎ

𝜕𝑤ℎ𝑗
 (3.1)

This looks as the errorbis propagating back to the inputs from the output y and hence the name

back propagation. A known, desired output for each input value is requires in calculating the

loss function gradient. Thus considered to be a supervisedblearningbmethod; nonetheless, it is

likewise utilized as a part of some unsupervisedbnetwork. It is a generalization of the delta

rule to multi- layered feed forward networks, made possible by utilizing the chain rule to

iteratively compute gradients for each layer. The activation function used by the artificial

neurons must be differentiable.

The back propagation learning algorithm can be divided into two phases: propagation and

weight update. [11]

Propagation Phase

Each propagation involves the following steps:

1. Forwardbpropagation of an input of a trainingbpattern through the neural network

to generate the propagation's output activations.

2. Backwardbpropagation of the propagation's output activationsbthrough the neural

network using the training pattern target to generate the deltas (the difference

between the targeted and actual output values) of all outputband hidden neurons.

Weight update Phase

For each weight-synapse follow the following steps:

1. Multiply itsboutput delta and input activation tobget the gradientbof the weight.

2. Subtract a ratio (percentage) from the gradient of the weight.

The speed and learning quality is determined by this ratio (percentage) and is called the

learning rate. Higher ratio corresponds to faster training o f the neuron, while the lower

ratio to more accuratebtraining. The sign of the gradient of a weightbindicates where the error

20

is increasing, this is why the weight must be updated in the opposite direction. Repeat phase

1 and 2 until the performance of the network is satisfactory.

3.2 Training Procedures

3.2.1 Improving Convergence

There are variousbadvantages of gradientbdescent. Being straightforward is one. Also it is

local; in particular, the adjustmentbin a weight utilizes just the estimations of thebpresynaptic

and postsynaptic units and the error. At the point when web-basedbtraining is utilized, storage

of the training set is not necessaryband can adapt as the task to be learned changes. Hence

hardware implementation is possible on account of these reasons. Butbgradient descent

converges slowly. When learning time is vital, utilization of more modern streamlining

techniques can be done. Two frequently straightforward techniques are utilized to enhance the

performance of the gradient descent considerably, making this method feasible in real

applications.

Momentum

Let us say 𝑤𝑖 is any weight in a multilayerbperceptron in any layer, including thebbiases. At

each parameter update, successive ∆𝑤𝑡
𝑖 values may be so different that large oscillations and

slow convergence may occur. t being the time index that is theiepoch number in batch learning

and the iterationbnumber in online learning. The idea is toitake a running average by

incorporating the previousiupdate in the current changeias if there is a momentumidue to

previous updates:

∆𝑤𝑡
𝑖 = −𝜂

𝜕𝐸𝑡

𝜕𝑤𝑖
+ 𝛼∆𝑤𝑖

𝑡−1 (3.2)

α is generally between 0.5 and 1.0. This approach is usefuliwhen online learning is used. The

disadvantage is thatithe past ∆𝑤𝑖
𝑡−1 values should beistored in extra memory.

Adaptive Learning Rate

The magnitude of changeito be made in the parameter, in gradient descent, is determined

by the learning factor η. It is generallyitaken betweeni0.0 and 1.0, mostly lessithan oriequal

to 0.2. It can be madeiadaptive forifaster convergence, where it isikept large when learning

takes placeiand is decreasediwhen learningislows down:

∆𝜂 = {
+a if 𝐸𝑡+𝜏 < 𝐸𝑡

−bη otherwise
 (3.3)

Thus if the error on the training set decreases η is increased by a constant amount; but decreased

geometrically if it increases. Due toboscillation of E from one epoch tobanother, it is better to

take the average of the past few epochs as Et.

21

3.2.2 Overtraining

Consider a M L P having d inputs, H hidden units, and K outputs has H(d+1) weights

in the first layer and K(H+1)iweights in theisecond layer. Both the spaceiand timeicomplexity

of an MLP is O(H · (K + d)). Training time complexity is O(e · H · (K + d)), where eidenotes

the numberiof trainingiepochs. In an application, d and K are predefined. To tune the

complexity of the model we play with the H parameter. From previous discussions it is

known that an over complex model memorizesithe noise in the training set and does not

generalizeito theivalidation set. In an MLP, when the number of hidden units is large, the

generalization accuracy deteriorates (see fig 3.1), and the bias/varianceidilemma alsoiholds

for the MLP, as itidoes for any statisticaliestimator.

When training is prolonged, a similar behavior happens: The error on the training set decreases

as more training epochs are made, but the validation set error startsito increaseibeyond a

certainipoint (see fig 3.2). Initially all the weights are close to 0 andbthus have little effect.

As training continues, the most important weightsbstart moving away from 0 and arebutilized.

But if continued further, almost all weights are updated away from 0 and effectively become

parameters. To assessiexpected error, the sameinetwork is to beitrained a number ofitimes

starting fromidifferent initialiweight values, andithe average of theivalidation error

isicomputed.

Fig 3.1 As complexity increases, training error is fixed but

 the validation error starts to increase and the network starts to over fit.

22

Fig 3.2 As trainingicontinues, the validationierror starts

 toiincrease and theinetwork starts to overifit.[10]

3.2.3 StructuringitheiNetwork

In a few applications, we mayibelieve thatithe input hasiailocal structure. Foriinstance, in

vision we realize thatiadjacent pixels areirelated andithere are local features likeiedges and

corners. In such a situation when designing the MLP, hidden units areinot connected to all

input unitsibecause notiall inputs areicorrelated. Rather, we define hiddeniunits that define a

window overithe input spaceiand are connected toionly a small localisubset ofithe inputs. This

declinesithe numberiof associations andiaccordingly the number ofifree parameters.

This can be repeated in successive layers whereieach layer isiconnected to aismall number of

local units below andichecks for aimore complicatedifeatureiby combining the features below

in a larger part of the input space until we get to the output layer. For example, theiinput may

be pixels. Byilooking atipixels, ithe first hiddenilayer units mayilearn to checkifor edges of

variousiorientations. Then byicombining edges, the secondihidden layer unitsican learn to

check foricombinations ofiedges—for example, iarcs, icorners, lineiends—and then

combining them in upperilayers, the unitsican look forisemi-circles, rectangles, ior in theicase

of a faceirecognitioniapplication, eyes, mouth, and soiforth. This is the example

ofiaihierarchical cone where featuresiget more complex, abstract, andifewer in number as

we go up the network untiliwe get toiclasses. Such an architecture isicalled aiconvolutional

neuralinetwork where theiwork ofieach hiddeniunit isiconsidered toibe aiconvolution ofiits

input with itsiweight vector; aniearlier similariarchitectureiis the neocognitron.

23

Fig 3.3 In weightisharing, differentiunits haveiconnections toidifferent

inputsibut shareitheisame weightivalue (denoted by line type).

Weight sharing can further reduce the number of parameters. Inbvisual recognition, features

like oriented edgesimay be present in different parts of the input space. So insteadiofidefining

independentihiddeniunits learning different featuresiin different partsiof theiinput space,

we can haveicopies of the same hidden unitsilooking atidifferent parts of theiinputispace.

3.3 Tools for design

3.3.1 Raspberry Pi

Raspberry Pi is a credit card-sizedbcomputer powered by the Broadcom BCM2835 system-on-

a-chip (SoC). This SoC includes a 32-bit ARM1176JZFS processor, bclocked at 700MHz, and

a Videocore IV GPU. It also has 256MB of RAM in abPOP package above thebSoC. It is

powered either by a 5V micro USB AC chargerbor at least 4 AA batteries (with some special

circuitry). The RaspberrybPi is a small, barebonesbcomputer developedbby The Raspberry Pi

Foundation, a UK charity. Theirbintention was to provideblow-cost computers andbfree

software to students. Their ultimatebgoal is to take computer sciencebeducation to a new level

and they hope that this small, affordable computer will be a tool that enables that. The

Raspberry Pi is slower than abmodern laptop or desktop but is still a complete Linuxbcomputer

and can provide all the expected abilities that implies, at a low-power consumption level. It is

open hardware, with the exception of the primary chip on the Raspberry Pi, the Broadcomm

SoC , which runs many of the main components of thebboard–CPU, graphics, memory, the

USB controller, etc. Many of the projects made with a Raspberry Pi are open and well-

documented as well and are things you can build and modify yourself.

“The Raspberry Pi was originally designed for the Linux operating system, and many Linux

distributions now have a version optimized for the Raspberry Pi. Two of the most popular

options are Raspbian, which is based on the Debian operating system, and Pidora, which is

based on the Fedora operating system. For beginners, either of these two work well; which one

http://www.raspberrypi.org/documentation/hardware/raspberrypi/
http://www.raspberrypi.org/documentation/hardware/raspberrypi/
http://www.raspbian.org/
http://pidora.ca/

24

we choose to use is a matter of personal preference. A good practice might be to go with the

one which most closely resembles an operating system we are familiar with, in either a desktop

or server environment. There are, of course, lots of other choices.” OpenELEC and Rasp BMC

are both operating system distributions based on Linux that are targeted towards using the

Raspberry Pi as a media center. There are also non-Linux systems, like RISC OS, which run

on the Pi. Some enthusiasts have even used the Raspberry Pi to learn about operating systems

by designing their own.

Fig. 3.4 Raspberry PI 3

3.3.2 Processor

“The Broadcom BCM2835 SoC used in the first generation Raspberry Pi is somewhat

equivalent to the chip used in first generation smartphones (its CPU is an

older ARMv6 architecture), which includes a 700 MHz ARM1176JZF-S

processor, VideoCore IV graphics processing unit (GPU), and RAM. It has a level 1

(L1) cache of 16 KB and a level 2 (L2) cache of 128 KB. The level 2 cache is used primarily

by the GPU. The SoC is stacked underneath the RAM chip, so only its edge is visible. The

Raspberry Pi 2 uses a Broadcom BCM2836 SoC with a 900 MHz 32-bit quad-core ARM

Cortex-A7 processor (as do many current smartphones), with 256 KB :”shared L2 cache while

https://en.wikipedia.org/wiki/Broadcom
https://en.wikipedia.org/wiki/Smartphone
https://en.wikipedia.org/wiki/ARM11
https://en.wikipedia.org/wiki/Hertz
https://en.wikipedia.org/wiki/ARM11
https://en.wikipedia.org/wiki/VideoCore
https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/CPU_cache
https://en.wikipedia.org/wiki/Kibibyte
https://en.wikipedia.org/wiki/Package_on_package
https://en.wikipedia.org/wiki/ARM_Cortex-A7
https://en.wikipedia.org/wiki/ARM_Cortex-A7

25

the Raspberry Pi 3 uses a Broadcom BCM2837 SoC with a 1.2 GHz 64-bit quad-core ARM

Cortex-A53 processor, with 512 KB shared L2 cache.

`

Fig.3.5 Raspberry PI 3 Pin OUT Diagram

3.4 Steps in optical character recognition

Optical character recognition involves various phases from image acquisition to the

classification and recognition (fig 3.6). The output of a step is the input to the next step. The

task of preprocessing relates to the removal of noise and variation in handwritten word patterns.

Preprocessing is further broken down into smaller tasks such as noise removal, binarization,

thinning, edge detection, etc. to enhance the quality of images and to correct distortion.

3.4.1 Image Acquisition

A camera/scanner is used in this phase to take an input image. The acquired image must be of

a specific format such as JPEG; PNG; BMP etc. and may be colored or gray scale.

https://en.wikipedia.org/wiki/ARM_Cortex-A53
https://en.wikipedia.org/wiki/ARM_Cortex-A53

26

3.4.2 Preprocessing

It is a series of operations performed on the acquired image. It is a necessary step in character

recognition as it enhances the image and removes the noise which may cause errors in the

corresponding steps. The various operations are:

(1) Filtering: Due to uneven writing surface and/or low sampling rate, there may be some

noise introduced in the acquired image. This operation aims at removing this noise by

using various types of filters.

(2) Binarization: This operation converts the grayscale image into binary image.

(3) Edge Detection: Character boundaries are characterized by the edges. So the detection

of edges is useful in character recognition. It reduces the amount of data by filtering the

useless data while preserving the important structural properties of the image.

Fig 3.6 Stages in OCR

(4) Thresholding: Grey scale images are represented as binary images by setting a

threshold value and everything that lies above this threshold is set to 1 and everything

below is set to 0.

(5) Skew Detection: There can be skewness involved while scanning the input image. The

skewness should be detected and removed as it tends to reduce the accuracy of the

document. The skewed lines are made horizontal making use of the skew angle.[13]

3.4.3 Segmentation

It is the most important phase in character recognition. In this phase, spaces are provided in

between the individual characters in the image. [14]

27

3.4.4 Feature Extraction

Featurebextraction aims at extracting a set of features whichbmaximizes the recognition rate

with least amount of effort. We know that everybindividual has differentbhandwriting but there

are certain featuresbin each character which remains the samebthroughout. These features can

be extracted and utilized in thebrecognition process. [15]

3.4.5 Classification and Recognition

It the decision making part which uses the extractedbfeatures to classify the=bcharacters and

give the output.

3.5 Input

Handwritten data (fig 3.7) is taken and imagebacquisition is done by the camera using the PI.

Since it is using unsupervised learning so the network is first trained using a sample set (fig

3.8).

3.6 Training

The first step is to create a database of handwritten digits. The popular MNIST database of

handwritten digits is used which is a set of 70000 samples of handwritten digits where each

sample consists of a grayscale image of size 28×28. We will use sklearnbdatasets package to

download the MNIST database from mldata.org. This packagebmakes it convenient to work

with toybdatabases. Two python scripts will be written; one for training the classifier and the

second for testing it.

Fig 3.7 The input data

28

Fig 3.8 An example training set for unsupervised learning

For training we will implement the following steps –

1. Calculate the HOG features for each sample in the database.

2. Train a multi-class linear SVM with the HOG features of each sample along with the

corresponding label.

3. Save the classifier in a file.

29

CHAPTER 4

RESULTS AND CONCLUSIONS

The output after the compilation of code and processing is done on the input is shown in fig

4.1. There are a fewbassumptions, we have assumed in the testingbimages –

1. The digits should be sufficientlybapart from each other else they will interferebin the

square regionbaround each digit. In that case, we create a newbsquare image and then copy

the contour in that square image.

2. For the imagesbused in testing, fixed thresholdingbworked pretty well which is not the

case in most realbworld images. There, we need to use adaptivebthresholding.

3. In the pre-processing step, we only did Gaussianbblurring. In most situations, on the

binarybimage we will need to open and close the image to remove small noisebpixels and

fill small holes.

Fig 4.1 The output

The characters from 0 to 9 are recognized by the project. It can detect these character with an

accuracy of about 95%. In future, it can be extended to recognize the alphabets and the special

characters. Many different methods have been explored by the scientists over past few decades.

A variety of approachesbhave been proposed and tested by researchersbin different parts of the

world. No OCR in this world is 100% accurate. The recognitionbaccuracy of the neural

networks proposed here can be further improved. The number of character set used for training

is reasonablyblow and the accuracy of the network can be increased by taking more training

character sets. This approach can be used forbrecognition of Hindi, Bengali etc. characters.

30

REFERENCES

[1]. Bishop, C. M. 1995. Neural Networks for Pattern Recognition. Oxford: Oxford

University Press.

[2]. Webb, A., and K. D. Copsey. 2011. Statistical Pattern Recognition, 3rd ed. New

York: Wiley

[3]. Introduction to Machine Learning 3 Edition by Ethem Alpaydin

[4]. Aha, D. W., ed. 1997. Special Issue on Lazy Learning. Artificial Intelligence

Review

[5]. Aha, D. W., D. Kibler, and M. K. Albert. 1991. “Instance-Based Learning Algorithm.”

Machine Learning 6:37–66.

[6]. Atkeson, C. G., A. W. Moore, and S. Schaal. 1997. “Locally Weighted Learning.”

Artificial Intelligence Review

[7]. Stanfill, C., and D. Waltz. 1986. “Toward Memory-Based Reasoning.” Communications

of the ACM.

[8]. Abu-Mostafa, Y. 1995. “Hints.” Neural Computation

[9]. Ash, T. 1989. “Dynamic Node Creation in Backpropagation Networks.” Connection

Science.

[10]. Battiti, R. 1992. “First- and Second-Order Methods for Learning: Between Steepest

Descent and Newton’s Method.” Neural Computation

[11]. Durbin, R., and D. E. Rumelhart. 1989. “Product Units: A Computationally

Powerful and Biologically Plausible Extension to Backpropagation Networks.”

Neural Computation

[12]. Hertz, J., A. Krogh, and R. G. Palmer. 1991. Introduction to the Theory of Neural

Computation. Reading, MA: Addison-Wesley.

[13]. Le Cun, Y., B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,

and L. D. Jackel. 1989. “Backpropagation Applied to Handwritten Zipcode

Recognition.” Neural Computation

[14]. https://www.ijsr.net/archive/v2i1/IJSR13010129.pdf

[15]. http://yann.lecun.com/exdb/publis/pdf/matan-90.pdf

https://www.ijsr.net/archive/v2i1/IJSR13010129.pdf
http://yann.lecun.com/exdb/publis/pdf/matan-90.pdf

31

