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ABSTRACT 

“Lane identification is to distinguish   lanes   out   and   about   and   give    the    precise 

area and state of every lane. It fills in as   one   of   the   critical   procedures    to 

empower current helped and autonomous driving frameworks. Nonetheless, a few 

extraordinary properties of lanes challenge the location strategies”. “ The absence of 

particular   highlights   makes   lane   location   calculations   will    in    general    be 

befuddled by different items with comparative neighborhood   appearance.   Additionally, 

the conflicting number of lanes on a street just as assorted lane   line   designs, for 

example strong, broken, single, twofold, blending, and parting   lines   further   hamper 

the performance. In this paper, we propose a profound neural   organization   based 

strategy, named Lane Net, to separate the lane detection into two phases: lane edge 

proposition and lane line localization. Stage one uses   a   lane   edge    proposition 

network   for   pixel-wise   lane   edge    arrangement,    and    the    lane    line    nearby 

ization network in   stage two   at that point   recognizes    lane   lines    dependent    on 

lane edge recommendations. If it's    not too    much trouble    note that    the    objective 

of our LaneNet is worked to identify lane   lines   just,   which   presents   more 

challenges in smothering the bogus discoveries on the comparable    lane marks    out 

and about like bolts and characters.   In   spite   of   the   relative   multitude    of 

challenges, our lane discovery is demonstrated to be powerful to both parkway and 

metropolitan street situations without depending on any suppositions on   the   lane 

number or the lane   line designs. The high running rate and low   computational 

expense invest our Lane Net   the   ability   of   being   sent   on    vehicle-based 

frameworks. Tests approve that our Lane Net reliably conveys extraordinary 

performances on true traffic situations”. 
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Chapter-1 INTRODUCTION 

1.1 Introduction 

“Recognizing lanes out and   about is a   typical   errand   performed by all   human 

drivers to guarantee their vehicles are inside lane imperatives when   driving,    to 

ensure traffic is smooth   and   limit   odds   of   crashes   with    different   vehicles   in 

close by lanes. Essentially, it is a basic errand for a self-sufficient   vehicle    to 

perform. Incidentally, perceiving lane markings on streets is conceivable utilizing notable 

PC vision methods. We will cover how to utilize different methods to distinguish and 

draw within a lane, figure lane arch, and even gauge the vehicle's position comparative 

with the focal point of the lane”. 

“Optical picture based path identification technique is a key component of    present 

day driving help frameworks. In any case, the recognition of paths stays trying for a 

few reasons. To begin with, the presence of a path is normally amazingly straightforward, 

which gives no muddled or unmistakable highlights for path location, and significantly 

expands the danger of bogus positive identifications. Besides various path designs, for 

example, strong, broken, parting, and blending paths make independent scratch path 

demonstrating troublesome. Calculations dependent available made highlights can just 

understand the path location in restricted situations. What's more, most existing 

techniques   additionally   require severe presumptions   on   paths,   for   example   paths 

are equal [1, 8, 14, 3], pathsare straight or near straight [11, 15], which are not 

generally legitimate particularly in metropolitan circumstances. As of late, a few 

strategies [20, 6]   have   been proposed to address path identification    under     couple 

of suspicions to the paths, yet there is as yet a huge space for additional 

advancement on the strength to assorted genuine situations. Strategies dependent on 

profound neural organizations [7, 10, 4], particularly convolutional neural networks 

animate a promising exploration bearing and furthermore motivate the possibility of 

our LaneNet. Besides, considering that the path location runs on vehicle-based 

frameworks, where calculation assets are seriously restricted, the computational cost of a 

path recognition strategy should likewise be considered as a vital pointer of the 

general presentation”. 
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“In   this task, to   make   progress   toward   a   summed up,   low    computation     cost, 

and constant vehicle-based arrangement, we propose   a   path   discovery    strategy 

called LaneNet. The supportive of presented LaneNet separates the path discovery task 

into two phases, for example path edge proposition and path line restriction, respectively; 

and each includes a free profound neural organization. In the pathedge proposition 

stage, the proposition net- work runs parallel grouping on each pixel of an 

information     picture for producing path edge    recommendations, which are filled in 

as the contribution to the path line restriction network in the subsequent stage”. 

The neural networks in the two phases are intended for high exactness, low 

computational expense, and high running velocity. In particular, a light-weight encoder- 

decoder design is distinguishable convolution and 1 convolution layers are utilized for path 

edge proposition, where stacked depth wise for quick component encoding, and non- 

parametric deciphering layers for quick element goal recuperation. The acquired 

supportive of postal map   is then changed to path edge arranges and took care of to 

the subsequent stage, where, a fast path line neighborhood itemization organization, 

comprising of a point include encoder and a LSTM decoder, restrict the path lines 

heartily under various situations. Such two-stage plan of LaneNet brings extra desirable 

properties. Initially, the path edge map created by the proposition network fills in as 

interpret able transitional highlights, which somewhat eases the effect of the discovery 

property of neural organization based technique, and makes the recognition 

disappointments more identifiable. The two- stage measure permits the boundaries of 

path line restriction net-work to be refined in a pitifully regulated   way   which 

alleviate the solid interest for all around clarified preparing samples. “Furthermore, a 

proficient dimensionality decrease is performed while changing the path edge 

proposition guide to the path edge organizes between the two phases, which further 

lessens the multifaceted nature and the organization size of the path line restriction 

organization, and accelerate the identification with no trade off to the precision.” Last 

however not the least, the capacity of the path edge proposition organization can be 

integrated into the semantic division organization and further lessens the general 

computational expense of the driving collaborator frameworks. 
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1.2 Problem Statement 
 

Human beings, when fully attentive, do quite well at identifying lane   line   markings 

under most driving conditions. “ Computers are not inherently good at doing the 

same. However, humans have a disadvantage of not   always being    attentive whether 

it be because of changing the radio, talking to another   passenger,   being    tired, 

under the influence, etc. while a computer is not subject to this downfall. As such, 

if we can train   a computer to get   as good as   a human at detecting lane lines, 

since it is already significantly better at paying   attention   full-time,    the computer 

can take over this job from the human driver”. 

 
 
 

“Using deep learning, We will train a model that is more robust, and faster, than 

the original computer vision-based model. The model will be based   on   a neural 

network architecture called a “convolutional” neural network,   or “CNN” for short, 

which is known to perform well on image data. This is a great architecture candidate 

since We would feed the model frames from drivingvideos in order to train it. CNNs 

work well with images as they look first for patterns at the pixel level groups of pixels 

around each   other,   progressing   to larger and larger patterns in more expanded areas of 

the image”. 
 

1.3 Objectives 
 

1. Getting knowledge with the neural networks working 
 
 
 

2. Developing a system for lane detection 
 
 
 

3. Evaluating the implemented system on real data. 
 
 
 

4. Implementing ml/dl algos. 
 
 
 

5. Finding best ml/dl algorithm for the lane detection. 
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1.4 Procedure 
 
 
 
 
 

 
 
 
 

1.5 Methodology 
 

“The entire procedure of developing the model lane detection usingdeep CNN is 

described further in detail. The complete process is divided   into   several   necessary 

stages in subsections below, starting with gathering videos for   localization    process 

using deep neural networks”. 
 

1.5.1 Datasets and inputs 
 

The datasets we used for the project are image frames from driving   video we took from 

our smartphone. The “ videos were filmed in 720p in horizontal/landscape mode, with 

720 pixels on the y-axis and   1280    pixels on the x-axis, at 30 fps. In order to cut 

down on training time,   the   training images were scaled down to 80 by   160   pixels” 

(a slightly different aspect ratio than the beginning, primarily as it made it easier for 

appropriate calculations when going deeper in the final CNN architecture). In order to 
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calculate the original labels, which were six coefficients (three for each lane line, with 

each of the three being a coefficient   for   a   polynomial-fit   laneline), we also had to 

do a few basic computer vision techniques first. We had to perform image calibration 

with OpenCV to correct for our camera’s inherent distortion, and then use perspective 

transformation to put the road lines on a flat plane. 
 

“Initially, we wanted to make the model more robust to our original   model   by drawing 

over the lane lines in the   image,   which can be   blurry or   fade   awayinto the rest of 

the image the further to the back of the image it is. We drewover 1,420 perspective 

transformed road images in red, and ran a binary color threshold for red whereby the 

output image would show white wherever therehad been sufficient red values and no 

activation (black) where the red values were too low. With this, we re-ran our original 

model,   modified to output onlythe six coefficients instead of the lane drawing, so that 

we could train the network based on those coefficients as labels”. 
 

However, we soon found that the amount of data we had was not sufficient, especially 

because most of the images were of fairly straight lanes. So, wewent back and ran the 

original CV model over all our videos from   roads   that were very curvy. We also 

added in a limited amount of   images   from   the regular project video ( we wanted to 

save the challenge video   for   a   true   test after finalizing our model) from Udacity’s 

SDC Nanodegree Advanced   Lane Lines project we previously completed, so that the 

model could learn some of the distortion from a different camera. However, this 

introduced a complicationto our dataset – Udacity’s video needed a different perspective 

transformation, which has a massive effect on the re-drawn lane. 
 

“We ended up obtaining a mix of both straight   lines and various curved lines, as well 

as various conditions (night vs. day, shadows, rain vs. sunshine) in order to help with 

the model's overall generalization. These will help to cover more of the real conditions 

that drivers see every day. We will discuss more of the image   statistics   later 

regarding total training images used, but have provided two charts below regarding the 

percentage breakouts of road conditions for those obtained from our own driving video 

collected”. 
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“We noted before that one issue with the original   videos collected   was that too much of 

the data came from straight lanes, which is not apparent from the above charts – although 

“Very Curvy” made up 43% of the original dataset, which We initially believed would be 

sufficient, we soon found out the breakout was terribly centered around straight, as can be seen in 

the below chart from one of the coefficient labels’ distributions. This is a definite problem to 

be solved”. 
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1.5.2 Data Preprocessing 
 

“Some of the general techniques we used to preprocess our data to create labelsare 

discussed above in the “Algorithms and Techniques”   section.    However, there was a 

lot more to making sure our model got sufficient quality data for training. First, after 

loading all the images from each frame of video we took, an immediate problem 

popped up. Where we had purposefully gathered night video and rainy video, both of 

these severely cut down on the quality of images. In the night video, where our 

smartphone camera already was of slightly lesser quality, we was also driving on the 

highway, meaning   a    much bumpier video, leading to blurry images. We sorted 

through each and every single gathered image to check for quality, and ended up 

removing roughlyone- third of our initial image data from further usage”. 

From here, we also wondered whether the model might overfit itself by gettinga sneak 

peek “ at its own validation data if images were too similar to each other – at 30 

frames per second”, there is not a whole lot of change from one frame to the next. We 

decided to only use one out of every ten images for training. With these, We drew over 

the images in red as mentioned above, and then ran our programs for making labels 

and checking  the labeled images. 

“Here, we found that the process for making the labels was flawed – the original 

code for our sliding windows failed completely on curves. This was because the initial 

code, when it hit the side of an  image,would keep searching straight up the 

image – causing the polynomial line to think it should go up the image too. By 

fixing our code to end when it hit the side of the image, we vastly improved its 

usefulness on curves”. After re-checking 

“Our labels and tossing out some bad ones,we moved on to check the distribution of our 

labels. It was bad – there were still hardly any big curves!” 

“Even the videos from curvy roads still had mostly straight lines. So, we re- ran our 

process over one in every five images, only from the four videos with mostly curved 

lines”.We also decided at this point to add a little bit of the 

“Udacity basic project video from our CV- based project (not from the 

Challenge video though because we wanted that as the true test of the model’s ability to 

generalize) in order to train the model for different distortion (which we had already 

obtained previously). However, this caused a new issue – these images needed a different 

perspective as well”. This was not so hard for 

creating the labels, but we knew it could cause an issue on the tail end, as checking 
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the labels would require the specific inverse perspective transformation to redraw the 

lines. 
 

As shown previously in the “Datasets and Inputs” section, “after adding in this additional 

data, our distribution was still fairly unequal. However, we found by using the 

histograms of the distributions of each label”, we could find where the exact values 

were where only a limited amount of images fell. By iteratingthrough each of the labels, 

and finding which training images were on   the fringes of the data, we could then 

come back and generate “new” data; “ this data was just rotations of these images 

outside the main distribution,  but  our CNN would likely become much more likely to 

not overfit to straight lines”. 
 

 
old distribution new distribution 

 
Coefficient Labels 

 
The changes in the distribution of image labels for the second coefficients are shown 

above. We originally normalized the labels   with   sklearn’s “StandardScaler” (causing 

the differences in values above), “ which improved training results but also did need to 

be reversed after training to return the correct label”. “At this point, the approach 

depending on the model diverges. In our initial models, We took in either a 

perspective   transformed    image   or regular road image, downscaled it from 720x1280x3 

to 45x80x3 (scaling down 16X), gray-scaled the image, added back   a   third 

dimension    (cv2.cvtColor removes the dimension when gray-scaling but Keras wants it to 

be able to run properly), and then normalized the image (new_image = (new_image / 

255) *” 

.8 - 1) to be closer   to a mean of zero   and   standard deviation of one,   whichis key 

in machine learning (the algorithms tend to converge better). 
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On the flip side, once we changed to a fully convolutional   model,   we instead was 

only down-sizing the road   images to 80x160x3 (a slightly different    aspect ratio than 

the original but roughly 8X scaled down), without any further gray- scaling or 

normalization (we instead on our Batch Normalization layer in Kerasto help there). 

Additionally, since a “fully convolutional model essentially returns another image as 

output, instead of saving down our lane   labels   as   numbers only”, we also saved 

down the generated lane drawings prior to merging themwith the road image. These 

new lane image labels were to be the true labels of our data. “ We still used our 

image rotations to generate additional data, but also rotated the lane image labels along 

with the training image (based on the distributions of the original label coefficients still). 

We also added in a horizontal flip of each image and corresponding lane image label to 

double our dataset for training.   For these new lane   image   labels,   We dropped   off 

the ‘R’ and ‘B’ color channels as the lane was being drawn in green, hoping to make 

training more efficient with less of an output to generate”. 
 

1.5.3 Image Statistics 
 

1. Here are some statistics from our data pre-processing: 
 

2. 20,000 images have been gathered in total which in turn have been taken 
from about 10 videos all together . 

3. Very different kinds of roads were taken into consideration  
 

4. 15,000 images in total were found to be actually usable 
 

5. “227 of the 1,420 unusable due to the limits of the   CV-based 
model used to label (down from 446 due   to   various 
improvements made to the original model) for a total of 1,193 
image”s 



10  

6. “Another 568 images (of 1,636 pulled in) gathered from   more 
curvy lines to assist in gaining   a   wider   distribution of labels” 

7. To be more precise in total we had about 1800 images for analyses. 
 

8. “We pulled in the easier project video from Udacity's Advanced 
Lane Lines project (to help the model   learn   an   additional 
camera's distortion) - of 1,252 frames, we used 1 in   5   for 250 
total, 217 of which were usable for training” 

 
9. “A total of 1,978 actual images used between our collections and the 

one Udacity video” 
 

10. · “After checking histograms for each coefficient of each label for 
distribution, we created an additional 4,404 images using small 

rotations of the images outside the very center of the original 
distribution of images. This was done in three rounds of slowly 
moving outward from the center of the data (so those   further   out 

from the center of the distribution were rotated   multiple   times). 
6,382 images existed at this point”. 

11. · “ Finally, we added horizontal flips of each and every road 
image and its corresponding label, which doubled the total 
images. All in all, there were a total of 12,764 images   for 
training”. 
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Chapter-2 LITERATURE SURVEY 
 
 
 
 

2.1 Summary of Papers 
 

2.1.1 
 
 

Tittle “A Study on Real-Time Detection Method of Lane and Vehicle 

for Lane Change Assistant System Using Vision System on 

Highway” 

Authors HeungsukKima 
 
 
 
 
 
 

SeoChangJunb 
 
 
 
 
 
 
 
KwangsuckBooa 

Year of 
 
Publication 

February 2016 

Web Link https://www.sciencedirect.com/science/article/pii/S2215098617317317 

https://www.sciencedirect.com/science/article/pii/S2215098617317317#!
https://www.sciencedirect.com/science/article/pii/S2215098617317317#!
https://www.sciencedirect.com/science/article/pii/S2215098617317317#!
http://www.sciencedirect.com/science/article/pii/S2215098617317317
http://www.sciencedirect.com/science/article/pii/S2215098617317317
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2.1.2 
 
 

Tittle A practical method of road detection for intelligent vehicle 

Authors G. Dezhi, L. Wei 
 
D. Jianmin 

 
Z. Banggui 

Year of 
 
Publication 

Aug. 2009 

Web Link https://ieeexplore.ieee.org/abstract/document/5262562 

 
 

2.1.3 
 

Tittle “Lane detection for driver assistance and intelligent vehicle 

applications.       2007       international symposium on 

communications and information technologies”. 1291-1296 

Authors Craig D'Cruz, 
 
 
 
Ju Jia Zou 

Year of 
 
Publication 

March 2016 

Web Link https://ieeexplore.ieee.org/document/4392216 
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CHAPTER-3 SYSTEM DEVELOPMENT 
 
 

3.1 Algorithms and techniques 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

First, we must extract the image frames from videos we obtain. “Next, we   must process 

the images for use in making labels, for which we will use the same techniques we 

previously used in our computer vision-based model”. “Next,    we will calibrate for 

our camera’s distortion by taking pictures of chessboard images with the same camera 

the video was obtained with, and undistort the image using “cv2.findChessboardCorners” 

and “cv2.calibrateCamera”. With the image now undistorted, we will find good source 

points (corners of the lane lines at the bottom and near the horizon line) and determine 

good destination points (where the image gets transformed out to) to perspective 

transform the image (mostly by making educated guesses at what would work best. 

When we have these points, we can use “cv2.getPerspectiveTransform” to get a 

transformation matrix and “cv2.warpPerspective” to warp the image to a bird’s eye- like 

view of the road”. 

 
From here, in order to enhance the model’s robustness in areas with   less    thanclear 

lane lines, we drew red lines over the lane lines in each image used. In these images, 

we will 
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“use a binary thresholding on areas of the image with high red values so thatthe 

returned image only has values where the red lane line was drawn. Then, histograms will be 

computed using where the highest amount of pixels fallvertically (since the image has 

been perspective transformed, straight lane   lines will appear essentially perfectly 

vertical) that split out from the middle of    the image so that the program will look 

for a high point on the left    and    a separate high point on the right. Sliding windows 

that search for more binary activation going up the image will then be used to attempt to 

follow the line”. 
 

“Based on the detected pixels from the sliding windows,   “numpy.polyfit” will be used 

to return polynomial functions that are most closely fit to the lane line as possible 

(using a polynomial allows for it to track curved lines as well as straight). This 

function actually returns the three coefficients of the “ax^2+bx+c” equation, where “a”, “b” 

and “c” are the coefficients. We will append the total of six coefficients (three for 

each of the two lane lines) toa list to use as labels for training”. 
 

“However, prior to training, we will want to check whether the labels    are    even accurate 

at all. Using the labels from above, we can feed an image through the original 

distortion and perspective transformation, create an image “blank” with 

“numpy.zeros_like”, make lane points from the polynomial coefficients by calculating the 

full polynomial fit equation from above for each   line,   and   then use “cv2.fillPoly” 

with those to create a lane drawing. Using “cv2.warpPerspective” with the inverse of 

our perspective transformation matrix calculated before, we can revert this lane drawing 

back to the space of   the original image, and then use “cv2.addWeighted” to merge 

the lane drawing with the original image. This way, we can make sure We feed 

accurate labelsto the model”. 

 
 
 

Lastly, our project will use Keras with TensorFlow “backend in order to create a 

convolutional neural network. Using “keras.models.Sequential”, we can create the neural 

network with convolutional layers (keras.layers.Convolution2D) and fully- connected layers 

(keras.layers.Dense). We will first try a model architecture similar to the one at left, 

which we used successfully in a previous project for Behavioral Cloning”. 
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3.2 Mathematical Model 
 
 

“Convolution neural networks (CNNs) are a family of deep networks that can exploit 

the   spatial structure of data   (e.g.   images)   to   learn   about   the  data, so that the 

algorithm can output something useful”. “ For example, if We give the the CNN an 

image of a person, this deep neural network first needs to learn some local features 

(e.g. eyes, nose, mouth, etc.)”. “ These local features are learnt in convolution layers. 

Then the CNN will look at what local features are present in a given image and 

then produce specific activation patterns (or  an activation vector) which globally 

represents the existence of those local features maps. These  activation patterns are 

produced by fully connected layers in the CNN”. “For example, if the image is a non- 

person, the activation pattern will be different from what it gives for an image of a 

person. There are  three different  components  in  a  typical  CNN. They  are, 

convolution layers, pooling layers and fully-connected layers”. “ A convolution layer 

consists  of many kernels.  These kernels (sometimes called convolution  filters) 

present in the convolution layer, learn local features present in an image (e.g. how 

the eye of a person looks like). Such a local feature that a convolution layer learns 

is called a feature map. Then these features are convolved over the image.   This 

convolution operation will    result    in    a matrix (that is sometimes called 

an activation map). The activation map produces a high value at a given location, 

if the feature represented in the convolution filter is present at that location   of   the 

input .The pooling layer make these features learnt by the CNN   translation   invariant 

(e.g. no matter the person’s eye is at [x=10, y=10] or   [x=12,y=11]   positions,   the 

output of the pooling layer will be same).Fully connected layers are responsible for 

producing different activation patterns based on the set of activated   feature   maps   and 

the locations in the image, the feature maps are activated for. This is   what   CNN 

looks like visually” [1]. 

 
 
 
 

Network diagram 
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3.2.1 Convolutional Layer 
 

“Convolution operation outputs a high value for a given position if the convolution 

feature is present in that location, else outputs a low value. More concretely, at a 

given position of the convolution kernel,   we take the element-wise multiplication of 

each kernel cell value and the corresponding image pixel value that overlaps   the 

kernel cell, and then take the sum of that. The   exact   value   is decided according to 

the following formula (m — kernel width and height, h — convolution output, x 

— input, w — convolution kernel)” [1]. 
 
 
 
 

 
 

“It is not enough to know what the convolution operation does, we also need to 

understand what the convolution output represents. Just imagine colours   for   the 

values in the convolution output (0 — black, 100 — white).   If visualized   ,this 

image will represent a binary image that lights up at the location the eyes are at” [1]. 
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3.2.2 Pooling Layer: 
 

“Pooling (or sometimes called subsampling) layer make the CNN a little bit 

translation invariant in terms of the convolution output. There are two different 

pooling mechanisms used in practice (max-pooling and average-pooling). More 

precisely, the pooling operation, at a given position, outputs the maximum value of 

the input, that falls within the kernel” [2].  
 
 

 
 

 Fully connected layers will combine features learnt by different convolution kernels so that 

the network can build a global representation about the holistic image. “The neurons in 

the fully connected layer will get activated based on whether various entities represented by 

convolution features is actually present in the inputs. As the fully connected neurons get 

activated for this, it will produced different activation patterns based on what features are 

present in the input images. This provides a compact representation of what exists inthe 

image, to the output layer, that the output layer can easily use to correctly classify the 

image” [2]. 
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Deconvolutional networks are convolutional neural organizations (CNN) that work in a 

switched cycle. Deconvolutional networks, otherwise called deconvolutional neural 

organizations, are fundamentally the same as in nature to CNNs run backward however 

are a particular use of man-made consciousness (AI). 

 
 
 

Deconvolutional networks endeavor to discover lost highlights or signals that may have 

beforehand not been considered essential to a convolutional neural organization's errand. A 

sign might be lost due to having been tangled with different signs. The deconvolution of 

signs can be utilized in both picture combination and investigation. 
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A convolutional neural organization imitates the activities of a natural cerebrum's frontal 

projection work in picture preparing. “A deconvolutional neural organization develops 

upwards from prepared information. This retrogressive capacity can be viewed as a 

figuring out of tangled neural organizations, developing layers caught as a feature of 

the whole picture from the machine vision field of view and isolating what has been 

tangled”. 

 
 
 

Deconvolutional networks are identified with other profound learning techniques utilized for 

the extraction of highlights from progressive information, “for example, that found in 

profound conviction organizations and chain of importance meager programmed encoders. 

Deconvolutional networks are essentially utilized in logicaland designing fields of study”. 
 
 
 
 
 
 
 
 
 
 

 

Deconconvolutional Layer 
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3.2.3  INTEGRATING THEM TOGETHER 
 

“Now all we have to do is put all these together, to form an end-to-end model, from raw 

images, to decisions. And once connected the CNN will look like this”. “ To summarize, 

the convolution layers will learn various local features in the data (e.g. what an eye looks 

like), then the pooling layer will make the CNN invariant to translations of these features 

(e.g. if the eye appear slightly translated in two images, the CNN will still recognize it as 

an eye).Finally we have fully connected layers”, 

that says, “we found two eyes, a nose and a mouth, so this must be a person, andactivate the 

correct output [2]. 
 
 
 
 
 

Canny Edge Detection 
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3.3 Implementation 
 

Our first CNN build used perspective transformed images as input, and can be seen in 

the “perspect_NN.py” file. “ It used batch    normalization,    four convolutional layers 

with a shrinking number of filters, followed by a pooling layer, flatten layer, and four 

fully- connected layers, with the final fully- connected layer having six outputs – the 

six coefficient labels of the lane lines”. 
 

“Each layer used RELU activation, or rectified linear units, as this activation has 

been found to be faster and more effective than other   activations.   Wetried some of 

the other activations as well just   in case,   but found RELU tobe the most effective, 

as expected”. “ Also, in order to help prevent overfitting and increase robustness, we 

added in strategic dropout to layers with the most connections, and also used Keras’s 

ImageDataGenerator to add in image augmentation like more rotations,   vertical flips, 

and horizontal shifts. We originally used mean-squared-error for loss, but found that mean-

absolute error actually produced a model that could handle more variety in curves. 

Note   that We also made the training data and labels into arrays before feeding   the 

model as it works with Keras.   Also,   We   shuffled   the   data to   make sure thatthe 

different videos were better represented and the model would not just overfit on certain 

videos. Last up was splitting into training and validation sets so we could check how the 

model was performing”. 
 

 
Perspective Image’s Histogram and Sliding Windows 

 
 
 

After training this first model and creating a function to actually see the   re- drawn 

lanes, we found this first model   to   be   moderately   effective,   given that you were 

using 

https://github.com/mvirgo/MLND-Capstone/blob/master/perspect_NN.py
https://github.com/mvirgo/MLND-Capstone/blob/master/perspect_NN.py
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the same perspective transformation from the original model. However, our end goal was 

to ignore the need to perspective transform an image for the CNN altogether, so after 

finding that the first model was moderately effective at producing a re-drawn lane, we 

shifted course. In “road_NN.py”,    this    second model is included. Other than feeding 

in a   regular road   image,   the   only change we made to this model was adding   a 

Crop layer, whereby the top third of the image was removed (we played around 

with one half or one third without much difference). “We found quickly that the CNN 

could, in fact, learn the lane coefficients without perspective transformation, and the 

resulting model was actually a little bit more effective even.There was still one big 

problem – we have to say if the model we built was  accurately defining  the lane label 

coefficients, this   meant that the lines still need to be drawn in a perspective-transformed 

space, and reverted to the road space, even if the original image was not perspective- 

transformed. This caused massive issues in generalizing to new data   –   we would need 

the transformation matrix of any new data (even slight   changes   in camera mounting 

would cause a need for a new matrix)”. 
 

3.3.1 Refinement 
 

“Our first thought was whether or not we could actually look directly at theactivation of 

the convolutional layers to see what the layer was looking at. We assumed that if 

CNN was able to determine the appropriate line coefficients, it was probably 

activating over the actual lines of lane, or atleast some similar area in the image that 

would teach it the values to predict”. 
 

“After some research, we found the keras-vis library to be great for looking at the 

activation of each layer. This library can actually   look   at the class activation maps 

(in our case the “classes” are actually each    of    the coefficient labels since this is 

not a classification problem) in each layer. We thought We had found our solution, 

until we looked at the activation mapsthemselves”. 
 
 
 

https://github.com/mvirgo/MLND-Capstone/blob/master/road_NN.py
https://github.com/mvirgo/MLND-Capstone/blob/master/road_NN.py
https://github.com/raghakot/keras-vis
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While the above activation maps of the first few layers look okay, these were actually 

some of the clearest we could find. Interestingly enough, CNN actually often learned by 

looking at only one lane line – it was calculating the position of the other line based 

on the one it looked at. But that was only the case   for curves – for straight lines, it was 

not activating on the lane lines at all!   “It    was actually activating directly on the road 

in front of the car   itself,   and deactivating over the lane lines. As a result, we 

realized the model was activating in different ways for different situations, which would 

make using the activation maps directly almost impossible. Also, notice in the above 

second image that the non-cropped part of the sky is also being activated (the dark 

portion) – due to the various rotations and flips, the model was also activating in 

areas that were telling it top from bottom. Other activation maps also activated over 

the car at the bottom of the image for the same purpose”. 
 

We also briefly tinkered with trying to improve the activation maps above by using 

transfer learning. Given that in our Behavioral Cloning project, “the   car needed to stay 

on the road, we figured it had potentially learned a similar, but perhaps more effective, 

activation. Also, we had tens of thousands of images to train on for that project, so the 

model was already more robust. After using “model.pop” on that model to remove the final 

fully-connected layer (which had only one output for that project), we added a new fully-

connected layer withsix outputs. Then, we trained the already-established model further on   

our    realroad images (the old model was trained on simulated images), and   

actuallyfound that it   did a better job on looking at both lines,   but   still failed to 

havea consistent activation we could potentially use to redraw lines more accurately”. 
 

At this point, we began to consider what we had read on image segmentation, 

especially SegNet ,which was specifically designed to separate different components of a 

road out in an output image by using a fully convolutional neural network. This 

approach was different from mine in thata fully convolutional neural network does not 

have any    fully-connected    layers (with many more connections between them), but 

only uses convolutional layers followed by deconvolutional layers to essentially make a 

whole new image. We realized we could skip the undoing of the perspective 

http://mi.eng.cam.ac.uk/projects/segnet/#research
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transformation for the lane label entirely but actually train directly to the lane drawing as 

the output. By doing so, it meant that even if the camera was mounted differently, the 

lanes were spaced differently, etc., the model would still be able to return an accurate 

drawing of the predicted lane. 
 

 
 
 
 
 

3.3.2 TENSORFLOW 
 
 
 
 

“TensorFlow is an open source software library for high performance numerical 

computation. Its flexible architecture allows easy deployment of computation across a 

variety of platforms (CPUs, GPUs, TPUs), and from   desktops to   clusters of servers 

to mobile and edge devices. Originally   developed by   researchers and engineers from 

the Google Brain team within Google’s AI organization, it   comes   with    strong 

support for machine learning and deep learning and the   flexible   numerical 

computation core is used across many other scientific domains” [3]. 

 
 

3.3.3 KERAS 
 

“Keras is a high-level neural network API, which is written in Python language   and 

capable of running on top of TensorFlow, Theano or CNTK. It was   developed    with 

focus on the enabling fast experimentation. Being able to go   from   idea   to   result 

with the least possible delay is key to   doing   good research.   Keras was   developed 

and is maintained by Francois Chollet and is part of the Tensorflow   core,    which 

makes it Tensorflow preferred high-level API. Use Keras if you   need   a   deep 

learning library that” [3]: 

➢ Allows for fast and easy prototyping(through user friendliness, modularity, extensibility). 
 

➢ Recurrent and Convolution networks both are supported . 
 

➢ Can run on both CPU and GPU 

https://twitter.com/fchollet?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Eauthor
https://twitter.com/fchollet?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Eauthor
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3.3.4 PYTHON 
 

Everybody loves Python,python is an object oriented,high level programing language which 
has a lot of features. Python's simple, easy to learn syntax emphasizes readability and 
therefore reduces the cost of program maintenance. Python supports modules and packages, 
which encourages program modularity and code reuse. The Python interpreter and the 
extensive standard library are available in source or binary form without charge for all major 
platforms, and can be freely distributed [3]. 

 
 
 
 

3.4 Proposed approach 
 

“The first step in our project will be data collection. As discussed above, We plan to use our 
smartphone in a variety of different road settings to gain a good mix of video. Once We 
have collected enough video, We can then process the video to split out each individual 
video frame. These frames are the images We will use to train (and validate) our CNN 
eventually”. We plan to scale down the images (starting at 25% of the original size) to 
reduce processing time, although if We am successful at training a good model with our 
approach We may attempt a full-scalerun. 

 
“The second step will be to create labels for the images. There are a thoughts We have 

here. We plan to calibrate our camera, undistort the image and perspective transform first. 

We could then draw over the lines in a very distinctive color, and use some basic 

computer vision techniques (note that this is on training images only 

- the point is that after training, the CNN will no longer need any computer vision- based 

components) in order to make a list of pixels making up the lines. This will hopefully be 

slightly more accurate than relying on various different thresholds in 

the image as We can make it specific to that single color channel/hue. Once thesepixels are 

detected, We can use numpy.polyfit() to get back the line's coefficients”. 
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Flowchart Of Lane Detection 
 
 

“This is a very small portion of data to check against, but   will at   least   allow   me to 

find out very early on if our labelling technique will work as intended, or   if We 

need to take a different approach”. 

“Once We have the data labelled, We will build our convolutional neural network. 

We plan to begin with a CNN structure similar to that We used in the SDC 

nanodegree Behavioral Cloning project here, which uses 5 convolutional layers and   4 

fully connected layers (along with pooling and   dropout   within), built   with Keras on 

top of Tensorflow. There are a few changes We already know We need to   make, 

although there will definitely be a decent amount of iteration on the   final   CNN We 

use (which luckily Keras makes substantially easier)”. “ First,   as   already discussed, 

We will need six outputs at the end for our three coefficients for two separate lane 

lanes, as opposed to just the single output We had for the steering angle in   the 

Behavioral Cloning project. Second, the images from that project were only   360 x 

120, so We may need more convolutional layers, larger strides/subsamples, or larger 

pooling in order to cut down on the number of parameters in the model”. “Even with 

5 convolutional layers, because We used small   kernel sizes   (the grouping   of pixels 

the CNN considers as   a group   for a node at each layer), small strides/subsamples, 

and small pooling, our old CNN model still had nearly 600,000 parameters   at   the 

first fully connected layer, which would be   vastly increased   if the   image size   is a 

lot larger.At this point, after having finished the   labelling   on a subset   of the data, 

We will test to see whether the CNN actually appears to   be   learning   anything. 

Although neural   networks definitely tend to   work better the larger   the data size   is, 

if our CNN cannot show at least a little bit of convergence on   a   subset   of   the 

data, We will need to modify our procedures up to this point.   Note that   this   means 

We will have a training set and a validation set created out of this subset   of   data 

using sklearn's train_test_split. If it is working, great, We will move on   to    using the 

full dataset”. 
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If the model does appear to be minimizing the error (mean-squared   error   is   our 

plan), then We will move on to the next step, which is testing the   model   on 

completely new data it has never seen before.   We will first use the   regular project 

video from the Advanced Lane Lines project and see how the CNN's predictions 

compare to the computer vision-based model We used before.   We   will   compare 

both its performance from a visual standpoint (how close it   tracks   to   the lines 

versus the CV-based model) and from a speed standpoint    (how long   does   it take 

to process a video vs. the CV-based model). If all goes well, We will also   try   the 

CNN's predictions on the challenge video and hard challenge video from the 

Advanced Lane Lines project, and hope that the end result is a model   that   can 

predict faster, and better, than the computer vision-based model, and even   become 

nearly imperceptibly different than a human being would determine it to be. 
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CHAPTER-4 PERFORMANCE ANALYSIS 
 

4.1 Evaluation and Validation 
 

“After 20 epochs, our model finished with MSE for training of 0.0046 and validation 

of 0.0048”, which was significantly lower than any previous model’s we had tried 

(although a bit of apples and oranges against the models using six polynomial 

coefficients as labels).   “We first tried the   trained    model against one of our own 

videos, one of the hilly and curved   roads   for which the   modelhad potentially seen up 

to 20% of the images for, although likely much less – from the image statistics earlier, 

we had to throw out a large portion   of    the images from these videos, so even 

though we ran it   on one in five   images, the model probably only saw 5-10% of 

them.   Fascinatingly,    the    model performed great across    the entire image,    only 

losing the right   side of the lane at one point when the line became completely obscured 

by leaves.   The    model actually performed near perfectly even on a lot of the areas we 

knew we had previously had to throw out, because our CV- based model could not 

appropriately make labels for them. Note that because there is not a “ground- truth” for 

our data, we cannot directly compare to that model from a loss/accuracy perspective, 

but as the end result is very visual,   we   will   see which model produces the better 

result. Part of this comes down to robustness” 

– our pure CV model failed to produce lane lines past the first few secondsof a 

Challenge video in our previous project. If this model can mostly succeed on the 

Challenge video (i.e. no more than a few seconds without the lane 
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shown) without having been specifically trained on images from that video, it 

will have exceeded this benchmark. 

 

Second benchmark will be the speed of the model – the CV-based model canonly 

generate roughly 4.5 frames per second, which compared to 30 fps video incoming is much 

slower than real-time. The   model will   exceed this benchmark if the writing of the 

video exceeds 4.5 fps. 

 
 
 
 
 

4.2 Justification 
 

“However, the fact remained that the model had in fact seen some of those images. 

What about trying it on the challenge video created   by Udacity   forthe Advanced 

Lane Lines project? It had never been trained on a single frame of that video. 

Outside of a small hiccup going   under the overpass   in   the video, the model 

performed great, with a little bit of noise on the right side where the separated lane 

lines were. It had passed our first benchmark –outperforming our CV- based model, which 

had failed on this video”. 
 

 
Good Prediction vs. Poor Prediction 

 
Our second benchmark was with regards to speed, and especially   “when including 

GPU acceleration, the deep learning model crushed the earlier model” 

– it generated lane line videos at between 25-29   fps,   far greater than the 4.5fps for 

the CV model. Even without GPU acceleration, it still averaged   5.5fps, still beating 

out the CV model. Clearly, GPU acceleration is key “ in unlocking the potential of this 

model, running almost real-time with 30   fps video. With regards to both robustness 

and speed, the deep learning-based model is a definite improvement on the usual CV- 

based techniques”. 

https://github.com/udacity/CarND-Advanced-Lane-Lines/blob/master/challenge_video.mp4
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An example of bad image. The model performed quiet good in it 
 
 
 

 
Lanes Detected in above image 
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CHAPTER-5 RESULTS 
 
 
 
 
 
 

5.1 The Final Model 
Although we had made a CNN previously   that ended in   fully-connected layers, we had 

never before made a fully convolutional neural network, and there were some challenges in 

getting the underlying math to work for our layers. Unlike in the forward pass in normal 

Convolution layers, Keras’s Deconvolution layers flip around the backpropagation of the 

neural network to face the opposite way, and therefore need to be more carefully curated to 

arrive at the correct size (includingthe need to specify the output   size). We chose to 

make our new model a mirror of itself, “with Convolutional layers and Pooling slowly 

decreasing   in size   layers, with the midpoint switching to Upsampling (reverse-pooling) 

and” “Deconvolution layers of the same dimensions. The final deconvolution layer ends with 

one filter, which is because we only wanted a returned image in the ‘G’ color channel, 

as we were drawing our predicted lanes in green (it later is stacked up with zeroed- out 

‘R’ and ‘B’ channels to merge with the original road image).   Choosing   to input 

80x160x3 images (smaller images were substantially less   accurate   in   their output, likely 

due to the model being unable to identify the lane off    in    the distance very well) 

without gray- scaling (which tended to hide yellow lines on light pavement), We also 

normalized the incoming labels by just dividing   by   255 (such that the labels were from 0 to 

1 for ‘G’ pixel values)”. 
 

“The final model is within the “fully_conv_NN.py” file. We stuck with RELU activation 

and some of the other convolution parameters (strides of (1,1) and ‘valid’ padding had 

performed the best) from our prior models, but also   addedmore extensive dropout. We 

had wanted to use dropout   on   every   Convolutional and Deconvolutional layer, but found 

it used up more memory than we had”. “ We also tried to use Batch Normalization 

prior to each layer but found it also usedup too much memory, and instead We settled for 

just using it at the beginning. A more interesting discovery, given that using MSE for 

loss had previously failed, was that it performed much   better than any other   loss 

function with this new model. Also intriguing was that adding any type of image 

augmentation with ImageDataGenerator, whether it be rotations, flips,    channel    shifts, 

shifts along either the horizontal or vertical axes, etc., did not result in a more robust 

model, and often had worse results on any test images we looked at. Typically,   we 

expect the image augmentation to improve the final model, but in    this    case, skipping 

any augmentation (although we kept the generator in any way without it, as it is good 

https://github.com/mvirgo/MLND-Capstone/blob/master/fully_conv_NN.py
https://github.com/mvirgo/MLND-Capstone/blob/master/fully_conv_NN.py
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practice) led to a better model. Channel shifts helped   with   shadows, but   worsened 

overall performance. This is fed into the “draw_detected_lanes.py” file, in” 

 

which the model predicts the lane, is averaged over five frames (to account forany odd 

predictions), and then merges with the “ original road image from a video frame. Our 

CNN will be being trained similarly to a regression-type problem, in which it will be given 

the polynomial coefficients on the training images, and attempt to learn how to extract those 

values from the given road images. The loss it will minimize is the difference between 

those actual coefficients and   what   it predicts (likely using mean-    squared error).    It 

will then use only limited computer vision techniques in order to draw the lane back 

onto the image. As noted above regarding benchmarking against our computer vision- 

based result, We will also evaluate it directly against that model in both accuracy and 

speed, as well as on even    more    challenging videos than our CV- based model was 

capable of doing”. 
 
 
 
 

Detecting Lanes in a video 

https://github.com/mvirgo/MLND-Capstone/blob/master/draw_detected_lanes.py
https://github.com/mvirgo/MLND-Capstone/blob/master/draw_detected_lanes.py
https://github.com/mvirgo/MLND-Capstone/blob/master/draw_detected_lanes.py
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Training phase 



34  

CHAPTER-6 CONCLUSION 
 

6.1 More Visualizations 
 

Below we have included some additional visualizations, comparing the various stages of 

our own model as well as   in comparison to our original   model using typical 

computer vision techniques. 
 

 
 
 

The CV-based model believed both lines to be on the right side of   the    lane, hence only 

a faint line and not a full lane drawn. Some of this comes downto weaknesses in 

the algorithm there, which lacked checks to see   whether   the lanes were separate from 

each other. 
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6.1.2 Reflection 
 

The project began with collecting driving video, which we then extracted the individual 

frames from. “After curating the data to get rid of various blurry orother potentially 

confusing images, we calculated the calibration needed to undistort our images, and 

perspective transformed them to be able to calculatethe lines. After additional image 

processing to improve the dataset    at hand,    we then created six coefficient labels, 

three each for both lane lines. Next, we created a program to make those labels into re- 

drawn lanes, and then had to improve our original label checking algorithm to work 

better for curves. Following this, any still poorly labeled images were removed from the 

dataset”. 
 

After checking histograms of the coefficient labels, we realized we needed additional 

curved line images, and gathered additional data for curved lines, “ as well as from a 

different camera, in order to help even out the distribution. After finding they still 

needed a better distribution, we found ranges of the labels to iterate through and 

create additional training images through rotationof the originals”. 
 

The next step was to actually build and train a model. “ We built a somewhat successful 

model using perspective-transformed images, built a slightly improved model by feeding in 

regular road images, but   still was not   at a sufficient   levelof quality. After trying to 

use activation maps of the convolutional layers,we moved on to a fully convolutional 

model. After changing the training labels tobe the ‘G’ color channel containing the 

detected lane drawing, a robust model was created that was faster and more accurate 

than our previous model basedon typical computer vision techniques”. 
 

Two very interesting, but very challenging issues   arose during this   project.    We had 

never before used our own dataset in training a model, and curating agood dataset 

was a massive time commitment, and especially due to the limits of the early models 

We used, often difficult to tell how sufficient of a dataset we had. The second challenge 

was in settling on a model – we originally worried we   would   have   to   also 

somehow train the neural network to detect perspective transformation points or 

similar. Instead, we learned forthe first time how to use a fully convolutional neural 

network, and it solvedthe problem. 
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6.1.3 Improvements and future work 
 

One potential improvement to the model could be the use of a recurrent neural network 

(RNN). The current version of our model uses an averaging across five frames to 

smooth out any issues on a single frame detection, outside   of the actual neural 

network itself. On the other hand, a RNN would be able to directly look at previous 

frames in order to learn that what was detected in a previous frame matters to the current 

frame. By doing so, it would potentially lose any of the more erratic predictions 

entirely. We have not yet used a RNN architecture, but we plan to do so eventually for 

future projects. 
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In this  task,  to  make   progress   toward   a   summed  up,  low   computation   cost, 

and constant vehicle-based arrangement,  we  propose  a  path  discovery  soategy 

called LaneNet. The supportive of presented LaneNet separates the path  discovery  

task into two phases, for example path edge projx›sition and path line restriction, 

respectively; and each includes a  free  profound  neural organization.  In  the  path 

edge proposition stage, the proposition net- work runs  parallel  grouping  on  each 

pixel of  an  information picture for  producing  path edge  recommendations, which  

are filled in as the contribution to the path line resoiction network in the subsequent 

stage. 

 
The neural networks in the two phases are intended for high exactness, low 

computational expense, and high running velocity. In particular, a light-weight encoder- 

decoder design is distinguishable convolution and 1 convolution layers are utilized for path 

edge proposition, where stacked depth wise for quick component encoding, and non- 

parameoic deciphering layers for quick element goal recuperation. The acquired 

supportive of jxistal map is then changed to path edge  arranges  and  took  care of  to 

the subsequent stage, where, a fast path line neighborhood itemization organization, 

comprising of a point include encoder and a LSTM decoder, restrict the path lines 

heartily under various situations. Such two-stage plan of LaneNet brings extra desirable 

properties. Initially, the path edge map created by the proposition network fills in as 

interpret able Oansitional highlights, which somewhat eases the effect of the discovery 

property of neural organization based technique, and makes the recognition 

disappointments more identifiable. The two- stage measure permits the boundaries of 

path line restriction net-work to be refined in  a  pitifully  regulated  way  which 

alleviate the solid interest for all around clarified preparing samples. Furthermore, a 

proficient dimensionality decrease is performed while changing the path edge 

proposition guide to the path edge ‹»ganizes between the two phases, which further 

lessens the multifaceted nature and the organization size of the path line restriction 

organization, and accelerate the identification with no oade off to the precision. Last 

however not the least, the capacity of the path edge proposition organization can be 

integrated into the semantic division organization and further lessens the general 

computational expense of the driving collaborator framew‹nks. 
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T Another 568 images (of 1,636 pulled in)  gathered  from  more curvy 

lines  to  assist  in  gaining  a  wider   distribution   of   labels( 1 in 

every S from the more curved-lane videos; from 8,187 frames) 
 

K In total, 1,761 original images 
 

T We pulled in the easier project  video  from  Udacity's  Advanced Lane 

Lines project (to help  the  model  learn  an  additional  camera's 

distortion) - of 1 J52 frames, we  used  1  in  5  for  250 total, 217 of  

which were usable for training 
 

G A total of 1fi78 actual images used between our collections and theone 
Udacity video 

 
G After checking histograms for each coefficient of each label  for  

distribution, we created an additional 4,404 images using  small rotations 

of the images outside the very center of the original distribution  of 

images. This was done in three rounds of  slowly  moving outward from 

the center of the data (so those further out from the center of the 

disoibution were rotated multiple times). 6,382 images existed at this 

point. 
 

T   Finally,  we  added  horizontal  flips  of  each  and  every   road image 
and its corresponding label,  which  doubled  the  total  images. All in 

all, there were a total of 12764 images for training. 
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32.4 Deconvolutional La 
 

Lice onvolu tional netw’orLs are conv’olutional neural organizations (C NN) that w ork 

ina sw’iic hed cycle. Deconv’olu tional netw’orks, oiherw’ise c alled decons’olutional neural 

organizations, are fundamentally the same as in nature to C. NNs run backw’ard 

 
 
 
 

Dec onv’olutional netw’orks endeas’or to disc over lost highlights or signals that mayhav’e 

beforehand not been considered essential to a convolutional neural organization’s errand. 

A sign might be lost due to having been tangled w'ith different signs. The deconi’olution 

at signs can be ut ilized in both picture combination and inv’estigation. 



 
 
 
 
 

A c onx’olutional neural organization imitates the actis’ities of a natural cerebrum’s 

frontal projection w’ork in picture preparing. A deconv’olut ional neural organization 

develops upw’ard s mom prepared information. This retrogressiv’e c opacity can be 

s’iew’ed as a figuring on i of tangled  neural  organizations ,  developing  layers 

caught as a feature of’ the w’hole picture from the machine s’ision  iield  of  s’iew’ 

and isolating w’hat has been tangled . 

 
 
 

Dec onv’olutional netw’orks are identii ied w’ith other profound learning tec hniques 

utilized for the extraction of highlights from progressis’e int‘ormation, for example, 

that iound in profound c onviction organizations and c hain or importance meaner 

programmed enc r›ders . Deconvolu tional netw’orks are essentially utilized in logic al 

and desinning i ield s or stu dy. 
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While the above activation maps of the first few layers look okay, these  were actually 

some of the clearest  we could find.  Interestingly  enough,  CNN  actually often  learned 

by looking at on/y our  lane  line—  it  was  calculating  the  position of the other line 

based on the one it looked at.  But  that  was  only  the  case  for curves — for soaight  

lines, it was not activating on the lane lines  at  all!  lt  was actually   activating   directly 

on the road in  front  of  the  car  itself,  and  deactivating over  the  lane  lines.  As  a 

result, we realized the m‹xtel was activating in different ways f‹» different situations, 

which would make using the activation  maps  directly  almost  imjxissible.  Also,  notice 

in the above second image that the non-cropped part of the sky is  also  being  activated 

(the dark }xirtion) — due to the various rotations and flips,  the  model  was  also 

activating in areas that were telling it top from bottom. Other activation maps also 

activated over the car at the bottom of the image for the same purpose. 

 
We also briefly tinkered with trying to improve the activation maps  above  by using 

oansfer  learning. Given that in  our  Behavioral  Cloning  project,   the   car  needed  to 

stay on the road, we figured it had potentially learned a similar, but perhaps  more 

effective, activation. Also, we had tens of  thousands  of  images  to train on for that 

project, so the model was already  more robust.  After  using ‘Model.pop”  on that model 

to remove the final fully-connected  layer  (which  had  only  one  output  for  that  

project),  we  added  a  new  fully-connected   layer   withsix  outputs. Then, we  trained 

the already-established model further on our  realroad  images  (the  old  model  was 

oained  on  simulated  images),  and  actuallyfound  that  it   did   a   better   job   on 

looking at hnth lines,  but  still  failed  to  havea consistent  activation  we could  

potentially use to redraw lines more accurately. 

 
At this point, we began to consider what we had read  on  image segmentation, 

especially SegNet ,which was specifically  designed  to separate different components 

of a road out in  an output  image  by  using  a  fully convolutional  neural  network. 

This approach was different from mine  in  thata/u//J  convolutional  neural network 

does not have any fully-connected layers (with many m‹»e  connections  between  

them), but only uses convolutional layers followed by deconvolutional layers to 

essentially make a  whole  new image.  We  realized  we could  skip  the  undoing  of 

the perspective 

 
23 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

13 

 
 
 

 
3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3 



 
 
 
 
 
 
 
 
 

Python   is  an  interpreted,  high- level, General-purDose  proeramminu   lanuuaue. 

Created  by  Guido v’an   Rosen m and first  released  in 1 991, Python’s design 

philosophy emphasizes code readability w’ith its notable use  of  significant 

 w’hitespace. Its    language constructs and obleer-oriented    approach aim to help 

programmers w'riie clear, logical code for small and large-scale projects. 

Python is dynamically typed and uarbaue-collected. lt en pports multiple prnuramminu 

paradigms, including procedural, object-oriented, and  functional  pro8rammin8 .  Python is 

often described as a ” batteries inc lud ed ” language  due  to  its  comprehensive  standard 

library . 

 
 
 
 

The first step in our project will be data collection. As discussed  abov’e, We plan 

to use our smartphone in a s’ariety of different road settings to gain a gorxl mix of 

video. Once We have collected ennugh video,  We  can  then  process  the  video  to 

split out each indiv’idual s’ideo frame. These frames are the images We will  use  to 

train (and validate) our CN N eventually.  We  plan  to  scale  down  the  images 

tstarting at 25*/n of the original size) to reduce processing time, although if We am 

successful at training a good model with our approach  We may attempt  a  full-scale 

run. The second step will be to create labels for the images. There are a thoughts We 

have here. We plan to calibrate our camera, undistort the image and perspective 

transform first. We could then draw over the lines in a s’ery distinctiv’e color, and use 

some basic computer vision techniques (note that this is on training images only 

- the }x›int is that after training, the CNN will no longer need any computer vision- 

based components) in order to make a list of pixels making up the lines. This will 

hopefully be slightly more accurate than relying on various different thresholds in 

the image as We can make it specific to that single color channel/hue. Once these pixels 

are detected, We can use numpy.polyfit() to get back the line's coefficients. 
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An example of had image . The model performed quiet good in it 
 
 
 
 
 
 
 
 
 
 
 

Lanes Detected in above image 
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HAPTER- 

 
 

Below we have included some additional visualizations, comparing  the  various stages 

of our own model as well as in comparison to our original  model  using typical 

computer vision techniques. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The CV-based model believed both lines to be on the  right  side  of  the  lane, hence 

only  a  faint  line  and   not lane drawn. Some of this comes downto 

weaknesses in the algorithm there, which lacked  checks  to  see  whether  the lanes 

were separate frorn each other. 
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The project began with collecting driving video, which we then extracted the individual 

frames from. After curating the data to get rid of various blurry orother potentially 

confusing images, we calculated the calibration needed toundistort our images, and 

perspective oansformed them to be able to calculatethe lines. After additional image 

processing to  improve  the  dataset  at  hand,  we then created six  coefficient  labels,  

three each for both lane lines. Next, we created a program to make those labels into re-

drawn lanes, and  then  had  to improve our  original  label  checking  algririthm  to work 

better for curves. Following  this, any still poorly labeled  images were removed from the 

dataset. 
 

After checking histograms of the cr›efficient labels, we realized we needed additional 

curved line images, and gathered  additional  data  for  curved  lines,  as well  as from 

a different camera, in order  to  help  even out  the  distribution.After finding  they 

still needed a better disoibution, we found  ranges  of  the labels to iterate  through 

and create additional training images through rotationof the originals. 

 
The next step was to actually build and tfain a model. We built a somewhatsuccessful 

model using perspective-Oansformed images, built a slightly improved model by feeding 

in  regular  road  images,  but  still  was  not  at  a   sufficient   levelof  quality. After 

trying to use activation maps of the convolutional layers,we moved on to a fully 

convolutional model. After changing the training labels tobe the ‘G' color channel 

containing  the  detected  lane  drawing,  a  robust  m‹xtel  was created  that  was faster 

and more accurate than our previous  model  basedon  typical computer  vision 

techniques. 

 
Two very interesting, but very challenging issues arose during this project. We had 

never before used our own dataset in training  a model,  and  curating  a good 

dataset was a massive time commitment, and especially due to the limits of the 

early models We used, often difficult to tell how sufficient of a dataset we had. The 

second challenge was in settling on a model — we originally worried we would  

have to also somehow train the neural  network to  detect  perspective 

oansformation points or  similar.  Instead,  we  learned  forthe first time how  to use 

a fully convolutional neural network, and it solvedthe problem. 
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tone potential iinprov’einent to the model c oul d be the u se ot a recurrent neuralnetw’ork 

(IINN).  "l“he  current   v’ers ion  of   our  model   uses  an   av’erapinp   across  fix e tr‹unes 

to s inooih out an}’ is sues on a s indie tr.une  detection ,  ours ide  otthe act ual neural 

netw’ork its elt . tin the other hand, a 11 NN w’ould be able to d irectl j’ I ook at prev’ious 

fr‹unes in order to learn that w’hat n  w  detected  in  a  prex’ious  fr‹une  matters  to the 

current  triune.  B}’  doing  so,  it  w’ould   potentially’  lose  an}’  ot’  the  iru re   erratic   

pred ict ions  entirel y.  We  hav’e  not   ›’et  u s ed   a UN N architecture, but w’e plan to do  

so ev’entuall j’ tor tuture projec ts . 
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