ASSESSMENT OF GROUNDWATER CONTAMINATION POTENTIAL OF MUNICIPAL SOLID WASTE DUMPS IN HIMACHAL PRADESH

A

PROJECT REPORT

Submitted in partial fulfillment of the requirements for the award of the degree

of

BACHELOR OF TECHNOLOGY

IN

CIVIL ENGINEERING

Under the supervision

of

Mr. Anirban Dhulia

(Assistant Professor)

by

RIZUL SHARMA (151620)

DIPANSHU THAKUR (151634)

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY

WAKNAGHAT, SOLAN – 173234

HIMACHAL PRADESH, INDIA

MAY 2019

STUDENT'S DECLARATION

I hereby declare that the work presented in the project report entitled "Assessment of Groundwater Contamination Potential of Municipal Solid Waste dumps in Himachal Pradesh" submitted for partial fulfillment of the requirements for the degree of bachelor of technology in civil engineering at Jaypee University of Information Technology, Waknaghat is an authentic record of my work carried out under the supervision of Mr. Anirban Dhulia. This work has not been submitted elsewhere for the reward of any other degree/diploma. I am fully responsible for the contents of my project report.

Signature of Student

Name -Rizul Sharma, Dipanshu Thakur

Roll no-151620, 151634

Department of Civil Engineering

Jaypee University of Information Technology, Waknaghat, India

Date:

CERTIFICATE

This is to certify that the work which is being presented in the project report titled "Assessment of Groundwater Contamination Potential of Municipal Solid Waste dumps in Himachal Pradesh" in partial fulfillment of the requirements for the award of the degree of Bachelor of Technology in Civil Engineering submitted to the Department of Civil Engineering, ,Jaypee University of Information Technology, Waknaghat is an authentic record of work carried out by Rizul Sharma(151620), Dipanshu Thakur (151634) during a period from August, 2018 to November, 2018 under the supervision of Mr. Anirban Dhulia Department of Civil Engineering, Jaypee University of Information Technology, Waknaghat. The above statement is correct to the best of our knowledge.

Date:

Signature of supervisor	Signature of HOD	Signature of External
Mr. Anirban Dhulia	Dr. Ashok Kumar Gupta	External Examiner
Assistant Professor	Professor & Head	
Department of Civil Engineering	Department of Civil Engir	neering
JUIT Waknaghat	JUIT Waknaghat	

ACKNOWLEDGMENTS

I would like to thank so many people who have helped in every possible way in successful completion of this project. Firstly I would like to express my gratitude to my project guide

Mr. Anirban Dhulia, who have provided me an opportunity to do this project under his guidance. He has provided valuable ideas and support during the course of this work. This work would not have been possible without his support. I would like to thank our project coordinator and all other faculty members and technical staff of Department of civil engineering of Jaypee University of Information Technology for providing valuable input throughout the course of this work.

ABSTRACT

The disposal of solid waste in unrestrained MSW dumpsites can cause critical impacts on the surrounding habitat and human well-being. The health hazard and ecological deterioration from the unrestrained and unlined dumpsites is awell-knownreality. The most frequently reported threat to human health from these dumpsites is the utilization of contaminated groundwater, which has been polluted by leachate formed from these dumpsites. A method is made to measure the dumpsite leachate pollution via an index. This index is termed as called as Leachate Pollution Index. Leachate Pollution Index is a perceptible means by which the leachate pollutioninformation of the dumpsites could be expressed systematically. The LPI is a rising scale indicator and is developed using Delphi technique. For remedial actions of the dumpsites, hazard ranking is done. Hazard ranking is done by using the DRASTIC method, GW-HARAS, mGW-HARAS and SIMRAS method. The purpose of this research was to estimate the degree of groundwater pollutionin the region of the dumpsites as a result of leachate permeated from five MSW dumpsites. Several physical and chemical parameters were tested which include: pH, BOD₅, COD, Chloride, Iron, Ammonical Nitrogen, Copper, TKN, Chromium, area of the dumpsite, waste height, waste composition, slope of the top surface, soil permeability, depth to the groundwater. Based on the results obtained, it is summarized that a solitary number index which reflects the combined impact of considerablecontaminant variables on leachate pollution is achievable and it can offer a significant, homogeneoussystem of assessing the leachate infectivity potential of dumpsite at a specific time. The study is done for 5 different dumpsites of Himachal Pradesh. The results reflected that the majority of wells were polluted. Here concentrations of nearly all physical and chemical parameters weregreater thanadequatetypical levels for groundwater. It is clear that dumpsites cause potential harm to the neighboringatmosphere.

Keywords: Leachate; Leachate Pollution Index; Rating systems; Groundwater pollution; MSW dumps

STUDENT'S DECLARATION	i
certificate	ii
ACKNOWLEDGMENTS	iii
ABSTRACT	iv
List of tables	viii
List of figures	X
list of abbrevations	xii
CHAPTER 1	1
INTRODUCTION	1
1.1 Project Description	1
1.2 Objectives	2
1.3 Treating Leachate	2
CHAPTER 2	3
LITERATURE REVIEW	3
2.1 Scenario in India	3
2.1.1 Quantity of Waste generated	3
2.2 Environmental Impacts created due to MSW dumpsites	4
2.3 Aim of Hazard Ranking	4
2.3.1 Various hazards from MSW Dumps:	4
2.4 Formation of leachate	5
2.5 Human Health Problems Related with Leachate	6
2.6 Development and Formulation of Leachate Pollution Index (LPI)	7
2.7 Aggregation Function	9
2.8 Procedure for Selecting Suitable Aggregation Function	9

CONTENTS

2.8.1 Functional Form of Index	9
2.8.2 Strength and Shortcomings of Aggregation Function	9
2.8.3 Parsimony Principle	
2.8.4 Transparency of Aggregation Function	
2.9 Variable Curves	
2.11 Variable Aggregation	
2.12 Summary of important research papers	
CHAPTER 3	
MATERIALS AND METHODOLOGY	
3.1 Study Area	
3.2 Methods used for site ranking	
3.2.1 Methods of Ranking	
3.3 Procedure to calculate LPI	
CHAPTER 4	
RESULTS AND DISCUSSION	
4.1 Data Collection	
4.2 Results	
4.2.1 Groundwater pollution potential scores from DRASTIC, GW-HARAS, r and SIMRAS for POST MONSOON season.	
4.2.2 Groundwater pollution potential scores from DRASTIC, GW-HARAS, r and SIMRAS for winter season.	
4.2.3 Groundwater pollution potential scores from DRASTIC, GW-HARAS, Manual SIMRAS for summer season.	
4.4.4 Results for LPI	
4.3 Discussion	61

`

4.3.1 Results of LPI values of all the MSW dumpsites compared with LPI of leachate	
disposal standards	61
4.3.2 Hazard Ranking of dumpsites from DRASTIC, GW-HARAS, mGW-HARAS and	
SIMRAS methods	61
CHAPTER 5	62
CONCLUSION	62
REFERNCES	64

LIST OF TABLES

Table number	Caption	Page number
2.1	Weights of Pollutant Variables Included in Leachate	08
	Pollution Index	
2.2	Summary of important research papers	16
3.1	Existing rating systems and their applicability to MSW	36
	dumpsites for groundwater pollution	
3.2	Parameters employed by DRASTIC, GW-HARAS and	37
	mGW-HARAS	
3.3	Comparison of GW-HARAS and mGW-HARAS	41
4.1	Site parameters for various MSW dumpsites for post monsoons	s 51
4.2	Site parameters for various MSW dumpsites for winters	51
4.3	Site parameters for various MSW dumpsites for summers	52
4.4	Waste composition for various MSW dumpsites	52
4.5	LPI for the NIT Hamirpur dumpsite for post monsoon	53
4.6	LPI for the Hamirpur dumpsite for post monsoon	53
4.7	LPI for the Mandi dumpsite for post monsoon	54
4.8	LPI for the Santoshgarh dumpsite for post monsoon	54
4.9	LPI for the Una dumpsite for post monsoon	55
4.10	LPI for the NIT Hamirpur dumpsite in winter season	55
4.11	LPI for the Hamirpur dumpsite in winter season	56
4.12	LPI for the Mandi dumpsite in winter season	56

4.13	LPI for the Una dumpsite in winter season	57
4.14	LPI for the Santokhgarh dumpsite in winter season	57
4.15	LPI for the NIT Hamirpur dumpsite in summer season	58
4.16	LPI for the Hamirpur dumpsite in summer season	58
4.17	LPI for the Mandi dumpsite in summer season	59
4.18	LPI for the Una dumpsite in summer season	59
4.19	LPI for the Santokhgarh dumpsite in summer season	60
4.20	LPI for the Leachate disposal standards	60

LIST OF FIGURES

FIGURE NO.	CAPTION	PAGE NO.
2.1	Leachate formation process	6
2.2	Variable curves for pH, TDS, BOD ₅ , COD, TKN and	12
	Ammonical Nitrogen	
2.3	Variable curves for Total Iron, Copper, Nickel, Zinc, Lead	13
	and Chromium	
2.4	Variable curves for Mercury, Arsenic, Phenolic Compounds,	14
	Cyanide and Total Coliform Bacteria	
3.1	Hamirpur dumpsite	33
3.2	Santokhgarh dumpsite	34
3.3	NIT Hamirpur dumpsite	35
4.1	Groundwater pollution potential scores for MSW dumps	47
	from Himachal Pradesh from DRASTIC for post monsoon	
4.2	Groundwater pollution potential scores for MSW dumps	47
	from Himachal Pradesh from GW-HARAS for post monsoon	
4.3	Groundwater pollution potential scores for MSW dumps	48
	from Himachal Pradesh frommGW-HARAS for post monsoon	
4.4	Groundwater pollution potential scores for MSW dumps	48
	from Himachal Pradesh from SIMRAS for post monsoon	

4.5	Groundwater pollutionpotential scores for MSW dumps in	49	
	Himachal Pradesh from DRASTIC for winter season		
4.6	Groundwater pollution potential scores for MSW dumps in		49
	Himachal Pradesh from GW-HARAS for winter season		
4.7	Groundwater pollution potential scores for MSW dumps in		50
	Himachal Pradesh from mGW-HARAS for winter season		
4.8	Groundwater pollution potential scores for MSW dumps in		50
	Himachal Pradesh from SIMRAS for winter season		
4.9	Groundwater pollution potential scores for MSW dumps in		51
	Himachal Pradesh from DRASTIC for summer season.		
4.10	Groundwater pollution potential scores for MSW dumps in		51
	Himachal Pradesh from GW-HARAS for summer season		
4.11	Groundwater pollution potential scores for MSW dumps in		52
	Himachal Pradesh from mGW-HARAS for summer season		
4.12	Groundwater pollution potential scores for MSW dumps in		52
	Himachal Pradesh from SIMRAS for summer season		

xi

LIST OF ABBREVATIONS

- BOD Bio Chemical Oxygen Demand
- COD Chemical Oxygen Demand
- LPI Leachate Pollution Index
- TKN Total Kjehldal Nitrogen
- MSW Municipal Solid Waste

CHAPTER 1

INTRODUCTION

1.1 Project Description

Waste dump sites are hazardous to human beings in several beings in several ways, e.g. groundwater pollution, surface water pollution, odorous emissions & greenhouse gas generation due to off-site migration of landfill gas and aircraft damage due to bird menace at bird menace at waste sites. Prioritization is the first step in planning for closure. The comparativelevel of danger posed by a dumpsite is a suitable criterion for prioritization. Also, dataregarding size of these dumpsites and closeness to the surroundings is of great importance. Ecological deprivation due to the unrestrained dumpsites and landfills is a familiarpiece of evidence. Leachate originated from MSW dumpsites is usually heavily contaminated and contains complex wastewater which is difficult to deal with. The leachate can contaminate the subsurface environment and ultimately the groundwater when dumpsites are not equipped with covers and liners. A major risk caused by the leachate produced is the subsurface pollution. Increasing worryregarding humanwellbeing and deprivation of soil, vadose zone and groundwater demand taking appropriate remedial actions at these sites. The remedial actions and defensive actions have to be taken on the basis of priority. Along these lines, a framework is needed to aid the setting of demands, to set up which dumpsites require quick consideration for remedial purpose. This prioritization is done using three rating frameworks for the assessment - DRASTIC, m GW-HARAS and SIMRAS.For calculating the pollution potential of leachate, LPI (Leachate Pollution Index) is calculated.Leachate Pollution Index is an expanding scale record, where a higher value indicates a poor ecological condition. In this way, to calculate Leachate pollution index of a dumpsite, groupings of the 18 parameters are to be identified. In any case, it is additionally conceivable to information for all the 18 parameters incorporated into the LPI are not accessible. Subsequently the LPI determined dependent on the accessible information is probably going to include some error.

1.2 Objectives

1. To estimate the groundwater pollution potential of MSW dumps in Himachal Pradesh.

2. To investigate the suitable method for the prioritization of MSW dumps for remedial actions in Himachal Pradesh.

3. To calculate the Leachate Pollution Index of leachate samples collected from various MSW dumpsites.

4. To propose the remedial techniques for the MSW sites based on the assessment.

1.3 Treating Leachate

There is a scope of innovations accessible to treat the leachate produced from dumpsites in differenttraditions. These include:

1. Organic Treatment – This is generally the startingstage to treat the leachate. It involves using various channels to evacuate nitrogen and some other natural mixes from the wastewater. The most normal organic treatment is activated sludge, which is a suspended-development process that utilizes high-impact microorganisms to biodegrade natural contaminants in the leachate.

2. Synthetic Physical Processes – Wet oxidation forms, for example, ozonisation, are utilized on the off chance that it is possible to oxidize natural contaminants either totally or to change over bio-refractory contaminants into biodegradable contaminants. Activated carbon adsorption is utilized for cases in which natural pollutions in the leachate can't be corrupted either organically or utilizing wet oxidation forms. The contaminants are first bound to the carbon through adsorption and after that decimated by cremation. Precipitation/flocculation and particle trade forms are less across the board in the field of landfill leachate treatment.

CHAPTER 2

LITERATURE REVIEW

Waste dump sites are hazardous to human beings in several beings in several ways, e.g. groundwater pollution, surface water pollution, odorous emissions & greenhouse gas generation due to off-site migration of landfill gas and aircraft damage due to bird menace at bird menace at waste sites. Prioritization is the first step in planning for closure. The comparativelevel of danger posed bydumpsite is a suitable criterion for prioritization. Also, dataregardingdimensions of these dumpsites and closeness to the surroundings is of great importance. Baseline conditions of the waste dumps in India and world were studied.

2.1 Scenario in India

To obtain the data regarding waste dumps in India 53 cities (having population over 1 million) were selected. But out of these 53 cities, data for dump sites in 23 municipal corporations were obtained. Cities with lower population and other rural areas were out of the scope of the study. Further information was also collected from published literature, existing city reports and websites of municipal corporations.Therefore, information was collected from 26 urban communities. About 44% dumpsites have silt or sand in the vadose zone and 85% sites have groundwater table at a distance less than 25m below the base, posing a significant hazard to the groundwater supplies. For pollution potential of surface water, 40% sites are within a range of 200m of a surface water bodies overall. Regarding the proximity of waste dumps to human receptors, more than 60% of the sites are in close vicinity (within a range of 0-500m) of the communities.

2.1.1 Quantity of Waste generated

India generates more than 1 Million metric tonnes of solid waste every day. Some large cities for instance Bombay and Delhi generate 9000 metric ton and 8300 metric ton of solid waste per day respectively.

2.2 Environmental Impacts created due to MSW dumpsites

(a) Groundwater pollution: In the duration of rainfall, water get in touch with the sullied waste. Then after the organic and inorganic components get dissoluted with it, which lead to the forming of verypoisonous leachate. The leachate produced is very toxic and gets collected at the bottom of the dumpsite. It consists of ammonia, metals, some other pathogenspoisonous compounds. Seepage of leachate may result in defilement of ground water sources. The leachate produced has a high BOD. Therefore when it mixes with groundwater or surface water, it can be a danger to the aquatic life.

(b) Air Pollution:MSW dumpsites mainly consist of organic stuff from household waste and industrial waste. When this waste matter decomposes in the dumpsites, many poisonous gases like methane are liberated. Methane is a greenhouse gas which is very much harmful than carbon dioxide trapped in atmosphere. To minimise this cause, methane liberated is used to generate electricity, it releases carbon dioxide as a by-product which has a very less effect than methane. This leads to unpleasant aromain the surrounding area of the dumpsite.

(c) **Subsurface pollution:**Degraded matter and mixture of toxic stuff affects the condition of soil in the nearby area the dumpsites. It affects the flora as the vegetation may cease to grow.

2.3 Aim of Hazard Ranking

Municipal Solid Waste dumpsites cause many hazards to the adjoiningatmosphere by means of air, surface water and ground water courses. Among these air contaminants and surface water pollutants are eliminated at regular intervals by high air and water flows in different seasons. On the contrary subsurface pollution and groundwater pollution are long standing phenomena where the pollutants are not eliminated regularly from the ecological system. Therefore, this research is mainly focussed on estimating only the groundwater pollution potential of Municipal Solid Waste dumpsites.

2.3.1 Various hazards from MSW Dumps:

Recurring hazards caused by continuous generation of leachate and landfill gas.
 Leachate from dumpsites, without any liners and spreads, contributes in pollution of

the subsurface environment, eventually bringing about groundwater pollution. Groundwater pollution from leachate has been reported numerous times.

- ii) Besides groundwater pollution, uncontrolled discharge of leachate likewise pollutes surface water bodies in the region.
- Hazards from landfill gas are in terms of air pollution due to odorous, hazardous and GHG emissions.

Waste dumps in Indian cities have to be closed so as to minimize their impact on the environment and human beings. For planning of closure/remediation of the dumpsites, it is imperative to prioritize them according to the hazards posed. The hazards posed by a given MSW dumpsite rely upon the quantity of the waste, its characteristics, proximity and importance of the receptor as well as the characteristics of the pathway through which the pollutants migrate. Source indicates a waste dump and is characterized by a number of parameters which deal with generation of landfill gas/leachate. Pathway indicates to the path taken by emissions when migrating from source to receptor. Receptors include all the living beings and the adjacentsurroundings which are affected by the impact of danger. Closure is a process of cleaning up of soil and groundwater at a contaminated site.

2.4 Formation of leachate

Leachate is formed when the waste in the dumpsite deteriorates and rain water flushes the resultant yield out. The dark fluid consists of organic and inorganic chemicals, heavy metals and pathogens; it could contaminate the groundwater and hence could be a health risk. When the water permeates through waste, it advances and supports the process of disintegration by fungiand bacteria. These processes release the secondary products of decomposition and immediatelymake use of any existing oxygen, leading to anoxic atmosphere. In effectively deteriorating waste, the temperature increases and the pH goes down rapidly and in result many metal ions which are comparatively not soluble at neutral pH get dissoluted in the leachate formed. The disintegration activities liberate more water, which increases the quantity of leachate. Leachate as well reacts with substances which are not susceptible to degradation by

themselves. Dumpsites with huge fraction of constructionwaste, particularly which have gypsum plaster, the reaction of leachate and gypsum can producehuge volume of hydrogen sulfide, which mayfree in the leachate and may produce a large constituent of the landfill gas.

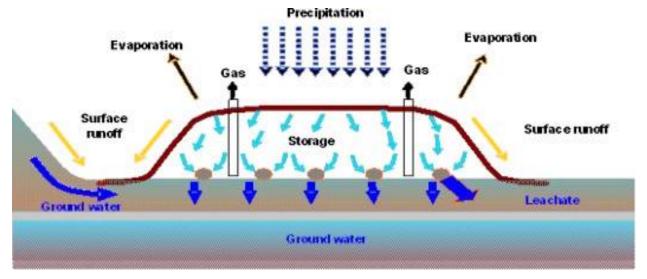


Figure 2.1 Leachate formation process

2.5Human Health Problems Related with Leachate.

When water goes in the course of the disposed waste and permeates to the ground, many times it convey the harmful substances from the waste it passes. It can be water in the waste or rainwater. There are many substances involved in the polluting the groundwater and making it unusable for consumption. Health effects could be acute short exposure, or long term chronic exposure to leachate from landfills.

(a)Chemical/metal Health effects from acute exposure

Lead: Abdominal pain, vomiting, drowsiness, diarrhoea

Nickel:Diarrhoea, gum diseases, skin diseases

Mercury:Reanal failure, Bloody diarrhoea, dehydration

Toluene: Tremors, convulsions, coma

(b)Chemical/metal Health effects from long term exposure

Lead: Constipation, hypertension, abdominal pain, anorexia

Mercury: Memory loss, seizures, coma, irritability, acute kidney failure, decrease in platelets

Benzene: disorders related to blood

2.6Development and Formulation of Leachate Pollution Index (LPI)

To develop a system to compare the leachate pollution potential of various landfill sites in a given geographicalarea, 80 panelists, which included academicians in environmentalengineering, environmental regulatory authority scientists, consultingengineers, and members of the International Solid WasteAssociation (ISWA) from around the world, were surveyed. The survey was conducted using multiplequestionnaires to develop a LPI. The index is a mathematicalmethod of calculating a single value from multiple chemical and biological test outcomes of the dumpsite leachate. The solitary value Index is similar to a scale that discloses the overall leachate pollution potential of a dumpsite. It is based upon several leachate pollution parameters at a given time. It is agrowing index, in which a greater value point toward a worseecological situation. The 18 leachate pollution factors included in the Leachate Pollution Index, depend upon the investigation done by the analysts, were chromium, lead, chemical oxygen demand (COD), mercury, 5-day biochemical oxygen demand (BOD), arsenic, cyanide, phenolic compounds, zinc, pH, total Kjeldahl nitrogen, nickel, total Coliform bacteria, ammonical nitrogen, total dissolved solids (TDS), copper, chlorides, and total iron. The weights for the givenfactors were considered based upon symbolic levels proposed by the analysts for these factors on a scale of 1 to 5 and are given in Table 2.3. A chosen set of specialists were approached to make graphs for contaminant factors incorporated in the Leachate Pollution Index corresponding to leachate pollution potential ranging from 5 (best) to 100 (terrible). Intensities of leachate pollution from 0 to 100 were demonstrated on the x co-ordinate of every graph, while different levels of concentration of the specific variable, up to the ultimate limits disclosed in literature, were indicated on the abscissa. The graphs made by the specialists wereaveraged in order to find "average sub-index" graphs for every factor.

Serial	Contaminant	Contaminant weight
Number		
1	Chromium	0.064
2	Lead	0.063
3	COD	0.062
4	Mercury	0.062
5	BOD	0.061
6	Arsenic	0.061
7	Cyanide	0.058
8	Phenolic compound	0.057
9	Zinc	0.056
10	рН	0.055
11	TKN	0.053
12	Nickel	0.052
13	Total Coliform bacteria	0.052
14	Ammonia nitrogen	0.051
15	TDS	0.050
16	Copper	0.050
17	Chlorides	0.049
18	Total Iron	0.045
	TOTAL	1.000

Table 2.1Weights of Contaminant Variables considered in Leachate Pollution Index

2.7 Aggregation Function

Aggregation methods are pivotal in the field of environmental indices, as they significantly influence the quality of result from several perspectives. Aggregation has been illustrated as the procedure of tallying factors or units with comparative properties to come up with a particular number which expresses the general estimated value of its specificpart.

Aggregation functions generally comprise of any of the following three arrangements:

1. Additive form (summation function), where individual variables are added together.

2. Multiplicative form (multiplication function), where a product is made of some or all of the factors.

3. Maximum or minimum operator form, where the maximum or the smallest sub index value of the factor is directlyacknowledged.

2.8 Procedure for Selecting Suitable Aggregation Function

The giventraits are to be investigated for selection of the suitable aggregation technique.

2.8.1 Functional Form of Index

The index could be an ascending scale index or a descending scale index. In the case of an ascending scale index, generally known as "environmental pollution index," larger values show a poorercondition than smaller values. In the descending scale indices, largervalues are related with a better condition than lower values. These aregenerally known as "environmental quality indices."

2.8.2 Strength and Shortcomings of Aggregation Function

The two major issues related with aggregation functionsare:

1. An overestimation (ambiguity) issue, where the aggregate index I surpass the critical level without any of the sub-indicessurpassing the critical levels.

2. An underestimation (eclipsing) issue, where the aggregate index I does not surpass the critical level even with one or moreof the sub-indices surpassing the critical levels. The best suitable aggregation function will limiteither one orboth the problems.

2.8.3 Parsimony Principle

When contending aggregation functions yieldalikeoutcomesconcerning overestimation and underestimation, mathematically simple aggregation function will be the most suitable.

2.8.4 Transparency of Aggregation Function

To conclude, an aggregation method is fruitful if all presumptions and origins of information are determined, the procedure is clear and openlystated, and the index could be easily disintegrated into the different constituents without any data loss. In addition to the mentioned procedure, the aggregation function chosen for any environmental index should also meet the given conditions.

(a) It should be subtle to the variations in asingular variable all over its range.

(b) It should be unbiased towards decent or deprivedecological worth.

(c) It should reflect weighting aspects, as all variables involved in the index are not equal donors to environment pollution.

(d) It should be easy to use.

2.9 Variable Curves

The averaged sub index graphs for everyfactor were made to build an affinity between the Leachate pollution and strength or concentration of the factor. The averaged sub index graphs are the graphs that represent the affinity between leachate pollution and the strength or concentration of the factor. The averaged sub-index graphs are displayed in Fig. 2.2, 2.3 and 2.4.

The averaged sub index graphs are given for the following leachate contaminant variables

(a) pH

(b) Total dissolved solids

(c) Biological oxygen demand (5 day)

- (d) Chemical oxygen demand
- (e) totalKjeldahl nitrogen
- (f) ammonia nitrogen
- (g) total iron
- (h) copper
- (i) nickel
- (j) zinc
- (k) lead
- (l) chromium
- (m) mercury
- (n) arsenic
- (o) phenolic compounds
- (p) chlorides
- (q) cyanide

`

(r) total coliform bacteria.

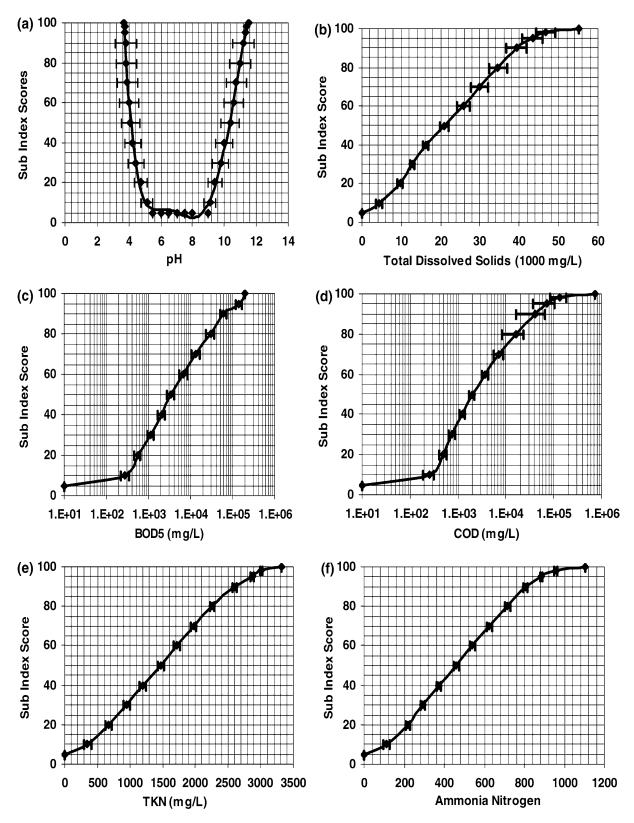


Figure 2.2Variable curves for pH, TDS, BOD5, COD, TKN and Ammonical Nitrogen

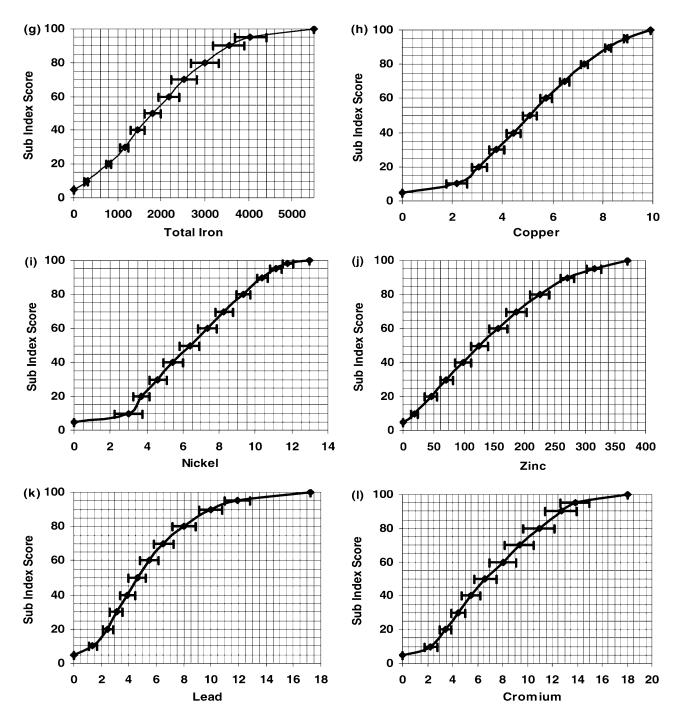


Figure 2.3Variable curves for Total Iron, Copper, Nickel, Zinc, Lead and Chromium.

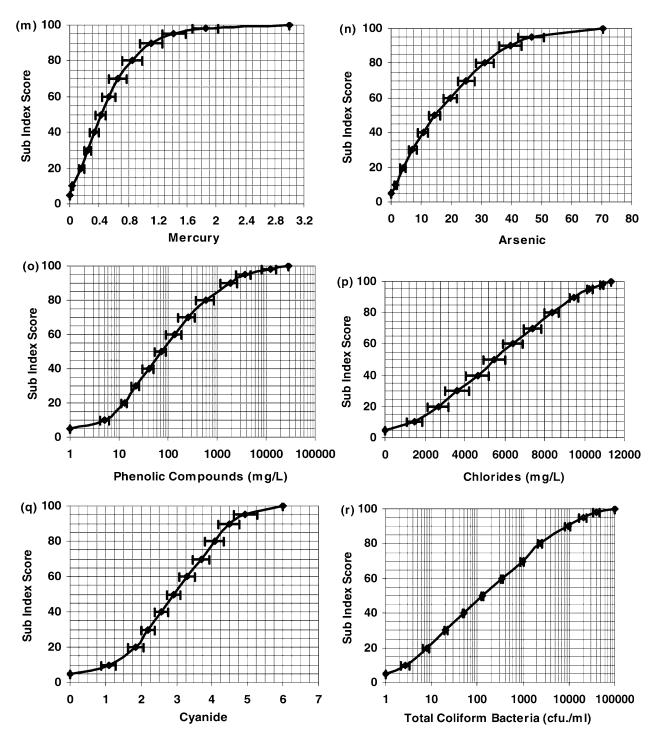


Figure 2.4 Variable curves for Mercury, Arsenic, Phenolic Compounds, Chlorides, Cyanide and Total Coliform Bacteria.

2.11 Variable Aggregation

The weighted sum linear aggregation function was utilized adding up the behavior of all the leachate contaminant variables. The different probable aggregation functions were evaluated to choose the most ideal aggregation function. The LPI can be determined using the equation:

$$LPI = \sum_{i=1}^{n} w_i p_i \qquad \dots \text{ eq } (1)$$

where LPI = the weighted additive leachate pollution index,

w_i= the weight for the ith contaminant variable,

p_i= the sub index value of the ith leachate contaminant variable,

n = number of leachate contaminant variables used in computing LPI

$$\sum_{i=1}^{n} w_i = 1$$

•

In case, when information for all the leachate contaminant variables involved in LPI is inaccessible, the LPI can be determined utilizing the information of the accessible leachate contaminants. For that situation, the LPI can be computed by the following equation:

$$LPI = \frac{\sum_{i=1}^{m} w_i p_i}{\sum w_i} \dots \text{ eq } (2)$$

where m is the number of leachate contaminant factors for which information is available, but for that situation, m < 18 and W_i < 1.

2.12 Summary of important research papers

 Table 2.2Summary of important research papers

02Numerical4 July 2006M.P.InthispaperEcologicalinfluenmodelling of the environmental impact of landfill leachateG.G. Bougioukounumerical ceceonBougioukouG.G. Bougioukoudefinehydraulic pollutedconditionofBougioukougroundwater groundwater quality - a field application,ongroundwater goal ofmodelsMunicipal Solid pollutant massWaste dumpsite movement.The key goal ofmodels like the longstandingeffect study groundwater management substitutes. The Princeton Transport Code(1) the pollution spreads quicker in the downstream course if the dumpsite is built on large hydraulic conductivity permeable media groundwater flow					threat and the poorest value resembles the site with maximum threat.	
which solves the monsoons	02	modelling of the environmental impact of landfill leachate leakage on groundwater quality – a field	4 July 2006	Papadopoulou G.P.Karatzas G.G.	numerical replicasare used to define hydraulic phenomenafor instance flow of groundwaterand pollutant mass movement.The key goal ofmodels like these is to anticipate the longstandingeffect of water extraction and contaminant movement and to study groundwater management substitutes. The Princeton Transport Code is a groundwater flow and contaminant	ceongroundwaterconditionofpollutedbyleachate from theMunicipalSolidWastedumpsitein Patras, Greece,waspresented.Theoutcomesattainedshow that(1)the pollutionspreads quicker inthedownstreamcourseifthedownstreamcourseifthedownstreamcourseifumpsiteisbuiltonlarge hydraulicconductivitypermeable media(2)thewaterpercolated during

、

				numerically	contribute for a
				aarrangement of	greater dilution of
				partial differential	the
				equations in order to	pollutantthrough
				accurately	that duration and
				symbolise the	greater values of
				groundwater	the pollutant
				movement, the rates	concentration
				and the pollutant	detected in the
				mass movement of	end of the dry
				the simulated	period
				physical system. PTC uses	3) A
				anexclusive splitting algorithm for solving the fully three dimensional equations, which	hazardinvestigati on miniature showed that a decrement inmass of the pollutant at the source in
				considerablydecreas es the calculation	initial stages influences the
				burden.	progress of the
					pollutant plume
					and decreases the
					negative
					ecologicaleffect
					on traits of
					groundwater.
03	Evaluation of	December	Akhtar Malik	Here DRASTIC	GIS was utilized
	local	12, 2014	Muhammad,	way is used for	to residentialplot

groundwater	Tang	estimate of GW	which
U U	U		
vulnerability	Zhonghua,	measurement. In	showgreathazardz
based on	Ammar	this method six	one of 28.3 % and
DRASTIC	Salman	parameter are	reasonablydefenc
index method	Dawood and	studied. Each limit	elesszones of
in Lahore,	Bailey Earl	is assign a	46.1%
Pakistan.		weighting, from one	whereaszones of
		to ten, according to	nohazardwere 10
		its capability to	%. The
		concern	resultinggroundw
		groundwater.	ater susceptibility
		DRASTIC Index is	map provide us a
			foundation for
		designed. Well-built the worth if this	this meant at
			protective the
		index, higher the susceptibility of	aquifer from
		1 5	contaminants.It is
		groundwater to fall.	also established
			that industrial &
			cultivation zones
			are
			verysusceptible as
			evaluate to
			resolutionzones.

04	Ranking	2017	Khalid	This investigation is	This Paper tells
	criteria for		Mahmood,	completed	us about theInput
	assessment of		SyedaAdilaBa	forexpanding a	factors
	municipal solid		tool,	relativeprocedure	havealienated in
	waste dumping		Muhammad	that is able	three
	sites.		Nawaz	togradeactive	categoriesviz.
			Chaudhary,	municipal solid	Resident's
			Zia Ul-Haq	wasteremovalservic	concern,
				es.Thesecertainpara	Groundwater
				meters are divided	Vulnerability and
				into 3	Surface services.
				categories:RESIDE	Isolated Sensing
				NT's	information and
				CONCERN: The site	GIS study was
				of discarding site is	utilized to
				very significant to	arrangemaximum
				make sure	of the input
				sustainability of	information.To
				surroundings& to	detail the idea, 4
				decrease its impact	dumping sites
				on human beings in	selected for
				its neighbourhood.	investigation
				So, a discarding site	purpose, namely
				whether it is	Old-FSD, New-
				engineered or non-	FSD, Saggian and
				engineered has to be	Mahmood
				located far from a	Booti.Resilience
				housing area.	of suggested
				GROUNDWATER	model to
				VULNERABILITY:	accommodate as
				VULINEKABILI I Y:	

		Leachateformed in	many types and
		MSW dump sites	factors in one
		percolateall the way	type will prove
		through vadose zone	advantageous for
		and	evolvingdomain
		finallycontaminate	where
		the groundwater.	accessibility of
		GW risks are	information is
		considered as:	amajordifficulty
		(GW1) Depth of	in study based
		water table	ecological
		underneath dumping	sustainability
		service (GW2)	preparation.The
		× /	miniature can be
		1 0	used even devoid
		primary	ofbuying satellite
		sediments(GW3)	information and
		Time occupied by	GIS software,
		leachate to attain the	with
		water table (GW4)	slightimprecision,
		Amount of Leachate	using descriptions
		manufacture (must	and dimension
		be low)(GW5) angle	tools delivered by
		b/wguidelines of the	Google Earth.The
		settledarea and flow	pecking order of
		of groundwater from	goodness found
		removal site(for the nominated
		highest and	sites is :
		utmostappropriate	
		value is 180° and	

	minimumsuited	New-FSD > Old-
	value is 0^0 .	FSD > Mahmood
	SURFACE	Booti>Saggian
	FACILITIES:	with relative
	Itinclude social	scores of
	amenities and	goodness to
	surface water forms	surroundings as
	in the form of river,	c
	stream or ponds.	
	next are the	
	parameters used in	L V
	this study:	
	SF1: region of	
	surface water	
	forminside 200m of	
	a dumpsite.SF2:	
	accessibility of	
	concrete road	
	admission to dump	
	site.SF3: Length of	
	highway and	
	recurrently used	
	road inside	
	100meter of a	
	dumping	
	resourceSF4 :	
	reserve to	
	nearrespectposition	
	SF5: detachment to	

				adjacent school	
vi ar m th ac A Jc G se	aroundwater ulnerability nd risk napping for ne Basaltic quifer of the zraq basin of ordan using HS, Remote ensing and PRASTIC	6 August 2003	R.A.N. Al- Adamat, I.D.L. Foster , S.M.J. Baban	This study is approved out using DRASTIC processinside the GIS environment to create a groundwater vulnerability map.The author barred hydraulic conductivity from the final DRASTIC computationowing tobe the short of data.The author replace the renew parameter (net recharge) as defined by the US EPA by	foundation of hydro-geological circumstances and human impact.The wholemain geological and

	the possible of	
	anregion to have a	factor that affect and manage
	-	e
	renewbase on the	groundwater
	rainfall quantity,	group into,
ι	undulation and soil	during, and out of
I	permeability.	the study area
	Three DRASTIC	were included
		into the
	parameters was not	DRASTIC
	used in this	copy.deepness to
	research; net refresh,	groundwater,
	bang of the vadose	renew, aquifer
2	zone and the aquifer	medium, soil
r	medium. Instead,	media,
t	the	topography, and
2	authorsadditional	
I	new parameters to	crash of the
t	the DRASTIC	vadose zone are
i	index; the land use	the parameters
2	and septic tank	built-in in the
s	scheme	study.The
	density.Hydraulic	hydraulic
	conductivity were	conductivity of
	•	the aquifer were
	not used in the	not built-in in
	expansion of the	scheming the
	DRASTIC index	final DRASTIC
	because there were	index for
	lack of data from	possiblestain due
	which to estimation	to a lack of
t	this parameter.The	sufficient
	DRASTIC index	Sumorent

		· · · · · · · · · · · · · · · · · · ·
	was compile in two	quantitative
	part stages:Stage	information. A
	one concerned an	Geographical
	assessment of	Information
	groundwater	scheme (GIS)
	vulnerability, which	was used to create
	is dependent relative	a groundwater
	on the physical	vulnerability map
	circumstances found	by overlay the
	in a specific	obtainable hydro-
	environment and is	geological
	fundamentallyself-	data.The final
	governing of the use	DRASTIC model
	to which the land is	was
	place.	experiencedby
	phase two concerned the addition of risk factors focus on land use in the learnregion.These factor were extra to the DRASTIC vulnerability index in instruct to make a risk directory.	hydro chemical informationas of the aquifer. Around 83% of the study region was classified as life form at reasonable risk while the rest was classified as low risk.It be able to be finished that the move towards adopted to create
		the DRASTIC

					index was
					incomplete by the
					ease of use of
					data.
06	Hanand Dating	December	Marai Datta	Baseline	These
06	Hazard Rating	December	Manoj Datta,		These paper
	of MSW	2015	Amit Kumar	circumstances of the	demonstrateshow
	dumps and			waste dump were	thedanger rating
	geo-			studied.To get the	techniques can be
	environmental			data concerning	used in assess the
	measures for			waste dumps, all the	-
	closure.			cities (53 in total)	of MSW dumps
				have population	for infectivity of
				over 1-million	groundwater,
				waschosen.Out of	surface water and
				the fifty-three city,	air.base on the
				information for	score scores, one
				dump sites in 23	can recognize the
				municipal	appropriateness
				corporation were	of geo-
				obtain.Further in	environmental
				order was also	events for closure
				obtain from	of MSW dumps
				published literature	which
				and existing	containdissimilar
				cityinformation.	collision on the
				Conconcently 1-1	environment due
				Consequently, data	to unreliable site
				were obtainable	circumstances.Ind
				from total 26	ex purposecome
				cities.Cities with	close tobase on

inforior population	course nother
inferior population	
& other	receptor method
countrysidearea	is used
were out of the	here.Seven
range of the	methods of end
study.For data	are assessed for
study, the waste	appropriateness
dumps were	of application to
categorize into three	12 MSW dumps
categories:	with dissimilar
a) sites from city	hazard ratings.
having population	
more than 5000000	The hazard rating
b) Sites from cities	used toassess
having population	waste removal
between 2000000-	sites according to
5000000.	the family
 c)Sites from cities having population b/w 1000000- 2000000 	member hazards pose by them to human health and environment.
The appropriateness	
of the next rating	
system has been	
assess for MSW	
dump sites and the	
nextsystem have	
beestablishhelpful:	
NPC and JENV	

				scheme for air contagion; WARM, HRS and RSS for exterior water contagion; GW-HARAS for groundwater contagion.	
07	Groundwater vulnerability Assessment by DRASTIC method using GIS	April 2017	A.V.Ramaraju ,K. Krishna Veni	Overlay and Index Methods:These methods join maps of parameters careful to be influential in pollutanttransportati on.Each parameter has a variety of possible principles, representative the amount to which that parameter protect or foliagesusceptible the groundwater in aarea.More complicated systems	Theaquiferweaknessof EastGodavaridistrictofAndhraPradeshemploytheempiricalindexDRASTICmodelthe U.S.EnvironmentalProtectionAgency (EPA).Sevenenvironmentalparametersweresecond-handtostandfornaturalhydro-geologicalsettingoftheaquifer,togroundwater, Net

allocatearithmeticals	renew, Aquifer
core based on some	media, Soil
parameters.	media,
The most well-liked of this method, DRASTIC uses a score system baseon 7 hydro geologic kind of a region.	Topography, collision of vadose zone & Hydraulic conductivity.
Mathematical	The results show
Model:	that vulnerability
 Such models letintimidation to the security of land water supplies to be documented and can play asignificant role in preparation remediation labours.Different other land waterclassforecast methods, numerical models forecast variations of water excellence both in room and in instance.These methods 	index range from 78 to 170 and are classified into three classes 79- 100, 100 to 140 and 140 to 170 matching to low, medium and high vulnerability zones in that order. The land water vulnerability possible map show that the mainstream of eastern fraction and a number of

	aren'twornextensive a	areas the length
		of coast fall under
	susceptibilityexamin f	far above the
	ation.	groundsusceptibil
	i	ity followed by
	1	medium
	5	susceptibility in
		the central and
	DRASTIC	western areas of
	Method:	the study area.
	This method is	
	based upon the 7	
	parameters which	
	we discuss below:	
	The Depth of	
	landwater, renew	
	rate, soil media, and	
	slope of the apex	
	surface, effect of	
	vadose zone,	
	hydraulic	
	conductivity of the	
	aquifer. The	
	possible	
	contamination for a	
	dumpsite is resolute	
	by	
	multiplyingeveryfac	
	torheaviness with its	
	assignmark or point	

				score plus the whole. It is an effortlesstechnique which uses preservativeprocedu re. The series of Index assessed using this scheme has a theoreticvariability of 23-226.	
08	Groundwater Pollution Hazard Potential Rating of Municipal Solid Waste Dumps and Landfills	September 2007	Raj Kumar Singh, Manoj Datta, Arvind Kumar Nema	Numerousschemefa ctorslabelling the source, pathway and receptor were classifiedbasedupon literature and the expert ideas. The panellists were asked to add any other factor(s) of significance to the groundwater pollution potential of municipalsolid waste dumpsites, and then give ratings to all factors comprising the ones recognised from literature on a scale	In this study a multi-factor hazard assessment system is introduced for assessing groundwater pollution caused due to MSW dumpsites. It is applied for four landfills; two in Delhi and two in Chennai. Then theoutcomes are paralleled with those of the existing models.

of 0-10.A score of	The system is
'0' showedthat	based on source-
factoris insignificant	pathway-receptor
and hence should	copy and assesses
not be built-in,	the site threat
whilescore of 10 was	potential on a
to be allocated to the	comparative scale
utmostsignificantfac	of 0 to 1000,
	taking into
tor.	C C
The relative	deliberation the
importance weights	full leaching life
of several factors	of the waste
were establishedby	disposal site.Each
the Delphi technique	classfactors are
(Dalkey, 1968).	aggregatedistinctl
The finest value of a	y by a mixture of
factorcorrespond	additive and
tosquander site with	multiplicative
least probablethreat	systems. The
and the most	contrastdisplays
horrible	that the current
scorecorrespond to	model
the dumpsite with	yieldsconsiderabl
maximumprobableth	ycontradictoryma
reat. If all input	rks for the
factors for a	unlikewaste
dumpsite are at their	disposal sites as
-	paralleled to the
poorest scores, the	breathing
hazard rating will be	systems, and thus

		highest for that site.	is more
			approachable to
			diverse site
			situations.

CHAPTER 3

MATERIALS AND METHODOLOGY

3.1 Study Area

1. Hamirpuris a town situated in the Himalayan region of Himachal Pradesh (HP). It is additionally the headquarters of the Hamirpur district. It is located in a comparatively colder region in western (HP) with a high altitude. Its average elevation is 738m and exact geographical co-ordinates are 31.68° N 76.52° E. According to 2011 census, the population of Hamirpur town was 17604. It does not have typical very cold type of climate found in most parts of Himachal Pradesh as it is close to the plains. During winters, the climate is cold but pleasant and woolens are required and in summers the temperature goes up to 35°C. In 2012, some parts of Hamirpur district received a moderate snowfall. Most parts of Hamirpur district are covered with pine forests.

Figure 3.1Hamirpur dumpsite

2. Mandiis a major town of Mandi district and also a headquarters of the Mandi district. It is located 145 kilometers north of state capital, Shimla. It lies in the north-west Himalayas at an average altitude of 754m. According to 2011 census, the population of Mandiwas 26422. The climate of Mandi includes sweltering summers and cold winters. This region generallyexperiences rainfall during end of summers. This town lies the lower climatic zone of Himalayas. Temperature in summers is between 18.9°C and 39.6°C and in winters, it is between 6.7°C and 26.2°C.

3. Unais a major town of Una district and also a headquarters of the Una district. Its terrain is semi-hilly with low hills. Its altitude is 408m. Its exact co-ordinates are 31°28'34"N 76°16'13"E. It is the main industrial hub of Himachal Pradesh. It is located in the foothills of Himalayas. Its

climate is mostly sub-tropical. Temperature goes down to -3.5°C in winters and goes as high as 48°C in summers. The average annual rainfall is 1253mm.

Hamirpur town of Himachal Pradesh.

Figure 3.3NIT Hamirpur Dumpsite

3.2 Methods used for site ranking

In the totalobtainable raring system for hazardous dumpsites. Amongst these, twelve rating systems are futurefirst and foremost for hazardous waste dumpsites. These systemsget into explanation the poisonousness of the majoritydangerousmix on the place to approximation the hazard for receptor, and hence are not in a straight line applicable to MSW sites. Absent of these three rating systems, only one i.e. DRASTIC, directly assess the groundwater infection potential instead ofdanger to the receptors i.e. person beings. In adding, twoscore systems i.e. GW-HARAS ,anenhanced and improved variant, mGW-HARAS are 2latelyestablished groundwater threatrankingsystem which can be used for rating of pollution potential by eliminating the partconnecting to receptors.

Application of rating systems	No. of rating systems	Rating systems
Predominantly for hazardous	12	Hazard Assessment Rating
waste		Methodology, Hazard Ranking
		System, Defense Priority Model,
		Hazard Ranking System-1990,
		Washington Ranking Method,
		National Corrective Action
		Prioritization System, Relative
		Risk Site Evaluation Method,
		Environmental Repair Program
		Hazard Ranking System,
		Indiana Scoring Model, Risk
		Screening System, Risk
		Assessment of Small Closed
		Landfills, National
		Classification System.
For hazardous waste and/or	03	Hazard Ranking Using Fuzzy
MSW waste but yield a		Composite Programming,
combined score of groundwater,		JENV, National Productivity
surface water and air		Council System
For MSW waste to evaluate	03	DRASTIC, GW-HARAS,
groundwater pollution		mGW-HARAS

Table 3.1 Existing rating systems and their applicability to MSW dumpsites for groundwater pollution

3.2.1 Methods of Ranking

For assessment of pollution from MSW dumps, generally four methods are used which are given as:

1. DRASTIC

2. GW-HARAS

3. mGW-HARAS

4. SIMRAS

Parameter	DRASTIC	GW-HARAS	mGW-HARAS
Area in (ha)		\checkmark	
Waste height in(m)		\checkmark	
Waste composition		\checkmark	\checkmark
Rainfall	\checkmark	\checkmark	\checkmark
Depth to groundwater	\checkmark	\checkmark	\checkmark
Soil Permeability	\checkmark	\checkmark	\checkmark
Groundwater gradient	\checkmark	\checkmark	\checkmark
Slope of the top surface	\checkmark	\checkmark	\checkmark
Aquifer permeability	\checkmark	\checkmark	
Aquifer thickness		\checkmark	

Table 3.2 Parameters employed by DRASTIC, GW-HARAS and mGW- HARAS:

1. DRASTIC

It dependsupon six factors: depth to groundwater, rainfall, soil media, and slope of the top surface, impact of vadose zone and hydraulic conductivity of the aquifer. The pollution potential of a place is calculated by multiplying each factor weight by its allocated score or point rating and adding the total. It is a simple technique which mainly uses additive set of rules. DRASTIC Index indicating the pollution is given by:

DRASTIC Index = $\sum w_i R_i$

The range of the Index assessed by this system has a theoretical range of 23-226 (greater score shows more prominent hazard to groundwater).

2. GW-HARAS

`

It depends on source-pathway-receptor connections and assesses the groundwater pollutionthreatranking of dumpsites on a comparative scale of 0-1000. It uses ten factors: area of the dumpsite, height of the waste, waste composition, rainfall, depth to groundwater, soil permeability, groundwater gradient, gradient, aquifer permeability and aquifer thickness.

It primarily uses multiplicative algorithm. The groundwater pollution hazard rating is given by:

 $HR = H_S * H_P * H_R$

Where

H_s= source hazard rating;

H_{R=} receptor hazard rating;

H_P=pathway hazard rating.

3. mGW-HARAS

It is a modification over GW-HARAS. It uses the following parameters: Area, waste height, waste composition, rainfall, depth of groundwater, soil permeability, groundwater gradient, soil permeability, groundwater gradient and slope of the top surface.

The groundwater pollution hazard rating is given by:

 $HR = H_S * H_P * H_R$

Where,H_s= source hazard rating, H_{R=} receptor hazard rating, H_P=pathway hazard rating

Component	GW-HARAS (HR			mGW-HARAS (HR = $H_s * H_{p*} H_R$)		
	$= H_s * H_{p*} H_R)$					
	Formulae	Mnv ^a	Mxv ^a		Mnv ^a	Mxv ^a
Source	$\mathbf{H}_{s} = \mathbf{W}_{qi} * \mathbf{W}_{ci} * \mathbf{I}_{pi}$	37	1000	$\mathbf{H}_{s} = \mathbf{W}_{qi} * \mathbf{W}_{ci} * \mathbf{I}_{pi}$	427	1000
	$W_{qi} = \sqrt{(W_q/3)}$	258	1000	$W_{qi} = 225*(W_q)^{0.1}$	763	1000
	$W_{ci} = (25H +$	0.45	1.0	W _{ci} =0.6+0.4*[(25H+5B+C)/500]	0.8	1.0
	5B + C)/5	0.32	1.0	$I_{pi}=0.6+0.4*(P_s * i_s)/10$	0.7	1.0
	$I_{pi} = P_s * i_s$					
Pathway	$H_p = V_i * A_{qi}$	0.56	1.0	$H_p = V_i * A_{qi}$	0.16	1.0

Table 3.3 Comparison of GW-HARAS and mGW-HARAS:

	$V_{i} = 0.7+0.3[(log(z)_{v,b}-log(z)_{v})/log(z)_{v,b}-log(z)_{v,w}]$ $Z_{v}=0.5*k_{v}/L$	0.7	1.0	$\begin{split} V_i &= X_1 + X_2 [\log(k_v)_b^- \ 0.\\ \log(k_v) / \log(k_v)_b - \log(k_v)_w] &* [L_b.\\ L_{f'} / t_b - t_w] \\ \end{split} \\ Where \ X_2 = 1 - X_1 \ and, \\ X_1 = \{0.2 \ for \ K \leq 10^{-8} \ m/s \\ 0.4 \ for \ 10^{-8} < k(m/s) \leq 10^{-6} \\ 0.7 \ for \ k(m/s) > 10^{-6} \} \end{split}$.2	1.0
Receptor	$\begin{array}{llllllllllllllllllllllllllllllllllll$	0.8	1.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.0

Where,

HR-Hazard rating

H_s-Source hazard rating

H_p- pathway hazard rating

H_R- Receptor hazard rating

 W_{qi} – Waste quantity indicator

 $W_{ci}\!\!-\!Waste\ composition\ indicator$

 $I_{\text{pi}}\text{--} Infiltrating \ precipitation \ indicator$

 W_{q-} waste quantity (tons)

H-Hazardous fraction

B-Biodegradable fraction

C- Construction and demolition factor

Ps- precipitation score

 $i_s-infiltration \ score$

V_i- vadose zone indicator

K_v – vadose zone permeability in metres per second

L- vadose zone thickness in meters

Aqi- aquifer zone indicator

 W_{at} , w_{ap} , w_{gg} , relative important weights and Z_{at} , Z_{ap} , Z_{gg} and Z_{dw} are the parameter values of aquifer thickness, aquifer permeability, groundwater gradient and distance to nearest groundwater well respectively.

The subscripts b and w represent best and worst values

SG_i indicator for subsoil or groundwater

Gu_{ij}-indicator for jth groundwater user category

m – number of groundwater user categories

 M_{nv} – minimum value computed for the best site

 M_{xv} – maximum value computed for the worst site

3. SIMRAS

`

For a hazard rating system, waste hazard rating is given by:

 $HR \alpha H_s * H_P * H_R$

A hazard rating system can be converted into a pollution potential rating by eliminating the influence of receptor component. The influence of receptor component can be eliminated by assigning H_R a value of 1. Hence pollution potential rating (CPR) is given by:

 $CPR = P_S * P_P * P_R$

Where,

 $P_S =$ Source potential rating

 P_P = pathway potential rating

 P_R = Receptor potential rating (taken as unity)

Source potential rating, Ps is given as:

 $P_S = I_{wq} * \ I_{wc} * \ I_p$

Where,

 I_{wq} = waste quantity indicator

I_{wc}= waste composition indicator

I_p= infiltrating precipitation indicator

Pathway potential indicator is given as:

$$P_P = I_v * I_{aq}$$

Where,

•

Iv= Vadose zone indicator (based on depth to groundwater and permeability of vadose zone

I_{aq}= Aquifer indicator

The receptor indicator P_R is taken as unity.

For assessment, a set of waste sites with varying conditions was adopted. After obtaining the rating scores, these were normalized to 0-1000 scale.

3.3 Procedure to calculate LPI

The stepwise strategy to calculate LPI is given below.

Step 1-Testing of Leachate Pollutants

We have to find out leachate contaminants concentration from the samples of leachate collected from the dumpsites of MSW, recognition of concentration by performing tests in the laboratory (analytical).

Step 2-Calculating Sub-Index Values

To compute the Leachate Pollution Index, one initially calculates the sub-index value of the factors from the sub-index graphs established on the concentration of the leachate contaminants achieved on performing various tests. The sub-index values are found by tracing the concentration of the leachate contaminant on the horizontal axis of the sub index graph for that contaminant and observing the leachate pollution sub-index value where it transects the graph.

Step 3-Aggregation of Sub-Index Values

The sub index values attained were multiplied with the corresponding weights allocated to everyfactor. The equation (1) is used to compute LPI if the concentrations of all the 18 variables involved in LPI are identified. Else, equation (2) is used when information for some of the contaminants is not accessible. It isdetected that LPI values can be computed with minimalinaccuracyby means of equation (2), when the information for some of the contaminants is notaccessible. In current investigation, out of 18, 9major parameters were recovered, so equation (2) is used.

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Data Collection

Dumpsite	NIT	HAMIRPUR	MANDI	UNA	SANTOKHGARH
Parameters	HAMIRPUR				
Area (hectares)	0.13	0.24	0.55	0.77	0.2
Waste height (meters)	1.5	0.90-1.2	10-12	1.5	10
Rainfall(mm)	47.3	47.3	82.3	23.8	23.8
Depth to GW (meters)	45	63	19.5	15.5	18.24
Soil	10-1	10-8	10-7	10-4	10-4
Permeability(m/sec)					
Groundwater Gradient					
Slope of top surface (%)	0	33.33	0	0	0

Table 4.1 - Site parameters for various MSW dumpsites for post monsoons

Table 4.2Site parameters for various MSW dumpsites for winters

Dumpsite	NIT	HAMIRPUR	MANDI	UNA	SANTOKHGARH
Parameters	HAMIRPUR				
Area (hectares)	0.13	0.24	0.55	0.77	0.2
Waste height (meters)	1.5	0.90-1.2	10-12	1.5	10
Rainfall(mm)	323.9	323.9	339	323.1	323.1
Depth to GW (meters)	45	63	19.5	15.5	18.24

Soil	10-1	10-8	10-7	10-4	10-4
Permeability(m/sec)					
Groundwater Gradient					
Slope of top surface (%)	0	33.33	0	0	0

Table 4.3Site parameters for various MSW dumpsites for summers

Dumpsite	NIT	HAMIRPUR	MANDI	UNA	SANTOKHGARH
Parameters	HAMIRPUR				
Area (hectares)	0.13	0.24	0.55	0.77	0.2
Waste height (meters)	1.5	0.90-1.2	10-12	1.5	10
Rainfall(mm)	26.8	26.8	38.7	27.6	27.6
Depth to GW (meters)	50	68	24.5	20.5	23.88
Soil	10-1	10-8	10-7	10-4	10-4
Permeability(m/sec)					
Groundwater Gradient					

Slope of top surface	0	33.33	0	0	0
(%)					
Aquifer Permeability					

 Table 4.4 Waste composition for various MSW dumpsites

Dumpsi <u>te</u>	NIT	HAMIRPUR	MANDI	UNA	SANTOSHGARH
	HAMIRPUR				
Waste					
composition					
Wood	7%	10%	8%	6.3%	9.3%

Paper	28%	18.2%	23.2%	27.4%	17.5%
Metals	6%	6%	7.4%	7.9%	3.5%
Glass	5%	2%	3%	4.6%	8%
Food Waste	30%	27.2%	29.3%	14.5%	28.5%
Plastic	12%	15.7%	13.2%	12.7%	8.3%
Leather	2%		3.1%	4.7%	2%
Textile	8%	7.1%	9%	4%	4.3%
Construction materials	-	8.8%	-	12.7%	10.6%
Hazardous waste	-	4%	1.8%	3.2%	6%
Others	1.2%	1%	2%	2%	2%

4.2 Results

4.2.1Groundwater pollution potential scores from DRASTIC, GW-HARAS, mGW-HARAS and SIMRAS for POST MONSOON season.

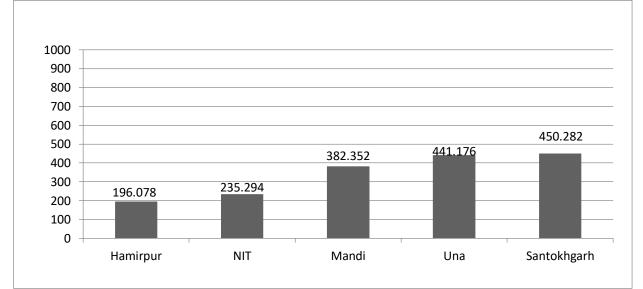
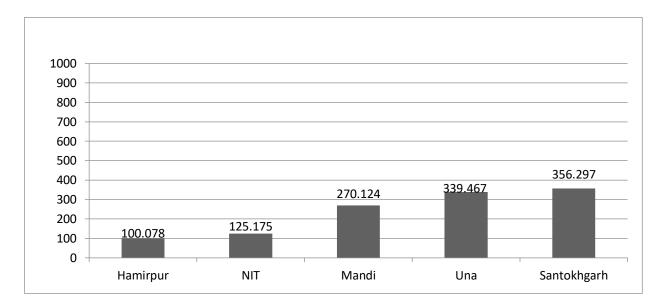



Figure 4.1Groundwater pollution potential scores for MSW dumpsites from Himachal Pradesh from DRASTIC for post monsoons.

Figure 4.2Groundwater pollution potential scores for MSW dumpsites from Himachal Pradesh from GW-HARAS for post monsoons.

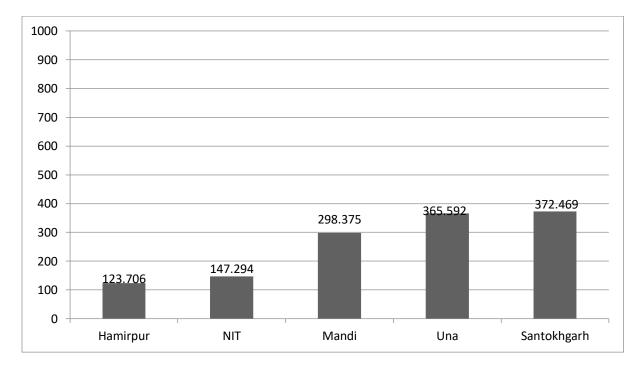


Figure 4.3 Groundwater pollution potential scores for MSW dumpsites in Himachal Pradesh from mGW-HARAS for post monsoons.

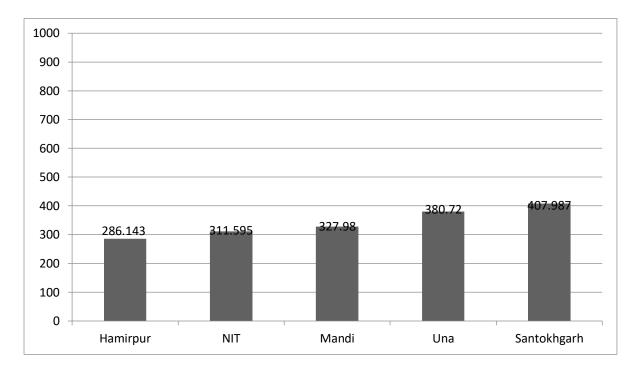
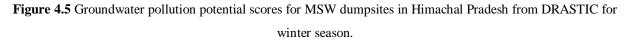



Figure 4.4 Groundwater pollution potential scores for MSW dumpsites in Himachal Pradesh from SIMRAS for post monsoons.

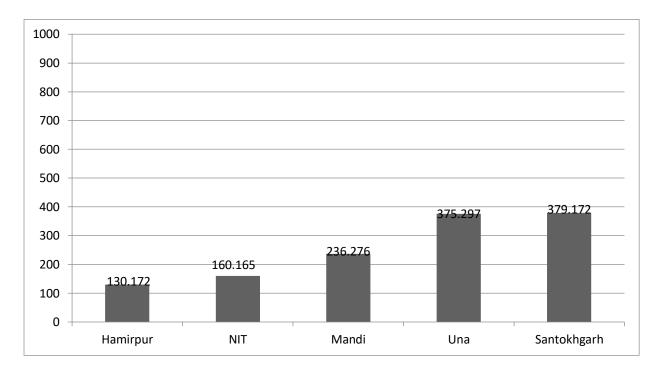


Figure 4.6 Groundwater pollution potential scores for MSW dumpsites in Himachal Pradesh from GW-HARAS for winter season.

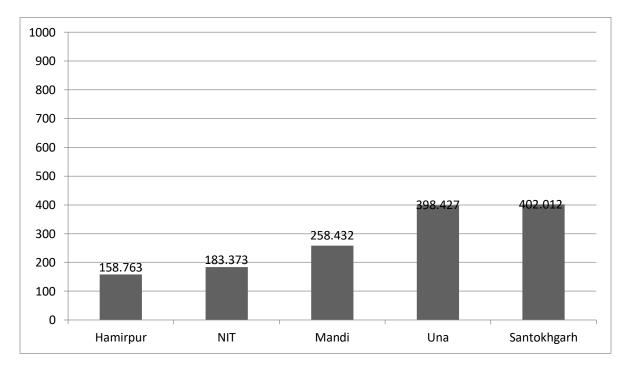


Figure 4.7 Groundwater pollution potential scores for MSW dumpsites in Himachal Pradesh from mGW-HARAS for winter season.

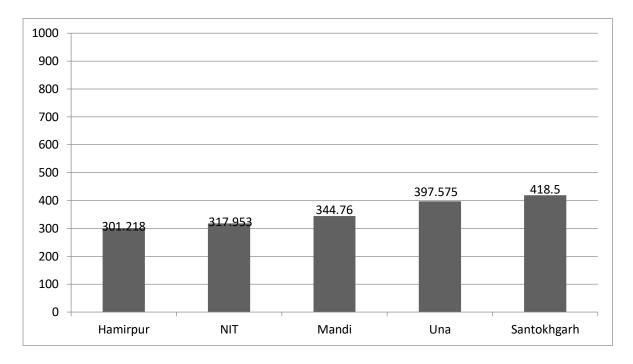
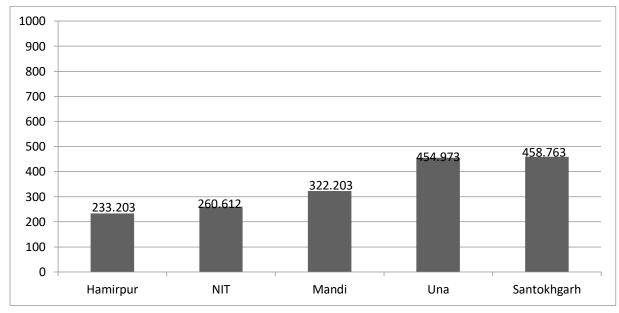
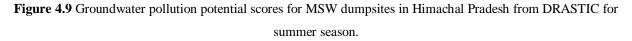




Figure 4.8 Groundwater pollution potential scores for MSW dumpsites in Himachal Pradesh from SIMRAS for winter season.

4.2.3Groundwater pollution potential scores from DRASTIC, GW-HARAS, Mgw-HARAS and SIMRAS for summer season.

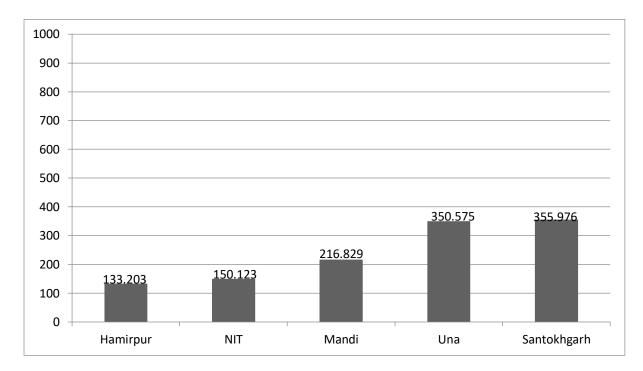


Figure 4.10 Groundwater pollution potential scores for MSW dumps in Himachal Pradesh from GW-HARAS for summer season.

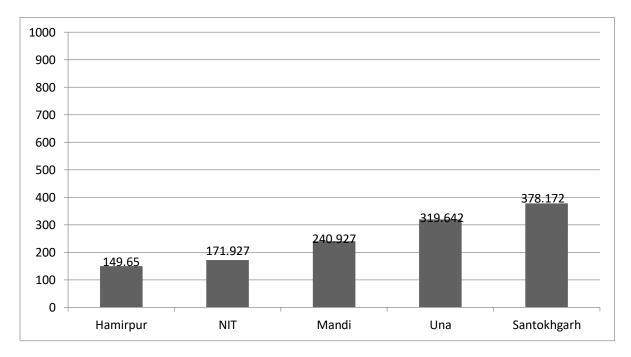


Figure 4.11 Groundwater pollution potential scores for MSW dumps in Himachal Pradesh from mGW-HARAS for summer season.

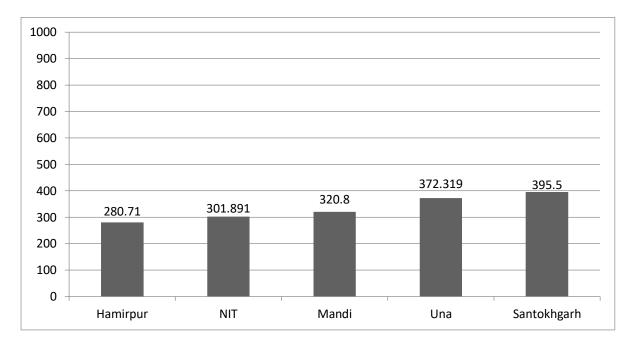


Figure 4.12 Groundwater pollution potential scores for MSW dumps in Himachal Pradesh from SIMRAS for summer season.

4.4.4 Results for LPI

Parameters	Concentration of	Variable weight,	Pollutant sub-	Aggregation, W _i P _i
	pollutants	Wi	index value, P _i	
pН	7.2	0.055	5	0.275
COD	1400	0.062	36	2.232
BOD ₅	320	0.061	8	0.488
Chloride	78	0.048	5	0.22
Iron	1.2	0.044	5	0.25
Copper	0.01	0.050	5	0.30
TKN	47	0.053	5	0.265
Ammonical Nitrogen	32.8	0.051	5	0.255
Chromium	0.38	0.064	6	0.384
Final LPI value = 9.42		Sum = 0.488		Sum = 4.5797

Parameters	Concentration of	Variable weight,	Pollutant sub-	Aggregation, W _i P _i
	pollutants	\mathbf{W}_{i}	index value, P _i	
рН	7.6	0.055	5	0.275
COD	1567	0.062	37	2.294
BOD ₅	326	0.061	8	0.488
Chloride	92	0.048	5	0.22
Iron	3.7	0.044	5	0.25
Copper	0.01	0.050	6	0.318
TKN	52.4	0.053	6	0.306
Ammonical	25.4	0.051	5	0.24
Nitrogen				
Chromium	0.4	0.064	6	0.384
Final LPI value = 6	Final LPI value = 6.65			Sum = 3.2452

Table 4.6 LPI for the Hamirpur dumpsite for post monsoon

Table 4.7 LPI for the Mandi dumpsite for post monsoon

Parameters	Concentration of	Variable weight,	Pollutant sub-	Aggregation, W _i P _i
	pollutants	\mathbf{W}_{i}	index value, P _i	
pН	8.2	0.055	4	0.22
COD	1600	0.062	37	2.294
BOD ₅	334	0.061	8	0.488
Chloride	49.1	0.048	5	0.24
Iron	6.3	0.044	5	0.22
Copper	0.6	0.050	6	0.3
TKN	55.3	0.053	6	0.318
Ammonical	29.4	0.051	6	0.306
Nitrogen				
Chromium	0.4	0.064	6	0.384
Final LPI value	=9.77	Sum = 0.488		Sum = 4.77

 Table 4.8 LPI for the Santokhgarh dumpsite for post monsoon

ParametersConcentration ofVariableweight,Pollutantsub-	- Aggregation, W _i P _i
--	--

	pollutants	Wi	index value, P _i	
рН	8.9	0.055	0.055	0.4125
COD	2100	0.062	40	2.48
BOD ₅	335	0.061	9	0.549
Chloride	53.9	0.048	5	0.24
Iron	5.7	0.044	5	0.22
Copper	0.5	0.050	6	0.30
TKN	78.6	0.053	7	0.37
Ammonical	68.1	0.051	7	0.357
Nitrogen				
Chromium	1.12	0.064	8	0.512
Final LPI value	= 10.05	Sum = 0.488		Sum = 4.9075

Table 4.9 LPI for the Una dumpsite for post monsoon

Parameters	Concentration of	Variable weight,	Pollutant sub-	Aggregation, W _i P _i
	pollutants	\mathbf{W}_{i}	index value, P _i	
рН	9	0.055	7.5	0.4125
COD	2000	0.062	39	2.294
BOD ₅	335	0.061	8	0.488
Chloride	54.3	0.048	5	0.24
Iron	6	0.044	5	0.22
Copper	0.83	0.050	7	0.35
TKN	87.5	0.053	7	0.371
Ammonical	80	0.051	9	0.459
Nitrogen				
Chromium	0.63	0.064	5	0.32
Final LPI value	=10.05	Sum = 0.488		Sum = 4.9075

 Table 4.10 LPI for the NIT Hamirpur dumpsite in winter season

Parameters	Concentration of	Variable weight,	Pollutant sub-	Aggregation, W _i P _i
	pollutants	Wi	index value, P _i	
рН	7.5	0.055	5	0.275

COD	1300	0.062	36	2.232
BOD ₅	350	0.061	9	0.549
Chloride	80	0.048	5	0.24
Iron	2.5	0.044	5	0.22
Copper	0.01	0.050	5	0.25
TKN	46.1	0.053	5	0.265
Ammonical	34.2	0.051	6	0.305
Nitrogen				
Chromium	0.12	0.064	7	0.448
Final LPI value = 9	.80	Sum = 0.488		Sum = 4.7824

Table 4.11 LPI for the Hamirpur dumpsite in winter season

Parameters	Concentration of	Variable weight,	Pollutant sub-	Aggregation, W _i P _i
	pollutants	\mathbf{W}_{i}	index value, P _i	
рН	8.0	0.055	5	0.165
COD	1500	0.062	37	2.294
BOD ₅	340	0.061	8	0.488
Chloride	46.8	0.048	5	0.24
Iron	5.2	0.044	5	0.22
Copper	0.5	0.050	6	0.30
TKN	55	0.053	6	0.318
Ammonical	28.1	0.051	6	0.306
Nitrogen				
Chromium	0.3	0.064	6	0.384
Final LPI value = 9.	.66	Sum = 0.488		Sum = 4.715

Table 4.12LPI for the Mandi dumpsite in winter season

Parameters	Concentration of	Variable weight,	Pollutant sub-	Aggregation, W _i P _i
	pollutants	\mathbf{W}_{i}	index value, P _i	
pH	7.6	0.055	5	0.275
COD	1700	0.062	40	2.48

BOD ₅	325	0.061	7	0.427
Chloride	47.4	0.048	5	0.24
Iron	6.6	0.044	5	0.22
Copper	0.4	0.050	5	0.20
TKN	46.8	0.053	5	0.265
Ammonical Nitrogen	31.2	0.051	6	0.306
Chromium	0.5	0.064	6	0.384
Final LPI value = 9	.827	Sum = 0.488		Sum = 4.796

 Table 4.13LPI for the Una dumpsite in winter season

Parameters	Concentration of	Variable weight,	Pollutant sub-	Aggregation, W _i P _i
	pollutants	Wi	index value, P _i	
рН	9.4	0.055	9	0.495
COD	2200	0.062	41	2.542
BOD ₅	337	0.061	9	0.549
Chloride	60.2	0.048	5	0.24
Iron	7.1	0.044	5	0.22
Copper	0.81	0.050	5	0.25
TKN	88.4	0.053	6	0.318
Ammonical	81.5	0.051	7	0.357
Nitrogen				
Chromium	0.71	0.064	6	0.384
Final LPI value = 1	0.97	Sum = 0.488		Sum = 5.355

Parameters	Concentration of	Variable weight,	Pollutant sub-	Aggregation, W _i P _i
	pollutants	Wi	index value, P _i	
рН	9.0	0.055	9	0.495
COD	2150	0.062	40	2.48

BOD ₅	340	0.061	9	0.549	
Chloride	62.8	0.048	5	0.24	
Iron	6.1	0.044	5	0.22	
Copper	0.6	0.050	6	0.30	
TKN	80.1	0.053	6	0.318	
Ammonical	69.2	0.051	8	0.408	
Nitrogen					
Chromium	1.05	0.064	7	0.448	
Final LPI value = 11		Sum = 0.488		Sum = 5.368	

 Table 4.15 LPI for the NIT Hamirpur dumpsite in summer season

Parameters	Concentration of	Variable weight,	Pollutant sub-	Aggregation, W _i P _i
	pollutants	\mathbf{W}_{i}	index value, P _i	
рН	7.5	0.055	5	0.275
COD	1652.4	0.062	37	2.294
BOD ₅	325	0.061	8	0.488
Chloride	93.4	0.048	5	0.24
Iron	3.2	0.044	5	0.22
Copper	0.02	0.050	5	0.25
TKN	95.3	0.053	6	0.318
Ammonical	84.6	0.051	6	0.306
Nitrogen				
Chromium	0.40	0.064	7	0.448
Final LPI value = 9	91	Sum = 0.488		Sum = 4.839

Table 4.16LPI for the Hamirpur dumpsite in summer season

Parameters	Concentration of	Variable weight,	Pollutant sub-	Aggregation, W _i P _i
	pollutants	\mathbf{W}_{i}	index value, P _i	
рН	7.8	0.055	3	0.165
COD	1600	0.062	38	2.356
BOD ₅	332	0.061	8	0.488
Chloride	94.7	0.048	5	0.24

`

Iron	4.1	0.044	5	0.22
Copper	0.01	0.050	5	0.25
TKN	58	0.053	6	0.318
Ammonical	30.2	0.051	6	0.306
Nitrogen				
Chromium	0.35	0.064	6	0.384
Final LPI value = 9.	.68	Sum = 0.488		Sum = 4.727

 Table 4.17LPI for the Mandi dumpsite in summer season

Parameters	Concentration of	Variable weight,	Pollutant sub-	Aggregation, W _i P _i
	pollutants	\mathbf{W}_{i}	index value, P _i	
рН	7.5	0.055	5	0.165
COD	1580	0.062	40	2.294
BOD ₅	315	0.061	8	0.488
Chloride	50.2	0.048	5	0.24
Iron	2.3	0.044	5	0.22
Copper	0.01	0.050	5	0.25
TKN	46.1	0.053	5	0.318
Ammonical	30.2	0.051	6	0.306
Nitrogen				
Chromium	0.1	0.064	7	0.384
Final LPI value = 10	0.185	Sum = 0.488		Sum = 5.3118

 Table 4.18 LPI for the Una dumpsite in summer season

Parameters	Concentration of	Variable weight,	Pollutant sub-	Aggregation, W _i P _i
	pollutants	\mathbf{W}_{i}	index value, P _i	
рН	9.4	0.055	9	0.495
COD	2160	0.062	40	2.48
BOD ₅	340	0.061	9	0.549
Chloride	56.8	0.048	5	0.24
Iron	7.5	0.044	5	0.22
Copper	0.90	0.050	7	0.35
TKN	90.5	0.053	7	0.317

Ammonical	80.8	0.051	9	0.459
Nitrogen				
Chromium	0.75	0.064	6	0.384
Final LPI value = 11.36		Sum = 0.488		Sum = 5.548

Parameters	Concentration of	Variable weight,	Pollutant sub-	Aggregation, W _i P _i
	pollutants	\mathbf{W}_{i}	index value, P _i	
рН	9.1	0.055	9	0.495
COD	2109	0.062	40	2.48
BOD ₅	345	0.061	9	0.549
Chloride	90.4	0.048	5	0.24
Iron	6.3	0.044	5	0.22
Copper	0.6	0.050	6	0.3
TKN	82.4	0.053	7	0.371
Ammonical	70.2	0.051	8	0.408
Nitrogen				
Chromium	1.84	0.064	9	0.576
Final LPI value $= 1$	1.55	Sum = 0.488		Sum = 5.639

Table 4.19 LPI for the Santokhgarh dumpsite in summer season

Table 4.20 LPI for Leachate disposal standards

Parameters	Leachate	Variable weight,	Pollutant sub-	Aggregation, W _i P _i
	Pollution	\mathbf{W}_{i}	index value, P _s	
	Standards			
рН	5.5-9	0.055	5	0.275
COD	250	0.062	10	0.62
BOD ₅	30	0.061	6	0.366
Chloride	100	0.048	8	0.384
Iron	NS	0.044	-	-
Copper	3	0.050	18	0.9
TKN	100	0.053	6	0.318
Ammonical	50	0.051	7	0.357

Nitrogen				
Chromium	2	0.064	9	0.876
Final LPI value	= 7.762	Sum = 0.488		Sum =3.796

4.3 Discussion

4.3.1 Results of LPI values of all the MSW dumpsites compared with LPI of leachate disposal standards

Leachate samples from five different MSW dumpsites were collected and analyzed for 9 significant leachate pollutant variables viz pH, BOD₅, COD, Chloride, Iron, Copper, Total Kjeldal Nitrogen, Ammonical Nitrogen and Chromium to estimate their pollution potential. LPI of all the sites was calculated as shown in table 4.5 to 4.9 for post monsoons, table 4.10 to 4.14 for winter season and table 4.15 to 4.19 for summer season. LPI of the leachate disposal standards was calculated as shown in table 4.20.

The LPI values of the standards for the disposal of leachate to inland surface water shall not exceed 7.378 (when calculated for all the 18 parameters) which is the permissible limit for the disposal of leachate to inland surface waters as per the standards given under Municipal Solid Waste (Management and Handling) Rules, 2000 notified by Government of India. But in our case, we have examined 9 parameters instead of 18 due to lack of resources. Thus, LPI value of standard for disposal of leachate to inland surface water shall not exceed 7.762 when calculated for 9 parameters.

4.3.2 Hazard Ranking of dumpsites from DRASTIC, GW-HARAS, mGW-HARAS and SIMRAS methods

Groundwater pollution potential scores for Municipal Solid Waste dumpsites from Himachal Pradesh from DRASTIC, GW-HARAS, mGW-HARAS and SIMRAS methodsare given in, figure 4.1 to 4.4, for post monsoon, figure 4.5 to 4.8 for winter season and figure 4.9 to 4.12 for summer season.

From rating scores, it could be seen that, DRASTIC produced scores which are in a clustered array. On the other hand SIMRAS produces almost similar scores for all the sites. GW-HARAS and mGW-HARAS produces best results with more variation in rankings.

CHAPTER 5

CONCLUSION

For groundwater pollution potential ratings of all the five dumpsites, minimum rating comes out to be of Hamirpur dumpsite and maximum rating comes out of Satokhgarh dumpsite from all the four rating systems i.e. DRASTIC, GW-HARAS, mGW-HARAS and SIMRAS. Seasonal variation in ratings depends basically on rainfall received and depth to groundwater. In summer season the rainfall is less, water table goes down and depth to groundwater increases. So, the rating is less in summer season. During post monsoons, the amount of rainfall received is more as compared to summers so depth to groundwater increases. So, the rating score increases for post monsoon season as compared to summer season. During winters the amount of rainfall is maximum, water table comes up. So the rating scores are maximum in winter season. From results it could be clearly concluded that Hamirpur dumpsite comes on first rank with minimum rating scores. NIT Hamirpur dumpsite comes on second place. Mandi dumpsite comes on third place, Una dumpsite on fourth place and Santokhgarh on fifth rank with maximum rating score. Therefore, Santokhgarh and Una dumpsite needs immediate remedial actions.

Various remedial techniques could be applied such as using liners and covers because all these dumpsites are not having any liners and covers. These liners and covers can be made using geopolymers, PVC, High density Polyethylene (HDPE).

In all the four systems, DRASTIC method and SIMRAS method produce almost similar results for all the five MSW dumpsites. In contrast GW-HARAS and mGW-HARAS produce improved results and among these two methods GW-HARAS has more standard deviation in results. So, best results are produced by GW-HARAS. Therefore, GW-HARAS comes out to be the most appropriate method for site ranking. LPI value could be used to calculate the pollution potential of leachate from various MSW dumpsites. In the present study, the LPI estimations are 9.42, 6.65, 9.77, 10.05, and 10.05 for Hamirpur, NIT Hamirpur, Mandi, Una and Santokhgarh dumpsites respectively for the post monsoons. In winter season the LPI estimations are 9.66, 9.80, 9.827, 10.97 and 11 for Hamirpur, NIT Hamirpur, Mandi, Una and Santokhgarh dumpsites respectively. In summer season the LPI estimations are 9.68, 9.91, 10.158, 11.36 and 11.55 for Hamirpur, NIT Hamirpur, Mandi, Una and Santokhgarh dumpsites respectively. In Summer season the LPI are of post monsoons and the largest values of LPI are for summer season. This is because the concentration of pollutants was maximum during the summer season and gets diluted during monsoon. After monsoons a gradual increase in LPI is evident. In summers the leachate gets concentrated due to evaporation loss.

The LPI value of standards for the disposal of leachate to inland surface water should not not be more than 7.738 which is the permitted limit for the removal of leachate to inland surface water as per the standards given under Municipal Solid Waste (Management and Handling) Rules, 2000 notified by Government of India. But in our case we were able to examine only nine parameters. Thus, LPI value of standards for disposal of leachate to inland surface water shall not exceed 7.378. The comparison of the LPI values of landfill sites for all the three seasons comes out to be more than 7.378 except the Hamirpur dumpsite for post monsoon. This clearly shows that the leachate produced from the MSW dumpsites is significantly polluted and needs action before the disposal.

REFERNCES

- Datta, M., & Kumar, A. (2017). Assessment of Subsurface Pollution Potential of Municipal Solid Waste (MSW) Dumps. *Indian Geotechnical Journal*, 47(4), 410-420.
- Fatta, D., Papadopoulos, A., &Loizidou, M. (1999). A study on the landfill leachate and its impact on the groundwater quality of the greater area. *Environmental Geochemistry and Health*, *21*(2), 175-190.
- Datta, M., & Kumar, A. (2016). Waste dumps and contaminated sites in India—status and framework for remediation and control. *Geo-Chicago 2016 GSP*, 273.
- Datta, M., & Kumar, A. (2015). Hazard rating of MSW dumps and geoenvironmental measures for closure. In *50th Indian Geotechnical Conference. Pune, India.*
- Singh, R.K., Singh, R. K., Datta, M., &Nema, A. K. (2007). Groundwater pollution hazard potential rating of municipal solid waste dumps and landfills. In *Proceedings of the International Conference on Sustainable Solid Waste Management, Chennai, India* (pp. 296-303).
- Singh, R. K., Datta, M., &Nema, A. K. (2009). A new system for groundwater pollution hazard rating of landfills. *Journal of Environmental Management*, *91*(2), 344-357.
- Singh, R. K., Datta, M., &Nema, A. K. (2007). Groundwater pollution hazard potential rating of municipal solid waste dumps and landfills. In *Proceedings of the International Conference on Sustainable Solid Waste Management, Chennai, India* (pp. 296-303).
- Mahmood, K., Batool, S. A., Chaudhary, M. N., &Ul-Haq, Z. (2017). Ranking criteria for assessment of municipal solid waste dumping sites. *Archives of Environmental Protection*, 43(1), 95-105.
- Kumar, D., &Alappat, B. J. (2004). Selection of the appropriate aggregation function for calculating leachate pollution index. *Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management*, 8(4), 253-264.
- Kumar, D., &Alappat, B. J. (2003, October). A technique to quantify landfill leachate pollution. In *ninth International Landfill symposium* (pp. 243-244)