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ABSTRACT 

 

Code in today’s world is one of the most important entities a person can possess so it is highly 

vital to store and share our code in a safe and efficient manner. Now, many services like Github, 

Gitlab etc. do exist that give us many of the functionalities that we desire but what they lack is 

absolute security and treating code as an ‘asset’ rather than treating it as data. To tackle this 

and treat code as valuable we need something different from the conventional client-server 

model. 

 

In this project we seek to build a code sharing platform on the Ethereum blockchain that will 

give us the all-important decentralization that developers have been seeking since long and 

give our code a safer and more permanent home where it is treated as value instead of just 

simple data.  

 

Our hope is that in the future a bigger more scalable implementation of our idea will change 

the code sharing perspective in the world. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Introduction 

 

The World Wide Web was developed in the 90’s and it is basically the center point of our 

life, our businesses, our transportation and every other utility imaginable to human beings. 

It was revolutionary no doubt, god-like even but it had its limitations; limitations, which 

we are ignoring these days as users and organizations are as providers. 

 

The World Wide Web working on the HTTP protocol was what can be termed as the 

“Internet Of Data”. It was created to share information online, information like text, 

images, videos and information that represent commodities that can be shared with friends, 

family and even the general public easily and without loss to the one sharing it. 

 

30 years into the future and we are in a very different place technologically, a place where 

the World Wide Web and HTTP are becoming liabilities on us. The internet we require 

now is no longer the “Internet Of Data” but the “Internet Of Value”. The internet we use 

right now is used for sharing data, no doubt, but there’s so much more being shared on the 

internet now – money, assets, and even forms of data that could may very well be worth a 

lot of monetary value.   

 

It is pretty evident to developers and organizations that HTTP and World Wide Web 

working on the client-server model are just not good enough to suit the demands of the 

“Internet Of Value”. So, why are we still running in the old world? Well, there are two 

major reasons for this – we fear change as users and most importantly organizations fear 

change as providers. It isn’t that solutions haven’t been developed, but that the solutions 

are not being opted due to this fear. Sure, the solutions might not be totally ready for use 

in every aspect of the world, but they will never be unless we give them a chance. Its 1990’s 

all over again, people didn’t want to go online – they trusted their hard copies, they trusted 

their one-to-one interaction more. 
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We now are in exactly the same position as developers, companies, users were in the 90’s. 

Now, it’s our turn to embrace the change and work with it so we may again have 30-50 

years of pain free technology. 

 

The solutions we are talking about are the solutions we are using in our project to solve a 

particular field in the exchange of data. Data as we know nowadays is one of the most 

precious assets people own. What form of data is one that is the most valuable? Well, the 

data that basically runs all the other data in the world as of now – CODE. Code is what 

runs the internet right now, code is what runs all the digital world and we all have to agree 

that our world is just as much digital as it is physical these days. From housewives watching 

TV at home in the afternoon to scientists in NASA working and controlling the ISS, 

everyone is working on digitalized equipment that has code behind it. What a shame would 

it be if this code isn’t safe? From a simple ‘hello world’ program to the entire codebase of 

Facebook is kept in servers somewhere and that is exactly the thing we are going to tackle 

now. 

 

So, we have been saying that there are solutions to solve what might seem like a lot of 

problems related to the “Internet of Value” but just what are these? We haven’t even named 

them so far and there’s just a single word for it – Blockchain.  

Blockchain is the change we are failing to embrace and it is exactly the solution to our 

problem. We’ll discuss the how and why of Blockchain in the later sections. 

 

So, what this project aims to accomplish (on a small scale) is to devise a code storing and 

sharing application on the Ethereum blockchain. Ethereum is a blockchain that allows us 

to develop decentralized applications (DApps) over it. So, it is more or less a Github clone 

that would be distributed and decentralized. Let’s see in the rest of the chapter what 

problems would be solved by this and how these problems will actually be solved. 
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1.2   Problem Statement 

Code sharing and storing has held a very important position in the eyes of developers and 

coders ever since coding started itself. Local machines were initially used to store code 

belonging to one person. But this had one limitation, more than one person could not 

collaborate easily. Moreover, there was no system that gave the developers ability to keep 

versions of their code (an important practice in development). 

 

Then came git, a version control system that was easy, efficient and brought a sigh of relief 

to developers all over the world. Built on top of git was a web application that would change 

code sharing and storage forever released in 2008 called Github, which was just bought by 

Microsoft for 8 billion USD. Github was everything that developers wished for all along, 

it was open source, it was free, it was easy to collaborate over, it was easy for version 

control and provided tons of other features. 

But there was, in fact is one major drawback to Github, it works on the client-server model 

at the end of the day. What does that mean? That means that somewhere in the world there 

is a(one or more) server which contains your code. Let us say for an example that your 

profile’s code is stored in a server in Kentucky, USA. What if there was an earthquake in 

Kentucky and all the servers broke? Well, say goodbye to your code if you didn’t have a 

backup. This is just a fictional natural calamity that might occur. Consider a more probable 

example, what if a hacker got control of the server and caused all sorts of disruptions in 

your code?  

 

What is the problem with this client-server model? Well, there’s just a single point of truth 

and storage. Our entire web is client-server right now, and this isn’t a very good thing if 

we want to store value on the internet!  If our value is stored at a single point of truth, it is 

more or less inviting trouble.  

 

What we want to do is make our code-sharing and storing distributed and secure. The 

method to do it is using Blockchain technology. Client-server is not the solution to it, it 

never was but we didn’t have the technology required to make something better. Now, we 

do. 
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1.3  Objectives 

 

By now, we have laid down certain things we expect from our application and certain things 

we demand from it. We expect everything that Github is capable of, albeit at a smaller level 

and we demand three things:- 

i.Distributed  ii.Trustless  iii.Secure 

 

Ethereum will let us develop a code sharing web application that will satisfy all of the 

above demands. Our application will be what is called a DApp. Decentralised applications 

are peer-to-peer so they don’t need any central server (that can be attacked) , they follow 

consensus rules (to maintain the state of the blockchain) and are secure because once the 

data goes below a certain no. of blocks, that data is immutable no matter what. 

 

 

Graph 1.1 – No. of users on Github 

 

There are more than 15 million users on Github alone, so this will be a big problem that 

we are solving, and more importantly, it is a very precious resource that we are keeping 

secure – CODE. 
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1.4 Methodology 

 

So, how will things go about as we said they will? Over the past few years there’s been a 

trend in the technological universe called ICO (Initial Coin Offering) that let’s blockchain 

developers release their coins into the market that can be bought in exchange of fiat 

currency. These coins can then be exchanged for the services provided by the application. 

This is replicated in the Ethereum blockchain using something called tokens. Tokens are 

sold in ICOs and then later can be used for services. 

 

What our application aims at doing is providing tokens in the ICO in exchange of fiat 

currency. Now, the number of tokens is always capped, so more the demand of tokens, 

higher the tokens go in value. Our application’s tokens would be used in exchange of 

storing code on the application and adding collaborators to your code. Even though this 

approach isn’t free of cost to the end users, it might very easily be provided freely if the 

developer feels like open-sourcing the project (which will lead to a consensus clash we will 

discuss later). 

 

Pieces of Solidity code called Smart Contracts are what maintain peace on the Ethereum 

blockchain. Smart contracts are what we will use in order to regulate our web application. 

These smart contracts will decide how many tokens will be used for what operation and 

which files belong to which user. 

 

We discussed before that HTTP is not suitable for the exchange of value, so in comes IPFS 

(Inter Planetary File System). This is the protocol that will be used by our application to 

store and communicate data , i.e, the codes. We will discuss more about how IPFS will do 

it and how will implement all this in later sections. 

 

At the end of it all, our application will just be a web application that is built using tools 

like Ruby On Rails and ReactJS with the speciality that it will run on the Ethereum 

blockchain that will give it benefits unheard of. 
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1.5 Organization 

 

 

Fig 1.1 The Overview 

 

Our application will be organized into four major different parts – Ethereum solidity 

smart contracts, Ruby on Rails backend application, ReactJS front-end UI and the IPFS 

file system. 

 

The Rails backend will provide the functionalities of a code sharing application like 

Github (interestingly, Github is built on Rails too!), ReactJS will provide users with 

the interactive front-end to deal with the Web3 providers at one end and the users at 

the other. The web3 that React will interact with is responsible for talking our smart 

contracts which will be governing the decentralised logic of our application. IPFS is 

what will be used as a file system for the application as we cannot rely on a centralised 

file system in a blockchain application. 

 

Our application state will be handled at all these different levels differently in 

accordance to the requirement by the tool handling it. 
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CHAPTER 2: LITERATURE SURVEY 

 

2.1 Books, White Papers and Publications 

Decentralised applications are not something thought of in 2015 by Vitalik Buterin, 

developers have always been on the hunt for achieving decentralisation since the very 

moment they found the flaws in a centralised system. 

Vitalik just brought enough innovation into the Bitcoin blockchain to find a method to 

host Decentralised applications. 

 

Ethereum White Paper -> https://github.com/ethereum/wiki/wiki/White-Paper 

Bitcoin White Paper -> https://bitcoin.org/bitcoin.pdf 

 

The release of the Bitcoin whitepaper in 2008 was a big event in decentralisation of the 

world. An unknown person(s) called Satoshi Nakamoto released this paper that seemed 

to have solve Byzantine’s problem of decentralisation. The entire Bitcoin protocol and 

basically how blockchain technology works as whole is very well explained in the book 

Mastering Bitcoin by Andreas Antonopoulos. 

 

The thing with distributed ledger technology (other name for blockchain) is that it is 

not a single technology working on its own – its cryptography, its networking, its web 

application development, its consensus theorems all working together to form DLT. 

Two of the books really shedding light on these are:- 

i. Distributed Networks by Qurban A. Menon 

ii.Handbook Of Applied Cryptography by Alfred Menezes 

 

Other than this regular magazines like NXTR and CyptoBiz Magazine are constant 

sources of information in the blockchain and crypto world. 

The International Journal Of Blockchain And Cryptocurrency also exists for authors to 

send their research papers to and get heard in this space by other technology ethusiasts. 

 

https://github.com/ethereum/wiki/wiki/White-Paper
https://bitcoin.org/bitcoin.pdf
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2.2 Talks, Conferences and Meetups 

The blockchain developer ecosystem is one of the most buzzing in this age. People are 

working in decentralised applications, in bitcoin, in mining and all other sort of blockchain 

related works all over the world. 

In order to bring these innovative minds together regular crypto meetups are held all over 

the world. Few of the most important ones are – World Blockchain Forum (London, 2018), 

Malta Blockchain Summit (Malta, 2018), Ethereum Devcon (Prague, 2018). 

The Etherum Devcon 2018 was a particularly important even in the blockchain space 

considering it was where the Ethereum foundation laid down their visions for Ethereum 

2.0 set to be released in 2020 with particular focus on scalability and performance. 

 

Fig 1.2 Devcon IV  

 

 

 

 

 

 

 

 



9 

 

CHAPTER 3: SYSTEM DEVELOPMENT 

3.1 System Architecture 

 

The application will be architected on various levels using various different tools – the 

bottom layer would be the Ethereum blockchain that will act as the underlying ledger to 

record everything that is of importance according to the smart contracts, the layer just 

above it would be the IPFS file system that would allow us to store the code files in a peer-

to-peer network. The third layer from the bottom would be the Smart Contracts layer 

written in Solidity. The next layer would be our backend web application layer written in 

Ruby. On top would be the ReactJS layer written Javascript for the users to interact with. 

 

Fig 3.1 The layers of the application 
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3.2 Experimental Model 

 

Our system is devised on the ICO which will be offering tokens that can be then used in 

exchange of services provided by the app in the future. Now, to run applications on 

Ethereum , the user needs to spend something called ‘gas’ that is used to power the 

computation on the web3 provider that is actually executing the code somewhere. 

Remember that the code isn’t being executed on a server like in centralised applications, 

therefore it is necessary to spend some amount of gas (which can be bought with Ether, 

the currency on the Ethereum blockchain). 

So, let us assume our user A has bought some tokens of our application in the ICO, what 

does he do then? Well, he uses his browser (with Metamask enabled, which is an extension 

to run blockchain apps) to open our web application. It is noteworthy that we will only 

talk to the blockchain when we really need to, rest all of the operations are to be carried 

out by our Rails backend. 

After visiting the application, our user logs into the application and visits his profile page. 

Now, the interesting part starts – as soon as he creates a repository (a data structure) our 

application will talk to our smart contract using Web3 and start writing information on the 

blockchain. It is necessary because repositories are what will be written to the blockchain 

and they are the core building blocks of our application. These repositories are what will 

be governed by our smart contracts. 

Our user creates a repository and our smart contract writes that information on the 

blockchain that this repository belongs to user A. This is an operation that costs ‘gas’ on 

the blockchain and the token that we distributed in the ICO for availing the create 

repository service of the application. That no. of tokens will be deducted from A and given 

to the person that mines the block containing the transaction with the create repository 

function call. This is what keeps the miners incentivised for keep on working to mine 

blocks. 

The block with that transaction gets attached to the Ethereum blockchain and thus gets 

settled. Once there are more than 7 blocks on top of that block (1 block gets mined every 

15 secs), that information becomes immutable! Therefore, no one in the world can change 

the information that that particular repository belongs to User A. 
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All the features provided by the application like storing your files in a repository, 

collaborating in someone else’s repository and making any other change to your repository 

will cost gas as well as the tokens of our application. 

Also, it is worth noting that read operations will not cost gas or tokens as they are not 

writing any data on the blockchain and thus can be executed on the user’s own local node. 

Write operations are the one which spend computation power and therefore need to cost 

something. The Web3 provider is the node where all the computations take place. 

Metamask is an extension for Chrome, Firefox etc. which allows you to interact with any 

Ethereum application using your account. You can configure your web3 provider using 

Metamask though it is default set to Infura (which provides a node layer for computations). 

Now, the more the demand for your application, more the value of your tokens in fiat 

currency and same is the case with Ether, more the demand for decentralised applications, 

more the cost of Ether. 

 

Graph 3.1 Price of Ether over the last three years 

 

The prices of Ether, which affects the price of gas and also the price of our token is an 

important thing to consider in decentralised applications. It would directly affect the usage 

and value of our application. 
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The main flow is nearly the same for any operation carried out in our application, it’s 

basically spending tokens and gas to get your operations done. 

Let’s see an operation to upload a code file. User A will open our URL, login to our Rails 

application, will open one of the repositories that he has already created (won’t cost gas 

as it is a read operation). Now, when he clicks the upload button with the files that is when 

a smart contract function is triggered. First the function will test whether the msg.sender 

is the owner of the repository or not, if true, the files will be uploaded to IPFS and their 

hashes will be written on the blockchain belonging to that particular repository. 

In the future when the user tries to access these files, it will be checked whether these files 

belong to a repository that is owned by that User A. The data in the blockchain is 

immutable, therefore, there’s no chance of your data being interfered with by anyone or 

any changes being made to your data or profile. 
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3.3 Behind The Scenes 

 

We’ve seen how the user will interact with the application and how the things will go on from 

the user’s perspective but let us see what happens behind the scenes when operation is carried 

out in our application. 

The top layer of our application is the ReactJS UI that we expose to the user. The ReactJS UI 

of our application is talking to our Rails backend using API end points the Rails application 

has exposed. Also, React is talking to our smart contracts using Web3. 

Let’s take the example of the user creating a repository. So, User A types the URL into the 

browser, which triggers a controller action in our Rails backend. Rails provides data in JSON 

format to our ReactJS front-end which shows it to the user using Javascript. The user clicks on 

login and logs into his account. Authorization is taken care of by our Rails backend. Any 

operation that does not require anything to be written onto the blockchain will be taken care of 

by the Rails backend, shown to the user by ReactJS. The JSON data provided by the Rails 

application will be processed by the ReactJS front-end and presented as DOM elements using 

JSX. 

Now, when the User A executes any operation that needs the blockchain to be concerned, a 

different flow runs. Instead of asking the Rails backend for JSON data, the React front-end 

asks Web3 to talk to our smart contract written in Solidity. The solidity code runs on the 

assigned Web3 provider, writing (or reading) to the blockchain in the process consuming gas 

as well as our application’s native tokens. The consumption of gas is dependent on the 

complexity of the operation being executed whereas the consumption of the tokens is 

dependent on us. Let us assume creating a repository costs 3 tokens. So, after the repository is 

written on the blockchain and our user is assigned as the owner of that particular repository 

our smart contract will execute the code that deducts 3 tokens from that user’s address.  

How does the information like user’s address get into the smart contract? The answer is 

Metamask. Metasmask is what contains your address and your balance. Whenever you execute 

any blockchain operation in the application a transaction gets written! This transaction is 

signed by your digital signature using Metamask (metamask is where your credentitals have 

been set up). So, the signature on the transaction is where all your information resides. This is 
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where the smart contracts get information about you. This information is vital because it gets 

written to the blockchain as the owner of the repository being created. 

Later, this information will be required to access the files that you upload onto the application 

and all the other features in the application that are requiring the blockchain. 

After you send your transaction, that transaction along with thousands of other transactions all 

over the world will be written to a block. Then there will be race between various mining nodes 

to mine this block, the node that wins this race will get rewarded with transaction fees and 

ether! All other nodes have to then validate that the information is valid, if not, the block gets 

rejected, and else it gets written on the main net blockchain of Ethereum which is as good as 

being engraved on the strongest stone possible. This information is now immutable and can 

never ever be changed or hacked. 

One block gets written onto the blockchain every 15 seconds and after a certain no. of blocks 

there is no way to change the information written on an older block. Thus, your repository (and 

later code) becomes as secure as possible. Thus, completing our decentralised operation. 

 

3.4The Interplanetary File System 

Our report has again and again mentioned the fact that HTTP was feasible only for the web 

of the past. The IPFS approach to file sharing will greatly boost our application and its 

usage to share code in a decentralized way. HTTP downloads from a single source at a 

single time, whereas IPFS makes it possible to download from various different sources at 

the same time. What this approach gives us is gives 60% saving on bandwidth costs. Let 

us take a step by step look into how IPFS works :- 

a. Each file to be stored via IPFS and all the blocks inside it are given a cryptographic 

hash as a unique identifier. 

b. IPFS removes duplication of the file across the network. 

c. Each node stores only the content that it has interest in, and some information that will 

help in figuring out who is storing what. 

d. IPNS (Inter Planetary Naming System) is used to name the file in a human readable 

form. 

e. When looking for files on the system, you’re asking the system to give you content 

behind a unique hash. 



16 

 

 

 

CHAPTER 4: ALGORITHMS 

Algorithm 1:  Checking Repository’s Owner 

 User.clicks (repository’s link) 

  -> Web3 calls smart contract’s CheckOwner function 

  -> CheckOwner(_uint address, Repository repo) 

   ->for address and repo 

    -> check in AddressRepo mapping if the value returned true 

    -> If true, give user the access to the repo 

    -> If false, give an error message 

    ->end 

   ->end 

  ->end 

The thing with this algorithm is that it won’t cost any gas or tokens as this is a read operation. 

Other operations that require writing to the blockchain are much more risky as we’ll see later. 
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Fig. 4.1 Flowchart for checkOwner 

 

Algorithm 2:  Creating a new repository 

 User.clicks (create new repository) 

  -> Web3 calls smart contract’s newRepo function 

  -> newRepo(uint _address , String repo) 

   -> for address and string repo 

    -> check if repo of same name already exists 

    -> if yes, ask user to give another name 

    -> if no, 

     -> create a new repository, write it on the blockchain 

     -> assign the repository’s owner to msg.sender 

                                                            -> deduct the specific no. of tokens from msg.sender 

 

    -> end 

   ->end 

  ->end 

 

This algorithm allows user to create a new repository and register it on the blockchain, this is 

a write operation and thus will consume gas as well as tokens. 
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Fig 4.2 Flowchart for create new repository 
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Algorithm 3: Upload new files 

User.clicks(repository repo) 

 -> Web3 calls checkOwner function 

 -> if true, allow access into the repo 

 -> if false, block access into the repo 

  ->User.clicks(upload files) 

   -> Files get uploaded into the IPFS 

   -> The blockchain writes these files as belonging to the repo 

   ->end 

  ->end 

 ->end 

 

 

Fig 4.3 Flowchart for upload files 
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CHAPTER 5:  TESTING 

 

We need to test two different parts of our application – the Rails backend and the smart contract 

solidity code. The testing of the solidity code is of utmost importance as it literally costs money 

to execute that code. 

 

Reasons to test your Solidity smart contract code:- 

1. It costs gas to run functions on Ethereum blockchain and thus any wrongly written function 

is costing the user money in the form of gas. 

2. The smart contract code is immutable, i.e, we cannot change it as we please like we do in a 

production deployed web application. 

3. Once wrong code gets written on the blockchain, it can only be changed if erase it off the 

blockchain and then write new code in its place. 

 

Reasons to test your Rails back-end code:- 

1. Authorization and authentication is of utmost importance in any web application. 

2. Other backend services are totally dependent on the Rails code. 

3. Our Rails back-end is what provides our UI with JSON data. 

 

Now, we’ve seen why it is important to test our code on both the levels. We accomplish these 

tasks using two different tools – Rspec for our rails code and Mocha for our Solidity code. 

These are testing frameworks that are specifically developed for Ruby and Javascript code 

(Solidity can be tested like JS as well). We will provide our application with mock data and 

mock simulations using FactoryBot and Faker which will use Fake data as fixtures and check 

the working of the application depending on certain assertions that we will write in RSpec and 

Chai for Rails and Solidity respectively. 
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5.1 Testing Rails Authorization 

 

The Rails authorization system will be based on JSON JWT tokens that allow for services and 

features to be accessed only if the current user is using his own correct token. 

To test the authorization system we create Fake data of users using Faker and initialize a User 

factory with this fake data. Factories allow us to make fake models of objects in the application 

just for testing purposes. Then, we will follow the entire procedure of signing up and logging 

in using correct password for the retrieval of current token using RSpec request tests. 
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 Table 5.1 User Authentication 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

USER TOKEN RESPONSE 

A Token.belongs(A) Access 

A Token.belongs(B) No-access 

A Token.timeout(A) No-access 

A Token.invalid No-access 
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5.2 Unit Tests for Repository and Users 

 

Other than the complete flow of user’s authorization , it is very important to test each model 

of the application using Unit tests to confirm each of the individual models are working as 

expected. We write Model tests for User model and Respository model where we test there 

trivial and basic behaviour using RSpec. 
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TABLE    

 

 

 

 

 

 

 

 

 

 

 

 

 

Repository Name Repository Owner Response 

“ ” “ ” Error 

“ ” A Error 

Rails Project “ ” Error 

Rails Project A Accepted 
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5.3 Smart Contract Testing 

As we discussed earlier, testing smart contracts is of utmost importance as their code actually 

costs real money to be run, so , we need to make sure everything runs as expected and using 

as little gas as possible. 
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5.4 Things Left For Testing 

Due to no connection between our Rails back-end and our smart contracts till now, no form of 

integration testing has been carried out. 

Individual parts of the application and individual parts of those individual parts have been 

tested independently but they have still not been combined into a single flow of behaviour. 

To implement integration testing, we first need to completely build the application from the 

start to the end so that we can test the behaviour and connection of each layer with the layer 

next to it. 

The integration testing will be carried out using the Mocha test framework because it would 

allow us to test the UI provided by ReactJS as well as the core functionality provided by the 

Smart Contracts. 
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CHAPTER 6: RESULTS AND PERFORMANCE ANALYSIS 

The project has been working well when the blockchain is run on our own system with no 

connection to the outer world. The way we are analyzing the performance of the project is by 

testing it in two ways – firstly we are using a local blockchain using a software called Ganache; 

what this does is create a local blockchain on our own system with fake users (all of whom are 

controlled by your Ganache software itself) . The second way we are testing the application is 

much closer to the real world implementations of a decentralized application, in this second 

way we are using a test network called Rinkeby.  

 

As to test the application in the real world Ethereum blockchain, we will require real Ether to 

deploy our contract and real Ether costs real money so we were not able to check the 

performance of the application on Ethereum. The closest we could get was by using the 

Rinkeby testnet that operates on fake Ether that can be bought using rinkeby-faucets .  

 

The two major points to check in a decentralized application are the performance and costs. 

As every operation on a DApp takes gas to operate, it is vital that the operations take as less 

‘gas’ and thus as less money as possible. For better security, you need to pay a better price and 

thus gas heavy operations tend to be more secure even though that is not a compulsion. The 

other aspect of performance analysis is also very important. As our DApp will be deployed on 

the Ethereum blockchain, it will follow a proof-of-work consensus algorithm. What this means 

from a performance point of view is that the scalability of the app goes down and response 

times increase. The average block time on the ethereum blockchain is of 10 mins. What this 

means is any operation will take 10 mins to be permanently recorded on the blockchain . Even 

though using Solidity specific programming concepts of ‘Events’ can give us the ability to 

change the UI on the front end on a particular event (just like event handlers in JS), the real 

transaction does take 10 mins to save onto the Ethereum blockchain. 

 

Things are very very different on the Ganache local blockchain where every action is 

spontaneous , and on the Rinkeby testnet where the average block times vary from time to 

time. 
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Figure 6.1 Screenshot of Rinkeby’s performance 

 

 

The information provided by the Rinkeby test network on their official site 

(https://www.rinkeby.io/#stats) shows the average block time of around 15 seconds which is very 

good considering the time taken on the original network. 

 

The best way to check our application is by mixing up the performance analysis. As the gas 

costs depend on the code, which runs in the same way on Ganache as well as Rinkeby and the 

real Ethereum network, it is good to check Ganache for how much ether (thus gas) is being 

spent on every transaction that is sent from a particular account when we are surfing through 

and using the application. It is important to note and remember that gas is costed only on 

transactions that write to the blockchain, therefore read-only operations cost no gas. 

 

To check the scalability and performance however makes us test the working application on 

the Rinkeby test network and then later opening the Rinkeby test network’s site and tracking 

your transaction and your particular block on the Rinkeby blockchain. 

 

 

https://www.rinkeby.io/#stats
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Rinkeby utilizes the Power Of Authority (PoA) accord, explicitly the Clique PoA agreement. 

The convention makes Rinkeby insusceptible to spam assaults simply like Kovan.  

Not at all like Kovan, be that as it may, Rinkeby takes a shot at the Geth hub. Additionally, 

clients can't mine Ether on the Rinkeby, however should demand it from a fixture. 

 

 

Previously known as the TestRPC, Ganache CLI is a quick and adaptable blockchain emulator 

for Ethereum. It is both a work area application and an order line apparatus, and is accessible 

on various major working frameworks, for example, Mac, Windows, and Linux. On the off 

chance that you are keen on utilizing this test system, you can introduce it by means of NPM, 

a bundle administrator for Node.js modules.  

 

Ganache CLI has some eminent qualities:  

– Users can right away mine their exchanges.  

– Transactions are free.  

– It needn't bother with a spigot or mining since clients can reuse or reset their records in a 

flash with a fixed measure of Ether.  

– Users can change the gas cost and mining speed.  

– It has a GUI where clients can screen their test chain occasions. 
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CHAPTER 7:  CONCLUSIONS 

 

 

Graph 7.1 Scalablity in the Ethereum Network 

 

The biggest problem faced by not only us but anyone who uses Ethereum as their blockchain 

of choice is that of scalability. Ethereum uses the PoW consensus algorithm which needs 

majority of nodes to agree on the state of the blockchain before proceeding ahead. What this 

does is makes the DApps running on Ethereum very slow when trying to change some sort of 

state. 

Decentralisation and Scalability do not often run hand to hand but with the ‘Casper’ version of 

Ethereum’s consensus algorithm being released somewhere in 2019 or 2020 which will use a 

partial Proof Of Stake (PoS) consensus algorithm we can expect a major boost in the scalability 

performaces of Ethereum. Other blockchains already running the PoS algorithm like EOS are 

giving much better performance as of now. 

Despite EOS giving much better scalability than Etherum this very moment, we chose to use 

Ethereum because it is more decentralised which is the most important aspect of DApps. 

Scalability is an issue that can be resolved in the future, but decentralisation is what we strive 

for and that’s why Ethereum was chosen over EOS. 
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Another issue being faced in the development of this application is connecting the Rails 

backend to the smart contract backend. Till now, most DApps that have been created on 

Ethereum relied on the smart contracts for their entire code and thus had to interact only with 

Web3 for the user interaction concerning their application but what we are trying to achieve is 

to improve the scalability by using the smart contract for only the most important piece of our 

application that it needs to care of. Rest of the operations are to be taken care of by the Rails 

backend. 

Establishing the connection between 3 major layers would be a task hard to accomplish and 

TDD would be a much better approach to implement this as being cautious and safe beforehand 

would be the better mindset than trying to brute force our way into hitting a viable solution. 

 

 

 

Figure 7.2 The Blockchain Trillema 
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By far most of dApps depend on a hidden convention. This has generally been Ethereum 

however new players, for example, EOS, Zilliqa, Stellar are asserting increasingly good 

conditions for future dApp organization. Regardless of what convention a venture chooses to 

construct their dApp on there are innate confinements with the innovation of today. A standout 

amongst the most widely recognized issues is the capacity for a convention to deal with an a 

lot of clients. Clog on occasion of high utilization can bring the whole system (and any dApps 

expand over it) to a granulating stop. 

 

This is not to say that all hope is lost, not by any means. There are many protocols out there 

making big claims (which they may be able to back up).Even Ethereum (considered the premier 

smart contract protocol) has significant scaling solutions on the horizon. The problem they have 

is trying to solve the ‘blockchain trilemma’, that is the competing goals of being secure, 

decentralised and scalable. Most protocols only achieve two of these three goals. 

 

As I would like to think it is too soon to pass judgment on the execution or future 

accomplishment of dApps. Indeed, many have not satisfied a portion of the promotion, at the 

same time, is it sensible to figure they would thump on the entryways of Uber, AirBnb and 

UpWork inside one year of their ICO wrapping up? There are numerous inside and outside 

variables that should be settled before they can have a genuine shot at taking on the huge folks.  

 

As a side note, usually amusing to see individuals upholding the majority of the astonishing 

tech behind another convention and how great it will be for the applications based over it, at 

that point, concurrently state that dApps are nevertheless a hallucination and will no doubt 

never work. On the off chance that the last is valid, why waste time with the previous?  

 

Boundaries to section, instability, informing, innovation confinements and poor structure are 

on the whole contributing variables; however there are others.  

 

Be that as it may, trust isn't lost. Numerous dApp ventures have taken in these exercises and 

are angrily working at bright approaches to conquer them. dApps will arrive yet perhaps we 

simply need to give them somewhat more time? 
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6.2 Future Changes And Expectations 

 

The idea is to follow Test Driven Development to establish a connection between the 3 layers 

of our application keeping scalability and security at the most importance. Decentralisation is 

already being achieved on Ethereum so that is not much of an issue. Even if the scalability of 

the project is not very good, it can be expected to improve many folds when Ethereum 2.0 gets 

released. 

Decentralised applications are here and are here to stay so it important for us to develop them, 

use them and appreciate the features they provide even in the early stages as 5 years from now 

the Internet is going to be decentralised and all the shortcomings of the current blockchain 

technology will be removed and a thing of the past. 
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Working Screenshots 

 

 

 

 

Screenshot 1: New Repository Creation 
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Screenshot 2: Login into the application 
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Screenshot 3: The private blockchain in operation 
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