
i

Enhancements in RBS Tech

Project report submitted in fulfilment of the requirement for the

degree of Bachelor of Technology

In

Computer Science and Engineering

By

Prakhar (131333)

Under Supervision of

Shubham Agrawal as Manager, &

Lalit Pardhi as Mentor

To

Department of Computer Science & Engineering

Jaypee University of Information Technology, Waknaghat,

Solan-173234, Himachal Pradesh

ii

Candidate’s Declaration

I hereby declare that the work presented in this report regarding various

Enhancements done in RBS Tech, in fulfilment of the requirements for the award of

the degree of Bachelor of Technology in Computer Science and Engineering

submitted in the department of Computer Science & Engineering and Information

Technology, Jaypee University of Information Technology Waknaghat is an authentic

record of my own work carried out over a period from February 2017 to August

2016 under the supervision of Shubham Agrawal (Reporting Manager).

The matter embodied in the report has not been submitted for the award of any other

degree or diploma.

Prakhar (131333)

This is to certify that the above statement made by the candidate is true to the best of

my knowledge.

Shubham Agrawal

Software Development Manager III (L-6),

Amazon Development Centre,

Bengaluru

Dated: 11 Sept, 2017

iii

Acknowledgement

It is my privilege to express my sincerest regards to my manager, Shubham Agrawal,

my team mates, Lalit and Murali for their valuable inputs, able guidance,

encouragement, whole-hearted cooperation and direction throughout the duration of

our project.

I also thank faculty members and my department’s head, Prof. Dr. Satya Prakash

Ghrera, for guiding me to put forward each step and being able to drive and

implement corporate projects with great efficiency without losing my calm under

critical situations.

I deeply express my sincere thanks to my Team RBS Tech for having faith on me and

providing me challenging works, I have accomplished.

At the end I would like to express my sincere thanks to all my friends and others who

helped me directly or indirectly during my internship at Amazon Development Centre.

Date: 11-09-2017 Prakhar (131333)

iv

Table of Contents

Sr. No. Topics Page no.

1 Introduction 1-2

2 Project 1 3 - 7

2.1 Introduction 19-22

2.2 Problem Statement 23-24

2.3 Overview 25-31

2.4 System Design

 High Level Design

 Low Level Design

32-33

3 Project 2 : EU solution for AVS 8-21

3.1 Problem Statement 8

3.2 Introduction 8

3.3 Survey 8

3.4 Model Design

 Organizational Model

8

3.5 Beta implementation for AVS organizational model 10

3.6 Benefits of AVS 14

3.7 Appendix

 Appendix I

 Appendix II

 Appendix III

 Appendix IV

17

4 Project 3

4.1 Introduction 40

4.2 System Components 40

4.3 PCS Platform 41-46

4.4 PCS Platform - Support for Debugging

 LLD

4.5 Admin Update Page

 Problem Statement

 Solution Approach

 DESIGN

HLD

LLD

33-35

v

5 Project 4 37-48

5.1 Problem Statement 37

5.2 Requirements & Objectives 38

5.3 Architecture

 High Level Architecture

39

5.4 Components & Flow of Request 43

5.5 Steps to develop a new automation 48

1

Introduction

RBS (Retail Business Services) was started in 2008 to support the Retail teams

worldwide. This team is primarily responsible for 4 core tasks:

o New Item Setup (NIS),

o Andon Cord resolution,

o ISS ticket resolution, &

o Problem Receive issue resolution.

New Item Setup: In this process, RBS receives product details from vendors, mainly

through two channels: Vender Central and GIM. RBS "scrubs" the provided details,

completes the missing information and converts this data into Amazon standard

formats (as per the standard guidelines in different categories/product lines). After

this, RBS sets up these items in Amazon systems by creating new ASINs along with

creating appropriate relations with new/existing ASINs.

Andon Cord: Andon Cords occur as a result of customer contacts that have indicated

that there could be a serious defect with the product. As a result, Customer Service

(CS) will halt sales on an item by pulling the Amazon Buy box down from the site.

This deters additional poor customer experiences and allows RBS time to investigate

the potential customer-facing issue. RBS works to resolve these issues with the

assistance of the vendors and retail business team.

When a CS representative notices a potential serious defect in the product being

shipped out, she/he initiates an Andon Cord. At this time, the Buy box is suppressed

and the ASIN is now not buyable. The goal is to prevent future customers from buying

an ASIN that has a CS-identified defect trend. In addition, RBS will immediately

provide all available information to the appropriate retail team so the root cause can be

identified as quickly as possible.

ISS - Inbound Support Service: ISS refers to a collection of trouble tickets that are

brought to RBS's attention by FC / non-FC associates. ISS is a process to solve the

receive problems that are caused due to several reasons; (vendor initiated, incorrect

catalog quality, etc...). ISS is handled through a common interface, Trouble Ticketing,

where the FC associates and the retail teams communicate. Each issue will be

addressed by the FC associates / Non-FC who files a Ticket through a common

interface Remedy Ticket. When there is an exception/ discrepancy between what was

ordered by the buyer and what was received into the FC, an Inbound Support Services

(ISS) ticket is created by the FC.

Prob Rec - Problem Receive: Problem Receive refers to inventory received into the

FCs that have immediate issues or problems. These problems can range from extra

units being shipped to incorrect product being sent to an Amazon FC. This process

entails the FC communicating such problems to RBS, RBS identifying the issue and

resolving for FC receipt, vendor return or liquidation. Each Receive Problem Item

(RPI) can exhibit one or more Receive Problem Types.

https://w.amazon.com/index.php/NIS
https://w.amazon.com/index.php/Andon_Cord
https://w.amazon.com/index.php/ISS
https://w.amazon.com/index.php/Probrec
https://tt.amazon.com/new
https://w.amazon.com/index.php/RetailBusinessServices/Problem_Receive

2

Active types are:

▫ NOT ON PO - Items are sent to Amazon by a vendor to Amazon and are

marked by a vendor as being on a PO. These are Prob Rec because the items

are not on the PO that Amazon sent to the vendor.

▫ UNCONFIRMED (introduced Oct 9, 2007) - Items are sent to Amazon by a

vendor that were ordered on a PO. These items were not confirmed prior to

shipment to Amazon.

▫ CANCELLED - A vendor ships items that were cancelled on a PO.

▫ OVERAGE - The number of units of an ASIN received exceeds number of

units confirmed on the PO. Hence, an appropriate PO is chosen to

accommodate the excess units of this ASIN and then it is received by the FC.

▫ WRONG FC - The vendor ships items to the wrong FC. These units are

received under problem receive and then transshipped to the correct FC as

required.

▫ VENDOR DAMAGED - Items shipped by the vendor are damaged. Hence,

these items are received as unsellable inventory and returned back to the

vendor.

RBS Tech focuses on turning advanced human workflows into sophisticated

automated systems. The systems developed by RBS Tech have a direct impact on

customer buying decisions and online user experience. Team owns and builds

solutions for New Item Setup and Defect Reduction for Amazon Retail. Vision of

RBS Tech is to build solutions to automate systems and processes to eliminate human

touch points from New Item Setup, ISS Defect Resolution, Andon Defect Resolution

and Flex task owned by RBS.

During my internship at RBS Tech, I have worked successfully on following areas:

 Design and Implementation of EU solution for AVS

 Development of peer recognition tool, Cheer-A-Peer, &

 PCS Solution and other RBS Enhancements

3

Project 1: Cheer-A-Peer Tool

Introduction

This end to end project was developed for peer recognition in the team. Cheer-a-Peer

Tool provides a platform where peers can appreciate each-other for exceptional

performance on Amazon leadership principles.

Cheer-A-Peer tool was originally built for RBS Tech, CMT Tech and DE Team to

recognize peers.

Problem Statement

Every individual wishes to be recognized whenever he has performed beyond his

"Call of Duty". Appreciations must not always happen from top to bottom in org

hierarchy, which means the appreciations should not be always coming from the

manager. To motivate the thought for peer recognition, a tool with simple User

Experience was required, which was not already present in Amazon System.

Overview

Cheer-A-Peer is a Web application which provides a simple interface to send

Recognition/Cheer (certificates as e-mail) to the desired employee and copy the whole

team in the mail.

Apart from sending e-mail notifications, it has its own audit trail mechanism which

stores the history of all appreciations to be viewed at Manager level.

Cheer-A-Peer application has two main components -

 Send Cheer to peer.

 Reports at Manager Level.

Cheer-A-Peer web application consists of four pages -

 Home Page:

The home page is visible to all the employees and it contains link to rest of the

pages -

a. Cheer Page

b. Report Page

c. FAQ Page

 Cheer Page:

The cheer page is used to send the e-mails to the peers. The cheer page

contains input field for employee Id, recognition and some message to be sent

in e-mail (as certificate) to the peer. This is a restricted page and only users

from on-boarded LDAP groups will be able to access the page and send

cheers.

4

o Following actions are performed after opening the page:

 Employee Login Id is extracted using the Sentry Service.

 User is validated by checking the current login Id in login Ids

present in the on-boarded LDAP groups for different teams.

 If user is valid then user is allowed to access the page else,

redirected to Request Access page.

o Functionality provided:

 Accept awardee Id, recognitions and message to be sent in

certificate.

 Validate input provided by the user and shows corresponding

errors message.

 Preview the certificate that will be sent as the cheer.

 Send the cheer as e-mail to the awardee and sender's team as

well.

 Report Page:

 The report page is used to get the cheers at the manager level. It accepts the

managerId and displays the information of all the cheers received by the

employees directly under the given manager. This is a restricted page and only

valid users are allowed to access the page. At first it just displays the count of

the cheers received. But, user get detailed information by selecting particular

employeeId.

 FAQ Page:

The FAQ page is a public page and contains answers to basic questions related

to the Cheer-A-Peer Application.

This tool is designed to on-board new clients very easily. The tool authenticates users

that belong to the on-boarded LDAP groups. The LDAP groups with access are stored

in the configuration file as shown below.

If user is valid, the LDAP group is stored as a session variable to be used for further

use. This is because recognition emails need to be sent to team members of awardee

only and not to other teams. Hence, while sending notification e-mails, cc e-mail alias

will be chosen based on the LDAP group of the user.

5

Onboarding other teams on to the tool:

To on-board new team, we just need to add the LDAP group of the new team into the

configuration file and along with the cc e-mail alias corresponding to the new LDAP

Group. That's it.

High Level Design

 Web Application Flow:

We validate users before redirecting them to private pages. After sentry

authentication, the user Id is fetched from HTTP request header. This User Id is

passed to the validator, where it is checked whether the logged in user is the member

of allowed LDAP Groups or not. Whether should the Ldap group be given access to

the private pages, depends on whether the team is our client or not.

 Cheer Page Flow:

6

 Cheer Flow:

Once validated, the user has access to the cheer page, where the input fields are to

filled for the peer recognition. The user can preview the certificate on filling input

fields. On submitting the form, validations using JS take place on the front end. If the

input fields are valid, request goes to the controller, where again the basic request

validation takes place. Now the sender details are set and an email notification is sent,

followed by saving cheer info to the Dynamo Db table.

Low Level Design

I have followed Struts2 MVC framework on Spring platform, where I have structured

the package in a way to have View developed by JSP pages,

7

Our Clients

This employee recognition tool was brought up for promoting peer recognition in RBS

Tech and CMT Tech teams. But, the flexible design permits on-boarding many more

clients in future. This application is designed to have separation for different clients,

ie. an employee recognition for one client team will not send notification to the email-

alias of other.

The developer, in order to add a client, needs to just add LDAP Group and

corresponding email-alias to the config.

To onboard to Cheer-A-Peer, one needs to reach out to us at cheer-a-peer-

admin@amazon.com.

Our clients today are:

▫ RBS Tech Team

▫ CMT Tech Team

▫ RBS Program Team

mailto:cheer-a-peer-admin@amazon.com
mailto:cheer-a-peer-admin@amazon.com

8

Project 2: EU solution for AVS

Problem Statement

Currently SVS Brand Specialists do not log or update any of the activities conducted

on behalf of their vendors. This information gets lost in multiple, scattered Excel files,

SharePoint or paper sheets. At the moment there is no defined template or Data Model

defining how this data is to be stored.

Introduction

In November 2016, Amazon Vendor Services (AVS) was launched to enhance current

Strategic Vendor Services (SVS) program with the main goals of

 increasing vendor satisfaction, &

 making the program scalable.

Survey Analysis

According to Amazon's most recent time tracking survey, Brand Specialists spend

33% of their time on “non-SVS” work (details by Division and local in Appendix

IV). 21% of Brand Specialists, typically the most senior ones, spend over 50% of their

time on “non-SVS”. This work covers a broad scope:

 29% is VM-type work,

 19% is project work,

 19% is Site Merch work,

 14% is SME/POC work, and

 9% is In-Stock work.

Finally, 44% of the time spent on non-SVS work can be allocated to activities in the

AVS service menu (but for non-SVS vendors) and will benefit from solutions being

developed by AVS, while the remaining 56% will need to be addressed separately.

Task level details available in Appendix IV. In order to have AVS Teams focus 100%

on AVS vendors (see FAQ 4), we will separate GL-related tasks performed by Brand

Specialists from SVS-related tasks as we move forward to the new AVS organization,

by leaving temporarily 20% of the SVS HC within the GLs to take care of these

activities.

The approach of separating GL related tasks from AVS tasks presents several

advantages:

 it is a clean organizational cut with clear accountability that will enable high

visibility on what people are doing and will prevent GLs from using Brand

Specialists as a pool of free resources;

 it will allow Brand Specialists to have clear goals and priority set by their

managers rather than being split between AVS Team and GL work;

 positions left in GLs can be leveraged as mitigation for VMs losing directs;

 Category Leaders and VMs will be incentivized to optimize current activities.

Organization model

9

In order to mirror the retail organization, teams of Brand Specialists, organized by GL

when possible and led by L5 Team Leads, will report into L6 AVS Managers

operating within the boundaries of retail Directors and reporting into these Directors

or one of their designated Category Leaders. Brand Specialists will continue to be

POCs to their vendors, and therefore also to the VMs managing these vendors.

Moreover, Brand Specialists will sit next to the VMs as they do today. The Team

Leaders, typically more senior Brand Specialists (L5), will be spending part of their

time managing AVS vendors and the other part managing their team and being the

POC to their Category Leader(s). These teams may also have experts working across

vendors/categories, typically on advanced operational efficiency and traffic activities,

and either reporting into Team Leaders or AVS manager, depending on where the

vendor demand is (in one GL or across GLs). This model will preserve i) a seamless

communication between VMs and Brand Specialists, ii) the ability to align on

priorities and resolve conflicts and iii) access to the category information required by

Brand Specialists to do their job. At the same time, it improves our ability to i)

effectively drive the standardization required to reach our service quality and

productivity goals, ii) develop expert profiles as required by vendors and allocate them

to the right vendors, and iii) manage business variability without any service

disruption.

While we will seek to roll out this “mirror” model to the extent possible, certain

considerations need to be taken into account. AVS Manager organizations will need to

be large enough to cover at least 40 vendors which is the critical mass required to

smooth business variability and ensure that experts are always utilized. Also, they

should not exceed 30 HC for internal manageability purposes (AVS Managers should

have no more than 5 Team Leads who in turn should have no more than 5 directs –

preferably 4 since they are also managing their own vendors). Finally, divisions with

multiple AVS organizations will need to merge them when they jointly have less than

25 HC, in order to minimize overhead (no merging of organizations across divisions).

Details around this framework can be found in AppendixVII. While IT & ES will

have joint AVS organizations, we need to avoid having L4s reporting into remote

managers; this means that we will need local Team Leads working across GLs in both

countries (rather than working for GLs across countries). We still need to define how

the very small divisions (Fresh, Digital, Auto/BISS) will function, and to deep dive on

Media/ Digital, which is offering different services to SVS vendors and in UK has

already moved to a pooled organization (ETA for proposal end of mid-May).

In order to simplify the transition, we have made an initial organizational proposal by

marketplace, with more flexible rules (i.e. 30+ vendors per pool rather than 40+; and

no hard requirements to merge pools which jointly have less than 25 HC to reduce

overhead). See appendixVIII for proposed deployed organization for each

marketplace.

Finally, marketplaces will need to designate one of the AVS managers as SME to the

central AVS team, who on top of his responsibilities will be required to gather

requirements from his local peers, contribute to the development of tailored solutions

and guarantee full adoption of technology, HOTW and offshore processes. In order to

ensure that all country and division voices are heard we propose the following SMEs:

10

1 from DE Other Hardlines, 1 from UK Consumables, 1 from FR Media, 1 from IT-

ES Hardlines, and 1 from Softlines.

Fig. Illustration of the Mirror Organizational Model

Beta implementation for AVS organizational model

A group of GLs (DE PC, Home and Furniture; UK Beauty, CE, Wireless, Camera,

Home Entertainment; FR PC, Office, Consumable, HL2; IT/ES TBD; Softlines

Watches & Jewelry) will start transitioning to the new AVS organization model

straight away, as soon as they hire their AVS Managers. For these GLs, we have

developed recommendations on how AVS teams should work, defined roles and

responsibilities, proposed interaction models between Category and AVS teams, and

suggested goals for the AVS teams (we will provide this as a separate document). We

will leverage these GLs as a privileged community to test automation and offshoring.

Some of these organizations will move immediately to the final target set-up (see

Appendix III) and will be leveraged as “Beta implementation”.

The Large GL Average GL Small GL Small GL Team 1 Team 2 Team 3 Team 4

Expert Cat Lead Cat Lead Cat Lead Cat Lead Director Team Lead Team Lead Team

Lead Team Lead AVS Manager GL Organizations AVS Organizations Fig. 1 –

illustration of the mirror organization model AMAZON CONFIDENTIAL 3 goals of

the “Beta” will be:

 to fine tune these recommendations and learn how AVS Teams can best adopt

new AVS tools and processes,

 test new tools and offshore services, &

11

 identify potential friction points with vendors, employees and the GLs so that

we can react and provide recommendations to other GLs.

In order to achieve that we will put in place a set of mechanisms that will include:

 weekly interactions with the AVS central team to deploy standardized

processes and tools,

 monthly monitoring of key metrics which would trigger alerts, &

 periodic interviews with employees involved.

Feedbacks are being gathered from Category Directors of Beta GLs in order to finalize

mechanisms before Beta starts (ETA Mid-April). These mechanisms will remain

focused on the impact of the organizational model, which is the object of the Beta. In

parallel, we will continue to monitor overall vendor satisfaction through 2 surveys per

year, and we will build dashboards to measure the impact of AVS on core vendor

metrics (ETA end of Q3).

Communication plan for Beta Implementation

We will not proactively communicate AVS implementation to minimize churn on

employees. However, we will provide M-teams with FAQs so that they are updated

and have talking points on the “direction of flight”.

AVS general directions will also be communicated in the call of Country Managers on

Future of Category Leaders planned on March 31st. Specific sessions will be held

with employees participating to Beta implementation, namely:

 Preparatory meetings with Category Directors and Category Leaders supported

by AVS central team (additional FAQs on the mechanics of AVS Team work

will be provided)

 All hands with Division Leads, Category Directors and all impacted

employees supported by AVS central team and local HRBP

 In the week following the all hands, Category Directors will have 2:1 with

VMs and Brand Specialists and their managers

AVS eligibility tenets

Tenets for AVS eligibility (unless you know better ones):

 We want AVS to remain accessible to the largest base of attractive vendors,

attractiveness is a mix of positive contributions to CX and economic viability

defined at GL level.

 We will keep AVS eligibility as an incentive for vendors to become more

attractive to Amazon in Marketplaces and/or GLs where negotiation leverage

is needed.

 AVS eligibility criteria must be easily understood by vendors and must be

consistent for vendors that operate across multiple marketplaces or GLs.

Accordingly:

 Services that improve Selection & CX are available to all vendors

12

 Services that primarily accelerate vendor growth are available only to

attractive vendors, or vendors that commit to a clear auditable plan to reach

attractiveness within a short timeframe (or attractiveness above average in GLs

where most vendors are structurally not attractive)

 The most valuable services that benefit the vendors are available only to

vendors that are accretive to GL attractiveness, or vendors that commit to a

clear auditable plan to become accretive within a short timeframe.

Next steps are to convert these tenets into specific eligibility criteria. This will allow

us to estimate increased entitlement of the service (i.e. total number of vendors

eligible under new criteria) as well as CCOGS at risk (i.e. current SVS/PCS vendors

that will be rejected from AVS Level 3/2 under new criteria). We will discuss these

criteria and resulting business impact in our meeting with Russ scheduled on May

30th.

Risk connected

AVS is designed to positively impact vendors’ satisfaction and renewal rate, as it will

allow to diagnose their needs, define relevant action plans, monitor business impact,

improve the quality of the service delivered, and provide new highly value services.

However, we will monitor impact on vendors’ satisfaction and renewal rates. We

expect to detect any potential red flag related to AVS transformation by tracking

renewal rate of agreements terminating in Q3 and Q4’17 and to be able to react on that

before Q1’18. These agreements represent 18% of the total, corresponding to €8.7MM

profit.

Alternative Approach Analysis

One of the most hotly debated topic is whether or not to leave the GL related work

done by Brand Specialists within the GLs, or to give the flexibility to pool it within

the AVS organization.

Pro’s to pool GL related work within AVS organizations are

 to keep interesting projects / SME responsibilities within AVS and add

attractiveness to the positions,

 accelerate GL tasks scaling as quarterly targets will be applied and we can start

more quickly not to backfill some of current Brand Specialists, &

 to benefit from the AVS Managers’ help to scale the GL-related tasks that are

similar to AVS tasks (44% of GL related tasks are part of the AVS service

menu according to time tracking survey – we are aware that there is a blurred

line between some AVS tasks and GL tasks, which we will take the point to

discuss with local teams to make sure AVS menu is comprehensive and

without grey areas).

Cons are

 unclear accountability on GL activities (Brand Specialists will end up having

two managers, one for AVS and one within the GL), and this will be

augmented by grey areas between AVS and non-AVS tasks;

13

 missed opportunity to leverage positions left in GL as mitigation for VMs

losing directs;

 lack of clear visibility on GL activities done by Brand Specialists, increasing

the complexity of tracking their reduction and the risk of maintaining AVS as

a fall-back bandwidth option for additional GL tasks; &

 AVS Teams will have to focus also on the 56% of GL activities which are not

in the AVS service menu, for which they are not fully accountable, leaving

category Leaders and VMs less incentivized to optimize these activities.

AVS US

The US vision for SVS is aligned with EU, however implementation roadmap is

different.

The US is creating a central team of Vendor Specialists. These Vendor Specialists will

focus on vendor account management, with work executed by centralized functional

teams (RBS), similar to the EU and will report into Retail Systems organization.

New SVS vendors are supported by the central team. The new model is being piloted

in 5 GLs during H1 2017 and then will be rolled out to the remaining GLs.

At this point, Brand Specialist positions within the GL will cease being backfilled and

as existing Brand Specialists rotate, vendors will be transitioned to the support of the

new central team of Vendor Specialists. At the same time, work previously executed

by Brand Specialists will be transitioned to the centralized RBS team. This will

naturally lead to a gradual elimination of vendor-funded resources dedicated to GL

activities. A dedicated workstream led by a Category Leader is mapping these

activities and assessing what the new category structure looks like in the light of the

many automation initiatives.

AVS different from SVS

Strategic Vendor Services (SVS) was designed to help our best vendors grow on

Amazon thanks to focused attention from Brand Specialists. Amazon Vendor Services

(AVS) will enhance the current suite of products (SVS, PCS and PSS) and structure it

around a menu of ~80 standard service modules (see Appendix I). We will launch a

new platform called Amazon Vendor Services Workflow that will support VMs and

Brand Specialists to diagnose vendor needs, select the right services, define and share

with them an action plan, and transform it into an operational plan of tasks to be

executed over the duration of the agreement. Each service module will have a

playbook and SOPs to ensure quality and consistency of the service provided and will

be mapped to output metrics, so that we will be able to track and report business

impact to vendors. We will automate and offshore to RBS (Retail Business Services,

Amazon internal department) basic and standardizable tasks, so that Brand Specialist

will have more time to focus on vendor facing and high-value activities. This will

allow each Brand Specialist to manage more vendors than today and to scale up SVS

organization, which is not sustainable with the current set-up (more than 930 vendors

and 600 Brand Specialists steadily growing).

14

The service modules are split along 3 levels of service according to their added value

and complexity to deliver, with the highest level (Level 3) only accessible to our best

vendors. “Level 3” services require an understanding of the vendor’s business, a direct

relationship with the vendor and tailored planning to be effective and hence will be

supported by Brand Specialists. “Level 2” services require light onshore support to

gather vendor requirements and tailor the plan accordingly, but are mostly executed

offshore and through automation. “Level 1” services are totally offshored or

automated.

AVS Team organization

An AVS team is defined as a group of Brand Specialists reporting into an AVS

Manager (typically L6) responsible for service quality, productivity and growth, and

detached from day to day vendor activities. Brand Specialists continue to be POCs to

their vendors and will be organized into sub-teams managed by more senior Brand

Specialists (typically L5) spending part of their time managing AVS vendors and the

other part managing their team and category stakeholders. This structure will mirror

the retail organization i.e. Category Leaders will typically have an L5 team lead as

POC while VMs will have designated Brand Specialists as POCs (see proposal in

Appendix III). These teams may also have experts working across vendors/categories,

typically on advanced operational efficiency and traffic activities, and either reporting

into sub-teams or into the AVS manager, depending on where the vendor demand is.

Finally, the AVS managers will report into the retail division - reporting lines to be

defined by division heads.

This model will preserve i) a seamless communication between VMs and Brand

Specialists, ii) the ability to align on priorities and resolve conflicts and iii) access to

the category information required by Brand Specialists to do their job. At the same

time, it improves our ability to i) effectively drive the standardization required to

reach our service quality and productivity goals, ii) develop expert profiles as required

by vendors and allocate them to the right vendors and iii) manage business variability

without any service disruption.

Teams will need to be large enough to cover at least 40 vendors which is the level of

aggregation required to smooth business variability and ensure that experts are always

utilized; and should not exceed 30 HC for internal manageability purposes. Finally,

divisions with multiple teams will need to designate one of the AVS managers as

SME to the central AVS team, who on top of his responsibilities will be required to

gather requirements from the entire division, contribute to the development of tailored

solutions and guarantee full adoption of technology, HOTW and offshore processes

within his division.

Benefits of AVS

What benefits does AVS bring to vendors?

 AVS proposition is based on a set of over 80 standardized activities (see

Appendix I) from which the most relevant ones can be selected according to

vendors’ needs. Brand Specialists will have access to training, playbooks and

15

SOPs for all AVS activities. As a result, we will be able to deliver a

consistently higher quality of service.

 AVS Workflow technology will support VMs to analyze their vendors’ core

business metrics, define relevant activities, and propose a tailored plan to

reduce/ close their performance gaps. Vendors will receive frequent progress

updates on activities and their impact on business performance.

 Vendors will also have access to dedicated advanced services (e.g., VLT

improvement). As Brand Specialists re-organize into centralized teams, some

of them will have the opportunity to develop highly specialized skills and

expertise and provide advanced services to all the AVS vendors supported by

the team.

What benefits does AVS bring to Amazon?

 Vendor satisfaction and consistently higher quality of service.

 Scalability. The current set up of SVS is not scalable, as it requires HC to grow

almost linearly with vendors. With already 550 HC this is a challenge in term

of recruitment, people development, standardization of the service and makes

it hard to ensure consistency and quality of the service. AVS will allow

increasing Brand Specialists productivity (vendors served per HC) by

offshoring and automating basic and standardizable tasks. Centralization of

Brand Specialists will enable monetization of savings

 Flexibility. Centralization of Brand Specialists will enable higher flexibility in

the support we provide to vendors. For example, we will be able to provide

more support to a vendor during a given period if needed, and to start a new

agreement immediately without waiting to hire a new dedicated Brand

Specialist.

What benefits does AVS bring to employees?

I’M A BRAND SPECIALIST:

We expect the Brand Specialist job to become more attractive than today. You will

spend less time on “back-office” activities, which will be offshored to RBS or

automated, and will spend more time facing the vendors or performing high-value

activities. While you will still be part of Retail organization and have opportunities to

proceed your career as VM as you have today, you will also have new development

opportunities. In fact, some of you will have the opportunity to grow and lead teams

of Brand Specialists, and others will develop specific functional expertise and deliver

advanced services to vendors.

I’M a VENDOR MANAGER/ I MANAGE a BRAND SPECIALIST:

AVS is an enabler to your role as a Vendor Manager, as you will get access to a more

powerful system to help you deliver. AVS workflow will support you to identify

potential vendors for AVS, assess their needs and improvement opportunities so that

you can effectively pitch the service to them, select the right services and build and

drive impactful action plans. AVS workflow will provide you with automated reports

and standardized recommendations saving you time and improving the effectiveness

16

of your work. It will allow you to track progress on your action plans, adapt it to your

vendors’ evolving needs and monitor their performance in real time.

Centralization of Brand Specialists

Centralizing Brand Specialists will allow us to:

 Drive adoption of standardized, automated and offshored processes thanks to a

small number of AVS managers highly accountable for this and closely

supported by the central team.

 Provide the business stability required to forecast vendors and HC in advance,

ensuring service continuity.

 Deliver advanced services to any vendor through specialization of specific

profiles within the team.

 Turn time saving initiatives into productivity improvements fast (e.g., saving

5% time in a team of 20 through offshoring allows to save a full HC).

Benefits from Premium Catalog Services (PCS) centralization

PCS centralization enabled standardization of processes and offshoring to RBS of

repetitive tasks. This led total productivity ratio (vendors/HC) to grow from 4.25 at

the end of 2013 to 7.7 at the end of 2016, and offshoring ratio (HC offshore/ Total)

from 23% to 83%. Centralization allowed to effectively drive innovation of the

program, e.g. Proactive PCS was launched in Q2 2016 and new tasks are now

provided to vendors (C-returns, Enhance ASIN content, etc.).

The team has also built processes to track vendor satisfaction and work on its

continuous improvement:

 yearly general satisfaction survey (last one sent in May 2016: 87% of vendors

satisfied or very satisfied with the service);

 How was My Driving (HMD) survey sent to vendors every time they request a

task through Paragon (average EU5 results for 2016 is 88% positive response).

17

Appendix:

Appendix I – AVS Tenets (unless you know better ones)

 Amazon Vendor Services (AVS) is the best deal for eligible vendors: it is a

paid service that helps them deliver the best customer experience and

maximize their growth on Amazon.

 Amazon Vendor Services (AVS) is restricted to profitable vendors that can

grow and large vendors that can become more profitable; we will provide more

proactive and personalized support to the most relevant and attractive vendors

(to be reviewed after eligibility tenets have been signed off).

 We offer a menu of services and select those which best address vendor needs

and opportunities for development, and we obsess over their satisfaction with

the service.

 We deliver our service through scalable processes and automation while

keeping the right level of interaction with vendors and close collaboration with

Retail Category Teams

 We will work with global teams to drive global parity and efficiencies in SVS,

where possible.

 We maintain tight controllership on vendor satisfaction, headcount,

profitability and compliance to guidelines.

 AVS is funded incrementally to any other terms and its operation is highly

profitable for Amazon.

Appendix II – Framework for structuring AVS Brand Specialists teams

A team is defined as a group of Brand Specialists reporting into an AVS Manager

exclusively accountable for service quality and productivity, and detached from day to

day vendor activity as POC. These teams will have sub teams managed by L5 Brand

Specialists and mirroring the retail organization (typically 1 L5 POC per Category

leader). These teams may also have experts working across vendors/categories,

typically on advanced operational efficiency and traffic activities, and either reporting

to sub-teams or to the AVS manager.

Teams should cover at least 40 vendors to be able to manage business variability &

keep experts fully utilized

 Teams need to have enough vendors that:

 Vendor growth forecasts are reliable and can be used for HC planning

 Unplanned absences (sick leaves, recruiting voids) do not cause too much

stress on the rest of the team

 Operational excellence & traffic experts on the team are fully utilized Based

on the below analysis, the minimum team size should have 40 vendors,

equivalent to about 15 HC today (assuming GL work is done outside the AVS

teams) and 9 in 2018 (when we double productivity).

18

The below table is based on real 2016 data, adjusted for 2017 growth forecasts. It

takes all vendors with an SVS contract on March 31st , divides them into random

groups, and looks at how many vendors were in that same group 3 months earlier.

While the average group always grows by 11%, small groups of vendors are clearly

less predictable than big groups. At 40 vendors per group, 90% of the groups grow at

less than 2x the average - the maximum variability that can be managed effectively

(standard deviation below 50% of the mean).

Teams should have no more than 30 HC to remain manageable

 Effective management guidelines recommend up to 5 direct reports per people

manager (note: the average retail L5/6 People Manager has 3.5 direct reports

and the top quartile has 5.6 direct reports, which is consistent with our

direction).

 L6 AVS managers can have 2 levels of organization (i.e. L4 Brand Specialists

reporting into L5 AVS Team Leads reporting into them) below them

 L5 Team Leads will also own vendors, so should ideally manage up to 4 Brand

Specialists rather than 5, and half as many vendors as them. 5 directs would be

a maximum. As a result, L6 AVS Managers would have up to 5 L5 Team leads

+ 20-25 L4 Brand Specialists = 25-30 HC per team (25 being optimal).

Divisions with multiple teams should designate SMEs to optimize the ease of driving

process standardization

While the AVS Managers will report into retail, it is essential that they collaborate

closely with the central AVS team driving the service roadmap so that they can voice

their requirements, contribute to the development of tailored solutions and guarantee

full adoption of technology, HOTW and offshore processes. To maximize ownership

and ease decision making, there needs to be as few AVS managers as possible in

direct contact with the central team. On the other hand we need a minimum of 1 AVS

manager per division in contact with the central team to ensure that all business voices

are heard. As such, in large divisions which have multiple AVS teams, we will need to

designate one of the AVS Managers as SME to the central AVS team.

The below table illustrates the team structure across EU5. We still need to define how

to treat the very small divisions (Fresh, Digital, Auto/BISS, Luggage) and we need to

refine the Brand Specialist HC excluding GL work as a result of the survey.

19

Appendix III – AVS organizational model by marketplace

20

21

Appendix IV – GL activities performed by Brand Specialist by Division

Preliminary results based on replies of 70% of Brand Specialists

Non-SVS Work by Marketplace and Product Line

Distribution of Brand Specialists by % of time spent on Non-SVS Work

Non-SVS Work by Tenure

22

Non-SVS Work by Type of Activity

23

Top Non SVS Activities

24

Project 3: PCS Solution Enhancements

Introduction

RBSPCSWorkflow is a platform to manage task for PCS. PCS is a premium catalog

service that Amazon offers to its vendors. In this service Amazon associates works to

improve catalog quality on behalf of vendor. Currently this service is being offered in

EU & US region.

As of now associates manage and track their PCS task on tt and some excel based

systems. RBS PCS workflow will eliminate these systems and will provide a single

platform to do all activities. This platform will provide better metrics based reporting

and trackability.

In R1 (Release1) of PCS workflow, we are targetting to provide platform for

Agremeent life cycle management, which will result in 2.4% of productivity gain.

Use Case

 VM or associates should be able to log an agreement. Vendor details like

contact name, email etc. should be fetched from VM service automatically.

Signature is present in CCOGS agreement should also be checked. VC rights

should also be updated automatically.

 VM or associats should be able to view the details of an agreement and should

be able to update the information of agreement (only permissible fields).

 Associates should be able to assign agreement to himself/herself or to

someother associates so that they can start working on them.

 Associates should able to change the status of an agreement, status like Active,

Closed etc.

 VM or associates should be able to search agreements based upon search

criteria to maintain reporting.

 VM or associates should not be able to log duplicate agreements.

 Vendor Tracker and WBR should be automatically generated as a part of

reporting.

25

System Components

Dynamo Db

Dynamo DB will be used as data base to store agreement entity. We will be using

composite key based secondary GSI to query agreements based on different-different

criteria. Alternative of Dynamo DB was to have relational structure and use RDS. No

doubt our data is hierarchal but we can also model it in Dynamo DB also to get

scalability and avoid data disasters. [As part of rolling stone project, throughout the

org we have mandate to build any new application on our in-house dynamo]

Sample Json representation of Pcs Agreement is like below (All fields are not

mentioned here):

{

 "CONTRACT_ID": "SVS",

 "CREATE_DATE": 1455807812580,

 "MARKET_PLACE": "FR",

 "PCS_AGREEMENT_ID": "PCS.SEBF3",

 "USER_LOGIN": "placzekb",

 "BRAND_CODE": "SEBF3",

 "STATUS": "active",

 "ASSIGNEE": "abcd",

 "version": 1 cont......

26

}

Search on based on primary index i.e. PCS_AGREEMENT_ID is the default

funcationlity offer by dynamo. To accomplish efficient seacrch based on composite

business criteria we will be building Secondary GSI with appropiate range key over

the table. E.g. If we have to find all active agreements in FR between some date range

then we will make a composite key MARKET_PLACE+STATUS and range key will

be CREATE_DATE. By this data will be paritioned as per composite key and will be

sorted in partions based on range key.

Dynamo db has limitations for having only 5 GSI, we will develop the GSI for most

frequently used composite criteria of search. Beyond this all queries will be scanning

the table. To optimize it further we will be using filter functions of dynamo db v2 so

that data set will be filtered in dynamo server only this wil help in reducing the

network latency.

RSP engine

RSP engine is being used to manage the Agreement life cycle. Other options for

workflow engine could have been Herd or AWS SWF but introducing these new tech

stack will become the overhead for us. RSP internally uses the SWF and it is being

used in several RBS Workflow for long.

Vendor Master

VM service is being used to get the vendor data from vendor code.

Contra Cogs

CCOGS service is being used to verify the ccogs agreement supplied by VM or

associate.

VC Services

VC service is being used to update the vendor rights automatically in vendor central

using VSSVendorService

Steps (Algorithm) involved in this process are:

 GetVendorGroup: In this we call VSSVendorService to get list vendor group

using GetVendorGroupsBySearchValuesto get list of vendor groups for a

vendor code. Then, we select vendor group based on following criteria:

o If List of vendor group contains only one vendor group then return that

vendor group.

o If List of vendor Group contains more than one vendor groups then we

compare them using business group and creation time of vendor group

27

 UseGetAllBusinessGroup to get Map of BusinessGroupId and

BusinessGroups for given marketplace then find

businessGroupId for input product group then find out which all

vendor groups have this business group as their

primaryBusinessGroup

 If filtered list has only one vendor group, then return that

vendor group else most recently created vendor group

 UpdateVendorCentralRights: Once you got the Vendor Group then get vendor

group right hierarchy using GetVendorGroupRightHierarchy

o If List<Right> contains some rights then create

List<RightChangeData>and append it with new right needs to be

added. Else create List<RightChangeData>with just new right Ids.

o Call ChangeVendorGroupOverridesapi to override rights for given

vendor group with new List<RightChangeData>

Dev Guide for APIs:

 GetVendorGroupsBySearchValues:

o Input:

 VendorGroupSearchParameters: vendorCode

 GetVendorGroupsBySearchValues.Reques: MarketplaceId

(Obfuscated)

o Output:

 List<VendorGroup>

 GetAllBusinessGroup

o Input:

 GetBusinessGroups.Request:

 Marketplace (e.g “US”,”UK”)

 MarketscopeId (e.g “US”, “EU” – for all EU

marketplaces)

o Output:

 Map of business group id and business group: Map<String,

BusinessGroupList>

 GetVendorGroupRightHierarchy

o Input

 GetVendorGroupRightHierarchy.Request: vendorGroupId

o Output

 List<Right>

 ChangeVendorGroupOverrides

o Input

 List<RightChangeData> - with new rights appended keeping

this order (67561, 67741, 67431, 81691, 67441)

o Output

 Void Assuming no exception as success.

28

Tomcat Based Web UI

This will be Tomcat web app based on MVC using Spring & Struts. Another

alternative for UI stack was to develop on RSP itself. RSP based UI is in DOJO

and takes time to develop and to extend currently present RSP widgets that's why

we are here opting Tomcat based standalone solution. This way we will speed up

the development and can use good UI stack. It will also remove one dependency

from RSP.

Operations Performed by WebApp

 It will take care of storing all the related information of PCS into dynamo DB

using a DAO layer.

 It creates various workflow executions using RSP integration

 Integrates with various services and gets relevant information using the APIs

DataWare House (DW)+DJS

DW will used as data strore for reporting purpose. Data will be pused into using DCS

feed on daily basis. Daily jobs will be invoked by DJS. DJS will be used as job

scheduler as it provides better job management, can run job on single host across

cluster and provide alarm setup easily. Instead of DJS host based cron could have been

used but to maintain failure and to run on single instance across cluster could have

been a tedious job to do. AWS Lamba was also one of the option but it can't invoke

apollo service.

PCS platform

Jobs and Items Workflow Platform

Problem Statement

Currently we have developed a Premium Catalog Service which is used by the RBS

associates to improve the quality of catalogue data for the vendor. There are 14

different types of activities or jobs which are done by the associates on each ASIN

(referred to as Item in PCS world). Few examples include - Title correction, Image

upload, Browse node correction, etc. The problem is to build a solution that satisfies

the following requirements:

 Generic Job Workflow: The associates would prefer to track the activities of

batch of ASINs and not on per ASIN level. Hence we need to design a generic

workflow (job workflow) to enable the associates to track the activities on the

batch of ASINs.

 Generic Item Workflows: Though the tracking of batch of ASINs is

necessary, the actual activities are performed at the ASIN level. Hence we

need to have Automated workflows at the ASIN level (Item workflows)

 Interface between Job & Item workflows: The job workflow should spawn

multiple Item workflows (one for each ASIN) and trigger the Automation at

29

the ASIN level. Hence the interface between the Job workflows and multiple

Item workflows needs to be well defined)

Generic Jobs Workflow

Job Workflow RPDL

Below diagram represents a generic design of jobs workflow. It takes into

consideration the workflows of the following types listed below

 Workflows which has only manual steps

 Workflows which has only Automation steps (no manual intervention)

However, it can be easily extended to support workflows which has a mix of

automation steps & Manual steps

Based on the type of the workflow, different paths are taken by them as shown in the

RPDL below. The type is decided by the context key "jobsWorkflowType".

Starting the Job workflow from UI

 The job workflow is started as soon as a "Create Job" request is placed on the

UI. The user is expected to upload a list of ASINs in form of an excel file

while placing request to create a new job. This ASIN list is uploaded and

stored in a remote S3 bucket.

 The file S3 key would be part of the job entity's

ASIN_LIST_FILE_LOCATION attribute in the DynamoDB.

 Job workflow now gets kicked off

30

ASIN List file is stored in S3 in following hierarchy:

jobId/ASINListFile/filename__timestamp

Similarly, any additional files uploaded by the user during job creation is stored in S3

Bucket in following hierarchy: jobId/AdditionalFiles/filename__timestamp

Job Workflow Steps

Start Async step - Create Item Entities & Mark for Audit

 The first Async step in the Job workflow would simply pull the asin list file

from S3 and create the Item Entity for each asin and persist it in the DB

 It updates the job with live status (live status field of job says weather the job

failed or succeeded. This field could also be updated to indicate any partial

failures in any async step)

 Based on the type of job it routes the workflow to manual or automatic path.

 The Items are also marker for Audit randomly based on probability. If there

are any items selected for QA Audit, then even the Job is marked for QA Audit

Retry for Image Automation Sub-Workflow

Approach 1: Modelling the Retry with just Job & Items

Task Breakdown

 New History table - This will contain the history of the image upload for the

previous try which may be required for any analytics in future.

 RPDL changes - Add a new manual step named - Needs Retry as shown in

image upload sub-workflow & modify some transitions to enable the loop

 UI for the new manual step with a "Retry Job" Option

 Clicking on "Retry Job" should save the previous automation try to history +

clean up the job sub-workflow context + add a new retry flag to the context

31

 Image Mapping manual step will need changes w.r.t UI.

 UI must understand the retry flag in context and must display the

images as upload failed/successful

 Disable the images which are successful from being modified +

provision to modify only the failed images

 On completion the controller should persist the modified images as

retryable in the DB

 UI should have an option to abort the retry (since user may inspect the

images which have failed and decide not to retry at this point)

 Upload images async step should identify the retry flag to trigger upload of

only selected images

 No changes are forseen as of now in any other async steps in the sub-workflow

Approach 2: Modelling image as Automation Entity

Task Breakdown

 Introduce new Table named Entity with attributes (Entity Id, Entity Type,

Entity Details, Entity History, isRetryable, itemId, JobId). With a primary key

(EntityId) & GSI (JobId + isRetryable)

 DAO for query, create, update, get

 New blob in Job which will have the entity list on which the workflow will

execute. Relavant DAO changes in update/get Job APIs. If this list is empty -

this means work on all the entitites associated with the job.

 Refactor all the image upload Async steps to use the new Entity table instead

of item image details

 Tasks #2, #3, #4, #5 in the previous approach will also be required

PCS Platform - Support for Debugging

Debug view for PCS Web Application

The idea here is to create debug view for Agreement, communication, Item & Job

view pages. This feature will be enabled with a http request param - isDebug=true. On

passing a query paramisDebug=true in the Item/Job view URL, the respective page

should display all the debugging related information possible which enables the

developer to debug the issue as quickly as possible without going to multiple systems

like DynamoDB, Hydra, RSP, etc.

Advantages of having a debug view:

Edit

 Most of the issues can be debugged without having to take a peek into the

application logs

 No need of being aware of which systems have what information because all

the information is now available under one umbrella

https://w.amazon.com/bin/edit/RBS_Tech/RBSPCSWorkflow/PCS_Debugging_Support/WebHome?section=2

32

 Makes the life of oncalls and new developers easier initially when they have

limited knowledge of the system

 Makes it easier for developers to debug the issues during development without

going into multiple systems

 If the view is improved, then even the users will be able to use it to give more

details about the issue which they are reporting

Low Level Design

Edit

Diagram below shows the proposed architecture for enabling debugging support on

PCS web pages across the application. At a high level, the architecture is based on

Command Design pattern and uses number of small commands which can be re-used

across multiple pages. These commands can be plugged and played as required to

enable different features on multiple pages.

 Write an interceptor/filter which on receiving the isDebug flag

 This interceptor/filter then invokes a command chain based in the page which

is being rendered.

 The commands execute and fetch the information from various sources and

delegate it to the view (jsp)

 The JSP can simply display it

https://w.amazon.com/bin/edit/RBS_Tech/RBSPCSWorkflow/PCS_Debugging_Support/WebHome?section=3

33

Job View Page

Currently the job debug view (for only image automation) shows the following

informations:

1. Live status of the workflow execution (from dynamoDB)

2. Images uploaded along with the status and failure message, the asin and the

variant against which it is uploaded

3. QA status of each image with failure message (if any)

4. Files downloaded from the external sources, status and failure message

5. Automation status of all the automations delegated to hydra, the response from

hydra and the failure message if there are any failures

Plan is to also include commands to fetch information from:

6. Hydra - to get the hydra worklogs for each automation using the get

automation status API

Extending it to other view pages

With the framework in place, it is very simple to have a debug view for any page in

PCS web app. The developer simply needs to write a command class to fetch the

information from any source and include it in the chain for the respective view page.

The information will be then visible on the respective view page

Admin Update Page

Problem Statement

While creating the Agreement, many fields are filled by user, out of which some fields

are non-editable on Update Page.

PCS Dev Team was constantly being approached from Business Team for changing

and correcting non-editable fields in DB. Some of such requests are mentioned below:

▫ https://issues.amazon.com/issues/RBSTech4937 : 47 Requests*

▫ https://issues.amazon.com/issues/RBSTech5042 : 106 Requests*

▫ https://issues.amazon.com/issues/RBSTech4830 : 29 Requests*

*- Each request further involved various fields to be changed.

The requests were made due to inability of business team to make the changes in some

restricted or non-editable fields, like Submission Type, Product Groups, Service

Start/End Date, etc..

Of all the fields, the effort required to change the Dates in DB was the most as for

changing a Date, the following flow must be followed:

Generate Date in millis -> Copy and Paste in DB ->Verify in Workflow

No. of Date Changing requests made in above requests:

▫ https://issues.amazon.com/issues/RBSTech4937 : 21 Requests

https://issues.amazon.com/issues/RBSTech-4937
https://issues.amazon.com/issues/RBSTech-5042
https://issues.amazon.com/issues/RBSTech-4830
https://issues.amazon.com/issues/RBSTech-4937

34

▫ https://issues.amazon.com/issues/RBSTech5042 : 04 Requests

▫ https://issues.amazon.com/issues/RBSTech4830 : 15 Requests

Due to continuous increase in number of such requests, we came up with the idea to

provide Admin Update Page to Limited Users.

Solution Approach

Edit

The admin update page is accessible to only a few users (will be mentioned Admins

further).

Following Approaches were discussed to authenticate an admin :

▫ Provide a secret key

o Pros :

 Easy to deploy

o Cons :

 May spread to all PCS Users with time

▫ Provide Dynamic secret key

o Pros :

 Admin can generate a key which can be thrashed after usage

 Unique for every session

o Cons :

 Complex Implementation

 Extra effort required by Admin to generate secret keys per

session

▫ Verify using an LDAP Group

o Pros :

 Easy to deploy

 Authentication automatically done

o Cons :

 Requires some planning to maintain the LDAP group, User has

to reach to LDAP owner to become Admin

Finally, the authentication of an Admin is done through LDAP verification.

If user is present in the admin LDAP group, he/she is automatically eligible for Admin

privilege.

Audit Trail:

This is the special feature added to show an Admin, the trail of the action of Admins

on restricted fields.

It is important to record the action on restricted fields by Admin, when we can have

multiple admins. Every action by admin on privileged fields is recorded in DB. Admin

https://issues.amazon.com/issues/RBSTech-5042
https://issues.amazon.com/issues/RBSTech-4830
https://w.amazon.com/bin/edit/RBS_Tech/RBSPCSWorkflow/PCS_Admin_Update/WebHome?section=2

35

can request this recorded trail to be shown on Admin page by adding showAuditTrail

flag in the URI.

Workflow

After visiting Admin Update Page, admin updates the fields restricted to other users

and sends control to update the Entity. If the Admin has also updated some restricted

fields, the control simultaneously goes to Dynamo DB Table to save the Audit Trail,

corresponding to the Entity ID.

Low Level Design

36

Agreement Update Page for Admin

The above shown flow is followed presently to show the Agreement Update Page.

▫ An admin goes through two step authentication

▫ After proper authentication, the Admin is shown the privileged Agreement

Update Page

▫ Restricted fields can be updated here

▫ Audit trail saved in DB.

Extending Admin Update Logic to other Update pages

With the framework in place, it is very simple to have a Admin Update for other

Entities (Communications and Jobs) in PCS web app. The developer simply needs to

write a command class to fetch the information from any source and include it in the

chain for the respective update page.

Extending the logic for Audit Trail for other Entities

The Audit Trail framework is flexible enough to save and get the Audit trail for any

entity.

The developer needs to write separate logic for finding Audit Trail for other entities.

To show Admin Page, the developer needs to make changes in the controller. Also

after submission, in order to save the Audit Trail, similar changes are to be made in

respective function

The DynamoDb Table is designed such that it can be further used for maintaining

Audit trail for other PCS Entities as well. The concept of audit trail can even be

extended to non-admin users.

Attributes of Dynamo DB Table :

▫ UUID auditId

▫ String entityType

▫ String user

▫ String entityId

▫ longtimeStamp

▫ String log

Audit ID – randomly generated UUID

Entity Type – Ex: Agreement/Job/Communication

Entity Id – ID corresponding to specific Entity. Ex: Agreement ID /Job ID/

Communication ID

Log – Audit Trail

The present Dynamo Db Table structure is so generic that developer can easily use it

further to extend some other logic.

37

Project 4 : Hydra

Problem Statement

We are currently developing a PCS Solution for EU and NA Catalog Services team,

which is essentially a platform to automate the PCS process. PCS (i.e. Premium

Catalog Service) is a global service spanning UK, DE, FR, ES, IT & US Geographies.

The primary objective of PCS is to help the vendors to improve their catalogue quality

by doing reactive (vendor initiated) or proactive (Amazon internal initiated) tasks to

improve an item related information like title, product description, images, etc. Each

task request flowing into the PCS Tool is modelled as a PCS Job. An example for a

PCS Job can be:

 Improve the title for 12 ASINS

 Change the image of 89 ASINS

 Correct the browse nodes for 100 ASINS, etc.

Typically each PCS Job involves a set of activities to be done to make the required

improvement. These activities may be done by an associate through a single or

multiple tools. The process of receiving and completing a job itself has some

mandatory steps like getting information, making updates, and doing a QA check on

the updates made. A view of this workflow is shown in the wiki here.

Each PCS Job will have one or more ASINs that needs to be fixed and we have

modelled these ASINs as a PCS Item. Each PCS Item can go through such a

correction process. The final objective of the PCS solution is to automate all these

different correction processes that are required to be done under the PCS service.

However, the tasks that are done under PCS service are not unique to PCS in the

larger RBS org. Other teams in RBS can also benefit from this automation that we

build. Additionally, the PCS service and webapp may not be the only client for this

automation. We may build other clients that need to submit the request for such

automations.

For this purpose, we want to build all these automations as a separate platform such

that the automations are completely decoupled from the PCS solution and can be

reused by any clients (for example IDQ Team) wanting to leverage the automations.

The other key objective is to provide a common framework to log and track these

automations that each automation implementation can use instead of writing it on its

own. This will result in code reuse as well as consistency on interface for the clients as

well.

This wiki talks about the design of Hydra Service, powered by Hydra platform, which

decouples the automations completely from the PCS World and the platform on which

we are planning to develop all the 14 different types of automations.

Requirements & Objectives

 An automation** could be an activity which needs to be performed on the

entire set of items** in the request or it could be an activity which may be

38

performed by dividing the set of items into smaller subsets (called task) so that

the automation can be parallelized into several tasks.

 Build an automation platform which can be a house for several different types

of automations.

 An automation could be an activity which takes very less time to complete or

might take long time.

 Platform should take care of splitting the item set into smaller subsets and

parallelizing the automation whenever possible.

 Platform should be able to scale horizontally by simply adding as many hosts

as required.

 Platform should parallelize the automation across all available hosts to exploit

the full capacity of all the hosts.

 Platform should be able to handle any burst in the automation requests

gracefully without overloading the hosts

 The platform should take care of logging and tracking each automation in a

well defined standard way. It should provide necessary metrics out of the box

for every automation type.

 There will be several automation types that needs to be supported by the

platform. Hence care should be taken to make sure none of the automations

starve the others. Like for example set of I/O intensive automations starving

CPU intensive automations.

Motivations

There may be multiple clients (like IDQ Team & internal RBS clients) other than PCS

who are interested in leveraging the Automations

There could be tenants (internal to RBS Team) who are interested in hosting their

automations on this platform so that they can easily scale.

Since we will be hosting several automations, we need to standardize several aspects

like logging metrics, handling errors, retries, etc.

Key Concepts

Automation: An automation is an activity which needs to be performed on one or

more items. It may or may not be parallelizable by dividing the set of items in the

request into smaller subsets.

Request: A request is nothing but the request placed on Hydra for an automation. Each

request may or may not consist of set of items.

Task: Task is the actual activity performed on the items present in the request.

The task may be performed on all the items present in the request in one shot . In this

case the request will have only one task associated with it.

39

Or, the task may be perfomed on smaller subsets of items, by dividing larger set into

smaller subsets, in parallel. In this case the request will have multiple tasks associated

with it.

Item: An item is the smallest entity that is identified in the automation request. A task

may perform on single item, or a small set of items or all the items at once. Example

of an item could be an ASIN, image, etc.

Hydra - High Level Architecture

Today the PCS Application is just a single-tier web application with all the logic

written in the web layer itself. Going forward this would be split into Web App layer

& the service layer as there would be more than one consumer of PCS Service. The

document here however focusses on just the Hydra service & platform shown in the

Architecture diagram. This service is expected to handle all the automations going

forward starting with the PCS Image upload Automation & Browse Node Automation

.

Hydra Service Layer

Hydra service layer provides an interface for the clients to trigger the automations and

get the status of triggered automations.

40

API for triggering the automations (Common API vs Specific APIs)

There were two options that we evaluated for service APIs (API which would trigger

automation) given the number of different automation types we are planning to

support.

 Either go with a one common API which supports all the automation types

(OR)

 Have one API specific to each automation types

The pros and cons for both the approaches have been discussed in the table below. We

decided to go with specific API for triggering different kinds of automation since the

kind of input required (especially automation details) is entirely different for different

automation types.

Common API to get automation status - GetAutomationStatus

We did not consider automation specific API here because all the automation has the

same kind of status reporting and it makes very much sense to go with one single API

to pull the automation status for any kind of automation which will be implemented on

the Hydra platform

Input

Automation Request ID*

Output

The output would be AutomationStatus object with the details of all the automation

tasks if only the requestId is passed. However, if taskId is also passed, then the

41

automationStatusDetailsList would contain only one AutomationStatusDetails object

corresponding to the requested taskId.

class AutomationStatus {

 List<AutomationStatusDetails> automationStatusDetailsList;

}

class AutomationStatusDetails {

 String id;

 String status;

 String failureReason;

 String completionTime;

 List<String> workLog;

}

Description

This is a very simple API which the client would use to poll the status of each

automation by providing the Request ID and optional Task ID which is returned by

the API that triggers the automation.

Hydra Data Layer

42

Request Entity

For every automation request that landed on the service, there will be a unique entry in

the Request table.

 Request ID - unique id given to the request by the service

 Client Request Key- This key is generated and sent by the client. Hydra uses

this key and the corresponding request status to ensure that the API does not

create multiple requests in the DB when the client has applied retry logic

around the API call. Client should use this id during retries to ensure that

multiple retries does not create multiple requests on Hydra platform

 Automation Type - Type of Automation for example - Image Upload, Image

Matching, Image Download, Image Processing, Title Correction, Bullet Point

Correction, etc.

 Client ID - Client who requested the service

 Status - Overall status of Automation request

 Failure Reason - Reason why the automation failed

 Creation Time - Time corresponding to Request creation

 Worklog - Log of events through which the automation request went through

Task Entity

 Task ID - unique id to one set of items with in the request. If the automation

needs to work on all the items in the request, then there will be only one task in

the request. However, if the automation can work on smaller subsets of items,

then the request can have multiple tasks.

 Item Type - type of item. For example ASIN, Image, ASIN Set, Image Set, etc.

 Item Value - For the itemType = ASIN, the item value would be ASIN. If the

itemType = Image, itemValue would be image link and so on.

 Status - Status of the task. Could be IN_PROGRESS,

RETRY_IN_PROGRESS, FAILED, SUCCESSFUL, ERROR, etc.

 Creation Time, Start Time & End Time - Time corresponding to Task creation,

start & end time of the task

 Automation Details - Meta data required for automation on this batch to

complete

 Work Log - Log of events that occurred from creation of task to its

completion.

 Failure Reason - Reason why the automation on this batch failed

43

Components & Flow of Request

Ensuring Request level idempotency

The service ensure request level idempotency i.e. the requests placed into the system

will be idempotent even if there are multiple retries. However no idempotency is

ensured at the task level. Request level idempotency is ensured as follows:

- A request comes into system with a client key

- A check is made to verify if the request is present in DB and status is

IN_PROGRESS.

 - If yes, then simply build the response and send to client

 - If request is present but status is CREATED, then simply delete the request. and

proceed to create new request

 - If request is not present, then proceed to create a new request

 Create a new request:

 - create a request in DB with status = CREATED

 - create tasks in DB

 - post tasks into SQS

 - flip the request status to IN_PROGRESS [This means request is now live in the

system]

44

Workers pick the task and check if the associated request status is set to

IN_PROGRESS.

 - if not, simple delete the task from SQS and do not process the task any further

 - If yes, then proceed to process the task

Automation Task Generator (ATG)

ATG is a component which is invoked by the APIs to create automation tasks and

queue them for execution. This generator does multiple things:

 Receives the requestId and automation type from API.

 It then quries the Task table using the requestId to figure out the tasks to be

generated.

 For each task entry in the dynamoDB table, it queues one task into the SQS.

45

Task Pollers

Task pollers keep polling the SQS for new tasks. These poller threads are seperated

from the workers. Pollers interact with the Automation Work Allocator to know if

there are any free workers before polling the SQS. This optimizes the frequency of

polls.

Pros

Having different set of pollers pollng the SQS will reduce the cost compared to all the

workers polling the SQS continuosly for tasks because SQS charges for each access

request.

Further, pollers interact with the ThreadStatsManager to know the number of free

workers before polling the SQS. If there are no workers, then the pollers will not poll

the SQS

Promotes seperation of concers and keep the workers very simple and loosly coupled

to the platform

46

Task Orchestrator

Objectives of Orchestrator includes the following:

 Receive task from the task poller.

 Delete the corresponding task from the SQS Queue

 Pass it on to the Hydra executor and subscribe for notification from hydra

executor about completion of task

 If hydra executor rejects the task, then re-queue the task without retry count

being set.

 If the worker completes the task, then update the status for corresponding task

in the DB.

 If the worker fails, update status for task as retry_in_progress and then re-

queue the task into SQS by incrementing the retryCount attribute of the

message.

47

Request life cycle

Task life cycle

48

Steps to develop a new automation

 [Config Change] Define a new AutomationType

 [Model + Code Change] Define the coral API to be to exposed to the clients

which will trigger the automation. Implement basic validations as part of the

API

 [Code Change] Implement the Automation Worker

 [Config Change] Configure the pool into which this worker should go in & the

number of instances of the worker that can be active on every host

 [Config Change] Configure the parameter required to parallelize the

automation by splitting the item list into different batches (subsets)

