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ABSTRACT 

 

Today, security is one of the foremost concerns in the transmission of data over the 

internet or over any other network. Also, in recent years, there are great speculations 

regarding cryptographic algorithms which are suitable for constrained environments, 

like mobile devices, where computing resources, power availability, communication 

bandwidth and available memory are limited, as the number of mobile users are 

increasing at a very fast pace due to which m-commerce is on boom and today accounts 

for around 50% of all the e-commerce traffic and this percentage is expected to increase 

in future. 

In this project, I will select a public key cryptosystem suitable for such environment 

and study their workload characteristics. Particularly, I will study and discuss about 

elliptic curve cryptography algorithms, which is an emerging public key cryptographic 

system for constrained environments. This allows fast software implementations 

because of reduced key sizes and computational efficiency, while preserving the same 

security levels as were offered by previous integer-based public-key algorithms. I will 

characterize the operations needed by elliptic curve cryptography for different key sizes 

and different levels of software optimization. I will try to show that this algorithm can 

be implemented efficiently using very less resources.  
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1. INTRODUCTION TO NETWORK SECURITY 

AND CRYPTOGRAPHY 

In this age of universal electronic connectivity, of viruses and hackers, of electronic 

eavesdropping and electronic fraud, there is indeed no time at which security does not 

matter. Two trends have come together to make the topic “Cryptography” of vital 

interest. First, the explosive growth in computer systems and their interconnections via 

networks has increased the dependence of both organizations and individuals on the 

information stored and communicated using these systems. This, in turn, has led to a 

heightened awareness of the need to protect data and resources from disclosure, to 

guarantee the authenticity of data and messages, and to protect systems from network-

based attacks. Second, the disciplines of cryptography and network security have 

matured, leading to the development of practical, readily available applications to 

enforce network security [10]. 

In this project, I will be mainly focusing on the public key cryptosystems, which are 

mainly used for key distribution and digital signatures. But before that, I would like to 

give a brief theoretical background about cryptography. 

1.1 Some Basic Definitions 

Computer Security: The protection afforded to an automated information system in 

order to attain the applicable objectives of preserving the integrity, availability, and 

confidentiality of information system resources (includes hardware, software, 

firmware, information/data, and telecommunication). Basically, it is protection of 

information in potentially hostile environments. 

Cryptography: It is the key technology for achieving information security in 

communications, computer systems, electronic commerce, and in the emerging 

information society. It is a science that applies mathematics and logic to design complex 

methods to encrypt data.  

Threat: A potential for violation of security, which exists when there is a circumstance, 

capability, action, or event that could breach security and cause harm. That is, a threat 

is a possible danger that might exploit a vulnerability. 
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Attack: An assault on system security that derives from an intelligent threat; that is, an 

intelligent act that is a deliberate attempt (especially in the sense of a method or 

technique) to evade security services and violate the security policy of a system [14]. 

1.2 Network Security 

Network security consists of the provisions and policies adopted by a network 

administrator to prevent and monitor unauthorized access, misuse, modification, or 

denial of a computer network and network-accessible resources. Network security 

involves the authorization of access to data in a network, which is controlled by the 

network administrator. Users choose or are assigned an ID and password or other 

authenticating information that allows them access to information and programs within 

their authority. Network security covers a variety of computer networks, both public 

and private, that are used in everyday jobs conducting transactions and communications 

among businesses, government agencies and individuals. Networks can be private, such 

as within a company, and others which might be open to public access. Network 

security is involved in organizations, enterprises, and other types of institutions. It does 

as its title explains: It secures the network, as well as protecting and overseeing 

operations being done. 

ITU-T (The International Telecommunication Union – Telecommunication 

Standardisation Sector) Recommendation X.800, Security Architecture for OSI, 

defines such a systematic approach.4 The OSI security architecture is useful to 

managers as a way of organizing the task of providing security. Furthermore, because 

this architecture was developed as an international standard, computer and 

communications vendors have developed security features for their products and 

services that relate to this structured definition of services and mechanisms [14].  

The OSI security architecture focuses on security attacks, mechanisms, and services. 

These can be defined briefly as 

 Security Attack 

Any action that compromises the security of information owned by an 

organization. 

 Security Mechanism 
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A process (or a device incorporating such a process) that is designed to detect, 

prevent, or recover from a security attack. 

 Security Service 

A processing or communication service that enhances the security of the data 

processing systems and the information transfers of an organization. The services 

are intended to counter security attacks, and they make use of one or more security 

mechanisms to provide the service. 

1.2.1 Security Attacks 

Security Attacks can be classified in terms of passive attacks and active attacks [14]. 

1. Passive attacks 

Passive attacks are in the nature of eavesdropping on, or monitoring of, 

transmissions. The goal of the opponent is to obtain information that is being 

transmitted. Two types of passive attacks are the release of message contents 

and traffic analysis. 

 Release of message attack 

This type of attack is easily understood. A telephone conversation, an 

electronic mail message, and a transferred file may contain sensitive or 

confidential information. We would like to prevent an opponent from 

learning the contents of these transmissions. 

 Traffic analysis 

Suppose that we had a way of masking the contents of messages or other 

information traffic so that opponents, even if they captured the message, 

could not extract the information from the message. The common technique 

for masking contents is encryption. If we had encryption protection in 

place, an opponent might still be able to observe the pattern of these 

messages. The opponent could determine the location and identity of 

communicating hosts and could observe the frequency and length of 

messages being exchanged. This information might be useful in guessing 

the nature of the communication that was taking place. 

Passive attacks are very difficult to detect, because they do not involve any 

alteration of the data. Typically, the message traffic is sent and received in an 

apparently normal fashion, and neither the sender nor receiver is aware that a 
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third party has read the messages or observed the traffic pattern. However, it is 

feasible to prevent the success of these attacks, usually by means of encryption. 

Thus, the emphasis in dealing with passive attacks is on prevention rather than 

detection. 

2. Active attacks 

Active attacks involve some modification of the data stream or the creation of a 

false stream and can be subdivided into four categories: 

 Masquerade 

This takes place when one entity pretends to be a different entity. A 

masquerade attack usually includes one of the other forms of active attack. 

 Replay 

This involves the passive capture of a data unit and its subsequent 

retransmission to produce an unauthorized effect. 

 Modification of messages 

This simply means that some portion of a legitimate message is altered, or 

that messages are delayed or reordered, to produce an unauthorized effect. 

 Denial-of-Service 

The denial of service prevents or inhibits the normal use or management of 

communications facilities. This attack may have a specific target; for 

example, an entity may suppress all messages directed to a particular 

destination (e.g., the security audit service). Another form of service denial 

is the disruption of an entire network, either by disabling the network or by 

overloading it with messages so as to degrade performance. 

Active attacks present the opposite characteristics of passive attacks. Whereas 

passive attacks are difficult to detect, measures are available to prevent their 

success. 

On the other hand, it is quite difficult to prevent active attacks absolutely 

because of the wide variety of potential physical, software, and network 

vulnerabilities. Instead, the goal is to detect active attacks and to recover from 

any disruption or delays caused by them. If the detection has a deterrent effect, 

it may also contribute to prevention. 
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1.2.2 Security Services 

X.800 defines a security service as a service that is provided by a protocol layer of 

communicating open systems and that ensures adequate security of the systems or of 

data transfers [14].  

X.800 divides security services into five categories: 

1. Authentication 

The assurance that the communicating entity is the one that it claims to be. 

 Peer Entity Authentication 

Used in association with a logical connection to provide confidence in the 

identity of the entities connected. 

 Data Origin Authentication  

In a connectionless transfer, provides assurance that the source of received 

data is as claimed. 

2. Access Control 

The prevention of unauthorized use of a resource (i.e., this service controls who 

can have access to a resource, under what conditions access can occur, and what 

those accessing the resource are allowed to do). 

3. Data confidentiality 

The protection of data from unauthorized disclosure. 

 Connection Confidentiality 

The protection of all user data on a connection. 

 Connectionless Confidentiality 

The protection of all user data in a single data block 

 Selective-Field Confidentiality 

The protection of all user data in a single data block 

 Traffic-Flow Confidentiality 

The protection of the information that might be derived from observation of 

traffic flows. 

4. Data Integrity 

The assurance that data received are exactly as sent by an authorized entity (i.e., 

contain no modification, insertion, deletion, or replay). 

 Connection Integrity with Recovery 
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Provides for the integrity of all user data on a connection and detects any 

modification, insertion, deletion, or replay of any data within an entire data 

sequence, with recovery attempted. 

 Connection Integrity without Recovery 

As above, but provides only detection without recovery. 

 Selective-Field Connection Integrity 

Provides for the integrity of selected fields within the user data of a data block 

transferred over a connection and takes the form of determination of whether 

the selected fields have been modified, inserted, deleted, or replayed. 

 Connectionless Integrity 

Provides for the integrity of a single connectionless data block and may take 

the form of detection of data modification. Additionally, a limited form of 

replay detection may be provided. 

 Selective-Field Connectionless Integrity 

Provides for the integrity of selected fields within a single connectionless 

data block; takes the form of determination of whether the selected fields 

have been modified. 

5. Non-Repudiation 

Provides protection against denial by one of the entities involved in a 

communication of having participated in all or part of the communication. 

 Nonrepudiation, Origin 

Proof that the message was sent by the specified party. 

 Nonrepudiation, Destination 

Proof that the message was received by the specified party. 

 

1.2.3 Security Mechanisms 

The mechanisms are divided into those that are implemented in a specific protocol 

layer, such as TCP or an application-layer protocol, and those that are not specific to 

any particular protocol layer or security service.  

However, X.800 distinguishes between reversible encipherment mechanisms and 

irreversible encipherment mechanisms. A reversible encipherment mechanism is 
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simply an encryption algorithm that allows data to be encrypted and subsequently 

decrypted. Irreversible encipherment mechanisms include hash algorithms and 

message authentication codes, which are used in digital signature and message 

authentication applications [14]. 

1. Specific Security Mechanisms 

May be incorporated into the appropriate protocol layer in order to provide some 

of the OSI security services. 

 Encipherment 

The use of mathematical algorithms to transform data into a form that is not 

readily intelligible. The transformation and subsequent recovery of the data 

depend on an algorithm and zero or more encryption keys. 

 Digital Signature 

Data appended to, or a cryptographic transformation of, a data unit that 

allows a recipient of the data unit to prove the source and integrity of the 

data unit and protect against forgery (e.g., by the recipient). 

 Access Control 

A variety of mechanisms that enforce access rights to resources. 

 Data Integrity 

A variety of mechanisms used to assure the integrity of a data unit or stream 

of data units. 

 Authentication Exchange 

A mechanism intended to ensure the identity of an entity by means of 

information exchange. 

 Traffic Padding 

The insertion of bits into gaps in a data stream to frustrate traffic analysis 

attempts. 

 Routing Protocol 

Enables selection of particular physically secure routes for certain data and 

allows routing changes, especially when a breach of security is suspected. 

 Notarization 

The use of a trusted third party to assure certain properties of a data 

exchange. 
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2. Pervasive Security Mechanisms 

Mechanisms that are not specific to any particular OSI security service or 

protocol layer. 

 Trusted Functionality 

That which is perceived to be correct with respect to some criteria (e.g., as 

established by a security policy). 

 Security Label 

The marking bound to a resource (which may be a data unit) that names or 

designates the security attributes of that resource. 

 Event Detection 

Detection of security-relevant events. 

 Security Audit Trail 

Data collected and potentially used to facilitate a security audit, which is an 

independent review and examination of system records and activities. 

 Security Recovery 

Deals with requests from mechanisms, such as event handling and 

management functions, and takes recovery actions. 

 

1.2.4 Network Security Model 

A model for much of what we will be discussing is captured, in very general terms, in 

Figure 1. A message is to be transferred from one party to another across some sort of 

Internet service. The two parties, who are the principals in this transaction, must 

cooperate for the exchange to take place. A logical information channel is established 

by defining a route through the Internet from source to destination and by the 

cooperative use of communication protocols (e.g., TCP/IP) by the two principals [14]. 
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Figure 1 Network Security Model 

Security aspects come into play when it is necessary or desirable to protect the 

information transmission from an opponent who may present a threat to confidentiality, 

authenticity, and so on. All the techniques for providing security have two components: 

 A security-related transformation on the information to be sent. Examples include 

the encryption of the message, which scrambles the message so that it is unreadable 

by the opponent, and the addition of a code based on the contents of the message, 

which can be used to verify the identity of the sender. 

 Some secret information shared by the two principals and, it is hoped, unknown to 

the opponent. An example is an encryption key used in conjunction with the 

transformation to scramble the message before transmission and unscramble it on 

reception. 

A trusted third party may be needed to achieve secure transmission. For example, a 

third party may be responsible for distributing the secret information to the two 

principals while keeping it from any opponent. Or a third party may be needed to 

arbitrate disputes between the two principals concerning the authenticity of a message 

transmission [14]. 
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1.3 Cryptography and its Techniques 

Cryptography is a method of storing and transmitting data in a particular form so that 

only those for whom it is intended can read and process it. The term is most often 

associated with scrambling plaintext into ciphertext (a process called encryption), then 

back again (known as decryption) [10]. 

Cryptography can be classified in several ways. In this report, we will categorize 

cryptography in two main types, based on the number of keys which are used in 

encryption and decryption process. These types are: 

 Symmetric key cryptography 

 Public key cryptography 

 

1.3.1 Symmetric Key Cryptography (SKC) 

Symmetric encryption, also referred to as conventional encryption or single-key 

encryption, was the only type of encryption in use prior to the development of public 

key encryption in the 1970s. It remains by far the most widely used of the two types of 

encryption. 

In this, a single key is used for both encryption and decryption. As shown in Figure 2, 

the sender uses the key (or some set of rules) to encrypt the plaintext and sends the 

ciphertext to the receiver. The receiver applies the same key to decrypt the message and 

recover the plaintext [10]. 

 Symmetric Cipher Model 

A symmetric encryption scheme has five ingredients [14]: 

 Plaintext 

This is the original intelligible message or data that is fed into the algorithm as 

input. 

 Encryption Algorithm 

The encryption algorithm performs various substitutions and transformations 

on the plaintext. 

 Secret Key 

The secret key is also input to the encryption algorithm. The key is a value 

independent of the plaintext and of the algorithm. The algorithm will produce 
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a different output depending on the specific key being used at the time. The 

exact substitutions and transformations performed by the algorithm depend on 

the key. 

 Ciphertext 

This is the scrambled message produced as output. It depends on the plaintext 

and the secret key. For a given message, two different keys will produce two 

different ciphertexts. The ciphertext is an apparently random stream of data 

and, as it stands, is unintelligible. 

 Decryption Algorithm 

This is essentially the encryption algorithm run in reverse. It takes the 

ciphertext and the secret key and produces the original plaintext. 

 

 

Figure 2 Symmetric Key Cryptography 

With this form of cryptography, it is obvious that the key must be known to both the 

sender and the receiver; that, in fact, is the secret. The biggest difficulty with this 

approach, of course, is the distribution of the key. 

Symmetric key cryptography schemes are generally categorized as being either stream 

ciphers or block ciphers. Stream ciphers operate on a single bit (byte or computer word) 

at a time and implement some form of feedback mechanism so that the key is constantly 

changing. A block cipher is so-called because the scheme encrypts one block of data at 

a time using the same key on each block. In general, the same plaintext block will 

always encrypt to the same ciphertext when using the same key in a block cipher 

whereas the same plaintext will encrypt to different ciphertext in a stream cipher. 
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Major Symmetric key cryptographic algorithms in use today are: 

 Data Encryption Standard (DES) 

The most common SKC scheme used today, DES was designed by IBM in the 

1970s and adopted by the National Bureau of Standards (NBS) [now the National 

Institute for Standards and Technology (NIST)] in 1977 for commercial and 

unclassified government applications. DES is a block-cipher employing a 56-bit 

key that operates on 64-bit blocks. DES has a complex set of rules and 

transformations that were designed specifically to yield fast hardware 

implementations and slow software implementations, although this latter point is 

becoming less significant today since the speed of computer processors is several 

orders of magnitude faster today than twenty years ago. IBM also proposed a 112-

bit key for DES, which was rejected at the time by the government; the use of 

112-bit keys was considered in the 1990s, however, conversion was never 

seriously considered [10]. 

DES is defined in American National Standard X3.92 and three Federal 

Information Processing Standards (FIPS): 

 FIPS 46-3: DES 

 FIPS 74: Guidelines for Implementing and Using the NBS Data 

 Encryption Standard 

 FIPS 81: DES Modes of Operation 

 Triple-DES (3DES) 

A variant of DES that employs up to three 56-bit keys and makes three 

encryption/decryption passes over the block; 3DES is also described in FIPS 46-

3 and is the recommended replacement to DES [10]. 

 Advanced Encryption Standard (AES) 

In 1997, NIST initiated a very public, 4-1/2 year process to develop a new secure 

cryptosystem for U.S. government applications. The result, the Advanced 

Encryption Standard, became the official successor to DES in December 2001. 

AES uses an SKC scheme called Rijndael, a block cipher designed by Belgian 

cryptographers Joan Daemen and Vincent Rijmen. The algorithm can use a 

variable block length and key length; the latest specification allowed any 

combination of keys lengths of 128, 192, or 256 bits and blocks of length 128, 

192, or 256 bits. NIST initially selected Rijndael in October 2000 and formal 
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adoption as the AES standard came in December 2001. FIPS PUB 197 describes 

a 128-bit block cipher employing a 128-, 192-, or 256-bit key [10]. 

 

1.3.2 Public Key Cryptography (PKC) 

Public-key cryptography has been said to be the most significant new development in 

cryptography in the last 300-400 years. Modern PKC was first described publicly by 

Stanford University professor Martin Hellman and graduate student Whitfield Diffie in 

1976. Their paper described a two-key cryptosystem in which two parties could engage 

in a secure communication over a non-secure communications channel without having 

to share a secret key [10].  

PKC depends upon the existence of so-called one-way functions, or mathematical 

functions that are easy to compute whereas their inverse function is relatively difficult 

to compute. Let me give you two simple examples: 

Multiplication vs. factorization: Suppose I tell you that I have two numbers, 9 and 16, 

and that I want to calculate the product; it should take almost no time to calculate the 

product, 144. Suppose instead that I tell you that I have a number, 144, and I need you 

tell me which pair of integers I multiplied together to obtain that number. You will 

eventually come up with the solution but whereas calculating the product took 

milliseconds, factoring will take longer because you first need to find the 8 pair of 

integer factors and then determine which one is the correct pair. 

Exponentiation vs. logarithms: Suppose I tell you that I want to take the number 3 to 

the 6th power; again, it is easy to calculate 36 =729. But if I tell you that I have the 

number 729 and want you to tell me the two integers that I used, x and y so that logx 

729 = y, it will take you longer to find all possible solutions and select the pair that I 

used. 

While the examples above are trivial, they do represent two of the functional pairs that 

are used with PKC; namely, the ease of multiplication and exponentiation versus the 

relative difficulty of factoring and calculating logarithms, respectively. The 

mathematical "trick" in PKC is to find a trap door in the one-way function so that the 

inverse calculation becomes easy given knowledge of some item of information. 
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Generic PKC employs two keys that are mathematically related although knowledge of 

one key does not allow someone to easily determine the other key. One key is used to 

encrypt the plaintext and the other key is used to decrypt the ciphertext. The important 

point here is that it does not matter which key is applied first, but that both keys are 

required for the process to work (Figure 3). Because a pair of keys are required, this 

approach is also called asymmetric cryptography. 

 

Figure 3 Public Key Cryptography 

In PKC, one of the keys is designated the public key and may be advertised as widely 

as the owner wants. The other key is designated the private key and is never revealed 

to another party. It is straight forward to send messages under this scheme. Suppose 

Alice wants to send Bob a message. Alice encrypts some information using Bob's public 

key; Bob decrypts the ciphertext using his private key. This method could be also used 

to prove who sent a message; Alice, for example, could encrypt some plaintext with her 

private key; when Bob decrypts using Alice's public key, he knows that Alice sent the 

message and Alice cannot deny having sent the message (Nonrepudiation) [10]. 

 Applications of Public Key Cryptography 

Before proceeding, we need to clarify one aspect of public-key cryptosystems that is 

otherwise likely to lead to confusion. Public-key systems are characterized by the use 

of a cryptographic algorithm with two keys, one held private and one available publicly. 

Depending on the application, the sender uses either the sender’s private key or the 
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receiver’s public key, or both, to perform some type of cryptographic function. In broad 

terms, we can classify the use of public-key cryptosystems into three categories: 

 Encryption/Decryption 

The sender encrypts a message with the recipient’s public key. 

 Digital Signatures 

The sender “signs” a message with its private key. Signing is achieved by a 

cryptographic algorithm applied to the message or to a small block of data that 

is a function of the message. 

 Key Exchange 

Two sides cooperate to exchange a session key. Several different approaches 

are possible, involving the private key(s) of one or both parties.  

Some algorithms are suitable for all three applications, whereas others can be used only 

for one or two of these applications. Table 1 indicates the applications supported by the 

some of the public-key algorithms. 

Table 1 Application for Public-Key Cryptosystems 

Algorithm Encryption/Decryption Digital Signature Key Exchange 

RSA Yes Yes Yes 

Elliptic Curve Yes Yes Yes 

Diffie-Hellman No No Yes 

 

 Requirements for Public Key Cryptography 

This cryptosystem depends on a cryptographic algorithm based on two related 

keys. Diffie and Hellman postulated this system without demonstrating that 

such algorithms exist. However, they did lay out the conditions that such 

algorithms must fulfil [14]. Conditions are: 

1. It is computationally easy for a party B to generate a pair (public key PUb, 

private key PRb). 

2. It is computationally easy for a sender A, knowing the public key and the 

message to be encrypted, M, to generate the corresponding ciphertext: 

C = E (PUb, M) 
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3. It is computationally easy for the receiver B to decrypt the resulting 

ciphertext using the private key to recover the original message: 

M = D (PRb, C) = D [PRb, E (PUb, M)] 

4. It is computationally infeasible for an adversary, knowing the public key, 

PUb, to determine the private key, PRb. 

5. It is computationally infeasible for an adversary, knowing the public key, 

PUb, and a ciphertext, C, to recover the original message, M. 

6. The two keys can be applied in either order: 

M = D [PUb, E (PRb, M)] = D [PRb, E (PUb, M)] 

These are formidable requirements, as evidenced by the fact that only a few algorithms 

(RSA, elliptic curve cryptography, Diffie-Hellman) have received widespread 

acceptance in the several decades since the concept of public-key cryptography was 

proposed. 

The requirements boil down to the need for a trap-door one-way function. A one-way 

function3 is one that maps a domain into a range such that every function value has a 

unique inverse, with the condition that the calculation of the function is easy, whereas 

the calculation of the inverse is infeasible. 

X = f-1(Y)  Infeasible 

Y=f(X)  Easy 
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2. WORKLOAD CHARACTERISATION 

2.1 An Overview 

The workload of a system can be defined as the set of all inputs that the system receives 

from its environment during any given period of time. 

Workload parameters or Workload features: Measured quantities, service requests, or 

resource demands. For example: transaction types, instructions, packet sizes, source-

destinations of a packet, and page reference pattern [11]. 

We can characterize workload at four levels: business, session, function, and protocol. 

We can view an e-business’s workload in a multilayer hierarchical way. Each layer has 

many features: 

 Business layer: 

We can examine a business’s overall characteristics and how they affect the way 

users interact with the site in this layer. For an auction site, for example, we would 

be interested in the number of bids the winner placed, the point at which the winner 

placed his or her first bid, the closing price’s evolution over the auction’s life, and 

the percentage of auctions that have winners. 

 Session layer: 

We define a session as the sequence of requests a customer makes during a single 

visit to an e-business site. Thus, the session layer deals with characteristics such as 

duration (measured in the number of requests per session), navigation patterns 

within a session, and the buy-to-visit ratio (the probability that a session will result 

in a sale). Customer behaviour model graphs (CBMGs) and customer visit models 

(CVMs) are two examples of models used to capture the way customers invoke the 

various functions an e-business site offers. 

 Function layer: 

An e-business site offers many functions to customers. An auction site, for 

example, provides browse, search, register, login, view bid, bid, and sell functions. 

 HTTP request layer: 

Customers interact with ecommerce sites through the HTTP protocol; 

characterization at this level deals with the workload’s features in terms of HTTP 

requests. 
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2.2 Business Layer Characterisation 

We analyse the workload at the business level to determine which aspects are common 

to all sessions and which ones influence the business’s profitability and the site’s overall 

revenue throughput (measured here as the number of dollars generated per time unit). 

2.3 Session Layer Characterisation 

The number of sessions submitted to an e-business site is huge, so grouping, or 

clustering, similar sessions can help characterize the site’s workload. We use two 

classes of clustering algorithms for this purpose: distance-based and fractal-based. 

Distance-based algorithms (such as the k-means clustering algorithm) group sessions 

according to a defined distance between the sessions. If we use a CBMG to represent 

different sessions, an underlying matrix indicates each session’s probabilities of 

transition between states. We can then use the Euclidean distance between the matrices 

representing two separate CBMGs for the clustering process. Distance-based clustering 

has its limitations — for example, all clusters must have regular geometrical shapes. 

Fractal-based clustering offers an improvement in quality: it forms clusters with any 

arbitrary shape. Fractal based clustering allocates each point to the cluster whose fractal 

dimension changes the least by the inclusion of that point. A more thorough discussion 

of a data set’s fractal dimension appears elsewhere. Two important aspects of session 

layer workload are session length distribution and a multiple time scale analysis of the 

number of sessions initiated per time unit. The session length distribution’s tail (the 

probability that the length exceeds a given value) for an online bookstore and an auction 

site. Here, we measure session length as the number of e-business functions invoked 

per session. Pareto has a heavy tail and therefore its tail is a straight line in a log-log 

scale. The bookstore has a much heavier tail than the online auction site, mainly due to 

long, robot-initiated sessions [11]. 

2.4 Function Layer Characterisation 

Workload characterization at the function layer includes a breakdown of the number of 

e-business functions customers invoke during their sessions as well as a global analysis 

across all users and several time scales. A multi scale analysis shows a twofold increase 

in bid-submission traffic toward the end of the day [11]. 
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2.5 Request Layer Characterisation 

Plotting the number of HTTP requests at several time scales — such as one hour and 

five seconds — to conduct a visual inspection is a first step to understanding the process 

by which requests arrive at the site. an apparently strong dependence shows long 

sequences of increased or decreased volume(trends), particularly at intermediate time 

scales. We can perform a multiple timescale quantification of the arrival process’s 

dependence on HTTP requests by drawing a variance time plot (VTP) for different time 

scales. The VTP plot is a log-log plot of the sample variance against the time scale; it 

helps detect and quantify self-similarity. 

 The workload component should be at the SUT interface. Each component should 

represent as homogeneous a group as possible. Combining very different users into a 

site workload may not be meaningful. Domain of the control affects the component: 

Example: mail system designer are more interested in determining a typical mail 

session than a typical user session. Do not use parameters that depend upon the system, 

e.g., the elapsed time, CPU time. Characteristics of service requests [11]: 

1. Arrival Time 

2.  Type of request or the resource demanded 

3.  Duration of the request 

4. Quantity of the resource demanded, for example, pages of memory 

5. Exclude those parameters that have little impact. 

2.6 Selection of Workload Components 

The workload component should be at the SUT (i.e., system under test) interface [11] 

1. Each component should represent as homogeneous a group as possible 

E.g., combining very different users into a site workload may not be meaningful. 

2. Purpose of study and domain of control also affect the choice 

E.g., a mail system designer is more interested in a typical mail session than a 

typical user session involving many applications. 
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2.7 Selection of Workload Parameters 

1. Do not use parameters that depend upon the system. 

E.g., the elapsed time, CPU time [11] 

2. Instead, only use parameters that depend on workload itself. 

E.g., characteristics of service requests: 

a. Arrival Time 

b. Type of request or the resource demanded 

c. Duration of the request 

d. Quantity of the resource demanded, for example, buffer space 

3. Exclude those parameters that have little impact. 
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3. PREVIOUS APPRAOCHES IN PUBLIC KEY 

CRYPTOGRAPHY 

3.1 Brief Overview of PKC 

One of the weaknesses some point out about symmetric key encryption is that two users 

attempting to communicate with each other need a secure way to do so; otherwise, an 

attacker can easily pluck the necessary data from the stream. In November 1976, a paper 

published in the journal IEEE Transactions on Information Theory, titled "New 

Directions in Cryptography," addressed this problem and offered up a solution: public-

key encryption [10]. 

Also known as asymmetric-key encryption, public-key encryption uses two different 

keys at once -- a combination of a private key and a public key. The private key is 

known only to your computer, while the public key is given by your computer to any 

computer that wants to communicate securely with it. To decode an encrypted message, 

a computer must use the public key, provided by the originating computer, and its own 

private key. Although a message sent from one computer to another won't be secure 

since the public key used for encryption is published and available to anyone, anyone 

who picks it up can't read it without the private key. The key pair is based on prime 

numbers (numbers that only have divisors of itself and one, such as 2, 3, 5, 7, 11 and 

so on) of long length. This makes the system extremely secure, because there is 

essentially an infinite number of prime numbers available, meaning there are nearly 

infinite possibilities for keys. One very popular public-key encryption program 

is Pretty Good Privacy (PGP), which allows you to encrypt almost anything. 

The sending computer encrypts the document with a symmetric key, then encrypts the 

symmetric key with the public key of the receiving computer. The receiving computer 

uses its private key to decode the symmetric key. It then uses the symmetric key to 

decode the document [10]. 

To implement public-key encryption on a large scale, such as a secure Web server might 

need, requires a different approach. This is where digital certificates come in. A digital 

certificate is basically a unique piece of code or a large number that says that the Web 

server is trusted by an independent source known as a certificate authority. The 
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certificate authority acts as a middleman that both computers trust. It confirms that each 

computer is in fact who it says it is, and then provides the public keys of each computer 

to the other [14]. 

3.1.1 Basic Terminology 

 Asymmetric Keys 

Two related keys, a public key and a private key, that are used to perform 

complementary operations, such as encryption and decryption or signature 

generation and signature verification. 

 Public Key Certificate 

A digital document issued and digitally signed by the private key of a 

Certification Authority that binds the name of a subscriber to a public key. The 

certificate indicates that the subscriber identified in the certificate has sole 

control and access to the corresponding private key. 

 Public Key Cryptographic Algorithm 

A cryptographic algorithm that uses two related keys, a public key and a private 

key. The two keys have the property that deriving the private key from the public 

key is computationally infeasible. 

 Public Key Infrastructure (PKI) 

A set of policies, processes, server platforms, software and workstations used 

for the purpose of administering certificates and public-private key pairs, 

including the ability to issue, maintain, and revoke public key certificates. 

3.1.2 Distribution of Public Keys 

Several Techniques have been proposed for the distribution of public keys. Virtually, 

all these proposals can be grouped into the following schemes [14]: 

1. Public Announcement 

The point of public-key encryption is that the public key is public. Thus, if there 

is some broadly accepted public-key algorithm, such as RSA, any participant can 

send his or her public key to any other participant or broadcast the key to the 

community at large. For example, because of the growing popularity of PGP, 

which makes use of RSA, many PGP users have adopted the practice of 

appending their public key to messages that they send to public forums, such as 

USENET newsgroups and Internet mailing lists. 
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Figure 4 Uncontrolled Public key Distribution 

Although this approach is convenient, it has a major weakness. Anyone can forge 

such a public announcement. That is, some user could pretend to be user A and 

send a public key to another participant or broadcast such a public key. Until such 

time as user A discovers the forgery and alerts other participants, the forger is 

able to read all encrypted messages intended for A and can use the forged keys 

for authentication [14]. 

2. Publicly available directory 

A greater degree of security can be achieved by maintaining a publicly available 

dynamic directory of public keys. Maintenance and distribution of the public 

directory would have to be the responsibility of some trusted entity or 

organization. 

 

Figure 5 Public Key Publication 

This scheme is clearly more secure than individual public announcements but 

still has vulnerabilities. If an adversary succeeds in obtaining or computing the 

private key of the directory authority, the adversary could authoritatively pass 

out counterfeit public keys and subsequently impersonate any participant and 
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eavesdrop on messages sent to any participant. Another way to achieve the same 

end is for the adversary to tamper with the records kept by the authority. 

3. Public-key authority 

Stronger security for public-key distribution can be achieved by providing tighter 

control over the distribution of public keys from the directory. A typical scenario 

is illustrated in Figure. As before, the scenario assumes that a central authority 

maintains a dynamic directory of public keys of all participants. In addition, each 

participant reliably knows a public key for the authority, with only the authority 

knowing the corresponding private key. 

 

Figure 6 Public Key Distribution Scenario 

4. Public Key Certificate 

The previous scenario is attractive, yet it has some drawbacks. The public-key 

authority could be somewhat of a bottleneck in the system, for a user must appeal 

to the authority for a public key for every other user that it wishes to contact. As 

before, the directory of names and public keys maintained by the authority is 

vulnerable to tampering. 
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Figure 7 Exchange of Public Key Certificates 

An alternative approach is to use certificates that can be used by participants to 

exchange keys without contacting a public-key authority, in a way that is as 

reliable as if the keys were obtained directly from a public-key authority. In 

essence, a certificate consists of a public key, an identifier of the key owner, and 

the whole block signed by a trusted third party. Typically, the third party is a 

certificate authority, such as a government agency or a financial institution that 

is trusted by the user community. A user can present his or her public key to the 

authority in a secure manner and obtain a certificate. The user can then publish 

the certificate. Anyone needing this user’s public key can obtain the certificate 

and verify that it is valid by way of the attached trusted signature. A participant 

can also convey its key information to another by transmitting its certificate. 

Other participants can verify that the certificate was created by the authority. 
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3.2 The RSA Algorithm 

The pioneering paper by Diffie and Hellman in 1977 introduced a new approach to 

cryptography and, in effect, challenged cryptologists to come up with a cryptographic 

algorithm that met the requirements for public-key systems. A number of algorithms 

have been proposed for public-key cryptography. Some of these, though initially 

promising, turned out to be breakable.  

One of the first successful responses to the challenge was developed in 1977 by Ron 

Rivest, Adi Shamir, and Len Adleman at MIT and first published in 1978. The Rivest-

Shamir-Adleman (RSA) scheme has since that time reigned supreme as the most widely 

accepted and implemented general-purpose approach to public-key encryption [14]. 

3.2.1 The Basic Idea 

The RSA scheme is a block cipher in which the plaintext and ciphertext are integers 

between 0 and n - 1 for some n. A typical size for n is 1024 bits, or 309 decimal digits. 

That is, n is less than 21024 [13]. 

The RSA algorithm — named after Ron Rivest, Adi Shamir, and Leonard Adleman — 

is based on a property of positive integers that we describe below: 

When n is a product of two primes, in arithmetic operations modulo n, the exponents 

behave modulo the totient φ(n) of n. For example, consider arithmetic modulo 15, since 

15 = 3 × 5, for the totient of 15, we have φ(15) = 2 × 4 = 8. You can easily verify the 

following: 

57·54 mod 15 = 5(7+4) mod 8 mod 15 = 53 mod 15 = 125 mod 15 = 5 

(43)5 mod 15 = 4(3×5) mod 8 mod 15 = 47 mod 15 = 4 

3.2.2 Key Generation 

RSA involves a public key and a private key. The public key can be known by everyone 

and is used for encrypting messages. Messages encrypted with the public key can only 

be decrypted in a reasonable amount of time using the private key. The keys for the 

RSA algorithm are generated the following way [13]: 

1. Choose two distinct prime numbers p and q. 
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For security purposes, the integer p and q should be chosen at random, and should 

be of similar bit-length. Prime integers can be efficiently found using a primality 

test. 

2. Compute n = pq. 

n is used as the modulus for both the public and private keys. Its length, usually 

expressed in bits, is the key length. 

3. Compute φ(n) = φ(p)φ(q) = (p − 1)(q − 1) = n - (p + q -1), where φ is Euler's totient 

function. 

4. Choose an integer e such that 1 < e < φ(n) and gcd(e, φ(n)) = 1; i.e., e and φ(n) 

are coprime. 

‘e’ is released as the public key exponent. 

‘e’ having a short bit-length and small Hamming weight results in more efficient 

encryption – most commonly 216 + 1 = 65,537. However, much smaller values 

of e (such as 3) have been shown to be less secure in some settings.[5] 

5. Determine d as d ≡ e−1 (mod φ(n)); i.e., d is the multiplicative inverse of e (modulo 

φ(n)). 

This is more clearly stated as: solve for d given d⋅e ≡ 1 (mod φ(n)) 

This is often computed using the extended Euclidean algorithm. Using the pseudo 

code in the Modular integers section, inputs a and n correspond to e and φ(n), 

respectively. 

d is kept as the private key exponent. 

The public key consists of the modulus n and the public (or encryption) exponent e. 

The private key consists of the modulus n and the private (or decryption) exponent d, 

which must be kept secret. p, q, and φ(n) must also be kept secret because they can be 

used to calculate d. 

3.2.3 Encryption 

Alice transmits her public key (n, e) to Bob and keeps the private key d secret. Bob then 

wishes to send message M to Alice. He first turns M into an integer m, such that 0≤m<n 

by using an agreed-upon reversible protocol known as a padding scheme. He then 

computes the ciphertext c corresponding to [13] 

𝑐 ≡ 𝑚𝑒  (𝑚𝑜𝑑 𝑛) 

http://en.wikipedia.org/wiki/RSA_(cryptosystem)#cite_note-Boneh-5
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This can be done efficiently, even for 500-bit numbers, using Modular exponentiation. 

Bob then transmits c to Alice. Note that at least nine values of m will yield a ciphertext 

c equal to m, but this is very unlikely to occur in practice. 

3.2.4 Decryption 

Alice can recover m from c by using her private key exponent d via computing 

𝑚 ≡ 𝑐𝑑 (𝑚𝑜𝑑 𝑛) 

Given m, she can recover the original message M by reversing the padding scheme [9]. 

3.2.5 An Illustrative Example 

Here is an example of RSA encryption and decryption. The parameters used here are 

artificially small, 

1. Choose two distinct prime numbers, such as 

and  

2. Compute n = pq giving 

 

3. Compute the totient of the product as φ(n) = (p − 1)(q − 1) giving 

 

4. Choose any number 1 < e < 3120 that is coprime to 3120. Choosing a prime number 

for e leaves us only to check that e is not a divisor of 3120. 

Let  

5. Compute d, the modular multiplicative inverse of e (mod φ(n)) yielding, 

 

Worked example for the modular multiplicative inverse: 

 

 

The public key is (n = 3233, e = 17). For a padded plaintext message m, the encryption 

function is 
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The private key is (n = 3233, d = 2753). For an encrypted ciphertext c, the decryption 

function is 

 

For instance, in order to encrypt m = 65, we calculate 

 

To decrypt c = 2790, we calculate 

 

Both of these calculations can be computed efficiently using the square-and-multiply 

algorithm for modular exponentiation. In real-life situations the primes selected would 

be much larger; in our example it would be trivial to factor n, 3233 (obtained from the 

freely available public key) back to the primes p and q. Given e, also from the public 

key, we could then compute d and so acquire the private key. 

3.2.6 Proof of Correctness 

The proof of the correctness of RSA is based on Fermat's little theorem [13]. This 

theorem states that if p is prime and p does not divide an integer a then 

 

We want to show that med ≡ m (mod pq) for every integer m when p and q are distinct 

prime numbers and e and d are positive integers satisfying 

 

We can write 

 

for some nonnegative integer h. 

To check two numbers, like med and m, are congruent mod pq it suffices (and in fact is 

equivalent) to check they are congruent mod p and mod q separately. To 

show med ≡ m (mod p), we consider two cases: m ≡ 0 (mod p) and m  0 (mod p). 

In the first case med is a multiple of p, so med ≡ 0 ≡ m (mod p). In the second case 

𝑚𝑒𝑑 = 𝑚(𝑒𝑑−1)𝑚 = 𝑚ℎ(𝑝−1)(𝑞−1)𝑚 = (𝑚𝑝−1)ℎ(𝑞−1)𝑚 ≡ 1ℎ(𝑞−1)𝑚 ≡ 𝑚  (𝑚𝑜𝑑 𝑝) 
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where we used Fermat's little theorem to replace mp−1 mod p with 1. 

The verification that med ≡ m (mod q) proceeds in a similar way, treating separately the 

cases m ≡ 0 (mod q) and m  0 (mod q), using Fermat's little theorem for modulus q in 

the second case. 

This completes the proof that, for any integer m, 

 

3.2.7 Cryptanalysis of RSA 

While cryptography is the science concerned with the design of ciphers, cryptanalysis 

is the related study of breaking ciphers. Cryptography and cryptanalysis are somehow 

complimentary sciences: development in one is usually followed by further 

development in the other. In particular, cryptanalysis is an important tool for 

vulnerability assessment of cryptosystems [2]. 

In an encryption scheme, the main objective of the adversary is to recover the plaintext 

M from the related ciphertext. If he is successful, we say he has broken the system. In 

the case of digital signatures, the goal of the adversary is to forge signatures. A more 

ambitious attack is to recover the private key d. If achieved, the adversary can now 

decrypt all ciphertexts and forge signatures at will. In this case the only solution is the 

revocation of the key. 

As it is already standard in examples of use of cryptography, we name three entities 

involved in the system as Alice, Bob and Caroline. Alice and Bob wish to securely 

communicate with each other, while Caroline is a malicious adversary, trying passively 

or actively to disturb the communication. 

The problem of finding non-trivial factors of a given positive composite integer n is 

known as the integer factorization problem. The integer factorization problem is widely 

believed to be a hard problem, i.e., there seems to be no polynomial time algorithm that 

solves the problem for a large proportion of possible inputs. Note that factoring is 

obviously not always hard, but a hard instance of the problem can be easily created, by 

simply multiplying two large chosen prime numbers. That is exactly what we do when 

working with RSA. 
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As we have seen, the security of the RSA cryptosystem is intimately related to the 

integer factorization problem. If an adversary can factor the modulus n, he can 

efficiently calculate the private exponent. In this case we say that he has completely 

broken the encryption scheme: he not only can recover a particular plaintext M, but also 

decrypt all ciphertexts encrypted with the respective public key. 

Therefore, although factoring methods are not used in practice in attacks against RSA, 

they are important in deriving lower bounds for key sizes and properties of the security 

parameters. Taking into account the value of data and the threat model, parameters 

should be chosen such that factoring the modulus is computationally infeasible. 

Factoring methods can be divided into special-purpose and general-purpose factoring 

methods. Special purpose methods depend on special properties of the number to be 

factored, as the size of the smallest factor p of n, the factorization of p – 1, etc. General-

purpose methods depend solely on the size of n. 

3.3 Diffie-Hellman key exchange 

Diffie–Hellman key exchange (D–H) is a specific method of securely exchanging 

cryptographic keys over a public channel and was the first specific example of public-

key cryptography as originally conceptualized by Ralph Merkle. D–H is one of the 

earliest practical examples of public key exchange implemented within the field of 

cryptography. The Diffie–Hellman key exchange method allows two parties that have 

no prior knowledge of each other to jointly establish a shared secret key over an 

insecure communications channel. This key can then be used to encrypt subsequent 

communications using a symmetric key cipher [3]. 

The scheme was first published by Whitfield Diffie and Martin Hellman in 1976. By 

1975, James H. Ellis, Clifford Cocks and Malcolm J. Williamson within GCHQ, the 

British signals intelligence agency, had also shown how public-key cryptography could 

be achieved; although, their work was kept secret until 1997. 

Although Diffie–Hellman key agreement itself is an anonymous (non-authenticated) 

key-agreement protocol, it provides the basis for a variety of authenticated protocols, 

and is used to provide perfect forward secrecy in Transport Layer Security's ephemeral 

modes (referred to as EDH or DHE depending on the cipher suite). 
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3.3.1 Cryptographic explanation 

The simplest and the original implementation of the protocol uses the multiplicative 

group of integers modulo p, where p is prime, and g is a primitive root modulo p. Here 

is an example of the protocol, with non-secret values in blue, and secret values in red. 

1. Alice and Bob agree to use a prime number p = 23 and base g = 5 (which is a 

primitive root modulo 23). 

2. Alice chooses a secret integer a = 6, then sends Bob A = ga mod p 

 A = 56 mod 23 = 8 

3. Bob chooses a secret integer b = 15, then sends Alice B = gb mod p 

 B = 515 mod 23 = 19 

4. Alice computes s = Ba mod p 

 s = 196 mod 23 = 2 

5. Bob computes s = Ab mod p 

 s = 815 mod 23 = 2 

6. Alice and Bob now share a secret (the number 2). 

Both Alice and Bob have arrived at the same value, because (ga)b (for Bob, 815 mod 23 = 

(ga mod p)b mod p = (ga)b mod p) and (gb)a are equal mod p. Note that only a, b, 

and (gab mod p = gba mod p) are kept secret. All the other values – p, g, ga mod p, 

and gb mod p – are sent in the clear. Once Alice and Bob compute the shared secret 

they can use it as an encryption key, known only to them, for sending messages across 

the same open communications channel. 

Of course, much larger values of a, b, and p would be needed to make this example 

secure, since there are only 23 possible results of n mod 23. However, if p is a prime of 

at least 300 digits, and a and b are at least 100 digits long, then even the fastest modern 

computers cannot find a given only g, p, gb mod p and ga mod p. The problem such a 

computer needs to solve is called the discrete logarithm problem. The computation 

of ga mod p is known as modular exponentiation and can be done efficiently even for 

large numbers. Note that g need not be large at all, and in practice is usually a small 

prime (like 2, 3, 5...) because primitive roots usually are quite numerous. 
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4. ELLIPTIC CURVE CRYPTOGRAPHY – 

PROPOSED APPROACH 

Over the past 30 years, public key cryptography has become a mainstay for secure 

communications over the Internet and throughout many other forms of 

communications. It provides the foundation for both key management and digital 

signatures. In key management, public key cryptography is used to distribute the secret 

keys used in other cryptographic algorithms (e.g. DES). For digital signatures, public 

key cryptography is used to authenticate the origin of data and protect the integrity of 

that data. For the past 20 years, Internet communications have been secured by the first 

generation of public key cryptographic algorithms developed in the mid-70s. Notably, 

they form the basis for key management and authentication for IP encryption 

(IKE/IPSEC), web traffic (SSL/TLS) and secure electronic mail [5]. 

Over the last twenty years however, new techniques have been developed which offer 

both better performance and higher security than these first generation public key 

techniques. The best assured group of new public key techniques is built on the 

arithmetic of elliptic curves [6]. 

4.1 A Brief Overview of ECC 

Elliptic Curve Cryptography (ECC) was discovered in 1985 by Victor Miller (IBM) 

and Neil Koblitz (University of Washington) as an alternative mechanism for 

implementing public-key cryptography. Public-key algorithms create a mechanism for 

sharing keys among large numbers of participants or entities in a complex information 

system. Unlike other popular algorithms such as RSA, ECC is based on discrete 

logarithms that is much more difficult to challenge at equivalent key lengths [7][8]. 

4.1.1 Advantages of ECC 

There are certain unique properties of elliptic curves which made them resilient against 

the types of attacks that were successful against integer-based algorithms. Therefore an 

elliptic-curve algorithm (e.g. Elliptic-curve Digital Signature Algorithm = EC-DSA) 

could have the same level of security of a similar integer-based algorithm (e.g. Digital 

Signature Algorithm = DSA) using much fewer key bits. Table 2 shows the number of 

key bits necessary to have equivalent levels of security for integer-based algorithms 

versus elliptic-curve algorithms [7]. 
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Table 2 Key Length (in bits) for equivalent security 

Integer Algorithm 

(e.g. DSA) 

Elliptic Curve algorithm 

(e.g. EC-DSA) 

512 106 

768 132 

1024 160 

2048 210 

21000 600 

For the most commonly used 1024-bit keys for an integer-based algorithm, the elliptic-

curve counterpart only requires 160-bit keys for the equivalent security. This is a 7x 

reduction in the space required to store these keys, or a similar reduction in bandwidth 

required to transmit these keys over a wireless network. Furthermore, this reduction in 

the size of data objects allows much faster completion of the algorithms [7]. 

Table 3 A Comparison of Public key cryptosystems 

Type of 

Cryptosystem 
Examples 

Complexity of best known Attack 

algorithm [8] 

Integer-based 

Cryptosystem 

RSA, Diffie-

Hellman 

exp [1.923(log 𝑛)
1

3⁄ (log log 𝑛)
2

3⁄ ] 

(Sub-exponential) 

Elliptic Curve 

Cryptosystem 
ECDH, ECDSA √𝑛 (Fully exponential) 
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4.2 Elliptic Curves : Better Trapdoor 

An elliptic curve is the set of points that satisfy a specific mathematical equation. The 

equation for an elliptic curve looks something like this [6]: 

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 

 

 

Figure 8 Some Examples of Elliptic Curves 

These curves are of great use in a number of applications, largely because it possible to 

take two points on such a curve and generate a third. In fact, we can show that by 

defining an addition operation and introducing an extra point, 1, the points on an elliptic 

curve form an additive abelian group. 

Such a group can then be used to create an analogue of the discrete logarithm problem 

which is the basis for several public key cryptosystems. 

4.2.1 Properties of Elliptic Curves 

The Elliptic Curve obeys following properties [6][14]: 

 Closure 

If P and Q are on elliptic curve, then (P+Q) will also lie on the same curve. 

 Commutativity 

𝑃 + 𝑄 = 𝑄 + 𝑃 
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 Associativity 

(𝑃 + 𝑄) + 𝑅 = 𝑃 + (𝑄 + 𝑅) 

 Existence of identity element 

There exists an element ‘O’, such that 

𝑃 + 𝑂 = 𝑂 + 𝑃 = 𝑃 

 Existence of inverses 

There exists an element ‘–P’, such that 

(−𝑃) + 𝑃 = 𝑃 + (−𝑃) = 𝑂 

4.2.2 Addition on Elliptic Curves 

The rules for addition can be stated as follows: If three points on an elliptic curve lie on 

a straight line, their sum is O. From this definition, we can define the rules of addition 

over an elliptic curve [6][14]. 

1. O serves as the additive identity. Thus, 𝑂 = −𝑂; for any point P on the elliptic 

curve,  𝑃 + 𝑂 = 𝑃. In what follows, we assume 𝑃 ≠ 𝑂 and 𝑄 ≠ 𝑂. 

2. The negative of a point P is the point with the same x coordinate but the negative 

of the y coordinate; that is, if 𝑃 = (𝑥, 𝑦), then −𝑃 = (𝑥, −𝑦). Note that these 

two points can be joined by a vertical line. Note that 𝑃 + (−𝑃) = 𝑃 − 𝑃 = 𝑂. 

3. To add two points P and Q with different x coordinates, draw a straight line 

between them and find the third point of intersection R. It is easily seen that 

there is a unique point R that is the point of intersection (unless the line is 

tangent to the curve at either P or Q, in which case we take 𝑅 = 𝑃 or 𝑅 = 𝑄, 

respectively). To form a group structure, we need to define addition on these 

three points: 𝑃 + 𝑄 = −𝑅. That is, we define 𝑃 + 𝑄 to be the mirror image 

(with respect to the axis) of the third point of intersection. 

4. The geometric interpretation of the preceding item also applies to two points, 𝑃  

and −𝑃, with the same coordinate. The points are joined by a vertical line, which 

can be viewed as also intersecting the curve at the infinity point. We therefore 

have 𝑃 + (−𝑃) = 𝑂, which is consistent with item. 

5. To double a point 𝑄, draw the tangent line and find the other point of 

intersection 𝑆. Then 𝑄 + 𝑄 = 2𝑄 = −𝑆. 
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Algorithm for Point Addition [7]: 

INPUT:  

Elliptic curve points  𝑃 =  (𝑥1, 𝑦1) 𝑎𝑛𝑑 𝑄 =  (𝑥2, 𝑦2), 𝑃 ≠ 𝑄 

OUTPUT:  𝑅 = 𝑃 + 𝑄 =  (𝑥3, 𝑦3) 

1. Compute 𝜃 =  
𝑦2 +  𝑦1

𝑥2 +  𝑥1
 

2. Compute 𝑥3 = 𝜃2 +  𝜃 + 𝑥1 +  𝑥2 + 𝑎 

3. Compute 𝑦3 = 𝜃(𝑥1 +  𝑥3)  +  𝑥3  + 𝑦1 

4. Return (𝑥3, 𝑦3) 

 

4.2.3 Point Doubling 

To add a point P to itself, a tangent line to the curve is drawn at the point P. If yP is not 

0, then the tangent line intersects the elliptic curve at exactly one other point, -R. -R is 

reflected in the x-axis to R. This operation is called doubling the point P; the law for 

doubling a point on an elliptic curve group is defined by [4]:  

𝑃 + 𝑃 = 2𝑃 = 𝑅 

Figure 9 Point Addition on Elliptic Curve 



 

     38 | P a g e  

 

Algorithm for Point Doubling [7]: 

INPUT: Elliptic Curve point 𝑃 = (𝑥, 𝑦) 

OUTPUT: 𝑅 = 𝑃 + 𝑃 =  (𝑥3, 𝑦3) 

1. Compute 𝜃 =  𝑥 +
𝑦

𝑥
  

2. Compute 𝑥3 = 𝜃2 +  𝜃 + 𝑎 

3. Compute 𝑦3 = 𝑥2 + (𝜃 + 1)𝑥3 

4. Return (𝑥3, 𝑦3) 

4.3 Key Generation 

Key generation is an important part where we have to generate both public key and 

private key. The sender will be encrypting the message with receiver’s public key and 

the receiver will decrypt using his private key. 

Now, we have to select a number d within the range of ‘n’. Using the following 

equation, we can generate the public key [1] 

𝑄 = 𝑑 ∗ 𝑃 

Where, 

d => The random number that we have selected within the range (1 to n-1) (Private 

key).  

P => Point on the curve. 

Q => Public key 

Figure 10 Point Doubling on Elliptic Curve 
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4.4 Representing Plaintext 

 Let 𝐸:  𝑦2 ≡ 𝑥3 + 𝑏𝑥 + 𝑐(𝑚𝑜𝑑 𝑝) 

 Message m (represented as a number) will be embedded in the x-coordinate of a 

point [1].  

 Adjoin a few bits at the end of m and adjust until we get a number x such that 

𝑥3 + 𝑏𝑥 + 𝑐 is square mod p. 

4.4.1 Illustration 

 Let 𝑝 = 179 and 𝐸:  𝑦2 = 𝑥3 + 2𝑥 + 7 

 If failure rate of 
1

210
, then we may take 𝐾 = 10. 

 We need 𝑚. 𝐾 + 𝐾 < 179, we need 0 ≤ 𝑚 ≤ 16 

 Suppose our message is 𝑚 = 5. We consider x of the form 

𝑚. 𝐾 + 𝑗 = 50 + 𝑗 

 The possible choices for x are 50,  51, … ,  59.  

o For 𝑥 = 51, we get 

𝑥3 + 2𝑥 + 7 ≡ 121(𝑚𝑜𝑑 179)         112 = 121(𝑚𝑜𝑑 179) 

 Thus, we represent the message 𝑚 = 5 by the point 

𝑃𝑚 = (51,  11) 

 The message m can be recovered by 𝑚 = [
51

10
] = 5 
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4.5 Encryption 

 

Figure 11 Encryption Process 

 Let ‘m’ be the message that we are sending. We have to represent this message 

on the curve. Consider ‘m’ has the point ‘M’ on the curve ‘E’. 

 Randomly select ‘k’ from 1 to (n-1) [14]. 

 Two cipher texts will be generated let it be C1 and C2. 

𝐶1 = 𝑘 ∗ 𝑃 

𝐶2 = 𝑀 + 𝑘 ∗ 𝑄 

C1 and C2 will be sent. 

 Here multiplication of a scalar with a point on curve (𝑘 ∗ 𝑃) will be computed 

as follows, 

11𝑃 = ((𝑃 ∗ 2) ∗ 2 + 𝑃) ∗ 2 + 𝑃 

9𝑃 = (((𝑃 ∗ 2) ∗ 2) ∗ 2) + 𝑃 

4.6 Decryption 

 

Figure 12 Decryption Process 
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 We have to get back the message ‘m’ that was send to us, 

𝑀 = 𝐶2 − 𝑑 ∗ 𝐶1 

 M is the point representing original message that we have sent [14]. 

4.7 Proof of Correctness of ECC 

 Message can be retrieved as follows, 

𝑀 = 𝐶2 − 𝑑 ∗ 𝐶1 

i.e. ‘M’ can be represented as ‘C2 – d * C1′ 

 Here,   

𝐶2 = 𝑀 + 𝑘 ∗ 𝑄 

𝐶1 = 𝑘 ∗ 𝑃 

 Therefore, 

𝐶2 − 𝑑 ∗ 𝐶1 = (𝑀 + 𝑘 ∗ 𝑄) − 𝑑 ∗ (𝑘 ∗ 𝑃) 

= 𝑀 + 𝑘 ∗ 𝑑 ∗ 𝑃 − 𝑑 ∗ 𝑘 ∗ 𝑃 

= 𝑀 (𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑀𝑒𝑠𝑠𝑎𝑔𝑒) 

  



 

     42 | P a g e  

 

5. IMPLEMENTATION AND SCREENSHOTS 

5.1 Elliptic Curve Generation 

5.1.1 Construction of Elliptic Curve 

Constructs an elliptic curve over the finite field of 'mod' elements. 

 The equation of the curve is on the form: 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏.  

 p must a prime number 

Code Snippet: 

public EllipticCurve(BigInteger a, BigInteger b, BigInteger p) throws 

InsecureCurveException { 
 this.a = a; 

 this.b = b; 

 this.p = p; 

 if (!p.isProbablePrime(PRIMESECURITY)) { } 

 if (isSingular()) throw new 

InsecureCurveException(InsecureCurveException.SINGULAR, this); 

 byte[] pb = p.toByteArray(); 

 if(pb[0] == 0) pointcmpsize = pb.length; 

 else pointcmpsize = pb.length + 1; 

 name = ""; 

    } 

    public EllipticCurve(ECParameters ecp) throws InsecureCurveException { 

 this(ecp.a(),ecp.b(),ecp.p()); 

 order = ecp.order(); 

 name = ecp.toString(); 

 try{ 

     generator = new ECPoint(this, ecp.generatorX(), ecp.generatorY()); 

     generator.fastCache(); 

 } 

 catch (NotOnMotherException e){ 

     System.out.println("Error defining EllipticCurve: generator not on 

mother!"); 
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 } 

    } 

5.1.2 Checking Whether a point is on the Elliptic Curve 

This functions checks whether a point is on the Elliptic Curve. 

 Returns true if point is on the Curve 

 Returns false if point is not on the Curve 

Code Snippet:     

public boolean onCurve(ECPoint q){ 

 if (q.isZero()) return true; 

 BigInteger y_square = (q.gety()).modPow(new BigInteger("2"),p); 

 BigInteger x_cube = (q.getx()).modPow(new BigInteger("3"),p); 

 BigInteger x = q.getx(); 

 BigInteger dum = ((x_cube.add(a.multiply(x))).add(b)).mod(p); 

 if (y_square.compareTo(dum) == 0) return true; 

 else return false; 

    } 

5.2 Elliptic Curve Cryptosystem 

5.2.1 Encryption 

Using the key, encrypting the plaintext from input file. 

Code Snippet: 

    public byte[] encrypt(byte[] input,int numbytes, Key key) { 

 ECKey ek = (ECKey) key; 

 byte[] res=new byte[ek.mother.getPCS()+numbytes]; 

 hash.reset(); 

 BigInteger rk = new BigInteger(ek.mother.getp().bitLength() + 17, Rand.om); 

 if (ek.mother.getOrder() != null) { 

             rk = rk.mod(ek.mother.getOrder()); 

         } 

 ECPoint gamma = ek.mother.getGenerator().multiply(rk); 

 ECPoint sec = ek.beta.multiply(rk); 
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 System.arraycopy(gamma.compress(),0,res,0,ek.mother.getPCS()); 

 hash.update(sec.getx().toByteArray()); 

 hash.update(sec.gety().toByteArray()); 

 byte[] digest = hash.digest(); 

 for(int j = 0; j < numbytes; j++) { 

     res[j+ek.mother.getPCS()]=(byte) (input[j]^digest[j]); 

 } 

 return res; 

    } 

5.2.2 Decryption 

Generating Plaintext from ciphertext using the key. 

Code Snippet: 

    public byte[] decrypt(byte[] input, Key key) { 

 ECKey dk = (ECKey) key; 

 byte[] res=new byte[input.length-dk.mother.getPCS()]; 

 byte[] gammacom=new byte[dk.mother.getPCS()]; 

 hash.reset(); 

 System.arraycopy(input,0,gammacom,0,dk.mother.getPCS()); 

 ECPoint gamma = new ECPoint(gammacom,dk.mother); 

 ECPoint sec = gamma.multiply(dk.sk); 

 if(sec.isZero()) { 

     hash.update(BigInteger.ZERO.toByteArray()); 

     hash.update(BigInteger.ZERO.toByteArray()); 

 } else { 

     hash.update(sec.getx().toByteArray()); 

     hash.update(sec.gety().toByteArray()); 

 } 

 byte[] digest = hash.digest(); 

 for(int j = 0; j < input.length-dk.mother.getPCS(); j++) { 

     res[j]=(byte) (input[j+dk.mother.getPCS()]^digest[j]); 

 } 
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 return res; 

    } 

5.3 Implementation of Elliptic Curve Point Algorithms 

5.3.1 Point Addition 

Adds another elliptic curve point to this point. Returns the sum of this point with point 

‘q’. 

Code Snippet: 

    public ECPoint add(ECPoint q) throws NoCommonMotherException{ 

 if (!hasCommonMother(q)) throw new NoCommonMotherException(); 

 if (this.iszero) return q; 

 else if (q.isZero()) return this; 

 BigInteger y1 = y; 

 BigInteger y2 = q.gety(); 

 BigInteger x1 = x; 

 BigInteger x2 = q.getx(); 

 BigInteger alpha; 

 if (x2.compareTo(x1) == 0) { 

     if (!(y2.compareTo(y1) == 0)) return new ECPoint(mother); 

     else { 

  alpha = 

((x1.modPow(TWO,mother.getp())).multiply(THREE)).add(mother.geta()); 

  alpha = 

(alpha.multiply((TWO.multiply(y1)).modInverse(mother.getp()))).mod(mother.getp()

); 

     } 

 

 } else { 

     alpha = 

((y2.subtract(y1)).multiply((x2.subtract(x1)).modInverse(mother.getp()))).mod(mothe

r.getp()); 

 }  

 BigInteger x3,y3; 

 x3 = 

(((alpha.modPow(TWO,mother.getp())).subtract(x2)).subtract(x1)).mod(mother.getp(

)); 

 y3 = ((alpha.multiply(x1.subtract(x3))).subtract(y1)).mod(mother.getp()); 

 try{ return new ECPoint(mother,x3,y3); } 

 catch (NotOnMotherException e){ 

     System.out.println("Error in add!!! Result not on mother!"); 

     return null; 

} 
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5.3.2 Point Multiplication 

Multiplies a number coef to this point. Returns the product of this point with the 

number. 

Code Snippet: 

    public ECPoint multiply(BigInteger coef) { 

 try{ 

     ECPoint result = new ECPoint(mother); 

     byte[] coefb = coef.toByteArray(); 

     if(fastcache != null) { 

  for(int i = 0; i < coefb.length; i++) { 

      result = result.times256().add(fastcache[coefb[i]&255]); 

  } 

  return result; 

     } 

     if(cache == null) { 

  cache = new ECPoint[16]; 

  cache[0] = new ECPoint(mother); 

  for(int i = 1; i < cache.length; i++) { 

      cache[i] = cache[i-1].add(this); 

  } 

     } 

     for(int i = 0; i < coefb.length; i++) { 

  result = 

result.times16().add(cache[(coefb[i]>>4)&15]).times16().add(cache[coefb[i]&15]); 

     } 

     return result; 

 } catch (NoCommonMotherException e) { 

     System.out.println("Error in pow!!!"); 

     return null; 

 } 

    } 
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5.4 Key Generation 

Generates a random secret key (contains also the public key) 

Code Snippet: 

    public ECKey(EllipticCurve ec) { 

 mother = ec; 

 secret = true; 

 sk=new BigInteger(ec.getp().bitLength() + 17,Rand.om); 

 if (mother.getOrder() != null) sk=sk.mod(mother.getOrder()); 

 beta=(mother.getGenerator()).multiply(sk); 

 beta.fastCache(); 

    } 

5.5 Snapshots 

 

Figure 13 User Interface 

 

Figure 14 Input File for Encryption 
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Figure 15 Encrypted File after performing Elliptic Curve Encryption 

 

Figure 16 Decrypted File after Elliptic Curve Decryption 

 

Figure 17 Secret Key for ECC 
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Figure 18 Public Key for ECC 
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6. CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

The above report shows: (1) a study of cryptography algorithms suitable for constrained 

environments, (2) an understanding of the operations used by Elliptic Curve 

Cryptography algorithms, and (3) an implementation of the ECC algorithm.  

Also described the arithmetic algorithm used to implement elliptic-curve operations. 

We show that this powerful and mathematically complicated algorithm can be 

implemented very efficiently using a simple java implementation. 

6.2 Future Work 

For future work, I plan to expand the algorithm set to include other public-key 

cryptography algorithms. 

Also expand the result set to include the comparative analysis on the basis of parameters 

like efficiency, security, memory space used, computational time, etc. 

  



 

     51 | P a g e  

 

REFERENCES 

 

[1] A (relatively easy to understand) primer on elliptic curve cryptography. (2014, 

December 14). Retrieved from ArsTechnica Website: 

http://arstechnica.com/security/2013/10/a-relatively-easy-to-understand-

primer-on-elliptic-curve-cryptography/ 

[2] Cryptanalysis of RSA: A Survey. (2014, December 14). Retrieved from SANS 

Institute Website: http://www.sans.org/reading-

room/whitepapers/vpns/cryptanalysis-rsa-survey-1006 

[3] Diffie–Hellman Key Exchange. (2014, December 14). Retrieved from 

Wikipedia: 

http://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange 

[4] Doubling the point P. (2014, December 14). Retrieved from Certicom Corp. 

Website: https://www.certicom.com/index.php/213-doubling-the-point-p 

[5] Elliptic Curve Cryptography. (2014, December 14). Retrieved from Certicom 

Corp. Website: https://www.certicom.com/ecc 

[6] England, M. (2006). Elliptic curve cryptography. M. Sc Applied Mathematical 

Science. Summer: Heriot-Watt University. 

[7] Fiskaran, A. M., & Lee, R. B. (2002). Workload Characterization of Elliptic 

Curve Cryptography and other Network Security Algorithms for Constrained 

Environments. 5th IEEE Annual Workshop on Workload Characterization 

(WWC-5). Austin, Texas, USA: IEEE. 

[8] Gupta, V., Stebila, D., Fung, S., Shantz, S. C., Gura, N., & Eberle, H. (2004). 

Speeding up Secure Web Transactions Using Elliptic Curve Cryptography. 

Network and Systems Security Symposium, (pp. 231--239). 

[9] Kak, A. (2014, April 23). Public Key Cryptography and the RSA Algorithm. 

Retrieved from Purdue University Website: 

https://engineering.purdue.edu/kak/compsec/NewLectures/Lecture12.pdf 

[10] Kesssler, G. C. (2010, June 30). An Overview of Cryptography. 

[11] Menasce, D. A. (2003). Workload Characterization. IEEE . VA, USA: IEEE. 

[12] Public Key Encrytion - HowStuffWorks. (2014, December 14). Retrieved from 

HowStuffWorks.com: http://computer.howstuffworks.com/encryption3.htm 



 

     52 | P a g e  

 

[13] RSA (Cryptosystem). (2014, December 14). Retrieved from Wikipedia: 

http://en.wikipedia.org/wiki/RSA_(cryptosystem) 

[14] Stallings, W. (2011). Cryptography and Network Security - Principles and 

Practice, Fifth Edition. Pearson Education, Inc. 

[15] The Case for Elliptic Curve Cryptography - NSA/CSS. (2014, December 14). 

Retrieved from NSA/CSS Website: 

https://www.nsa.gov/business/programs/elliptic_curve.shtml 

 

 

 


