

VLSI ARCHITECTURE DESIGN

FOR

MD5 HASHING ALGORITHM

Submitted in partial fulfillment of the Degree of

Bachelor of Technology

May – 2015

BY

Abhinav Soni (111090)

Anirudh Mehrotra (111075)

Kushagra Goyal (111054)

Name of Supervisor – Mr. Akhil Ranjan

DEPARTMENT OF ELECTRONICS AND COMMUNICATION

ENGINEERING

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY,

WAKNAGHAT

i

CERTIFICATE

This is to certify that project report entitled “VLSI ARCHITECTURE

DESIGN FOR MD5 HASHING ALGORITHM”, submitted by Anirudh

Mehrotra (111075), Abhinav Soni (111090), Kushagra Goyal (111054), in

partial fulfillment for the award of degree of Bachelor of Technology in

Electronics and Communication Engineering to Jaypee University of

Information Technology, Waknaghat, Solan has been carried out under my

supervision.

This work has not been submitted partially or fully to any other University or

Institute for the award of this or any other degree or diploma.

Date: Supervisor’s Name: Mr. Akhil Ranjan

Designation: Assistant Professor (Grade II)

ii

ACKNOWLEDGEMENT

We, the undersigned, warmly acknowledge the continuous encouragement

and invaluable suggestions offered by our guide Mr. Akhil Ranjan, Assistant

Professor (Grade II), Department of Electronics and Communication, Jaypee

University of Information and Technology (Waknaghat) in bringing this

project to a successful completion. We would like to express him our sincere

appreciation and deepest gratitude for his advice and endless support.

Finally we are grateful to all who are directly or indirectly involved in the

successful completion of the project.

Date: Abhinav Soni

Kushagra Goyal

Anirudh Mehrotra

iii

ABSTRACT

With the increase of the amount of data and users in the information systems, the

requirement of data integrity has increased and needs to be improved. One important

element in the information system is a key of authentication schemes, which is used as a

message authentication code (MAC). One technique to produce a MAC is based on

using a hash function and is referred to as a HMAC.

MD5 is one of the most important hash algorithms today. It has been designed by

R. Rivest in 1992 and it is considered as a standard in hash function design. Among the

many reasons behind the use of MAC is that cryptographic hash functions such as MD5

and SHA-1generally execute faster in software than symmetric block ciphers.

MD5 was designed as a strengthened version of MD4 by increasing number of

process rounds after partial attacks on MD4. In 1993 Bert Den Boer and Antoon

Bossselaers found pseudo collisions in MD5. In 1996 Dobertin found collisions in

compression function of MD5. But these attacks do not affect practical applications.

In this project, the hardware implementation of the MD5 algorithm on

reconfigurable devices, is investigated.

Signature of Students Signature of Supervisor

Kushagra Goyal Mr. Akhil Ranjan

Anirudh Mehrotra Date :

Abhinav Soni

Date :

iv

TABLE OF CONTENTS

Topics Page No.

Acknowledgement ii

Abstract iii

List of Figures vi

Listof tables vii

Chapter 1 Introduction 1

Chapter 2 Hardware Description Language 2

2.1 VHDL 2

 2.2 VHDL vs. Verilog 2

Chapter 3 Xilinx ISE 7

 3.1 Introduction 7

 3.2 Simulation 7

 3.3 Synthesis 7

 3.4 Spartan Family 8

Chapter 4 Synthesis In VHDL 9

 4.1 Introduction 9

 4.2 Steps involved in Synthesis Process 9

 4.3 VHDL Based Synthesis 12

 4.4 Levels of VHDL based Synthesis 14

 4.5 FPGA Implementation Tools 15

Chapter 5 Simulators 18

 5.1 Introduction 18

 5.2 HDL Simulators 18

Chapter 6 Hash Functions 21

 6.1 Introduction 21

 6.2 Properties 21

 6.3 Encoding vs. Encryption vs. Hashing 23

v

 6.4 Summary 25

Chapter 7 Message Digest 26

 7.1 Introduction 26

 7.2 Types of Message Digests 26

Chapter 8 Message Digest (MD 5) Algorithm 28

 8.1 Introduction 28

 8.2 Steps involved in MD5 Algorithm 28

Results and Outputs 33

Future Scope 35

Conclusion 38

Applications 39

Appendix 40

References 42

vi

LIST OF FIGURES

FIGURE NO. FIGURE NAME PAGE NO.

 4.1 VHDL based synthesis 12

 4.2 Levels of VHDL based synthesis 14

 7.1 Encoding Diagram 26

 7.2 Encryption Diagram 26

 7.3 Hashing Diagram 27

 R.1 512 Bit Padding Output 36

 R.2 Final Output 36

 R.3 RTL Schematic 37

 A.1 Applications 39

vii

LIST OF TABLES

TABLE NO. TABLE NAME PAGE NO.

 4.1 Translate 16

 4.2 Map 16

 4.3 Place & Route 16

 4.4 Generate Programming File 17

1

CHAPTER 1: INTRODUCTION

Data integrity assurance and data origin authentication are essential security services in financial

transactions, electronic commerce, electronic mail, software distribution, data storage and so on. The

broadest definition of authentication within computing systems encompasses identity verification,

message origin authentication and message content authentication. In IPSEC, the technique of

cryptographic hash functions is utilized to achieve these security services.

A cryptographic hash function is a hash function which is considered practically impossible

to invert, that is, to recreate the input data from its hash value alone.

The ideal cryptographic hash function has four main properties:

 It is easy to compute the hash value for any given message

 It is infeasible to generate a message that has a given hash

 It is infeasible to modify a message without changing the hash

 It is infeasible to find two different messages with the same hash.

A cryptographic hash function must be able to withstand all known types of cryptanalytic

attack. At a minimum, it must have the following properties:

 Pre-image resistance

Given a hash h it should be difficult to find any message m such that h = hash(m). This concept

is related to that of one-way function. Functions that lack this property are vulnerable to pre-

image attacks.

 Second pre-image resistance

Given an input m1 it should be difficult to find another input m2 such that m1 ≠ m2 and hash(m1)

= hash(m2). Functions that lack this property are vulnerable to second-pre-image attacks.

 Collision resistance

It should be difficult to find two different messages m1 and m2 such that hash(m1) = hash(m2).

Such a pair is called a cryptographic hash collision.

http://en.wikipedia.org/wiki/Computational_complexity_theory#Intractability
http://en.wikipedia.org/wiki/Cryptanalysis#Types_of_cryptanalytic_attack
http://en.wikipedia.org/wiki/Cryptanalysis#Types_of_cryptanalytic_attack
http://en.wikipedia.org/wiki/One-way_function
http://en.wikipedia.org/wiki/Preimage_attack
http://en.wikipedia.org/wiki/Preimage_attack
http://en.wikipedia.org/wiki/Preimage_attack
http://en.wikipedia.org/wiki/Collision_resistance
http://en.wikipedia.org/wiki/Hash_collision

2

CHAPTER 2: HARDWARE DESCRIPTION LANGUAGE

2.1 VHDL

 (VHSIC Hardware Description Language) is a hardware description language used in electronic

design automation to describe digital and mixed-signal systems such as field-programmable gate

array and integrated circuits. VHDL can also be used as a general purpose parallel programming

language.

Advantages

 The key advantage of VHDL, when used for systems design, is that it allows the behavior of the

required system to be described (modeled) and verified (simulated) before synthesis tools

translate the design into real hardware (gates and wires).

 Another benefit is that VHDL allows the description of a concurrent system. VHDL is

a dataflow language, unlike procedural computing languages such as BASIC, C, and assembly

code, which all run sequentially, one instruction at a time.

 A VHDL project is multipurpose. Being created once, a calculation block can be used in many

other projects. However, many formational and functional block parameters can be tuned

(capacity parameters, memory size, element base, block composition and interconnection

structure).

 A VHDL project is portable. Being created for one element base, a computing device project

can be ported on another element base, for example VLSI with various technologies.

2.2 VHDL vs VERILOG

 Capability

 When modeling abstract hardware, the capability of VHDL can sometimes only be

achieved in Verilog when using the PLI. The choice of which to use is not therefore based solely on

technical capability but on:

 personal preferences

 EDA tool availability

3

 commercial, business and marketing issues

The modeling constructs of VHDL and Verilog cover a slightly different spectrum across the levels of

behavioral abstraction.

 Compilation

VHDL. Multiple design-units (entity/architecture pairs), that reside in the same system file, may be

separately compiled if so desired. However, it is good design practice to keep each design unit in

its own system file in which case separate compilation should not be an issue.

Verilog. The Verilog language is still rooted in it's native interpretative mode. Compilation is a

means of speeding up simulation, but has not changed the original nature of the language. As a

result care must be taken with both the compilation order of code written in a single file and the

compilation order of multiple files. Simulation results can change by simply changing the order of

compilation.

 Data types

VHDL. A variety of language or user defined data types can be used. Dedicated conversion

functions are needed to convert objects from one type to another. The choice of which data types to

use should be considered wisely, especially enumerated (abstract) data types. It makes models

easier to write, clearer to read and avoid unnecessary conversion functions that can clutter the

code.

Verilog. Compared to VHDL, Verilog data types are very simple, easy to use and very much

geared towards modeling hardware structure as opposed to abstract hardware modeling. Unlike

VHDL, all data types used in a Verilog model are defined by the Verilog language and not by the

user. There are net data types, for example wire, and a register data type called reg. A model with a

signal whose type is one of the net data types has a corresponding electrical wire in the implied

modeled circuit. Objects that are signals, of type reg hold their value over simulation delta cycles

and should not be confused with the modeling of a hardware register. Verilog may be preferred

because of its simplicity.

4

 Design reusability

VHDL. Procedures and functions may be placed in a package so that they are available to any

design-unit that wishes to use them.

Verilog. There is no concept of packages in Verilog. Functions and procedures used within a

model must be defined in the module. To make functions and procedures generally accessible from

different module statements the functions and procedures must be placed in a separate system file

and included using the `include compiler directive.

 Easiest to Learn

Starting with zero knowledge of either language, Verilog is probably the easiest to grasp and

understand. This assumes the Verilog compiler directive language for simulation and the PLI

language is not included. If these languages are included they can be looked upon as two additional

languages that need to be learned. VHDL may seem less intuitive at first for two primary reasons.

First, it is very strongly typed; a feature that makes it robust and powerful for the advanced user

after a longer learning phase. Second, there are many ways to model the same circuit, especially

those with large hierarchical structures.

 Forward and back annotation

A spin-off from Verilog is the Standard Delay Format (SDF). This is a general purpose format

used to define the timing delays in a circuit. The format provides a bidirectional link between, chip

layout tools, and either synthesis or simulation tools, in order to provide more accurate timing

representations. The SDF format is now an industry standard in it's own right.

 High level constructs

VHDL. There are more constructs and features for high-level modeling in VHDL than there are in

Verilog. Abstract data types can be used along with the following statements:

* Package statements for model reuse,

* Configuration statements for configuring design structure,

* Generate statements for replicating structure,

* Generic statements for generic models that can be individually characterized, for example, bit

width.

5

Verilog. Except for being able to parameterize models by overloading parameter constants, there is

no equivalent to the high-level VHDL modeling statements in Verilog.

 Language Extensions

The use of language extensions will make a model non standard and most likely not portable

across other design tools. However, sometimes they are necessary in order to achieve the desired

results.

VHDL. Has an attribute called 'foreign that allows architectures and subprograms to be modeled in

another language.

Verilog. The Programming Language Interface (PLI) is an interface mechanism between Verilog

models and Verilog software tools. For example, a designer, or more likely, a Verilog tool vendor,

can specify user defined tasks or functions in the C programming language, and then call them

from the Verilog source description. Use of such tasks or functions make a Verilog model

nonstandard and so may not be usable by other Verilog tools. Their use is not recommended.

 Libraries

VHDL. A library is a store for compiled entities, architectures, packages and configurations. Useful

for managing multiple design projects.

Verilog. There is no concept of a library in Verilog. This is due to it's origins as an interpretive

language.

 Low Level Constructs

VHDL. Simple two input logical operators are built into the language, they are: NOT, AND, OR,

NAND, NOR, XOR and XNOR. Any timing must be separately specified using the after clause.

Separate constructs defined under the VITAL language must be used to define the cell primitives

of ASIC and FPGA libraries.

Verilog. The Verilog language was originally developed with gate level modeling in mind, and so

has very good constructs for modeling at this level and for modeling the cell primitives of ASIC

and FPGA libraries. Examples include User Defined Primitive s (UDP), truth tables and the

specify block for specifying timing delays across a module.

6

 Managing large designs

VHDL. Configuration, generate, generic and package statements all help manage large design

structures.

Verilog. There are no statements in Verilog that help manage large designs.

 Operators

The majority of operators are the same between the two languages. Verilog does have very useful

unary reduction operators that are not in VHDL. A loop statement can be used in VHDL to

perform the same operation as a Verilog unary reduction operator. VHDL has the mod operator

that is not found in Verilog.

 Parameterizable models

VHDL. A specific bit width model can be instantiated from a generic n-bit model using the generic

statement. The generic model will not synthesize until it is instantiated and the value of the generic

given.

Verilog. A specific width model can be instantiated from a generic n-bit model using overloaded

parameter values. The generic model must have a default parameter value defined. This means two

things. In the absence of an overloaded value being specified, it will still synthesize, but will use

the specified default parameter value. Also, it does not need to be instantiated with an overloaded

parameter value specified, before it will synthesize.

 Procedures and tasks

VHDL allows concurrent procedure calls; Verilog does not allow concurrent task calls.

 Readability

This is more a matter of coding style and experience than language feature. VHDL is a concise and

verbose language; its roots are based on Ada. Verilog is more like C because it's constructs are

based approximately 50% on C and 50% on Ada. For this reason an existing C programmer may

prefer Verilog over VHDL.

 Structural replication

VHDL. The generate statement replicates a number of instances of the same design-unit or some

sub part of a design, and connects it appropriately.

Verilog. There is no equivalent to the generate statement in Verilog.

7

CHAPTER 3: XILINX ISE

3.1 Introduction

Xilinx designs, develops and markets programmable logic products, including integrated circuits (ICs),

software design tools, predefined system functions delivered as intellectual property (IP) cores, design

services, customer training, field engineering and technical support.

Xilinx sells both FPGAs and

CPLDs for electronic equipment manufacturers in end markets such as communications, industrial,

consumer, automotive and data processing.R1oss Freeman, Bernard Vonderschmitt, and James V Barnett II,

who all had worked for integrated circuit and solid-state device manufacturer Zilog Corp, founded Xilinx in 1984.

The Xilinx ISE is a design environment for FPGA products from Xilinx, and is tightly-coupled to

the architecture of such chips, and cannot be used with FPGA products from other vendors. The Xilinx

ISE is primarily used for circuit synthesis and design, while the ModelSim logic simulator is used for

system-level testing.

3.2 Simulation

System-level testing may be performed with the ModelSim logic simulator, and such test programs

must also be written in HDL languages. Test bench programs may include simulated input signal

waveforms, or monitors which observe and verify the outputs of the device under test.

ModelSim may be used to perform the following types of simulations:

 Logical verification, to ensure the module produces expected results

 Behavioural verification, to verify logical and timing issues

 Post-place & route simulation, to verify behaviour after placement of the module within the

reconfigurable logic of the FPGA

3.3 Synthesis

Xilinx's patented algorithms for synthesis allow designs to run upto 30% faster than competing

programs, and allows greater logic density which reduces project costs.

Also, due to the increasing complexity of FPGA fabric, including memory blocks and I/O blocks, more

complex synthesis algorithms were developed that separate unrelated modules into slices, reducing

post-placement errors.

8

IP Cores are offered by Xilinx and other third-party vendors, to implement system-level functions

such as digital signal processing (DSP), bus interfaces, networking protocols, image

processing, embedded processors, and peripherals. Xilinx has been instrumental in shifting designs

from ASIC-based implementation to FPGA-based implementation.

3.4 Spartan family

The Spartan series targets applications with a low-power footprint, extreme cost sensitivity and high-

volume; e.g. displays, set-top boxes, wireless routers and other applications.

The Spartan-6 family is built on a 45-nanometer [nm], 9-metal layer, dual-oxide process

technology. The Spartan-6 was marketed in 2009 as a low-cost solution for automotive, wireless

communications, flat-panel display and video surveillance applications.

http://en.wikipedia.org/wiki/Image_processing
http://en.wikipedia.org/wiki/Image_processing
http://en.wikipedia.org/wiki/Soft_microprocessor
http://en.wikipedia.org/wiki/Displays
http://en.wikipedia.org/wiki/Set-top_boxes
http://en.wikipedia.org/wiki/Wireless_router

9

CHAPTER 4: SYNTHESIS IN VHDL

4.1 Introduction

Synthesis is a general term that describes the process of transformation of the model of a design,

usually described in a hardware description language (HDL), from one level of behavioral abstraction

to a lower, more detailed behavioral level.

These transformations try to improve upon a set of objective metrics (e.g., area, speed, power

dissipation) of a design, while satisfying a set of constraints (e.g., I/O rates, MIPS, sample period)

imposed on it.

Synthesis in its most generic form simply refers to the incorporation of additional lower level

implementation details into a digital design, however, most current tools expect the output to be a net

list of gates that are optimized for area, power, or latency

4.2 Steps Involved in Synthesis Process

Synthesis to the gate-level of abstraction consists of three major steps –

 Design specification (in a machine-readable form)

 Design implementation

 Design validation and verification

Design specification implies a description of the design where functional, performance, and cost

constraints (area, power, speed) are captured in a form that facilitates processing (I.e., executable) in a

CAD environment.

4.2.1 Methods for capturing the specification are:

 Graphical methods

 Language-based methods

Many consider graphical methods and language methods to be indistinguishable, in that one can be

quickly converted to another. It is often the designer’s choice as to which mechanism they find

convenient when specifying a complex digital design.

10

4.2.1.1 Graphical Methods

These include:

 Block diagrams, state diagrams, schematics, data flow graphs, timing diagrams, truth tables, etc.

Advantages:

 Faster learning curve

 Intuitive documentation and

 Reusability of design.

Disadvantages:

 Limited support for functional and timing hierarchy in complex digital systems

 Limited support for multiple views (e.g., simulation versus hardware generation)

4.2.1.2 Language-based Methods

These methods include:

 Hardware description languages (HDLs), high level algorithmic macro descriptors (such as

Matlab), or application-specific languages (such as Silage and DSP/C for signal processing).

Advantages:

 Ability to serve as a standard medium of communication between the algorithm developer and

the synthesis expert

 Robustness through well-defined semantics

 Ability for representing complex behavior and data structures

 Support for synthesis and its verification in the same environment,

 Their system-independent nature that facilitates design documentation.

Disadvantages:

 Specification is harder to visualize, and requires a longer learning curve.

11

4.2.2 Intermediate Steps involved in Design Implementation

 Algorithm design:

o Evaluates the performance of the algorithm being implemented in terms of:

 The precision of the word length,

 The number of iterations and

 The quality of the results obtained with respect to the design requirements.

 Behavioral simulations:

o Done after the algorithm design is complete to verify the detailed functional behavior of

the system.

 Data and control flow graph generation:

o Derives an intermediate representation of the behavioral specification where the data

flow, input/output, control dependencies and synchronization signals are documented.

 The result of the previous steps in synthesis is sometimes called a behavioral-level model of the

circuit.

 The next steps involve a knowledge of the hardware and software modules available in the

design library. At this stage of the synthesis process, based on the control/data flow graph, the

steps are:

o Module selection (determining which modules are used in design)

o Estimation and allocation of the number of modules to be used

o Transformations that optimize the control/data flow graph without changing the

input/output functional properties, but improve on its synthesis metrics (such as area,

power, or speed).

 Scheduling determines when a certain operation will be executed, and assignment determines

the module on which the operand will be executed (e.g., an addition on an adder module).

 At the completion of this stage of the synthesis the result is called a register-transfer level

(RTL) model of the circuit

 The RTL description or model is then converted to a logic level implementation through a

process called logic synthesis, and after further technology level optimization a gate-level

model of the circuit results, which must be verified for both timing and function.

12

Validation at each stage of the design is a feature of the top-down structured design process, and can

proceed in a bottom-up or topdown manner

 E.g., in a bottom-up process each selected module is tested to ensure correct functional

behavior. After all the constituent modules are validated the entire design is validated at the

RTL level.

 After completion of the logic synthesis, the verification process is carried out at the gate level.

4.3 VHDL-Based Synthesis

FIGURE: 4.1

Synthesis is a process that is independent of VHDL. However, VHDL assists synthesis through its four

major roles listed below.

 In Design Capture, one already has a digital design in mind, and this design is translated to

VHDL so that it can be processed directly by a synthesis tools.

 In Design Simulation & Verification, a test bench and a captured design are simulated to ensure

that the design works correctly.

 In Design Specification, arguably the most powerful use of VHDL, the design can be specified

at a very high level of abstraction, and the synthesis tool can then take this description and

translate it to lower levels of design abstraction subject to the enforced constraints.

 In Design Documentation one can use VHDL as an executable version of the system that has

been designed or is under design.

VHDL based synthesis

Design Capture
Design

Simulation &
Verification

Design
Specification

Design
Documentation

13

4.3.1 Design Capture

 VHDL allows designer to capture the details of a digital design in a form that is machine-

readable, that is, the design can be entered into a CAD system.

 VHDL can be used as an alternative to, or in conjunction, with schematic-based design entry

methods.

 Typical logic synthesis and RTL synthesis tools are primarily design capture environments.

Over 90% of designers use VHDL for this purpose (EE Times, 1996).

4.3.2 Design Specification

 Within a structured design flow, VHDL can be used to capture the behavioral, interface and

performance-related aspects of the design.

 The VHDL representation can then be synthesized to an implementation through several

consecutive stages, each incrementally adding more detail to it.

 Behavioral synthesis and advanced RTL synthesis tools is representative of environments

performing this function.

4.3.3 Design Simulation and Verification

 VHDL used to simulate key properties of a design prior to and after synthesis.

 VHDL can verify those properties at various levels of the synthesis process.

 Various levels of functional and timing simulation can include both technology dependent and

independent aspects of the design under synthesis

4.3.4 Design Documentation

 A design represented in VHDL is a well documented design, and is accepted as such by the US

Department of Defense.

 VHDL, an IEEE standard, allows designs to be represented in a non-proprietary, technology -

independent manner.

 VHDL is capable of representing both the design and its test environment in a tool-

environment, technology-neutral manner, adding greatly to design productivity, reuse, and

capability for its rapid upgrade.

14

4.4 Levels of VHDL-based Synthesis

Commonly used synthesis tools support

 Behavioral Synthesis

 RTL Synthesis

 Logic Synthesis

FIGURE: 4.2

Characteristics of Behavioral Synthesis

 Pros

o User inputs behavioral-level VHDL code that is short, easy to write, and verify, leading

to increased productivity

o The synthesis tools perform the tasks of resource allocation, assignment, scheduling, and

optimize area, latency, and power dissipation based on user input

o Output from a behavioral synthesis tool can be starting point for RTL synthesis tools for

further optimization.

 Cons

o Supports a very small subset of VHDL (e.g., single process architectures).

o Non-standard implementations depending on tool vendors

o Currently supports application specific areas (such as DSP) with primarily loop-

dominated computational flow graphs

o Ability to handle larger graphs (more than a few dozen operations) limited ° Needs

supporting high level libraries of components

15

Characteristics of RTL Synthesis

 Pros

o Allows capture of a digital design at the RTL level in VHDL - improving productivity

over logic synthesis tools

o Allows manual mapping to libraries of high-level components (multipliers, adders)

o More control over the synthesis process in terms of final architecture

o Provide several templates for VHDL semantics for state machine optimization

o IEEE RTL VHDL standard, 1997

o Supports a large subset of VHDL

 Cons

o Up until 1997, each vendor supported a different RTL subset of VHDL

o Requires specification of the datapath, registers, controller, and cycle-bycycle behavior

o Resource sharing, resource allocation, scheduling, and mapping tasks have to be carried

out by the designer prior to coding at the RTL level, limiting architectural exploration.

o Allows no architectural exploration, and the synthesizer optimizes at the level of the

components and states

4.5 FPGA Implementation Tools

After synthesis, run design implementation, which comprises the following steps:

1. Translate, which merges the incoming netlists and constraints into a Xilinx® design file

2. Map, which fits the design into the available resources on the target device

3. Place and Route, which places and routes the design to the timing constraints

4. Programming file generation, which creates a bitstream file that can be downloaded to the

device

 Translate

The Translate process merges all of the input netlists and design constraints and outputs a xilinx

native generic database (NGD) file, which describes the logical design reduced to Xilinx

primitives.

16

TABLE: 4.1

 Map

The Map process maps the logic defined by an NGD file into FPGA elements, such as CLBs

and IOBs. The output design is a native circuit description (NCD) file that physically represents

the design mapped to the components in the Xilinx FPGA.

TABLE: 4.2

 Place and Route

The Place and Route process takes a mapped NCD file, places and routes the design, and

produces an NCD file that is used as input for bitstream generation.

TABLE: 4.3

17

 Programming File Generation

The Generate Programming File process produces a bitstream for Xilinx device configuration.

After the design is completely routed, you must configure the device so it can execute the

desired function.

TABLE: 4.4

18

Chapter 5: SIMUILATORS

5.1 Introduction

Simulation is the imitation of the operation of a real-world process or system over time. The act of simulating

something first requires that a model be developed; this model represents the key characteristics or

behaviors/functions of the selected physical or abstract system or process. The model represents the system

itself, whereas the simulation represents the operation of the system over time.

Simulation is used in many contexts, such as simulation of technology for performance

optimization, safety engineering, testing, training, education, and video games. Often, computer

experiments are used to study simulation models. Simulation is also used with scientific modeling of

natural systems or human systems to gain insight into their functioning. Simulation can be used to

show the eventual real effects of alternative conditions and courses of action. Simulation is also used

when the real system cannot be engaged, because it may not be accessible, or it may be dangerous or

unacceptable to engage, or it is being designed but not yet built, or it may simply not exist.

5.2 HDL Simulators

HDL simulators are software packages that emulate any hardware description language. HDL simulation

software has come a long way since its early origin as a single proprietary product offered by one company.

Today, Simulators are available from many vendors, at all price points. For desktop/personal use, Aldec, Mentor,

LogicSim, SynaptiCAD,TarangEDA and others offer <$5000 USD tool-suites for the Windows 2000/XP

platform. The suites bundle the simulator engine with a complete development environment: text editor,

waveform viewer, and RTL-level browser. Additionally, limited-functionality editions of the Aldec and

ModelSim simulator are downloadable free of charge, from their respective OEM partners (Actel, Altera, Lattice

Semiconductor, Xilinx, etc.) For those desiring open-source software, there is Icarus Verilog,GHDL among

others. Here, we have used Modelsim SE/EE 5.4a simulator by Mentor Graphics to simulate our project.

5.2.1 ModelSim

ModelSim is a multi-language HDL simulation environment by Mentor Graphics, for simulation of hardware

description languages such as VHDL, Verilog and SystemC, and includes a built-in C debugger. ModelSim can

be used independently, or in conjunction with Altera Quartus or Xilinx ISE. Simulation is performed using

the graphical user interface (GUI), or automatically using scripts.

http://en.wikipedia.org/wiki/Function_(engineering)
http://en.wikipedia.org/wiki/Technology
http://en.wikipedia.org/wiki/Safety_engineering
http://en.wikipedia.org/wiki/Experiment
http://en.wikipedia.org/wiki/Training
http://en.wikipedia.org/wiki/Education
http://en.wikipedia.org/wiki/Video_game
http://en.wikipedia.org/wiki/Computer_experiment
http://en.wikipedia.org/wiki/Computer_experiment
http://en.wikipedia.org/wiki/Scientific_modelling
http://en.wikipedia.org/wiki/Hardware_description_language
http://en.wikipedia.org/wiki/Icarus_Verilog
http://en.wikipedia.org/wiki/Mentor_Graphics
http://en.wikipedia.org/wiki/Hardware_description_language
http://en.wikipedia.org/wiki/Hardware_description_language
http://en.wikipedia.org/wiki/VHDL
http://en.wikipedia.org/wiki/Verilog
http://en.wikipedia.org/wiki/SystemC
http://en.wikipedia.org/wiki/Altera_Quartus
http://en.wikipedia.org/wiki/Xilinx_ISE
http://en.wikipedia.org/wiki/Graphical_user_interface

19

ModelSim is offered in multiple editions, such as ModelSim PE, ModelSim SE, and ModelSim XE.

 ModelSim SE offers high-performance and advanced debugging capabilities, while ModelSim

PE is the entry-level simulator for hobbyists and students. ModelSim SE is used in large multi-

million gate designs, and is supported on Microsoft Windows and Linux, in 32-bit and 64-bit

architectures.

 ModelSim XE stands for Xilinx Edition, and is specially designed for integration with Xilinx

ISE.

ModelSim XE enables testing of HDL programs written for Xilinx Virtex/Spartan series

FPGA's without needed physical hardware.

ModelSim can also be used with MATLAB/Simulink, using Link for ModelSim. Link for

ModelSim is a fast bidirectional co-simulation interface between Simulink and ModelSim. For such

designs, MATLAB provides a numerical simulation toolset, while ModelSim provides tools to verify

the hardware implementation & timing characteristics of the design. ModelSim uses a unified kernel

for simulation of all supported languages, and the method of debugging embedded C code is the same

as VHDL or Verilog.

ModelSim enables simulation, verification and debugging for the following languages:

 VHDL

 Verilog

 Verilog 2001

 SystemVerilog

 PSL

 SystemC

5.2.2 ISE Simulator (ISim)

ISim provides a complete, full-featured HDL simulator integrated within ISE. HDL simulation now can be an

even more fundamental step within your design flow with the tight integration of the ISim within your design

environment.

http://en.wikipedia.org/wiki/Microsoft_Windows
http://en.wikipedia.org/wiki/Xilinx_ISE
http://en.wikipedia.org/wiki/Xilinx_ISE
http://en.wikipedia.org/wiki/Virtex_(FPGA)
http://en.wikipedia.org/wiki/MATLAB
http://en.wikipedia.org/wiki/Simulink
http://en.wikipedia.org/wiki/VHDL
http://en.wikipedia.org/wiki/Verilog
http://en.wikipedia.org/wiki/Verilog
http://en.wikipedia.org/wiki/SystemVerilog
http://en.wikipedia.org/wiki/Property_Specification_Language
http://en.wikipedia.org/wiki/SystemC

20

ISim Key Features:

 Mixed language support

 Supports VHDL-93 and Verilog 2001

 Native support for all HardIP blocks

 PPC, MGT, PCIe, etc.

 No special license requirements

 Supports AXI Bus Functional Model (BFM)

 Multi-Threaded compilation

 Post-Processing capabilities

 Tcl scriptable GUI and batch mode simulation run

 Standalone Waveform viewing capabilities

 Debug capabilities

 Waveform tracing, waveform viewing, HDL source debugging

 Power Analysis and optimization using SAIF

 Memory Editor for viewing and debugging memory elements

 Single click re-compile and re-launch of simulation

 Integrated with ISE Design Suite and Plan Ahead application

 Easy to use - One-click compilation and simulation

 Hardware Co-simulation capability

 Offload a design or a portion of the design to hardware

 Accelerate RTL simulation by up to 50x

 Xilinx simulation libraries “built-in”

 Additional mapping or compilation not required

21

CHAPTER 6: HASH FUNCTION

6.1 Introduction

Hash functions compress a string of arbitrary length to a string of fixed length. They provide a unique

relationship between the input and the hash value and hence replace the authenticity of a large amount

of information (message) by the authenticity of a much smaller hash value (authenticator).

In recent years there has been an increased interest in developing a Message Authentication Code

(MAC) derived from a hash code. Among the many reasons behind this are that cryptographic hash

functions such as MD5 and SHA-1 generally execute faster in software than symmetric block ciphers

such as DES.

6.2 PROPERTIES

Good hash functions, in the original sense of the term, are usually required to satisfy certain properties

listed below. The exact requirements are dependent on the application

 Determinism

A hash procedure must be deterministic—meaning that for a given input value it must always generate

the same hash value. In other words, it must be a function of the data to be hashed, in the mathematical

sense of the term.

 Uniformity

A good hash function should map the expected inputs as evenly as possible over its output range. That

is, every hash value in the output range should be generated with roughly the same probability.

The reason for this last requirement is that the cost of hashing-based methods goes up sharply as the

number of collisions—pairs of inputs that are mapped to the same hash value—increases. Basically, if

some hash values are more likely to occur than others, a larger fraction of the lookup operations will

have to search through a larger set of colliding table entries.

22

 Defined range

It is often desirable that the output of a hash function have fixed size.

Producing fixed-length output from variable length input can be accomplished by breaking the input

data into chunks of specific size. Hash functions used for data searches use some arithmetic expression

which iteratively processes chunks of the input (such as the characters in a string) to produce the hash

value.

In cryptographic hash functions, these chunks are processed by a one-way compression function, with

the last chunk being padded if necessary. In this case, their size, which is called block size, is much

bigger than the size of the hash value.

 Variable range

In many applications, the range of hash values may be different for each run of the program, or may

change along the same run. In those situations, one needs a hash function which takes two

parameters—the input data z, and the number n of allowed hash values.

 Data normalization

In some applications, the input data may contain features that are irrelevant for comparison purposes.

For example, when looking up a personal name, it may be desirable to ignore the distinction between

upper and lower case letters. For such data, one must use a hash function that is compatible with the

data equivalence criterion being used: that is, any two inputs that are considered equivalent must yield

the same hash value. This can be accomplished by normalizing the input before hashing it, as by upper-

casing all letters.

 Non-invertible

In cryptographic applications, hash functions are typically expected to be non-invertible, meaning that

it is not possible to reconstruct the input datum x from its hash value h(x) alone without spending great

amounts of computing time

23

6.3 Encoding vs. Encryption vs. Hashing

Hashing is often confused with encryption and encoding. They are not the same. But before going into

the differences, it’s mentioned how they are related:

1. All three transform data into another format.

2. Both encoding and encryption are reversible, and hashing is not.

Encoding

Figure 7.1

The purpose of encoding is to transform data so that it can be properly (and safely) consumed

by a different type of system, e.g. binary data being sent over email, or viewing special characters on a

web page. The goal is not to keep information secret, but rather to ensure that it’s able to be properly

consumed.

Encoding transforms data into another format using a scheme that is publicly available so that it

can easily be reversed. It does not require a key as the only thing required to decode it is the algorithm

that was used to encode it.

Encryption

Figure 7.2

24

The purpose of encryption is to transform data in order to keep it secret from others, e.g.

sending someone a secret letter that only they should be able to read, or securely sending a password

over the Internet. Rather than focusing on usability, the goal is to ensure the data cannot be consumed

by anyone other than the intended recipient(s).

Encryption transforms data into another format in such a way that only specific

individual(s) can reverse the transformation. It uses a key, which is kept secret, in conjunction with the

plaintext and the algorithm, in order to perform the encryption operation. As such, the cipher text,

algorithm, and key are all required to return to the plaintext.

Hashing

Figure 7.3

Hashing serves the purpose of ensuring integrity, i.e. making it so that if something is changed

you can know that it’s changed. Technically, hashing takes arbitrary input and produces a fixed-length

string that has the following attributes:

The same input will always produce the same output.

1. Multiple disparate inputs should not produce the same output.

2. It should not be possible to go from the output to the input.

3. Any modification of a given input should result in drastic change to the hash.

Hashing is used in conjunction with authentication to produce strong evidence that a given

message has not been modified. This is accomplished by taking a given input, encrypting it with a

given key, hashing it, and then encrypting the key with with the recipient’s public key and signing the

hash with the sender’s private key.

25

When the recipient opens the message, they can then decrypt the key with their private key,

which allows them to decrypt the message. They then hash the message themselves and compare it to

the hash that was signed by the sender. If they match it is an unmodified message, sent by the correct

person.

6.4 Summary

 Encoding is for maintaining data usability and can be reversed by employing the same algorithm

that encoded the content, i.e. no key is used.

 Encryption is for maintaining data confidentiality and requires the use of a key (kept secret) in

order to return to plaintext.

 Hashing is for validating the integrity of content by detecting all modification thereof via obvious

changes to the hash output.

26

CHAPTER 7: MESSAGE DIGEST

7.1 Introduction

The Message Digest (MD) series of algorithms come under Hash functions used for data security and

integrity purpose.

Message digest functions distill the information contained in a file, small or large, into a single

large number, typically between 128 and 256 bits in length. The best message digest functions combine

these mathematical properties:

 Every bit of the digest function’s output is potentially influenced by every bit of the

function’s input

 If any given bit of the function’s input is changed, every output bit has a 50 percent chance

of changing.

 Given an input file and its corresponding message digest, it should be computationally

infeasible to find another file with the same message digest value 0

Message digests are also called one-way hash functions because they produce values that are

difficult to invert, resistant to attack, effectively unique, and widely distributed.

7.2 Types of Message Digests

Ronald Rivest developed 3 algorithms in the MD series.

The following are the algorithms:

 MD2 –

1. It was developed in 1989.

2. MD2 is specified in RFC 1319. Although MD2 is no longer considered secure, even as

of 2014, it remains in use in public key infrastructures as part of certificates generated

with MD2 and RSA.

3. The 128-bit (16-byte) MD2 hashes (also termed message digests) are typically

represented as 32-digit hexadecimal numbers.

 MD4 –

27

1. It was 1developed in 1990.

2. The message is padded to ensure that its length in bits plus 64 is divisible by 512. A 64-

bit binary representation of the original length of the message is then concatenated to

the message. The message is processed in 512-bit blocks and each block is processed in

three distinct rounds.

3. The security of MD4 has been severely compromised. The first full collision

attack against MD4 was published in 1995 and several newer attacks have been

published since then. As of 2007, an attack can generate collisions in less than 2 MD4

hash operations.

 MD5 –

1. It was developed in 1991.

2. It is basically MD4 with "safety-belts" and while it is slightly slower than MD4, it is

more secure. The algorithm consists of four distinct rounds, which has a slightly

different design from that of MD4. Message-digest size, as well as padding

requirements, remain the same.

3. In 1996 a flaw was found in the design of MD5. While it was not deemed a fatal

weakness at the time, cryptographers began recommending the use of other algorithms,

such as SHA-1

28

CHAPTER 8: MESSAGE DIGEST 5 (MD5) ALGORITHM

8.1 Introduction

MD5 is a hash algorithm that is used to verify data integrity through the creation of a 128-bit message

digest from data input which may be a message of any length that is claimed to be as unique to that

specific data as a fingerprint is to the specific individual.

MD5, which was developed by Professor Ronald L. Rivest of MIT, is intended for use with digital

signature applications, which require that large files must be compressed by a secure method before

being encrypted with a secret key, under a public key cryptosystem.

MD5 is currently a standard, Internet Engineering Task Force (IETF) Request for Comments (RFC)

1321. According to the standard, it is "computationally infeasible" that any two messages that have

been input to the MD5 algorithm could have as the output the same message digest, or that a false

message could be created through apprehension of the message digest.

MD5 is the third message digest algorithm created by Rivest. All three (the others are MD2 and

MD4) have similar structures, but MD2 was optimized for 8-bit machines, in comparison with the two

later formulas, which are optimized for 32-bit machines. The MD5 algorithm is an extension of MD4,

which the critical review found to be fast, but possibly not absolutely secure. In comparison, MD5 is

not quite as fast as the MD4 algorithm, but offers much more assurance of data security.

8.2 Steps involved in MD5 Algorithm

1. Append Padding Bits

 The message is "padded" (extended) so that its length (in bits) is congruent to 448, modulo

512. That is, the message is extended so that it is just 64 bits shy of being a multiple of 512 bits

long. Padding is always performed, even if the length of the message is already congruent to

448, modulo 512.

 Padding is performed as follows: a single "1" bit is appended to the message, and then "0" bits

are appended so that the length in bits of the padded message becomes congruent to 448,

modulo 512. In all, at least one bit and at most 512 bits are appended.

29

2. Append Length

 A 64-bit representation of b (the length of the message before the padding bits were added) is

appended to the result of the previous step with low order byte first.

 At this point the resulting message (after padding with bits and with b) has a length that is an

exact multiple of 512 bits

 The whole bit stream of 512 bits is divided into 16 blocks of 32. Let M[0 ... N-1] denote the

words of the resulting blocks of message, where N is a multiple of 16. Each vector M is of 32

bits with low order byte first.

3. Initialize MD Buffer

 A four-word buffer (A,B,C,D) is used to compute the message digest which are predefined.

 Each of A, B, C, D is a 32-bit register. These registers are initialized to the following values in

hexadecimal, low-order bytes first):

word A: 67 45 23 01

word B: ef cd ab 89

word C: 98 ba dc fe

word D: 10 32 54 76

4. Process Message in 16-Word Blocks

 We first define four auxiliary functions that each take as input three 32-bit words and produce

as output one 32-bit word.

F(X,Y,Z) = XY v not(X) Z

G(X,Y,Z) = XZ v Y not(Z)

H(X,Y,Z) = X xor Y xor Z

I(X,Y,Z) = Y xor (X v not(Z))

30

 In each bit position F acts as a conditional: if X then Y else Z. The function F could have been

defined using + instead of v since XY and not(X)Z will never have 1's in the same bit

position.) It is interesting to note that if the bits of X, Y, and Z are independent and unbiased,

the each bit of F(X,Y,Z) will be independent and unbiased.

 The functions G, H, and I are similar to the function F, in that they act in "bitwise parallel" to

produce their output from the bits of X, Y, and Z, in such a manner that if the corresponding

bits of X, Y,and Z are independent and unbiased, then each bit of G(X,Y,Z), H(X,Y,Z), and

I(X,Y,Z) will be independent and unbiased. Note that the function H is the bit-wise "xor" or

"parity" function of its inputs.

 This step uses a 64-element table T[1 ... 64] constructed from the sine function. Let T[i] denote

the i-th element of the table, which is equal to the integer part of 4294967296 times abs(sin(i)),

where i is in radians. The elements of the table are given in the appendix.

5. Four Round Process

 Four Round Loop

/* Process each 16-word block. */

For i = 0 to N/16-1 do

/* Copy block i into X. */

For j = 0 to 15 do

Set X[j] to M[i*16+j].

end /* of loop on j */

/* Save A as AA, B as BB, C as CC, and D as DD. */

AA = A

BB = B

CC = C

DD = D

31

 Round 1

Let [abcd k s i] denote the operation

a = b + ((a + F(b,c,d) + X[k] + T[i]) <<< s).

Do the following 16 operations.

[ABCD 0 7 1] [DABC 1 12 2] [CDAB 2 17 3] [BCDA 3 22 4]

[ABCD 4 7 5] [DABC 5 12 6] [CDAB 6 17 7] [BCDA 7 22 8]

[ABCD 8 7 9] [DABC 9 12 10] [CDAB 10 17 11] [BCDA 11 22 12]

[ABCD 12 7 13] [DABC 13 12 14] [CDAB 14 17 15] [BCDA 15 22 16]

 Round 2

 Let [abcd k s i] denote the operation

 a = b + ((a + G(b,c,d) + X[k] + T[i]) <<< s).

 Do the following 16 operations.

[ABCD 1 5 17] [DABC 6 9 18] [CDAB 11 14 19] [BCDA 0 20 20]

[ABCD 5 5 21] [DABC 10 9 22] [CDAB 15 14 23] [BCDA 4 20 24]

[ABCD 9 5 25] [DABC 14 9 26] [CDAB 3 14 27] [BCDA 8 20 28]

[ABCD 13 5 29] [DABC 2 9 30] [CDAB 7 14 31] [BCDA 12 20 32]

 Round 3

Let [abcd k s i] denote the operation

 a = b + ((a + H(b,c,d) + X[k] + T[i]) <<< s).

Do the following 16 operations.

[ABCD 5 4 33] [DABC 8 11 34] [CDAB 11 16 35] [BCDA 14 23 36]

[ABCD 1 4 37] [DABC 4 11 38] [CDAB 7 16 39] [BCDA 10 23 40]

[ABCD 13 4 41] [DABC 0 11 42] [CDAB 3 16 43] [BCDA 6 23 44]

[ABCD 9 4 45] [DABC 12 11 46] [CDAB 15 16 47] [BCDA 2 23 48]

32

 Round 4

Let [abcd k s i] denote the operation

 a = b + ((a + I(b,c,d) + X[k] + T[i]) <<< s).

Do the following 16 operations.

 [ABCD 0 6 49] [DABC 7 10 50] [CDAB 14 15 51] [BCDA 5 21 52]

 [ABCD 12 6 53] [DABC 3 10 54] [CDAB 10 15 55] [BCDA 1 21 56]

 [ABCD 8 6 57] [DABC 15 10 58] [CDAB 6 15 59] [BCDA 13 21 60]

 [ABCD 4 6 61] [DABC 11 10 62] [CDAB 2 15 63] [BCDA 9 21 64]

Then perform the following additions. (That is increment each of the four registers by the value it had

before this block was started.)

 A = A + AA

 B = B + BB

 C = C + CC

 D = D + DD

end /* of loop on i */

6. Concatenate Low order byte first

AF<=A(7 DOWNTO 0)&A(15 DOWNTO 8)&A(23 DOWNTO 16)&A(31 DOWNTO 24);

BF<=B(7 DOWNTO 0)&B(15 DOWNTO 8)&B(23 DOWNTO 16)&B(31 DOWNTO 24);

CF<=C(7 DOWNTO 0)&C(15 DOWNTO 8)&C(23 DOWNTO 16)&C(31 DOWNTO 24);

DF<=D(7 DOWNTO 0)&D(15 DOWNTO 8)&D(23 DOWNTO 16)&D(31 DOWNTO 24);

7. Output

The message digest produced as output is A, B, C, D. That is,it begins with the low-order byte of A,

and end with the low-order byte of D.

HASH= AF&BF&CF&DF

33

RESULTS AND OUTPUTS

Simulations Results

 Output of Module md_string

FIGURE R.1

 Output of Four Round Process

FIGURE R.2

34

RTL Schematic

FIGURE R.3

35

FUTUTRE SCOPE

Introduction

The main computation of the Hash algorithm contains several rounds, which use the same equations for

computation. In each round many internal loops are included. So, to improve the performance of the

code two pipelining methods have been investigated.

 The coarse-grained pipelining method mounts several steps to one stage. The hardware size will

increase significantly together with the number of stages.

 The fine-grained pipelining divides a single step into small stages, and helps increase the

frequency, and consequently the throughput of the main module.

We apply this method in our MD5 implementations with two novelties of data forwarding, and two

messages processing in an alternative manner.

The data forwarding technique is used to break the critical path in the iterations into 3 stages in the

three-stage pipeline design. The data forwarding technique together with the two messages processing

in the alternative manner are used to divide the critical path into 4 stages in a four-stage pipeline

design. The latter guarantees shorter critical paths to one adder and some data movements at all stages.

Coarse Grained Architecture

The coarse grained pipeline architecture groups several steps together to form a pipeline stage. The

common procedure is grouping by round, in which the same function, constant, and key’s location

function are used.

Thus, the architectures duplicate the number of adders but keep the number of other function

units as small as 1, 2, 4, 8, or 16. The whole algorithm computation for one message is finished after

several stages (up to 64 when one repetition is mounted to one stage), and several messages (up to 64)

fulfill all the stages to make the computation power. The hardware is duplicated to meet the demand. A

high throughput of 5.8Gbps is recorded for a SIG-MD5 system but the hardware use is also over 10

times higher than others (11,498 hardware slices on Virtex-2). This architecture can be used in

extremely high speed security systems, which require a high throughput without any restriction on the

hardware size and the power consumption.

36

Data Dependency, Forwarding, and Dependency Removal

The main computation is represented by the equations

A = B + ((A + Func + X[k] + T[i]) <<s) (a)

A ← D; B ← A; C ← B; D ← C (b)

in which, <<represents a rotation shift left operation.

 Data Dependency

Data dependency in equations can be easily seen if we rewrite it as follows:

tempB = B (a)

B = B + ((A + T + X + Func) << s) (b)

A ← D; C ← tempB; D ← C (c)

Equations show that the values of A, C, D rely on previous values of D, B, C, respectively. The

new value of B, which is calculated by equation (b) relies on previous values of A, B on current,

values of T, X, s and Func. X itself relies on its location denoted by k, which must be calculated

from the step number i. Func depends on the previous values of B, C, D and the current step i. The

new value of B (new B) completely depends on the step number and current values of A, B, C, and

D. However, the internal values of T, k, X can be pre-computed because they rely on the step

number i only. Therefore, we can make a pipeline by pre-computing k, and if we can pre-compute

the value of A.

 Data Forwarding and Dependency Removal

The locations of operands A, B, C, and D at each step are required for the forwarding operations. In

order to compute the new value B (n3) using equation (4b), the current value A is required. Assume

the values of operands A, B, C, and D at two steps before are a, b, c, and d, respectively. The

values for A at the current and the preceding steps are transferred from operands D, and C

respectively, which means the values of current A for the n3 computation are located in D, or C

depending on the step number where we want to use it. In short, the values of A used in equation

(b) can be taken as values of the operand D at the preceding step or C at the step before the

preceding one. In this 3SMD5 and 4SMD5 implementations, we manage to implement a single step

of MD5 into a pipeline based on the data dependency in equations (4).The computation of B

requires a huge sequenced computation of k, X, Func and four 32-bit adders. This generates an

37

enormous latency. However, if we pay attention to the trace of A, that latency can be divided into

smaller stages. The address of the key of the current step can be pre computed several steps before,

because it relies mainly on the step number i. The trace of A in Fig. 4 allows us to define the value

of A at the current step as D at the preceding step or C at the step before the preceding one. All that

makes it possible to pre-compute A+T+X up to 3 steps before. In other words, the data dependency

of the computation of B in the operand A is removed. The new value of B now relies on the value

of C at the step before the preceding one. The pre-computation of A+T+X in some pipeline stages

by forwarding the value of C or D to A helps ease the delay in the critical path of (4b).

38

CONCLUSION

MD5 is still one of the widely used hashing technique, though MD5 does have a greater collision risk,

still it is quicker to generate an MD5 digest. If we're forced to generate many digests, we'll prefer MD5

because it's much faster to compute the 128 bit digest for MD5 as compare to other hashing algorithms

which are required to process about 160 or more bits. Since MD5 is good enough for non-

cryptographic purposes, the speed advantage makes it a better choice in most cases.

39

Applications

MD5 is a cryptographic hash function which, as such, is expected to fulfill three characteristics:

 Resistance to preimages: given x, it is infeasible to find m such that MD5(m) = x.

 Resistance to second-preimages: given m, it is infeasible to find m' distinct from m and such

thatMD5(m) = MD5(m').

 Resistance to collisions: it is infeasible to find m and m', distinct from each other, and such

thatMD5(m) = MD5(m').

MD5 digests have been widely used in the software world to provide some assurance that a transferred

file has arrived intact. For example, file servers often provide a pre-computed MD5 (known

as Md5sum) checksum for the files, so that a user can compare the checksum of the downloaded file to

it. Most unix-based operating systems include MD5 sum utilities in their distribution packages;

Windows users may install a Microsoft utility, or use third-party applications. Android ROMs also

utilize this type of checksum.

Figure A.1

MD5 can be used to store a one-way hash of a password, often with key stretching. Along with other

hash functions, it is also used in the field of electronic discovery, in order to provide a unique identifier

for each document that is exchanged during the legal discovery process.

http://en.wikipedia.org/wiki/MD5
http://en.wikipedia.org/wiki/Cryptographic_hash_function
http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Md5sum
http://en.wikipedia.org/wiki/Checksum
http://en.wikipedia.org/wiki/Password#Form_of_stored_passwords
http://en.wikipedia.org/wiki/Key_stretching
http://en.wikipedia.org/wiki/Electronic_discovery
http://en.wikipedia.org/wiki/File:CPT-Hashing-File-Transmission.svg

40

APPENDIX

HDL Synthesis Report

Macro Statistics

Adders/Subtractors : 147

 25-bit adder : 21

 26-bit adder : 21

 27-bit adder : 21

 28-bit adder : 21

 29-bit adder : 21

 30-bit adder : 21

 31-bit adder : 21

Primitive and Black Box Usage:

BELS : 296

GND : 1

LUT3 : 147

LUT5 : 42

LUT6 : 105

VCC : 1

IO Buffers : 680

#IBUF : 168

#OBUF : 512

41

Device utilization summary:

Selected Device : 6slx4tqg144-3 (Spartan 6)

Slice Logic Utilization:

 Number of Slice LUTs: 294 out of 2400 12%

 Number used as Logic: 294 out of 2400 12%

Slice Logic Distribution:

Number of LUT Flip Flop pairs used: 294

Number with an unused Flip Flop: 294 out of 294 100%

Number with an unused LUT: 0 out of 294 0%

Number of fully used LUT-FF pairs: 0 out of 294 0%

Number of unique control sets: 0

IO Utilization:

Number of IOs: 680

Number of bonded IOBs: 680 out of 102 = 666%

42

REFERENCES

[1] R. Rivest, “The MD5 Message-Digest Algorithm, RFC 1321”, MIT LCS & RSA

Data Security, Inc., April 1992.

[2] Jayaram Bhasker, “A VHDL Primer”

[3] I.N. Tselepis, M.P. Bekakos, A.S. Nikitakis and E.A. Lipitakis, “MD5 Hash

Algorithm Hardware Realization on a Reconfigurable FPGA Platform”

[4] Mohammed A. Noaman , “A VHDL Model for Implementation of MD5 Hash

Algorithm”

[5] Janaka Deepakumara, Howard M. Heys and R. Venkatesan “FPGA

IMPLEMENTATION OF MD5 HASH ALGORITHM”

[6] http://nsfsecurity.pr.erau.edu/crypto/md5.html

[7] http://tools.ietf.org/html/rfc1321

http://nsfsecurity.pr.erau.edu/crypto/md5.html
http://tools.ietf.org/html/rfc1321

