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              INTRODUCTION 
“ 

1.1 Introduction 
DataTcompressionTisTaTprocessTthatTreducesTtheTdataTsize,TremovingTtheTexcessive information 

andTredundancy.TWhyTshorterTdataTsequenceTisTmoreTsuitable?T–theTanswer is simple it reduces 

theTcost.TDataTcompressionTisTaTcommonTrequirementTforTmostTofTthe computerized application 

. DataTcompressionThasTimportantTapplicationTinTtheTareaTofTfileTstorageTand distributedTsystem. 

DataTcompressionTisTusedTinTmultimediaTfield,TtextTdocumentsTandTdata base table. Data 

compressionTmethodsTcanTbeTclassifiedTinTseveralTways.TOneTofTtheTmostTimportant criteria of 

classification isTwhether theTcompressionTalgorithmsTremoveTsomeTpartTofTdata,TwhichTcannot 

be recovered during decompression. The algorithm, which removes some part of data, is 

called loss data compression. And the algorithm that achieve the same what we compressed 

after decompressionTisTcalledTlosslessTdataTcompression.TTheTlossTdataTcompression algorithm 

isTusually usedTwhen aTperfect consistencyTwithTtheToriginalTdata is not necessary after 

decompression. Example ofTlossTdataTcompressionTisTcompressionTof video or picture data. 

Lossless data compressionTisTusedTinTtext file,Tdatabase tablesTandTinTmedical image because 

law ofTregulations. Various losslessTdata compression algorithm haveTbeen proposed 

andTused. Some ofTmainTtechniquesTare Huffman Coding,TRun LengthTEncoding, Arithmetic 

Encoding and DictionaryTBased Encoding.TInTthisTreport weTexamineTArithmeticTEncoding 

andTDictionary-basedTAlgorithmTandTgiveTcomparisonTbetweenTthemTaccording to their 

performances.” 

 

Compression isTused justTabout everywhere. AllTthe images youTget onTthe webTare 

compressed,Ttypically in theTJPEG orTGIF formats,Tmost modemsTuse 

compression,THDTVTwill beTcompressed usingTMPEG-2,TandTseveral fileTsystems 

automaticallyTcompress filesTwhen stored,Tand theTrestTof us doTit byThand.TThe neat thing 

aboutTcompression,TasTwithTthe other topics weTwillTcoverTin this course,Tis that the 

algorithmsTused in the realTworldTmake heavy useTofTa wide set of algorithmicTtools, 

includingTsorting,Thash tables,Ttries, andTFFTs.TFurthermore, algorithmsTwith strong theoretical 

foundations play aTcriticalTroleTin real-world applications. 
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TThe genericTterm messageTfor theTobjects weTwant toTcompress willTbe used, 

whichTcouldTbe eitherTfiles or messages.TThe taskTofTcompression consists ofTtwo components, 

anTencodingTalgorithm that takesTa message andTgeneratesTa “compressed” 

representationT(hopefully with fewer bits), and a decoding algorithm that reconstructs the 

original message or some approximation of it from the compressed representation. These two 

components are typically intricately tied together since they both have to understand the 

shared compressed representation. We distinguish between lossless algorithms, which can 

reconstruct the original message exactly from the compressed message, and loss algorithms, 

which can only reconstruct an approximation of the original message. Lossless algorithms 

are typically used forTtext, andTloss forTimages andTsound whereTa littleTbit ofTlossTin 

resolutionTisToften undetectable,Tor atTleast acceptable.TLoss is used in anTabstract 

sense,Thowever,TandTdoesTnot meanTrandom lostTpixels, butTinstead meansTlossTof a quantity 

suchTasTaTfrequency component, or perhaps lossTofTnoise.TForTexample,Tone might 

thinkTthatTlossTtextTcompression would beTunacceptable becauseTthey areTimagining missingTor 

switchedTcharacters. ConsiderTinstead aTsystem thatTrewordedTsentences intoTaTmore 

standardTform, orTreplacedTwords withTsynonymsTso thatTthe fileTcan beTbetter 

compressed.TTechnically theTcompression wouldTbe lossTsince theTtext hasTchanged, butTthe 

“meaning”TandTclarityTofTthe messageTmight be fullyTmaintained,Tor evenTimproved. InTfact 

ShrunkTandTWhite might argueTthat good writingTisTthe art ofTlossTtextTcompression. 

 

IsTthere a losslessTalgorithmTthat canTcompressTall messages? ThereThasTbeenTatTleastTone 

patent application thatTclaimedTto beTable toTcompressTall files (messages)—Patent 

5,533,051Ttitled “MethodsTfor Data Compression”. The patentTapplication claimed that if 

itTwasTappliedTrecursively,Ta file couldTbe reduced toTalmost nothing. With aTlittle thoughtTyou 

shouldTconvinceTyourselfTthatTthis is notTpossible, atTleast ifTtheTsource messages 

canTcontainTanyTbit-sequence. We canTseeTthisTby aTsimpleTcounting argument.TLet’sTconsider 

allT1000Tbit messages,Tas anTexample. ThereTare 21000TdifferentTmessages weTcan send,Teach, 

whichTneedsTto beTdistinctly identifiedTby theTdecoder.TItTshould be clearTweTcan’t represent 

that manyTdifferent messagesTby sendingT999Tor fewer bitsTforTall the messagesT—T999Tbits 

wouldTonlyTallow us toTsend 2999 distinctTmessages.TThe truth isTthatTif an algorithmTshortens 

anyToneTmessage, then someTotherTmessage needsTto beTlengthened.TYou canTverify this in 
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practiceTbyTrunningTGZIPTon a GIFTfile. ItTis, inTfact, possibleTto goTfurther andTshow thatTforTa 

setTof inputTmessagesTof fixed length,TifTone messageTis compressed,TthenTtheTaverage lengthTof 

theTcompressedTmessagesTover all possibleTinputs is alwaysTgoingTto beTlongerTthan 

theToriginalTinputTmessages.TConsider, for example,Tthe 8Tpossible 3 bit messages.TIfTone is 

compressedTtoTtwo bits, itTis not hard toTconvinceTyourself that twoTmessagesTwill have to 

expandTtoT4 bits, givingTanTaverage of 31/8Tbits. Unfortunately,TtheTpatent wasTgranted. 

DataTCompressionTis theTprocedure ofTencoding informationTto fewerTbitsTthanTthe 

firstTrepresentation soTitTconsumesTlessTstorage space and less transmissionTtime while 

conveying moreTthan a system.TData compression algorithmsTare classified inTtwo ways i.e. 

lossTandTlossless data compression algorithm.TCompressionTalgorithmTis utilized toTchange 

over informationTfrom aTsimpleTto-utilizeTarrangementTto one advanced forTsmallness. In like 

manner, anTuncompressing systemTgives backTthe data toTits unique structure. 

 

FigureT1.1:TbasicTprincipleTofTDataTCompress 
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1.2 Problem Statement 
The fundamental problem of lossless compression is to decompose a data set (for example, a 

text file or an image) into a sequence of events, then to encode the events using as few bits as 

possible. The idea is to assign short code words to more probable events and longer code 

words to less probable events. Data can be compressed whenever some events are more 

likely than others. Statistical coding techniques use estimates of the probabilities of the 

events to assign the code words. Given a set of mutually distinct events e1, e2, e3, _ _ _ _, en, 

and an accurate assessment of the probability distribution P of the events, Shannon proved 

that the smallest possible expected number of bits needed to encode an event is the entropy of 

P, denoted by  

H (P) = −p e! log! p {e!}!
!!!  

Where p {ea.} is the probability that event ea. occurs. An optimal code outputs log2 p bits to 

encode an event whose probability of occurrence is p. Pure arithmetic codes supplied with 

accurate probabilities provide optimal compression. In theory, arithmetic codes assign one 

"code word" toTeach possibleTdataTset.TTheTcode wordsTconsistTof half-openTsubintervals ofTthe 

half-openTunit intervalT[0,1),Tand areTexpressedTby specifyingTenoughTbits toTdistinguishTthe 

subinterval correspondingTtoTthe actualTdataTset fromTall other possibleTsubintervals.TShorter 

codes correspond to larger subintervalsTandTthus moreTprobable input dataTsets. InTpractice,Tthe 

subintervalTis refinedTincrementally using the probabilitiesTofTthe individual events,Twith 

bitsTbeing outputTasTsoon as theyTare known.TArithmetic codesTalmost alwaysTgiveTbetter 

compression than prefixTcodes,Tbut theyTlack theTdirect correspondenceTbetween the events in 

the inputTdata setTand bitsTorTgroups of bitsTin the coded output file.  

ATstatistical coderTmust work inTconjunction with a modelerTthat estimates theTprobability of 

eachTpossibleTeventTat each point in the coding. TheTprobabilityTmodel need not describeTthe 

processTthat generates theTdata;Tit merelyThas to provide a probability distribution for the data 

items. The probabilities do not even have to be particularly accurate,TbutTtheTmore accurate 

theyTare,TtheTbetter the compression willTbe. IfTtheTprobabilities areTwildlyTinaccurate, the 

fileTmay evenTbe expandedTrather than compressed,Tbut the original dataTcan still be 

recovered.TTo obtain maximum compressionTofTaTfile, we need both a good probabilityTmodel 

and anTefficient wayTof representing (or learning) theTprobability model.  
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LosslessTdataTcompression is aTprocedure thatTpermitsTthe utilizationTof data compression 

calculationsTtoTpackTthe content data furtherTmoreTpermits the preciseTuniqueTdataTto be 

remadeTfromTthe compacted data.TThis is in as opposed toTtheTlossTdata compression in which 

the careful uniqueTdataTcan'tTbeTrecreatedTfrom the compacted data.TThe prevalent 

ZIPTrecordTorganizeTthat is being utilizedTfor the compression ofTdata documentsTis 

likewiseTaTuse ofTlosslessTdata compressionTapproach.TLossless compression isTutilized 

whenTitTis vitalTthat the first dataTand theTdecompressed dataTbeTindistinguishable.TLossless 

contentTdataTcompression calculations typically abuse factualTexcessTinTsuch aTpathTin order to 

speakTtoTthe sender's data all theTmore briefly with noTblunder or any kindTof loss of 

vitalTdataTcontained inside ofTthe content information data.TSinceTthe majority of thisTpresent 

reality dataThas factual excess, thusly-losslessTdata compression is conceivable.TCase in point, 

In EnglishTcontent, the letter "an" isTa great deal moreTbasic than theTletter 'z', and the 

likelihoodTthat the letter “z”Twill trail the letterT“t”Tis little. So this sortTof repetition can 

beTevacuated utilizing lossless compression.TLosslessTcompression techniques may 

beTclassifiedTby kind of dataTtheyTare intended to pack.TCompression calculations are 

essentiallyTutilizedTfor the compression of content,Tpictures and sound. MostTlossless 

compression projects utilize twoTvarious types of calculations: oneTwhich creates a factual 

modelTfor the info dataTand another which mapsTthe information data toTbit strings utilizing 

thisTmodelTas a part ofTsuch a route, toTthe point that soften asTpossibleTexperienced data will 

deliver shorter yieldTthan improbable (less continuous)Tdata.TThe upside of lossless 

techniquesTover loss systems is thatTLossless compression results areTin a 

closerTrepresentationTof the first infoTdata. The executionTof calculations can beTthought about 

utilizing theTparameters, for example, Compression Ratio andTSaving Percentage. In lossless 

dataTcompression document theTfirst message can beTpreciselyTdecoded. 

Lossless data compressionTlivesTup to expectationsTby discovering rehashed examplesTin a 

message andTencoding those examples inTan effectiveTway.TThus,Tlossless data compressionTis 

likewiseTalludedTto as repetitionTdecrease.TSince repetition decrease is reliant on examplesTin 

the message, it doesn't functionTadmirablyTon arbitrary messages. LosslessTdata compression 

isTperfect for content. 
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1.3 Objective  
Our objectiveTitTto implement the Huffman codingTalgorithms, LZW, run length-

encodingTalgorithm and compareTtheTresults obtained to maximizeTthe compressionTratio and 

minimize theTcompression time. 

  

1.4 Methodology 

1.4.1THuffmanTCoding 
THuffman Data Compression algorithmTworks in three phases toTcompress the text data.TInTthe 

first phase dataTis compressed with the helpTof dynamic bit reduction techniqueTand in second 

phase uniqueTwords are to beTfound to compress theTdata further and inTthird and finalTphase 

Huffman codingTis used toTcompress the data further toTproduce the final output. Following 

areTthe main steps ofTalgorithm for compression and decompression: 

StepTI: Input theTtext data to be compressed. 

StepTII: Apply Dynamic bitTReductionTmethod to compress theTdata. 

StepTIII: Find the unique symbolTtoTcompress the data further. 

StepTIV: Create the binaryTtree with nodes representing theTunique symbols 

Step V: ApplyTHuffman coding to FinallyTcompress the data. 

Step VI:TDisplay the final resultTobtained in previous step. 

 

HuffmanTcoding is an entropy-encodingTalgorithm used for losslessTdata compression in 

computerTscience and information theory. TheTtermTrefers to the use ofTvariable-length code 

table for encodingTaTsource symbol (such as a characterTin a file) where theTvariable-length 

code table has been derivedTin a particular way basedTon the estimated probabilityTof 

occurrence for eachTpossible value of theTsource symbol. 

Huffman coding uses a specificTmethod for choosing there presentationTfor each symbol, 

resulting inTa prefix-free code (that is,Tthe bit string representing some particularTsymbol is 

neverTaTprefix of the bitTstring representing another symbol)TthatTexpresses the most 

commonTcharacters using shorter stringsTof bits than are usedTfor less common 

sourceTsymbols.THuffman was able to designTthe most efficient compressionTmethodTof this 

type: noTother mapping of individualTsource symbolsTtoTunique strings of bits 
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willTproduceTaTsmallerTaverage output size when theTactual symbol frequencies agreeTwith 

those used toTcreate 

The code. A methodTwas later found toTdo this in linearTtime if input probabilitiesT(also 

known asTweights) are sorted. ForTa set ofTsymbols with aTuniform probability distributionTand 

a number ofTmembers which isTa power of two,THuffman coding isTequivalent to simple 

binaryTblock encoding [e.g.,TASCII coding. 

 

Assume you haveTa source generatingT4 different symbols {a1,Ta2, a3, and a4}Twith 

probability {0.4;0. 35;0.T2;0.T05}.TGenerate a binary treeTfrom left toTright taking the 

twoTlessTprobable symbols, putting themTtogetherTto form anotherTequivalent symbol having 

aTprobability that equals theTsum of the twoTsymbols. Keep onTdoing it until youThaveTjustTone 

symbol. Then readTthe tree backwards,Tfrom righ to left, assigningTdifferent bits to different 

branches. The final Huffman code is: 

SYMBOL CODE 

A1 0 

A2 10 

A3T111 

A4 110 

The techniqueTworks by creatingTa binary treeTof nodes. TheseTcan be storedTin a regular 

array,Tthe size ofTwhichTdepends on theTnumberTof symbols (N).TA node can beTeither a leaf 

nodeTor an internal node.TInitially, all nodes areTleaf nodes, which containTthe symbol itself, 

theTweight (frequency of appearance)Tof the symbol andToptionally, Link to aTparent node 

whichTmakes it easy toTread the code (inTreverse)Tstarting from aTleaf node. InternalTnodes 

contain symbolTweight, links toTtwo child nodes andTthe optional linkTto a parent node.TAs a 

common convention,TbitT'0' represents following theTleftTchild and bit '1'represents following 

theTrightTchild. A finished treeThas Leaf nodes and N−1TinternalTnodes.TA linear-time* method 

to create aTHuffmanTtree is to useTtwo queues, theTfirstTone containing theTinitial weights 

(along withTpointersTto the associatedTleaves),Tand combined weights (alongTwith pointers 

toTtheTtrees) being put inTtheTbackTof the second queue.TThisTassures that theTlowest weight 

isTalwaysTkeptTatTthe front ofToneTof the two queues.  
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1.4.2TLZWT 
LZWTcompressionTreplacesTstrings of characters withTsingle codes. It doesTnot do any 

analysisTof the incoming textT.Instead, it just addsTevery new string ofTcharacters it sees to 

aTtable of strings .CompressionToccurs when a single codeTisToutput instead ofTa string of 

charactersT.LZW also performs wellTwhen presented with extremelyTredundant data files, 

suchTas tabulated numbers,Tcomputer source code,Tand acquired signals.  

WhenTthe LZW program starts toTencode a file, theTcode table contains onlyTtheTfirst 256 

entries,Twith the remainderTof the tableTbeing blank. This meansTthat the first codesTgoing into 

the compressedTfileTareTsimply the single bytesTfrom the input fileTbeingTconverted to 12 

bits.TAs the encoding continues, the LZWTalgorithmTidentifies repeated sequences in theTdata, 

and adds themTto the code table. Compression startsTthe second time aTsequence is 

encountered.TThe key point isTthat a sequenceTfrom the input fileTis not added to theTcode table 

until itThas already been placed in theTcompressed file as individualTcharacters (codes 0 to 

255).TThis is important becauseTit allows the uncompressingTprogram to reconstruct theTcode 

table directly fromTthe compressed data, withoutThaving to transmit theTcode table separately. 

The decodingTalgorithm works byTreading a valueTfrom the encoded inputTand outputting 

theTcorresponding string from theTinitializedTdictionary. In orderTto rebuild theTdictionaryTin 

the same way asTit was builtTduring encoding, it alsoTobtains the next valueTfrom the input 

andTadds to the dictionaryTthe concatenation of theTcurrent string and theTfirst character ofTthe 

string obtainedTby decoding the nextTinput value, orTthe first character ofTthe string justToutput 

if theTnext value canTnot be decodedT(IfTthe next value isTunknown to the decoder,Tthen it must 

beTthe value thatTwill be addedTto the dictionary thisTiteration, and soTits first character mustTbe 

the same asTthe first character ofTthe current stringTbeing sent to decodedToutput). The decoder 

thenTproceeds to the nextTinput value (which wasTalreadyTreadTin as the "nextTvalue" in the 

previousTpass) and repeats theTprocess until thereTis no more input,Tat which point theTfinal 

input valueTis decoded withoutTany more additionsTto the dictionary. 

InTthis way theTdecoder builds upTaTdictionary, which is,Tidentical to thatTused by theTencoder, 

and uses itTto decode subsequentTinput values. Thus theTfull dictionary does notTneed be sent 

withTthe encoded data;TjustTthe initial dictionaryTcontaining the single-characterTstrings is 

sufficientT(and is typicallyTdefined beforehand withinTthe encoder and decoderTrather than 

beingTexplicitly sent withTthe encoded data. 
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1.4.3TRun Length Encoding 
ThisTalgorithm consists ofTreplacing large sequencesTof repeating dataTwithTonlyTone item 

ofTthis data followedTby a counterTshowing how manyTtimes this itemTis repeated. 

 TheTalgorithm works asTfollow: 

a) Pick theTfirst character from sourceTstring. 

b) Append theTpicked character to theTdestination string. 

c) Count theTnumber of subsequent occurrencesTof the picked characterTand append theTcount 

to destinationTstring. 

d) Pick theTnext character andTrepeat steps b)Tc) and d)Tif end of string is NOTTreached. 
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T     Chapter-2 

T                                T LITERATURE SURVEY 
 

2.1 Huffman Coding 
The Huffman coding procedureTfindsTthe optimumT(leastTrate)Tuniquely decodable,Tvariable 

length entropy codeTassociated with a setTof events given theirTprobabilities of 

occurrence.TThe procedure is simpleTenough that weTcan present it here. 

TheTHuffman coding method isTbased on theTconstruction of whatTis known asTa binary 

tree.TThe path from theTtop or rootTof this treeTto a particular eventTwill determine theTcode 

group we associateTwith that event. 

Suppose,Tfor example, that weThave six eventsTwithTnames and probabilitiesTgiven in theTtable 

below. 

 

Event NameT Probability 

A 0.30 

B 0.30 

C 0.13 

D 0.12 

E 0.10 

F 0.05 
 

OurTfirstTstep is to orderTtheseTfrom highest (onTthe left) to lowestT(on the right) probabilityTas 

shown in theTfollowing figure, writing outTnext to eachTevent its probabilityTfor since this 

valueTwill drive theTprocess of constructing theTcode. 

 

   

 
Figure 2.1Tpreparing for Huffman codeTconstruction 
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NowTweTperform a constructionTprocess in whichTweTwillTpair events toTform a newTsingle 

combinedTevent, which willTreplaceTthe pair members.TThis step willTbeTrepeated many 

times,TuntilTthereTare no moreTpairsTleft. 

First weTfindTthe twoTeventsTwithTleast combinedTprobability.TThe first timeTwe do 

this,TtheTanswer willTalwaysTbe theTtwo rightThandTevents. We connectTthemTtogether, as 

shownTinTFigure 2.1TcallingTthisTa combined eventT(EFTin thisTcase)Tand noting 

itsTprobabilityT(which isTtheTsum of thoseTof E and FTin this case.) WeTalso place a 0TnextTto the 

leftThand branch andTaT1Tnext to theTrightThand branch ofTthe connection ofTthe pair asTshown 

in the figure. TheT0TandT1 make upTpart of theTcode we areTconstructingTfor these elements. 

T  

 
Figure2.2TlistTall event inTdescending order of probability 
T 
. 

NowTweTrepeat the last step,Tdealing only with the remainingTevents and the combined 

event.TThisTtime combining CTand D createsTa combined eventTwith less probabilityTthan 

combining anyTothers. 

  T

 
Figure 2.3 combining CTand D 
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Again weTrepeat the process. ThisTtime, combining the combinedTevents CD andTEF create 

theTnew combined eventTwith least probability. 

T  

 
Figure2.4 combiningTCD and EF 

 

The nextTtime around the bestTcombination is of ATand B. 

 T 

 
Figure 2.5 combining ATand B 
T 
 

 

 

 

Finally there isTonly one pairTleft, which weTsimply combine. 



	
	

20	

 TT

 
Figure 2.6Tcombining AB andTCDEF 

  

HavingTfinishedTourTconnectionTtree, we areTready to read offTof the diagramTthe codes that 

weTwill associate with eachTof the originalTevents. To obtainTtheTcode, we startTat the topTlevel 

of theTtree and makeTourTway to the eventTwe wish toTcode. The seriesTof 0's andT1's we 

encounterTalong the wayTon the branches ofTthe tree compriseTour code. DoingTso for 

eachTevent in this caseTyields the followingTresult. 

EventTName   Probability TCode Length 

A T 0.3   00 2 

B  T0.3   01 2 

C  T0.13   100 3 

D  T0.12  T101 3 

E   0.1 TT110 3 

F   0.05  T111 3 

If weTsum the productsTof the event probabilitiesTandTtheTcode lengths for this case 

weTobtainTanTaverage bitTrateTof 2.4 bitsTper event. IfTweTcompute the trueTminimum bit 
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rate,Tthat is theTinformationTrate, ofTtheseTevents as we didTwith the previousTexample, we 

obtainT2.34Tbits. 

Suppose thatTwe hadTbeenToriginally planningTto code ourTeventsToriginally as allT3-bitTcodes 

in aTfixedTlength codeTscheme. Then,Tif weTcodeTaTdocument,Twhich is longTenoughTsoTthat 

weTobtainTthe averageTpromisedTby thisTnewTscheme instead,Twe willTfind thatTwe willTobtainTa 

compression ratio over the original scheme of 2.4/3 = 80% whereas the ultimate possible 

compression ratio isT2.34/3 = 78%. 

ItTcanTbeTshown that theTHuffmanTcodeTprovides the bestTcompressionTfor any communication 

problem for aTgivenTgrouping ofTthe events.TInTthis problemTweTchose notTto groupTevents,Tbut 

to codeTthem individually.TIfTwe wereTto createTthe 36TeventsTweTwouldTget byTforming 

pairsTofTthe above events, we wouldTgetTsubstantially closer to the optimum rateTsuggested by 

theTinformation rate calculation. 

 
Figure 2.7TfunctioningTofTHuffmanTalgorithm 
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2.2TLZWT 
TheTLZW algorithmTisTaTgreedy algorithm inTthatTitTtries to recognizeTincreasingly longer 

andTlongerTphrases that are repetitive, and encodeTthem.TEachTphrase is defined 

toThaveTaTprefixTthat is equal toTaTpreviouslyTencodedTphraseTplus one additional 

characterTinTtheTalphabet.TNoteT“alphabet” means the setTofTlegalTcharactersTin the file. For a 

normal textTfile,TthisTisTtheTacai characterTset.TForTaTgray level imageTwithT256Tgray levels,TitTis 

an 8-bit numberTthat representsTtheTpixel’s grayTlevel. 

ForTanTinstance the compressionTforTthe phraseT“the/rain/in/spain/falls/mainly/on/the/plain 

willTbeTas followsT: 

 

s.no Char String+charT InTtable Output AddTto 

table 

New 

string  

comment 

1 t t no   t first 

charno 

action 

2 h tg no t 256 h  

3 e he no h 257 e  

4 / e/ no e 258 /  

5 r /r no / 259 r  

6 a ra no r 260 a  

7 i ai no a 261 i  

8 n in no i 262 n  

9 / n/ no n 263 /  

10 i /i no / 264 i  

11 n in yes(262)   in first match 

found 

12 / in/ no 262 265 /  

13 s /s no / 266 s  

14 p sp no s 267 p  

15 a pa no p 268 a  
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16 i ai yes(261)   ai  

17 n ain no 261 269 n  

18 / n/ yes(263)   n/  

19 f n/f no 263 270 f  

20 a fa no f 271 a  

21 l al no a 272 l  

22 l ll no l 273 l  

23 s ls no l 274 s  

24 / s/ no s 275 /  

25 m /m no / 276 m  

26 a ma no m 277 a  

27 i ai yes(261)   ai match ai 

28 n ain yes(269)   ain match 

longer 

string,ain 

29 l ainl no 269 278 l  

30 y ly no l 279 y  

31 / y/ no y 280 /  

32 o /o no / 281 o  

33 n on no o 282 n  

34 / n/ yes(263)   n/  

35 t n/t no 263 283 t  

36 h th yes(256)   th matches 

th,the is 

not in 

table yet  

37 e the no 256 284 e the added 

to table 

38 / e/ yes()   e/  

39 p e/p no 258 285 p  
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40 l pl no p 286 l  

41 a la no l 287 a  

42 i ai yes(261)   ai matches ai 

43 n ain yes(261)   ain matches 

longer 

string ain 

44 / ain/ no 269  /  

45 EOF /  / 288  end of 

file,output 

STRING 

 

2.3 run length encoding 
Run-lengthTencoding isTan information pressure calculation thatTis upheld byTmost bitmap 

documentTarrangements, for example,TTIFF, BMP, andTPCX.TRLETis suited for compacting 

any sort ofTinformation paying littleTrespectTto its dataTcontent, yet theTsubstanceTof 

theTinformationTwill influence the pressure proportion accomplishedTbyTRLE.TAlbeit most 

RLE calculations can't accomplishTtheThighTpressureTproportions of the more propelled 

pressure techniques,TRLETisTbothTsimpleTtoTactualizeTand brisk to execute, making it a decent 

other option toTeitherTutilizingTaTperplexingTpressure calculation or leaving your picture 

information uncompressed.  

 

RLE worksTbyTdecreasingTtheTphysicalTsizeTof a rehashing series of characters. This rehashing 

string, called aTrun,TisTordinarilyTencodedTinto two bytes. The primary byte speaks to the 

quantity of charactersTinTtheTrunTandTisTknownTasTthe run number. By andTby,Tan encoded run 

may contain 1TtoT128TorT256Tcharacters;TtheTrun consider more often thanTnotTcontains the 

quantity of charactersTshortToneT(anTincentive in the scopeTofT0 to 127 or 255).TTheTsecond 

byte is theTestimationTof the character inTtheTrun, which is inTtheTscope of 0 to 255, andTis 

known asTthe run esteem.  

Run length encodingT(RLE)TisTa very simple form ofTlosslessTdataTcompression which runs on 

sequences having sameTvalueToccurringTmanyTconsecutive times andTit encode the sequence to 

store only a singleTvalueTand its count. 
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For example, 

Consider aTscreenTcontainingTplain black text on aTsolidTwhite background. There 

willTbeTmany long runsTofTwhite pixels in theTblankTspace, and many short runs of blackTpixels 

within the text. 

WWWWWWWWWWWWBWWWWWWWWWWWWBBBWWWWWWWWWWWW

WWWWWWWWWWWWBWWWWWWWWWWWWWW 

WithTaTrun length encoding (RLE) data compression algorithm applied to the above 

hypothetical scan line, it can be rendered as follows: 

12W1B12W3B24W1B14W 

This can be interpreted as a sequence of twelve Ws, one B, twelve Ws, three Bs, etc.    
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Chapter-3 

                                SYSTEM DEVELOPMENT 
 

3.1 Huffman Coding  

3.1.1 Compression Algorithm 
shortcreate_tree() 

{ 

voidfind_lowest_freqs(void); 

shortonly_one_up_ptr_left(void); 

doublemaxfreq = 0 ; 

structchardata *new_node = NULL; 

fprintf(fpp,"Creating tree from frequencies..."); 

while (maxfreq< 0.99999 ) 

 { 

find_lowest_freqs(); 

if ((new_node = (structchardata *)malloc(sizeof 

(structchardata)) ) 

 == NULL 

 ) 

{ 

printf(fpp,"Insufficient memory, malloc() 

failed in create_tree().") 

 ; 

return FALSE; 

 } 

new_node->up = NULL; 

new_node->left = ptr2; 

new_node->right = ptr1; 

new_node->charnum = -1; 

ptr1->up = new_node; 
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ptr2->up = new_node; 

new_node->frequency = ptr1->frequency + ptr2- 

>frequency; 

maxfreq = new_node->frequency; 

#ifdef VERBOSE 

fprintf(fpp,"Newly created freq == %f\n", 

maxfreq); 

#endif 

 } 

root = new_node; 

if (only_one_up_ptr_left()) 

 { 

fprintf(fpp,"Done creating tree."); 

#ifdef verbose 

fprintf(fpp,"Win: apparently only one remaining 

up-pointer."); 

#endif 

} 

else 

{  

fprintf(fpp,"Lose: apparently more than one remaining up-pointer.");  

return FALSE; 

 } 

return TRUE;  

} 
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3.1.2 Model Developement 
 

TheTtechnique worksTbyTcreating aTbinary treeTof nodes. TheseTcan beTstored in a regularTarray, 

the size ofTwhichTdepends on theTnumber of symbols,T<math>n</math>.TA node canTbe 

eitherTa leaf nodeTorTan internalTnode. Initially,Tall nodesTare leaf nodes,TwhichTcontain 

the symbol itself, theTweightT(frequencyTof appearance) ofTtheTsymbolTandToptionally, a link to 

a parent nodeTwhichTmakesTit easy to read the codeT(in reverse)Tstarting fromTaTleaf 

node.TInternal nodes containTsymbolTweight, linksTtoTtwo childTnodes andTtheToptional linkTto 

aTparentnode.TAs a common convention,TbitT'0'Trepresents followingTtheTleftTchild and bit '1' 

representsTfollowingTthe right child.TATfinishedTtree has up toT<math>n</math>TleafTnodes and 

<math>n-1</math>TinternalTnodes.TA HuffmanTtreeTthatTomits unusedTsymbolsTproduces the 

mostToptimal code lengths. 

TheTprocess essentiallyTbeginsTwithTthe leafTnodes containingTthe probabilitiesTofTthe symbol 

they represent,TthenTaTnew node whoseTchildrenTareTthe 2TnodesTwithTsmallest probabilityTis 

created,TsuchTthatTthe newTnode'sTprobability isTequal toTtheTsum ofTtheTchildren's probability. 

WithTthe previous 2Tnodes merged intoTone nodeT(thus not considering themTanymore), and 

withTthe new nodeTbeingTnow considered, the procedureTisTrepeated untilTonlyToneTnode 

remains, the Huffman tree. 

The simplestTconstruction algorithm uses aTpriorityTqueueTwhere theTnode with lowest 

probabilityTis givenThighestTpriority: 

• CreateTa leafTnode for eachTsymbol and addTit to the priority queue. 

• While thereTisTmoreTthan oneTnode in the queue: 

• RemoveTthe twoTnodes ofThighest priorityT(lowest probability)Tfrom theTqueue. 

• CreateTa newTinternalTnode withTthese twoTnodes asTchildren andTwith probabilityTequal 

toTthe sum ofTthe two nodes'Tprobabilities. 

• AddTthe newTnodeTto the queue. 

• TheTremainingTnode is theTrootTnode and theTtreeTis complete. 

SinceTefficientTpriority queue dataTstructuresTrequire O(logTn) time per insertion,TandTa tree 

withTn leaves hasT2n−1 nodes, thisTalgorithmToperates in O(nTlogTn)Ttime, where nTisTthe 

number ofTsymbols. 



	
	

29	

IfTthe symbolsTareTsorted by probability,Tthere is aTlinear-timeT(O(n)) method toTcreateTa 

HuffmanTtreeTusing two queues,TtheTfirst one containing theTinitialTweights (along with 

pointers toTthe associatedTleaves),Tand combined weightsT(alongTwith pointersTtoTthe trees) 

beingTputTin the back ofTtheTsecondTqueue. This assures that theTlowestTweightTis always kept 

atTtheTfront of oneTof the two queues: 

• StartTwith as manyTleavesTas there areTsymbols. 

• EnqueueTallTleafTnodes into the first queueT(byTprobabilityTinTincreasing order so that 

the leastTlikelyTitemTis in theTheadTofTthe queue). 

While thereTisTmore thanToneTnode in the queues: 

• DequeueTtheTtwo nodes with the lowestTweightTbyTexamining the fronts 

ofTbothTqueues. 

• Create a newTinternalTnode, withTtheTtwo just-removed nodesTasTchildrenT(either node 

canTbeTeither child) andTtheTsumTof their weights asTthe new weight. 

• EnqueueTthe new nodeTintoTthe rear of theTsecond queue. 

• The remainingTnodeTisTtheTrootTnode; the treeThasTnow beenTgenerated. 

AlthoughTlinear-timeTgivenTsorted input, in theTgeneralTcase of arbitraryTinput, using this 

algorithmTrequiresTpre-sorting. Thus, since sortingTtakesTO(nTlogTn) timeTin the general case, 

bothTmethodsThave the same overallTcomplexity. 

InTmany cases,TtimeTcomplexity is not veryTimportantTin the choice ofTalgorithmThere, 

since nThere is theTnumberTofTsymbols in theTalphabet,Twhich is typically aTveryTsmall number 

(comparedTtoTthe lengthTof theTmessageTto be encoded); whereas complexity 

analysisTconcernsTthe behavior when nTgrowsTtoTbe very large. 

It isTgenerallyTbeneficial to minimizeTtheTvariance of codeword length. ForTexample, a 

communicationTbuffer receiving Huffman-encodedTdataTmay needTtoTbe larger to dealTwith 

especially long symbolsTifTthe treeTis especially unbalanced. ToTminimizeTvariance, simply 

break ties betweenTqueuesTby choosing the itemTinTthe first queue. ThisTmodificationTwill 

retainTtheTmathematical optimality ofTtheTHuffman coding while both minimizingTvariance 

and minimizing theTlength of theTlongest character code. 
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3.1.3TAnalysis of HuffmanTcoding 
Although Huffman's originalTalgorithm isToptimal for a symbol-by-symbol coding 

(i.e.,TaTstream of unrelated symbols) withTaTknown input probability distribution,TitTis not 

optimal when the symbol-by-symbol restrictionTisTdropped, or when the probabilityTmass 

functions areTunknown. Also, ifTsymbolsTare not independent andTidenticallyTdistributed, a 

singleTcode may beTinsufficient for optimality. OtherTmethodsTsuch as arithmetic 

codingand LZWTcoding oftenThave better compressionTcapability:TBoth of these methods can 

combineTanTarbitraryTnumberTofTsymbolsTforTmoreTefficient coding, and generally adapt to the 

actual input statistics, useful when inputTprobabilitiesTareTnotTpreciselyTknown or vary 

significantly withinTtheTstream.THowever, these methods have higherTcomputational 

complexity. Also,TbothTarithmetic codingTand LZW wereThistoricallyTa subject of some 

concernToverTpatent issues. However,Tas ofTmid-2010, theTmost commonly usedTtechniques for 

theseTalternatives to HuffmanTcoding have passed intoTtheTpublicTdomain as the early patents 

have expired. 

However,TtheTlimitations of HuffmanTcodingTshould not be overstated;TitTcan be used 

adaptively,Taccommodating unknown, changing,TorTcontext-dependentTprobabilities.TIn the 

caseTofTknownTindependentTand identically distributed randomTvariables,Tcombining symbols 

("blocking")TreducesTinefficiency in a wayTthatTapproaches optimality as theTnumberTof 

symbols combinedTincreases.THuffmanTcoding is optimal whenTeach input symbolTis aTknown 

independentTand identicallyTdistributedTrandomTvariable having aTprobability that is an the 

inverse ofTaTpower of two. 

PrefixTcodesTtend to haveTinefficiency on small alphabets,TwhereTprobabilitiesToften fall 

betweenTtheseToptimal points. TheTworstTcase forTHuffmanTcoding can happenTwhen the 

probabilityTofTa symbol exceedsT2−1
T= 0.5,Tmaking theTupperTlimitTof inefficiency unbounded. 

TheseTsituationsToftenTrespond well toTaTform of blockingTcalledTrun-lengthTencodingT; for the 

simple caseTof Bernoulli processes,TGolomb coding is aTprovablyToptimalTrun-length code. 

For aTsetTof symbols with a uniformTprobabilityTdistribution and a numberTofTmembers which 

isTa power of twoTHuffmanTcoding is equivalentTto simple binaryTblock encodingT, 

e.g., ASCII coding. ThisTreflects the factTthat compressionTis notTpossibleTwith such an input. 
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MostToften,Tthe weights usedTinTimplementations of Huffman codingTrepresentTnumeric 

probabilities, but theTalgorithmTgiven above does notTrequireTthis; it requires only 

thatTtheTweights form a totallyTorderedTcommutativeTmonoid, meaning aTway to order weights 

andTtoTadd them. The HuffmanTtemplateTalgorithm enables oneTtoTuseTany kind of weights 

(costs, frequencies, pairsTofTweights, non-numerical weights)TandTone of manyTcombining 

methods (notTjust addition). SuchTalgorithms can solveTotherTminimization problems, suchTas        

minimizing<math>\max_i\left[w_{i}+\mathrm{length}\left(c_{i}\right)\right]</math>,a  

problem first applied to circuit design. 

In the standardTHuffman coding problem,TitTisTassumed that eachTsymbolTin the set that the 

codeTwordsTare constructed from hasTanTequal cost to transmit:TaTcode word whose length 

is NTdigitsTwill always haveTaTcost of N, no matterThowTmany of those digitsTareT0s, how many 

areT1s,Tetc. When working underTthisTassumption, minimizing theTtotalTcost ofTtheTmessage 

andTminimizing the totalTnumberTof digits are the sameTthing. 

Huffman coding with unequalTletterTcostsTisTtheTgeneralization without thisTassumption: the 

letters ofTtheTencoding alphabet mayThaveTnon-uniform lengths, dueTtoTcharacteristics of the 

transmissionTmedium. An exampleTisTtheTencoding alphabetTof MorseTcode, where a 'dash' 

takes longer toTsend than a 'dot',TandTtherefore the cost ofTaTdash in transmission timeTis 

higher. The goal isTstill to minimize the weightedTaverageTcodeword length, butTitTis no longer 

sufficient just toTminimizeTthe number of symbolsTusedTby the message. No algorithmTis 

known to solve thisTinTtheTsame manner or with theTsameTefficiency as conventional Huffman 

coding. 
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3.2.TLZW 

3.2.1TcompressionTalgorithm 
       

      wT=TNIL; 

T  while ( read a characterTk ) 

    TT { 

    TTT  if wk exists inTtheTdictionary 

       TT w = wk; 

       T else 

        T  add wk to the dictionary; 

        T  output the code for w; 

         T w = k; 

 
TT          Figure 3.1 flowchartTofTLZWTcompressionT  
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3.2.2TdecompressionTalgorithm  
read a characterTk; 

  ToutputTk; 

TT w = k; 

   whileT(TreadTaTcharacterTk )     

 T/*TkTcould be a character or aTcode. */ 

     T { 

     TT  entry = dictionary entryTfor k; 

    TTT  output entry; 

         add w + entry[0] to dictionary; 

       T w = entry; 

       } 

 
Figure 3.2 flowchart of LZW decompression 
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3.2.3 model development 
WhenTthe LZWTprogram starts to encode a file, the codeTtableTcontains only the first 

256Tentries, with the remainder of theTtableTbeingTblank. This means thatTthe first codes going 

into the compressedTfileTareTsimplyTthe single bytes from theTinputTfile being converted to 12 

bits.TAsTthe encoding continues, the LZW algorithmTidentifiesTrepeated sequences inTtheTdata, 

and addsTthemTto the code table. CompressionTstartsTthe second time aTsequenceTis 

encountered. The key pointTisTthat a sequenceTfromTthe input file isTnotTadded to the codeTtable 

until it has alreadyTbeenTplaced in the compressed fileTas individual characters (codesT0 to 

255). This is importantTbecauseTit allows the uncompression program toTreconstructTthe code 

table directlyTfromTthe compressed data, without having toTtransmitTthe code table separately. 

TheTdecodingTalgorithm works by reading a valueTfromTthe encoded input andToutputtingTthe 

corresponding string from theTinitializedTdictionary. In order to rebuildTtheTdictionary in the 

sameTwayTasTit was built during encoding, itTalso obtains the next valueTfromTthe input and 

adds to the dictionary theTconcatinationTof the current string andTtheTfirstTcharacter of the 

stringTobtainedTbyTdecoding the next input value,TorTtheTfirstTcharacterTof the string just output 

if the nextTvalueTcanTnot be decoded (If theTnextTvalueTis unknown to the decoder,TthenTit must 

be theTvalueTthat will be added to theTdictionaryTthisTiteration, and so its first characterTmust be 

the same as the firstTcharacterTof the current string being sentTto decoded output). TheTdecoder 

then proceeds to theTnextTinput value (which was already readTinTasTthe "next value" in 

theTprevious pass) and repeats theTprocessTuntil there is no moreTinput,TatTwhich point the final 

inputTvalueTis decoded without any moreTadditionsTto theTdictionary. 

In this way theTdecoderTbuilds up a dictionary whichTisTidentical to thatTusedTby the 

encoder,Tand uses it toTdecodeTsubsequent input values. ThusTtheTfullTdictionary does not need 

beTsentTwith the encoded data; justTtheTinitial dictionary containing theTsingle-characterTstrings 

is sufficient (andTisTtypically defined beforehand within theTencoderTandTdecoder rather than 

being explicitly sentTwithTtheTencoded data. 

 

3.2.4 Analysis 
LZW algorithm isTlargerTthan the Huffman algorithmTbecauseTthe scanning window orTthe 

LZW algorithm takesTmoreTtime in order to fillTup the dictionary insideTtheTLZW. Although 

the compression time isTlonger,Tit takes a shorterTtime to decompressTusing the LZW 
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algorithmTthan the Huffman algorithm.TThis is because theTdecodingTprocessTonly needs to 

decodeTthe dataTbyTmatching the LZW codeTwithTthe code inside theTlibrary.  

 

3.3 Run length encoding  

3.3.1 compression algorithm  

 

 

3.3.2 decompression algorithm  

 
3.3.3 model development 
 Run-length encoding is aTdataTcompression algorithm that isTsupportedTby most bitmapTfile 

formats, such asTTIFF,TBMP,Tand PCX. RLE is suitedTforTcompressing any type ofTdata 

regardless of itsTinformationTcontent, but the contentTofTthe data will affect theTcompression 

ratio achieved byTRLE.TAlthough most RLE algorithmsTcannotTachieve the highTcompression 

ratios ofTtheTmore advanced compression methods, RLETisTboth easy to implement 
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andTquickTto execute, makingTit a good alternative toTeitherTusingTa complex compression 

algorithm orTleavingTyourTimage data uncompressed. 

RLE works by reducing theTphysicalTsizeTofTaTrepeating string of characters.TThisTrepeating 

string, called aTrun,Tis typically encoded into twoTbytes.TTheTfirst byte represents theTnumber 

ofTcharactersTin the run andTisTcalled the run count.TInTpractice, an encodedTrunTmay contain 1 

to 128Tor 256 characters; the runTcountTusually contains as theTnumberTof characters minus 

one (aTvalueTin the range of 0TtoT127 or 255). The secondTbyteTis the value ofTtheTcharacter in 

the run,TwhichTisTin the range ofT0 to 255, and is calledTthe run value. 

 

 
Figure 3.3 flowchart of run length encoding 
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3.3.4 analysis 
TheTpartsTofTrun-lengthTencodingTalgorithmsTthatTdifferTareTtheTdecisionsTthatTareTmadeTbased 

onTtheTtypeTofTdataTbeingTdecodedTsuchTasTtheTlengthTofTdataTruns.TRLETschemesTused to encode 

bitmapTgraphicsTareTusuallyTdividedTintoTclasses by theTtype of atomicT(thatTis, most 

fundamental) elements thatTtheyTencode.TTheTthreeTclassesTusedTbyTmostTgraphicsTfileTformats 

are bit-, byte-, and pixel-levelTRLE. 

Bit-levelTRLE schemes encodeTruns of multiple bitsTin a scan line and ignore byte and word 

boundaries.TOnlyTmonochromeT(blackTandTwhite),T1-bitTimagesTcontainTa sufficient number of 

bitTrunsTtoTmakeTthisTclassTofTRLETencodingTefficient.TATtypical bit-level RLE scheme encodes 

runsTofToneTtoT128Tbits in length in aTsingle-byteTpacket.TTheTsevenTleastTsignificantTbitsTcontain 

the run count minus one, and the most significant bit contains the value of the bit run, either 0 

or 1. A run longer than 128 pixels is split across several RLE-encoded packets. 

Byte-level RLE schemes encode runs of identical byte values, ignoring individual bits and 

word boundaries within a scan line. The most common byte-level RLE scheme encodes runs 

of bytes into 2-byte packets. The first byte contains the run count of 0 to 255, and the second 

byte contains the value of the byte run. It is also common to supplement the 2-byte encoding 

scheme with the ability to store literal, unencoded runs of bytes within the encoded data 

stream as well. 

In such a scheme, the seven least significant bits of the first byte hold the run count minus 

one, and the most significant bit of the first byte is the indicator of the type of run that 

follows the run count byte. If the most significant bit is set to 1, it denotes an encoded run. 

Encoded runs are decoded by reading the run value and repeating it the number of times 

indicated by the run count. If the most significant bit is set to 0, a literal run is indicated, 

meaning that the next run count bytes are read literally from the encoded image data . The 

run count byte then holds a value in the range of 0 to 127 (the run count minus one). Byte-

level RLE schemes are good for image data that is stored as one byte per pixel. 

Pixel-level RLE schemes are used when two or more consecutive bytes of image data are 

used to store single pixel values. At the pixel level, bits are ignored, and bytes are counted 

only to identify each pixel value. Encoded packet sizes vary depending upon the size of the 

pixel values being encoded. The number of bits or bytes per pixel is stored in the image file 

header. A run of image data stored as 3-byte pixel values encodes to a 4-byte packet. 
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                                            Chapter-4 

    PERFORMANCE ANALYSIS 
 

Performance”analysisTofTcompressionTalgorithmsTcanTbeTdoneTbyTvarious factors. However, 

theTmainTconcernThasTalwaysTbeenTtheTspaceTefficiencyTand time efficiency. We are using 

different factors to analyze the algorithm.” 

4.1 CompressionTRatio 
Compression”Tratio,TalsoTknownTasTcompressionTpower,TisTused to quantify the reduction in 

data-representation sizeTproducedTbyTaTdataTcompressionTalgorithm.TTheTdata compression 

ratio isTanalogousTtoTtheTphysical compression ratio used toTmeasureTphysical compression of 

substances.”” 

Data” compressionTratio is defined asTthe ratio betweenTthe uncompressed 

size and compressed size. 

 

 
 

Thus”Ta representationTthatTcompressesTaT10TMBTfileTto 2 MB has aTcompressionTratio of 10/2 

= 5, often notatedTasTanTexplicitTratio,T5:1T(read "five" to "one"), or as an implicit ratio, 5/1. 

Note thatTthisTformulationTappliesTequallyTforTcompression,TwhereTtheTuncompressed size is 

that ofTtheToriginal;TandTforTdecompression,TwhereTtheTuncompressedTsize is that of the 

reproduction.”” 

Sometimes the space savings is given instead, which is defined as the reduction in size 

relative to the uncompressed size: 

 

 
 

Thus “a representationTthatTcompressesTaT10MBTfileTto 2MB would yield a space savings of 1 

- 2/10 = 0.8,ToftenTnotated as a percentage, 80%.”” 
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For “signals ofTindefiniteTsize,TsuchTas streaming audioTandTvideo,TtheTcompression ratio is 

definedTinTtermsTof uncompressed and compressedTdataTratesTinstead of data sizes:” 

 

 
Instead” ofTspaceTsavings,ToneTspeaks of data-rate savings, whichTisTdefined as the data-rate 

reduction relativeTtoTtheTuncompressed data rate:” 

 

 

 
For “example,TuncompressedTsongsTinTCD format haveTaTdataTrate of 16 bits/channel x 2 

channels xT44.1TkHzT≅T1.4TMbit/s, whereas AAC filesTonTanTiPodTareTtypicallyTcompressed to 

128 Kbit/s,TyieldingTaTcompressionTratioTofT10.9, for a data-rate savings of 0.91, or 91%. 

When theTuncompressedTdataTrateTisTknown,TtheTcompressionTratioTcan be inferred from the 

compressed data rate.” 

 

4.2 Compression Speed 
 

Compression”TspeedTisTrelatedTtoTtheTdataTformatTandTtheTmachine type. The relationship 

between applicationTperformanceTandThostTmachineTparametersTisTa research topic that is 

outside ofTtheTscopeTofTthisTpaper.TDuringTtheTexperiments,TweTkeepTusingTtheTsameTmachine 

for allTtheTcompressions,TandTmakeTsureTthatTourTapplicationTisTtheTonly workload. This way, 

weTcanTthinkTofTcompressionTspeedTasTaTfunctionTofTcompressionTalgorithm.TThe compression 

speed is alsoTaffectedTbyTcompressionTbufferTsize,TbutTweTomitTthisTfactorTbyTusingTthe 

“Compression is an important technique in the multimedia computing field. This is because 

we can reduce the size of data and transmitting and storing the reduced data on the Internet 

and storage devices are faster and cheaper than uncompressed data. Many image and video 

compression standards such as JPEG, JPEG2000, and MPEG-2, and MPEG-4 have been 

proposed and implemented. In all of them entropy coding, arithmetic and Huffman 
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algorithms are almost used. In other words, these algorithms are important parts of the 

multimedia data compression standards. In this paper we have focused on these algorithms in 

order to clarify their differences from different points of view such as implementation, 

compression ratio, and performance.” We have explained these algorithms in detail, 

implemented, and tested using different image sizes and contents.” From implementation 

point of view, Huffman coding is easier than arithmetic coding. Arithmetic algorithm yields 

much more compression ratio than Huffman algorithm while Huffman coding needs less 

execution time than the arithmetic coding. This means that in some applications that time is 

not so important we can use arithmetic algorithm to achieve high compression ratio, while 

for some applications that time is important such as real-time applications, Huffman 

algorithm can be used.”” 

 

same sizeTof buffer, whichTis 16KB.” 

When” evaluatingTdataTcompressionTalgorithms, speed is alwaysTinTterms of uncompressed 

data handledTperTsecond.” 

Some applications useTdataTcompressionTtechniquesTeven when they haveTsoTmuch RAM and 

diskTspaceTthatTthere'sTno real need toTmakeTfilesTsmaller. File compressionTand delta 

compression are”Toften used to speed upTcopyingTfilesTfrom one end of aTslowTconnection to 

another.TEven on aTsingleTcomputer,Tsome kinds of operationsTareTsignificantlyTfaster when 

performed onTcompressedTversionsTofTdataTratherTthan directly on the uncompressed data. In 

particular, some compressed fileTformatsTareTdesignedTsoTthat compressed pattern matching -- 

searching for a phrase inTaTcompressedTversionTofTa text file -- is significantly faster than 

searching forTthatTsameTphrase in the original uncompressed text file.” 

 
 

In aT“fewTapplications,TtheTcompressionTspeedTisTcritical.TIfTaTparticular implementation of an 

audioTcompressorTrunningTonTaTprototypeTvoiceTrecorderTcannotTsustain 7 bits/sample/channel 

x 1TchannelTxT8TkSamples/sT=T56Tkbit/sTfromTtheTmicrophonesTtoTstorage,Tthen it is unusable. 

No oneTwantsTtheirTrecordedTvoiceTtoThaveTsilentTgapsTwhereTtheThardware could not keep up. 
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No one willTbuyTitTunlessTyouTswitchTtoTaTdifferentTimplementationTorTfasterThardware (or both) 

that can keepTupTwithTstandardTtelephone-qualityTvoiceTspeeds. 

TheTspeedTvariesTwidelyTfromToneTmachineTtoTanother,TfromToneTimplementationTtoTanother. 

Even on the same machine and sameTbenchmarkTfileTandTsameTimplementationTsourceTcode, 

using a differentTcompilerTmayTmakeTaTdecompressorTrunTfaster.TheTspeedTof a compressor is 

almost always slowerTthanTtheTspeedTofTitsTcorrespondingTdecompressor. 

EvenTwith a fastTmodernTCPU, compressed fileTsystemTperformanceTisToften limited byTthe 

speedTofTtheTcompressionTalgorithm.TMany modernTembeddedTsystemsT-- as well as many of 

the earlyTcomputersTthatTdataTcompressionTalgorithmsTwereTfirstTdevelopedTon -- are heavily 

constrained by speed.” 

 

 

4.3 Results of HuffmanTcoding 

File File size Comp. size Space saving Time Comp.ratio 

File 1 1384 bytes 771 bytes 4901 bits 22 ms  1.795 

File 2 2768 bytes 1542 bytes 9802 bits 91.6 ms 1.645 

File 3 5992 bytes 3313 bytes 21425 bits 442.1 ms 1.808 

Table 1: result of Huffman coding  
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4.4TResultsTofTLZW 

File FileTsize Comp. size Space saving Time Comp.ratio 

File 1 1360 bytes 1067 bytes 293 bytes 3.00 ms 1.274 

File 2 2719 bytes 1730 bytes 989 bytes 6.001 ms  1.571 

File 3 4079 bytes 2396 bytes  1683 bytes 8.04 ms 1.702 

Table 2: resultTofTLZW 

 

 

4.5TResultsTofTrunTlengthTencoding 

File File size Comp. size Space saving Time Comp.ratio 

File 1 1856 bytes 633 bytes 1223 bytes 0.015ms 2.932 

File 2 1398 bytes 407 bytes 991 bytes 0.016ms 3.434 

File 3 8760 bytes  2737 bytes 6023 bytes 0.019 3.200 

Table 3:result of RLE 
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4.6 comparison of differentTcompressionTtechniques 

Technique File size Comp. size Space saving Time Comp.ratio 

Huffman 794 bytes 428 bytes 366 bytes 6.2ms 1.855 

LZW 795 bytes  701 bytes  94 bytes 3ms  1.134 

RLE 795 bytes 511 bytes  284 bytes 1 ms 1.555 

Table 4:comparison of different techniques 
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     Chapter-5 

               CONCLUSION 

 
5.1 Conclusion 
Compression isTanTimportantTtechnique in the multimediaTcomputingTfield.TThis is because we 

can reduceTtheTsizeTof data and transmitting andTstoringTtheTreducedTdata on the Internet and 

storageTdevicesTareTfasterTandTcheaperTthanTuncompressedTdata.TMany image and video 

compression standardsTsuchTasTJPEG,TJPEG2000,TandTMPEG-2,TandTMPEG-4 have been 

proposed andTimplemented.TInTallTofTthemTentropyTcoding,TarithmeticTandTHuffman algorithms 

are almost used.TInTotherTwords,TtheseTalgorithmsTareTimportantTpartsTofTtheTmultimedia data 

compressionTstandards.TInTthisTpaperTweThaveTfocusedTonTtheseTalgorithms in order to clarify 

their differencesTfromTdifferentTpointsTofTviewTsuchTasTimplementation,Tcompression ratio, and 

performance. We haveTexplainedTtheseTalgorithmsTinTdetail,Timplemented,TandTtestedTusing 

different image sizesTandTcontents.TFromTimplementationTpointTofTview,THuffmanTcodingTis 

easierTthanTarithmeticTcoding.TArithmeticTalgorithmTyieldsTmuchTmoreTcompression ratio than 

Huffman algorithm while HuffmanTcodingTneedsTlessTexecutionTtimeTthanTtheTarithmetic 

coding.TThisTmeansTthatTinTsomeTapplicationsTthatTtimeTisTnotTsoTimportant we can use 

arithmetic algorithmTtoTachieveThighTcompressionTratio,TwhileTforTsomeTapplications that time 

is importantTsuchTasTreal-timeTapplications, Huffman algorithm can be used.” 

LZW algorithm isTlargerTthanTtheTHuffmanTalgorithmTbecauseTtheTscanningTwindowTor the 

LZW algorithmTtakesTmoreTtimeTinTorderTtoTfill up the dictionaryTinsideTtheTLZW.TAlthough 

the compression timeTisTlonger,TitTtakesTaTshorter time to decompressTusing the LZW 

algorithmTthan the Huffman algorithm.TThisTisTbecause the decoding process only needs to 

decode the data byTmatchingTtheTLZWTcodeTwithTtheTcode inside the library.“ 

 

5.2 Future scope 
LZW”TisTEasyTtoTimplementT,TFastTcompression,TDictionaryTbased technique.  

Produce a lossless compression of images  

With the advancements in compression technology, it is now very easy and efficient to 

compress video ,text ,images or standard data files 
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LZW compression became the first widely used universal data compression method on 

computers” 

text file can typically be compressed via LZW to about half its original size. 

LZW became very widely used when it became part of the GIF , TIFF and pdf file. 

Huffman is widely used in all the mainstream compression formats that you might encounter 

- from GZIP, PKZIP (winzip etc) and BZIP2, to image formats such as JPEG and PNG. 

All” compression schemes have pathological data-sets that cannot be meaningfully 

compressed; the archive formats I listed above simply 'store' such files uncompressed when 

they are encountered. 

Newer arithmetic and range coding schemes are often avoided because of patent issues 

meaning Huffman remains the work-horse of the compression industry.” 

 

5.3 application contribution  
 

Compression isTused justTabout everywhere. AllTthe images youTget onTthe webTare 

compressed,Ttypically in theTJPEG orTGIF formats,Tmost modemsTuse 

compression,THDTVTwill beTcompressed usingTMPEG-2,TandTseveral fileTsystems 

automaticallyTcompress filesTwhen stored,Tand theTrestTof us doTit byThand.TThe neat thing 

aboutTcompression,TasTwithTthe other topics weTwillTcoverTin this course,Tis that the 

algorithmsTused in the realTworldTmake heavy useTofTa wide set of algorithmicTtools, 

includingTsorting,Thash tables,Ttries, andTFFTs.TFurthermore, algorithmsTwith strong theoretical 

foundations play aTcriticalTroleTin real-world applications. 

TThe genericTterm messageTfor theTobjects weTwant toTcompress willTbe used, 

whichTcouldTbe eitherTfiles or messages.TThe taskTofTcompression consists ofTtwo components, 

anTencodingTalgorithm that takesTa message andTgeneratesTa “compressed” 

representationT(hopefully with fewer bits), and a decoding algorithm that reconstructs the 

original message or some approximation of it from the compressed representation. These two 

components are typically intricately tied together since they both have to understand the 

shared compressed representation. We distinguish between lossless algorithms, which can 

reconstruct the original message exactly from the compressed message, and loss algorithms, 

which can only reconstruct an approximation of the original message. Lossless algorithms 
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are typically used forTtext, andTloss forTimages andTsound whereTa littleTbit ofTlossTin 

resolutionTisToften undetectable,Tor atTleast acceptable.TLoss is used in anTabstract 

sense,Thowever,TandTdoesTnot meanTrandom lostTpixels, butTinstead meansTlossTof a quantity 

suchTasTaTfrequency component, or perhaps lossTofTnoise.. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	
	

47	

REFERENCES 

[1] Khalid Sayood, “Introduction to Data Compression”, Ed Fox (Editor), March 2000. 

[2] Burrows M., and Wheeler, D. J. 1994,” A Block-Sorting Lossless Data Compression 

Algorithm” SRC Research Report 124, Digital Systems Research Center. 

[3] C.E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J., vol. 27, 

pp. 398-403. 

[4] Glen G. Langdon, Jr, “An Introduction to Arithmetic Coding.” IBM Research Division, 

California. 

[5]”Data Compression Methodologies for LossLess Data and Comparison between 

Algorithms”,IJESIT Volume 2, Issue 2, March 2013. 

[6] Amir Said, “Introduction to Arithmetic Coding - Theory and Practice”,Imaging Systems 

Laboratory, 2004. 

[7] Somefun, M. Adebayo & Adewale, ”Evaluation of dominant text data compression 

techniques,“ IJAIEM, 2014. 

[8] I.H. Witten, R.M. Neal, and J.G. Cleary, “Arithmetic Coding for the data compression,” 

Commun. ACM, vol. 30, no. 6, pp. 520-540, June 1987. 

[9] R. Pasco,” Source coding algorithms for fast data compression,” Stanford Univ., Ph.D. 

dissertation, 1976. 

[10] J.J. Rissanen, “Generalized Kraft inequality and arithmetic coding,” IBM J. Res. Devel. 

, vol. 20, no. 3, pp. 198-203, May 1976. 

[11] F. Rubin, “ Arithmetic stream coding using fixed precision registers,” IEEE Trans. 

Information Theory, vol. IT-25, no. 6, pp. 520-540, June 1987. 

[12] J.J. Rissanen and G.G. Langdon ,” Arithmetic coding,” IBM J. Res. Devel, vol. 23 no. 2, 

pp. 146-162, Mar. 1979. 

[13] M. Guazoo, “A general minimum-redundancy source-coding algorithm,” IEEE Trans. 

Information Theory, vol. IT-26, no. 1, pp. 15-25, Jan 1980. 

[14] ManjeetKaur, Er. UpasnaGarg,” Lossless Text Data Compression Algorithm Using 

Modified Huffman Algorithm,” IJARCSSE, vol. 5, Issue. 7, 2015. 

[15] A. Said, “Comparative Analysis of Arithmetic Coding Computational Complexity,“ 

Hewlett Packard Laboratories Report, HPL–2004–75, Palo Alto, CA, April 2004. 



	
	

48	

[16] M. Schindler, “A fast renormalization for arithmetic coding,” Proc. IEEE Data 

Compression Conf., 1998. 

[17] Texas Instruments Incorporated, “TMS320C6000 CPU and Instruction Set Reference 

Guide,” Literature Number: SPRU189F, Dallas, TX, 2000.  

[18] International Business Machines Corporation, “PowerPC 750CX/CXe RISC 

Microprocessor User’s Manual,” (preliminary edition), Hopewell Junction, NY, 2001.  

[19] Intel Corporation, “Intel Pentium 4 Processor Optimization,” Reference Manual 248966, 

Santa Clara, CA, 2001.  

[20] Sun Microsystems Inc., “UltraSPARC III Technical Highlights,” Palo Alto, CA, 2001.  

[21] Welch, Terry (1984), “A Technique for High-Performance Data Compression”. (6): 8–

19. doi:10.1109/MC.1984.1659158. 

[22] Jump up ^ Ziv,  J.; Lempel, A. (1978). “Compression of individual sequences via 

variable-rate coding”, IEEE Transactions on Information Theory. 24 (5): 530. 

doi:10.1109/TIT.1978.1055934 

[23] D.S. Taubman and M.W. Marcellin, “JPEG 2000: Image Compression Fundamentals,” 

Standards and Practice, Kluwer Academic Publishers, Boston, MA, 2002. 

Web References: 

http://www.stringology.org/DataCompression/ak-int/index_en.html 

http://akbar.marlboro.edu/~mahoney/courses/Fall01/computation/compression/ac/ac_arithme

tic.html 

http://cotty.16x16.com/compress/nelson1.htm 

http://www.drdobbs.com/parallel/arithmetic-coding-and-statistical-modeli/184408491 

http://www.dspguide.com/ch27/5.htm 

https://www.cs.duke.edu/csed/curious/compression/lzw.html 

 


