
	
	

1	

 Implementation of Data Compression algorithms

Project report submitted in partial fulfillment of the requirement for
the degree of Bachelor of Technology

in

Computer Science and Engineering/Information Technology

By

UtkarshTyagi - 131206

Under the supervision of

Prof. Dr. SatyaPrakashGhrera,
FBCS, SMIEEE

Professor, Brig (Retd.) and Head, Dept. of CSE and IT

To

Department of Computer Science & Engineering and Information

Technology
Jaypee University of Information Technology Waknaghat, Solan-

173234, Himachal Pradesh

	
	

2	

Candidate’s Declaration

I hereby declare that the work presented in this report entitled “DATA
COMPRESSION”in partial fulfillment of the requirements for the
award of the degree of Bachelor of Technology in Computer
Science and Engineering/Information Technology submitted in the
department of Computer Science & Engineering and Information
Technology, Jaypee University of Information Technology
Waknaghat is an authentic record of my own work carried out over a
period from August 2016 to December 2016 under the supervision of
(Prof Dr.SatyaPrakashGhrera) (Head of CSE Department).
The matter embodied in the report has not been submitted for the
award of any other degree or diploma.

Utkarsh Tyagi
131206

This is to certify that the above statement made by the candidate is
true to the best of my knowledge.

(Supervisor Signature)
Prof. Dr. Satya Prakash Ghrera,
FBCS, SMIEEE
Professor, Brig (Retd.)
Head, Dept. of CSE and IT

Dated

	
	

3	

Acknowledgment

In performing our project, we had to take the help and
guideline of some respected persons, who deserve our greatest
gratitude. We would like to show our gratitude to
Prof.Dr.SatyaPrakashGhrera,FBCS,SMIEEE professor ,
Brig(Retd.) and Head of Dept. of CSE and ITfor giving us a
good guideline for project throughout numerous
consultations. We would also like to expand our deepest
gratitude to all those who have directly and indirectly guided
us in our project.

Date: April 30th, ’2017 Utkarsh Tyagi
 131206

	
	

4	

Table of Contents

1. INTRODUCTION ... 1

1.1	Introduction	...												1	

1.2	Problem	Statement	..												5	

1.3	Objective	..												7	

1.4	Methodology	..												7	

1.4.1 Huffman coding .. 7

1.4.2 LZW .. 9

1.4.3 Run-Length Encoding .. 10

2. LITERATURE SURVEY ... 11
2.1	Huffman	coding	..										11	

2.2	LZW		...										16	

2.2	Run-Length	Encoding		..										19	

3. SYSTEM DEVELOPMENT .. 20
3.1	Huffman	coding	..										20	

3.1.1 Algorithm ... 21

3.1.2 Model Development ... 22

3.1.3 Analysis of arithmetic coding .. 24
3.2	LZW	..										26	

3.2.1 Algorithm ... 26

3.2.2 Model Development ... 27

 3.2.3 Analysis of LZW ... 28
3.3	Run-Length	Encoding	...										29	

3.3.1 Algorithm ... 29
 3.3.2 Model Development ...29

3.3.3 Analysis of run-length encoding ... 31

4. PERFORMANCE ANALYSIS ...33
4.1	Compression	Ratio	..				33						

4.1	Compression	Speed	..									34	

4.3	Result	of	Huffman	coding	..										36	

	
	

5	

4.4	Result	of	LZW		...									36	

 4.5 results of run length encoding .. 37
 4.6 Comparing different techniques .. 37

5. CONCLUSION .. 39

5.1	Conclusion	...									39		

5.2	Future	Scope	...									39	

5.3	Application	Contribution	...									39	

REFERENCES	..									40	

	
	

6	

 List of Figures
S no. Name Page no.

1 Principle of data compression 4

2 Preparing of Huffman code 11

3 List event in descending order of probability 12

4 Combining C and D 12

5 Combining CD and EF 13

6 Combining A and B 13

7 Combining AB and CDEF 14

8 Functioning of Huffman code 15

9 Flowchart of LZW compression 26

10 Flowchart of LZW decompression 27

	
	

7	

 List of Tables

S no. Name Page no.

1 Result of Huffman coding 36

2 Result of Lzw 37

3 Result of RLE 37

4 Comparing techniques 38

 Chapter-1

	
	

8	

 INTRODUCTION
“

1.1 Introduction
DataTcompressionTisTaTprocessTthatTreducesTtheTdataTsize,TremovingTtheTexcessive information

andTredundancy.TWhyTshorterTdataTsequenceTisTmoreTsuitable?T–theTanswer is simple it reduces

theTcost.TDataTcompressionTisTaTcommonTrequirementTforTmostTofTthe computerized application

. DataTcompressionThasTimportantTapplicationTinTtheTareaTofTfileTstorageTand distributedTsystem.

DataTcompressionTisTusedTinTmultimediaTfield,TtextTdocumentsTandTdata base table. Data

compressionTmethodsTcanTbeTclassifiedTinTseveralTways.TOneTofTtheTmostTimportant criteria of

classification isTwhether theTcompressionTalgorithmsTremoveTsomeTpartTofTdata,TwhichTcannot

be recovered during decompression. The algorithm, which removes some part of data, is

called loss data compression. And the algorithm that achieve the same what we compressed

after decompressionTisTcalledTlosslessTdataTcompression.TTheTlossTdataTcompression algorithm

isTusually usedTwhen aTperfect consistencyTwithTtheToriginalTdata is not necessary after

decompression. Example ofTlossTdataTcompressionTisTcompressionTof video or picture data.

Lossless data compressionTisTusedTinTtext file,Tdatabase tablesTandTinTmedical image because

law ofTregulations. Various losslessTdata compression algorithm haveTbeen proposed

andTused. Some ofTmainTtechniquesTare Huffman Coding,TRun LengthTEncoding, Arithmetic

Encoding and DictionaryTBased Encoding.TInTthisTreport weTexamineTArithmeticTEncoding

andTDictionary-basedTAlgorithmTandTgiveTcomparisonTbetweenTthemTaccording to their

performances.”

Compression isTused justTabout everywhere. AllTthe images youTget onTthe webTare

compressed,Ttypically in theTJPEG orTGIF formats,Tmost modemsTuse

compression,THDTVTwill beTcompressed usingTMPEG-2,TandTseveral fileTsystems

automaticallyTcompress filesTwhen stored,Tand theTrestTof us doTit byThand.TThe neat thing

aboutTcompression,TasTwithTthe other topics weTwillTcoverTin this course,Tis that the

algorithmsTused in the realTworldTmake heavy useTofTa wide set of algorithmicTtools,

includingTsorting,Thash tables,Ttries, andTFFTs.TFurthermore, algorithmsTwith strong theoretical

foundations play aTcriticalTroleTin real-world applications.

	
	

9	

TThe genericTterm messageTfor theTobjects weTwant toTcompress willTbe used,

whichTcouldTbe eitherTfiles or messages.TThe taskTofTcompression consists ofTtwo components,

anTencodingTalgorithm that takesTa message andTgeneratesTa “compressed”

representationT(hopefully with fewer bits), and a decoding algorithm that reconstructs the

original message or some approximation of it from the compressed representation. These two

components are typically intricately tied together since they both have to understand the

shared compressed representation. We distinguish between lossless algorithms, which can

reconstruct the original message exactly from the compressed message, and loss algorithms,

which can only reconstruct an approximation of the original message. Lossless algorithms

are typically used forTtext, andTloss forTimages andTsound whereTa littleTbit ofTlossTin

resolutionTisToften undetectable,Tor atTleast acceptable.TLoss is used in anTabstract

sense,Thowever,TandTdoesTnot meanTrandom lostTpixels, butTinstead meansTlossTof a quantity

suchTasTaTfrequency component, or perhaps lossTofTnoise.TForTexample,Tone might

thinkTthatTlossTtextTcompression would beTunacceptable becauseTthey areTimagining missingTor

switchedTcharacters. ConsiderTinstead aTsystem thatTrewordedTsentences intoTaTmore

standardTform, orTreplacedTwords withTsynonymsTso thatTthe fileTcan beTbetter

compressed.TTechnically theTcompression wouldTbe lossTsince theTtext hasTchanged, butTthe

“meaning”TandTclarityTofTthe messageTmight be fullyTmaintained,Tor evenTimproved. InTfact

ShrunkTandTWhite might argueTthat good writingTisTthe art ofTlossTtextTcompression.

IsTthere a losslessTalgorithmTthat canTcompressTall messages? ThereThasTbeenTatTleastTone

patent application thatTclaimedTto beTable toTcompressTall files (messages)—Patent

5,533,051Ttitled “MethodsTfor Data Compression”. The patentTapplication claimed that if

itTwasTappliedTrecursively,Ta file couldTbe reduced toTalmost nothing. With aTlittle thoughtTyou

shouldTconvinceTyourselfTthatTthis is notTpossible, atTleast ifTtheTsource messages

canTcontainTanyTbit-sequence. We canTseeTthisTby aTsimpleTcounting argument.TLet’sTconsider

allT1000Tbit messages,Tas anTexample. ThereTare 21000TdifferentTmessages weTcan send,Teach,

whichTneedsTto beTdistinctly identifiedTby theTdecoder.TItTshould be clearTweTcan’t represent

that manyTdifferent messagesTby sendingT999Tor fewer bitsTforTall the messagesT—T999Tbits

wouldTonlyTallow us toTsend 2999 distinctTmessages.TThe truth isTthatTif an algorithmTshortens

anyToneTmessage, then someTotherTmessage needsTto beTlengthened.TYou canTverify this in

	
	

10	

practiceTbyTrunningTGZIPTon a GIFTfile. ItTis, inTfact, possibleTto goTfurther andTshow thatTforTa

setTof inputTmessagesTof fixed length,TifTone messageTis compressed,TthenTtheTaverage lengthTof

theTcompressedTmessagesTover all possibleTinputs is alwaysTgoingTto beTlongerTthan

theToriginalTinputTmessages.TConsider, for example,Tthe 8Tpossible 3 bit messages.TIfTone is

compressedTtoTtwo bits, itTis not hard toTconvinceTyourself that twoTmessagesTwill have to

expandTtoT4 bits, givingTanTaverage of 31/8Tbits. Unfortunately,TtheTpatent wasTgranted.

DataTCompressionTis theTprocedure ofTencoding informationTto fewerTbitsTthanTthe

firstTrepresentation soTitTconsumesTlessTstorage space and less transmissionTtime while

conveying moreTthan a system.TData compression algorithmsTare classified inTtwo ways i.e.

lossTandTlossless data compression algorithm.TCompressionTalgorithmTis utilized toTchange

over informationTfrom aTsimpleTto-utilizeTarrangementTto one advanced forTsmallness. In like

manner, anTuncompressing systemTgives backTthe data toTits unique structure.

FigureT1.1:TbasicTprincipleTofTDataTCompress

	
	

11	

1.2 Problem Statement
The fundamental problem of lossless compression is to decompose a data set (for example, a

text file or an image) into a sequence of events, then to encode the events using as few bits as

possible. The idea is to assign short code words to more probable events and longer code

words to less probable events. Data can be compressed whenever some events are more

likely than others. Statistical coding techniques use estimates of the probabilities of the

events to assign the code words. Given a set of mutually distinct events e1, e2, e3, _ _ _ _, en,

and an accurate assessment of the probability distribution P of the events, Shannon proved

that the smallest possible expected number of bits needed to encode an event is the entropy of

P, denoted by

H (P) = −p e! log! p {e!}!
!!!

Where p {ea.} is the probability that event ea. occurs. An optimal code outputs log2 p bits to

encode an event whose probability of occurrence is p. Pure arithmetic codes supplied with

accurate probabilities provide optimal compression. In theory, arithmetic codes assign one

"code word" toTeach possibleTdataTset.TTheTcode wordsTconsistTof half-openTsubintervals ofTthe

half-openTunit intervalT[0,1),Tand areTexpressedTby specifyingTenoughTbits toTdistinguishTthe

subinterval correspondingTtoTthe actualTdataTset fromTall other possibleTsubintervals.TShorter

codes correspond to larger subintervalsTandTthus moreTprobable input dataTsets. InTpractice,Tthe

subintervalTis refinedTincrementally using the probabilitiesTofTthe individual events,Twith

bitsTbeing outputTasTsoon as theyTare known.TArithmetic codesTalmost alwaysTgiveTbetter

compression than prefixTcodes,Tbut theyTlack theTdirect correspondenceTbetween the events in

the inputTdata setTand bitsTorTgroups of bitsTin the coded output file.

ATstatistical coderTmust work inTconjunction with a modelerTthat estimates theTprobability of

eachTpossibleTeventTat each point in the coding. TheTprobabilityTmodel need not describeTthe

processTthat generates theTdata;Tit merelyThas to provide a probability distribution for the data

items. The probabilities do not even have to be particularly accurate,TbutTtheTmore accurate

theyTare,TtheTbetter the compression willTbe. IfTtheTprobabilities areTwildlyTinaccurate, the

fileTmay evenTbe expandedTrather than compressed,Tbut the original dataTcan still be

recovered.TTo obtain maximum compressionTofTaTfile, we need both a good probabilityTmodel

and anTefficient wayTof representing (or learning) theTprobability model.

	
	

12	

LosslessTdataTcompression is aTprocedure thatTpermitsTthe utilizationTof data compression

calculationsTtoTpackTthe content data furtherTmoreTpermits the preciseTuniqueTdataTto be

remadeTfromTthe compacted data.TThis is in as opposed toTtheTlossTdata compression in which

the careful uniqueTdataTcan'tTbeTrecreatedTfrom the compacted data.TThe prevalent

ZIPTrecordTorganizeTthat is being utilizedTfor the compression ofTdata documentsTis

likewiseTaTuse ofTlosslessTdata compressionTapproach.TLossless compression isTutilized

whenTitTis vitalTthat the first dataTand theTdecompressed dataTbeTindistinguishable.TLossless

contentTdataTcompression calculations typically abuse factualTexcessTinTsuch aTpathTin order to

speakTtoTthe sender's data all theTmore briefly with noTblunder or any kindTof loss of

vitalTdataTcontained inside ofTthe content information data.TSinceTthe majority of thisTpresent

reality dataThas factual excess, thusly-losslessTdata compression is conceivable.TCase in point,

In EnglishTcontent, the letter "an" isTa great deal moreTbasic than theTletter 'z', and the

likelihoodTthat the letter “z”Twill trail the letterT“t”Tis little. So this sortTof repetition can

beTevacuated utilizing lossless compression.TLosslessTcompression techniques may

beTclassifiedTby kind of dataTtheyTare intended to pack.TCompression calculations are

essentiallyTutilizedTfor the compression of content,Tpictures and sound. MostTlossless

compression projects utilize twoTvarious types of calculations: oneTwhich creates a factual

modelTfor the info dataTand another which mapsTthe information data toTbit strings utilizing

thisTmodelTas a part ofTsuch a route, toTthe point that soften asTpossibleTexperienced data will

deliver shorter yieldTthan improbable (less continuous)Tdata.TThe upside of lossless

techniquesTover loss systems is thatTLossless compression results areTin a

closerTrepresentationTof the first infoTdata. The executionTof calculations can beTthought about

utilizing theTparameters, for example, Compression Ratio andTSaving Percentage. In lossless

dataTcompression document theTfirst message can beTpreciselyTdecoded.

Lossless data compressionTlivesTup to expectationsTby discovering rehashed examplesTin a

message andTencoding those examples inTan effectiveTway.TThus,Tlossless data compressionTis

likewiseTalludedTto as repetitionTdecrease.TSince repetition decrease is reliant on examplesTin

the message, it doesn't functionTadmirablyTon arbitrary messages. LosslessTdata compression

isTperfect for content.

	
	

13	

1.3 Objective
Our objectiveTitTto implement the Huffman codingTalgorithms, LZW, run length-

encodingTalgorithm and compareTtheTresults obtained to maximizeTthe compressionTratio and

minimize theTcompression time.

1.4 Methodology

1.4.1THuffmanTCoding
THuffman Data Compression algorithmTworks in three phases toTcompress the text data.TInTthe

first phase dataTis compressed with the helpTof dynamic bit reduction techniqueTand in second

phase uniqueTwords are to beTfound to compress theTdata further and inTthird and finalTphase

Huffman codingTis used toTcompress the data further toTproduce the final output. Following

areTthe main steps ofTalgorithm for compression and decompression:

StepTI: Input theTtext data to be compressed.

StepTII: Apply Dynamic bitTReductionTmethod to compress theTdata.

StepTIII: Find the unique symbolTtoTcompress the data further.

StepTIV: Create the binaryTtree with nodes representing theTunique symbols

Step V: ApplyTHuffman coding to FinallyTcompress the data.

Step VI:TDisplay the final resultTobtained in previous step.

HuffmanTcoding is an entropy-encodingTalgorithm used for losslessTdata compression in

computerTscience and information theory. TheTtermTrefers to the use ofTvariable-length code

table for encodingTaTsource symbol (such as a characterTin a file) where theTvariable-length

code table has been derivedTin a particular way basedTon the estimated probabilityTof

occurrence for eachTpossible value of theTsource symbol.

Huffman coding uses a specificTmethod for choosing there presentationTfor each symbol,

resulting inTa prefix-free code (that is,Tthe bit string representing some particularTsymbol is

neverTaTprefix of the bitTstring representing another symbol)TthatTexpresses the most

commonTcharacters using shorter stringsTof bits than are usedTfor less common

sourceTsymbols.THuffman was able to designTthe most efficient compressionTmethodTof this

type: noTother mapping of individualTsource symbolsTtoTunique strings of bits

	
	

14	

willTproduceTaTsmallerTaverage output size when theTactual symbol frequencies agreeTwith

those used toTcreate

The code. A methodTwas later found toTdo this in linearTtime if input probabilitiesT(also

known asTweights) are sorted. ForTa set ofTsymbols with aTuniform probability distributionTand

a number ofTmembers which isTa power of two,THuffman coding isTequivalent to simple

binaryTblock encoding [e.g.,TASCII coding.

Assume you haveTa source generatingT4 different symbols {a1,Ta2, a3, and a4}Twith

probability {0.4;0. 35;0.T2;0.T05}.TGenerate a binary treeTfrom left toTright taking the

twoTlessTprobable symbols, putting themTtogetherTto form anotherTequivalent symbol having

aTprobability that equals theTsum of the twoTsymbols. Keep onTdoing it until youThaveTjustTone

symbol. Then readTthe tree backwards,Tfrom righ to left, assigningTdifferent bits to different

branches. The final Huffman code is:

SYMBOL CODE

A1 0

A2 10

A3T111

A4 110

The techniqueTworks by creatingTa binary treeTof nodes. TheseTcan be storedTin a regular

array,Tthe size ofTwhichTdepends on theTnumberTof symbols (N).TA node can beTeither a leaf

nodeTor an internal node.TInitially, all nodes areTleaf nodes, which containTthe symbol itself,

theTweight (frequency of appearance)Tof the symbol andToptionally, Link to aTparent node

whichTmakes it easy toTread the code (inTreverse)Tstarting from aTleaf node. InternalTnodes

contain symbolTweight, links toTtwo child nodes andTthe optional linkTto a parent node.TAs a

common convention,TbitT'0' represents following theTleftTchild and bit '1'represents following

theTrightTchild. A finished treeThas Leaf nodes and N−1TinternalTnodes.TA linear-time* method

to create aTHuffmanTtree is to useTtwo queues, theTfirstTone containing theTinitial weights

(along withTpointersTto the associatedTleaves),Tand combined weights (alongTwith pointers

toTtheTtrees) being put inTtheTbackTof the second queue.TThisTassures that theTlowest weight

isTalwaysTkeptTatTthe front ofToneTof the two queues.

	
	

15	

1.4.2TLZWT
LZWTcompressionTreplacesTstrings of characters withTsingle codes. It doesTnot do any

analysisTof the incoming textT.Instead, it just addsTevery new string ofTcharacters it sees to

aTtable of strings .CompressionToccurs when a single codeTisToutput instead ofTa string of

charactersT.LZW also performs wellTwhen presented with extremelyTredundant data files,

suchTas tabulated numbers,Tcomputer source code,Tand acquired signals.

WhenTthe LZW program starts toTencode a file, theTcode table contains onlyTtheTfirst 256

entries,Twith the remainderTof the tableTbeing blank. This meansTthat the first codesTgoing into

the compressedTfileTareTsimply the single bytesTfrom the input fileTbeingTconverted to 12

bits.TAs the encoding continues, the LZWTalgorithmTidentifies repeated sequences in theTdata,

and adds themTto the code table. Compression startsTthe second time aTsequence is

encountered.TThe key point isTthat a sequenceTfrom the input fileTis not added to theTcode table

until itThas already been placed in theTcompressed file as individualTcharacters (codes 0 to

255).TThis is important becauseTit allows the uncompressingTprogram to reconstruct theTcode

table directly fromTthe compressed data, withoutThaving to transmit theTcode table separately.

The decodingTalgorithm works byTreading a valueTfrom the encoded inputTand outputting

theTcorresponding string from theTinitializedTdictionary. In orderTto rebuild theTdictionaryTin

the same way asTit was builtTduring encoding, it alsoTobtains the next valueTfrom the input

andTadds to the dictionaryTthe concatenation of theTcurrent string and theTfirst character ofTthe

string obtainedTby decoding the nextTinput value, orTthe first character ofTthe string justToutput

if theTnext value canTnot be decodedT(IfTthe next value isTunknown to the decoder,Tthen it must

beTthe value thatTwill be addedTto the dictionary thisTiteration, and soTits first character mustTbe

the same asTthe first character ofTthe current stringTbeing sent to decodedToutput). The decoder

thenTproceeds to the nextTinput value (which wasTalreadyTreadTin as the "nextTvalue" in the

previousTpass) and repeats theTprocess until thereTis no more input,Tat which point theTfinal

input valueTis decoded withoutTany more additionsTto the dictionary.

InTthis way theTdecoder builds upTaTdictionary, which is,Tidentical to thatTused by theTencoder,

and uses itTto decode subsequentTinput values. Thus theTfull dictionary does notTneed be sent

withTthe encoded data;TjustTthe initial dictionaryTcontaining the single-characterTstrings is

sufficientT(and is typicallyTdefined beforehand withinTthe encoder and decoderTrather than

beingTexplicitly sent withTthe encoded data.

	
	

16	

1.4.3TRun Length Encoding
ThisTalgorithm consists ofTreplacing large sequencesTof repeating dataTwithTonlyTone item

ofTthis data followedTby a counterTshowing how manyTtimes this itemTis repeated.

 TheTalgorithm works asTfollow:

a) Pick theTfirst character from sourceTstring.

b) Append theTpicked character to theTdestination string.

c) Count theTnumber of subsequent occurrencesTof the picked characterTand append theTcount

to destinationTstring.

d) Pick theTnext character andTrepeat steps b)Tc) and d)Tif end of string is NOTTreached.

	
	

17	

T Chapter-2

T T LITERATURE SURVEY

2.1 Huffman Coding
The Huffman coding procedureTfindsTthe optimumT(leastTrate)Tuniquely decodable,Tvariable

length entropy codeTassociated with a setTof events given theirTprobabilities of

occurrence.TThe procedure is simpleTenough that weTcan present it here.

TheTHuffman coding method isTbased on theTconstruction of whatTis known asTa binary

tree.TThe path from theTtop or rootTof this treeTto a particular eventTwill determine theTcode

group we associateTwith that event.

Suppose,Tfor example, that weThave six eventsTwithTnames and probabilitiesTgiven in theTtable

below.

Event NameT Probability

A 0.30

B 0.30

C 0.13

D 0.12

E 0.10

F 0.05

OurTfirstTstep is to orderTtheseTfrom highest (onTthe left) to lowestT(on the right) probabilityTas

shown in theTfollowing figure, writing outTnext to eachTevent its probabilityTfor since this

valueTwill drive theTprocess of constructing theTcode.

Figure 2.1Tpreparing for Huffman codeTconstruction

	
	

18	

NowTweTperform a constructionTprocess in whichTweTwillTpair events toTform a newTsingle

combinedTevent, which willTreplaceTthe pair members.TThis step willTbeTrepeated many

times,TuntilTthereTare no moreTpairsTleft.

First weTfindTthe twoTeventsTwithTleast combinedTprobability.TThe first timeTwe do

this,TtheTanswer willTalwaysTbe theTtwo rightThandTevents. We connectTthemTtogether, as

shownTinTFigure 2.1TcallingTthisTa combined eventT(EFTin thisTcase)Tand noting

itsTprobabilityT(which isTtheTsum of thoseTof E and FTin this case.) WeTalso place a 0TnextTto the

leftThand branch andTaT1Tnext to theTrightThand branch ofTthe connection ofTthe pair asTshown

in the figure. TheT0TandT1 make upTpart of theTcode we areTconstructingTfor these elements.

T

Figure2.2TlistTall event inTdescending order of probability
T
.

NowTweTrepeat the last step,Tdealing only with the remainingTevents and the combined

event.TThisTtime combining CTand D createsTa combined eventTwith less probabilityTthan

combining anyTothers.

 T

Figure 2.3 combining CTand D

	
	

19	

Again weTrepeat the process. ThisTtime, combining the combinedTevents CD andTEF create

theTnew combined eventTwith least probability.

T

Figure2.4 combiningTCD and EF

The nextTtime around the bestTcombination is of ATand B.

 T

Figure 2.5 combining ATand B
T

Finally there isTonly one pairTleft, which weTsimply combine.

	
	

20	

 TT

Figure 2.6Tcombining AB andTCDEF

HavingTfinishedTourTconnectionTtree, we areTready to read offTof the diagramTthe codes that

weTwill associate with eachTof the originalTevents. To obtainTtheTcode, we startTat the topTlevel

of theTtree and makeTourTway to the eventTwe wish toTcode. The seriesTof 0's andT1's we

encounterTalong the wayTon the branches ofTthe tree compriseTour code. DoingTso for

eachTevent in this caseTyields the followingTresult.

EventTName Probability TCode Length

A T 0.3 00 2

B T0.3 01 2

C T0.13 100 3

D T0.12 T101 3

E 0.1 TT110 3

F 0.05 T111 3

If weTsum the productsTof the event probabilitiesTandTtheTcode lengths for this case

weTobtainTanTaverage bitTrateTof 2.4 bitsTper event. IfTweTcompute the trueTminimum bit

	
	

21	

rate,Tthat is theTinformationTrate, ofTtheseTevents as we didTwith the previousTexample, we

obtainT2.34Tbits.

Suppose thatTwe hadTbeenToriginally planningTto code ourTeventsToriginally as allT3-bitTcodes

in aTfixedTlength codeTscheme. Then,Tif weTcodeTaTdocument,Twhich is longTenoughTsoTthat

weTobtainTthe averageTpromisedTby thisTnewTscheme instead,Twe willTfind thatTwe willTobtainTa

compression ratio over the original scheme of 2.4/3 = 80% whereas the ultimate possible

compression ratio isT2.34/3 = 78%.

ItTcanTbeTshown that theTHuffmanTcodeTprovides the bestTcompressionTfor any communication

problem for aTgivenTgrouping ofTthe events.TInTthis problemTweTchose notTto groupTevents,Tbut

to codeTthem individually.TIfTwe wereTto createTthe 36TeventsTweTwouldTget byTforming

pairsTofTthe above events, we wouldTgetTsubstantially closer to the optimum rateTsuggested by

theTinformation rate calculation.

Figure 2.7TfunctioningTofTHuffmanTalgorithm

	
	

22	

2.2TLZWT
TheTLZW algorithmTisTaTgreedy algorithm inTthatTitTtries to recognizeTincreasingly longer

andTlongerTphrases that are repetitive, and encodeTthem.TEachTphrase is defined

toThaveTaTprefixTthat is equal toTaTpreviouslyTencodedTphraseTplus one additional

characterTinTtheTalphabet.TNoteT“alphabet” means the setTofTlegalTcharactersTin the file. For a

normal textTfile,TthisTisTtheTacai characterTset.TForTaTgray level imageTwithT256Tgray levels,TitTis

an 8-bit numberTthat representsTtheTpixel’s grayTlevel.

ForTanTinstance the compressionTforTthe phraseT“the/rain/in/spain/falls/mainly/on/the/plain

willTbeTas followsT:

s.no Char String+charT InTtable Output AddTto

table

New

string

comment

1 t t no t first

charno

action

2 h tg no t 256 h

3 e he no h 257 e

4 / e/ no e 258 /

5 r /r no / 259 r

6 a ra no r 260 a

7 i ai no a 261 i

8 n in no i 262 n

9 / n/ no n 263 /

10 i /i no / 264 i

11 n in yes(262) in first match

found

12 / in/ no 262 265 /

13 s /s no / 266 s

14 p sp no s 267 p

15 a pa no p 268 a

	
	

23	

16 i ai yes(261) ai

17 n ain no 261 269 n

18 / n/ yes(263) n/

19 f n/f no 263 270 f

20 a fa no f 271 a

21 l al no a 272 l

22 l ll no l 273 l

23 s ls no l 274 s

24 / s/ no s 275 /

25 m /m no / 276 m

26 a ma no m 277 a

27 i ai yes(261) ai match ai

28 n ain yes(269) ain match

longer

string,ain

29 l ainl no 269 278 l

30 y ly no l 279 y

31 / y/ no y 280 /

32 o /o no / 281 o

33 n on no o 282 n

34 / n/ yes(263) n/

35 t n/t no 263 283 t

36 h th yes(256) th matches

th,the is

not in

table yet

37 e the no 256 284 e the added

to table

38 / e/ yes() e/

39 p e/p no 258 285 p

	
	

24	

40 l pl no p 286 l

41 a la no l 287 a

42 i ai yes(261) ai matches ai

43 n ain yes(261) ain matches

longer

string ain

44 / ain/ no 269 /

45 EOF / / 288 end of

file,output

STRING

2.3 run length encoding
Run-lengthTencoding isTan information pressure calculation thatTis upheld byTmost bitmap

documentTarrangements, for example,TTIFF, BMP, andTPCX.TRLETis suited for compacting

any sort ofTinformation paying littleTrespectTto its dataTcontent, yet theTsubstanceTof

theTinformationTwill influence the pressure proportion accomplishedTbyTRLE.TAlbeit most

RLE calculations can't accomplishTtheThighTpressureTproportions of the more propelled

pressure techniques,TRLETisTbothTsimpleTtoTactualizeTand brisk to execute, making it a decent

other option toTeitherTutilizingTaTperplexingTpressure calculation or leaving your picture

information uncompressed.

RLE worksTbyTdecreasingTtheTphysicalTsizeTof a rehashing series of characters. This rehashing

string, called aTrun,TisTordinarilyTencodedTinto two bytes. The primary byte speaks to the

quantity of charactersTinTtheTrunTandTisTknownTasTthe run number. By andTby,Tan encoded run

may contain 1TtoT128TorT256Tcharacters;TtheTrun consider more often thanTnotTcontains the

quantity of charactersTshortToneT(anTincentive in the scopeTofT0 to 127 or 255).TTheTsecond

byte is theTestimationTof the character inTtheTrun, which is inTtheTscope of 0 to 255, andTis

known asTthe run esteem.

Run length encodingT(RLE)TisTa very simple form ofTlosslessTdataTcompression which runs on

sequences having sameTvalueToccurringTmanyTconsecutive times andTit encode the sequence to

store only a singleTvalueTand its count.

	
	

25	

For example,

Consider aTscreenTcontainingTplain black text on aTsolidTwhite background. There

willTbeTmany long runsTofTwhite pixels in theTblankTspace, and many short runs of blackTpixels

within the text.

WWWWWWWWWWWWBWWWWWWWWWWWWBBBWWWWWWWWWWWW

WWWWWWWWWWWWBWWWWWWWWWWWWWW

WithTaTrun length encoding (RLE) data compression algorithm applied to the above

hypothetical scan line, it can be rendered as follows:

12W1B12W3B24W1B14W

This can be interpreted as a sequence of twelve Ws, one B, twelve Ws, three Bs, etc.

	
	

26	

Chapter-3

 SYSTEM DEVELOPMENT

3.1 Huffman Coding

3.1.1 Compression Algorithm
shortcreate_tree()

{

voidfind_lowest_freqs(void);

shortonly_one_up_ptr_left(void);

doublemaxfreq = 0 ;

structchardata *new_node = NULL;

fprintf(fpp,"Creating tree from frequencies...");

while (maxfreq< 0.99999)

 {

find_lowest_freqs();

if ((new_node = (structchardata *)malloc(sizeof

(structchardata)))

 == NULL

)

{

printf(fpp,"Insufficient memory, malloc()

failed in create_tree().")

 ;

return FALSE;

 }

new_node->up = NULL;

new_node->left = ptr2;

new_node->right = ptr1;

new_node->charnum = -1;

ptr1->up = new_node;

	
	

27	

ptr2->up = new_node;

new_node->frequency = ptr1->frequency + ptr2-

>frequency;

maxfreq = new_node->frequency;

#ifdef VERBOSE

fprintf(fpp,"Newly created freq == %f\n",

maxfreq);

#endif

 }

root = new_node;

if (only_one_up_ptr_left())

 {

fprintf(fpp,"Done creating tree.");

#ifdef verbose

fprintf(fpp,"Win: apparently only one remaining

up-pointer.");

#endif

}

else

{

fprintf(fpp,"Lose: apparently more than one remaining up-pointer.");

return FALSE;

 }

return TRUE;

}

	
	

28	

3.1.2 Model Developement

TheTtechnique worksTbyTcreating aTbinary treeTof nodes. TheseTcan beTstored in a regularTarray,

the size ofTwhichTdepends on theTnumber of symbols,Tn.TA node canTbe

eitherTa leaf nodeTorTan internalTnode. Initially,Tall nodesTare leaf nodes,TwhichTcontain

the symbol itself, theTweightT(frequencyTof appearance) ofTtheTsymbolTandToptionally, a link to

a parent nodeTwhichTmakesTit easy to read the codeT(in reverse)Tstarting fromTaTleaf

node.TInternal nodes containTsymbolTweight, linksTtoTtwo childTnodes andTtheToptional linkTto

aTparentnode.TAs a common convention,TbitT'0'Trepresents followingTtheTleftTchild and bit '1'

representsTfollowingTthe right child.TATfinishedTtree has up toTnTleafTnodes and

$n-1$TinternalTnodes.TA HuffmanTtreeTthatTomits unusedTsymbolsTproduces the

mostToptimal code lengths.

TheTprocess essentiallyTbeginsTwithTthe leafTnodes containingTthe probabilitiesTofTthe symbol

they represent,TthenTaTnew node whoseTchildrenTareTthe 2TnodesTwithTsmallest probabilityTis

created,TsuchTthatTthe newTnode'sTprobability isTequal toTtheTsum ofTtheTchildren's probability.

WithTthe previous 2Tnodes merged intoTone nodeT(thus not considering themTanymore), and

withTthe new nodeTbeingTnow considered, the procedureTisTrepeated untilTonlyToneTnode

remains, the Huffman tree.

The simplestTconstruction algorithm uses aTpriorityTqueueTwhere theTnode with lowest

probabilityTis givenThighestTpriority:

• CreateTa leafTnode for eachTsymbol and addTit to the priority queue.

• While thereTisTmoreTthan oneTnode in the queue:

• RemoveTthe twoTnodes ofThighest priorityT(lowest probability)Tfrom theTqueue.

• CreateTa newTinternalTnode withTthese twoTnodes asTchildren andTwith probabilityTequal

toTthe sum ofTthe two nodes'Tprobabilities.

• AddTthe newTnodeTto the queue.

• TheTremainingTnode is theTrootTnode and theTtreeTis complete.

SinceTefficientTpriority queue dataTstructuresTrequire O(logTn) time per insertion,TandTa tree

withTn leaves hasT2n−1 nodes, thisTalgorithmToperates in O(nTlogTn)Ttime, where nTisTthe

number ofTsymbols.

	
	

29	

IfTthe symbolsTareTsorted by probability,Tthere is aTlinear-timeT(O(n)) method toTcreateTa

HuffmanTtreeTusing two queues,TtheTfirst one containing theTinitialTweights (along with

pointers toTthe associatedTleaves),Tand combined weightsT(alongTwith pointersTtoTthe trees)

beingTputTin the back ofTtheTsecondTqueue. This assures that theTlowestTweightTis always kept

atTtheTfront of oneTof the two queues:

• StartTwith as manyTleavesTas there areTsymbols.

• EnqueueTallTleafTnodes into the first queueT(byTprobabilityTinTincreasing order so that

the leastTlikelyTitemTis in theTheadTofTthe queue).

While thereTisTmore thanToneTnode in the queues:

• DequeueTtheTtwo nodes with the lowestTweightTbyTexamining the fronts

ofTbothTqueues.

• Create a newTinternalTnode, withTtheTtwo just-removed nodesTasTchildrenT(either node

canTbeTeither child) andTtheTsumTof their weights asTthe new weight.

• EnqueueTthe new nodeTintoTthe rear of theTsecond queue.

• The remainingTnodeTisTtheTrootTnode; the treeThasTnow beenTgenerated.

AlthoughTlinear-timeTgivenTsorted input, in theTgeneralTcase of arbitraryTinput, using this

algorithmTrequiresTpre-sorting. Thus, since sortingTtakesTO(nTlogTn) timeTin the general case,

bothTmethodsThave the same overallTcomplexity.

InTmany cases,TtimeTcomplexity is not veryTimportantTin the choice ofTalgorithmThere,

since nThere is theTnumberTofTsymbols in theTalphabet,Twhich is typically aTveryTsmall number

(comparedTtoTthe lengthTof theTmessageTto be encoded); whereas complexity

analysisTconcernsTthe behavior when nTgrowsTtoTbe very large.

It isTgenerallyTbeneficial to minimizeTtheTvariance of codeword length. ForTexample, a

communicationTbuffer receiving Huffman-encodedTdataTmay needTtoTbe larger to dealTwith

especially long symbolsTifTthe treeTis especially unbalanced. ToTminimizeTvariance, simply

break ties betweenTqueuesTby choosing the itemTinTthe first queue. ThisTmodificationTwill

retainTtheTmathematical optimality ofTtheTHuffman coding while both minimizingTvariance

and minimizing theTlength of theTlongest character code.

	
	

30	

3.1.3TAnalysis of HuffmanTcoding
Although Huffman's originalTalgorithm isToptimal for a symbol-by-symbol coding

(i.e.,TaTstream of unrelated symbols) withTaTknown input probability distribution,TitTis not

optimal when the symbol-by-symbol restrictionTisTdropped, or when the probabilityTmass

functions areTunknown. Also, ifTsymbolsTare not independent andTidenticallyTdistributed, a

singleTcode may beTinsufficient for optimality. OtherTmethodsTsuch as arithmetic

codingand LZWTcoding oftenThave better compressionTcapability:TBoth of these methods can

combineTanTarbitraryTnumberTofTsymbolsTforTmoreTefficient coding, and generally adapt to the

actual input statistics, useful when inputTprobabilitiesTareTnotTpreciselyTknown or vary

significantly withinTtheTstream.THowever, these methods have higherTcomputational

complexity. Also,TbothTarithmetic codingTand LZW wereThistoricallyTa subject of some

concernToverTpatent issues. However,Tas ofTmid-2010, theTmost commonly usedTtechniques for

theseTalternatives to HuffmanTcoding have passed intoTtheTpublicTdomain as the early patents

have expired.

However,TtheTlimitations of HuffmanTcodingTshould not be overstated;TitTcan be used

adaptively,Taccommodating unknown, changing,TorTcontext-dependentTprobabilities.TIn the

caseTofTknownTindependentTand identically distributed randomTvariables,Tcombining symbols

("blocking")TreducesTinefficiency in a wayTthatTapproaches optimality as theTnumberTof

symbols combinedTincreases.THuffmanTcoding is optimal whenTeach input symbolTis aTknown

independentTand identicallyTdistributedTrandomTvariable having aTprobability that is an the

inverse ofTaTpower of two.

PrefixTcodesTtend to haveTinefficiency on small alphabets,TwhereTprobabilitiesToften fall

betweenTtheseToptimal points. TheTworstTcase forTHuffmanTcoding can happenTwhen the

probabilityTofTa symbol exceedsT2−1
T= 0.5,Tmaking theTupperTlimitTof inefficiency unbounded.

TheseTsituationsToftenTrespond well toTaTform of blockingTcalledTrun-lengthTencodingT; for the

simple caseTof Bernoulli processes,TGolomb coding is aTprovablyToptimalTrun-length code.

For aTsetTof symbols with a uniformTprobabilityTdistribution and a numberTofTmembers which

isTa power of twoTHuffmanTcoding is equivalentTto simple binaryTblock encodingT,

e.g., ASCII coding. ThisTreflects the factTthat compressionTis notTpossibleTwith such an input.

	
	

31	

MostToften,Tthe weights usedTinTimplementations of Huffman codingTrepresentTnumeric

probabilities, but theTalgorithmTgiven above does notTrequireTthis; it requires only

thatTtheTweights form a totallyTorderedTcommutativeTmonoid, meaning aTway to order weights

andTtoTadd them. The HuffmanTtemplateTalgorithm enables oneTtoTuseTany kind of weights

(costs, frequencies, pairsTofTweights, non-numerical weights)TandTone of manyTcombining

methods (notTjust addition). SuchTalgorithms can solveTotherTminimization problems, suchTas

minimizing$\max_i\left[w_{i}+\mathrm{length}\left(c_{i}\right)\right]$,a

problem first applied to circuit design.

In the standardTHuffman coding problem,TitTisTassumed that eachTsymbolTin the set that the

codeTwordsTare constructed from hasTanTequal cost to transmit:TaTcode word whose length

is NTdigitsTwill always haveTaTcost of N, no matterThowTmany of those digitsTareT0s, how many

areT1s,Tetc. When working underTthisTassumption, minimizing theTtotalTcost ofTtheTmessage

andTminimizing the totalTnumberTof digits are the sameTthing.

Huffman coding with unequalTletterTcostsTisTtheTgeneralization without thisTassumption: the

letters ofTtheTencoding alphabet mayThaveTnon-uniform lengths, dueTtoTcharacteristics of the

transmissionTmedium. An exampleTisTtheTencoding alphabetTof MorseTcode, where a 'dash'

takes longer toTsend than a 'dot',TandTtherefore the cost ofTaTdash in transmission timeTis

higher. The goal isTstill to minimize the weightedTaverageTcodeword length, butTitTis no longer

sufficient just toTminimizeTthe number of symbolsTusedTby the message. No algorithmTis

known to solve thisTinTtheTsame manner or with theTsameTefficiency as conventional Huffman

coding.

	
	

32	

3.2.TLZW

3.2.1TcompressionTalgorithm

 wT=TNIL;

T while (read a characterTk)

 TT {

 TTT if wk exists inTtheTdictionary

 TT w = wk;

 T else

 T add wk to the dictionary;

 T output the code for w;

 T w = k;

TT Figure 3.1 flowchartTofTLZWTcompressionT

	
	

33	

3.2.2TdecompressionTalgorithm
read a characterTk;

 ToutputTk;

TT w = k;

 whileT(TreadTaTcharacterTk)

 T/*TkTcould be a character or aTcode. */

 T {

 TT entry = dictionary entryTfor k;

 TTT output entry;

 add w + entry[0] to dictionary;

 T w = entry;

 }

Figure 3.2 flowchart of LZW decompression

	
	

34	

3.2.3 model development
WhenTthe LZWTprogram starts to encode a file, the codeTtableTcontains only the first

256Tentries, with the remainder of theTtableTbeingTblank. This means thatTthe first codes going

into the compressedTfileTareTsimplyTthe single bytes from theTinputTfile being converted to 12

bits.TAsTthe encoding continues, the LZW algorithmTidentifiesTrepeated sequences inTtheTdata,

and addsTthemTto the code table. CompressionTstartsTthe second time aTsequenceTis

encountered. The key pointTisTthat a sequenceTfromTthe input file isTnotTadded to the codeTtable

until it has alreadyTbeenTplaced in the compressed fileTas individual characters (codesT0 to

255). This is importantTbecauseTit allows the uncompression program toTreconstructTthe code

table directlyTfromTthe compressed data, without having toTtransmitTthe code table separately.

TheTdecodingTalgorithm works by reading a valueTfromTthe encoded input andToutputtingTthe

corresponding string from theTinitializedTdictionary. In order to rebuildTtheTdictionary in the

sameTwayTasTit was built during encoding, itTalso obtains the next valueTfromTthe input and

adds to the dictionary theTconcatinationTof the current string andTtheTfirstTcharacter of the

stringTobtainedTbyTdecoding the next input value,TorTtheTfirstTcharacterTof the string just output

if the nextTvalueTcanTnot be decoded (If theTnextTvalueTis unknown to the decoder,TthenTit must

be theTvalueTthat will be added to theTdictionaryTthisTiteration, and so its first characterTmust be

the same as the firstTcharacterTof the current string being sentTto decoded output). TheTdecoder

then proceeds to theTnextTinput value (which was already readTinTasTthe "next value" in

theTprevious pass) and repeats theTprocessTuntil there is no moreTinput,TatTwhich point the final

inputTvalueTis decoded without any moreTadditionsTto theTdictionary.

In this way theTdecoderTbuilds up a dictionary whichTisTidentical to thatTusedTby the

encoder,Tand uses it toTdecodeTsubsequent input values. ThusTtheTfullTdictionary does not need

beTsentTwith the encoded data; justTtheTinitial dictionary containing theTsingle-characterTstrings

is sufficient (andTisTtypically defined beforehand within theTencoderTandTdecoder rather than

being explicitly sentTwithTtheTencoded data.

3.2.4 Analysis
LZW algorithm isTlargerTthan the Huffman algorithmTbecauseTthe scanning window orTthe

LZW algorithm takesTmoreTtime in order to fillTup the dictionary insideTtheTLZW. Although

the compression time isTlonger,Tit takes a shorterTtime to decompressTusing the LZW

	
	

35	

algorithmTthan the Huffman algorithm.TThis is because theTdecodingTprocessTonly needs to

decodeTthe dataTbyTmatching the LZW codeTwithTthe code inside theTlibrary.

3.3 Run length encoding

3.3.1 compression algorithm

3.3.2 decompression algorithm

3.3.3 model development
 Run-length encoding is aTdataTcompression algorithm that isTsupportedTby most bitmapTfile

formats, such asTTIFF,TBMP,Tand PCX. RLE is suitedTforTcompressing any type ofTdata

regardless of itsTinformationTcontent, but the contentTofTthe data will affect theTcompression

ratio achieved byTRLE.TAlthough most RLE algorithmsTcannotTachieve the highTcompression

ratios ofTtheTmore advanced compression methods, RLETisTboth easy to implement

	
	

36	

andTquickTto execute, makingTit a good alternative toTeitherTusingTa complex compression

algorithm orTleavingTyourTimage data uncompressed.

RLE works by reducing theTphysicalTsizeTofTaTrepeating string of characters.TThisTrepeating

string, called aTrun,Tis typically encoded into twoTbytes.TTheTfirst byte represents theTnumber

ofTcharactersTin the run andTisTcalled the run count.TInTpractice, an encodedTrunTmay contain 1

to 128Tor 256 characters; the runTcountTusually contains as theTnumberTof characters minus

one (aTvalueTin the range of 0TtoT127 or 255). The secondTbyteTis the value ofTtheTcharacter in

the run,TwhichTisTin the range ofT0 to 255, and is calledTthe run value.

Figure 3.3 flowchart of run length encoding

	
	

37	

3.3.4 analysis
TheTpartsTofTrun-lengthTencodingTalgorithmsTthatTdifferTareTtheTdecisionsTthatTareTmadeTbased

onTtheTtypeTofTdataTbeingTdecodedTsuchTasTtheTlengthTofTdataTruns.TRLETschemesTused to encode

bitmapTgraphicsTareTusuallyTdividedTintoTclasses by theTtype of atomicT(thatTis, most

fundamental) elements thatTtheyTencode.TTheTthreeTclassesTusedTbyTmostTgraphicsTfileTformats

are bit-, byte-, and pixel-levelTRLE.

Bit-levelTRLE schemes encodeTruns of multiple bitsTin a scan line and ignore byte and word

boundaries.TOnlyTmonochromeT(blackTandTwhite),T1-bitTimagesTcontainTa sufficient number of

bitTrunsTtoTmakeTthisTclassTofTRLETencodingTefficient.TATtypical bit-level RLE scheme encodes

runsTofToneTtoT128Tbits in length in aTsingle-byteTpacket.TTheTsevenTleastTsignificantTbitsTcontain

the run count minus one, and the most significant bit contains the value of the bit run, either 0

or 1. A run longer than 128 pixels is split across several RLE-encoded packets.

Byte-level RLE schemes encode runs of identical byte values, ignoring individual bits and

word boundaries within a scan line. The most common byte-level RLE scheme encodes runs

of bytes into 2-byte packets. The first byte contains the run count of 0 to 255, and the second

byte contains the value of the byte run. It is also common to supplement the 2-byte encoding

scheme with the ability to store literal, unencoded runs of bytes within the encoded data

stream as well.

In such a scheme, the seven least significant bits of the first byte hold the run count minus

one, and the most significant bit of the first byte is the indicator of the type of run that

follows the run count byte. If the most significant bit is set to 1, it denotes an encoded run.

Encoded runs are decoded by reading the run value and repeating it the number of times

indicated by the run count. If the most significant bit is set to 0, a literal run is indicated,

meaning that the next run count bytes are read literally from the encoded image data . The

run count byte then holds a value in the range of 0 to 127 (the run count minus one). Byte-

level RLE schemes are good for image data that is stored as one byte per pixel.

Pixel-level RLE schemes are used when two or more consecutive bytes of image data are

used to store single pixel values. At the pixel level, bits are ignored, and bytes are counted

only to identify each pixel value. Encoded packet sizes vary depending upon the size of the

pixel values being encoded. The number of bits or bytes per pixel is stored in the image file

header. A run of image data stored as 3-byte pixel values encodes to a 4-byte packet.

	
	

38	

 Chapter-4

 PERFORMANCE ANALYSIS

Performance”analysisTofTcompressionTalgorithmsTcanTbeTdoneTbyTvarious factors. However,

theTmainTconcernThasTalwaysTbeenTtheTspaceTefficiencyTand time efficiency. We are using

different factors to analyze the algorithm.”

4.1 CompressionTRatio
Compression”Tratio,TalsoTknownTasTcompressionTpower,TisTused to quantify the reduction in

data-representation sizeTproducedTbyTaTdataTcompressionTalgorithm.TTheTdata compression

ratio isTanalogousTtoTtheTphysical compression ratio used toTmeasureTphysical compression of

substances.””

Data” compressionTratio is defined asTthe ratio betweenTthe uncompressed

size and compressed size.

Thus”Ta representationTthatTcompressesTaT10TMBTfileTto 2 MB has aTcompressionTratio of 10/2

= 5, often notatedTasTanTexplicitTratio,T5:1T(read "five" to "one"), or as an implicit ratio, 5/1.

Note thatTthisTformulationTappliesTequallyTforTcompression,TwhereTtheTuncompressed size is

that ofTtheToriginal;TandTforTdecompression,TwhereTtheTuncompressedTsize is that of the

reproduction.””

Sometimes the space savings is given instead, which is defined as the reduction in size

relative to the uncompressed size:

Thus “a representationTthatTcompressesTaT10MBTfileTto 2MB would yield a space savings of 1

- 2/10 = 0.8,ToftenTnotated as a percentage, 80%.””

	
	

39	

For “signals ofTindefiniteTsize,TsuchTas streaming audioTandTvideo,TtheTcompression ratio is

definedTinTtermsTof uncompressed and compressedTdataTratesTinstead of data sizes:”

Instead” ofTspaceTsavings,ToneTspeaks of data-rate savings, whichTisTdefined as the data-rate

reduction relativeTtoTtheTuncompressed data rate:”

For “example,TuncompressedTsongsTinTCD format haveTaTdataTrate of 16 bits/channel x 2

channels xT44.1TkHzT≅T1.4TMbit/s, whereas AAC filesTonTanTiPodTareTtypicallyTcompressed to

128 Kbit/s,TyieldingTaTcompressionTratioTofT10.9, for a data-rate savings of 0.91, or 91%.

When theTuncompressedTdataTrateTisTknown,TtheTcompressionTratioTcan be inferred from the

compressed data rate.”

4.2 Compression Speed

Compression”TspeedTisTrelatedTtoTtheTdataTformatTandTtheTmachine type. The relationship

between applicationTperformanceTandThostTmachineTparametersTisTa research topic that is

outside ofTtheTscopeTofTthisTpaper.TDuringTtheTexperiments,TweTkeepTusingTtheTsameTmachine

for allTtheTcompressions,TandTmakeTsureTthatTourTapplicationTisTtheTonly workload. This way,

weTcanTthinkTofTcompressionTspeedTasTaTfunctionTofTcompressionTalgorithm.TThe compression

speed is alsoTaffectedTbyTcompressionTbufferTsize,TbutTweTomitTthisTfactorTbyTusingTthe

“Compression is an important technique in the multimedia computing field. This is because

we can reduce the size of data and transmitting and storing the reduced data on the Internet

and storage devices are faster and cheaper than uncompressed data. Many image and video

compression standards such as JPEG, JPEG2000, and MPEG-2, and MPEG-4 have been

proposed and implemented. In all of them entropy coding, arithmetic and Huffman

	
	

40	

algorithms are almost used. In other words, these algorithms are important parts of the

multimedia data compression standards. In this paper we have focused on these algorithms in

order to clarify their differences from different points of view such as implementation,

compression ratio, and performance.” We have explained these algorithms in detail,

implemented, and tested using different image sizes and contents.” From implementation

point of view, Huffman coding is easier than arithmetic coding. Arithmetic algorithm yields

much more compression ratio than Huffman algorithm while Huffman coding needs less

execution time than the arithmetic coding. This means that in some applications that time is

not so important we can use arithmetic algorithm to achieve high compression ratio, while

for some applications that time is important such as real-time applications, Huffman

algorithm can be used.””

same sizeTof buffer, whichTis 16KB.”

When” evaluatingTdataTcompressionTalgorithms, speed is alwaysTinTterms of uncompressed

data handledTperTsecond.”

Some applications useTdataTcompressionTtechniquesTeven when they haveTsoTmuch RAM and

diskTspaceTthatTthere'sTno real need toTmakeTfilesTsmaller. File compressionTand delta

compression are”Toften used to speed upTcopyingTfilesTfrom one end of aTslowTconnection to

another.TEven on aTsingleTcomputer,Tsome kinds of operationsTareTsignificantlyTfaster when

performed onTcompressedTversionsTofTdataTratherTthan directly on the uncompressed data. In

particular, some compressed fileTformatsTareTdesignedTsoTthat compressed pattern matching --

searching for a phrase inTaTcompressedTversionTofTa text file -- is significantly faster than

searching forTthatTsameTphrase in the original uncompressed text file.”

In aT“fewTapplications,TtheTcompressionTspeedTisTcritical.TIfTaTparticular implementation of an

audioTcompressorTrunningTonTaTprototypeTvoiceTrecorderTcannotTsustain 7 bits/sample/channel

x 1TchannelTxT8TkSamples/sT=T56Tkbit/sTfromTtheTmicrophonesTtoTstorage,Tthen it is unusable.

No oneTwantsTtheirTrecordedTvoiceTtoThaveTsilentTgapsTwhereTtheThardware could not keep up.

	
	

41	

No one willTbuyTitTunlessTyouTswitchTtoTaTdifferentTimplementationTorTfasterThardware (or both)

that can keepTupTwithTstandardTtelephone-qualityTvoiceTspeeds.

TheTspeedTvariesTwidelyTfromToneTmachineTtoTanother,TfromToneTimplementationTtoTanother.

Even on the same machine and sameTbenchmarkTfileTandTsameTimplementationTsourceTcode,

using a differentTcompilerTmayTmakeTaTdecompressorTrunTfaster.TheTspeedTof a compressor is

almost always slowerTthanTtheTspeedTofTitsTcorrespondingTdecompressor.

EvenTwith a fastTmodernTCPU, compressed fileTsystemTperformanceTisToften limited byTthe

speedTofTtheTcompressionTalgorithm.TMany modernTembeddedTsystemsT-- as well as many of

the earlyTcomputersTthatTdataTcompressionTalgorithmsTwereTfirstTdevelopedTon -- are heavily

constrained by speed.”

4.3 Results of HuffmanTcoding

File File size Comp. size Space saving Time Comp.ratio

File 1 1384 bytes 771 bytes 4901 bits 22 ms 1.795

File 2 2768 bytes 1542 bytes 9802 bits 91.6 ms 1.645

File 3 5992 bytes 3313 bytes 21425 bits 442.1 ms 1.808

Table 1: result of Huffman coding

	
	

42	

4.4TResultsTofTLZW

File FileTsize Comp. size Space saving Time Comp.ratio

File 1 1360 bytes 1067 bytes 293 bytes 3.00 ms 1.274

File 2 2719 bytes 1730 bytes 989 bytes 6.001 ms 1.571

File 3 4079 bytes 2396 bytes 1683 bytes 8.04 ms 1.702

Table 2: resultTofTLZW

4.5TResultsTofTrunTlengthTencoding

File File size Comp. size Space saving Time Comp.ratio

File 1 1856 bytes 633 bytes 1223 bytes 0.015ms 2.932

File 2 1398 bytes 407 bytes 991 bytes 0.016ms 3.434

File 3 8760 bytes 2737 bytes 6023 bytes 0.019 3.200

Table 3:result of RLE

	
	

43	

4.6 comparison of differentTcompressionTtechniques

Technique File size Comp. size Space saving Time Comp.ratio

Huffman 794 bytes 428 bytes 366 bytes 6.2ms 1.855

LZW 795 bytes 701 bytes 94 bytes 3ms 1.134

RLE 795 bytes 511 bytes 284 bytes 1 ms 1.555

Table 4:comparison of different techniques

	
	

44	

 Chapter-5

 CONCLUSION

5.1 Conclusion
Compression isTanTimportantTtechnique in the multimediaTcomputingTfield.TThis is because we

can reduceTtheTsizeTof data and transmitting andTstoringTtheTreducedTdata on the Internet and

storageTdevicesTareTfasterTandTcheaperTthanTuncompressedTdata.TMany image and video

compression standardsTsuchTasTJPEG,TJPEG2000,TandTMPEG-2,TandTMPEG-4 have been

proposed andTimplemented.TInTallTofTthemTentropyTcoding,TarithmeticTandTHuffman algorithms

are almost used.TInTotherTwords,TtheseTalgorithmsTareTimportantTpartsTofTtheTmultimedia data

compressionTstandards.TInTthisTpaperTweThaveTfocusedTonTtheseTalgorithms in order to clarify

their differencesTfromTdifferentTpointsTofTviewTsuchTasTimplementation,Tcompression ratio, and

performance. We haveTexplainedTtheseTalgorithmsTinTdetail,Timplemented,TandTtestedTusing

different image sizesTandTcontents.TFromTimplementationTpointTofTview,THuffmanTcodingTis

easierTthanTarithmeticTcoding.TArithmeticTalgorithmTyieldsTmuchTmoreTcompression ratio than

Huffman algorithm while HuffmanTcodingTneedsTlessTexecutionTtimeTthanTtheTarithmetic

coding.TThisTmeansTthatTinTsomeTapplicationsTthatTtimeTisTnotTsoTimportant we can use

arithmetic algorithmTtoTachieveThighTcompressionTratio,TwhileTforTsomeTapplications that time

is importantTsuchTasTreal-timeTapplications, Huffman algorithm can be used.”

LZW algorithm isTlargerTthanTtheTHuffmanTalgorithmTbecauseTtheTscanningTwindowTor the

LZW algorithmTtakesTmoreTtimeTinTorderTtoTfill up the dictionaryTinsideTtheTLZW.TAlthough

the compression timeTisTlonger,TitTtakesTaTshorter time to decompressTusing the LZW

algorithmTthan the Huffman algorithm.TThisTisTbecause the decoding process only needs to

decode the data byTmatchingTtheTLZWTcodeTwithTtheTcode inside the library.“

5.2 Future scope
LZW”TisTEasyTtoTimplementT,TFastTcompression,TDictionaryTbased technique.

Produce a lossless compression of images

With the advancements in compression technology, it is now very easy and efficient to

compress video ,text ,images or standard data files

	
	

45	

LZW compression became the first widely used universal data compression method on

computers”

text file can typically be compressed via LZW to about half its original size.

LZW became very widely used when it became part of the GIF , TIFF and pdf file.

Huffman is widely used in all the mainstream compression formats that you might encounter

- from GZIP, PKZIP (winzip etc) and BZIP2, to image formats such as JPEG and PNG.

All” compression schemes have pathological data-sets that cannot be meaningfully

compressed; the archive formats I listed above simply 'store' such files uncompressed when

they are encountered.

Newer arithmetic and range coding schemes are often avoided because of patent issues

meaning Huffman remains the work-horse of the compression industry.”

5.3 application contribution

Compression isTused justTabout everywhere. AllTthe images youTget onTthe webTare

compressed,Ttypically in theTJPEG orTGIF formats,Tmost modemsTuse

compression,THDTVTwill beTcompressed usingTMPEG-2,TandTseveral fileTsystems

automaticallyTcompress filesTwhen stored,Tand theTrestTof us doTit byThand.TThe neat thing

aboutTcompression,TasTwithTthe other topics weTwillTcoverTin this course,Tis that the

algorithmsTused in the realTworldTmake heavy useTofTa wide set of algorithmicTtools,

includingTsorting,Thash tables,Ttries, andTFFTs.TFurthermore, algorithmsTwith strong theoretical

foundations play aTcriticalTroleTin real-world applications.

TThe genericTterm messageTfor theTobjects weTwant toTcompress willTbe used,

whichTcouldTbe eitherTfiles or messages.TThe taskTofTcompression consists ofTtwo components,

anTencodingTalgorithm that takesTa message andTgeneratesTa “compressed”

representationT(hopefully with fewer bits), and a decoding algorithm that reconstructs the

original message or some approximation of it from the compressed representation. These two

components are typically intricately tied together since they both have to understand the

shared compressed representation. We distinguish between lossless algorithms, which can

reconstruct the original message exactly from the compressed message, and loss algorithms,

which can only reconstruct an approximation of the original message. Lossless algorithms

	
	

46	

are typically used forTtext, andTloss forTimages andTsound whereTa littleTbit ofTlossTin

resolutionTisToften undetectable,Tor atTleast acceptable.TLoss is used in anTabstract

sense,Thowever,TandTdoesTnot meanTrandom lostTpixels, butTinstead meansTlossTof a quantity

suchTasTaTfrequency component, or perhaps lossTofTnoise..

	
	

47	

REFERENCES

[1] Khalid Sayood, “Introduction to Data Compression”, Ed Fox (Editor), March 2000.

[2] Burrows M., and Wheeler, D. J. 1994,” A Block-Sorting Lossless Data Compression

Algorithm” SRC Research Report 124, Digital Systems Research Center.

[3] C.E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J., vol. 27,

pp. 398-403.

[4] Glen G. Langdon, Jr, “An Introduction to Arithmetic Coding.” IBM Research Division,

California.

[5]”Data Compression Methodologies for LossLess Data and Comparison between

Algorithms”,IJESIT Volume 2, Issue 2, March 2013.

[6] Amir Said, “Introduction to Arithmetic Coding - Theory and Practice”,Imaging Systems

Laboratory, 2004.

[7] Somefun, M. Adebayo & Adewale, ”Evaluation of dominant text data compression

techniques,“ IJAIEM, 2014.

[8] I.H. Witten, R.M. Neal, and J.G. Cleary, “Arithmetic Coding for the data compression,”

Commun. ACM, vol. 30, no. 6, pp. 520-540, June 1987.

[9] R. Pasco,” Source coding algorithms for fast data compression,” Stanford Univ., Ph.D.

dissertation, 1976.

[10] J.J. Rissanen, “Generalized Kraft inequality and arithmetic coding,” IBM J. Res. Devel.

, vol. 20, no. 3, pp. 198-203, May 1976.

[11] F. Rubin, “ Arithmetic stream coding using fixed precision registers,” IEEE Trans.

Information Theory, vol. IT-25, no. 6, pp. 520-540, June 1987.

[12] J.J. Rissanen and G.G. Langdon ,” Arithmetic coding,” IBM J. Res. Devel, vol. 23 no. 2,

pp. 146-162, Mar. 1979.

[13] M. Guazoo, “A general minimum-redundancy source-coding algorithm,” IEEE Trans.

Information Theory, vol. IT-26, no. 1, pp. 15-25, Jan 1980.

[14] ManjeetKaur, Er. UpasnaGarg,” Lossless Text Data Compression Algorithm Using

Modified Huffman Algorithm,” IJARCSSE, vol. 5, Issue. 7, 2015.

[15] A. Said, “Comparative Analysis of Arithmetic Coding Computational Complexity,“

Hewlett Packard Laboratories Report, HPL–2004–75, Palo Alto, CA, April 2004.

	
	

48	

[16] M. Schindler, “A fast renormalization for arithmetic coding,” Proc. IEEE Data

Compression Conf., 1998.

[17] Texas Instruments Incorporated, “TMS320C6000 CPU and Instruction Set Reference

Guide,” Literature Number: SPRU189F, Dallas, TX, 2000.

[18] International Business Machines Corporation, “PowerPC 750CX/CXe RISC

Microprocessor User’s Manual,” (preliminary edition), Hopewell Junction, NY, 2001.

[19] Intel Corporation, “Intel Pentium 4 Processor Optimization,” Reference Manual 248966,

Santa Clara, CA, 2001.

[20] Sun Microsystems Inc., “UltraSPARC III Technical Highlights,” Palo Alto, CA, 2001.

[21] Welch, Terry (1984), “A Technique for High-Performance Data Compression”. (6): 8–

19. doi:10.1109/MC.1984.1659158.

[22] Jump up ^ Ziv, J.; Lempel, A. (1978). “Compression of individual sequences via

variable-rate coding”, IEEE Transactions on Information Theory. 24 (5): 530.

doi:10.1109/TIT.1978.1055934

[23] D.S. Taubman and M.W. Marcellin, “JPEG 2000: Image Compression Fundamentals,”

Standards and Practice, Kluwer Academic Publishers, Boston, MA, 2002.

Web References:

http://www.stringology.org/DataCompression/ak-int/index_en.html

http://akbar.marlboro.edu/~mahoney/courses/Fall01/computation/compression/ac/ac_arithme

tic.html

http://cotty.16x16.com/compress/nelson1.htm

http://www.drdobbs.com/parallel/arithmetic-coding-and-statistical-modeli/184408491

http://www.dspguide.com/ch27/5.htm

https://www.cs.duke.edu/csed/curious/compression/lzw.html

