
1 
 

 

 

 

 

 

 



2 
 

 

 

 

 

 

 

 

 

 

 



3 
 

 

 

 

 

 

 

 

 

 

 

           disha

15/07/2020



4 
 

 

 

 

 

 

 

 

 

 



5 
 

TABLE OF CONTENTS 

1. ABSTRACT 

2. INTRODUCTION 

3. MATERIALS AND METHODS 

3.1 LITERATURE SEARCH 

3.2 ANALYSIS OF FIRST DATASET 

3.3 ANALYSIS OF SECOND DATASET 

3.4 CATEGORISATION OF GENES 

3.5 FUNCTIONAL ENRICHMENT ANALYSIS AND VENN DIAGRAM 

3.6 PATHWAY ENRICHMENT ANALYSIS 

3.7 CLUSTER ANALYSIS 

3.8 FINDING TRANSCRIPTION FACTORS 

4. RESULTS AND DISCUSSION 

5. CONCLUSION 

6. REFERENCES 

7. APPENDIX 

  

 

 

 

 

 

 

 

 

 



6 
 

LIST OF FIGURES 

Figure 1 Pathological evolution of Alzheimer’s disease 

Figure 2 Pathways leading to the formation of plaques and tangles, laying foundation for the 

amyloid-β theory of Alzheimer’s disease 

Figure 3 Representation of cytosine’s methylation & demethylation processes 

Figure 1 Workflow of the analysis 

Figure 2 Datasets chosen for the analysis 

Figure 3 Grouping of samples for GSE45775 

Figure 7 Grouping of samples for GSE57360 

Figure 8 Results of g:Profiler for up-regulated genes of the dataset GSE45775 

Figure 9 Results of g:Profiler for down-regulated genes of the dataset GSE45775 

Figure 10 Results of g:Profiler for up-regulated genes of the dataset GSE57360 

Figure 11 Results of g:Profiler for down-regulated genes of the dataset GSE57360 

Figure 12 Venn diagram showing all possible overlaps 

Figure 13 Enriched ontology clusters for common up-regulated genes for both the datasets 

Figure 14 Enriched ontology clusters for common down-regulated genes for both the datasets 

Figure 15 Enriched ontology clusters: coloured by cluster ID for common up-regulated genes 

Figure 16 Enriched ontology clusters: coloured by cluster ID for common down-regulated 

genes 

Figure 17 Enriched ontology network coloured by P-Value for up-regulated genes 

Figure 18 Enriched ontology network coloured by P-Value for down-regulated genes 

Figure19 PPI network for common up-regulated genes 

Figure 20 PPI network for common down-regulated genes 

Figure 21 PPI MCODE network for up-regulated genes 

Figure 22 PPI MCODE network for down-regulated genes 

 

 



7 
 

LIST OF TABLES 

Table 1 Top 5 up-regulated and down-regulated genes 

Table 2 Transcription factors associated with up-regulated genes. It contains Gene_Symbol, 

Gene_ID, Transcription_Factor and Affinity_Score. 

Table 3 Transcription factors associated with up-regulated genes. It contains Gene_Symbol, 

Gene_ID, Transcription_Factor and Affinity_Score. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8 
 

1. ABSTRACT  

Alzheimer’s disease (AD), a progressive and chronic neurodegenerative disorder that can 

destroy memory cells and thinking skills. Also the ability to carry out the multiple tasks gets 

decreased. The disorder affects different areas of cerebral cortex and hippocampus. 

Accumulations of amyloid-β and neurofibrillary tangles are the major hallmarks of AD. Early 

onset of AD includes memory loss, difficulty in planning and problem solving, difficulty 

determining time and place and vision loss    

DNA methylation is a mechanism of transferring methyl group to DNA, thereby modifying 

the functions of genes. Epigenetics contribute to AD and these modifications such as DNA 

methylation and histone modifications play a role in neurodegenerative chronic diseases such 

as AD and Parkinson’s disease (PD). DNA methylation regulates gene expression analysis by 

recruiting proteins and inhibiting the binding of transcription factors to DNA. Methylation 

exists in two forms: DNA hypomethylation which refers to loss of methyl group in the 5-

methylcytosine nucleotide and DNA hypermethylation which refers to addition of methyl 

groups to the DNA molecule. Histone modification is the post translational modification 

(PTM) to histone which included methylation, phosphorylation and acetylation. The PTM 

can cause gene expression changes by alteration in chromatin structure and recruiting histone 

modifiers. 

Our study focuses on analysing DNA methylation alterations in AD. We have planned to find 

out candidate genes associated with DNA methylation mechanism in AD. There were three 

components in our analysis. An integrated approach was followed which included finding out 

the candidate CpGs, differential gene expression analysis and functional enrichment analysis. 

We have planned to compare different datasets to find out similarity between up-regulated 

and down-regulated genes and determining the level of methylation. This meta analysis will 

help to identify commonalities between different kinds of experiments related to AD and 

finally to identify important markers for the regulatory processes involved in AD.  
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2. INTRODUCTION 

Alzheimer’s disease is a progressive-unremitting, neurodegenerative disorder that affects 

wide areas of brain including cerebral cortex area and hippocampus [1]. Alzheimer's disease 

causes destruction to nerve connections in brain, thus, making it burdensome to do regular 

things i.e moving around, feeding oneself, swallowing, remembering. Being a disease that 

destroys memory, it deteriorates mental functioning [1]. Abnormalities are primarily detected 

in the tissue of frontal and temporal lobes, and then to other areas such as neocortex at 

different rates for different individuals. In AD, the peptides of amyloid-β (Aβ) and tau protein 

aggregate, thus, facilitating the formation of plaques and tangles [2]. These plaques and 

tangles are histopathological hallmarks of AD, respectively. General improvements in 

lifestyle and medication have increased the life expectancy, substantially in the past few 

decades. However, the treatment for dementia remains symptomatic, despite the increase in 

costly trials, with no approval of a single drug or treatment strategy. As per duration, the 

average duration of AD is 8–10 years, preceded by preclinical stages (clinical symptomatic 

phases) that extend the duration for over two decades. Being the 6th driving reason for 

mortality in the United States, there has additionally been generous increment in the quantity 

of passing from AD by 71%, in this manner, increasing the commitment for understanding 

the etiologic and pathogenesis of the illness.[3]. 

 

Being a part of neurodegenerative diseases, Alzheimer’s disease shares many attributes with 

Parkinson’s disease and fronto-temporal dementias. One of the attribute being the complex 

interactions between environmental and genetic factors in both AD and PD. Prevalence of 

both the diseases is expected to increase, due to the global population ageing, contributing to 

the increase in social and economic burden on the society. Now, the question is whether 

Alzheimer’s disease plays an imminent role in normal ageing or does it have a seperate 

process. The answer lies in the description of the epidemiology, molecular mechanisms that 

dominate the neurodegenerative processes in AD, as well as the diagnosis, screening and the 

developing prevention strategies in current management practices [4]. 

 

Alzheimer's illness lives among packed up proteinopathies, which is described by 

aggregation of amyloid β (Aβ) peptides as amyloid plaques and of the protein tau as 

neurofibrillary tangles [2]. In more straightforward words, AD is demonstrated by the 

nearness of extracellular amyloid-β (Aβ) plaques just as intracellular neurofibrillary tangles 
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(NFTs) brought about by protein tau. Age of amyloidogenic peptides by the successive 

cleavage of the amyloid antecedent protein (APP) by the layer-bound proteins, for example, 

β-secretase and γ-secretase, aggregates inside the cerebral extracellular space to shape 

insoluble  Aβ plaques [2]. Other than β-and γ-secretase, APP additionally can be separated by 

α-secretase followed by γ-secretase. This results in creating solvent, non-amyloidogenic Aβ 

peptides. 

 

Another protein associated in the causation of AD would be microtubule-associated protein 

tau (MAPT) that forms neurofibrillary tangles [5]. Hence, Aβ and tau pathology prove to be 

of clinical relevance in diagnosis and so its assessment is being facilitated by increasingly 

sensitive methods for the validation of therapeutic interventions. Identification of distinct 

suitable Aβ and tau species to be used as biomarkers in cerebrospinal fluid, blood, urine and 

saliva serves as a prerequisite for personalized medicine. Thus, determining the Aβ levels in 

the CSF accurately is essential by help of new technologies, such as Aβ PET imaging, aiding 

the estimation of prevalence and incidence of AD [4]. 

 

Application of methods of analytical epidemiology serves as the only way to understand 

‘genes versus environs’ in Alzheimer’s disease aetiology. Molding and the three-dimensional 

(3D) structure of the genomic material bridges gap between the genes and environment. This 

aids in improving our understanding on the etiology of AD [4]. Smoking, diabetes mellitus, 

physical inactivity, mid-life obesity, depression, mid-life hypertension and low educational 

attainment seem to be potential risk factors for Alzheimer’s disease (Error! Reference 

source not found.). 
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Figure 1 Pathological evolution of Alzheimer’s disease. 

Progression of Alzheimer's disease by dissemination of Amyloid plaques and neurofibrillary tangles in the 

brain 

 

AD is characterized based on age, as late-beginning Alzheimer's sickness (LOAD) or 

beginning stage Alzheimer's ailment (EOAD). Burden happens in people more seasoned than 

age 65 while EOAD happens in people more youthful than age 65, as a rule at age 40 or 50. 

EOAD relates with hereditary change occuring in APP, PSEN1 (presenilin-1) or PSEN2 

(presenilin-2) [4]. The changes influence the fundamental synergist segment of ϒ-secretase 

which prompts a patient getting determined to have AD. Both, PSEN1 and PSEN2 qualities 

code for proteins that make up ϒ-secretase synergist segment, subsequently, any changes 

could cause extreme outcomes 

 

Mechanism 

As mentioned earlier that most neurodegenerative diseases lie in the category of protein-

pathies, which are further symbolised by the aggregation of misfolding of proteins. Although 

majority of the proteins have an inherent property to aggregate, notably when cellular 

clearance systems experience failure. Especially in the context of ageing, very few of the 

proteins form fibrillar aggregates. Presently, Aβ, tau and APOE (Apolipoprotein E) serve as 

three elements having significant evidence for being contributors of Alzheimer’s disease. 

Synaptic loss and selective neuronal death are the neuro-pathological and neuro-chemical 

hallmarks of Alzheimer’s disease, leading to a significant decrease in specific 

neurotransmitters and increase in the presence of abnormal proteinaceous deposits in neurons 

popularly known as neurofibrillary tangles(NFTs) in the extracellular space [1]. Besides 
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being a consequence of proteolytic cleavage, post-translational modifications also affects Aβ 

neurotoxicity, which is further attributable to specific types of Aβ and are prone to gathering 

into different assembly states [6]. Likewise Aβ, tau existing as multiple brain isoforms 

undergoes aggregation to host post-translational modifications, inclusive of acetylation as 

well as phosphorylation. Cellular and transgenic models exhibit impairment of multiple 

cellular functions by Aβ and tau, along with the crosstalk between these molecules 

particularly at synapse (Error! Reference source not found.). 

  

 

 

Figure 2 Pathways leading to the formation of plaques and tangles, laying foundation for 

the amyloid-β theory of Alzheimer’s disease. 

Plaque formation and tangles leading to Alzheimer’s disease which are the hallmarks of alzheimer’s disease. 

 

Various investigations proposed that epigenetic factors additionally have extensive measure 

of effect on neurodegenerative interminable maladies including AD. Epigenetics, 

investigation of heritable changes in quality articulation, additionally includes guaranteeing 

the consistency of the basic DNA succession for example an adjustment in phenotype with no 

adjustment in the genotype [7]. Epigenetics contains four significant parts, for example, (I) 

heritability, the capacity of a separating cell to pass its own epigenetic imprints to its little girl 

cells; (ii) conservation of DNA grouping, in which the arrangement of nucleotides stays 
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unaltered; (iii) transcriptional guideline, wherein the epigenetic changes affect the translation 

of qualities in this manner, prompting changes in the phenotype of the cell; and the last one 

being (iv) steadiness, the protection of epigenetic alterations over time[8]. Some epigenetics 

factors that may influence AD would be DNA methylation, histone alterations and non-

coding RNA. 

 

 

 

DNA Methylation 

DNA Methylation, being an epigenetic instrument is known to change quality articulation or 

cell phenotype in a way that would be heritable [9]. The most widely contemplated epigenetic 

adjustment is DNA methylation and changes of histone proteins. The procedure of DNA 

methylation incorporates expansion of a methyl bunch at a place that has a cytosine 

nucleotide that goes before guanines (CpG dinucleotides). All DNA methyltransferase 

(DNMT) proteins are thought of, among which DNMT1, DNMT3A and DNMT3B are best 

portrayed to catalyze the exchange of a methyl bunch from S-adenosylmethionine to DNA. 

An item shaped during this response, i.e S-adenosylhomocysteine, is on the other hand 

changed over back to S-adenosylmethionine by a chain of responses as it has a noticable 

impact in the one-carbon digestion cycle (Figure 3) [9]. Essentially, an acceleration in the 

measure of plasma homocysteine, a middle of the road in this cycle, extrapolates a higher 

hazard for improvement of dementia just as AD. In this manner, inferring that impact of 

DNA methylation and changes in one-carbon digestion contributes in AD pathogenesis. 

Following this, impacts on the capacity of DNA can be considered such to be actuation or 

suppression of the transcriptional action of a quality. Authoritatively, DNA methylation or 

adjustment is recognized by a decrease in articulation of a quality, yet some new proof 

proposes that quality articulation is reliant upon the impact of DNA methylation's setting 

inside the genome. Albeit, 5-methylcytosine (5mC) is by all accounts the most plenteous 

altered base in the mammalian genome, more current investigations delineate the 

distinguishing proof of extra adjusted bases, as N6-methyladenine (N6mA) just as 5-

formylcytosine (5fC). Initially, 5fC was seen as a middle in a protein intervened DNA 

demethylation, can be a steady DNA alteration that influences quality articulation by 

modifying DNA twofold helix structure [10]. There is an immense variety in the 

predominance of the change alongside its impact on the quality articulation. In spite of the 

fact that there has been a great deal of exertion put into these spearheading contemplates, 
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however the information on these altered bases is as yet fragmented. Need of more research 

goes about as essential to additionally portray their circulation just as the capacity.  

 

Another kind of change is post translational histone alterations, for example, methylation and 

acetylation of lysine buildups on histone tails [11]. The histone adjustments assume a vital 

job in influencing the quality articulation, principally by changing chromatin structure. DNA 

methylation that depicts a normal level of methylation over the whole genome is named as 

"worldwide" DNA methylation. Other than this, a normal percent methylation inside a 

particular quality is named as "quality explicit" DNA methylation [12]. In late DNA 

methylation concentrates in AD, worldwide DNA methylation is frequently gotten to through 

counter acting agent based techniques, for example, immunohistochemistry while, the quality 

explicit DNA methylation was investigated by the use of exhibit based strategies, for example 

Illumina's Infinium HumanMethylation450 BeadChip exhibit. Other than these strategies, 

some high-throughput methods that utilization bisulfite transformation are frequently utilized 

for the estimation of both worldwide and quality explicit DNA methylation [10]. 

 

 

 

 

 

 

Figure 3 Representation of cytosine’s methylation & demethylation processes. 
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The cycle depicts different modified forms of cytosine, along with the corresponding enzymes formed as 

intermediates that are responsible for each modifications taking place in DNA methylation. 

 

Results from epidemiological examinations alongside clinical highlights of neurological issue 

furnishes with an epigenetic commitment to the etiology of separate ailments. Additionally, 

epigenetic adjustment are normally very much recorded regarding mental health, plastic 

changes, particularly in the instances of neurodegenerative maladies, for example, AD and 

PD. Aftereffects of the treatment of AD patients with inhibitors of histone deacetylases 

(HDAC), being key compound associated with histone acetylation, fills in as the most 

convincing proof on the job of epigenetics in AD [4]. In any case, the dysregulation of DNA 

methylation in neurodegenerative infection patients is likewise finely reported. A raised DNA 

methylation delineates a condition of tedious components in AD patients as appeared in 

ongoing confirmations.  

 

Various investigations show that epigenetics may add to the pathology of AD, for example, 

the heterogeneous clinical introduction of AD understanding with fundamentally the same as 

indistinguishable hereditary foundations [13]. In 2009, one such examination was completed, 

the investigation included indistinguishable twins that were utilized to separate between the 

impacts of hereditary qualities and condition. Mastroeni et al. examined DNA methylation in 

a couple of monozygotic twins dissonant for AD [7]. Further, utilizing immunohistochemical 

methods for the identification of 5mC, it was discovered that the worldwide DNA 

methylation inside the unrivaled frontal gyrus and the foremost fleeting neocortex had 

essentially decreased in the twin managing AD when contrasted and the non-sick, 

neurologically ordinary twin. Strikingly enough, both of the twins were synthetic architects 

with practically comparable degrees of instruction, the main separating component would be 

that the AD twin worked seriously with pesticides yet the non-maniacal twin didn't. 

Subsequently, the investigation proposes that hereditary and natural variables can add to the 

advancement of AD, in less complex words i.e, the outcomes shows that other than hereditary 

transformations, ecological impacts may likewise influence the AD introduction. Despite the 

fact that, this investigation of indistinguishable twins discorant for AD is significantly liked 

to particular hereditary just as natural components, is incredibly uncommon. Some normal, 

investigates that include DNA methylation modifications mind in AD is frequently of random 

members conflicting for AD. Both, before and since the indistinguishable twin examination 



16 
 

in 2009, worldwide DNA methylation had been broke down in different locales by other for 

disconnected people conflicting for AD.  

Mastroeni et al., as a follow-up to their undefined twin assessment used 

immunohistochemistry to watch DNA methylation in the entorhinal cortex zone of a model 

masses suffering with and without AD [8]. Like the finishes drawn from before undefined 

twin examination, it was assumed that the individuals suffering with AD had an essential 

decrease in overall DNA methylation when appeared differently in relation to the individuals 

suffering without AD. DNA methylation changes in AD are territory unequivocal, was 

exhibited by the immunoreactivity for 5mC which was not extraordinary in AD-influenced 

regions, for instance, the cerebellum. Disregarding the way that the outcomes of this resulting 

examination, when was gotten together with the delayed consequences of the indistinct twin 

assessment in 2009, might lead perusers to expect that the individuals suffering with AD have 

reduced degrees of DNA methylation in the common cortex when appeared differently in 

relation to the individuals without AD.  

 

Coppieters et al. in his assessment showed that there was an expansion in the degrees of 

overall DNA methylation in the brain tissue tests that were taken up from the middle transient 

gyrus area, when the subjects of AD were diverged from the age-matched, emotionally 

standard controls. Other than Coppieters study, Lashley et al. in his assessment, saw that 

there was no meaningful differentiation in overall DNA methylation in the entorhinal cortex 

area of individuals suffering with and without AD [11]. Another examination drove by 

Phipps et al., provoked the affirmation of cell-type unequivocal DNA methylation. 

Immunohistochemistry was used to dismember 5mC and 5hmC in neural and glial cell types 

in this examination, usually, present in the inferior passing gyrus of human in AD cases 

similarly as age-facilitated controls. Closures drawn from it, recommended that extranuclear 

5mC in neurofilament-stamped pyramidal neurons is vulnerable against the AD pathology, 

which very reduces in AD circumstances when differentiated and controls. Therefore, Phipps 

et al. study supports the hypothesis that DNA methylation changes in AD depend on the 

particular cell type that is analyzed. 

 

Hippocampus  

Cerebral decay alongside decay of the hippocampus is one of the different trademark 

pathologies of AD. Hippocampus is a locale that includes memory arrangement. 

Subsequently, nearness of decay in the hippocampus district can be especially extreme. 
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Accordingly, breaking down of the hippocampus as a cerebrum district by analysts delineates 

its critical effect on AD. Like the investigations referenced before, finishes of studies on 

DNA methylation inside the fleeting cortex and frontal cortex additionally impacts the 

finishes of studies that dissect DNA methylation modifications inside the hippocampus 

district. An examination led by Chouliaras et al. , noticed a sharp diminishing in the degrees 

of hippocampal DNA methylation in AD [10]. The diminishing was obvious when AD cases 

were when contrasted with subjective disconnected, age-coordinated controls. Other than for 

the end drawn, the creators additionally found that DNA methylation in a glial cell was 

tremendously particular in the CA1 just as CA3 subregions. Additionally, neuronal DNA 

methylation was further extraordinary just in the CA1 subregion, subsequently, proposing 

that there might be varieties in the cell type explicit adjustments in DNA methylation relying 

upon hippocam us.  

 

Quality explicit DNA methylation modifications in AD  

 

A few investigations have been done up till date, breaking down quality explicit DNA 

methylation in sub areas of the mind tissue of patients enduring with and without AD. 

Besides, reaching comparative inferences from the examinations that break down worldwide 

DNA methylation, makes these investigations uncertain. Be that as it may, furnishing with 

generally solid proof that methylation inside qualities, for example, APP, PSEN1, MAPT 

might be adjusted in AD makes us one stride nearer to the quantity of basic DNA methylation 

modifications in qualities that have been seen across examines. Recent investigations of 

quality explicit DNA methylation contrasts in AD mainly engaged upon qualities related with 

AD pathology, for example, APP, PSEN1, MAPT and apolipoprotein E (APOE) [6]. In any 

case, in Iwata et al. study pyrosequencing has been utilized to encourage the investigation of 

DNA methylation of different CpG destinations of AD-related qualities. The qualities were 

for the most part present in the second rate transient flap, the predominant parietal projection 

and the cerebellum in both, AD subjects just as the non-sick control subjects.  

 

In this manner, a lot of distinction was found in DNA methylation profiles of the qualities 

APP, MAPT [6]. Besides, the creators clarified that these modifications in DNA methylation 

interprets, causing changes in quality articulation. This gives a potential evidence by which 

DNA methylation impacts the Alzheimer's malady phenotype in subjects considered. 
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Gene expression omnibus (GEO) is an international public repository that freely distributes 

microarray, next-generation sequencing, and other forms of high-throughput functional 

genomics data submitted by the research community. GEO was used for data collection [14]. 

For comparison of the datasets, “Bioinformatics and evolutionary genomics” tool was used 

and Venn diagram indicating common up-regulated and down-regulated genes was obtained. 

Further the genes were shortlisted and Metascape tool was used for pathway enrichment 

analysis [15]. Metascape helps in understanding the common or unique pathways and also 

provides with giving insights into different protein-protein networks, cluster analysis, 

customised analysis for the multiple gene list, orthogonal target discoveries [16]. Cluster 

analysis was also done using Metascape. 

The transcription factors with the genes were investigated and the tool used for finding the 

transcription factor was Transcription Factor Affinity Prediction (TRAP) Web tools 

developed at Max Planck Institute for molecular genetics [17]. 

 

3. MATERIALS AND METHODS 

The integrative analysis approach was followed which included three componenets. The first 

component was finding out the candidate CpGs [18]. CpGs are the regions of DNA where a 

cytosine nucleotide is followed by a guanine nucleotide in the linear sequence of bases along 

its 5’-3’ direction. All the results were combined from previous studies and different tissues 

like peripheral blood, brain were considered for the analysis [19]. Different statstical criterias 

were considered for the analysis by combining results from multiple studies and this is known 

as meta analysis (Error! Reference source not found.). 

Genes associated with those CpGs were considered. The second component of the analysis 

that was differential gene expression analysis of the affiliated genes [18]. Differential gene 

expression analysis was done using GEO2R (Error! Reference source not found.). 

The third component was functional enrichment analysis [18]. This was done using g:Profiler 

[20]. g:Profiler is a web server for functional enrichment analysis (Error! Reference source 

not found.). 
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Figure 4 workflow of the analysis. 

Workflow showing various steps such as data mining, meta analysis, differential gene expression analysis 

and functional enrichment analysis 

3.1 LITERATURE SEARCH 

Data mining comprised of choosing the most relevant datasets in order to proceed with the 

analysis. “DNA Methylation” and “Alzheimer’s Disease” were used as keywords to obtain 

hits from GEO [14]. For further refining of results, the entry type and study type were 

specified using series and methylation profiling by array. A total of 10 datasets were found 

and 2 datasets were chosen for further analysis (Error! Reference source not found.). 
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Figure 5 Datasets chosen for the analysis. 

Table representing organism, type, platform, samples and associated research publication 

 

3.2 ANALYSIS OF FIRST DATASET  

 The first dataset was GSE45775. The illumina DNA methylation beadChip was used to 

obtain DNA methylation profiles across approximately 27,000 CpGs. There were 20 samples 

which were divided into 2 groups: Control and Alzheimer’s disease. The platform used for 

GSE45775 was GPL8490. The above dataset was analysed using GEO2R, which allows user 

to compare two or more groups within the sample-set. Samples were grouped into control and 

AD accordingly (Error! Reference source not found.).  

 

Figure 6 grouping of samples for GSE45775. 

Samples were grouped into control and AD and the TOP250 table was obtained 

This analysis for GSE45775 dataset resulted into TOP250 table.  The TOP250 table 

contained significant information which included ID, adjusted P-value, P-value, t value, B 
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value, logFC (logarithmic fold change of gene expression), gene symbol and CpG 

methylation. 

3.3 ANALYSIS OF SECOND DATASET 

The second dataset was GSE57360 which had 29 samples. It included DNA methylation 

analysis of brain samples from patient suffering from Down’s syndrome, Dementia of Lewy 

bodies or Alzheimer's and Parkinson's disease using the Infinium DNA methylation 

BeadChip platform. The platform used was GPL13534 (PMID: 26784972). The dataset was 

analysed using GEO2R. Here only Alzheimer’s disease and control groups were used for the 

analysis. There were 5 samples which were grouped into control group and 7 samples were 

grouped into Alzheimer’s disease group (Error! Reference source not found.). 

 

Figure 7 Grouping of samples for GSE57360. 

Grouping of samples into control and Alzheimer’s disease and the TOP250 table was obtained 

 

In this dataset, the TOP250 table contained ID, logFC, F statistics, methylation, adjusted P-

value, P-value, t value, B value and chromosome information, Although, it did not contain 

gene symbol list. The TOP250 table had the gene ID’s which were used to retrieve the gene 
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symbols. These gene ID’s were uploaded on DAVIDGO (Database for Annotation, 

Visualisation and Integrated Discovery) which provided us with the gene symbols [21]. 

DAVIDGO provides with comprehensive set of functional and annotated tools for 

investigators to understand biological meaning behind large gene list. 

3.4 CATEGORISATION OF GENES 

The gene symbols were available for both the datasets (GSE4775 and GSE57360) [22]. All 

the genes with P-value <0.01 for both the datasets were considered for the analysis and only 

those genes that were CpG methylated were taken into consideration [23]. The positive and 

negative logFC values distinguished up-regulated and down-regulated genes respectively as 

obtained in the TOP250 table. Further, the genes were categorized as up-regulated and 

down-regulated based on the logFC values. 

3.5 FUNCTIONAL ENRICHMENT ANALYSIS AND VENN DIAGRAM 

The up-regulated and down-regulated genes for both the datasets were uploaded on g: 

Profiler for functional enrichment analysis. It maps genes to known functional sources. 

g:Profiler provides entire gene ontology which includes cellular components, molecular 

function and biological processes [24]. 

The up-regulated and down-regulated genes of the chosen datasets were represented using 

Venn diagram. Venn diagram was obtained using “Bioinformatics and evolutionary 

genomics tool”. This tool calculates the intersections of list of elements. It will generate a 

output indicating which elements are in each intersection and are unique to a certain list. 

3.6 PATHWAY ENRICHMENT ANALYSIS 

After obtaining the Venn diagram, common up-regulated and down-regulated genes were 

investigated and further these were shortlisted on the basis of a statistical parameter that is the 

log P-Value. A total of 262 common up-regulated and 92 down-regulated genes were taken 

into consideration for further pathway enrichment analysis [25].  

For pathway enrichment analysis, Metascape was used [26]. Metascape is a tool used for 

obtaining heatmap, protein-protein interaction networks and enriched ontology clusters. 

Different parameters were used for obtaining the clusters which includes cluster ID and P-

Value [27]. MCODE algorithm was applied to find out protein-protein network and to 

identify neighbourhood where proteins are densely connected [28]. 
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3.7 CLUSTER ANALYSIS 

For customised cluster analysis, different parameters were checked which includes pathway 

and process enrichment where Minimum overlap was of 3, P-Value cut-off was of 0.01 and 

Minimum enrichment was of 1.5. For protein-protein enrichment, the criteria’s used were 

databases (BIOGRID + In_Web_IM + OmniPath), Minimum network size of 3 and 

Maximum network size was of 500 [29]. 

3.8 FINDING TRANSCRIPTION FACTORS  

After cluster analysis, transcription factors associated the genes were investigated. For 

finding out the transcription factors associated with the genes were determined using 

Transcription Factor Affinity Prediction (TRAP) web tools. These tools were developed at 

Max Planck Institute for molecular genetics to predict TF affinities. By uploading the up-

regulated and down-regulated genes from cluster analysis into the PASTAA database, 

transcription factors, target genes, association score and P-Value [30]. 

4. RESULTS AND DISCUSSION 

For the dataset GSE45775, out of 20,009 genes, 12,717 genes were up-regulated and 7,292 

genes were down-regulated. For the dataset GSE57360, out of 21,270 genes, 10,971 genes 

were up-regulated and 10,299 genes were down-regulated. The up-regulated and down-

regulated genes for both the datasets were uploaded on g:Profiler for functional enrichment 

analysis (Error! Reference source not found., Error! Reference source not found., 

Error! Reference source not found., Error! Reference source not found.). 
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Figure 8 Results of g:Profiler for up-regulated genes of the dataset GSE45775 

The above represents cellular components, molecular functions, biological processes, KEGG, REAC, WP, 

TF, MIRNA, HPA and CORUM 

 

Figure 9 Results of g:Profiler for down-regulated genes of the dataset GSE45775 

The above represents cellular components, molecular functions, biological processes, KEGG, REAC, WP, 

TF, MIRNA, HPA and CORUM 
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Figure 10 Results of g:Profiler for up-regulated genes of the dataset GSE57360 

The above represents cellular components, molecular functions, biological processes, KEGG, REAC, WP, 

TF, MIRNA, HPA and CORUM 

 

Figure 11 Results of g:Profiler for down-regulated genes of the dataset GSE57360 

The above represents cellular components, molecular functions, biological processes, KEGG, REAC, WP, 

TF, MIRNA, HPA and CORUM 

 

 

The up-regulated and down-regulated genes for both the datasets were plotted using 

Bioinformatics and evolutionary genomics tool” (Error! Reference source not found.).  

 

The up-regulated and down-regulated genes were sorted on the basis of logFc values for both 

the datasets. The genes with positive logFC values were up-regulated and with negative 
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logFC values were down-regulated. There were 262 genes which were common for up-

regulated genes of both the datasets (GSE45775 and GSE57360) and 92 genes which were 

common for down-regulated genes of both the datasets (GSE45775 and GSE57360). The 

below table represent the top 5 up-regulated and down-regulated genes. 

Gene Name Type Function 

RPL36A Up-regulated Anion binding 

WAS Up-regulated Protein binding 

BTK Up-regulated Catalytic binding 

HSD17B10 Up-regulated Small molecule binding 

APEX Up-regulated Carbohydrate derivate 

binding 

TGIF2LY Down-regulated Protein binding  

PCDH11Y Down-regulated DNA binding TF activity 

PRKY Down-regulated DNA binding TF activity 

MAMLD1 Down-regulated DNA binding TF activity 

EIF2S3 Down-regulated DNA binding TF activity 

 

Table 1 Top 5 up-regulated and down-regulated genes 

 

 

Figure 12 Venn diagram showing all possible overlaps. 



27 
 

All possible overlaps of up-regulated and down-regulated genes of both the datasets (GSE45775 and 

GSE57360) 

The common up-regulated and down-regulated were now narrowed down using a statistical 

criterion i.e. the log P-value. These up-regulated and down-regulated were uploaded on 

Metascape. Metascape was used for cluster analysis and provided with enriched ontology 

clusters, clusters by colour ID, clusters coloured by P-Value, protein-protein interaction 

network and PPI MCODE network.  

Metascape provides with annotation and enrichment results. Annotation results includes 

Input_ID, Gene_ID, TAX_ID, homologues, gene_Symbol, description, biological_process, 

kinase_class, protein_function, subcellular_location, Drug and hallmark_gene_sets. 

Enrichment results include group_ID, category, Term, description, logP and symbols. 

Enriched ontology clusters Type 1 

Enriched ontology clusters for both up-regulated and down-regulated genes were obtained. 

Firstly all the statistically enriched terms which includes canonical pathways, KEGG/GO 

terms, hall_mark gene sets, P-Value, enrichment factors were calculated and used for filtering 

the results. Significantly essential terms were then hierarchically clubbed into a tree based on 

κ-statistical similarities among multiple genes. 0.3 κ score was applied to mould the tree into 

the cluster. A subset of representative terms which include P-value, GO terms, biological 

terms were considered and converted into a network (Figure 13, Figure 14).  

 

Figure 13 Enriched ontology clusters for common up-regulated genes for both the datasets 

Clusters representing collaborative results from different representative terms like P-Value, gene symbols, κ 

statistics similarities 
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Figure 14 Enriched ontology clusters for common down-regulated genes for both the 

datasets 

Clusters representing collaborative results from different representative terms like P-Value, gene symbols, κ 

statistics similarities 

 

 

Enriched ontology clusters Type 2 

Enriched ontology clusters were obtained by clustering by colour ID. Each term was 

represented by circle node and the size is proportional to number of input genes and each 

colour represents cluster identity. All the node of same colour belonged to the similar cluster 

and terms with similarity score less than 0.03 were by edge and the thickness of the edge 

represents the similarity score. The thickness of the edges represents similarity and more the 

thickness, more the similarity. For common up-regulated and down-regulated genes enriched 

ontology cluster by colour ID were obtained (Figure 15, Figure 16).  
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Figure 15 Enriched ontology clusters: coloured by cluster ID for common up-regulated 

genes. 

Clustering genes on the basis of cluster ID and the nodes having same belonged to the similar cluster. 

Different colours represent different functions like cell cycle regulation, methylation, and regulation of 

signalling pathway, C-complex spliceosome and cardiac muscle development.  
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Figure 16 Enriched ontology clusters: coloured by cluster ID for common up-regulated 

genes. 

Clustering genes on the basis of cluster ID and the nodes having same belonged to the similar cluster. 

Different colours represent different functions like cell cycle regulation, methylation, and regulation of 

signalling pathway, C-complex spliceosome and cardiac muscle development 

 

Enriched ontology clusters Type 3 

Enriched ontology clusters on the basis of P-Value. The enrichment network obtained has 

nodes coloured on the basis of P-Value and darker the colour, more significant the node. The 

enriched ontology network coloured by P-Value was obtained for both up-regulated as well 

as the down-regulated genes (Figure 17, Figure 18). 
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Figure 17 Enriched ontology network coloured by P-Value for up-regulated genes 

The network contains the nodes coloured by P-Value and darker nodes represents significant nodes and the 

above network is for common up-regulated genes. 

 

 

Figure 18 Enriched ontology network by P-Value 
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The network contains the nodes coloured by P-Value and darker nodes represents significant nodes and the 

above network is for common up-regulated genes. 

 

PPI network using MCODE 

Protein-Protein network (PPI) for common up-regulated and down-regulated genes was 

obtained. MCODE algorithm was applied to obtain the PPI network. It was used to identify 

neighbourhoods where the proteins were densely connected (Figure 19, Figure 20).  

 

 

 

Figure 19 PPI network for common up-regulated genes. 

MCODE algorithm was applied to obtain the PPI network for up-regulated genes 
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Figure 20 PPI network for down-regulated genes 

MCODE algorithm was applied to obtain the PPI network for up-regulated genes 

 

Gene extracted from cluster analysis 

Genes which played an important role in DNA methylation were also investigated and 

presented in the form of a network. The up-regulated genes included IDHG3, STK26, 

HSD17B10, PDHA1, UBQLN2, H2AW, H2BU1, BTK, FLNA, BCAP31, TAF1 and 

PGRMC1 (Figure 21). The down-regulated genes included OTC, SLC25A5, CTPS2, 

PABPC5, ACSL4, IDH3G, YBX1, HNRNPH2, RBMX, PBQ1P and UPF3B. The PPI 

network follows MCODE algorithm (Figure 22). 
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Figure 21 PPI MCODE network for up-regulated genes. 

Up-regulated genes responsible for DNA Methylation  
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Figure 21 PPI MCODE network for down-regulated genes. 

Down-regulated genes responsible for DNA methylation 

 

Customised cluster analysis was performed using Metascape where analysis performed 

included pathway and process enrichment where Minimum overlap was of 3, P-Value cut-off 

was of 0.01 and Minimum enrichment was of 1.5. For protein-protein enrichment, the 

criteria’s used were databases (BIOGRID + In_Web_IM + OmniPath), Minimum network 

size of 3 and Maximum network size was of 500. The results found were similar to that of the 

metascape analysis. Similar up-regulated and down-regulated genes were found from the 

analysis. 

Transcription factors were calculated for common up-regulated and down-regulated genes. 

Genes were uploaded on TRAP web tools. Following table contains Gene_symbol, Gene_ID, 

Transcription_factor and Affinity_Score for up-regulated genes (Table 2). 

 

Table 2 Transcription factors associated with up-regulated genes. It contains 

Gene_Symbol, Gene_ID, Transcription_Factor and Affinity_Score. 



36 
 

The following table contains transcription factors for down-regulated genes (Table 3). 

 

 

Table 3 Transcription factors associated with up-regulated genes. It contains 

Gene_Symbol, Gene_ID, Transcription_Factor and Affinity_Score. 

 

5. CONCLUSION 

 

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that slowly destroys 

memory and thinking skills and, eventually, the ability to carry out the simplest tasks. 

Accumulation of amyloid-β and neurofibrillary tangles are the major hallmarks of AD. DNA 

methylation is a mechanism of transferring methyl group to DNA, thereby modifying the 

functions of genes. The integrative analysis approach was followed which included three 

componenets. The analysis of the datasets were done through GEO. We were able to find out 

genes associated with CpGs and then on the basis of P-Value and logFC value we were able 

to sort the up-regulated and down-regulaed genes. For functional enrichment analysis, 

g:Profiler was used and we were able to retrieve the cellular, molecular and biological 

function of the up-regulated and down-regulated genes. The up-regulated and down-regulated 
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genes were represented using venn diagram. Venn diagram was obtained using 

“Bioinformatics and evolutionary genomics tool”. The common up-regulated and down-

regulated genes will be further investigated for pathway enrichment analysis.  For pathway 

enrichment analysis, Metascape tool was used. Enriched ontology clusters for common up-

regulated and down-regulated genes were obtained. Enriched ontology clusters: coloured by 

cluster ID and cluster by P-value were also obtained. PPI network using different criteria’s 

for both common up-regulated and down-regulated genes was obtained. Customised cluster 

analysis, different parameters were checked which includes pathway and process enrichment. 

After investigating different networks, we were able to conclude 13 up-regulated genes and 

11 down-regulated genes responsible for DNA methylation alterations in Alzheimer’s 

disease. 

These up-regulated and down-regulated genes were further uploaded on TRAP web tools and 

transcription factors associated with those genes were found. 
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7. APPENDIX 

 

Annotations file for common up-regulated genes 
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Annotations file for common down-regulated genes 
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Novel proteins which were responsible for DNA methylation alterations in 

Alzheimer’s Disease 

 

 




