
 CODE SHARING APPLICATION ON ETHEREUM

Project report submitted in partial fulfillment of the requirement for

the degree of Bachelor of Technology

in

Computer Science and Engineering/Information Technology

By

Sourabh(151358)

 Sahil Thakur (151360)

Under the supervision of

Dr.Geetanjali (Assistant Professor-Senior Grade)

to

Department of Computer Science & Engineering and Information

Technology

Jaypee University of Information Technology Waknaghat,

Solan-173234, Himachal Pradesh

i

Candidate’s Declaration

We hereby declare that the work presented in this report entitled “ Code Sharing Application

on Ethereum” in partial fulfillment of the requirements for the award of the degree of

Bachelor of Technology in Computer Science and Engineering/Information Technology

submitted in the department of Computer Science & Engineering and Information Technology,

Jaypee University of Information Technology Waknaghat is an authentic record of my own

work carried out over a period from August 2018 to May 2019 under the supervision of (Dr.

Geetanjali) (Assistant Professor (CSE)).

The matter embodied in the report has not been submitted for the award of any other degree or

diploma.

Sourabh(151358)

Sahil Thakur(151360)

This is to certify that the above statement made by the candidate is true to the best of my

knowledge.

Dr. Geetanjali

Assistant Professor

CSE

Dated:

ii

ACKNOWLEDGEMENT

We take this opportunity to express our profound gratitude and deep regards to our guide Dr.

Geetanjali (Assistant Professor , CSE) for her exemplary guidance, monitoring and constant

encouragement throughout the course of this project. The blessing, help and guidance given

by her time to time shall carry us a long way in the journey of life on which we are about to

embark.

We are also obliged to staff members of JUIT College, for the valuable information provided

by them in their respective fields. We are grateful for their cooperation during the period of

our assignment.

Lastly, we thank almighty, our parents and our classmates for their constant encouragement

without which this assignment would not have been possible.

iii

Contents

1 Introduction 1

1.1 Introduction to Project ..1

1.2 Problem Statement ..3

1.3 Objective ...4

1.4 Methodology ...5

1.5 Oraganization………………………………………………………………………7

2 Literature Survey 8

2.1 Books, White Papers and Publications ...8

2.2 Talks, Conferences and Meetups ..9

3 System Development 10

3.1 System Architecture ..10

3.2 Experimental Model ...11

3.3 Behind The Scenes ..15

iv

4 Algorithms 17

4.1 Algorithm 1 ...17

4.2 Algorithm 2 ...18

4.3 Algorithm 3 ...20

5 Testing 21

5.1 Testing Rails Authorization ..22

5.2 Unit Test For Repository and Users ...24

5.3 Smart Contract Testing ... 26

5.4 Things Left For Testing…………………………………………………………27

6 Issues And Challenges So Far 28

6.1 Scalability in the Ethereum Network ..30

6.2 Future Changes and Expectations ...33

References………………………………………………………………………………… 34

v

List of Figures

 1. The Overview..7

 2. Devcon IV ...9

3. The Layers Of The Applications ...10

4. Flowchart For CheckOwner ..17

5. Flowchart For Create New Repository ...19

 6. Flowchart For Upload Files ..20

 7. Blockchain Trilemma…………………………………………………………….32

 8. Create Repository Screenshot…………………………………………………….36

 9. Login into application screenshot……………………………………………….37

 10. Private Blockchain…………………………………………………………….38

vi

List of Graphs

1. Number of Users On Github…………………………………………………………4

2. Prices For Ether Over The Last Three Years……………………………………12

3. Scalability In The Ethereum Network……………………………………………28

vii

List of Tables

1. Rails Authorization Test…………………………………………………………23

2. Unit Tests For Repository And Users…………………………………………….25

viii

List of Abbreviations

1. PoW – Proof Of Work

2. DApp – Decentralized Application

3. PoS – Proof Of Stake

4. IPFS – Inter Planetary File System

5. ICO – Initial Coin Offering

6. TDD – Test Driven Development

7. UI – User Interface

ix

ABSTRACT

Code in today’s world is one of the most important entities a person can possess so it is highly

vital to store and share our code in a safe and efficient manner. Now, many services like Github,

Gitlab etc. do exist that give us many of the functionalities that we desire but what they lack is

absolute security and treating code as an ‘asset’ rather than treating it as data. To tackle this

and treat code as valuable we need something different from the conventional client-server

model.

In this project we seek to build a code sharing platform on the Ethereum blockchain that will

give us the all-important decentralization that developers have been seeking since long and

give our code a safer and more permanent home where it is treated as value instead of just

simple data.

Our hope is that in the future a bigger more scalable implementation of our idea will change

the code sharing perspective in the world.

1

CHAPTER 1: INTRODUCTION

1.1 Introduction

The World Wide Web was developed in the 90’s and it is basically the center point of our

life, our businesses, our transportation and every other utility imaginable to human beings.

It was revolutionary no doubt, god-like even but it had its limitations; limitations, which

we are ignoring these days as users and organizations are as providers.

The World Wide Web working on the HTTP protocol was what can be termed as the

“Internet Of Data”. It was created to share information online, information like text,

images, videos and information that represent commodities that can be shared with friends,

family and even the general public easily and without loss to the one sharing it.

30 years into the future and we are in a very different place technologically, a place where

the World Wide Web and HTTP are becoming liabilities on us. The internet we require

now is no longer the “Internet Of Data” but the “Internet Of Value”. The internet we use

right now is used for sharing data, no doubt, but there’s so much more being shared on the

internet now – money, assets, and even forms of data that could may very well be worth a

lot of monetary value.

It is pretty evident to developers and organizations that HTTP and World Wide Web

working on the client-server model are just not good enough to suit the demands of the

“Internet Of Value”. So, why are we still running in the old world? Well, there are two

major reasons for this – we fear change as users and most importantly organizations fear

change as providers. It isn’t that solutions haven’t been developed, but that the solutions

are not being opted due to this fear. Sure, the solutions might not be totally ready for use

in every aspect of the world, but they will never be unless we give them a chance. Its 1990’s

all over again, people didn’t want to go online – they trusted their hard copies, they trusted

their one-to-one interaction more.

2

We now are in exactly the same position as developers, companies, users were in the 90’s.

Now, it’s our turn to embrace the change and work with it so we may again have 30-50

years of pain free technology.

The solutions we are talking about are the solutions we are using in our project to solve a

particular field in the exchange of data. Data as we know nowadays is one of the most

precious assets people own. What form of data is one that is the most valuable? Well, the

data that basically runs all the other data in the world as of now – CODE. Code is what

runs the internet right now, code is what runs all the digital world and we all have to agree

that our world is just as much digital as it is physical these days. From housewives watching

TV at home in the afternoon to scientists in NASA working and controlling the ISS,

everyone is working on digitalized equipment that has code behind it. What a shame would

it be if this code isn’t safe? From a simple ‘hello world’ program to the entire codebase of

Facebook is kept in servers somewhere and that is exactly the thing we are going to tackle

now.

So, we have been saying that there are solutions to solve what might seem like a lot of

problems related to the “Internet of Value” but just what are these? We haven’t even named

them so far and there’s just a single word for it – Blockchain.

Blockchain is the change we are failing to embrace and it is exactly the solution to our

problem. We’ll discuss the how and why of Blockchain in the later sections.

So, what this project aims to accomplish (on a small scale) is to devise a code storing and

sharing application on the Ethereum blockchain. Ethereum is a blockchain that allows us

to develop decentralized applications (DApps) over it. So, it is more or less a Github clone

that would be distributed and decentralized. Let’s see in the rest of the chapter what

problems would be solved by this and how these problems will actually be solved.

3

1.2 Problem Statement

Code sharing and storing has held a very important position in the eyes of developers and

coders ever since coding started itself. Local machines were initially used to store code

belonging to one person. But this had one limitation, more than one person could not

collaborate easily. Moreover, there was no system that gave the developers ability to keep

versions of their code (an important practice in development).

Then came git, a version control system that was easy, efficient and brought a sigh of relief

to developers all over the world. Built on top of git was a web application that would change

code sharing and storage forever released in 2008 called Github, which was just bought by

Microsoft for 8 billion USD. Github was everything that developers wished for all along,

it was open source, it was free, it was easy to collaborate over, it was easy for version

control and provided tons of other features.

But there was, in fact is one major drawback to Github, it works on the client-server model

at the end of the day. What does that mean? That means that somewhere in the world there

is a(one or more) server which contains your code. Let us say for an example that your

profile’s code is stored in a server in Kentucky, USA. What if there was an earthquake in

Kentucky and all the servers broke? Well, say goodbye to your code if you didn’t have a

backup. This is just a fictional natural calamity that might occur. Consider a more probable

example, what if a hacker got control of the server and caused all sorts of disruptions in

your code?

What is the problem with this client-server model? Well, there’s just a single point of truth

and storage. Our entire web is client-server right now, and this isn’t a very good thing if

we want to store value on the internet! If our value is stored at a single point of truth, it is

more or less inviting trouble.

What we want to do is make our code-sharing and storing distributed and secure. The

method to do it is using Blockchain technology. Client-server is not the solution to it, it

never was but we didn’t have the technology required to make something better. Now, we

do.

4

1.3 Objectives

By now, we have laid down certain things we expect from our application and certain things

we demand from it. We expect everything that Github is capable of, albeit at a smaller level

and we demand three things:-

i.Distributed ii.Trustless iii.Secure

Ethereum will let us develop a code sharing web application that will satisfy all of the

above demands. Our application will be what is called a DApp. Decentralised applications

are peer-to-peer so they don’t need any central server (that can be attacked) , they follow

consensus rules (to maintain the state of the blockchain) and are secure because once the

data goes below a certain no. of blocks, that data is immutable no matter what.

Graph 1.1 – No. of users on Github

There are more than 15 million users on Github alone, so this will be a big problem that

we are solving, and more importantly, it is a very precious resource that we are keeping

secure – CODE.

5

1.4 Methodology

So, how will things go about as we said they will? Over the past few years there’s been a

trend in the technological universe called ICO (Initial Coin Offering) that let’s blockchain

developers release their coins into the market that can be bought in exchange of fiat

currency. These coins can then be exchanged for the services provided by the application.

This is replicated in the Ethereum blockchain using something called tokens. Tokens are

sold in ICOs and then later can be used for services.

What our application aims at doing is providing tokens in the ICO in exchange of fiat

currency. Now, the number of tokens is always capped, so more the demand of tokens,

higher the tokens go in value. Our application’s tokens would be used in exchange of

storing code on the application and adding collaborators to your code. Even though this

approach isn’t free of cost to the end users, it might very easily be provided freely if the

developer feels like open-sourcing the project (which will lead to a consensus clash we will

discuss later).

Pieces of Solidity code called Smart Contracts are what maintain peace on the Ethereum

blockchain. Smart contracts are what we will use in order to regulate our web application.

These smart contracts will decide how many tokens will be used for what operation and

which files belong to which user.

We discussed before that HTTP is not suitable for the exchange of value, so in comes IPFS

(Inter Planetary File System). This is the protocol that will be used by our application to

store and communicate data , i.e, the codes. We will discuss more about how IPFS will do

it and how will implement all this in later sections.

At the end of it all, our application will just be a web application that is built using tools

like Ruby On Rails and ReactJS with the speciality that it will run on the Ethereum

blockchain that will give it benefits unheard of.

6

1.5 Organization

Fig 1.1 The Overview

Our application will be organized into four major different parts – Ethereum solidity

smart contracts, Ruby on Rails backend application, ReactJS front-end UI and the IPFS

file system.

The Rails backend will provide the functionalities of a code sharing application like

Github (interestingly, Github is built on Rails too!), ReactJS will provide users with

the interactive front-end to deal with the Web3 providers at one end and the users at

the other. The web3 that React will interact with is responsible for talking our smart

contracts which will be governing the decentralised logic of our application. IPFS is

what will be used as a file system for the application as we cannot rely on a centralised

file system in a blockchain application.

Our application state will be handled at all these different levels differently in

accordance to the requirement by the tool handling it.

7

CHAPTER 2: LITERATURE SURVEY

2.1 Books, White Papers and Publications

Decentralised applications are not something thought of in 2015 by Vitalik Buterin,

developers have always been on the hunt for achieving decentralisation since the very

moment they found the flaws in a centralised system.

Vitalik just brought enough innovation into the Bitcoin blockchain to find a method to

host Decentralised applications.

Ethereum White Paper -> https://github.com/ethereum/wiki/wiki/White-Paper

Bitcoin White Paper -> https://bitcoin.org/bitcoin.pdf

The release of the Bitcoin whitepaper in 2008 was a big event in decentralisation of the

world. An unknown person(s) called Satoshi Nakamoto released this paper that seemed

to have solve Byzantine’s problem of decentralisation. The entire Bitcoin protocol and

basically how blockchain technology works as whole is very well explained in the book

Mastering Bitcoin by Andreas Antonopoulos.

The thing with distributed ledger technology (other name for blockchain) is that it is

not a single technology working on its own – its cryptography, its networking, its web

application development, its consensus theorems all working together to form DLT.

Two of the books really shedding light on these are:-

i. Distributed Networks by Qurban A. Menon

ii.Handbook Of Applied Cryptography by Alfred Menezes

Other than this regular magazines like NXTR and CyptoBiz Magazine are constant

sources of information in the blockchain and crypto world.

The International Journal Of Blockchain And Cryptocurrency also exists for authors to

send their research papers to and get heard in this space by other technology ethusiasts.

https://github.com/ethereum/wiki/wiki/White-Paper
https://bitcoin.org/bitcoin.pdf

8

2.2 Talks, Conferences and Meetups

The blockchain developer ecosystem is one of the most buzzing in this age. People are

working in decentralised applications, in bitcoin, in mining and all other sort of blockchain

related works all over the world.

In order to bring these innovative minds together regular crypto meetups are held all over

the world. Few of the most important ones are – World Blockchain Forum (London, 2018),

Malta Blockchain Summit (Malta, 2018), Ethereum Devcon (Prague, 2018).

The Etherum Devcon 2018 was a particularly important even in the blockchain space

considering it was where the Ethereum foundation laid down their visions for Ethereum

2.0 set to be released in 2020 with particular focus on scalability and performance.

Fig 1.2 Devcon IV

9

CHAPTER 3: SYSTEM DEVELOPMENT

3.1 System Architecture

The application will be architected on various levels using various different tools – the

bottom layer would be the Ethereum blockchain that will act as the underlying ledger to

record everything that is of importance according to the smart contracts, the layer just

above it would be the IPFS file system that would allow us to store the code files in a peer-

to-peer network. The third layer from the bottom would be the Smart Contracts layer

written in Solidity. The next layer would be our backend web application layer written in

Ruby. On top would be the ReactJS layer written Javascript for the users to interact with.

Fig 3.1 The layers of the application

10

3.2 Experimental Model

Our system is devised on the ICO which will be offering tokens that can be then used in

exchange of services provided by the app in the future. Now, to run applications on

Ethereum , the user needs to spend something called ‘gas’ that is used to power the

computation on the web3 provider that is actually executing the code somewhere.

Remember that the code isn’t being executed on a server like in centralised applications,

therefore it is necessary to spend some amount of gas (which can be bought with Ether,

the currency on the Ethereum blockchain).

So, let us assume our user A has bought some tokens of our application in the ICO, what

does he do then? Well, he uses his browser (with Metamask enabled, which is an extension

to run blockchain apps) to open our web application. It is noteworthy that we will only

talk to the blockchain when we really need to, rest all of the operations are to be carried

out by our Rails backend.

After visiting the application, our user logs into the application and visits his profile page.

Now, the interesting part starts – as soon as he creates a repository (a data structure) our

application will talk to our smart contract using Web3 and start writing information on the

blockchain. It is necessary because repositories are what will be written to the blockchain

and they are the core building blocks of our application. These repositories are what will

be governed by our smart contracts.

Our user creates a repository and our smart contract writes that information on the

blockchain that this repository belongs to user A. This is an operation that costs ‘gas’ on

the blockchain and the token that we distributed in the ICO for availing the create

repository service of the application. That no. of tokens will be deducted from A and given

to the person that mines the block containing the transaction with the create repository

function call. This is what keeps the miners incentivised for keep on working to mine

blocks.

The block with that transaction gets attached to the Ethereum blockchain and thus gets

settled. Once there are more than 7 blocks on top of that block (1 block gets mined every

15 secs), that information becomes immutable! Therefore, no one in the world can change

the information that that particular repository belongs to User A.

11

All the features provided by the application like storing your files in a repository,

collaborating in someone else’s repository and making any other change to your repository

will cost gas as well as the tokens of our application.

Also, it is worth noting that read operations will not cost gas or tokens as they are not

writing any data on the blockchain and thus can be executed on the user’s own local node.

Write operations are the one which spend computation power and therefore need to cost

something. The Web3 provider is the node where all the computations take place.

Metamask is an extension for Chrome, Firefox etc. which allows you to interact with any

Ethereum application using your account. You can configure your web3 provider using

Metamask though it is default set to Infura (which provides a node layer for computations).

Now, the more the demand for your application, more the value of your tokens in fiat

currency and same is the case with Ether, more the demand for decentralised applications,

more the cost of Ether.

Graph 3.1 Price of Ether over the last three years

The prices of Ether, which affects the price of gas and also the price of our token is an

important thing to consider in decentralised applications. It would directly affect the usage

and value of our application.

12

The main flow is nearly the same for any operation carried out in our application, it’s

basically spending tokens and gas to get your operations done.

Let’s see an operation to upload a code file. User A will open our URL, login to our Rails

application, will open one of the repositories that he has already created (won’t cost gas

as it is a read operation). Now, when he clicks the upload button with the files that is when

a smart contract function is triggered. First the function will test whether the msg.sender

is the owner of the repository or not, if true, the files will be uploaded to IPFS and their

hashes will be written on the blockchain belonging to that particular repository.

In the future when the user tries to access these files, it will be checked whether these files

belong to a repository that is owned by that User A. The data in the blockchain is

immutable, therefore, there’s no chance of your data being interfered with by anyone or

any changes being made to your data or profile.

13

14

3.3 Behind The Scenes

We’ve seen how the user will interact with the application and how the things will go on from

the user’s perspective but let us see what happens behind the scenes when operation is carried

out in our application.

The top layer of our application is the ReactJS UI that we expose to the user. The ReactJS UI

of our application is talking to our Rails backend using API end points the Rails application

has exposed. Also, React is talking to our smart contracts using Web3.

Let’s take the example of the user creating a repository. So, User A types the URL into the

browser, which triggers a controller action in our Rails backend. Rails provides data in JSON

format to our ReactJS front-end which shows it to the user using Javascript. The user clicks on

login and logs into his account. Authorization is taken care of by our Rails backend. Any

operation that does not require anything to be written onto the blockchain will be taken care of

by the Rails backend, shown to the user by ReactJS. The JSON data provided by the Rails

application will be processed by the ReactJS front-end and presented as DOM elements using

JSX.

Now, when the User A executes any operation that needs the blockchain to be concerned, a

different flow runs. Instead of asking the Rails backend for JSON data, the React front-end

asks Web3 to talk to our smart contract written in Solidity. The solidity code runs on the

assigned Web3 provider, writing (or reading) to the blockchain in the process consuming gas

as well as our application’s native tokens. The consumption of gas is dependent on the

complexity of the operation being executed whereas the consumption of the tokens is

dependent on us. Let us assume creating a repository costs 3 tokens. So, after the repository is

written on the blockchain and our user is assigned as the owner of that particular repository

our smart contract will execute the code that deducts 3 tokens from that user’s address.

How does the information like user’s address get into the smart contract? The answer is

Metamask. Metasmask is what contains your address and your balance. Whenever you execute

any blockchain operation in the application a transaction gets written! This transaction is

signed by your digital signature using Metamask (metamask is where your credentitals have

been set up). So, the signature on the transaction is where all your information resides. This is

15

where the smart contracts get information about you. This information is vital because it gets

written to the blockchain as the owner of the repository being created.

Later, this information will be required to access the files that you upload onto the application

and all the other features in the application that are requiring the blockchain.

After you send your transaction, that transaction along with thousands of other transactions all

over the world will be written to a block. Then there will be race between various mining nodes

to mine this block, the node that wins this race will get rewarded with transaction fees and

ether! All other nodes have to then validate that the information is valid, if not, the block gets

rejected, and else it gets written on the main net blockchain of Ethereum which is as good as

being engraved on the strongest stone possible. This information is now immutable and can

never ever be changed or hacked.

One block gets written onto the blockchain every 15 seconds and after a certain no. of blocks

there is no way to change the information written on an older block. Thus, your repository (and

later code) becomes as secure as possible. Thus, completing our decentralised operation.

3.4The Interplanetary File System

Our report has again and again mentioned the fact that HTTP was feasible only for the web

of the past. The IPFS approach to file sharing will greatly boost our application and its

usage to share code in a decentralized way. HTTP downloads from a single source at a

single time, whereas IPFS makes it possible to download from various different sources at

the same time. What this approach gives us is gives 60% saving on bandwidth costs. Let

us take a step by step look into how IPFS works :-

a. Each file to be stored via IPFS and all the blocks inside it are given a cryptographic

hash as a unique identifier.

b. IPFS removes duplication of the file across the network.

c. Each node stores only the content that it has interest in, and some information that will

help in figuring out who is storing what.

d. IPNS (Inter Planetary Naming System) is used to name the file in a human readable

form.

e. When looking for files on the system, you’re asking the system to give you content

behind a unique hash.

16

CHAPTER 4: ALGORITHMS

Algorithm 1: Checking Repository’s Owner

 User.clicks (repository’s link)

 -> Web3 calls smart contract’s CheckOwner function

 -> CheckOwner(_uint address, Repository repo)

 ->for address and repo

 -> check in AddressRepo mapping if the value returned true

 -> If true, give user the access to the repo

 -> If false, give an error message

 ->end

 ->end

 ->end

The thing with this algorithm is that it won’t cost any gas or tokens as this is a read operation.

Other operations that require writing to the blockchain are much more risky as we’ll see later.

17

Fig. 4.1 Flowchart for checkOwner

Algorithm 2: Creating a new repository

 User.clicks (create new repository)

 -> Web3 calls smart contract’s newRepo function

 -> newRepo(uint _address , String repo)

 -> for address and string repo

 -> check if repo of same name already exists

 -> if yes, ask user to give another name

 -> if no,

 -> create a new repository, write it on the blockchain

 -> assign the repository’s owner to msg.sender

 -> deduct the specific no. of tokens from msg.sender

 -> end

 ->end

 ->end

This algorithm allows user to create a new repository and register it on the blockchain, this is

a write operation and thus will consume gas as well as tokens.

18

Fig 4.2 Flowchart for create new repository

19

Algorithm 3: Upload new files

User.clicks(repository repo)

 -> Web3 calls checkOwner function

 -> if true, allow access into the repo

 -> if false, block access into the repo

 ->User.clicks(upload files)

 -> Files get uploaded into the IPFS

 -> The blockchain writes these files as belonging to the repo

 ->end

 ->end

 ->end

Fig 4.3 Flowchart for upload files

20

CHAPTER 5: TESTING

We need to test two different parts of our application – the Rails backend and the smart contract

solidity code. The testing of the solidity code is of utmost importance as it literally costs money

to execute that code.

Reasons to test your Solidity smart contract code:-

1. It costs gas to run functions on Ethereum blockchain and thus any wrongly written function

is costing the user money in the form of gas.

2. The smart contract code is immutable, i.e, we cannot change it as we please like we do in a

production deployed web application.

3. Once wrong code gets written on the blockchain, it can only be changed if erase it off the

blockchain and then write new code in its place.

Reasons to test your Rails back-end code:-

1. Authorization and authentication is of utmost importance in any web application.

2. Other backend services are totally dependent on the Rails code.

3. Our Rails back-end is what provides our UI with JSON data.

Now, we’ve seen why it is important to test our code on both the levels. We accomplish these

tasks using two different tools – Rspec for our rails code and Mocha for our Solidity code.

These are testing frameworks that are specifically developed for Ruby and Javascript code

(Solidity can be tested like JS as well). We will provide our application with mock data and

mock simulations using FactoryBot and Faker which will use Fake data as fixtures and check

the working of the application depending on certain assertions that we will write in RSpec and

Chai for Rails and Solidity respectively.

21

5.1 Testing Rails Authorization

The Rails authorization system will be based on JSON JWT tokens that allow for services and

features to be accessed only if the current user is using his own correct token.

To test the authorization system we create Fake data of users using Faker and initialize a User

factory with this fake data. Factories allow us to make fake models of objects in the application

just for testing purposes. Then, we will follow the entire procedure of signing up and logging

in using correct password for the retrieval of current token using RSpec request tests.

22

 Table 5.1 User Authentication

USER TOKEN RESPONSE

A Token.belongs(A) Access

A Token.belongs(B) No-access

A Token.timeout(A) No-access

A Token.invalid No-access

23

5.2 Unit Tests for Repository and Users

Other than the complete flow of user’s authorization , it is very important to test each model

of the application using Unit tests to confirm each of the individual models are working as

expected. We write Model tests for User model and Respository model where we test there

trivial and basic behaviour using RSpec.

24

TABLE

Repository Name Repository Owner Response

“ ” “ ” Error

“ ” A Error

Rails Project “ ” Error

Rails Project A Accepted

25

5.3 Smart Contract Testing

As we discussed earlier, testing smart contracts is of utmost importance as their code actually

costs real money to be run, so , we need to make sure everything runs as expected and using

as little gas as possible.

26

5.4 Things Left For Testing

Due to no connection between our Rails back-end and our smart contracts till now, no form of

integration testing has been carried out.

Individual parts of the application and individual parts of those individual parts have been

tested independently but they have still not been combined into a single flow of behaviour.

To implement integration testing, we first need to completely build the application from the

start to the end so that we can test the behaviour and connection of each layer with the layer

next to it.

The integration testing will be carried out using the Mocha test framework because it would

allow us to test the UI provided by ReactJS as well as the core functionality provided by the

Smart Contracts.

27

CHAPTER 6: RESULTS AND PERFORMANCE ANALYSIS

The project has been working well when the blockchain is run on our own system with no

connection to the outer world. The way we are analyzing the performance of the project is by

testing it in two ways – firstly we are using a local blockchain using a software called Ganache;

what this does is create a local blockchain on our own system with fake users (all of whom are

controlled by your Ganache software itself) . The second way we are testing the application is

much closer to the real world implementations of a decentralized application, in this second

way we are using a test network called Rinkeby.

As to test the application in the real world Ethereum blockchain, we will require real Ether to

deploy our contract and real Ether costs real money so we were not able to check the

performance of the application on Ethereum. The closest we could get was by using the

Rinkeby testnet that operates on fake Ether that can be bought using rinkeby-faucets .

The two major points to check in a decentralized application are the performance and costs.

As every operation on a DApp takes gas to operate, it is vital that the operations take as less

‘gas’ and thus as less money as possible. For better security, you need to pay a better price and

thus gas heavy operations tend to be more secure even though that is not a compulsion. The

other aspect of performance analysis is also very important. As our DApp will be deployed on

the Ethereum blockchain, it will follow a proof-of-work consensus algorithm. What this means

from a performance point of view is that the scalability of the app goes down and response

times increase. The average block time on the ethereum blockchain is of 10 mins. What this

means is any operation will take 10 mins to be permanently recorded on the blockchain . Even

though using Solidity specific programming concepts of ‘Events’ can give us the ability to

change the UI on the front end on a particular event (just like event handlers in JS), the real

transaction does take 10 mins to save onto the Ethereum blockchain.

Things are very very different on the Ganache local blockchain where every action is

spontaneous , and on the Rinkeby testnet where the average block times vary from time to

time.

28

Figure 6.1 Screenshot of Rinkeby’s performance

The information provided by the Rinkeby test network on their official site

(https://www.rinkeby.io/#stats) shows the average block time of around 15 seconds which is very

good considering the time taken on the original network.

The best way to check our application is by mixing up the performance analysis. As the gas

costs depend on the code, which runs in the same way on Ganache as well as Rinkeby and the

real Ethereum network, it is good to check Ganache for how much ether (thus gas) is being

spent on every transaction that is sent from a particular account when we are surfing through

and using the application. It is important to note and remember that gas is costed only on

transactions that write to the blockchain, therefore read-only operations cost no gas.

To check the scalability and performance however makes us test the working application on

the Rinkeby test network and then later opening the Rinkeby test network’s site and tracking

your transaction and your particular block on the Rinkeby blockchain.

https://www.rinkeby.io/#stats

29

Rinkeby utilizes the Power Of Authority (PoA) accord, explicitly the Clique PoA agreement.

The convention makes Rinkeby insusceptible to spam assaults simply like Kovan.

Not at all like Kovan, be that as it may, Rinkeby takes a shot at the Geth hub. Additionally,

clients can't mine Ether on the Rinkeby, however should demand it from a fixture.

Previously known as the TestRPC, Ganache CLI is a quick and adaptable blockchain emulator

for Ethereum. It is both a work area application and an order line apparatus, and is accessible

on various major working frameworks, for example, Mac, Windows, and Linux. On the off

chance that you are keen on utilizing this test system, you can introduce it by means of NPM,

a bundle administrator for Node.js modules.

Ganache CLI has some eminent qualities:

– Users can right away mine their exchanges.

– Transactions are free.

– It needn't bother with a spigot or mining since clients can reuse or reset their records in a

flash with a fixed measure of Ether.

– Users can change the gas cost and mining speed.

– It has a GUI where clients can screen their test chain occasions.

30

CHAPTER 7: CONCLUSIONS

Graph 7.1 Scalablity in the Ethereum Network

The biggest problem faced by not only us but anyone who uses Ethereum as their blockchain

of choice is that of scalability. Ethereum uses the PoW consensus algorithm which needs

majority of nodes to agree on the state of the blockchain before proceeding ahead. What this

does is makes the DApps running on Ethereum very slow when trying to change some sort of

state.

Decentralisation and Scalability do not often run hand to hand but with the ‘Casper’ version of

Ethereum’s consensus algorithm being released somewhere in 2019 or 2020 which will use a

partial Proof Of Stake (PoS) consensus algorithm we can expect a major boost in the scalability

performaces of Ethereum. Other blockchains already running the PoS algorithm like EOS are

giving much better performance as of now.

Despite EOS giving much better scalability than Etherum this very moment, we chose to use

Ethereum because it is more decentralised which is the most important aspect of DApps.

Scalability is an issue that can be resolved in the future, but decentralisation is what we strive

for and that’s why Ethereum was chosen over EOS.

31

Another issue being faced in the development of this application is connecting the Rails

backend to the smart contract backend. Till now, most DApps that have been created on

Ethereum relied on the smart contracts for their entire code and thus had to interact only with

Web3 for the user interaction concerning their application but what we are trying to achieve is

to improve the scalability by using the smart contract for only the most important piece of our

application that it needs to care of. Rest of the operations are to be taken care of by the Rails

backend.

Establishing the connection between 3 major layers would be a task hard to accomplish and

TDD would be a much better approach to implement this as being cautious and safe beforehand

would be the better mindset than trying to brute force our way into hitting a viable solution.

Figure 7.2 The Blockchain Trillema

32

By far most of dApps depend on a hidden convention. This has generally been Ethereum

however new players, for example, EOS, Zilliqa, Stellar are asserting increasingly good

conditions for future dApp organization. Regardless of what convention a venture chooses to

construct their dApp on there are innate confinements with the innovation of today. A standout

amongst the most widely recognized issues is the capacity for a convention to deal with an a

lot of clients. Clog on occasion of high utilization can bring the whole system (and any dApps

expand over it) to a granulating stop.

This is not to say that all hope is lost, not by any means. There are many protocols out there

making big claims (which they may be able to back up).Even Ethereum (considered the premier

smart contract protocol) has significant scaling solutions on the horizon. The problem they have

is trying to solve the ‘blockchain trilemma’, that is the competing goals of being secure,

decentralised and scalable. Most protocols only achieve two of these three goals.

As I would like to think it is too soon to pass judgment on the execution or future

accomplishment of dApps. Indeed, many have not satisfied a portion of the promotion, at the

same time, is it sensible to figure they would thump on the entryways of Uber, AirBnb and

UpWork inside one year of their ICO wrapping up? There are numerous inside and outside

variables that should be settled before they can have a genuine shot at taking on the huge folks.

As a side note, usually amusing to see individuals upholding the majority of the astonishing

tech behind another convention and how great it will be for the applications based over it, at

that point, concurrently state that dApps are nevertheless a hallucination and will no doubt

never work. On the off chance that the last is valid, why waste time with the previous?

Boundaries to section, instability, informing, innovation confinements and poor structure are

on the whole contributing variables; however there are others.

Be that as it may, trust isn't lost. Numerous dApp ventures have taken in these exercises and

are angrily working at bright approaches to conquer them. dApps will arrive yet perhaps we

simply need to give them somewhat more time?

33

6.2 Future Changes And Expectations

The idea is to follow Test Driven Development to establish a connection between the 3 layers

of our application keeping scalability and security at the most importance. Decentralisation is

already being achieved on Ethereum so that is not much of an issue. Even if the scalability of

the project is not very good, it can be expected to improve many folds when Ethereum 2.0 gets

released.

Decentralised applications are here and are here to stay so it important for us to develop them,

use them and appreciate the features they provide even in the early stages as 5 years from now

the Internet is going to be decentralised and all the shortcomings of the current blockchain

technology will be removed and a thing of the past.

34

Working Screenshots

Screenshot 1: New Repository Creation

35

Screenshot 2: Login into the application

36

Screenshot 3: The private blockchain in operation

37

References

[1] (Online Resource) Ethereum WhitePaper (Available on:

https://github.com/ethereum/wiki/wiki/White-Paper).

[2] (Online Resource) http://jsonlint.com/

[3] (Online Resource). https://github.com/bitcoinbook/bitcoinbook

[4] https://www.rinkeby.io/#stats – Rinkby testnet

[5] (Online Resource) https://metamask.io/ - Metamask

[6] https://www.railstutorial.org/book

https://www.rinkeby.io/#stats
https://metamask.io/

Scanned by CamScanner

