
i

ROAD LANE DETECTION SYSTEM

Project report submitted in partial fulfilment of the requirement for the degree of
Bachelor of Technology in

Computer Science and Engineering/Information Technology

By

Kunal Singh (171477)
Pratyush Thakur(171244)

Under thesupervision Of

Dr. Jagpreet Sidhu

To

Department of Computer Science & Engineering and Information Technology, Jaypee University of
Information Technology Waknaghat, Solan- 173234, Himachal Pradesh

ii

CERTIFICATE

Candidate’s Declaration

I hereby declare that the work presented in this report entitled “Road Lane Detection System” in
partial fulfillment of the requirements for the award of the degree of Bachelor of Technology in
Computer Science and Engineering/Information Technology submitted in the department of
Computer Science Engineering and Information Technology, Jaypee University of Information
Technology, Waknaghat is an authentic record of my own work carried out over a period from
January 2021 to May 2021 under the supervision of Dr. Jagpreet Sidhu(Assistant Professor
(Senior Grade) , Assistant Professor in Department of Computer Science Engineering and
Information Technology.

The matter embodied in the report has not been submitted for the award of any other degree or
diploma.

Pratyush

 (171244)

Signature:

 Kunal Singh

 (171477)

 Signature:

This is to certify that the above affirmation made by the candidate is true to the best of my knowledge.

Dr. Jagpreet Sidhu

Assistant Professor in Department of Computer Science Engineering and Information
Technology

Signature:

Dated: 17th May 2021

iii

ACKNOWLEDGEMENT

We would like to take the opportunity to thank and express our deep sense of gratitude to our mentor and

project guide Dr. Jagpreet Sidhu for his immense support and valuable guidance without which it would not

have been possible to reach at this stage of our major project.

We are also obliged to all our faculty members for their valuable support in their respective fields which

helped us in reaching at this stage of my project.

Dated: 17th May,2021

iv

 TABLE OF CONTENT

Chapter 1 - Introduction

1.1 Introduction

1

1.2 Problem statement

3

1.3 Objective

3

1.4 Procedure

4

1.5 Methodology

5

1.5.1 Data sets and inputs

5

1.5.2 Data preprocessing

7

1.5.3 Image statistics

9

Chapter 2 - Literature Survey

2.1 Summary of papers 11

2.1.1 A study on real time detection method 12

2.1.2 A practical method of road detection for intelligent vehicle 12

2.1.3 Lane detection for driver assistance 12

Chapter 3 - System Development

3.1 Algorithms and techniques 13

3.2 Mathematicalmodel 15

3.2.1 ConvolutionalLayer 16

3.2.2 Pooling layer 17
3.3.3 Fully connected layer 17
3.2.4 Deconvolutional layer 18

v

TABLE OF CONTENT
3.2.5 Weaving them together 18

3.3 Implementation 21

3.3.1 Refinement 22

3.4 Experimental Development 24

3.4.1 Tensorflow 24

3.4.2 Keras 24

3.4.3 Python 25

3.5 ProposedApproach 25

Chapter 4 - Performance Analysis

4.1 Evaluation and validation 27

4.2 Justification 27

Chapter 5 - Results

5.1The final model 30

Chapter 6 - Conclusion

6.1 More visualizations 33

6.2 Reflection 34

6.3 Improvement 35

References

v

vi

TABLE OF FIGURES AND TABLES

Figure/Table name Page No.

Figure 1 .. 05

Figure 2 .. 06

Figure 3 .. 08

Table 1 .. 12

Table 2 .. 12

Table 3 .. 12

Figure 4 .. 15

Figure 5 .. 16

Figure 6 .. 18

Figure 7 .. 19

Figure 8 .. 21

Figure 9 ... 22

Figure 10 .. 26

Figure 11 .. 29

Figure 12 .. 31

Figure 13 .. 32

vii

ABSTRACT

“Lane identification is to distinguish lanes out and about and give the precise

area and state of every lane. It fills in as one of the critical procedures to

empower current helped and autonomous driving frameworks. Nonetheless, a few

extraordinary properties of lanes challenge the location strategies”. “ The absence of

particular highlights makes lane location calculations will in general be

befuddled by different items with comparative neighborhood appearance. Additionally,

the conflicting number of lanes on a street just as assorted lane line designs, for

example strong, broken, single, twofold, blending, and parting lines further hamper

the performance. In this paper, we propose a profound neural organization based

strategy, named Lane Net, to separate the lane detection into two phases: lane edge

proposition and lane line localization. Stage one uses a lane edge proposition

network for pixel-wise lane edge arrangement, and the lane line nearby

ization network in stage two at that point recognizes lane lines dependent on

lane edge recommendations. If it's not too much trouble note that the objective

of our LaneNet is worked to identify lane lines just, which presents more

challenges in smothering the bogus discoveries on the comparable lane marks out

and about like bolts and characters. In spite of the relative multitude of

challenges, our lane discovery is demonstrated to be powerful to both parkway and

metropolitan street situations without depending on any suppositions on the lane

number or the lane line designs. The high running rate and low computational

expense invest our Lane Net the ability of being sent on vehicle-based

frameworks. Tests approve that our Lane Net reliably conveys extraordinary

performances on true traffic situations”.

1

Chapter-1 INTRODUCTION

1.1 Introduction

“Recognizing lanes out and about is a typical errand performed by all human

drivers to guarantee their vehicles are inside lane imperatives when driving, to

ensure traffic is smooth and limit odds of crashes with different vehicles in

close by lanes. Essentially, it is a basic errand for a self-sufficient vehicle to

perform. Incidentally, perceiving lane markings on streets is conceivable utilizing notable

PC vision methods. We will cover how to utilize different methods to distinguish and

draw within a lane, figure lane arch, and even gauge the vehicle's position comparative

with the focal point of the lane”.

“Optical picture based path identification technique is a key component of present

day driving help frameworks. In any case, the recognition of paths stays trying for a

few reasons. To begin with, the presence of a path is normally amazingly straightforward,

which gives no muddled or unmistakable highlights for path location, and significantly

expands the danger of bogus positive identifications. Besides various path designs, for

example, strong, broken, parting, and blending paths make independent scratch path

demonstrating troublesome. Calculations dependent available made highlights can just

understand the path location in restricted situations. What's more, most existing

techniques additionally require severe presumptions on paths, for example paths

are equal [1, 8, 14, 3], pathsare straight or near straight [11, 15], which are not

generally legitimate particularly in metropolitan circumstances. As of late, a few

strategies [20, 6] have been proposed to address path identification under couple

of suspicions to the paths, yet there is as yet a huge space for additional

advancement on the strength to assorted genuine situations. Strategies dependent on

profound neural organizations [7, 10, 4], particularly convolutional neural networks

animate a promising exploration bearing and furthermore motivate the possibility of

our LaneNet. Besides, considering that the path location runs on vehicle-based

frameworks, where calculation assets are seriously restricted, the computational cost of a

path recognition strategy should likewise be considered as a vital pointer of the

general presentation”.

2

“In this task, to make progress toward a summed up, low computation cost,

and constant vehicle-based arrangement, we propose a path discovery strategy

called LaneNet. The supportive of presented LaneNet separates the path discovery task

into two phases, for example path edge proposition and path line restriction, respectively;

and each includes a free profound neural organization. In the pathedge proposition

stage, the proposition net- work runs parallel grouping on each pixel of an

information picture for producing path edge recommendations, which are filled in

as the contribution to the path line restriction network in the subsequent stage”.

The neural networks in the two phases are intended for high exactness, low

computational expense, and high running velocity. In particular, a light-weight encoder-

decoder design is distinguishable convolution and 1 convolution layers are utilized for path

edge proposition, where stacked depth wise for quick component encoding, and non-

parametric deciphering layers for quick element goal recuperation. The acquired

supportive of postal map is then changed to path edge arranges and took care of to

the subsequent stage, where, a fast path line neighborhood itemization organization,

comprising of a point include encoder and a LSTM decoder, restrict the path lines

heartily under various situations. Such two-stage plan of LaneNet brings extra desirable

properties. Initially, the path edge map created by the proposition network fills in as

interpret able transitional highlights, which somewhat eases the effect of the discovery

property of neural organization based technique, and makes the recognition

disappointments more identifiable. The two- stage measure permits the boundaries of

path line restriction net-work to be refined in a pitifully regulated way which

alleviate the solid interest for all around clarified preparing samples. “Furthermore, a

proficient dimensionality decrease is performed while changing the path edge

proposition guide to the path edge organizes between the two phases, which further

lessens the multifaceted nature and the organization size of the path line restriction

organization, and accelerate the identification with no trade off to the precision.” Last

however not the least, the capacity of the path edge proposition organization can be

integrated into the semantic division organization and further lessens the general

computational expense of the driving collaborator frameworks.

3

1.2 Problem Statement

Human beings, when fully attentive, do quite well at identifying lane line markings

under most driving conditions. “ Computers are not inherently good at doing the

same. However, humans have a disadvantage of not always being attentive whether

it be because of changing the radio, talking to another passenger, being tired,

under the influence, etc. while a computer is not subject to this downfall. As such,

if we can train a computer to get as good as a human at detecting lane lines,

since it is already significantly better at paying attention full-time, the computer

can take over this job from the human driver”.

“Using deep learning, We will train a model that is more robust, and faster, than

the original computer vision-based model. The model will be based on a neural

network architecture called a “convolutional” neural network, or “CNN” for short,

which is known to perform well on image data. This is a great architecture candidate

since We would feed the model frames from drivingvideos in order to train it. CNNs

work well with images as they look first for patterns at the pixel level groups of pixels

around each other, progressing to larger and larger patterns in more expanded areas of

the image”.

1.3 Objectives

1. Getting knowledge with the neural networks working

2. Developing a system for lane detection

3. Evaluating the implemented system on real data.

4. Implementing ml/dl algos.

5. Finding best ml/dl algorithm for the lane detection.

4

1.4 Procedure

1.5 Methodology

“The entire procedure of developing the model lane detection usingdeep CNN is

described further in detail. The complete process is divided into several necessary

stages in subsections below, starting with gathering videos for localization process

using deep neural networks”.

1.5.1 Datasets and inputs

The datasets we used for the project are image frames from driving video we took from

our smartphone. The “ videos were filmed in 720p in horizontal/landscape mode, with

720 pixels on the y-axis and 1280 pixels on the x-axis, at 30 fps. In order to cut

down on training time, the training images were scaled down to 80 by 160 pixels”

(a slightly different aspect ratio than the beginning, primarily as it made it easier for

appropriate calculations when going deeper in the final CNN architecture). In order to

5

calculate the original labels, which were six coefficients (three for each lane line, with

each of the three being a coefficient for a polynomial-fit laneline), we also had to

do a few basic computer vision techniques first. We had to perform image calibration

with OpenCV to correct for our camera’s inherent distortion, and then use perspective

transformation to put the road lines on a flat plane.

“Initially, we wanted to make the model more robust to our original model by drawing

over the lane lines in the image, which can be blurry or fade awayinto the rest of

the image the further to the back of the image it is. We drewover 1,420 perspective

transformed road images in red, and ran a binary color threshold for red whereby the

output image would show white wherever therehad been sufficient red values and no

activation (black) where the red values were too low. With this, we re-ran our original

model, modified to output onlythe six coefficients instead of the lane drawing, so that

we could train the network based on those coefficients as labels”.

However, we soon found that the amount of data we had was not sufficient, especially

because most of the images were of fairly straight lanes. So, wewent back and ran the

original CV model over all our videos from roads that were very curvy. We also

added in a limited amount of images from the regular project video (we wanted to

save the challenge video for a true test after finalizing our model) from Udacity’s

SDC Nanodegree Advanced Lane Lines project we previously completed, so that the

model could learn some of the distortion from a different camera. However, this

introduced a complicationto our dataset – Udacity’s video needed a different perspective

transformation, which has a massive effect on the re-drawn lane.

“We ended up obtaining a mix of both straight lines and various curved lines, as well

as various conditions (night vs. day, shadows, rain vs. sunshine) in order to help with

the model's overall generalization. These will help to cover more of the real conditions

that drivers see every day. We will discuss more of the image statistics later

regarding total training images used, but have provided two charts below regarding the

percentage breakouts of road conditions for those obtained from our own driving video

collected”.

6

“We noted before that one issue with the original videos collected was that too much of

the data came from straight lanes, which is not apparent from the above charts – although

“Very Curvy” made up 43% of the original dataset, which We initially believed would be

sufficient, we soon found out the breakout was terribly centered around straight, as can be seen in

the below chart from one of the coefficient labels’ distributions. This is a definite problem to

be solved”.

7

1.5.2 Data Preprocessing

“Some of the general techniques we used to preprocess our data to create labelsare

discussed above in the “Algorithms and Techniques” section. However, there was a

lot more to making sure our model got sufficient quality data for training. First, after

loading all the images from each frame of video we took, an immediate problem

popped up. Where we had purposefully gathered night video and rainy video, both of

these severely cut down on the quality of images. In the night video, where our

smartphone camera already was of slightly lesser quality, we was also driving on the

highway, meaning a much bumpier video, leading to blurry images. We sorted

through each and every single gathered image to check for quality, and ended up

removing roughlyone- third of our initial image data from further usage”.

From here, we also wondered whether the model might overfit itself by gettinga sneak

peek “ at its own validation data if images were too similar to each other – at 30

frames per second”, there is not a whole lot of change from one frame to the next. We

decided to only use one out of every ten images for training. With these, We drew over

the images in red as mentioned above, and then ran our programs for making labels

and checking the labeled images.

“Here, we found that the process for making the labels was flawed – the original

code for our sliding windows failed completely on curves. This was because the initial

code, when it hit the side of an image,would keep searching straight up the

image – causing the polynomial line to think it should go up the image too. By

fixing our code to end when it hit the side of the image, we vastly improved its

usefulness on curves”. After re-checking

“Our labels and tossing out some bad ones,we moved on to check the distribution of our

labels. It was bad – there were still hardly any big curves!”

“Even the videos from curvy roads still had mostly straight lines. So, we re- ran our

process over one in every five images, only from the four videos with mostly curved

lines”.We also decided at this point to add a little bit of the

“Udacity basic project video from our CV- based project (not from the

Challenge video though because we wanted that as the true test of the model’s ability to

generalize) in order to train the model for different distortion (which we had already

obtained previously). However, this caused a new issue – these images needed a different

perspective as well”. This was not so hard for

creating the labels, but we knew it could cause an issue on the tail end, as checking

8

the labels would require the specific inverse perspective transformation to redraw the

lines.

As shown previously in the “Datasets and Inputs” section, “after adding in this additional

data, our distribution was still fairly unequal. However, we found by using the

histograms of the distributions of each label”, we could find where the exact values

were where only a limited amount of images fell. By iteratingthrough each of the labels,

and finding which training images were on the fringes of the data, we could then

come back and generate “new” data; “ this data was just rotations of these images

outside the main distribution, but our CNN would likely become much more likely to

not overfit to straight lines”.

old distribution new distribution

Coefficient Labels

The changes in the distribution of image labels for the second coefficients are shown

above. We originally normalized the labels with sklearn’s “StandardScaler” (causing

the differences in values above), “ which improved training results but also did need to

be reversed after training to return the correct label”. “At this point, the approach

depending on the model diverges. In our initial models, We took in either a

perspective transformed image or regular road image, downscaled it from 720x1280x3

to 45x80x3 (scaling down 16X), gray-scaled the image, added back a third

dimension (cv2.cvtColor removes the dimension when gray-scaling but Keras wants it to

be able to run properly), and then normalized the image (new_image = (new_image /

255) *”

.8 - 1) to be closer to a mean of zero and standard deviation of one, whichis key

in machine learning (the algorithms tend to converge better).

9

On the flip side, once we changed to a fully convolutional model, we instead was

only down-sizing the road images to 80x160x3 (a slightly different aspect ratio than

the original but roughly 8X scaled down), without any further gray- scaling or

normalization (we instead on our Batch Normalization layer in Kerasto help there).

Additionally, since a “fully convolutional model essentially returns another image as

output, instead of saving down our lane labels as numbers only”, we also saved

down the generated lane drawings prior to merging themwith the road image. These

new lane image labels were to be the true labels of our data. “ We still used our

image rotations to generate additional data, but also rotated the lane image labels along

with the training image (based on the distributions of the original label coefficients still).

We also added in a horizontal flip of each image and corresponding lane image label to

double our dataset for training. For these new lane image labels, We dropped off

the ‘R’ and ‘B’ color channels as the lane was being drawn in green, hoping to make

training more efficient with less of an output to generate”.

1.5.3 Image Statistics

1. Here are some statistics from our data pre-processing:

2. 20,000 images have been gathered in total which in turn have been taken
from about 10 videos all together .

3. Very different kinds of roads were taken into consideration

4. 15,000 images in total were found to be actually usable

5. “227 of the 1,420 unusable due to the limits of the CV-based
model used to label (down from 446 due to various
improvements made to the original model) for a total of 1,193
image”s

10

6. “Another 568 images (of 1,636 pulled in) gathered from more
curvy lines to assist in gaining a wider distribution of labels”

7. To be more precise in total we had about 1800 images for analyses.

8. “We pulled in the easier project video from Udacity's Advanced
Lane Lines project (to help the model learn an additional
camera's distortion) - of 1,252 frames, we used 1 in 5 for 250
total, 217 of which were usable for training”

9. “A total of 1,978 actual images used between our collections and the

one Udacity video”

10. · “After checking histograms for each coefficient of each label for
distribution, we created an additional 4,404 images using small

rotations of the images outside the very center of the original
distribution of images. This was done in three rounds of slowly
moving outward from the center of the data (so those further out

from the center of the distribution were rotated multiple times).
6,382 images existed at this point”.

11. · “ Finally, we added horizontal flips of each and every road
image and its corresponding label, which doubled the total
images. All in all, there were a total of 12,764 images for
training”.

11

Chapter-2 LITERATURE SURVEY

2.1 Summary of Papers

2.1.1

Tittle “A Study on Real-Time Detection Method of Lane and Vehicle

for Lane Change Assistant System Using Vision System on

Highway”

Authors HeungsukKima

SeoChangJunb

KwangsuckBooa

Year of

Publication

February 2016

Web Link https://www.sciencedirect.com/science/article/pii/S2215098617317317

https://www.sciencedirect.com/science/article/pii/S2215098617317317#!
https://www.sciencedirect.com/science/article/pii/S2215098617317317#!
https://www.sciencedirect.com/science/article/pii/S2215098617317317#!
http://www.sciencedirect.com/science/article/pii/S2215098617317317
http://www.sciencedirect.com/science/article/pii/S2215098617317317

12

2.1.2

Tittle A practical method of road detection for intelligent vehicle

Authors G. Dezhi, L. Wei

D. Jianmin

Z. Banggui

Year of

Publication

Aug. 2009

Web Link https://ieeexplore.ieee.org/abstract/document/5262562

2.1.3

Tittle “Lane detection for driver assistance and intelligent vehicle

applications. 2007 international symposium on

communications and information technologies”. 1291-1296

Authors Craig D'Cruz,

Ju Jia Zou

Year of

Publication

March 2016

Web Link https://ieeexplore.ieee.org/document/4392216

13

CHAPTER-3 SYSTEM DEVELOPMENT

3.1 Algorithms and techniques

First, we must extract the image frames from videos we obtain. “Next, we must process

the images for use in making labels, for which we will use the same techniques we

previously used in our computer vision-based model”. “Next, we will calibrate for

our camera’s distortion by taking pictures of chessboard images with the same camera

the video was obtained with, and undistort the image using “cv2.findChessboardCorners”

and “cv2.calibrateCamera”. With the image now undistorted, we will find good source

points (corners of the lane lines at the bottom and near the horizon line) and determine

good destination points (where the image gets transformed out to) to perspective

transform the image (mostly by making educated guesses at what would work best.

When we have these points, we can use “cv2.getPerspectiveTransform” to get a

transformation matrix and “cv2.warpPerspective” to warp the image to a bird’s eye- like

view of the road”.

From here, in order to enhance the model’s robustness in areas with less thanclear

lane lines, we drew red lines over the lane lines in each image used. In these images,

we will

14

“use a binary thresholding on areas of the image with high red values so thatthe

returned image only has values where the red lane line was drawn. Then, histograms will be

computed using where the highest amount of pixels fallvertically (since the image has

been perspective transformed, straight lane lines will appear essentially perfectly

vertical) that split out from the middle of the image so that the program will look

for a high point on the left and a separate high point on the right. Sliding windows

that search for more binary activation going up the image will then be used to attempt to

follow the line”.

“Based on the detected pixels from the sliding windows, “numpy.polyfit” will be used

to return polynomial functions that are most closely fit to the lane line as possible

(using a polynomial allows for it to track curved lines as well as straight). This

function actually returns the three coefficients of the “ax^2+bx+c” equation, where “a”, “b”

and “c” are the coefficients. We will append the total of six coefficients (three for

each of the two lane lines) toa list to use as labels for training”.

“However, prior to training, we will want to check whether the labels are even accurate

at all. Using the labels from above, we can feed an image through the original

distortion and perspective transformation, create an image “blank” with

“numpy.zeros_like”, make lane points from the polynomial coefficients by calculating the

full polynomial fit equation from above for each line, and then use “cv2.fillPoly”

with those to create a lane drawing. Using “cv2.warpPerspective” with the inverse of

our perspective transformation matrix calculated before, we can revert this lane drawing

back to the space of the original image, and then use “cv2.addWeighted” to merge

the lane drawing with the original image. This way, we can make sure We feed

accurate labelsto the model”.

Lastly, our project will use Keras with TensorFlow “backend in order to create a

convolutional neural network. Using “keras.models.Sequential”, we can create the neural

network with convolutional layers (keras.layers.Convolution2D) and fully- connected layers

(keras.layers.Dense). We will first try a model architecture similar to the one at left,

which we used successfully in a previous project for Behavioral Cloning”.

15

3.2 Mathematical Model

“Convolution neural networks (CNNs) are a family of deep networks that can exploit

the spatial structure of data (e.g. images) to learn about the data, so that the

algorithm can output something useful”. “ For example, if We give the the CNN an

image of a person, this deep neural network first needs to learn some local features

(e.g. eyes, nose, mouth, etc.)”. “ These local features are learnt in convolution layers.

Then the CNN will look at what local features are present in a given image and

then produce specific activation patterns (or an activation vector) which globally

represents the existence of those local features maps. These activation patterns are

produced by fully connected layers in the CNN”. “For example, if the image is a non-

person, the activation pattern will be different from what it gives for an image of a

person. There are three different components in a typical CNN. They are,

convolution layers, pooling layers and fully-connected layers”. “ A convolution layer

consists of many kernels. These kernels (sometimes called convolution filters)

present in the convolution layer, learn local features present in an image (e.g. how

the eye of a person looks like). Such a local feature that a convolution layer learns

is called a feature map. Then these features are convolved over the image. This

convolution operation will result in a matrix (that is sometimes called

an activation map). The activation map produces a high value at a given location,

if the feature represented in the convolution filter is present at that location of the

input .The pooling layer make these features learnt by the CNN translation invariant

(e.g. no matter the person’s eye is at [x=10, y=10] or [x=12,y=11] positions, the

output of the pooling layer will be same).Fully connected layers are responsible for

producing different activation patterns based on the set of activated feature maps and

the locations in the image, the feature maps are activated for. This is what CNN

looks like visually” [1].

Network diagram

16

3.2.1 Convolutional Layer

“Convolution operation outputs a high value for a given position if the convolution

feature is present in that location, else outputs a low value. More concretely, at a

given position of the convolution kernel, we take the element-wise multiplication of

each kernel cell value and the corresponding image pixel value that overlaps the

kernel cell, and then take the sum of that. The exact value is decided according to

the following formula (m — kernel width and height, h — convolution output, x

— input, w — convolution kernel)” [1].

“It is not enough to know what the convolution operation does, we also need to

understand what the convolution output represents. Just imagine colours for the

values in the convolution output (0 — black, 100 — white). If visualized ,this

image will represent a binary image that lights up at the location the eyes are at” [1].

17

3.2.2 Pooling Layer:

“Pooling (or sometimes called subsampling) layer make the CNN a little bit

translation invariant in terms of the convolution output. There are two different

pooling mechanisms used in practice (max-pooling and average-pooling). More

precisely, the pooling operation, at a given position, outputs the maximum value of

the input, that falls within the kernel” [2].

 Fully connected layers will combine features learnt by different convolution kernels so that

the network can build a global representation about the holistic image. “The neurons in

the fully connected layer will get activated based on whether various entities represented by

convolution features is actually present in the inputs. As the fully connected neurons get

activated for this, it will produced different activation patterns based on what features are

present in the input images. This provides a compact representation of what exists inthe

image, to the output layer, that the output layer can easily use to correctly classify the

image” [2].

18

Deconvolutional networks are convolutional neural organizations (CNN) that work in a

switched cycle. Deconvolutional networks, otherwise called deconvolutional neural

organizations, are fundamentally the same as in nature to CNNs run backward however

are a particular use of man-made consciousness (AI).

Deconvolutional networks endeavor to discover lost highlights or signals that may have

beforehand not been considered essential to a convolutional neural organization's errand. A

sign might be lost due to having been tangled with different signs. The deconvolution of

signs can be utilized in both picture combination and investigation.

19

A convolutional neural organization imitates the activities of a natural cerebrum's frontal

projection work in picture preparing. “A deconvolutional neural organization develops

upwards from prepared information. This retrogressive capacity can be viewed as a

figuring out of tangled neural organizations, developing layers caught as a feature of

the whole picture from the machine vision field of view and isolating what has been

tangled”.

Deconvolutional networks are identified with other profound learning techniques utilized for

the extraction of highlights from progressive information, “for example, that found in

profound conviction organizations and chain of importance meager programmed encoders.

Deconvolutional networks are essentially utilized in logicaland designing fields of study”.

Deconconvolutional Layer

20

3.2.3 INTEGRATING THEM TOGETHER

“Now all we have to do is put all these together, to form an end-to-end model, from raw

images, to decisions. And once connected the CNN will look like this”. “ To summarize,

the convolution layers will learn various local features in the data (e.g. what an eye looks

like), then the pooling layer will make the CNN invariant to translations of these features

(e.g. if the eye appear slightly translated in two images, the CNN will still recognize it as

an eye).Finally we have fully connected layers”,

that says, “we found two eyes, a nose and a mouth, so this must be a person, andactivate the

correct output [2].

Canny Edge Detection

21

3.3 Implementation

Our first CNN build used perspective transformed images as input, and can be seen in

the “perspect_NN.py” file. “ It used batch normalization, four convolutional layers

with a shrinking number of filters, followed by a pooling layer, flatten layer, and four

fully- connected layers, with the final fully- connected layer having six outputs – the

six coefficient labels of the lane lines”.

“Each layer used RELU activation, or rectified linear units, as this activation has

been found to be faster and more effective than other activations. Wetried some of

the other activations as well just in case, but found RELU tobe the most effective,

as expected”. “ Also, in order to help prevent overfitting and increase robustness, we

added in strategic dropout to layers with the most connections, and also used Keras’s

ImageDataGenerator to add in image augmentation like more rotations, vertical flips,

and horizontal shifts. We originally used mean-squared-error for loss, but found that mean-

absolute error actually produced a model that could handle more variety in curves.

Note that We also made the training data and labels into arrays before feeding the

model as it works with Keras. Also, We shuffled the data to make sure thatthe

different videos were better represented and the model would not just overfit on certain

videos. Last up was splitting into training and validation sets so we could check how the

model was performing”.

Perspective Image’s Histogram and Sliding Windows

After training this first model and creating a function to actually see the re- drawn

lanes, we found this first model to be moderately effective, given that you were

using

https://github.com/mvirgo/MLND-Capstone/blob/master/perspect_NN.py
https://github.com/mvirgo/MLND-Capstone/blob/master/perspect_NN.py

22

the same perspective transformation from the original model. However, our end goal was

to ignore the need to perspective transform an image for the CNN altogether, so after

finding that the first model was moderately effective at producing a re-drawn lane, we

shifted course. In “road_NN.py”, this second model is included. Other than feeding

in a regular road image, the only change we made to this model was adding a

Crop layer, whereby the top third of the image was removed (we played around

with one half or one third without much difference). “We found quickly that the CNN

could, in fact, learn the lane coefficients without perspective transformation, and the

resulting model was actually a little bit more effective even.There was still one big

problem – we have to say if the model we built was accurately defining the lane label

coefficients, this meant that the lines still need to be drawn in a perspective-transformed

space, and reverted to the road space, even if the original image was not perspective-

transformed. This caused massive issues in generalizing to new data – we would need

the transformation matrix of any new data (even slight changes in camera mounting

would cause a need for a new matrix)”.

3.3.1 Refinement

“Our first thought was whether or not we could actually look directly at theactivation of

the convolutional layers to see what the layer was looking at. We assumed that if

CNN was able to determine the appropriate line coefficients, it was probably

activating over the actual lines of lane, or atleast some similar area in the image that

would teach it the values to predict”.

“After some research, we found the keras-vis library to be great for looking at the

activation of each layer. This library can actually look at the class activation maps

(in our case the “classes” are actually each of the coefficient labels since this is

not a classification problem) in each layer. We thought We had found our solution,

until we looked at the activation mapsthemselves”.

https://github.com/mvirgo/MLND-Capstone/blob/master/road_NN.py
https://github.com/mvirgo/MLND-Capstone/blob/master/road_NN.py
https://github.com/raghakot/keras-vis

23

While the above activation maps of the first few layers look okay, these were actually

some of the clearest we could find. Interestingly enough, CNN actually often learned by

looking at only one lane line – it was calculating the position of the other line based

on the one it looked at. But that was only the case for curves – for straight lines, it was

not activating on the lane lines at all! “It was actually activating directly on the road

in front of the car itself, and deactivating over the lane lines. As a result, we

realized the model was activating in different ways for different situations, which would

make using the activation maps directly almost impossible. Also, notice in the above

second image that the non-cropped part of the sky is also being activated (the dark

portion) – due to the various rotations and flips, the model was also activating in

areas that were telling it top from bottom. Other activation maps also activated over

the car at the bottom of the image for the same purpose”.

We also briefly tinkered with trying to improve the activation maps above by using

transfer learning. Given that in our Behavioral Cloning project, “the car needed to stay

on the road, we figured it had potentially learned a similar, but perhaps more effective,

activation. Also, we had tens of thousands of images to train on for that project, so the

model was already more robust. After using “model.pop” on that model to remove the final

fully-connected layer (which had only one output for that project), we added a new fully-

connected layer withsix outputs. Then, we trained the already-established model further on

our realroad images (the old model was trained on simulated images), and

actuallyfound that it did a better job on looking at both lines, but still failed to

havea consistent activation we could potentially use to redraw lines more accurately”.

At this point, we began to consider what we had read on image segmentation,

especially SegNet ,which was specifically designed to separate different components of a

road out in an output image by using a fully convolutional neural network. This

approach was different from mine in thata fully convolutional neural network does not

have any fully-connected layers (with many more connections between them), but

only uses convolutional layers followed by deconvolutional layers to essentially make a

whole new image. We realized we could skip the undoing of the perspective

http://mi.eng.cam.ac.uk/projects/segnet/#research

24

transformation for the lane label entirely but actually train directly to the lane drawing as

the output. By doing so, it meant that even if the camera was mounted differently, the

lanes were spaced differently, etc., the model would still be able to return an accurate

drawing of the predicted lane.

3.3.2 TENSORFLOW

“TensorFlow is an open source software library for high performance numerical

computation. Its flexible architecture allows easy deployment of computation across a

variety of platforms (CPUs, GPUs, TPUs), and from desktops to clusters of servers

to mobile and edge devices. Originally developed by researchers and engineers from

the Google Brain team within Google’s AI organization, it comes with strong

support for machine learning and deep learning and the flexible numerical

computation core is used across many other scientific domains” [3].

3.3.3 KERAS

“Keras is a high-level neural network API, which is written in Python language and

capable of running on top of TensorFlow, Theano or CNTK. It was developed with

focus on the enabling fast experimentation. Being able to go from idea to result

with the least possible delay is key to doing good research. Keras was developed

and is maintained by Francois Chollet and is part of the Tensorflow core, which

makes it Tensorflow preferred high-level API. Use Keras if you need a deep

learning library that” [3]:

➢ Allows for fast and easy prototyping(through user friendliness, modularity, extensibility).

➢ Recurrent and Convolution networks both are supported .

➢ Can run on both CPU and GPU

https://twitter.com/fchollet?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Eauthor
https://twitter.com/fchollet?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Eauthor

25

3.3.4 PYTHON

Everybody loves Python,python is an object oriented,high level programing language which
has a lot of features. Python's simple, easy to learn syntax emphasizes readability and
therefore reduces the cost of program maintenance. Python supports modules and packages,
which encourages program modularity and code reuse. The Python interpreter and the
extensive standard library are available in source or binary form without charge for all major
platforms, and can be freely distributed [3].

3.4 Proposed approach

“The first step in our project will be data collection. As discussed above, We plan to use our
smartphone in a variety of different road settings to gain a good mix of video. Once We
have collected enough video, We can then process the video to split out each individual
video frame. These frames are the images We will use to train (and validate) our CNN
eventually”. We plan to scale down the images (starting at 25% of the original size) to
reduce processing time, although if We am successful at training a good model with our
approach We may attempt a full-scalerun.

“The second step will be to create labels for the images. There are a thoughts We have

here. We plan to calibrate our camera, undistort the image and perspective transform first.

We could then draw over the lines in a very distinctive color, and use some basic

computer vision techniques (note that this is on training images only

- the point is that after training, the CNN will no longer need any computer vision- based

components) in order to make a list of pixels making up the lines. This will hopefully be

slightly more accurate than relying on various different thresholds in

the image as We can make it specific to that single color channel/hue. Once thesepixels are

detected, We can use numpy.polyfit() to get back the line's coefficients”.

26

Flowchart Of Lane Detection

“This is a very small portion of data to check against, but will at least allow me to

find out very early on if our labelling technique will work as intended, or if We

need to take a different approach”.

“Once We have the data labelled, We will build our convolutional neural network.

We plan to begin with a CNN structure similar to that We used in the SDC

nanodegree Behavioral Cloning project here, which uses 5 convolutional layers and 4

fully connected layers (along with pooling and dropout within), built with Keras on

top of Tensorflow. There are a few changes We already know We need to make,

although there will definitely be a decent amount of iteration on the final CNN We

use (which luckily Keras makes substantially easier)”. “ First, as already discussed,

We will need six outputs at the end for our three coefficients for two separate lane

lanes, as opposed to just the single output We had for the steering angle in the

Behavioral Cloning project. Second, the images from that project were only 360 x

120, so We may need more convolutional layers, larger strides/subsamples, or larger

pooling in order to cut down on the number of parameters in the model”. “Even with

5 convolutional layers, because We used small kernel sizes (the grouping of pixels

the CNN considers as a group for a node at each layer), small strides/subsamples,

and small pooling, our old CNN model still had nearly 600,000 parameters at the

first fully connected layer, which would be vastly increased if the image size is a

lot larger.At this point, after having finished the labelling on a subset of the data,

We will test to see whether the CNN actually appears to be learning anything.

Although neural networks definitely tend to work better the larger the data size is,

if our CNN cannot show at least a little bit of convergence on a subset of the

data, We will need to modify our procedures up to this point. Note that this means

We will have a training set and a validation set created out of this subset of data

using sklearn's train_test_split. If it is working, great, We will move on to using the

full dataset”.

27

If the model does appear to be minimizing the error (mean-squared error is our

plan), then We will move on to the next step, which is testing the model on

completely new data it has never seen before. We will first use the regular project

video from the Advanced Lane Lines project and see how the CNN's predictions

compare to the computer vision-based model We used before. We will compare

both its performance from a visual standpoint (how close it tracks to the lines

versus the CV-based model) and from a speed standpoint (how long does it take

to process a video vs. the CV-based model). If all goes well, We will also try the

CNN's predictions on the challenge video and hard challenge video from the

Advanced Lane Lines project, and hope that the end result is a model that can

predict faster, and better, than the computer vision-based model, and even become

nearly imperceptibly different than a human being would determine it to be.

28

CHAPTER-4 PERFORMANCE ANALYSIS

4.1 Evaluation and Validation

“After 20 epochs, our model finished with MSE for training of 0.0046 and validation

of 0.0048”, which was significantly lower than any previous model’s we had tried

(although a bit of apples and oranges against the models using six polynomial

coefficients as labels). “We first tried the trained model against one of our own

videos, one of the hilly and curved roads for which the modelhad potentially seen up

to 20% of the images for, although likely much less – from the image statistics earlier,

we had to throw out a large portion of the images from these videos, so even

though we ran it on one in five images, the model probably only saw 5-10% of

them. Fascinatingly, the model performed great across the entire image, only

losing the right side of the lane at one point when the line became completely obscured

by leaves. The model actually performed near perfectly even on a lot of the areas we

knew we had previously had to throw out, because our CV- based model could not

appropriately make labels for them. Note that because there is not a “ground- truth” for

our data, we cannot directly compare to that model from a loss/accuracy perspective,

but as the end result is very visual, we will see which model produces the better

result. Part of this comes down to robustness”

– our pure CV model failed to produce lane lines past the first few secondsof a

Challenge video in our previous project. If this model can mostly succeed on the

Challenge video (i.e. no more than a few seconds without the lane

29

shown) without having been specifically trained on images from that video, it

will have exceeded this benchmark.

Second benchmark will be the speed of the model – the CV-based model canonly

generate roughly 4.5 frames per second, which compared to 30 fps video incoming is much

slower than real-time. The model will exceed this benchmark if the writing of the

video exceeds 4.5 fps.

4.2 Justification

“However, the fact remained that the model had in fact seen some of those images.

What about trying it on the challenge video created by Udacity forthe Advanced

Lane Lines project? It had never been trained on a single frame of that video.

Outside of a small hiccup going under the overpass in the video, the model

performed great, with a little bit of noise on the right side where the separated lane

lines were. It had passed our first benchmark –outperforming our CV- based model, which

had failed on this video”.

Good Prediction vs. Poor Prediction

Our second benchmark was with regards to speed, and especially “when including

GPU acceleration, the deep learning model crushed the earlier model”

– it generated lane line videos at between 25-29 fps, far greater than the 4.5fps for

the CV model. Even without GPU acceleration, it still averaged 5.5fps, still beating

out the CV model. Clearly, GPU acceleration is key “ in unlocking the potential of this

model, running almost real-time with 30 fps video. With regards to both robustness

and speed, the deep learning-based model is a definite improvement on the usual CV-

based techniques”.

https://github.com/udacity/CarND-Advanced-Lane-Lines/blob/master/challenge_video.mp4

30

An example of bad image. The model performed quiet good in it

Lanes Detected in above image

31

CHAPTER-5 RESULTS

5.1 The Final Model
Although we had made a CNN previously that ended in fully-connected layers, we had

never before made a fully convolutional neural network, and there were some challenges in

getting the underlying math to work for our layers. Unlike in the forward pass in normal

Convolution layers, Keras’s Deconvolution layers flip around the backpropagation of the

neural network to face the opposite way, and therefore need to be more carefully curated to

arrive at the correct size (includingthe need to specify the output size). We chose to

make our new model a mirror of itself, “with Convolutional layers and Pooling slowly

decreasing in size layers, with the midpoint switching to Upsampling (reverse-pooling)

and” “Deconvolution layers of the same dimensions. The final deconvolution layer ends with

one filter, which is because we only wanted a returned image in the ‘G’ color channel,

as we were drawing our predicted lanes in green (it later is stacked up with zeroed- out

‘R’ and ‘B’ channels to merge with the original road image). Choosing to input

80x160x3 images (smaller images were substantially less accurate in their output, likely

due to the model being unable to identify the lane off in the distance very well)

without gray- scaling (which tended to hide yellow lines on light pavement), We also

normalized the incoming labels by just dividing by 255 (such that the labels were from 0 to

1 for ‘G’ pixel values)”.

“The final model is within the “fully_conv_NN.py” file. We stuck with RELU activation

and some of the other convolution parameters (strides of (1,1) and ‘valid’ padding had

performed the best) from our prior models, but also addedmore extensive dropout. We

had wanted to use dropout on every Convolutional and Deconvolutional layer, but found

it used up more memory than we had”. “ We also tried to use Batch Normalization

prior to each layer but found it also usedup too much memory, and instead We settled for

just using it at the beginning. A more interesting discovery, given that using MSE for

loss had previously failed, was that it performed much better than any other loss

function with this new model. Also intriguing was that adding any type of image

augmentation with ImageDataGenerator, whether it be rotations, flips, channel shifts,

shifts along either the horizontal or vertical axes, etc., did not result in a more robust

model, and often had worse results on any test images we looked at. Typically, we

expect the image augmentation to improve the final model, but in this case, skipping

any augmentation (although we kept the generator in any way without it, as it is good

https://github.com/mvirgo/MLND-Capstone/blob/master/fully_conv_NN.py
https://github.com/mvirgo/MLND-Capstone/blob/master/fully_conv_NN.py

32

practice) led to a better model. Channel shifts helped with shadows, but worsened

overall performance. This is fed into the “draw_detected_lanes.py” file, in”

which the model predicts the lane, is averaged over five frames (to account forany odd

predictions), and then merges with the “ original road image from a video frame. Our

CNN will be being trained similarly to a regression-type problem, in which it will be given

the polynomial coefficients on the training images, and attempt to learn how to extract those

values from the given road images. The loss it will minimize is the difference between

those actual coefficients and what it predicts (likely using mean- squared error). It

will then use only limited computer vision techniques in order to draw the lane back

onto the image. As noted above regarding benchmarking against our computer vision-

based result, We will also evaluate it directly against that model in both accuracy and

speed, as well as on even more challenging videos than our CV- based model was

capable of doing”.

Detecting Lanes in a video

https://github.com/mvirgo/MLND-Capstone/blob/master/draw_detected_lanes.py
https://github.com/mvirgo/MLND-Capstone/blob/master/draw_detected_lanes.py
https://github.com/mvirgo/MLND-Capstone/blob/master/draw_detected_lanes.py

33

Training phase

34

CHAPTER-6 CONCLUSION

6.1 More Visualizations

Below we have included some additional visualizations, comparing the various stages of

our own model as well as in comparison to our original model using typical

computer vision techniques.

The CV-based model believed both lines to be on the right side of the lane, hence only

a faint line and not a full lane drawn. Some of this comes downto weaknesses in

the algorithm there, which lacked checks to see whether the lanes were separate from

each other.

35

6.1.2 Reflection

The project began with collecting driving video, which we then extracted the individual

frames from. “After curating the data to get rid of various blurry orother potentially

confusing images, we calculated the calibration needed to undistort our images, and

perspective transformed them to be able to calculatethe lines. After additional image

processing to improve the dataset at hand, we then created six coefficient labels,

three each for both lane lines. Next, we created a program to make those labels into re-

drawn lanes, and then had to improve our original label checking algorithm to work

better for curves. Following this, any still poorly labeled images were removed from the

dataset”.

After checking histograms of the coefficient labels, we realized we needed additional

curved line images, and gathered additional data for curved lines, “ as well as from a

different camera, in order to help even out the distribution. After finding they still

needed a better distribution, we found ranges of the labels to iterate through and

create additional training images through rotationof the originals”.

The next step was to actually build and train a model. “ We built a somewhat successful

model using perspective-transformed images, built a slightly improved model by feeding in

regular road images, but still was not at a sufficient levelof quality. After trying to

use activation maps of the convolutional layers,we moved on to a fully convolutional

model. After changing the training labels tobe the ‘G’ color channel containing the

detected lane drawing, a robust model was created that was faster and more accurate

than our previous model basedon typical computer vision techniques”.

Two very interesting, but very challenging issues arose during this project. We had

never before used our own dataset in training a model, and curating agood dataset

was a massive time commitment, and especially due to the limits of the early models

We used, often difficult to tell how sufficient of a dataset we had. The second challenge

was in settling on a model – we originally worried we would have to also

somehow train the neural network to detect perspective transformation points or

similar. Instead, we learned forthe first time how to use a fully convolutional neural

network, and it solvedthe problem.

36

6.1.3 Improvements and future work

One potential improvement to the model could be the use of a recurrent neural network

(RNN). The current version of our model uses an averaging across five frames to

smooth out any issues on a single frame detection, outside of the actual neural

network itself. On the other hand, a RNN would be able to directly look at previous

frames in order to learn that what was detected in a previous frame matters to the current

frame. By doing so, it would potentially lose any of the more erratic predictions

entirely. We have not yet used a RNN architecture, but we plan to do so eventually for

future projects.

37

REFERENCES

Reference workloads for modern deep learning

methods https://paperswithcode.com/task/lane-

detection/codeless https://towardsdatascience.com/lane-

detection

https://journalofcloudcomputing.springeropen.com/articles

https://doi.org/10.1016/j.icte.2020.07.007

Robust lane detection using two-stage feature extraction with curve

fitting Pattern Recognit., 59 (2016), pp. 225-233

Article

Narote Sandipann P , et al.A review of recent advances in lane detection and departure warning

system Pattern Recognit., 73 (2018), pp. 216-234

Hirano Masahiro, et al.Networked high-speed vision for evasive maneuver

assist ICT Express, 3 (4) (2017), pp. 178-182

Dubey Amartansh, Bhurchandi K.M.Robust and real time detection of curvy lanes (curves) with

desired slopes for driving assistance and autonomous vehicles

“Abdelhamid Mammeri, Azzedine Boukerche, Guangqian Lu, Lane detection and tracking system

based on the MSER algorithm, hough transform and kalman filter, in: Proceedings of the 17th

ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile

Systems, 2014”.

Li Mingfa, Li Yuanyuan, Jiang MinLane detection based on connection of various feature

extraction methods

Advances in Multimedia 2018 (2018)

Kim Jihun, Lee MinhoRobust lane detection based on convolutional neural network and

random sample consensus

International Conference on Neural Information Processing, Springer, Cham (2014)

Zou Qin, et al.Robust lane detection from continuous driving scenes using deep neural

networks IEEE Trans. Veh. Technol. (2019)

https://ieeexplore.ieee.org/abstract/document/7581275/
https://ieeexplore.ieee.org/abstract/document/7581275/
https://ieeexplore.ieee.org/abstract/document/7581275/
https://paperswithcode.com/task/lane-detection/codeless
https://paperswithcode.com/task/lane-detection/codeless
https://towardsdatascience.com/lane-detection
https://journalofcloudcomputing.springeropen.com/articles
https://doi.org/10.1016/j.icte.2020.07.007
https://www.sciencedirect.com/science/article/pii/S0031320315004690

38

Works Cited

[1] A. hilel, "Recent progress in road and lane detection: a survey," Machine vision and Applications, no. April 2014, 07

February 2012.
[2] Z. Song, "Learning Pooling for Convolutional Neural Network," Neurocomputing, 8 February 2017.
[3] M. Abadi, "TensorFlow: learning functions at scale," September 2016.

Road Lane Detection
System

by Pratyush Thakur(171244)
Kunal Singh(171477)

Submission date: 14-May-2021 02:46PM (UTC+0530)
Submission ID: 1585862138
File name: CONTENT_ONLY_Final_year_Project_report.docx (2.7M)
Word count: 8433
Character count: 43471

8

In this task, to make progress toward a summed up, low computation cost,

and constant vehicle-based arrangement, we propose a path discovery soategy

called LaneNet. The supportive of presented LaneNet separates the path discovery

task into two phases, for example path edge projx›sition and path line restriction,

respectively; and each includes a free profound neural organization. In the path

edge proposition stage, the proposition net- work runs parallel grouping on each

pixel of an information picture for producing path edge recommendations, which

are filled in as the contribution to the path line resoiction network in the subsequent

stage.

The neural networks in the two phases are intended for high exactness, low

computational expense, and high running velocity. In particular, a light-weight encoder-

decoder design is distinguishable convolution and 1 convolution layers are utilized for path

edge proposition, where stacked depth wise for quick component encoding, and non-

parameoic deciphering layers for quick element goal recuperation. The acquired

supportive of jxistal map is then changed to path edge arranges and took care of to

the subsequent stage, where, a fast path line neighborhood itemization organization,

comprising of a point include encoder and a LSTM decoder, restrict the path lines

heartily under various situations. Such two-stage plan of LaneNet brings extra desirable

properties. Initially, the path edge map created by the proposition network fills in as

interpret able Oansitional highlights, which somewhat eases the effect of the discovery

property of neural organization based technique, and makes the recognition

disappointments more identifiable. The two- stage measure permits the boundaries of

path line restriction net-work to be refined in a pitifully regulated way which

alleviate the solid interest for all around clarified preparing samples. Furthermore, a

proficient dimensionality decrease is performed while changing the path edge

proposition guide to the path edge ‹»ganizes between the two phases, which further

lessens the multifaceted nature and the organization size of the path line restriction

organization, and accelerate the identification with no oade off to the precision. Last

however not the least, the capacity of the path edge proposition organization can be

integrated into the semantic division organization and further lessens the general

computational expense of the driving collaborator framew‹nks.

2

7

7

1

7

1

22 10

1

1

1

1

1

1

1

1

1

4

1

1

4

4

T Another 568 images (of 1,636 pulled in) gathered from more curvy

lines to assist in gaining a wider distribution of labels(1 in

every S from the more curved-lane videos; from 8,187 frames)

K In total, 1,761 original images

T We pulled in the easier project video from Udacity's Advanced Lane

Lines project (to help the model learn an additional camera's

distortion) - of 1 J52 frames, we used 1 in 5 for 250 total, 217 of

which were usable for training

G A total of 1fi78 actual images used between our collections and theone
Udacity video

G After checking histograms for each coefficient of each label for

distribution, we created an additional 4,404 images using small rotations

of the images outside the very center of the original distribution of

images. This was done in three rounds of slowly moving outward from

the center of the data (so those further out from the center of the

disoibution were rotated multiple times). 6,382 images existed at this

point.

T Finally, we added horizontal flips of each and every road image
and its corresponding label, which doubled the total images. All in

all, there were a total of 12764 images for training.

l0

16

12

9

9

9

1 17

1

1

2

2

2

2

2

2

2

2

2

3

2

2

Outgut
layer

Person ?

Fully
Connectea
Neurons

Convolution Outputs
corresponding to the

shown filters

32.4 Deconvolutional La

Lice onvolu tional netw’orLs are conv’olutional neural organizations (C NN) that w ork

ina sw’iic hed cycle. Deconv’olu tional netw’orks, oiherw’ise c alled decons’olutional neural

organizations, are fundamentally the same as in nature to C. NNs run backw’ard

Dec onv’olutional netw’orks endeas’or to disc over lost highlights or signals that mayhav’e

beforehand not been considered essential to a convolutional neural organization’s errand.

A sign might be lost due to having been tangled w'ith different signs. The deconi’olution

at signs can be ut ilized in both picture combination and inv’estigation.

A c onx’olutional neural organization imitates the actis’ities of a natural cerebrum’s

frontal projection w’ork in picture preparing. A deconv’olut ional neural organization

develops upw’ard s mom prepared information. This retrogressiv’e c opacity can be

s’iew’ed as a figuring on i of tangled neural organizations , developing layers

caught as a feature of’ the w’hole picture from the machine s’ision iield of s’iew’

and isolating w’hat has been tangled .

Dec onv’olutional netw’orks are identii ied w’ith other profound learning tec hniques

utilized for the extraction of highlights from progressis’e int‘ormation, for example,

that iound in profound c onviction organizations and c hain or importance meaner

programmed enc r›ders . Deconvolu tional netw’orks are essentially utilized in logic al

and desinning i ield s or stu dy.

19

6

1

1

1

1

While the above activation maps of the first few layers look okay, these were actually

some of the clearest we could find. Interestingly enough, CNN actually often learned

by looking at on/y our lane line— it was calculating the position of the other line

based on the one it looked at. But that was only the case for curves — for soaight

lines, it was not activating on the lane lines at all! lt was actually activating directly

on the road in front of the car itself, and deactivating over the lane lines. As a

result, we realized the m‹xtel was activating in different ways f‹» different situations,

which would make using the activation maps directly almost imjxissible. Also, notice

in the above second image that the non-cropped part of the sky is also being activated

(the dark }xirtion) — due to the various rotations and flips, the model was also

activating in areas that were telling it top from bottom. Other activation maps also

activated over the car at the bottom of the image for the same purpose.

We also briefly tinkered with trying to improve the activation maps above by using

oansfer learning. Given that in our Behavioral Cloning project, the car needed to

stay on the road, we figured it had potentially learned a similar, but perhaps more

effective, activation. Also, we had tens of thousands of images to train on for that

project, so the model was already more robust. After using ‘Model.pop” on that model

to remove the final fully-connected layer (which had only one output for that

project), we added a new fully-connected layer withsix outputs. Then, we trained

the already-established model further on our realroad images (the old model was

oained on simulated images), and actuallyfound that it did a better job on

looking at hnth lines, but still failed to havea consistent activation we could

potentially use to redraw lines more accurately.

At this point, we began to consider what we had read on image segmentation,

especially SegNet ,which was specifically designed to separate different components

of a road out in an output image by using a fully convolutional neural network.

This approach was different from mine in thata/u//J convolutional neural network

does not have any fully-connected layers (with many m‹»e connections between

them), but only uses convolutional layers followed by deconvolutional layers to

essentially make a whole new image. We realized we could skip the undoing of

the perspective

23

13

3

3

Python is an interpreted, high- level, General-purDose proeramminu lanuuaue.

Created by Guido v’an Rosen m and first released in 1 991, Python’s design

philosophy emphasizes code readability w’ith its notable use of significant

 w’hitespace. Its language constructs and obleer-oriented approach aim to help

programmers w'riie clear, logical code for small and large-scale projects.

Python is dynamically typed and uarbaue-collected. lt en pports multiple prnuramminu

paradigms, including procedural, object-oriented, and functional pro8rammin8 . Python is

often described as a ” batteries inc lud ed ” language due to its comprehensive standard

library .

The first step in our project will be data collection. As discussed abov’e, We plan

to use our smartphone in a s’ariety of different road settings to gain a gorxl mix of

video. Once We have collected ennugh video, We can then process the video to

split out each indiv’idual s’ideo frame. These frames are the images We will use to

train (and validate) our CN N eventually. We plan to scale down the images

tstarting at 25*/n of the original size) to reduce processing time, although if We am

successful at training a good model with our approach We may attempt a full-scale

run. The second step will be to create labels for the images. There are a thoughts We

have here. We plan to calibrate our camera, undistort the image and perspective

transform first. We could then draw over the lines in a s’ery distinctiv’e color, and use

some basic computer vision techniques (note that this is on training images only

- the }x›int is that after training, the CNN will no longer need any computer vision-

based components) in order to make a list of pixels making up the lines. This will

hopefully be slightly more accurate than relying on various different thresholds in

the image as We can make it specific to that single color channel/hue. Once these pixels

are detected, We can use numpy.polyfit() to get back the line's coefficients.

25

20

21

4

4

14

19

4

1

1

An example of had image . The model performed quiet good in it

Lanes Detected in above image

30

1

1

1

1

1

HAPTER-

Below we have included some additional visualizations, comparing the various stages

of our own model as well as in comparison to our original model using typical

computer vision techniques.

The CV-based model believed both lines to be on the right side of the lane, hence

only a faint line and not lane drawn. Some of this comes downto

weaknesses in the algorithm there, which lacked checks to see whether the lanes

were separate frorn each other.

34

The project began with collecting driving video, which we then extracted the individual

frames from. After curating the data to get rid of various blurry orother potentially

confusing images, we calculated the calibration needed toundistort our images, and

perspective oansformed them to be able to calculatethe lines. After additional image

processing to improve the dataset at hand, we then created six coefficient labels,

three each for both lane lines. Next, we created a program to make those labels into re-

drawn lanes, and then had to improve our original label checking algririthm to work

better for curves. Following this, any still poorly labeled images were removed from the

dataset.

After checking histograms of the cr›efficient labels, we realized we needed additional

curved line images, and gathered additional data for curved lines, as well as from

a different camera, in order to help even out the distribution.After finding they

still needed a better disoibution, we found ranges of the labels to iterate through

and create additional training images through rotationof the originals.

The next step was to actually build and tfain a model. We built a somewhatsuccessful

model using perspective-Oansformed images, built a slightly improved model by feeding

in regular road images, but still was not at a sufficient levelof quality. After

trying to use activation maps of the convolutional layers,we moved on to a fully

convolutional model. After changing the training labels tobe the ‘G' color channel

containing the detected lane drawing, a robust m‹xtel was created that was faster

and more accurate than our previous model basedon typical computer vision

techniques.

Two very interesting, but very challenging issues arose during this project. We had

never before used our own dataset in training a model, and curating a good

dataset was a massive time commitment, and especially due to the limits of the

early models We used, often difficult to tell how sufficient of a dataset we had. The

second challenge was in settling on a model — we originally worried we would

have to also somehow train the neural network to detect perspective

oansformation points or similar. Instead, we learned forthe first time how to use

a fully convolutional neural network, and it solvedthe problem.

35

tone potential iinprov’einent to the model c oul d be the u se ot a recurrent neuralnetw’ork

(IINN). "l“he current v’ers ion of our model uses an av’erapinp across fix e tr‹unes

to s inooih out an}’ is sues on a s indie tr.une detection , ours ide otthe act ual neural

netw’ork its elt . tin the other hand, a 11 NN w’ould be able to d irectl j’ I ook at prev’ious

fr‹unes in order to learn that w’hat n w detected in a prex’ious fr‹une matters to the

current triune. B}’ doing so, it w’ould potentially’ lose an}’ ot’ the iru re erratic

pred ict ions entirel y. We hav’e not ›’et u s ed a UN N architecture, but w’e plan to do

so ev’entuall j’ tor tuture projec ts .

J6

18

15

11

5

5

5

5

27

8
7

3

1

1

Road lane detection system
ORIGINALITY REPORT

%

SIMILARITY INDEX

18%
INTERNET SOURCES

8%
PUBLICATIONS

16%
STUDENT PAPERS

PRIMARY SOURCES

Submitted to Asian Institute of Technology
Student Paper %

towardsdatascience.com
Internet Source %

Submitted to Jaypee University of Information
Technology
Student Paper

github.com
Internet Source %

Satish Kumar Satti, K. Suganya Devi, Prasenjit
Dhar, P. Srinivasan. "A machine learning
approach for detecting and tracking road
boundary lanes", ICT Express, 2020
Publication

www.thushv.com
Internet Source %

www.coursehero.com
Internet Source %

1

2

3

4

5

6

7

3%

1%

http://www.thushv.com/
http://www.coursehero.com/

 8

 9

 10

 11

 12

 13

 14

 15

 16

Submitted to The NorthCap University,
Gurugram
Student Paper

Dezhi Gao. "A practical method of road
detection for intelligent vehicle", 2009 IEEE
International Conference on Automation and
Logistics, 08/2009
Publication

Submitted to Indian Institute of Management,
Bangalore
Student Paper

Submitted to Hudson Valley Community
College
Student Paper

www.journalijar.com
Internet Source

www.marktechpost.com
Internet Source

Yanyan Dai, Suk-Gyu Lee. "Perception,
Planning and Control for Self-Driving System
Based on On-board Sensors", Advances in
Mechanical Engineering, 2020
Publication

digital-library.theiet.org
Internet Source

marswebsolutions.files.wordpress.com
Internet Source

1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

http://www.journalijar.com/
http://www.marktechpost.com/

 17

 18

 19

 20

 21

 22

Ziqiang Sun. "Vision Based Lane Detection for
Self-Driving Car", 2020 IEEE International
Conference on Advances in Electrical
Engineering and Computer Applications(
AEECA), 2020
Publication

researchr.org
Internet Source

N. J. Zakaria, H. Zamzuri, M. H. Ariff1, M. I.
Shapiai, S. A. Saruchi, N. Hassan. "Fully
Convolutional Neural Network for Malaysian
Road Lane Detection", International Journal of
Engineering & Technology, 2018
Publication

"Artificial Intelligence Applications and
Innovations", Springer Science and Business
Media LLC, 2018
Publication

"Proceedings of the 9th International
Conference on Computer Engineering and
Networks", Springer Science and Business
Media LLC, 2021
Publication

Srdjan Sladojevic, Marko Arsenovic, Andras
Anderla, Dubravko Culibrk, Darko Stefanovic.

<1%

<1%

<1%

<1%

<1%

<1%

<1%

"Deep Neural Networks Based Recognition of
Plant Diseases by Leaf Image Classification",
Computational Intelligence and Neuroscience,
2016
Publication

Exclude quotes On

Exclude bibliography On

Exclude matches < 5 words

	Project report submitted in partial fulfilment of the requirement for the degree of Bachelor of Technology in
	Candidate’s Declaration

	ACKNOWLEDGEMENT
	TABLE OF FIGURES AND TABLES
	ABSTRACT
	Chapter-1 INTRODUCTION
	1.1 Introduction
	1.2 Problem Statement
	1.3 Objectives
	1.4 Procedure
	1.5.1 Datasets and inputs
	1.5.2 Data Preprocessing
	1.5.3 Image Statistics

	Chapter-2 LITERATURE SURVEY
	2.1 Summary of Papers
	2.1.2

	CHAPTER-3 SYSTEM DEVELOPMENT
	3.1 Algorithms and techniques
	3.2 Mathematical Model
	3.2.1 Convolutional Layer
	3.2.2 Pooling Layer:
	3.3 Implementation
	3.3.1 Refinement
	3.3.2 TENSORFLOW
	3.3.3 KERAS
	3.3.4 PYTHON
	3.4 Proposed approach

	CHAPTER-4 PERFORMANCE ANALYSIS
	4.1 Evaluation and Validation
	4.2 Justification

	CHAPTER-5 RESULTS
	5.1 The Final Model
	Detecting Lanes in a video

	CHAPTER-6 CONCLUSION
	6.1 More Visualizations
	6.1.2 Reflection
	6.1.3 Improvements and future work

	REFERENCES
	Works Cited

