
Triple Data Encryption Standard

Project Report submitted in partial fulfillment
of the requirement for the degree of

Bachelor of Technology
in

Computer Science & Engineering

under the Supervision of

Mr. Amit Kumar Singh

By

Mudit Singh (111291)

to

Jaypee University of Information and Technology

Waknaghat, Solan – 173234, Himachal Pradesh

ii

Certificate

This is to certify that project report entitled “Implementation of Triple

Data Encryption Standards (3-DES)”, submitted by Mudit Singh in

partial fulfillment for the award of degree of Bachelor of Technology in

Computer Science & Engineering to Jaypee University of Information

Technology, Waknaghat, Solan has been carried out under my supervision.

This work has not been submitted partially or fully to any other University

or Institute for the award of this or any other degree or diploma.

Amit Kumar Singh

Assistant Professor

Dept. of CSE

Date :

iii

Acknowledgement

It is my pleasure to be indebted to various people, who directly or indirectly contributed

in the development of this work and who influenced my thinking, behavior, and acts

during the course of our training.

I express my sincere gratitude to Mr. Amit Kumar Singh, worthy mentor, guide and a

great teacher who influenced and inspired me in many ways and for introducing the

present topic and for their inspiring guidance, constructive criticism and valuable

suggestion throughout the project work.

I would also like to thank Prof. Dr. Satya Prakash Ghrera for sharing his vast expanse

of knowledge in guiding me with the correct books and sparing his valuable time and

helped me in striving to move forward to this point. Without their valuable inputs, I

wouldn’t have been able to incrementally work well and go ahead with the project.

Lastly, I would like to thank my friends with whom I shared my day-to-day experience

and received lots of suggestions that improved my quality of work.

Date: Mudit Singh

iv

Table of Content

 Chapter Topic Page No.

1. 3-DES: An overview 1

1.1 Purpose 1

1.2 Motivation 1

1.3 Data Encryption Standard 2

1.4 Triple Data Encryption Standard 3

1.5 Background 7

1.6 Definitions 10

1.7 Comparison Between 3DES & DES 11

1.8 Comparison Between 3DES & AES 12

 1.9 Cryptanalysis 13

 1.10 Classification of Attacks 14

 1.11 Cryptanalysis of Symmetric Cipher 17

 1.12 Cryptanalysis of Asymmetric Cipher 19

 1.13 Meet In The Middle Attack 20

2. System Requirement Specification 22

2.1 Hardware Requirements 22

2.2 Software Requirements 22

2.3 Functional Requirements 22

3. Literature Review 24

3.1 Implementation of 3-DES using Verilog 26

3.2 An Information Security Scheme for Cloud based

Environment using 3DES Encryption Algorithm 27

3.3 New Comparative Study Between DES, 3DES

and AES within Nine Factors 29

v

4. Design and Implementation 30

4.1 Algorithm Description 30

4.2 Source Code 47

4.3 Performance Parameters 58

4.4 Performance Analysis 59

4.5 Output 61

5. Conclusion and Future work 63

6. References 64

vi

List of Figures

 S.No. Title Page No.

1.1 Triple DES block diagram 4

1.2 DES algorithm 6

3.1 Encryption for Single DES Block 26

3.2 Decryption for Single DES Block 27

3.3 KGB key logger 28

4.1 Enciphering Computation 31

4.2 Cipher Function "f" 36

4.3 Triple DES Block Diagram 40

4.4 Fiestal Structure 44

4.5 Analysis of Time Taken for Encryption 59

4.6 Analysis of Time Taken for Decryption 59

4.7 Analysis of Throughput 60

4.8 Output screen 1 61

4.9 Output screen 2 61

4.10 Output screen 3 62

vii

List of Tables

S.No. Title Page No.

1.1 Chronology of 3-DES 7-8

1.2 Triple DES vs DES 11

1.3 Triple DES vs AES 12

3.1 Some Reported Technology based on 3DES 24-25

3.2 Comparative Study Between DES, 3DES and AES 29

viii

Abstract

The future of the Internet, especially in expanding the range of applications, involves a

much deeper degree of privacy, and authentication. Without these the Internet cannot be

properly used to replace existing applications such as in voting, finance, and so on.

Many people are not aware that the information they send or the files stored on their

computers needs to be protected, however when you consider what you have on your

computer and the many ways it can fall into the wrong hands, it does start to make sense

to protect your privacy in some way.

The future is thus towards data encryption which is the science of cryptography , and

provides a mechanism for two entities to communicate without any other entity being

able to read their messages.

This report illustrates how to encrypt a text and to decrypt the encrypted form of the text

to get the original input text. This encryption and decryption is done using a derived form

of the most widely used private key encryption scheme based on data encryption

standard, Triple DES (3-DES).

ix

Chapter 1

3-DES: AN OVERVIEW

The future of the Internet, especially in expanding the range of applications, involves a much

deeper degree of privacy, and authentication. Without these the Internet cannot be properly

used to replace existing applications such as in voting, finance, and so on.

The future is thus towards data encryption which is the science of cryptography , and provides a

mechanism for two entities to communicate without any other entity being able to read their

messages.

1.1 Purpose

If you don’t all ready know it, without encryption there is no such thing as privacy. At least not

for your data. It’s all 1′s and 0′s but doesn’t take a genius at all to recognize the data it

represents if it’s not encrypted when intercepted. And there are literally thousands of ways to

intercept data. So to protect your privacy, some encryption schemes were developed.

One of the such method is Data Encryption Standard. The DES algorithm has been around for a

long time, and the 56-bit version is now easily crack able (in less than a day on fairly modest

equipment). An enhancement, and one which is still fairly compatible with DES, is the 3-DES

algorithm.

1.2 Motivation

x

When it was discovered that the key size of the original DES cipher was becoming subject

to brute force attacks because of the availability of increasing computational power, Triple DES

was designed to provide a relatively simple method of increasing the key size of DES to protect

against such attacks, without designing a completely new block cipher algorithm. The use of

three steps is essential to prevent meet-in-the-middle attacks that are effective against double

DES encryption.

1.3 Data Encryption Standard

Data Encryption Standard (DES) is a symmetric block cipher developed by IBM [1]. The algorithm

uses a 56-bit key to encipher/decipher a 64-bit block of data. The key is always presented as a

64-bit block, every 8th bit of which is ignored. However, it is usual to set each 8th bit so that

each group of 8 bits has an odd number of bits set to 1.

The algorithm is best suited to implementation in hardware, probably to discourage

implementations in software, which tend to be slow by comparison. However, modern

computers are so fast that satisfactory software implementations are readily available.

DES is the most widely used symmetric algorithm in the world, despite claims that the key

length is too short. Ever since DES was first announced, controversy has raged about whether 56

bits is long enough to guarantee security.

The key length argument goes like this. Assuming that the only feasible attack on DES is to try

each key in turn until the right one is found, then 1,000,000 machines each capable of testing

xi

1,000,000 keys per second would find (on average) one key every 12 hours. Most reasonable

people might find this rather comforting and a good measure of the strength of the algorithm.

Those who consider the exhaustive key-search attack to be a real possibility (and to be fair the

technology to do such a search is becoming a reality) can overcome the problem by using

double or triple length keys. In fact, double length keys have been recommended for the

financial industry for many years.

And despite the recent coup by the Electronic Frontier Foundation in creating a $220,000

machine to crack DES-encrypted messages, DES will live on in government and banking for years

to come through a life- extending version called Triple Data Encryption Standard (3DES).

1.4 Triple-Data Encryption Standard[1]

Use of multiple length keys leads us to the Triple-DES algorithm, in which DES is applied three

times. Triple DES is simply another mode of DES operation. It takes three 64-bit keys, for an

overall key length of 192 bits. In Private Encryption, you simply type in the entire 192-bit (24

character) key rather than entering each of the three keys individually.

The Triple DES DLL then breaks the user provided key into three sub keys, padding the keys if

necessary so they are each 64 bits long. The procedure for encryption is exactly the same as

regular DES, but it is repeated three times. Hence the name Triple DES, The data is encrypted

with the first key, decrypted with the second key, and finally encrypted again with the third key.

Consequently, Triple DES runs three times slower than standard DES, but is much more secure if

used properly. The procedure for decrypting something is the same as the procedure for

xii

encryption, except it is executed in reverse. Like DES, data is encrypted and decrypted in 64-bit

chunks. Unfortunately, there are some weak keys that one should be aware of: if all three keys,

the first and second keys, or the second and third keys are the same, then the encryption

procedure is essentially the same as standard DES. This situation is to be avoided because it is

the same as using a really slow version of regular DES.

Although the input key for DES is 64 bits long, the actual key used by DES is only 56 bits in

length. The least significant (right-most) bit in each byte is a parity bit, and should be set so that

there are always an odd number of 1s in every byte. These parity bits are ignored, so only the

seven most significant bits of each byte are used, resulting in a key length of 56 bits. This means

that the effective key strength for Triple DES is actually 168 bits because each of the three keys

contains 8 parity bits that are not used during the encryption process.

If we consider a triple length key to consist of three 56-bit keys K1, K2, K3 then encryption is as

follows:

 •Encrypt with K1 •Decrypt with K2 •Encrypt with K3

Decryption is the reverse process:

•Decrypt with K3 •Encrypt with K2 •Decrypt with K1

xiii

Figure 1.1. Triple DES Block Diagram

• Setting K3 equal to K1 in these processes gives us a double length key K1, K2.

• Setting K1, K2 and K3 all equal to K has the same effect as using a single-length

(56-bit key). Thus it is possible for a system using triple-DES to be compatible

with a system using single-DES.

DES operates on a 64 – bit block of plaintext. After an initial permutation the block is broken

into a right half and left half, each 32 – bits long. Then there are 16 rounds of identical

operations, called Function f, in which the data are combined with the key. After the sixteenth

round, the right and left halves are joined, and a final permutation (the inverse of the initial

permutation) finishes off the algorithm.

In each round the key bits are shifted, and then 48 – bits are selected from the 56 –bits of the

key. The right half of the data is expanded to 48 – bits via an expansion permutation, combined

with 48 –bits of a shifted and permuted key via an XOR, sent through 8 S- boxes producing 32-

new bits, and permuted again. These four operations make up Function f. The output of

xiv

Function f is then combined with the left half via another XOR. The results of these operations

become the new right half; the old right half becomes the new left half. These operations are

repeated sixteen times, making 16 rounds of DES.

Figure 1.2. DES Algorithm

xv

1.5 Background [2]

Table 1.1. Chronology of 3DES

Date Year Event

15 May 1973 NBS publishes a first request for a standard encryption algorithm

27 August 1974 NBS publishes a second request for encryption algorithms

17 March 1975 DES is published in the Federal Register for comment

August 1976 First workshop on DES

September 1976 Second workshop, discussing mathematical foundation of DES

November 1976 DES is approved as a standard

xvi

15 January 1977 DES is published as a FIPS standard FIPS PUB 46

1983 DES is reaffirmed for the first time

1986
Video cipher II, a TV satellite scrambling system based upon DES, begins

use by HBO

22 January 1988
DES is reaffirmed for the second time as FIPS 46-1, superseding FIPS

PUB 46

July 1991
Biham and Shamir rediscover differential cryptanalysis, and apply it to a

15-round DES-like cryptosystem.

1992

Biham and Shamir report the first theoretical attack with less

complexity than brute force: differential cryptanalysis. However, it

requires an unrealistic 247 chosen plaintexts.

30 Dec 1993 DES is reaffirmed for the third time as FIPS 46-2

1994
The first experimental cryptanalysis of DES is performed using linear

cryptanalysis (Matsui, 1994).

June 1997
The DESCHALL Project breaks a message encrypted with DES for the first

time in public.

July 1998 The EFF's DES cracker (Deep Crack) breaks a DES key in 56 hours.

xvii

January 1999
Together, Deep Crack and distributed.net break a DES key in 22 hours

and 15 minutes.

25 October 1999
DES is reaffirmed for the fourth time as FIPS 46-3, which specifies the

preferred use of 3DES.

On May 15, 1973, during the reign of Richard Nixon, the National Bureau of Standards (NBS)

published a notice in the Federal Register soliciting proposals for cryptographic algorithms to

protect data during transmission and storage. The notice explained why encryption was an

important issue.

Over the last decade, there has been an accelerating increase in the accumulations and

communication of digital data by government, industry and by other organizations in the private

sector. The contents of these communicated and stored data often have very significant value

and/or sensitivity. It is now common to find data transmissions which constitute funds transfers

of several million dollars, purchase or sale of securities, warrants for arrests or arrest and

conviction records being communicated between law enforcement agencies, airline reservations

and ticketing representing investment and value both to the airline and passengers, and health

and patient care records transmitted among physicians and treatment centers.

The increasing volume, value and confidentiality of these records regularly transmitted and

stored by commercial and government agencies has led to heightened recognition and concern

over their exposures to unauthorized access and use. This misuse can be in the form of theft or

defalcations of data records representing money, malicious modification of business inventories

or the interception and misuse of confidential information about people. The need for

protection is then apparent and urgent.

It is recognized that encryption (otherwise known as scrambling, enciphering or privacy

transformation) represents the only means of protecting such data during transmission and a

useful means of protecting the content of data stored on various media, providing encryption of

adequate strength can be devised and validated and is inherently integrable into system

xviii

architecture. The National Bureau of Standards solicits proposed techniques and algorithms for

computer data encryption. The Bureau also solicits recommended techniques for implementing

the cryptographic function: for generating, evaluating, and protecting cryptographic keys; for

maintaining files encoded under expiring keys; for making partial updates to encrypted files; and

mixed clear and encrypted data to permit labeling, polling, routing, etc. The Bureau in its role for

establishing standards and aiding government and industry in assessing technology, will arrange

for the evaluation of protection methods in order to prepare guidelines.

NBS waited for the responses to come in. It received none until August 6, 1974, three days

before Nixon's resignation, when IBM submitted a candidate that it had developed internally

under the name LUCIFER. After evaluating the algorithm with the help of the National Security

Agency (NSA), the NBS adopted a modification of the LUCIFER algorithm as the new Data

Encryption Standard (DES) on July 15, 1977.

In May 2005, DES was withdrawn, and is now only approved as a component of TDEA. You will

still encounter it on occasion, such as with a Microsoft VPN using PPTP.

Triple-DES was specified by NIST in May 2004 by SP 800-67.

1.6 Definitions [3]

• Cryptanalysis is the study of mathematical techniques for attempting to defeat

cryptographic techniques, and, more generally, information security services.

• A cryptanalysts is someone who engages in cryptanalysis.

• Cryptology is the study of cryptography and cryptanalysis.

• Cryptosystem is a general term referring to a set of cryptography primitives used

to provide information security services. Most often the term is used in

conjunction with primitives providing confidentiality, i.e. Encryption.

• Plaintext: This is the original intelligible message or data that is fed into the

algorithm as input.

xix

• Encryption algorithm: The encryption algorithm performs various substitutions

and transformations on the plaintext.

• Decryption algorithm: This is essentially the encryption algorithm run is reverse.

It takes the cipher text and the secret keys and produces the original plaintext.

• Secret key: The secret key is also input to the encryption algorithm. The key is a

value independent of the plaintext. The algorithm will produce a different output

depending on the specific key being used at the time.

• Cipher text: This is the scrambled message produced as output. It depends on the

plaintext and the secret key. For a given message, two different keys will produce

two different cipher text. The cipher text is an apparently random stream of data

and, as it stands, is unintelligible.

1.7 Comparison between 3DES & DES [4]

DES is the old "data encryption standard" from the seventies. Its key size is too short for proper

security (56 effective bits; this can be brute-forced, as has been demonstrated more than ten

years ago). Also, DES uses 64-bit blocks, which raises some potential issues when encrypting

several gigabytes of data with the same key.

3DES is a trick to reuse DES implementations, by cascading three instances of DES (with distinct

keys). 3DES is believed to be secure up to at least "2112" security (which is quite a lot, and quite

far in the realm of "not breakable with today's technology"). But it is slow, especially in software

(DES was designed for efficient hardware implementation, but it sucks in software; and 3DES

sucks three times as much).

Table 1.2. Triple DES vs DES

xx

1.8 Comparison between 3DES & AES [4]

AES is the successor of DES as standard symmetric encryption algorithm for US federal

organizations. AES uses keys of 128, 192 or 256 bits, although, 128 bit keys provide sufficient

strength today. It uses 128 bit blocks, and is efficient in both software and hardware

implementations. It was selected through an open competition involving hundreds of

cryptographers during several years.

3DES is a way to reuse DES implementations, by chaining three instances of DES with different

keys. 3DES is believed to still be secure because it requires 2^112 operations which is not

achievable with foreseeable technology. 3DES is very slow especially in software

implementations because DES was designed for performance in hardware.

Table 1.3. Triple DES vs AES

xxi

1.9 Cryptanalysis [5]

Cryptanalysis refers to the study of ciphers, cipher text, or cryptosystems (that is, to secret code

systems) with a view to finding weaknesses in them that will permit retrieval of

the plaintext from the cipher text, without necessarily knowing the key or the algorithm. This is

known as breaking the cipher, cipher text, or cryptosystem.

There are two categories of cryptography.

1.Symmetric key cryptography

2.Asymmetric key cryptography

xxii

In symmetric key, there is only single key which is used by sender for encryption and receiver for

decryption. In this type the key is shared between both the parties[4].In asymmetric key, there

are two keys: a private key and a public key. Private key is kept by receiver for decryption and

public key is announced to public and used for encrypt the data. Now various new techniques

are developing for encryption of data as well as various techniques are also evolving in order to

hack that data.

Breaking is sometimes used interchangeably with weakening. This refers to finding a property

(fault) in the design or implementation of the cipher that reduces the number of keys required

in a brute force attack (that is, simply trying every possible key until the correct one is found).

For example, assume that a symmetric cipher implementation uses a key length of 2128 bits: this

means that a brute force attack would need to try up to all 2128 possible combinations (rounds)

to be certain of finding the correct key (or, on average, 2127 possible combinations) to convert

the cipher text into plaintext, which is not possible given present and near future computing

abilities. However, a cryptanalysis of the cipher reveals a technique that would allow the

plaintext to be found in 240 rounds. While not completely broken, the cipher is now much

weaker and the plaintext can be found with moderate computing resources.

1.10 Classification Of Attacks [3,5]

Attacks can be classified based on what type of information the attacker has available. As a basic

starting point it is normally assumed that, for the purposes of analysis, the general algorithm is

known; this is Shannon's Maxim "the enemy knows the system"—in its turn, equivalent

to Kerckhoffs' principle. This is a reasonable assumption in practice — throughout history, there

are countless examples of secret algorithms falling into wider knowledge, variously

through espionage, betrayal and reverse engineering. (And on occasion, ciphers have been

reconstructed through pure deduction; for example, the German Lorenz cipher and the

Japanese Purple code, and a variety of classical schemes).

xxiii

Classification of attacks can be done on following basis:

1.10.1. Amount of Information Available to Attacker

Cipher text only attack : The enemy has intercepted cipher text but has no matching plaintext.

You typically assume that the enemy has access to the cipher text. Two situations:

a) The enemy is aware of the nature of the cryptosystem, but does not have the key. True

with most cryptosystems used in U.S. businesses.

b) The enemy is not aware of the nature of the cryptosystem. The proper users should never

assume that this situation will last very long. The Skipjack algorithm on the Clipper Chip is

classified, for example. Often the nature of a military cryptosystem is kept secret as long as

possible. RSA has tried to keep the nature of a few of its cryptosystems secret, but they were

published on Cypherpunks.

Known plaintext attack : The enemy has some matched cipher text/plaintext pairs. The

enemy may well have more cipher text also.

Chosen plaintext attack : Here we assume that the enemy can choose the plaintext that he

wants put through the cryptosystem. Though this is, in general, unrealistic, such attacks are of

theoretic interest because if enough plaintext is known, then chosen plaintext attack techniques

may be useable. However this is an issue with smart cards.

xxiv

Chosen Cipher text : The attacker obtain the various plaintext corresponding to an arbitrary set

of cipher text.

Adaptive Chosen Plaintext : This is similar with the Chosen Plaintext, except in this attacker

chooses subsequent set of plaintext which is based on the information obtain from previous

encryption methods.

Adaptive Chosen Cipher text :This is similar with the Chosen Cipher text, except in this attacker

chooses subsequent set of cipher text which is based on the information obtain from previous

encryption methods(previous results).

Related Key Attack: Like the chosen plaintext, attack in which attacker can obtain only cipher

text encrypted with the help of two keys. These keys are unknown but the relationship between

these keys is known. example, two keys differ by a single bit.

1.10.2. On the Basis of Computational Resources Required

Attacks can also be characterized by the resources they require. Those resources include:

Time : the number of computation steps (e.g., test encryptions) which must be performed.

Memory : the amount of storage required to perform the attack.

Data : the quantity and type of plaintexts and cipher texts required for a particular approach.

xxv

It's sometimes difficult to predict these quantities precisely, especially when the attack isn't

practical to actually implement for testing. But academic cryptanalysts tend to provide at least

the estimated order of magnitude of their attacks' difficulty.

1.10.3. On the Basis of Partial Breaks

The result of cryptanalysis also varies in terms of usefulness of that data. Cryptographer Lars

Knudsen classified various types of attacks on the basis of amount and quality of secret

information that is discovered.

Total Break: In this attacker find out the secret key.

Global Deduction: In this attacker find out equivalent algorithm for encryption and decryption

without knowing secret key.

Instance Deduction: Attacker find out some additional cipher text or plaintext without

previously known.

Information Deduction: Attacker find out some Shannon information about plaintext or cipher

text not previously known.

Distinguishing Algorithm: Attacker differentiate various cipher text from random permutation.

In academic cryptography, it is very difficult to specify break or weakness so it is define quite

conservatively. It usually require unknown or impractical amount of time, money and cipher text

.The attacker may be able to do various things the real world attacker can’t do. Furthermore, it

might only reveal a very small information in order to specify that cryptosystem is imperfect but

this information is not that much useful for attacker. Finally attacker may attack only on the

weakened version of cryptographic tools, like a reduced robin block cipher, as a step towards

break the full system.

xxvi

1.11 Cryptanalysis Of Symmetric Cipher [6]

There are various types of attacks done on symmetric cipher. The explanation is given below:

1.11.1. Boomerang Attack

This is a method of cryptanalysis of block cipher based on differential cryptanalysis. This attack

provide various avenues of attack on various cipher which are deemed safe from differential

cryptanalysis.

This attack is used to generate so called "quartet” at the point halfway through the cipher. For

this purpose an encryption action E is split into its two consecutive stages E0 and E1 so that

E(M)=E1(E0(M)),where M is plaintext message.

1.11.2. Brute Force Attack

xxvii

Brute force attack or exhaustive key search is a type of strategy which can be applied on any

type of encrypted data. In this type of attack all possible keys are tried systematically until

correct key is found. This method is used when any other weakness is not useful. The key length

used in the encryption process specifies the practical feasibility of brute force attack, with longer

keys exponential more difficult to crack as compared to smaller keys[1].One of the measure

strength of the encryption system depends on theoretically how much time is taken to mount a

successful brute force attack. The resources required for brute force attack grow exponentially

with increase in key size, not linearly.

1.11.3. Davies’ Attack

This attack is dedicated statistical cryptanalysis method for attacking Data Encryption

Standard(DES).This attack was originally created by Donald Davies in 1987.It is a Known Plaintext

Attack which is based on non uniform distribution of output of pairs of adjacent S-boxes. It

works by collecting various plaintext/cipher text pairs and calculating empirical distribution of its

characteristics. Various bits of keys are find out from plaintexts, leaving remaining bits to be find

out through brute force attack. There is tradeoff between number of plaintext, keys found and

probability of success.

1.11.4. Differential Cryptanalysis

This attack is a chosen plaintext attack in which relationship is find out between the cipher text

produced by two related plaintext. It focuses on the statistical analysis of two inputs and two

outputs of cryptographic algorithm[4].This scheme can successfully crack DES with an effort on

the order of 247 chosen plaintext. In the method, the difference can be specified in several ways

but exclusive-OR(XOR) operation is mostly used. The cryptanalyst then encrypts plaintext and its

xxviii

XORed pairs using all possible sub keys, and it seeks the signs of non- randomness in each pair of

intermediate cipher text pairs.

1.11.5. Integral cryptanalysis

This attack is applicable on block cipher based on substitution-permutation networks. Unlike

differential cryptanalysis, it uses sets or even multi sets of chosen plaintext of which part is held

constant and other part varies with all possibilities It is commonly known as Square attack.

1.11.6. Linear Cryptanalysis

This is a known plaintext attack that require access to large amount of plaintext and cipher text

pairs which are encrypted with unknown keys. It focuses on statistical analysis against one

round of decryption on large number of cipher text. the attacker decrypts each cipher text using

all possible sub keys for one round of encryption and studies the resulting intermediate cipher

text to seek the least random result. A sub key which generate the least random intermediate

cipher for all cipher texts becomes a candidate key(most likely sub key).

1.11.7. Man-in-the-Middle Attack

This type of attack can be used in those cases in which multiple keys are used for

encryption[4].This attack is known plain text attack, the attacker has access to both the plaintext

and resulting cipher text. Example is attack versus Double DES. To improve the strength of 56-bit

DES, Double DES (two rounds of DES encryption using two different keys, of total key length of

112 bits)was suggested. The attacker wants to recover two keys (key1 and key2) used for

encryption. The attacker first apply brute force attack on key1 using all 256 different single keys

to encrypt the plaintext and saves each keys and cipher text ant analyst again brute force for

xxix

key2 by using 256.The brute force attack is complete when both keys are known to attacker. The

attack takes 256 plus at most 256 attack, or maximum 257 total attempts. This is far easier than

2112 attempts.

1.12 Cryptanalysis Of Asymmetric Cipher

Asymmetric cryptography is a type which relies on two keys, one private key for decryption and

one public key for encryption. Such kind of cipher rely on the “hard” mathematical problem for

their security. So the main point of attack is to develop methods to solve such problems. The

security of two key cryptography depends on mathematical questions in a way that one key

cryptography doesn’t, conversely links to wider area of mathematical research in a new way.

Asymmetric techniques are designed around of solving various mathematical problems. In case

any improved algorithm is found to solve the problem then system is weakened. For example

the security of Diffie-Hellman key exchange depends on calculating the discrete

logarithm[2].RSA’s security depends on difficulty of integer factorization-a breakthrough in

factoring would impact security of RSA. Another main feature of asymmetric over symmetric

cipher is that cryptanalyst has an opportunity to make use of knowledge obtained from public

key.

1.13 Meet In The Middle Attack [7]

xxx

A meet-in-the-middle attack is a cryptographic attack, first developed by Diffie and Hellman,

that employs a space-time tradeoff to drastically reduce the complexity of cracking a multiple

encryption scheme. To illustrate how the attack works, we shall take a look at an example.

Let EK and DK denote encryption and decryption functions using the key 퐾 ∈ {0,1} . Similarly,

let E'K and D'K denote encryption and decryption functions using the key		퐾 ∈ {0,1} . Consider

the following simple double-encryption scheme which computes a cipher text message C from a

plaintext message P using two keys 퐾 ∈ 	{0,1} and 퐾 ∈ 	 {0,1} :

C = E'K2 (EK1 (P))

P = DK1 (D'K2 (C))

A naive attack on this double-encryption scheme, covering the entire search space of

{0,1} ∗ {0,1} , would require O(2n+m) encryptions. However, exhaustive searches to crack EK

and E'K individually would only take O(2n) and O(2m) encryptions, respectively. There is an

important derivation from this double-encryption scheme that we can exploit to construct a

more sophisticated attack.

C = E'K2 (EK1 (P))

D'K2 (C) = D'K2 (E'K2 (EK1 (P)))

D'K2 (C) = EK1 (P)

This derivation meets in the middle of the double-encryption scheme and allows us to use

exhaustive searches over EK and E'K in a more efficient chosen-plaintext attack. Consider one

possible approach based on computing the following sets:

H = {(K,EK(P)) :	퐾 ∈ {0,1} }

S = {(Ki:Kj) : Ki ∈ {0,1} ^ Kj ∈ {0,1} ^ (Ki, D'Kj(C))	∈ 퐻}

xxxi

Here, we precompute the set of all possible encryptions of the plaintext P using EK and store a

lookup table H. Afterwards, we compute the set of all possible decryptions of the ciphertext C

using D'K and check for membership in the lookup table. The intersections between the two

described sets will contain the correct key pair (K1;K2). If there are multiple key pairs in the

intersection, then we can test the candidate key pairs using additional plaintext-ciphertext pairs

and quickly isolate the correct key pair. This constitutes a much more efficient attack on this

double-encryption scheme.

This meet-in-the-middle attack requires O(2n + 2m) encryptions to compute the two sets instead

of the O(2n+m) encryptions required by an exhaustive search. We do incur O(2n) or O(2m) space

overhead, depending on the approach, in storing the lookup table; however, with modern

resources, the space overhead is typically not unreasonable. Meeting in the middle reduces the

search space drastically and points out that cracking the double-encryption scheme is

computationally similar to cracking the encryption functions that compose it. The math

becomes even more alarming in the case where n = m, as this discrepancy becomes O(22n)

encryptions for the naive attack and O(2n+1) encryptions for the meet-in-the-middle attack,

which is only twice what it would take to crack EK. For this reason, simple multiple-encryption

schemes tend to provide considerably fewer bits of effective security than the actual number of

key bits used in the encryption scheme.

xxxii

Chapter 2

SYSTEM REQUIREMENT SPECIFICATION

The following are the system requirements:

2.1 Hardware Requirements

- 512MB RAM or above

- X86 or above processor

- 2MB Secondary memory or above

2.2 Software Requirements

- Operating System: LINUX, Windows

- Language used: C

- Editor: Code blocks IDE

2.3 Functional Requirements

xxxiii

The functional requirements for the implementation are as follows:

2.3.1 Input Specification

- An input file/string type variable should contain some data. That can be used as plain text for

encryption

- 3 Secret key used for encryption should of 64-bits each.

2.3.2 Output Specification

- The second party should know secret key that used for encryption.

- After providing secret key as input, it displays the original plain text.

xxxiv

Chapter 3

LITERATURE REVIEW

Table 3.1. Some Reported Technology based on 3DES

Author Name Year Approach Result

Mandeep Singh

Narula, Simarpreet

Singh

Implementation

of Triple Data

Encryption

Standard using

Verilog

2014 Design synthesis &

implementation in

Verilog using ISE

Foundation.

Simulation using ISE

simulator.

The proposed

implementation of

DES and TDES

provide high-

speed

performance with

very compact

hardware

implementation.

xxxv

Shaunak

S.Ganorkar, Shilpi U.

Vishwakarma,

Sagar D.Pande

An Information

Security Scheme

for Cloud based

Environment

using 3DES

Encryption

Algorithm

2014 Development of a

cloud storage

system.

Use of symmetric

key encryption for

data, and for

authentication

Project achieved

the goals of

authentication

and providing

security on cloud

storage

Hamdan.O.Alanazi,

B.B.Zaidan,

A.A.Zaidan, Hamid

A.Jalab, M.Shabbir

and Y. Al-Nabhani

New

Comparative

Study Between

DES, 3DES and

AES

within Nine

Factors

2011 Comparison was

done using 9

standard evaluation

criteria

This proved that

AES is better than

DES and 3DES

xxxvi

Malik Sikander

Hayat Khiyal, Aihab

Khan, Khansa

Shabbir

Performance

Evaluation of

Encryption

Techniques for

Confidentiality of

Very Large

Databases

2011 The input

object is encrypted

using symmetric

encryption scheme

and then the

performance of

these

encryption

algorithms will be

recorded according

to different

parameters

AES provides the

highest security

but if the

organization is

short of

resources, then

3DES

provides the best

solution

Majithia Sachin,

Dinesh Kumar

Implementation

and Analysis of

AES, DES and

Triple DES on

GSM Network

2010 Brute force attack

scheme with varying

key length is used.

Program is written

in MATLAB

AES proves to be

better security

than DES and

3DES

xxxvii

3.1 Implementation of 3-DES using Verilog

Narula et al.[] proposed an approach for Design synthesis & implementation in Verilog

using ISE Foundation and simulation of DES and 3-DES using ISE simulator.

The result was that the proposed implementation of DES and 3DES provided high-speed

performance with very compact hardware implementation

The complete design was synthesized and implemented with the use of verilog using ISE

Foundation. Simulation was done by ISE simulator.

Figure 3.1. Encryption for Single DES Block

xxxviii

Figure 3.2. Decryption for Single DES block

3.2 An Information Security Scheme for Cloud based

Environment using 3DES Encryption Algorithm [8]

Ganorkar et al.[] proposed development of a cloud storage system and use of symmetric key

encryption for data, and for authentication.

Given below are the screenshots of the KGB Key logger software which was tested on

our project. As shown in the screen shot the first level of password which consists of

alphanumeric characters is captured by the software however, it failed to capture the next

level of authentication which is graphical password. This result ensured that the KBG

Key logger was unable to crack the authentication procedure of our project completely.

xxxix

Figure 3.3. KGB Key logger

The developed project achieved the goals of authentication and providing security on

cloud storage since during our analysis the tools failed to identify the graphical password

thus failing to proceed further in our project.

xl

3.3 New Comparative Study Between DES, 3DES and AES

within Nine Factors [4]

Alanazi et al.[] proposed a comparitive study between DES, 3DES and AES. This comparison was

done using 9 standard evaluation criteria, such as, key length, cipher type, block size,

cryptanalysis resistance, security, possible keys, etc.

These eligible's proved that AES is better than DES & 3-DES.

Table 3.2. Comparative Study Between DES, 3DES &AES

xli

Chapter 4

DESIGN AND IMPLEMENTATION

4.1 Algorithm Description

The Triple Data Encryption Standard (3-DES) shall consist of the following Data Encryption

Algorithm (DEA) and Triple Data Encryption Algorithm (TDEA, as described in ANSI X9.52). These

devices shall be designed in such a way that they may be used in a computer system or network

to provide cryptographic protection to binary coded data. The method of implementation will

depend on the application and environment. The devices shall be implemented in such a way

that they may be tested and validated as accurately performing the transformations specified in

the following algorithms.

Data Encryption Algorithm

4.1.1. Introduction [9]

The algorithm is designed to encipher and decipher blocks of data consisting of 64 bits under

control of a 64-bit key
1
. Deciphering must be accomplished by using the same key as for

enciphering, but with the schedule of addressing the key bits altered so that the deciphering

process is the reverse of the enciphering process. A block to be enciphered is subjected to an

initial permutation IP, then to a complex key-dependent computation and finally to a

permutation which is the inverse of the initial permutation IP
-1

. The key-dependent

computation can be simply defined in terms of a function f, called the cipher function, and a

function KS, called the key schedule. A description of the computation is given first, along with

details as to how the algorithm is used for encipherment. Next, the use of the algorithm for

xlii

decipherment is described. Finally, a definition of the cipher function f is given in terms of

primitive functions which are called the selection functions Si and the permutation function P.

Si, P and KS of the algorithm are explained later.

xliii

Figure 4.1. Enciphering Computation

xliv

The following notation is convenient: Given two blocks L and R of bits, LR denotes the

block consisting of the bits of L followed by the bits of R. Since concatenation is

associative, B1B2...B8, for example, denotes the block consisting of the bits of B1

followed by the bits of B2...followed by the bits of B8.

4.1.2. Enciphering

A sketch of the enciphering computation is given in Figure 4.1.

The 64 bits of the input block to be enciphered are first subjected to the following

permutation, called the initial permutation IP:

IP

58 50 42 34 26 18 10 2

60 52 44 36 28 20 12 4

62 54 46 38 30 22 14 6

64 56 48 40 32 24 16 8

57 49 41 33 25 17 9 1

59 51 43 35 27 19 11 3

61 53 45 37 29 21 13 5

63 55 47 39 31 23 15 7

That is the permuted input has bit 58 of the input as its first bit, bit 50 as its second bit,

and so on with bit 7 as its last bit. The permuted input block is then the input to a

complex key-dependent computation described below. The output of that computation,

called the preoutput, is then subjected to the following permutation which is the inverse

of the initial permutation:

xlv

IP
-1

40 8 48 16 56 24 64 32

39 7 47 15 55 23 63 31

38 6 46 14 54 22 62 30

37 5 45 13 53 21 61 29

36 4 44 12 52 20 60 28

35 3 43 11 51 19 59 27

34 2 42 10 50 18 58 26

33 1 41 9 49 17 57 25

That is, the output of the algorithm has bit 40 of the preoutput block as its first bit, bit 8 as its

second bit, and so on, until bit 25 of the preoutput block is the last bit of the output.

The computation which uses the permuted input block as its input to produce the

preoutput block consists, but for a final interchange of blocks, of 16 iterations of a

calculation that is described below in terms of the cipher function f which operates on

two blocks, one of 32 bits and one of 48 bits, and produces a block of 32 bits.

Let the 64 bits of the input block to an iteration consist of a 32 bit block L followed by a

32 bit block R. Using the notation defined in the introduction, the input block is then LR.

Let K be a block of 48 bits chosen from the 64-bit key. Then the output L'R' of an

iteration with input LR is defined by:

 L' = R (1)

 R' = L Θ f(R,K)

where Θ denotes bit-by-bit addition modulo 2.

xlvi

As remarked before, the input of the first iteration of the calculation is the permuted input

block.

If L'R' is the output of the 16th iteration then R'L' is the preoutput block. At each

iteration a different block K of key bits is chosen from the 64-bit key designated by

KEY.

With more notation we can describe the iterations of the computation in more detail. Let KS be

a function which takes an integer n in the range from 1 to 16 and a 64-bit block KEY as input and

yields as output a 48-bit block Kn which is a permuted selection of bits from KEY. That is

 Kn = KS(n,KEY) (2)

with Kn determined by the bits in 48 distinct bit positions of KEY. KS is called the key

schedule because the block K used in the nth iteration of (1) is the block Kn determined

by (2).

As before, let the permuted input block be LR. Finally, let L() and R() be respectively

L and R and let Ln and Rn be respectively L' and R' of (1) when L and R are

respectively Ln-1 and Rn-1 and K is Kn; that is, when n is in the range from 1 to 16,

 Ln = Rn-1 Rn = Ln-1 Θ f(Rn-1,Kn) (3)

The preoutput block is then R16L16.

The key schedule KS of the algorithm is described later in detail. The key schedule produces the

16 Kn which are required for the algorithm.

4.1.3. Deciphering

xlvii

The permutation IP
-1

applied to the preoutput block is the inverse of the initial

permutation IP applied to the input. Further, from (1) it follows that:

 R = L' L = R' Θ f(L',K) (4)

Consequently, to decipher it is only necessary to apply the very same algorithm to an

enciphered message block, taking care that at each iteration of the computation the

same block of key bits K is used during decipherment as was used during the

encipherment of the block. Using the notation of the previous section, this can be

expressed by the equations:

 Rn-1 = Ln Ln-1 = Rn Θ f(Ln,Kn) (5)

where now R16L16 is the permuted input block for the deciphering calculation and L0R0 is

the preoutput block. That is, for the decipherment calculation with R16L16 as the permuted

input, K16 is used in the first iteration, K15 in the second, and so on, with K1 used in the

16th iteration.

4.1.4. The Cipher Function f

xlviii

A sketch of the calculation of f(R,K) is given in Figure 4.2.

Figure 4.2. Cipher Function f

Let E denote a function which takes a block of 32 bits as input and yields a block of 48 bits as

output. Let E be such that the 48 bits of its output, written as 8 blocks of 6 bits each, are

obtained by selecting the bits in its inputs in order according to the following table:

E BIT-SELECTION TABLE

32 1 2 3 4 5

4 5 6 7 8 9

xlix

8 9 10 11 12 13

12 13 14 15 16 17

16 17 18 19 20 21

20 21 22 23 24 25

24 25 26 27 28 29

28 29 30 31 32 1

Thus the first three bits of E(R) are the bits in positions 32, 1 and 2 of R while the last 2

bits of E(R) are the bits in positions 32 and 1.

Each of the unique selection functions S1,S2,...,S8, takes a 6-bit block as input and yields a 4-bit

block as output and is illustrated by using a table containing the recommended S1:

S1

Column Number

Row 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7

1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8

2 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0

3 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

If S1 is the function defined in this table and B is a block of 6 bits, then S1(B) is

determined as follows: The first and last bits of B represent in base 2 a number in the

range 0 to 3. Let that number be i. The middle 4 bits of B represent in base 2 a number in

the range 0 to 14. Let that number be j. Look up in the table the number in the i'th row

and j'th column. It is a number in the range 0 to 15 and is uniquely represented by a 4 bit

block. That block is the output S1(B) of S1 for the input B. For example, for input

011011 the row is 01, that is row 1, and the column is determined by 1101, that is column

13. In row 1 column 13 appears 5 so that the output is 0101.

Selection functions S1,S2,...,S8 of the algorithm appear later.

l

The permutation function P yields a 32-bit output from a 32-bit input by permuting the

bits of the input block. Such a function is defined by the following table:

P

16 7 20 21

29 12 28 17

1 15 23 26

5 18 31 10

2 8 24 14

32 27 3 9

19 13 30 6

22 11 4 25

The output P(L) for the function P defined by this table is obtained from the input L by

taking the 16th bit of L as the first bit of P(L), the 7th bit as the second bit of P(L), and so

on until the 25th bit of L is taken as the 32nd bit of P(L). The permutation function P of

the algorithm is repeated in DEA description.

Now let S1,...,S8 be eight distinct selection functions, let P be the permutation function

and let E be the function defined above.

To define f(R,K) we first define B1,...,B8 to be blocks of 6 bits each for which

(6) B1B2...B8 = K Θ E(R)

The block f(R,K) is then defined to be

(7) P(S1(B1)S2(B2)...S8(B8))

Thus K Θ E(R) is first divided into the 8 blocks as indicated in (6). Then each Bi is taken

as an input to Si and the 8 blocks S1(B1),S2(B2),...,S8(B8) of 4 bits each are

consolidated into a single block of 32 bits which forms the input to P. The output (7) is

then the output of the function f for the inputs R and K.

li

Triple Data Encryption Algorithm [2]

Let EK(I) and DK(I) represent the DES encryption and decryption of I using DES key K

respectively. Each TDEA encryption/decryption operation (as specified in ANSI X9.52)

is a compound operation of DES encryption and decryption operations. The following

operations are used:

 1. TDEA encryption operation: the transformation of a 64-bit block I into a 64-bit block

O that is defined as follows:

O = EK3(DK2(EK1(I))).

2. TDEA decryption operation: the transformation of a 64-bit block I into a 64-bit block

O that is defined as follows:

O = DK1(EK2(DK3(I)))

The standard specifies the following keying options for bundle (K1, K2, K3)

1. Keying Option 1: K1, K2 and K3 are independent keys;

2. Keying Option 2: K1 and K2 are independent keys and K3 = K1;

3. Keying Option 3: K1 = K2 = K3.

A TDEA mode of operation is backward compatible with its single DES counterpart if,

with compatible keying options for TDEA operation,

1. an encrypted plaintext computed using a single DES mode of operation can be

decrypted correctly by a corresponding TDEA mode of operation; and

2. an encrypted plaintext computed using a TDEA mode of operation can be decrypted

correctly by a corresponding single DES mode of operation.

lii

When using Keying Option 3 (K1 = K2 = K3), TECB, TCBC, TCFB and TOFB modes

are backward compatible with single DES modes of operation ECB, CBC, CFB, OFB

respectively.

The diagram drawn below illustrates TDEA encryption and TDEA decryption.

Figure 4.3. Triple DES Block Diagram

liii

Data Encryption Algorithm (Conti...)

The choice of the primitive functions KS, S1,...,S8 and P is critical to the strength of an

encipherment resulting from the algorithm. Specified below is the recommended set of

functions, describing S1,...,S8 and P in the same way they are described in the algorithm.

For the interpretation of the tables describing these functions, see the discussion in the

body of the algorithm.

The primitive functions S1,...,S8 are:

 S1

14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7

0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8

4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0

15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

S2

15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10

3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5

0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15

13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

S3

10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8

13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1

13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7

1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

S4

7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15

13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9

10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4

3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

liv

 S5

2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9

14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6

4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14

11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

 S6

 12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11

 10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8

 9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6

 4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

S7
 4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1
 13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6
 1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2
 6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

S8
 13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7
 1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2
 7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8
 2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 1

The primitive function P is:

16 7 20 21

29 12 28 17

1 15 23 26

5 18 31 10

2 8 24 14

32 27 3 9

19 13 30 6

22 11 4 25

lv

Recall that Kn, for 1<=n<=16, is the block of 48 bits in (2) of the algorithm. Hence, to

describe KS, it is sufficient to describe the calculation of Kn from KEY for n = 1, 2,..., 16.

To complete the definition of KS it is therefore sufficient to describe the two permuted

choices, as well as the schedule of left shifts. One bit in each 8-bit byte of the KEY may

be utilized for error detection in key generation, distribution and storage. Bits 8, 16,..., 64

are for use in assuring that each byte is of odd parity.

Permuted choice 1 is determined by the following table:

PC-1

The table has been divided into two parts, with the first part determining how the bits of

C() are chosen, and the second part determining how the bits of D() are chosen. The bits

of KEY are numbered 1 through 63. The bits of C() are respectively bits 57, 49, 41,..., 44

and 36 of KEY, with the bits of D() being bits 63, 55, 47,..., 12 and 4 of KEY.

With C() and D() defined, we now define how the blocks Cn and Dn are obtained from

the blocks Cn1 and Dn-1, respectively, for n = 1, 2,..., 16. That is accomplished by

adhering to the following schedule of left shifts of the individual blocks:

lvi

Figure 4.3. Fiestal Structure

lvii

Iteration Number of

 Number Left Shifts

 1 1

 2 1

 3 2

 4 2

 5 2

 6 2

 7 2

 8 2

 9 1

 10 2

 11 2

 12 2

 13 2

 14 2

 15 2

 16 1

For example, C3 and D3 are obtained from C2 and D2, respectively, by two left shifts, and

C16 and D16 are obtained from C15 and D15, respectively, by one left shift. In all cases, by

a single left shift is meant a rotation of the bits one place to the left, so that after one left

shift the bits in the 28 positions are the bits that were previously in positions 2, 3,..., 28, 1.

Permuted choice 2 is determined by the following table:

lviii

PC-2

Therefore, the first bit of Kn is the 14th bit of CnDn, the second bit the 17th, and so on with the

47th bit the 29th, and the 48th bit the 32nd.

lix

4.2 Source Code

#define uchar unsigned char

#define uint unsigned int

#define ENCRYPT 1

#define DECRYPT 0

// Obtain bit "b" from the left and shift it "c" places from the right

#define BITNUM(a,b,c) (((a[(b)/8] >> (7 - (b%8))) & 0x01) << (c))

#define BITNUMINTR(a,b,c) ((((a) >> (31 - (b))) & 0x00000001) << (c))

#define BITNUMINTL(a,b,c) ((((a) << (b)) & 0x80000000) >> (c))

// This macro converts a 6 bit block with the S-Box row defined as the first and last

// bits to a 6 bit block with the row defined by the first two bits.

#define SBOXBIT(a) (((a) & 0x20) | (((a) & 0x1f) >> 1) | (((a) & 0x01) << 4))

uchar sbox1[64] = {

 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,

 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,

 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,

 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13

};

uchar sbox2[64] = {

 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,

 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,

 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,

 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9

};

lx

uchar sbox3[64] = {

 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,

 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,

 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,

 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12

};

uchar sbox4[64] = {

 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,

 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,

 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,

 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14

};

uchar sbox5[64] = {

 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,

 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,

 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,

 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3

};

uchar sbox6[64] = {

 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,

 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,

 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,

 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13

};

lxi

uchar sbox7[64] = {

 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,

 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,

 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,

 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12

};

uchar sbox8[64] = {

 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,

 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,

 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,

 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11

};

void key_schedule(uchar key[], uchar schedule[][6], uint mode)

{

 uint i,j,to_gen,C,D,

 key_rnd_shift[16]={1,1,2,2,2,2,2,2,1,2,2,2,2,2,2,1},

 key_perm_c[28]={56,48,40,32,24,16,8,0,57,49,41,33,25,17,

 9,1,58,50,42,34,26,18,10,2,59,51,43,35},

 key_perm_d[28]={62,54,46,38,30,22,14,6,61,53,45,37,29,21,

 13,5,60,52,44,36,28,20,12,4,27,19,11,3},

 key_compression[48]={13,16,10,23,0,4,2,27,14,5,20,9,

 22,18,11,3,25,7,15,6,26,19,12,1,

 40,51,30,36,46,54,29,39,50,44,32,47,

 43,48,38,55,33,52,45,41,49,35,28,31};

lxii

 // Permutated Choice #1 (copy the key in, ignoring parity bits).

 for (i = 0, j = 31, C = 0; i < 28; ++i, --j)

 C |= BITNUM(key,key_perm_c[i],j);

 for (i = 0, j = 31, D = 0; i < 28; ++i, --j)

 D |= BITNUM(key,key_perm_d[i],j);

 // Generate the 16 subkeys.

 for (i = 0; i < 16; ++i) {

 C = ((C << key_rnd_shift[i]) | (C >> (28-key_rnd_shift[i]))) & 0xfffffff0;

 D = ((D << key_rnd_shift[i]) | (D >> (28-key_rnd_shift[i]))) & 0xfffffff0;

 // Decryption subkeys are reverse order of encryption subkeys so

 // generate them in reverse if the key schedule is for decryption useage.

 if (mode == DECRYPT)

 to_gen = 15 - i;

 else

 to_gen = i;

 // Initialize the array

 for (j = 0; j < 6; ++j)

 schedule[to_gen][j] = 0;

 for (j = 0; j < 24; ++j)

 schedule[to_gen][j/8] |= BITNUMINTR(C,key_compression[j],7 - (j%8));

 for (; j < 48; ++j)

 schedule[to_gen][j/8] |= BITNUMINTR(D,key_compression[j] - 28,7 - (j%8));

 }

}

lxiii

// Initial (Inv)Permutation step

void IP(uint state[], uchar in[])

{

 state[0] = BITNUM(in,57,31) | BITNUM(in,49,30) | BITNUM(in,41,29) |

BITNUM(in,33,28) |

 BITNUM(in,25,27) | BITNUM(in,17,26) | BITNUM(in,9,25) |

BITNUM(in,1,24) |

 BITNUM(in,59,23) | BITNUM(in,51,22) | BITNUM(in,43,21) |

BITNUM(in,35,20) |

 BITNUM(in,27,19) | BITNUM(in,19,18) | BITNUM(in,11,17) |

BITNUM(in,3,16) |

 BITNUM(in,61,15) | BITNUM(in,53,14) | BITNUM(in,45,13) |

BITNUM(in,37,12) |

 BITNUM(in,29,11) | BITNUM(in,21,10) | BITNUM(in,13,9) | BITNUM(in,5,8)|

 BITNUM(in,63,7) | BITNUM(in,55,6) | BITNUM(in,47,5) | BITNUM(in,39,4) |

 BITNUM(in,31,3) | BITNUM(in,23,2) | BITNUM(in,15,1) | BITNUM(in,7,0);

 state[1] = BITNUM(in,56,31) | BITNUM(in,48,30) | BITNUM(in,40,29) |

BITNUM(in,32,28) |

 BITNUM(in,24,27) | BITNUM(in,16,26) | BITNUM(in,8,25) |

BITNUM(in,0,24) |

 BITNUM(in,58,23) | BITNUM(in,50,22) | BITNUM(in,42,21) |

BITNUM(in,34,20) |

 BITNUM(in,26,19) | BITNUM(in,18,18) | BITNUM(in,10,17) |

BITNUM(in,2,16) |

 BITNUM(in,60,15) | BITNUM(in,52,14) | BITNUM(in,44,13) |

BITNUM(in,36,12) |

 BITNUM(in,28,11) | BITNUM(in,20,10) | BITNUM(in,12,9) | BITNUM(in,4,8)|

 BITNUM(in,62,7) | BITNUM(in,54,6) | BITNUM(in,46,5) | BITNUM(in,38,4) |

 BITNUM(in,30,3) | BITNUM(in,22,2) | BITNUM(in,14,1) | BITNUM(in,6,0);

lxiv

}

void InvIP(uint state[], uchar in[])

{

 in[0] = BITNUMINTR(state[1],7,7) | BITNUMINTR(state[0],7,6) |

BITNUMINTR(state[1],15,5) |

 BITNUMINTR(state[0],15,4) | BITNUMINTR(state[1],23,3) |

BITNUMINTR(state[0],23,2) |

 BITNUMINTR(state[1],31,1) | BITNUMINTR(state[0],31,0);

 in[1] = BITNUMINTR(state[1],6,7) | BITNUMINTR(state[0],6,6) |

BITNUMINTR(state[1],14,5) |

 BITNUMINTR(state[0],14,4) | BITNUMINTR(state[1],22,3) |

BITNUMINTR(state[0],22,2) |

 BITNUMINTR(state[1],30,1) | BITNUMINTR(state[0],30,0);

 in[2] = BITNUMINTR(state[1],5,7) | BITNUMINTR(state[0],5,6) |

BITNUMINTR(state[1],13,5) |

 BITNUMINTR(state[0],13,4) | BITNUMINTR(state[1],21,3) |

BITNUMINTR(state[0],21,2) |

 BITNUMINTR(state[1],29,1) | BITNUMINTR(state[0],29,0);

 in[3] = BITNUMINTR(state[1],4,7) | BITNUMINTR(state[0],4,6) |

BITNUMINTR(state[1],12,5) |

 BITNUMINTR(state[0],12,4) | BITNUMINTR(state[1],20,3) |

BITNUMINTR(state[0],20,2) |

 BITNUMINTR(state[1],28,1) | BITNUMINTR(state[0],28,0);

 in[4] = BITNUMINTR(state[1],3,7) | BITNUMINTR(state[0],3,6) |

BITNUMINTR(state[1],11,5) |

 BITNUMINTR(state[0],11,4) | BITNUMINTR(state[1],19,3) |

BITNUMINTR(state[0],19,2) |

lxv

 BITNUMINTR(state[1],27,1) | BITNUMINTR(state[0],27,0);

 in[5] = BITNUMINTR(state[1],2,7) | BITNUMINTR(state[0],2,6) |

BITNUMINTR(state[1],10,5) |

 BITNUMINTR(state[0],10,4) | BITNUMINTR(state[1],18,3) |

BITNUMINTR(state[0],18,2) |

 BITNUMINTR(state[1],26,1) | BITNUMINTR(state[0],26,0);

 in[6] = BITNUMINTR(state[1],1,7) | BITNUMINTR(state[0],1,6) |

BITNUMINTR(state[1],9,5) |

 BITNUMINTR(state[0],9,4) | BITNUMINTR(state[1],17,3) |

BITNUMINTR(state[0],17,2) |

 BITNUMINTR(state[1],25,1) | BITNUMINTR(state[0],25,0);

 in[7] = BITNUMINTR(state[1],0,7) | BITNUMINTR(state[0],0,6) |

BITNUMINTR(state[1],8,5) |

 BITNUMINTR(state[0],8,4) | BITNUMINTR(state[1],16,3) |

BITNUMINTR(state[0],16,2) |

 BITNUMINTR(state[1],24,1) | BITNUMINTR(state[0],24,0);

}

uint f(uint state, uchar key[])

{

 uchar lrgstate[6],i;

 uint t1,t2;

 // Expansion Permutation

 t1 = BITNUMINTL(state,31,0) | ((state & 0xf0000000) >> 1) |

BITNUMINTL(state,4,5) |

 BITNUMINTL(state,3,6) | ((state & 0x0f000000) >> 3) | BITNUMINTL(state,8,11)|

lxvi

 BITNUMINTL(state,7,12) | ((state & 0x00f00000) >> 5) |

BITNUMINTL(state,12,17) |

 BITNUMINTL(state,11,18) | ((state & 0x000f0000) >> 7) |

BITNUMINTL(state,16,23);

 t2 = BITNUMINTL(state,15,0) | ((state & 0x0000f000) << 15) |

BITNUMINTL(state,20,5) |

 BITNUMINTL(state,19,6) | ((state & 0x00000f00) << 13) |

BITNUMINTL(state,24,11) |

 BITNUMINTL(state,23,12) | ((state & 0x000000f0) << 11) |

BITNUMINTL(state,28,17) |

 BITNUMINTL(state,27,18) | ((state & 0x0000000f) << 9) |

BITNUMINTL(state,0,23);

 lrgstate[0] = (t1 >> 24) & 0x000000ff;

 lrgstate[1] = (t1 >> 16) & 0x000000ff;

 lrgstate[2] = (t1 >> 8) & 0x000000ff;

 lrgstate[3] = (t2 >> 24) & 0x000000ff;

 lrgstate[4] = (t2 >> 16) & 0x000000ff;

 lrgstate[5] = (t2 >> 8) & 0x000000ff;

 // Key XOR

 lrgstate[0] ^= key[0];

 lrgstate[1] ^= key[1];

 lrgstate[2] ^= key[2];

 lrgstate[3] ^= key[3];

 lrgstate[4] ^= key[4];

 lrgstate[5] ^= key[5];

 // S-Box Permutation

 state = (sbox1[SBOXBIT(lrgstate[0] >> 2)] << 28) |

 (sbox2[SBOXBIT(((lrgstate[0] & 0x03) << 4) | (lrgstate[1] >> 4))] << 24) |

lxvii

 (sbox3[SBOXBIT(((lrgstate[1] & 0x0f) << 2) | (lrgstate[2] >> 6))] << 20) |

 (sbox4[SBOXBIT(lrgstate[2] & 0x3f)] << 16) |

 (sbox5[SBOXBIT(lrgstate[3] >> 2)] << 12) |

 (sbox6[SBOXBIT(((lrgstate[3] & 0x03) << 4) | (lrgstate[4] >> 4))] << 8) |

 (sbox7[SBOXBIT(((lrgstate[4] & 0x0f) << 2) | (lrgstate[5] >> 6))] << 4) |

 sbox8[SBOXBIT(lrgstate[5] & 0x3f)];

 // P-Box Permutation

 state = BITNUMINTL(state,15,0) | BITNUMINTL(state,6,1) |

BITNUMINTL(state,19,2) |

 BITNUMINTL(state,20,3) | BITNUMINTL(state,28,4) |

BITNUMINTL(state,11,5) |

 BITNUMINTL(state,27,6) | BITNUMINTL(state,16,7) |

BITNUMINTL(state,0,8) |

 BITNUMINTL(state,14,9) | BITNUMINTL(state,22,10) |

BITNUMINTL(state,25,11) |

 BITNUMINTL(state,4,12) | BITNUMINTL(state,17,13) |

BITNUMINTL(state,30,14) |

 BITNUMINTL(state,9,15) | BITNUMINTL(state,1,16) |

BITNUMINTL(state,7,17) |

 BITNUMINTL(state,23,18) | BITNUMINTL(state,13,19) |

BITNUMINTL(state,31,20) |

 BITNUMINTL(state,26,21) | BITNUMINTL(state,2,22) |

BITNUMINTL(state,8,23) |

 BITNUMINTL(state,18,24) | BITNUMINTL(state,12,25) |

BITNUMINTL(state,29,26) |

 BITNUMINTL(state,5,27) | BITNUMINTL(state,21,28) |

BITNUMINTL(state,10,29) |

 BITNUMINTL(state,3,30) | BITNUMINTL(state,24,31);

 // Return the final state value

lxviii

 return(state);

}

void des_crypt(uchar in[], uchar out[], uchar key[][6])

{

 uint state[2],idx,t;

 IP(state,in);

 // Loop 16 times, perform the final loop manually as it doesn't switch sides

 for (idx=0; idx < 15; ++idx) {

 t = state[1];

 state[1] = f(state[1],key[idx]) ^ state[0];

 state[0] = t;

 }

 state[0] = f(state[1],key[15]) ^ state[0];

 // Inverse IP

 InvIP(state,out);

}

/**************************************

 3DES functions

**************************************/

void three_des_key_schedule(uchar key[], uchar schedule[][16][6], uint mode)

{

 if (mode == ENCRYPT) {

 key_schedule(&key[0],schedule[0],mode);

 key_schedule(&key[8],schedule[1],!mode);

 key_schedule(&key[16],schedule[2],mode);

 }

lxix

 else {

 key_schedule(&key[16],schedule[0],mode);

 key_schedule(&key[8],schedule[1],!mode);

 key_schedule(&key[0],schedule[2],mode);

 }

}

void three_des_crypt(uchar in[], uchar out[], uchar key[][16][6])

{

 des_crypt(in,out,key[0]);

 des_crypt(out,out,key[1]);

 des_crypt(out,out,key[2]);

}

lxx

4.3 Performance Parameters

The performance of 3DES algorithm can be measured by considering following parameters:

4.3.1. Time Taken

The time taken for encryption as well as decryption of a given plain text is calculated by

as follows using system clock time: The system clock is recorded twice i.e. before and

after the execution of the encryption module and their difference yields the time taken for

encryption. The same procedure is followed to calculate decryption time, just that

decryption module is invoked instead.

4.3.2. Throughput

In computer technology, throughput is the amount of work that a computer can do in a

given time period. Throughput is one of the key factors to measure performance of an

algorithm. In case of DES, throughput depends on size of block as well as time taken for

encryption/decryption given by:

where,

 T- throughput

 t- time taken to encrypt/decrypt

lxxi

4.4 Performance Analysis

Figure 4.4. Analysis of Time Taken for Encryption

Figure 4.6. Analysis of Time Taken for Decryption

0

100

200

300

400

500

8 bit 16 bit 32 bit 64 bit

Ti
m

e
ta

ke
n

(in
 m

s)

Size of input data

Encryption

DES

3DES

0
50

100
150
200
250
300
350

8 bit 16 bit 32 bit 64 bit

Ti
m

e
ta

ke
n

(in
 m

s)

Size of input data

Decryption

DES

3DES

lxxii

Figure 4.7. Analysis of Throughput

0

100

200

300

400

500

DES 3DES

Th
ro

ug
hp

ut
 (i

n
bi

ts
 p

er
 se

c)

Throughput

Encryption

Decryption

lxxiii

4.5 Output

Figure 4.8. Output Screen 1

Figure 4.9. Output Screen 2

lxxiv

Figure 4.10. Output Screen 3

lxxv

Chapter 5

Conclusion and Future Work

The developed project achieved the goals of authentication and providing security using the C

language. Triple DES was successfully implemented on various data messages with various keys.

Furthermore, we assimilated information on the performance of DES and 3DES and conducted a

detailed comparison between the two encryption standards. This concludes us in saying that the

goals that were set during the development of the project have been achieved as desired.

For the foreseeable future Triple DES is an excellent and reliable choice for the security needs of

highly sensitive information. The AES will be at least as strong as Triple DES and probably much

faster. It's the industry mandate from Visa and MasterCard that's requiring ATM deployers to

upgrade and/or replace their legacy terminals. In a nutshell, it's all about three waves of

encryption, and it's designed to make ATM transactions more secure.

Further improvement to 3DES implementation can be done by harnessing MMX and SIMD on

modern CPUs as well as pushing down this computation to normal graphic cards using NVIDIA

CUDA and other such technologies.

Until now we have been looking into possible linear as well as meet in the middle attacks. But

since, even though fiestal based ciphers are not susceptible to differential cryptanalysis, possible

in-depth analysis of differential cryptanalysis can be done to find out if there are any

weaknesses exhibited by 3DES towards differential cryptanalysis.

lxxvi

lxxvii

Chapter 6

References

[1] Cryptography and Network Security Principles and Practices, Fourth Edition by

William Stallings, Fourth edition 2005.

[2] Triple Data Encryption Standard (3-DES), U.S. DEPARTMENT OF

COMMERCE/National Institute of Standards and Technology, Oct 1999.

[3] "Data Encryption Standard (DES)", Federal Information Processing Standard

Publication, FIPS PUB 46-3, National Bureau of Standards, 1977.

[4] Hamdan.O.Alanazi, B.B.Zaidan, A.A.Zaidan, M.Shabbir, “New Comparative

Study Between DES, 3DES and AES”. Journal of Computing, VOL.2,No.3,pp

15-64,March 2010.

[5] M. Matsui, "Linear cryptanalysis method for DES cipher", Advances in

Cryptology - EUROCRYPT'93 (Lecture notes in Computer Science No- 765),

Springer- Verlag, pp. 386-397, 1994.

[6] E. Biham and A. Shamir, " Differential Cryptanalysis of DES like

Cryptosystems", Journal of Cryptology, Vol. 4, no. 1, pp. 3-72,1991.

[7] K. Aoki and Y. Sasaki, " Meet in the Middle Pre-image Attacks against

Reduced SHA-0 and SHA-1", Lecture notes in Computer Science, vol. 7073,

pp. 344-371, Springer 2011.

[8] Shaunak S.Ganorkar, Shilpi U.Vishwakarma, Sagar D.Pande, " An Information

Security Scheme for Cloud based Environment using 3DES Encryption

Algorithm ", International Journal of Recent Development in Engineering and

Technology, Vol.2, No.4, April 2014.

[9] William J.Buchanan, “3DES encryption in .net“, March 2011.

lxxviii

[10] Majithia Sachin, Dinesh Kumar, “Implementation and Analysis of AES, DES

and Triple DES on GSM Network”, IJCSNS International Journal of Computer

Science and Network Security, VOL.10 No.1,pp 133-138, January 2010.

[11] S. Praveen, M. Nagesh, “Implementation of the Triple DES Block Cipher using

VHDL”, International Journal of Advances in Engineering & Technology,

pp. 117-128, VOL.3,No.1, 2012.

[12] P. Kitsos, S. Goudevenos, "VLSI implementations of the triple-DES block

cipher”, Electronics, Circuits and Systems, ICECS 2003, 10th IEEE

International Conference, pp 76-79, VOL. 1,2003.

[13] Malik Sikander Hayat Khiyal, Aihab Khan, and Khansa Shabbir, "Performance

Evaluation of Encryption Techniques for Confidentiality of Very Large

Databases", International Journal of Computer Theory and Engineering, Vol. 3,

No. 6, December 2011.

