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ABSTRACT

Character recognition is just one part of the pattern recognition existing in the world. The major
advantage of doing the pattern recognition using artificial intelligence and unsupervised learning
is that with the use of correct data set you can teach it to recognize every pattern that exists. Our
mind can do pattern recognition or handwritten character deciphering very efficiently and easily,
simply because our mind is made up of a large set of neural networks.

Doing it in real time is another challenge but we have considered challenges as stages of success
rather than considering them as hurdles in achieving our goal. Thus using non biological neural
networks we have implemented character recognition using raspberry PI. The problem still
exists because of the competition between the efficiency and speed.

A camera is used for image acquisition in the real time and after filtering the noisy data and
preprocessing it is passed on. Feature extraction is another important part of the procedure in
which differentiation between the characters is done. It helps recognizing the characters. The
characters in the photo are stored as an image of matrix of pixels. Back propagation algorithm
is used to optimize the results achieved so that our output is closer to the results expected.
Weights and biases of the neural network are automatically adjusted according to the back

propagation which further helps in improving the results.



CHAPTER 1
INTRODUCTION

1.1 What Is Machine Learning?

We are in the period of "Big data™. Once just organizations used to have data and the data was
put away and handled on computer centers. With the landing of PCs and the widespread
utilization of wireless communications, we all moved towards becoming producers of data.
Each time we rent a movie, purchase an item, visit a site page, post on the online networking
sites, and compose a blog or, even when we simply walk or drive around, we are creating data.
Each one of us is a generator as well as a customer of data. We want to have services and
products specialized for us. We want our needs to be understood and interests to be anticipated.
For example, a supermarket chain stores the details of each and every transaction: date, client
id, merchandise purchased and their sum, total money spent, etc. This leads to production of
a great amount of data every day. To maximize sales and profit, the supermarket chain must
be able to anticipate which client is probably going to purchase which item. Likewise client
wants to find the products, best matching his/her needs.

This task is not apparent. We don't know precisely which individuals are probably going to
purchase this dessert or the following book of this writer, see this new movie, or visit this
city. Client behavior changes in time and by geographic area. Yet, what we know is that it is
not totally arbitrary. Individuals don't go to supermarkets and purchase things arbitrarily.
There are certain patterns in the data which are to be found and used for predicting the future
transactions of the clients. To tackle a problem on a computer, we require an algorithm. A
set of instructions that should to be carried out on the input to produce a desired output is
called an algorithm. For instance, an algorithm for finding the smallest number in a set of
numbers. The input is a se of numbers and the output is the smallest number. For similar
tasks there might be different algorithms but we are keen on finding the most effective one.
For a few tasks, we don't have an algorithm. Predicting client behavior is one. Another case is
separating spam messages from legal ones. The input is an email document, whichisa file
of characters. The output is a yes/no demonstrating whether the message is spam or not.
However, we don't have a means by which to change the input to the output. What is
considered spam changes with time and from person to person. But what we lack in
knowledge we compensate for in data. We can easily incorporate a large number of case

messages, some of which we know to be spam, and we "learn” what constitutes spam



from them. In other words, we need the computer to extract automatically the algorithm
for this task. There is no reason to learn how to find the smallest number since we have many
algorithms devised for that. Yet there are numerous applications for which we don't have an
algorithm but have loads of data. Identifying the process completely is not be possible, but a
decent and helpful estimation can be built. In spite of the fact that identifying the complete
process may not be possible, identifying certain patterns or regularities may be helpful. This
is the niche of machine learning. Such patterns may help us understand the procedure, or to
make predictions and these predictions can be relied upon assuming the near future to be
almost same as the time of collecting data. Utilization of machine learning strategies to huge
databases is called data mining. In data mining, a huge volume of data is processed to build a
basic model with significant use, for instance, having high predictive precision. Its application
territories are abundant: In finance, banks break down their past information to assemble
models to use in credit applications, fraud discovery, and stock markets. In manufacturing,
learning models are utilized for optimization, control, and troubleshooting. In medicine,
learning projects are utilized for medical diagnostics. In telecommunications, call patterns are
examined for system enhancement and boosting the quality of service (QoS). In science, a
large amount of data in physics, astronomy, and biology can only be analyzed fast enough by
computers. The World Wide Web is vast and continually growing. Therefore, manual
searching of required information is not possible.

Machine learning is a database problem as well as a part of artificial intelligence. A system
in a changing environment should have the ability to learn from the experience to
be called intelligent. Prediction for every single conceivable circumstance is not necessary if
the system itself learns and adjust to such changes. Machine learning is likewise useful in
finding solutions to many problems in vision, speech recognition, and robotics. For instance,
take recognition of faces. Daily we meet our friends or relatives, or see their photographs and
can recognize them effortlessly. If the procedure is asked, we can't clarify thus not able to
compose a computer program for this. Additionally, we realize that a face image is not just
a random collection of pixels, the face has a structure, and it is symmetric. A face has
eyes, nose, and mouth, situated in specific spots. Every individual's face is a pattern made out
of a specific blend of these. A learning program, by analyzing sample face images of a person,
captures the pattern particular to the individual and recognizes by checking for this pattern in
a given image. This is one example of pattern recognition.

Another example is optical character recognition, which is recognition of character codes

from their images. It is an interesting case when the characters are written by hand—for
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instance, amounts on checks or postal address on envelopes. Different individuals have
distinctive handwriting styles and there may be many possible images for the same character.
In spite of the fact that writing is a human invention, a system which is as accurate as human
reader is yet to be designed. We don’t have a formal description of "A" that covers all 'A's.
We take samples from writers and learn of the A- from these samples. What we want is to
extract the commonness in all those distinct ‘A’s from the examples by extracting the most
common feature that is there in each A. The machine can then be trained accordingly.

The theory of statistics is utilized as a part of building mathematical models in machine
learning. There is a twofold part of computer science: First, in training, an efficient algorithm
is utilized to tackle the issue of optimization, and furthermore to store and process the large
amount of data we generally have. Second, once a model is learned, the representation and

algorithmic solution for inference must also be efficient.

1.2 Classification

Machine Learning is classified depending on the learning algorithms used. There are majorly
three types of machine learning —Supervised learning, Unsupervised learning and Reinforced

learning.

1.2.1 Supervised Learning

The machine learning task of working out a function from labeled training data, which

consist of a set of training examples is called supervised learning. Each example under

supervised learning is a pair of an input object (typically a vector) and the desired output

value (also called the supervisory signal). By analyzing the training data through a supervised

learning algorithm we formulate a function which can be used for mapping new examples.

For inconspicuous instances, an optimal situation will take into account the algorithm to

accurately decide the class labels. This requires the learning algorithm to generalize from

the training data to unseen situations in a "reasonable™ way.[1]

EXAMPLE

Suppose we want to learn about family cars and create a class, C, which describes them.
A set of cars is taken and shown to a group people whom we gather to conduct the survey. Their
responses are gathered and the results are then simulated. Positive examples are those to which
the people points at as what they believe is a family car and the negative examples are all
other cars. Then class learning is done in which we gather the description of positive examples
and group those descriptions and call that class as “family cars”. Doing this, we can make a

forecast: Given a car that we have not seen before, we will be able to say whether it is a



family car or not by checking with description learned. Or, then again we can do
learning extraction: This review might be supported by a car company, and the point is to

comprehend what the individuals’ desire from a family car.
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Fig 1.1 Traming zet for the class of 2 “family car™ The coordinates of the point
indicate the price and engine power of that car. *+° denotes (a family car), and *—
denotes (not a family EEI]_ it iz another type of car. [3]

-
=

x,: Engine power

e - @
g
- 3]
o & S}
<)
& -
t’,
L S S}
o e
]
| | | 1 »
i T x,: Price

Fig 1.2 Example of a hypothesis class. Space where each instance t i3 a data
point at coordinates (x] ,x%) and its type, namely, positive versus negative, is
given by r* (zee fipure 1.1). After analysis of the data, we may have reason to
believe that for a car to be a family car, its price and engine power should be in
a certain range [3]

1.2.2 Learning Multiple Classes
In the previous example of learning a class for family cars, positive examples belong with the
class family cars and the negative examples to every other cars. This is a two-class problem.
In the general case, we have K classes signified as Ci, i =1, ..., Kand an input instance
belongs with one and precisely one of them. The training set is now of the form

X ={hry, (1.1



where r has K dimensions and
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An example is given in figure 1.3
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Fig 1.3 Instances from three classzes: family car, sports car, and luxury sedan. [3]
The boundary isolating the instances of one class from the instances of every single different
class in learnt in machine learning for the classification. In this manner, a K-class
classification problem is taken as K two-class problems. The training examples belonging to
C; are the positive instances of hypothesis h; and the examples of all other classes are the

negative instances of h;. Thus ina K-class problem, we have K hypotheses to learn such that

t

hy(xt) = {(1) e g,j:C; (1.3)

The total empirical error takes a sum over the predictions for all classes over all
instances:

E((hJE|X) = L T 1) = 1) (14)

Ideally only one of h;(x), i =1, ..., Kis 1, for a given x, and we can choose a class.
We cannot choose or reject a class when none, or two or more, h;(X) is 1. The classifier rejects
such doubtful cases. In the example of learning a class for family cars, only one hypothesis
was used to model only the positive examples. Sometimes building two hypotheses is
preferable, one for the positive instances and the other for the negative instances,

assuming a structure for the negative instances also. Separation family cars from sports cars



is an example; each class has a structure of its own. The advantage is that if the input is
a luxury sedan, we can reject the input as both hypotheses decide negative.
1.2.3 Unsupervised Learning
The correct values for mapping of input to the output is provided by a supervisor when
supervised learning is used. But in unsupervised learning there is just input information and
no supervisor. Finding the regularities in the information is the primary point here. There are
more frequent occurrences of certain patterns than others, and such patterns need to be
identified. This method is called density estimation in statistics. Clustering is one of the
strategies used for density estimation where discovering clusters or groupings of info is the
aim. For  an organization  with an information of  past clients, the
client information includes the transactions by the clients with the organization in past. The
organization may want to see the distribution of the profile of its customers to see describe
frequently visiting clients. Along these lines clients with similar attributes are allocated the
same group by the clustering model; this is called customer segmentation. On formation of
such groups, organizations may decide strategies specific to these groups; this is known as
customer relationship management. Machine learning techniques are likewise utilized as a
part of bioinformatics.
1.2.4 Reinforced Learning

In some applications, a sequence of actions determines the output of a system. A single
right action is not important in such cases but a sequence of right actions, i.e., the policy.
There is no such thing as the best action; the action is good if it is a part of a good policy.
The goodness of policies must be accessed by the machine learning program and generate
a policy by learning from past good action sequences. Such learning reinforcement
techniques are called reinforcement learning algorithms. A decent example is game playing
where a solitary move by itself is not that essential; it is the sequence of right moves that is
good. A move is good if it is a part of a good game playing policy. Game playing is a research
area imperative in both artificial intelligence and machine learning. This is because games
are easy to describe and in the meantime, they are very hard to play well. A game like chess
has few guidelines yet very difficult to play because of a huge number of moves in the game
with an extensive number of conceivable moves at each state. On learning algorithms that
knows how to play games well, they can be applied to applications with
more obvious economic utility.
Another application range of reinforcement learning is a robot exploring an environment in

search of an objective area. The robot can choose and move in any direction at a given instance
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of time. But after various trial runs, the right sequence of actions to reach the objective state
from an underlying state should be learned which helps the robot in doing the task as
quickly as possible and without hitting any of the obstacles.
An example is arobot equipped with a camcorder having inadequate data and thus at any
time is in a partially observable state. So it must choose its action taking into record this
uncertainty; for instance, it may not know its exact location in a room but rather just that
there is a wall to its right. Simultaneous operation of multiple agent may be required in some
tasks. An example is a group of robots playing soccer.
1.3 Model Selection Procedures
There are various strategies we can use to calibrate the model complexity.
1.3.1 Cross Validation

Cross validation technique is used in finding the optimal complexity for a model. The bias
and fluctuation for a model can't be calculated. Thus total error is calculated by first separating
the given dataset into two parts: training set and validation set; then training candidate
models of various complexities on the training set and last testing their error on the
validation set left out amid training. On increasing the model complexity, training error
diminishes. But the error on the validation set diminishes only to a specific complexity
level, after which there is no further diminishing; the error can even increase if there is
noise in the data. This “elbow” corresponds to the optimal complexity level (see figure 1.6).
Practically the bias and thus the error can’t be computed as method used in figure 1.5; the
validation error of figure 1.5 is estimate of this and also the variance of noise : Even having a
correct model with no bias and sufficiently large data for variance to be immaterial does not
guarantees zero validation error; there may be some nonzero validation error still present. The
approval mistake of figure 1.6 is not as VV-shaped as the error in figure 1.5 because of former
using more training data which constrains the variance. It is found in figure 1.5 that a fifth-
order polynomial acts as a third-order polynomial where there is more data — it is not as
exact at the two extremes where there is less data. [2]
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Fig 1.4 (2) Function, f(x) = 2sin (1.5x), and one noisy (M (0, 1)) dataset sampled
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Fig 1.5 Order 1 has the smallest variance. Order 5 has the smallest bias. As the
order iz increased, bias decreazes but variance increases. Order 3 has the
minimum error.



(a) Data and fitted polynomials

{b) Error vs. polynomial order

Training
— — — Validation

Fig 1.6(a) Training data and fitted polynomials of order from 1 to 8.
(b) Training and validation errors as a function of the polynomial ord
-er. The “elbow™ iz at 3.

1.3.2 Structural Risk Minimization

Structural risk minimization (SRM) utilizes an arrangement of models minimization ordered
in terms of their complexities. A case is polynomials of increasing order. The number of free
parameters gives the complexity. VC dimension can be used as another measure of model
complexity. SRM finds the model simplest in terms of order and best in terms of empirical
error on the data. [2]

1.3.3 Minimum Description Length

Minimum description length (MDL) is description length in view of an information theoretic
measure. MDL of a dataset is characterized as the shortest description of the data which can
be easily understood. In the event of data being simple, it has a short complexity; for instance,
if it is a sequence of '0's, we can simply state "0" and the length of the sequence. No description
shorter than the data can be found if the data is totally random. A suitable model for the data
has a solid match to the data, and rather than the data, we can send/store the model description.
Out of the considerable number of models portraying the data, we need to have the least
complex model with the goal that it fits the shortest description. So we again have a trade-off

between keeping the model simple and good description of data.



1.4 Organization of report

Chapter 2: This chapter is dedicated to literature review where we have discussed about how
the human brain works and how by simulating the human brain behavior we can solve the real
time problems.

Chapter 3: Various steps involved in implementing the proposed work is explained in this
chapter. It contains information about the microprocessor we are using and the steps involved.

Chapter 4: Results are shown in this chapter and the work is concluded here.
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CHAPTER 2

LITERATURE REVIEW

The term ‘neural network’ came up in attempts to find mathematical representations of
information processing in biological systems. Without a doubt, it has been extensively utilized
in covering a wider scope of various models, many of which have been the subject of claims
regarding their biological credibility. In pattern recognition biological realism force entirely
unnecessary constraints. Accordingly, neural systems are viewed as efficient models for
statistical pattern recognition. Our study will thus be confined to the particular class of neural
networks, the multilayer perceptron.[1]

2.1 Multilayer Perceptron

As animals have the ability of recognizing various things and sense out of large amount of
visual information, without much effort. Thus, understanding these tasks done by animals
using simulation techniques can be of high practical use for development of the system. Thus
the study and simulation of Artificial Neural Network necessary. ANN models, have been
majorly influenced by the human brain. Cognitive scientists and neuroscientists are the ones
who understand the functioning of the and build models of the natural neural networks in
the brain and make simulation studies. We believe that artificial intelligence may help us
build better computer systems. The brain processes information and has some amazing
abilities that cannot be compared to engineering systems—for example, vision, speech
recognition, and learning, to just name three. These applications if implemented on
machines in the right manner have great economic opportunity. Understanding how
these functions are performed by the brain, and bringing in solutions to these tasks in the
form of algorithms does make the task easier.

2.1.1 Neurons

The human brain is amazingly different from a computer. The brain is composed of a very
large (10™) number of processing units, namely, neurons, which operates in parallel as
compared to 1 processor of the computer. These processing units are much simpler and slower
than a processor in a computer. The large connectivity of these neurons is what provides the
brain with its computational power and makes it different from a computer. A neuron in the

brain have connections with around 10,000 other neurons, each of which is called a synapse.
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In the brain, neural network comprises of both the memory and processor; neurons do the
processing, and the memory is in the synapses between the neurons while in a computer, the
processor is active and the memory is separate and passive. In Neural Network, a simple
computation is performed by each node (neuron) and a signal from one node to another,
labeled by anumber called the “connection strength” or weight, is conveyed by a connection.
For different weights used, the network evaluates different functions. In a network with
initial weights, and given that we know what is to be done by the network, in order to get
the values of the weight that will be required for the desired task, a learning algorithm must
be used. Algorithm in which the system learns itself certifies the computer system to be
called Artificial Neural Network. [4]

Weights
W
x1 1 Activation
Summation Function
% Node
2 Output
—>

Inputs g

%N

a= W~I X1+ WoXo + .+ WN XN + Bias

output = Threshold(a)
1, foralla<0

where  Threshold[a) = 4[_1 foralras

Fig 2.1: Typical Neural Network
Designing of a typical pattern recognition system uses two pass, the first pass is a feature
extractor that finds specific features within the data to solve the desired task. The second
pass is the classifier which is more of general purpose and neural network can be employed
to train them. Clearly, more design effort is required by the feature extractor as it
always should be hand-made based on what the application is trying to achieve.
2.1.2 Understanding the Brain
There are three levels in understanding an information processing system, called the levels of
analysis:
1. Computational theory corresponding to the goal of computation and an abstract definition
of the task.
2. Representation and algorithm corresponding to the representation of the input and the
output and about the algorithm’s specification.

3. Hardware implementation corresponding to the actual physical realization of the system.
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Let us take sorting for an example. The aim is to order a given set of elements. Integers
may be used as representation, and Quicksort as the algorithm. After compilation, the
suitable code for a specific processor sorting numbers depicted in binary is one hardware
implementation. The thought is that for a similar process theory, there could
be multiple representation and algorithms manipulating symbols in that representation.
Similarly, for any given representation and algorithm, there could also be multiple
hardware implementations. We are able to use one amongst varied sorting algorithms, and
evenasimilar rule will be compiled on computers with totally different processors and result
in different hardware implementations. The brain is one hardware implementation for
learning or pattern recognition. If from this particular implementation, we can do reverse
engineering and extract the representation and the algorithm used, and if from that in turn,
we can get the computational theory, we can then use another representation and algorithm,
and in turn a hardware implementation more suited to the means and constraints we have.
One hopes our implementation will be cheaper, faster, and more accurate. [4]

2.1.3 Neural Networks and Parallel Processing

Since the 1980s, computer systems with thousands of processors have been commercially
available. The software for such parallel architectures, however, has not advanced as
quickly as hardware. The reason for this is that almost all our theory of computation up to
that point was based on serial, one-processor machines. We are not able to use the parallel
machines we have efficiently because we cannot program them efficiently.

There are mainly two paradigms for parallel processing: In single instruction, multiple data
(SIMD) machines, all processors execute the same instruction but on different pieces of data.
In multiple instruction, multiple data (MIMD) machines, different processors may execute
different instructions on different data. SIMD machines are easier to program as there's just
one program to write down. However, issues seldom have such a daily structure
that they'll be parallelized over a SIMD machine. MIMD machines are
more general, however it's not a simple task to write down separate programs for all the
individual processors; extra issues are associated with synchronization, information transfer
between processors, and so forth. SIMD machines are also easier to build, and machines
with more processors can be constructed if they are SIMD. In MIMD machines, processors
are more complex, and a more complex communication network should be constructed for the
processors to exchange data arbitrarily.

The problem now is to distribute a task over a network of such processors and to determine

the local parameter values. This is where learning comes into play: We do not need to
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program such machines and determine the parameter values ourselves if such machines can
learn from examples. Thus, artificial neural networks are a way to make use of the parallel
hardware we can build with current technology and—thanks to learning—they need not be
programmed. Therefore, we also save ourselves the effort of programming them.

2.2 The Perceptron

Fig 2.2 A Simple Perceptron x;,j=1,...,dare the input units. Xo isthe bias unit
that always has the value 1.y is the output unit. w;is the weight of the directed
connection from input x; to the output.[9]

The perceptron is the basic processing element. It has inputs that may come from the
environment or may be the outputs of other perceptrons. Associated with each input,x; € R,
=l .d, is a connection weight, or synaptic weight w; € R and the output, y, in the

simplest case is a weighted sum of the inputs (see figure 2.2):
d
y = Z w;Xj + wo (2.1)
j=1

W, is the intercept value to make the model more general; it is generally bias unit modeled
as the weight coming from an extra bias unit, x,, which is always +1. We can write the output
of the perceptron as a dot product

y=wlx (2.2)
where w = [wg,wy, -, wq]" and x = [1,x,, -, x4]7 are augmented vectors to include also
the bias weight and input.
During testing, with given weights, w, for input x, we compute the output y. To implement a
given task, we need to learn the weights w, the parameters of the system, such that correct
outputs are generated given the inputs.
When d = 1 and x is fed from the environment through an input unit, we have

Yy =wx + w, (2.3)
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which is the equation of a line with w as the slope and wpo as the intercept. Thus this perceptron
with one input and one output can be used to implement a linear fit. With more than one input,
the line becomes a (hyper) plane, and the perceptron with more than one input can be used to

implement multivariate linear fit.[9]

Fig 2.3 K parallel perceptrons. x;, j =0, .. . , d are the inputs and y;, i=

1, ... K are the outputs. wj is the weight of the connection from input x; to
output yi.
d
— I
Vi = z WUXJ + Wip = W; X (24)
j=1
y=Wx (2.5)

When there are K>2 outputs, there are K perceptrons, each of which has a weight vector wi
where wij is the weight from input x; to output yi.W is the K x(d+1) weight matrix of wij whose
rows are the weight vectors of the K perceptrons.

2.3 Training a Perceptron

The perceptron defines a hyper plane, and also the neural network perceptron is simply some
way of implementing the hyper plane. Given a data sample, the weight values can be
calculated offline and then when they are plugged in, the perceptron can be used to calculate
the output values.[5]

In training neural networks, we generally use online learning where we are not given the
whole sample, but we are given instances one by one and would like the network to update its
parameters after each instance, adapting itself slowly in time. Such an approach is interesting
for a number of reasons:

1. It saves us the cost of storing the training sample in an external memory and storing the
intermediate results during optimization. An approach like support vector machines may be
quite costly with large samples, and in some applications, we may prefer a simpler approach
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where we do not need to store the whole sample and solve a complex optimization problem
on it.

2. The problem may be changing in time, which means that the sample distribution is not
fixed, and a training set cannot be chosen a priority. For example, we maybe implementing
a speech recognition system that adapts itself to its user.

3. There may be physical changes in the system. For example, in a robotic system, the
components of the system may wear out, or sensors may degrade.

In online learning, the error function is not written over the whole sample but on individual
instances. Start from random initial weights, adjust the parameters a little bit at each iteration
to minimize the error, and do not forget what we have learned previously. If this error function
is differentiable, we can use gradient descent.

For example, in regression the error on the single instance pair with index t, (x%,7%) is

1 1
Bwlxt,r) =S (0 =) =S (= (wi)? (25)

and forj=0, ..., d, the online update is

Awf; = n(rf —y))xf (2.6)
where n is the learning factor, which is gradually decreased in time for convergence. This is
known as stochastic gradient descent.

This equation has the form

Update = LearningFactor - (DesiredOutput — ActualOutput) - Input

Fori=1,...,K
Forj=0,...,d
wij — rand(-0.01,0.01)
Repeat
For all (x,#') £ X in random order
Fori=1,...,K
oj — 0
Forj=0,...,d
0; — 0 + wi;x}
Fori=1,...,K '
Vi — exploi)/ X explok)
Fori=1,...,K
Forj=0,...,d
wij — wij + n(r{ — yi)x;
Until convergence

Fig 2.4 Perceptron training algorithm implementing stochastic online
gradient descent for the case with K > 2 classes.[3]
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2.4 Learning Boolean Functions

Here, the nputs are binary and the output is 1 if the corresponding function value is true and 0
otherwise. Therefore, it can be seen as a two-class classification problem. As an example, two

inputs AND, the table of inputs and required outputs is given in table 2.1.

1

2

—_—— O | =
=D = O
-0 O O™

Table 2.1 AND gate
and an example of a perceptron that implements AND, and its geometric interpretation in two
dimensions is given in figure 2.5. The discriminant is
y =s(x; +x, — 1.5) (2.7)
that is, x = [1, x4, x,]7 and , w = [-1.5,1,1]T .

(0.0 (L0y 1.5

Fig 2.5 The perceptron that implements AND and its geometric interpretation.

Though Boolean functions like AND and OR are linearly separable and are solvable using the

perceptron, certain functions like XOR are not. The table for XOR is given in table 2.2.

1

—_—— O D
_ = =

X2
0
1
0
1

Table 2.2 XOR gate
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and its geometric representation is given in fig 2.6

A perceptron having a single layer of weights can only approximate linear functions of the
input and cannot solve problems like the XOR, where the discriminant to be estimated is
nonlinear. Similarly, a perceptron cannot be used for nonlinear regression. This limitation does
not apply to feed forward networks with intermediate or hidden layers between the input and
the output layers. If used for classification, such multilayer perceptrons (MLP) can implement

nonlinear discriminants and, if used for regression, can approximate nonlinear functions of the

S

input.

O

p
Q O -
X
1

Fig 2.6 XOR problem is not linearly separable. We cannot draw a line
where the empty circles are on one side and the filled circles on the other side.[3]

18



CHAPTER 3

IMPLEMENTATION
3.1 Back propagation Algorithm

Training a MLP is the same as training a perceptron with the only difference of the
output being a nonlinear function of the input due to the nonlinear basis function in the hidden
units. The hidden units is taken as inputs, while the second layer as a perceptron and it is
already know how to update the parameters, v;; in this case, given the inputs z,. Chain rule
is used to calculate the gradient for the first layer weights wy,;:

0E JdE 0y; 0z,
= — 3.1)
aWhj ayl aZh aWh]
This looks as the error is propagating back to the inputs from the output y and hence the name

back propagation. A known, desired output for each input value is requires in calculating the
loss function gradient. Thus considered to be a supervised learning method; nonetheless, it is
likewise utilized as a part of some unsupervised network. It is a generalization of the delta
rule to multi- layered feed forward networks, made possible by utilizing the chain rule to
iteratively compute gradients for each layer. The activation function used by the artificial
neurons must be differentiable.

The back propagation learning algorithm can be divided into two phases: propagation and
weight update. [11]

Propagation Phase

Each propagation involves the following steps:

1. Forward propagation of an input of a training pattern through the neural network
to generate the propagation’s output activations.

2. Backward propagation of the propagation's output activations through the neural
network using the training pattern target to generate the deltas (the difference
between the targeted and actual output values) of all output and hidden neurons.

Weight update Phase
For each weight-synapse follow the following steps:

1. Multiply its output delta and input activation to get the gradient of the weight.

2. Subtract a ratio (percentage) from the gradient of the weight.

The speed and learning quality is determined by this ratio (percentage) and is called the
learning rate. Higher ratio corresponds to faster training of the neuron, while the lower

ratio to more accurate training. The sign of the gradient of a weight indicates where the error
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is increasing, this is why the weight must be updated in the opposite direction. Repeat phase
1 and 2 until the performance of the network is satisfactory.
3.2 Training Procedures
3.2.1 Improving Convergence
There are various advantages of gradient descent. Being straightforward is one. Also it is
local; in particular, the adjustment in a weight utilizes just the estimations of the presynaptic
and postsynaptic units and the error. At the point when web-based training is utilized, storage
of the training set is not necessary and can adapt as the task to be learned changes. Hence
hardware implementation is possible on account of these reasons. But gradient descent
converges slowly. When learning time is vital, utilization of more modern streamlining
techniques can be done. Two frequently straightforward techniques are utilized to enhance the
performance of the gradient descent considerably, making this method feasible in real
applications.
Momentum
Let us say w; is any weight in a multilayer perceptron in any layer, including the biases. At
each parameter update, successive Aw/ values may be so different that large oscillations and
slow convergence may occur. t being the time index that is the epoch number in batch learning
and the iteration number in online learning. The idea is to take a running average by
incorporating the previous update in the current change as if there is a momentum due to
previous updates:

Et

N aWi

Awf = + aAwf™! (3.2)

a is generally between 0.5 and 1.0. This approach is useful when online learning is used. The
disadvantage is that the past Aw/~! values should be stored in extra memory.

Adaptive Learning Rate

The magnitude of change to be made in the parameter, in gradient descent, is determined
by the learning factor . It is generally taken between 0.0 and 1.0, mostly less than or equal
to 0.2. It can be made adaptive for faster convergence, where it is kept large when learning
takes place and is decreased when learning slows down:

+a if EtYT < Et
An = : :
{ —bn otherwise (33)
Thus if the error on the training set decreases n is increased by a constant amount; but decreased

geometrically if it increases. Due to oscillation of E from one epoch to another, it is better to

take the average of the past few epochs as E".
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3.2.2 Overtraining

Consider a M LP having d inputs, H hidden units, and K outputs has H(d+1) weights
in the first layer and K(H+1) weights in the second layer. Both the space and time complexity
of an MLP is O(H - (K + d)). Training time complexity is O(e - H - (K + d)), where e denotes
the number of training epochs. In an application, d and K are predefined. To tune the
complexity of the model we play with the H parameter. From previous discussions it is
known that an over complex model memorizes the noise in the training set and does not
generalize to the validation set. In an MLP, when the number of hidden units is large, the
generalization accuracy deteriorates (see fig 3.1), and the bias/variance dilemma also holds
for the MLP, as it does for any statistical estimator.

When training is prolonged, a similar behavior happens: The error on the training set decreases
as more training epochs are made, but the validation set error starts to increase beyond a
certain point (see fig 3.2). Initially all the weights are close to 0 and thus have little effect.
As training continues, the most important weights start moving away from 0 and are utilized.
But if continued further, almost all weights are updated away from 0 and effectively become
parameters. To assess expected error, the same network is to be trained a number of times
starting from different initial weight values, and the average of the validation error
is computed.

0.12 T T T T

= Training
o0 Validatiol
01F S i

0.081

0.06

Mean square error

0.04

0.02-

Number of hidden units

Fig 3.1 As complexity increases, training error is fixed but
the validation error starts to increase and the network starts to over fit.
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Fig 3.2 As training continues, the validation error starts
to increase and the network starts to over fit.[10]

3.2.3 Structuring the Network

In a few applications, we may believe that the input has a local structure. For instance, in
vision we realize that adjacent pixels are related and there are local features like edges and
corners. In such a situation when designing the MLP, hidden units are not connected to all
input units because not all inputs are correlated. Rather, we define hidden units that define a
window over the input space and are connected to only a small local subset of the inputs. This
declines the number of associations and accordingly the number of free parameters.

This can be repeated in successive layers where each layer is connected to a small number of
local units below and checks for a more complicated feature by combining the features below
in a larger part of the input space until we get to the output layer. For example, the input may
be pixels. By looking at pixels, the first hidden layer units may learn to check for edges of
various orientations. Then by combining edges, the second hidden layer units can learn to
check for combinations of edges—for example, arcs, corners, line ends—and then
combining them in upper layers, the units can look for semi-circles, rectangles, or in the case
of a face recognition application, eyes, mouth, and so forth. This is the example
of a hierarchical cone where features get more complex, abstract, and fewer in number as
we go up the network until we get to classes. Such an architecture is called a convolutional
neural network where the work of each hidden unit is considered to be a convolution of its

input with its weight vector; an earlier similar architecture is the neocognitron.

22



Fig 3.3 In weight sharing, different units have connections to different
inputs but share the same weight value (denoted by line type).

Weight sharing can further reduce the number of parameters. In visual recognition, features
like oriented edges may be present in different parts of the input space. So instead of defining
independent hidden units learning different features in different parts of the input space,
we can have copies of the same hidden units looking at different parts of the input space.
3.3 Tools for design
3.3.1 Raspberry Pi

Raspberry Pi is a credit card-sized computer powered by the Broadcom BCM2835 system-on-
a-chip (SoC). This SoC includes a 32-bit ARM1176JZFS processor, clocked at 700MHz, and
a Videocore IV GPU. It also has 256MB of RAM in a POP package above the SoC. It is
powered either by a 5V micro USB AC charger or at least 4 AA batteries (with some special
circuitry). The Raspberry Pi is a small, barebones computer developed by The Raspberry Pi
Foundation, a UK charity. Their intention was to provide low-cost computers and free
software to students. Their ultimate goal is to take computer science education to a new level
and they hope that this small, affordable computer will be a tool that enables that. The
Raspberry Pi is slower than a modern laptop or desktop but is still a complete Linux computer
and can provide all the expected abilities that implies, at a low-power consumption level. It is
open hardware, with the exception of the primary chip on the Raspberry Pi, the Broadcomm
SoC , which runs many of the main components of the board—CPU, graphics, memory, the
USB controller, etc. Many of the projects made with a Raspberry Pi are open and well-
documented as well and are things you can build and modify yourself.

The Raspberry Pi was originally designed for the Linux operating system, and many Linux
distributions now have a version optimized for the Raspberry Pi. Two of the most popular
options are Raspbian, which is based on the Debian operating system, and Pidora, which is

based on the Fedora operating system. For beginners, either of these two work well; which one
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we choose to use is a matter of personal preference. A good practice might be to go with the
one which most closely resembles an operating system we are familiar with, in either a desktop
or server environment. There are, of course, lots of other choices. OpenELEC and Rasp BMC
are both operating system distributions based on Linux that are targeted towards using the
Raspberry Pi as a media center. There are also non-Linux systems, like RISC OS, which run
on the Pi. Some enthusiasts have even used the Raspberry Pi to learn about operating systems

by designing their own.

GPIO Header

DSl Display

Connector \O

Micro SD Card Slot

(Underside) \

Status LED

BCM2837 Chipset

USB 2.0 Port

USB 2.0 Port

Micro USB Connector

(To Power Raspberry Pi) 10/100 Ethernet Port

HDMI Video/Audio
Connector

CSlI Camera
Connector

RCA Video/Audio Jack

Fig. 3.4 Raspberry PI 3

3.3.2 Processor

The Broadcom BCM2835 SoC used in the first generation Raspberry Pi is somewhat
equivalent to the chip used in first generation smartphones (its CPU is an
older ARMvV6 architecture), which includes a 700 MHz ARM1176JZF-S
processor, VideoCore IV graphics processing unit (GPU), and RAM. It has a level 1
(L1) cache of 16 KB and a level 2 (L2) cache of 128 KB. The level 2 cache is used primarily
by the GPU. The SoC is stacked underneath the RAM chip, so only its edge is visible. The
Raspberry Pi 2 uses a Broadcom BCM2836 SoC with a 900 MHz 32-bit quad-core ARM

Cortex-A7 processor (as do many current smartphones), with 256 KB : shared L2 cache while
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the Raspberry Pi 3 uses a Broadcom BCM2837 SoC with a 1.2 GHz 64-bit quad-core ARM
Cortex-A53 processor, with 512 KB shared L2 cache.
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Fig.3.5 Raspberry Pl 3 Pin OUT Diagram

3.4 Steps in optical character recognition

Optical character recognition involves various phases from image acquisition to the
classification and recognition (fig 3.6). The output of a step is the input to the next step. The
task of preprocessing relates to the removal of noise and variation in handwritten word patterns.
Preprocessing is further broken down into smaller tasks such as noise removal, binarization,
thinning, edge detection, etc. to enhance the quality of images and to correct distortion.

3.4.1 Image Acquisition

A camera/scanner is used in this phase to take an input image. The acquired image must be of
a specific format such as JPEG; PNG; BMP etc. and may be colored or gray scale.
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3.4.2 Preprocessing

It is a series of operations performed on the acquired image. It is a necessary step in character
recognition as it enhances the image and removes the noise which may cause errors in the
corresponding steps. The various operations are:

(1) Filtering: Due to uneven writing surface and/or low sampling rate, there may be some
noise introduced in the acquired image. This operation aims at removing this noise by
using various types of filters.

(2) Binarization: This operation converts the grayscale image into binary image.

(3) Edge Detection: Character boundaries are characterized by the edges. So the detection
of edges is useful in character recognition. It reduces the amount of data by filtering the

useless data while preserving the important structural properties of the image.

IMAGE ACQUISITION

¥
PRE-PROCESSING

r
SEGMENTATION

'

FEATURE EXTRACTION

v

CLASSIFICATION AND
RECOGNITION

Fig 3.6 Stages in OCR

(4) Thresholding: Grey scale images are represented as binary images by setting a
threshold value and everything that lies above this threshold is set to 1 and everything
below is set to 0.

(5) Skew Detection: There can be skewness involved while scanning the input image. The
skewness should be detected and removed as it tends to reduce the accuracy of the
document. The skewed lines are made horizontal making use of the skew angle.[13]

3.4.3 Segmentation
It is the most important phase in character recognition. In this phase, spaces are provided in

between the individual characters in the image. [14]
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3.4.4 Feature Extraction

Feature extraction aims at extracting a set of features which maximizes the recognition rate
with least amount of effort. We know that every individual has different handwriting but there
are certain features in each character which remains the same throughout. These features can
be extracted and utilized in the recognition process. [15]

3.4.5 Classification and Recognition

It the decision making part which uses the extracted features to classify the= characters and
give the output.

3.5 Input

Handwritten data (fig 3.7) is taken and image acquisition is done by the camera using the PI.
Since it is using unsupervised learning so the network is first trained using a sample set (fig
3.8).

3.6 Training

The first step is to create a database of handwritten digits. The popular MNIST database of
handwritten digits is used which is a set of 70000 samples of handwritten digits where each
sample consists of a grayscale image of size 28x28. We will use sklearn datasets package to
download the MNIST database from mldata.org. This package makes it convenient to work
with toy databases. Two python scripts will be written; one for training the classifier and the

second for testing it.

Fig 3.7 The input data
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Fig 3.8 An example training set for unsupervised learning
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CHAPTER 4
RESULTS AND CONCLUSIONS

The output after the compilation of code and processing is done on the input is shown in fig
4.1. There are a few assumptions, we have assumed in the testing images -

1. The digits should be sufficiently apart from each other else they will interfere in the

square region around each digit. In that case, we create a new square image and then copy

the contour in that square image.

2. For the images used in testing, fixed thresholding worked pretty well which is not the
case in most real world images. There, we need to use adaptive thresholding.

3. In the pre-processing step, we only did Gaussian blurring. In most situations, on the
binary image we will need to open and close the image to remove small noise pixels and

fill small holes.

0 5 2SR O

Fig 4.1 The output

The characters from 0 to 9 are recognized by the project. It can detect these character with an
accuracy of about 95%. In future, it can be extended to recognize the alphabets and the special
characters. Many different methods have been explored by the scientists over past few decades.
A variety of approaches have been proposed and tested by researchers in different parts of the
world. No OCR in this world is 100% accurate. The recognition accuracy of the neural
networks proposed here can be further improved. The number of character set used for training
is reasonably low and the accuracy of the network can be increased by taking more training

character sets. This approach can be used for recognition of Hindi, Bengali etc. characters.
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