
i

A Tool for representing Traffic

Congestion Mapping

Project Report submitted in partial fulfillment of the requirement

for the degree of

Bachelor of Technology

in

Computer Science & Engineering

under the Supervision of

Prof. Ravindara Bhatt

By

Kunal Chauhan (111250)

To

JAYPEE UNIVERSITY OF INFORMATION AND

TECHNOLOGY WAKNAGHAT, SOLAN – 173234,

HIMACHAL PRADESH, INDIA

ii

Certificate

This is to certify that project report entitled “Traffic Congestion Mapping”, submitted by

Kunal Chauhan in partial fulfillment for the award of degree of Bachelor of Technology in

Computer Science & Engineering to Jaypee University of Information Technology,

Waknaghat, Solan has been carried out under my supervision.

This work has not been submitted partially or fully to any other University or Institute for the

award of this or any other degree or diploma.

Date: Prof. Ravindara Bhatt

 Assistant Professor

iii

Acknowledgement

“The successful completion of any task would be incomplete without the support of the

people who made it all possible and whose constant guidance and encouragement secured

us the success.”

I feel proud and privileged in expressing my deep sense of gratitude to all those who have

helped me in presenting this assignment. I would like to express my sincere gratitude to

Mr. Ravindara Bhatt for his inspiration, constructive suggestions, mastermind analysis

and affectionate guidance in my work. It would have been impossible for me to complete

this project without his guidance.

Lastly, I would like to add my deepest gratitude for the entire faculty of Computer

Science Department of Jaypee University of Information Technology who helped me

in learning the basics properly and implementing them accurately on my project.

Date: Kunal Chauhan

iv

Table of Contents

S. No. Topic Page No

1. Introduction…………………..……………………………..……....… 1

1.1 What is Intelligent Transportation System (ITS)?……………...1

1.2 Problems/Challenges in ITS …………………………………...2

1.3 Applications of ITS …………………………………………….3

1.4 Motivation…….………………………………………………...4

1.5 Objectives………………………………………….....................5

1.6 Problem Statement……………………………………………...6

2. Theory……………………………………………………………..…....7

 2.1 Graph Theory………………….……………………….…..…..7

 2.2 Java and Object-Oriented Programming ………………..……..9

 2.3 Max-Flow Problem…………………………………………….9

3. Proposed Work…. …………………………………………....……….16

3.1 Simulation……………………………………………………...19

3.1.1 Map Construction………………………….………20

3.1.2 Color and Size for Nodes and Edges………...……21

3.1.3 Classes, Methods and Functions………… ...……..22

3.1.4 Algorithms Implemented……………… ..…………24

 DFS (Depth-First Search) Algorithm…………………...24

 Ford-Fulkerson Algorithm for Max Flow………………26

3.1.5 Traffic Generation………………… . ……………...29

3.1.6 Implementing Max-Flow Algorithm (Ford-Fulkerson

Algorithm)…………………………………………..31

3.2 UML Diagrams ……………………………………..…..……...33

3.2.1 Class Diagram ……………………………………...33

3.2.2 Use-Case Diagram………………….…………….....34

v

4. Observations and Results…………………………….…..................…..35

5. Conclusion and Future Work………………...………...….……………47

6. References……………………………………………...……………….48

vi

List of Figures

S. No. Title Page No

Fig 1.1 ITS developed by Google Traffic……...…………………………...……1

Fig 1.2 A Simple Graph……………………………...7

Fig 1.3 Graph Representation of a Road Map……………...……………............9

Fig 1.4 A graph showing edges with capacities………………………………….11

Fig 1.5 (a) A Actual Project Outlook……………………………...…………….17

Fig 1.5 (b) Sample graph that can be used to implement Max Flow …………..…17

Fig 1.6 Flowchart to demonstrate the proposed work……………………………18

Fig 1.7 Graph Representations in GraphStream…………………………………..20

Fig 1.8 A Graph to show DFS…….……………………………………....………24

Fig 1.9 A portion from the actual map graph of Chandigarh city………………...32

Fig 1.10 Class Diagram for Traffic Congestion Mapping………………………33

Fig 1.11 Use-Case Diagram for Traffic Congestion Mapping…………..……...34

Fig 1.12 Graph to show the roadmap of Chandigarh…………………………...35

Fig 1.13 Portion of the Roadmap……………………………………………….36

Fig 1.14 Graph to show the Random and Gaussian traffic comparison………….44

Fig 1.15(a) Dialog box to enter Start vertex ……………………………………...45

Fig 1.15(b) Dialog box to enter End vertex ……………………............................45

Fig 1.16 Graph showing all possible paths between A and D ……………………46

vii

List of Tables

S. No. Title Page No

Table 1.1 Solutions to solve Max-Flow problem……………………………12

Table 1.2 Steps involved in Ford-Fulkerson Algorithm…………………….27

Table 1.3 Incidence Matrix for the Roadmap……………………………….38

viii

Abstract

Intelligent Transportation Systems (ITS) are advanced applications which, without

embodying intelligence as such, aim to provide innovative services relating to different

modes of transport and traffic management and enable various users to be better informed

and make safer, more coordinated, and 'smarter' use of transport networks.

The project deals with “Traffic Congestion Mapping” which involves an approach to

build efficient traffic management systems which would further help in reducing traffic

problems and encourage safer transportation.

The framework used is a free, open-source software that provides a common and

extendible understanding for the analysis and visualization of data that can be represented

as a graph or network. Coding has been done on JAVA Platform and makes use of Graph

Stream which is a Java Application Programming Interface (API) and includes libraries

to support simulation of graphing algorithms. GraphStream is a graph handling Java

library that focuses on the dynamics aspects of graphs. Its main focus is on the modeling

of dynamic interaction networks of various sizes. The goal of the library is to provide a

way to represent graphs and work on it.

The interface would use a map represented in the form of nodes and edges. The graph

will therefore be used to generate traffic on the edges and finding all possible paths

between the source and the end vertices. A portion of the graph can therefore be used to

implement max flow problem by applying any of the algorithms and check for its optimal

functioning on the portion of the map. The algorithm helps us to determine the

augmenting paths along with the max flow generated along the start and end vertices.

1

1. INTRODUCTION

1.1 What is Intelligent Transportation System (ITS)?

A system where without actually using intelligence, we can aim to provide innovative

services relating to different modes of transport and traffic management. It therefore

enables various users to be better informed and make safer, more coordinated, and

smarter use of transport networks. Fig 1.1 represents an ITS developed by Google to

detect traffic and show it with different colors on the map so as to obtain paths with the

least traffic [1].

Fig 1.1 ITS developed by Google Traffic

A traffic congestion map is a graphical, real-time or near real-time representation of

traffic flow for some particular area. Data is typically collected via anonymous GPS data

points and loop sensors embedded in the roadways, then processed by computer at a

central facility and distributed as a map view to users .

Many websites, news channels and mobile apps show these maps to

help commuters avoid congested areas. Sometimes they are displayed directly to

motorists using electronic signs. Frequently these show conditions on highways, but

local streets can also be shown [12].

Similarly, the project Traffic Congestion Mapping involves the use of graph based

techniques to represent road maps in the form of graphs and represent actual traffic on its

http://en.wikipedia.org/wiki/Real_time_business_intelligence
http://en.wikipedia.org/wiki/GPS
http://en.wikipedia.org/wiki/Loop_sensor
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Map
http://en.wikipedia.org/wiki/Web_site
http://en.wikipedia.org/wiki/News_channel
http://en.wikipedia.org/wiki/Mobile_apps
http://en.wikipedia.org/wiki/Commuter
http://en.wikipedia.org/wiki/Electronic_sign
http://en.wikipedia.org/wiki/Highway
http://en.wikipedia.org/wiki/Street

2

edges or use synthetic traffic generating algorithms to map that traffic. The nodes can be

used to represent places on the graph while the edges can be used to represent the

connecting routes to each node.

The weight associated with each edge would represent the corresponding distance on the

roads or the graph. Traffic would be generated individually on each edge. Thereafter, we

can use shortest-path calculating algorithms to obtain the short route from source to the

destination nodes.

The path can therefore be highlighted to show the actual shortest path on the graph.

1.2 Problems/Challenges in ITS

 ITS Design Requirements: Rugged, Small and Certified: Transportation

solutions are most often housed outdoors or in moving vehicles, where exposure

to a variety of climates dictates the need to operate in extended temperatures and

to support the extremes of shock, vibration and humidity. In addition, space

restrictions require putting expanding functionality on ever-smaller board form

factors.

 Locomotive Data Video Recording (DVR) and Data Gateway: A leading

global supplier of technology solutions for railroads wanted to develop an

onboard locomotive video/audio capture system to aid in accident investigations

and provide safety training to crews. In addition to video and audio recording,

requirements for the system included remote monitoring and control, real-time

health monitoring and wireless video download.

The video can be stored on hard disk drives (HDD) and can be accessed for any

further use. The whole setup was too costly and complex which would not have

been implemented effectively.

 In order to be acceptable to public and private interests ITS applications must be

cost-effective, reliable, and easy to use and maintain. For public authorities, these

systems must be able to show increases in efficiency, reductions in environmental

3

pollution, and most importantly reductions in the number of accidents involving

injury and fatality.

 ITS applications that are perceived by the public to be hard to use or unsafe will

not be acceptable. Ensuring adequate consumer information and, if necessary,

training is also important although this must not exempt manufacturers from

accepting responsibility for their products [12].

1.3 Applications of ITS

 Emergency Vehicle Notification Systems

The in-vehicle eCall is an emergency call generated either manually by the

vehicle occupants or automatically via activation of in-vehicle sensors after an

accident. When activated, the in-vehicle eCall device will establish an emergency

call carrying both voice and data directly to the nearest emergency point. The

voice call enables the vehicle occupant to communicate with the trained eCall

operator. At the same time, a minimum set of data will be sent to the eCall

operator receiving the voice call.

 Automatic Road Enforcement

A traffic enforcement camera system, consisting of a camera and a vehicle-

monitoring device, is used to detect and identify vehicles disobeying a speed

limit or some other road legal requirement and automatically ticket offenders

based on the license plate number. Traffic tickets are sent by mail. Applications

include:

1. Speed cameras that identify vehicles traveling over the legal speed limit. Many

such devices use radar to detect a vehicle's speed or electromagnetic loops buried

in each lane of the road.

2. Red light cameras that detect vehicles that cross a stop line or designated stopping

place while a red traffic light is showing.

http://en.wikipedia.org/wiki/Camera
http://en.wikipedia.org/wiki/Vehicle
http://en.wikipedia.org/wiki/Speed_limit
http://en.wikipedia.org/wiki/Speed_limit
http://en.wikipedia.org/wiki/Speed_limit
http://en.wikipedia.org/wiki/Radar
http://en.wikipedia.org/wiki/Red_light_camera
http://en.wikipedia.org/wiki/Traffic_light

4

3. Bus lane cameras that identify vehicles traveling in lanes reserved for buses. In

some jurisdictions, bus lanes can also be used by taxis or vehicles engaged in car

pooling.

 Variable Speed Limits:

Recently some jurisdictions have begun experimenting with variable speed limits

that change with road congestion and other factors. Typically such speed limits

only change to decline during poor conditions, rather than being improved in

good ones.

 Collision Avoidance Systems:

Japan has installed sensors on its highways to notify motorists that a car is stalled

ahead [1][13].

1.4 Motivation

During the last few decades, the total number of vehicles around the world has grown. As

a result, huge traffic has led to congestion on roads. Therefore, traffic being a real life

problem tends to exist and needs to be managed. Based on the approach of ITS, several

tools and utilities can be developed that can help in reducing the traffic congestion on

roads as well as preventing some major accidents globally. The motivation for the project

has been taken from the Intelligent Transportation Systems, using which an interface to

represent road maps in terms of graphs can be made. The graphs can therefore be used to

generate random traffic which can in the form of actual traffic representation models.

Some of the types of traffic representation include Gaussian or Normal Traffic

representation or Poisson Traffic representation. Here we will try to use Gaussian traffic

as it is a popular approach toward traffic problem solving. Further, the shortest distance

between the start and destination can be obtained by applying the shortest path algorithm.

Shortest Path will be detected from the traffic data to guide the user through a path with

least traffic. However, by expanding the interface we can use it to offer better

visualization and develop an application based on it for better accessibility.

http://en.wikipedia.org/wiki/Bus_lane
http://en.wikipedia.org/wiki/Bus
http://en.wikipedia.org/wiki/Car_pooling
http://en.wikipedia.org/wiki/Car_pooling

5

1.5 Objectives

Some of the main objectives covered by this project are:

 Representation of actual road maps in the form of graphs and studying them to

solve traffic related problem.

 Simulation of synthetic traffic or random traffic by making use of traffic

distribution models like Gaussian or Poisson distribution.

 Efficient implementation of some graph related algorithms and to study the

optimization of those algorithms.

 Traffic generated can be used to detect congestion on the graph similar to

detecting congestion on the road maps.

 This approach can be used to simulate traffic related to other cities by

representing the road maps in the form of graphs.

6

1.6 Problem Statement

Developing a tool for Traffic Congestion Mapping to represent a map in the form a

graph, making use of Normal or Gaussian distribution to generate traffic on each edge

and using this congestion to show optimization by implementing max flow algorithm on

a particular portion of the map.

The map of a planned city can be used to represent a graph that exactly represents the

road structure of the actual map. The important stations can be represented as the nodes

while the edges can be used to connect the nodes. The weight of the edges can be used to

represent the approximate distance between two stations on the graph.

The Gaussian or Normal distribution can therefore be represented on the map along with

each edge. The value of capacity i.e. the number of vehicles between each pair of nodes

at a point of time is therefore determined by the Gaussian value. The capacity will also

show the average number of vehicles occupying the road at a point of time.

After obtaining this value of capacity, we use a portion of this graph to implement Max

Flow algorithm. The max flow algorithm that has been used here is the Ford-Fulkerson

Algorithm which basically determines the flow between the source and the destination

vertices entered by the user. It shows us whether there is any augmenting path associated

with the graph or not i.e. if we can increase its capacity beyond a certain value of not. By

implementing max flow on a small portion of the map of Chandigarh, we can get an

optimal result and further use the algorithm on the whole map to check its optimality.

7

2. THEORY

The theory related to the use of some terms on this project has been described briefly for

the proper understanding of the basics and to get proper knowledge of the project.

2.1 Graph Theory

Graphs (also known as networks) consist of a set of vertices, V, and a set of edges, E; the

number of vertices is denoted by |V | and the number of edges by |E|. Vertices (also

known as nodes) represent entities, and edges (also known as arcs, links, or ties), which

connect vertices, represent relationships or events which involve the entities that the

vertices represent. The number of edges incident to a vertex is called the degree of that

vertex. Graphs in which each edge has an associated numeric value (such as the number

of co-authored papers) are called weighted or valued graphs. One common graph subtype

is a k-partite graph (called a bipartite graph when k = 2), in which the vertices are

partitioned into k disjoint subsets, and each edge connects vertices in distinct partitions.

Fig 1.2 A Simple Graph

Most graphs contain edges that connects exactly two vertices; unless otherwise specified,

all graphs in this paper have this property. (Graphs in which edges can connect any

number of vertices are called hypergraphs, and their edges are called hyperedges.) An

8

edge which has a defined source and destination (such as one representing “A has cited

B”) are called directed edges; an edge which does not (such as one representing “A and B

have co-authored a paper” are called undirected edges. Graphs which contain both

directed and undirected edges are called mixed-type graphs. Two edges are said to be

parallel if they connect the same set of vertices and have the same direction/ordering.

A graph is said to be connected if each vertex is reachable from each other vertex; many

algorithms (such as centrality algorithms) are only well-defined on connected graphs. We

define the distance between two vertices to be the length of the shortest path (on the

underlying un-weighted graph) that connects them; in other contexts, the distance may

refer to the shortest weighted path.

 A network may contain entities of different types, or with different roles; it may also

include different types of relationships or events. These roles and interaction types are

collectively referred to as modes. A network which has one type of entity and one type of

relationship is called a single-modal network; if the network has more than one type of

entity, relationship, or both, it is called a multi-modal network [4][5].

A complex connection of nodes to edges can be used to obtain a large graph which in

turn could represent a road map. The Fig 1.3 shows the graph representation of a road

map.

The edges in the Fig 1.3 can be seen connecting the nodes which form an interconnecting

network representing a road map. The weights can be seen showing the distance of the

edges.

As it is important to maintain the topology of the graph and it is difficult to represent

circular edges with planar graphs, in this project we will be using the map of a planned

city. The city would be represented graphically with the help of nodes and edges. The

first part of the project involves building a graph out a map of a planned city.

9

Fig 1.3 Graph Representation of a Road Map

2.2 Java and Object-Oriented Programming

Java is an object-oriented programming language. This generally means that

programming involves:

(a) Defining object types and their capabilities, and

(b) Constructing objects and using their capabilities in aid of the desired tasks.

Object types are defined by interfaces and classes (which may implement one or more

inter-faces, and may extend (inherit behavior from, or be a subclass of) a single other

class). A particular object is said to be an instance of the types that it implements and

10

extends. Java defines a class called Object which is a superclass of all Java classes

(including, implicitly, any user-defined class). The specific behaviors and capabilities of

a class are defined by the implementation of that class’s methods; the types and ordering

of a method’s arguments define that method’s signature. Classes may be declared to be

abstract, in which case they need not supply implementations of each method that they

declare, and an instance of the class cannot be created; this can be useful for providing

implementations that are general enough to apply to most anticipated extensions of such a

class. Objects may contain references to other objects.

API (Application Programming Interface) is a common term for a software library,

especially one whose design philosophy emphasizes backwards compatibility as the

library evolves. The standard Java libraries, GraphStream and JUNG are APIs.

There are a few different Java APIs that can be used to create graphic user interfaces; two

of the most popular are Swing (Sun Microsystems (2004)) and SWT (Eclipse Foundation

(2001)).

2.3 Max-Flow Problem [9][10]

The maximum flow problem can be seen as a special case of more complex network flow

problems, such as the circulation problem.

Definition:

Let be a network with being the source and the sink of respectively.

The capacity of an edge is a mapping , denoted by or . It represents

the maximum amount of flow that can pass through an edge.

11

A flow is a mapping , denoted by or , subject to the following two

constraints:

1. , for each (capacity constraint: the flow of an edge cannot exceed

its capacity)

2. , for each (conservation of flows: the

sum of the flows entering a node must equal the sum of the flows exiting a node,

except for the source and the sink nodes).

The value of flow is defined by , where is the source of . It

represents the amount of flow passing from the source to the sink.

The maximum flow problem is to maximize , that is, to route as much flow as

possible from to .

Figure 1.4 shows a flow network, with source s and sink t. The numbers next to the edge

are the capacities.

Fig 1.4 A graph showing edges with capacities.

12

Solutions

We can define the Residual Graph, which provides a systematic way to search for

forward-backward operations in order to find the maximum flow.

Given a flow network , and a flow on , we define the residual graph of with

respect to as follows.

1. The node set of is the same as that of .

2. Each edge of is with a capacity of .

3. Each edge of is with a capacity of .

Given below are a few techniques, along with their complexities to solve the max flow

problem:

Method Complexity Description

Linear programming

Constraints given by the

definition of a legal flow.

Ford–Fulkerson algorithm O(E max| f |)

As long as there is an

open path through the

residual graph, send the

minimum of the residual

capacities on the path.

The algorithm works only

if all weights are integers.

Otherwise it is possible

that the Ford–Fulkerson

13

algorithm will not

converge to the maximum

value.

Edmonds–Karp algorithm O(VE2)

A specialization of Ford–

Fulkerson, finding

augmenting paths

with breadth-first search.

Dinic's blocking flow

algorithm
O(V2E)

In each phase the

algorithms builds a

layered graph

with breadth-first

search on the residual

graph. The maximum flow

in a layered graph can be

calculated in O(VE) time,

and the maximum number

of the phases is n-1. In

networks with unit

capacities, Dinic's

algorithm terminates

in time.

General push-relabel

maximum flow algorithm
O(V2E)

The push relabel

algorithm maintains a

preflow, i.e. a flow

function with the

possibility of excess in the

vertices. The algorithm

runs while there is a

14

vertex with positive

excess, i.e. an active

vertex in the graph. The

push operation increases

the flow on a residual

edge, and a height

function on the vertices

controls which residual

edges can be pushed. The

height function is changed

with a relabel operation.

The proper definitions of

these operations guarantee

that the resulting flow

function is a maximum

flow.

Push-relabel

algorithmwithFIFO vertex

selection rule

O(V3)

Push-relabel algorithm

variant which always

selects the most recently

active vertex, and

performs push operations

until the excess is positive

or there are admissible

residual edges from this

vertex.

Dinic's algorithm O(VE log(V))

The dynamic trees data

structure speeds up the

maximum flow

computation in the layered

15

graph to O(Elog(V)).

Push-relabel algorithm

with dynamic trees
O(VE log(V2/E))

The algorithm builds

limited size trees on the

residual graph regarding

to height function. These

trees provide multilevel

push operations.

Binary blocking flow

algorithm[8]

The value U corresponds

to the maximum capacity

of the network.

Table 1.1 Solutions to solve Max-Flow Problem

However, some of these techniques are complex to implement. So, we shall mainly focus

on Ford-Fulkerson Algorithm to detect the max flow.

http://en.wikipedia.org/wiki/Maximum_flow_problem#cite_note-8

16

3. PROPOSED WORK

The main requirement of the project is representation of traffic on a graph that represents

the actual map of a city. This means that we need to model a map by converting it into a

graph. After we have the graph, we can use its edges to represent the actual network of

roads connecting the nodes. The traffic shall be generated using one of the random traffic

generation methods mainly by Gaussian distribution thereby assigning each edge a

random amount of traffic. Lastly, after having the traffic and distance values, the user

shall enter the source and destination points looking at the graph. Thereafter, shortest

path algorithm mainly Depth-First Search will be used to find all possible paths between

the source and destination vertex. Next, we are going to focus on optimization by

implementing the Max-flow problem mainly by using the Ford-Fulkerson Algorithm.

Here, we shall be taking a portion of the map and using it to detect the augmenting paths

as well as the flow between the source and the destination vertices. This will help us

prove that the project works optimally by implementing the Ford-Fulkerson Algorithm.

In first part of the project main emphasis has been laid on map construction. The random

traffic generation and implementation of Max-Flow Problem will be covered in the next

part of the project. Below in the figure 1.5 (a) there can be seen a highlight of the work

done on the project where I have successfully been able to construct the map and find out

all possible paths between the source and the destination vertices.

17

Fig 1.5 (a) The Actual Project Outlook

For random traffic generation we have used Gaussian distribution which generates

Gaussian values of traffic on each edge at each execution. Further, these traffic values

can be used to calculate congestion on each edge, which will help us implement the max

flow problem to check for optimization. In figure1.5 (b) we can a portion of the map

which can be used to implement max flow algorithm.

Fig 1.5 (b) Sample graph that can be used to implement Max Flow

18

Given below is the flowchart to demonstrate the proposed work.

Fig 1.6 Flowchart to demonstrate the proposed work

19

3.1 Simulation

For simulating the graph, GraphStream has been used. GraphStream is a graph handling

Java library that focuses on the dynamics aspects of graphs. Its main focus is on the

modeling of dynamic interaction networks of various sizes.

The goal of the library is to provide a way to represent graphs and work on it. To this

end, GraphStream proposes several graph classes that allow to model directed and

undirected graphs, 1-graphs or p-graphs (a.k.a. multigraphs, that are graphs that can have

several edges between two nodes).

GraphStream allows storing any kind of data attribute on the graph elements: numbers,

strings, or any object.

Moreover, in addition, GraphStream provides a way to handle the graph evolution in

time. This means handling the way nodes and edges are added and removed, and the way

data attributes may appear, disappear and evolve.

In order to handle dynamic graphs, the library defines in addition to graph structures the

notion of "stream of graph events", which as you guessed, is at the origin of the library

name. The number of events is restricted they are:

 Node addition,

 Node removal,

 Edge addition,

 Edge removal,

 Graph/node/edge attributes addition,

 Graph/node/edge attributes change,

 Graph/node/edge attributes removal.

 Step

Inside the library, a lot of components can generate such streams of events. These

components are called sources. Other components can receive these events and process

them; they are in fact very comparable to listeners, a concept widely used in the Java

world. We call such components sinks.

20

 When a component is able to both receive graph events (sink) and produce them

(source) we call it a pipe. The graph structures in GraphStream are pipes. There

are many kinds of pipes that can act as filter removing some events, or adding

more events, or allowing crossing the network, or communicating between

threads. Fig 1.5 shows the graph representations in GraphStream [4].

Fig 1.7 Graph Representations in GraphStream

3.1.1 Map Construction

Taking the map of planned city i.e. Chandigarh, I made a graph by looking at the actual

map of Chandigarh and constructed the nodes which represented the main places of

Chandigarh. The edges were constructed according to the roads joining the respective

places marked as nodes. GraphStream is used to represent the actual graph which is the

replica of the actual map of Chandigarh.

In order to construct the graph, GraphStream makes use of some libraries which include

certain methods to construct the graph of desired size and complexity. The libraries are:

 gs-core-1.2 It is a core library which contains the main methods than run in

GraphStream.

 gs-algo-1.2 It is used to implement graph algorithms on the constructed graphs.

21

 gs-ui-1.2 It is used to associate styling and customization in the graph. It makes

use of a Cascading Style Sheet (CSS) file to obtain the desired color and size of

the nodes and the edges.

The graph representation of Chandigarh looks mostly like a graph in the form of a grid

where all nodes can be reached through every other. Fig 1.8 shows the graph

representation of Chandigarh city. From the figure it can be noticed that the edges have a

label which represents the lane name while the weights are used to show the estimated

distance.

The coordinates for the nodes are entered in a text file which is used as an input by the

program. The text file contains the coordinates and the node names and the combination

of nodes to create the edges along with the weight.

String Handling is used to split the string in the text file and obtain the coordinates as

well as the nodes and edges.

3.1.2 Color and Size for Nodes and Edges (using Cascading Style Sheet)

The color as well as the size of the nodes and edges is defined in a CSS file that can be

edited to use colors and font size of desired type. The gs-ui-1.2 library contains methods

that fetch the inputs from the CSS file and apply it on the graph. The CSS file contains

classes to define the attributes of the graph to show different graphical representations

after applying certain algorithms.

22

3.1.3 Classes, Methods and Functions

3.1.3.1 Classes

The program contains three classes namely:

1. FileCoord: This class contains methods to fetch the coordinates for the text file,

apply string handling on the file, convert the string values to integer (if required)

and plot the graph using the defined coordinates. It also obtains the input from the

user and uses it in the methods to highlight all possible paths between two

vertices. It also uses the GraphGenerator class construct the graph by adding

every node and edge in the desired position and constructing the whole graph to

represent a map.

2. GraphGenerator: This class contains the methods to add each node and edge to

the graph and build the connection between the vertices. It is also used to define a

bi-directional relationship between two nodes and check whether each node is

connected to the other by an edge.

3. Search: The search class implements the Depth-First Search Algorithm by

applying it on the constructed graph and and reconstructing the path using the

visited nodes after successful implementation of the algorithm. This class consists

of methods to find out all possible paths between the start and the destination

vertices.

4. MaxFlowFordFulkerson: This class contains the code for implementing Ford-

Fulkerson Algorithm on the portion of the graph taking from the original graph of

Chandigarh city. It contains methods to find out all augmenting paths between the

source and the destination vertices of the specified graph. Further, it makes use of

the Gaussian random capacities of the traffic values to detect max flow between

the specified vertices. The functions of this class are accessed through objects in

the main file. The node structure used to store the vertices is a Hashmap that maps

23

each key-value pair. Adjacency List is used to store the capacities of the edges

and called in the Ford-Fulkerson Algorithm to detect max flow between the

specified vertices.

3.1.3.2 Methods and Functions

The three classes contain the following methods which perform the following operations:

1. findAllPaths This method is used to find all the path between the source and the

destination nodes by making use of the Depth-First Search Algorithm.

2. highlightPath This method fetches the styling attributes to be applied on the

graph from the CSS file and applies it on the graph.

3. addNode This method adds each node to the graph at the defined coordinate.

4. addEdge This method adds each edge can connects it to the nodes.

5. addTwoWayVertex This method constructs a bidirectional relationship between

two nodes to show the two way traffic lanes.

6. isConnected This method checks that every node is connected to each other with

a defined edge.

7. DepthFirst This method is used to calculate all possible distances between the

start and end vertex entered by the user.

8. constructPath This method constructs the path traversed using the Depth-First

Search and highlights it.

9. FindPath This method makes use of the capacities and uses them to calculate the

augmenting paths between the start and end vertices.

24

3.1.4 Algorithms Implemented

Some algorithms have been implemented to carry out searching and perform path

traversal to and from nodes. The max flow problem is also solved using the Foed-

Fulkerson Algorithm.

3.1.4.1 Depth-First Search (DFS) Algorithm

Depth-first search (DFS) [6] is an algorithm for traversing or searching tree or graph data

structures. One starts at the root (selecting some arbitrary node as the root in the case of a

graph) and explores as far as possible along each branch before backtracking.

An Example

For the following graph shown in Fig 1.6:

Fig 1.8 A graph to demonstrate DFS

A depth-first search starting at A, assuming that the left edges in the shown graph are

chosen before right edges, and assuming the search remembers previously visited nodes

and will not repeat them (since this is a small graph), will visit the nodes in the following

order: A, B, D, F, E, C, G. The edges traversed in this search form a Trémaux tree, a

structure with important applications in graph theory.

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Tree_data_structure
http://en.wikipedia.org/wiki/Graph_(data_structure)
http://en.wikipedia.org/wiki/Tree_(data_structure)#Terminology
http://en.wikipedia.org/wiki/Backtracking
http://en.wikipedia.org/wiki/File:Graph.traversal.example.svg

25

Performing the same search without remembering previously visited nodes results in

visiting nodes in the order A, B, D, F, E, A, B, D, F, E, etc. forever, caught in the A, B,

D, F, E cycle and never reaching C or G.

Pseudocode

Input: A graph G and a vertex v of G

Output: All vertices reachable from v labeled as discovered

A recursive implementation of DFS:

1 procedure DFS (G,v):

2 label v as discovered

3 for all edges from v to w in G.adjacentEdges(v) do

4 if vertex w is not labeled as discovered then

5 recursively call DFS(G,w)

A non-recursive implementation of DFS:

1 procedure DFS-iterative(G,v):

2 let S be a stack

3 S.push(v)

4 while S is not empty

5 v ← S.pop()

26

6 if v is not labeled as discovered:

7 label v as discovered

8 for all edges from v to w in G.adjacentEdges(v) do

9 S.push(w)

These two variations of DFS visit the neighbors of each vertex in the opposite order from

each other: the first neighbor of v visited by the recursive variation is the first one in the

list of adjacent edges, while in the iterative variation the first visited neighbor is the last

one in the list of adjacent edges. The non-recursive implementation is similar

to breadth-first search but differs from it in two ways:

 It uses a stack instead of a queue, and

 It delays checking whether a vertex has been discovered until the vertex is popped

from the stack rather than making this check before pushing the vertex.

3.1.4.2 Ford-Fulkerson Algorithm

The Ford–Fulkerson method or Ford–Fulkerson algorithm (FFA)[8][11]is

an algorithm which computes the maximum flow in a flow network. It is called a

"method" instead of an "algorithm" as the approach to finding augmenting paths in a

residual graph is not fully specified or it is specified in several implementations with

different running times It was published in 1956 by L. R. Ford, Jr. and D. R.

Fulkerson The name "Ford–Fulkerson" is often also used for the Edmonds–Karp

algorithm, which is a specialization of Ford–Fulkerson.

The idea behind the algorithm is as follows:

As long as there is a path from the source (start node) to the sink (end node), with

available capacity on all edges in the path, we send flow along one of the paths. Then we

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Maximum_flow_problem
http://en.wikipedia.org/wiki/Flow_network
http://en.wikipedia.org/wiki/L._R._Ford,_Jr.
http://en.wikipedia.org/wiki/D._R._Fulkerson
http://en.wikipedia.org/wiki/D._R._Fulkerson
http://en.wikipedia.org/wiki/Edmonds%E2%80%93Karp_algorithm
http://en.wikipedia.org/wiki/Edmonds%E2%80%93Karp_algorithm

27

find another path, and so on. A path with available capacity is called an augmenting

path.

Algorithm:

Let be a graph, and for each edge from to , let be the capacity

and be the flow. We want to find the maximum flow from the source to the

sink . After every step in the algorithm the following is maintained:

Capacity

constraints

The flow along an edge

can not exceed its

capacity.

Skew

symmetry:

The net flow from

 to must be the

opposite of the net flow

from to (see

example).

Flow

conservation:

That is, unless is

 or . The net flow to a

node is zero, except for

the source, which

"produces" flow, and the

sink, which "consumes"

flow.

Value(f):

That is, the flow leaving

from must be equal to

the flow arriving at .

Table 1.2 Steps involved in Ford-Fulkerson Algorithm

This means that the flow through the network is a legal flow after each round in the

algorithm. We define the residual network to be the network with

capacity and no flow. Notice that it can happen that a

flow from to is allowed in the residual network, though disallowed in the original

network: if and

then .

http://en.wikipedia.org/wiki/Augmenting_path
http://en.wikipedia.org/wiki/Augmenting_path

28

Algorithm - Ford–Fulkerson

Inputs Given a Network with flow capacity , a source node , and a

sink node

Output Compute a flow from to of maximum value

 for all edges

 While there is a path from to in , such that for all

edges :

1. Find

2. For each edge

o (Send flow along the path)

o (The flow might be "returned" later)

The path in step 2 can be found with for example a breadth-first search or a depth-first

search in . If you use the former, the algorithm is called Edmonds–Karp.

When no more paths in step 2 can be found, will not be able to reach in the residual

network. If is the set of nodes reachable by in the residual network, then the total

capacity in the original network of edges from to the remainder of is on the one

hand equal to the total flow we found from to , and on the other hand serves as an

upper bound for all such flows. This proves that the flow we found is maximal. See

also Max-flow Min-cut theorem.

If the graph has multiple sources and sinks, we act as follows: Suppose

that and . Add a new source with

an edge from to every node , with

capacity . And add a new sink with an

edge from every node to , with

capacity . Then apply the Ford–Fulkerson

algorithm.

http://en.wikipedia.org/wiki/Breadth-first_search
http://en.wikipedia.org/wiki/Depth-first_search
http://en.wikipedia.org/wiki/Depth-first_search
http://en.wikipedia.org/wiki/Edmonds%E2%80%93Karp_algorithm
http://en.wikipedia.org/wiki/Max-flow_min-cut_theorem

29

Also, if a node has capacity constraint , we replace this node with two

nodes , and an edge , with capacity . Then

apply the Ford–Fulkerson algorithm.

3.1.5 Traffic Generation

There are various ways of representing traffic. These days, satellites have sensors to

monitor traffic by pointing out the geometric location of the vehicles and simulate them

on the maps. But as we are using graphs to show similar kind of simulation, we will make

use of random traffic to project traffic on the roadmap and use that traffic to find out

congestion on the roads or edges. The main method of representing traffic is through

Poisson distribution but here we are using Gaussian distribution to represent the traffic.

Gaussian of Normal distribution is finding use in traffic representation and is used by

many developers to simulate actual traffic data.

The traffic has been associated along each edge. Random class in Java makes it easy to

use the random function. The random () function has been used to create an object which

further has been used to access the value assigned to the random function parameter.

RandomGaussian class has been used to create random Gaussian values associated with

each edge. It contains the method getGaussian () that makes use of the mean and variance

to calculate Gaussian values. The rand variable stores the randomly generated Gaussian

values each time they are generated. Gaussian is also an object of class RandomGaussian

that is used to access the method getGaussian () [7].

The assumption that has been made here is that each lane of the road i.e. left and right

sides have vehicles between the range 1-100 at a point of time. The value keeps on

changing at each execution depending on what the Gaussian value is generaed. Therefore,

at each execution the value of the vehicles at each edge or lane is random and lies

between 1-100.

30

On researching on the project, I found out that the average width of the highways of

Chandigarh lies between 21.1 meters to 32.4 meters. This value has been used to

calculate the area of the road between each pair of node at each execution. The value

consists the width of the main highways and the street lanes as not clearly shown on the

map.

The method r.nextDouble() is used to generate each random value between the given

ranges. The width of the lane can be calculated as given in the formula below:

Width= (r.nextDouble()*10) + 21.1

The area of the road between each pair of nodes can be calculated by the formula:

Area = length * width

This value of the area can further be multiplied with the random Gaussian value

generated for the number of vehicles to obtain the amount of congestion on each lane at a

point of time or the amount of road occupied by the vehicles. This also determines the

average number of vehicles at a particular stretch of the road or on a particular edge.

The amount of congestion can be calculated by using the formula given below:

Congestion = (100 - rand) * ((int)e.getNumber("length") * width) / 100)

In the end we get the amount of area occupied by the vehicles. This value can also be

expressed to show the lane with the least/most amount of congestion on the map which

can be obtained by the formula given below:

Amount of congestion= 1 – 1/[(length*width)*(1/rand)]

31

In the end, both the values can be used to find the path which is the shortest for the user

to follow.

The implementation of this part has been done in the Filecoord.java class. So, each time

the program is executed the nodes and the edges are fetched from the text file and a new

map is created with new values of vehicles between the lanes at a particular point of time.

So, this makes it as a real-life implementation of the actual representation of maps in the

form of graphs and using those graphs to feed actual traffic data. This data, besides being

represented on the map can be fed to various other applications to check their optimality

using Max-Flow Algorithm.

Thereafter, viewing the congestion on the maps, the user can implement the max flow

algorithm to check its optimal functioning on the portion of the graph.

3.1.6 Implementing Max-Flow Algorithm (Ford-Fulkerson Algorithm)

After generating traffic using Gaussian distribution, the original graph can be used to find

out all possible paths based on the input entered by the user to choose the source and

destination.

A portion of the graph has been used to implement the Max-Flow problem for which we

have used the Ford-Fulkerson Algorithm to find out all the augmenting paths between the

source and destination vertices and to check the graph for max flow between the two

vertices. Given below is the graph on which the Ford-Fulkerson Algorithm has been

implemented.

32

Fig 1.9 A portion from the actual map graph of Chandigarh city

The congestion variable stores the value of the average number of vehicles on each edge

at a particular time which also represents the capacities associated with edge. This value

is extracted and stored in an adjacency list from where the capacities are used to find out

the augmenting path. These values are used in the Ford-Fulkerson Algorithm to calculate

the max flow between the start and end vertices.

33

3.2 UML Diagrams

3.2.1 Class Diagram

A Class Diagram in the Unified Modeling Language (UML) is a type of static structure

diagram that describes the structure of a system by showing the system's classes, their

attributes, operations (or methods), and the relationships among objects.

In the diagram, classes are represented with boxes which contain three parts:

 The top part contains the name of the class. It is printed in bold and centered, and the

first letter is capitalized.

 The middle part contains the attributes of the class. They are left-aligned and the first

letter is lowercase.

 The bottom part contains the methods the class can execute. They are also left-

aligned and the first letter is lowercase.

Fig 1.9 shows the class diagram to represent the traffic congestion mapping model.

Fig 1.10 Class Diagram for Traffic Congestion Mapping

http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Class_(computer_science)

34

3.2.2 Use-Case Diagram

A Use-Case Diagram at its simplest is a representation of a user's interaction with the

system and depicting the specifications of a use case. A use case diagram can portray the

different types of users of a system and the case and will often be accompanied by other

types of diagrams as well.

Fig 1.10 shows the use-case diagram with the actors and the system model for Traffic

Congestion Mapping.

Fig 1.11 Use-Case Diagram for Traffic Congestion Mapping

http://en.wikipedia.org/wiki/Use_Case

35

5. OBSERVATIONS AND RESULTS

The text file coord.txt is used to get the information of the position of the coordinates

and their connection using the edges. By making use of String Handling to separate

the values of the coordinates as well as the nodes and edges, GraphStream constructs

a graph of the city Chandigarh. Fig 1.11 shows the actual representation of the map in

the form of a graph.

Fig 1.12 Graph to show the roadmap of Chandigarh

36

Given below is a sample text file that has been created for a portion of the map to apply

the Ford-Fulkerson algorithm. Given below is the portion of the roadmap, on which the

Ford-Fulkerson Algorithm has been implemented.

Fig 1.13 Portion of the Roadmap

Given below is the text file that contains the coordinates of the edges and the nodes

which are used to define and display the map shown in Fig 1.12.The file Maxgraph.txt

contains the nodes with the coordinates and again we have used string handling split the

coordinates from the label [3].

Maxgraph.txt

 2,6 AQ

 1,4 AR

 3,7 AS

 2,4 AT

 5,9 AU

 6,9 AV

37

 3,2 AW

 3,8 AY

 4,5 AZ

 6,3 BH

 5,7 BI

 8,3 BJ

 7,3 BK

 7,4 BL

 9,2 CB

 7,5 CC

 Edges

 BH CB 6 MadhyaMarg

 CB CC 9 Udyan

 CC AT 7 MadhyaMarg

 AT BH 3 Udyan

 BL CB 10 MadhyaMarg

 BL AZ 12 Udyan

 AZ CC 9 Udyan

 BL BK 5 JanMarg

 BK AY 10 JanMarg

 AY AZ 6 ShantiPath

 AT AS 13 MadhyaMarg

 AS AW 5 MadhyaMarg

 AW AZ 6 MadhyaMarg

 AW AR 6 MadhyaMarg

 AR AU 14 DakshinMarg

 AU AY 9 Dakshin

 AU AV 12 JanMarg

 AV BI 8 ShantiPath

 BI BJ 7 Udyan

38

 BJ AU 9 ShantiPath

 AR AQ 10 MadhyaMarg

 AQ AV 14 Dakshin

Given below is the incidence matrix that shows the connection of the nodes with the

edges.

 AQ AR AS AT AU AV AW AY AZ BH BI BJ BK BL CB CC

AQ 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

AR 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

AS 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

AT 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

AU 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

AV 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

AW 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0

AY 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

AZ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

BH 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

BI 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

BJ 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

BK 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

BL 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0

CB 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1

CC 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Table 1.3 Incidence Matrix for the Roadmap

39

However, the value of the traffic generated corresponding to each edge is displayed when

the program is executed. Given below the value of traffic generated along each edge.

Note that the value of traffic generated is Gaussian in nature and has been rounded off to

the nearest integer value. Also, the value of traffic is random and new on each execution.

o 0 BHCB (9,14) , Traffic = 34

o 1 CBBH (14,9) , Traffic = 34

o 2 CBCC (14,15) , Traffic = 75

o 3 CCCB (15,14) , Traffic = 75

o 4 CCAT (15,3) , Traffic = 66

o 5 ATCC (3,15) , Traffic = 66

o 6 ATBH (3,9) , Traffic = 69

o 7 BHAT (9,3) , Traffic = 69

o 8 BLCB (13,14) , Traffic = 56

o 9 CBBL (14,13) , Traffic = 56

o 10 BLAZ (13,8) , Traffic = 47

o 11 AZBL (8,13) , Traffic = 47

o 12 AZCC (8,15) , Traffic = 67

o 13 CCAZ (15,8) , Traffic = 67

o 14 BLBK (13,12) , Traffic = 42

o 15 BKBL (12,13) , Traffic = 42

o 16 BKAY (12,7) , Traffic = 50

o 17 AYBK (7,12) , Traffic = 50

o 18 AYAZ (7,8) , Traffic = 46

o 19 AZAY (8,7) , Traffic = 46

o 20 ATAS (3,2) , Traffic = 49

o 21 ASAT (2,3) , Traffic = 49

o 22 ASAW (2,6) , Traffic = 34

o 23 AWAS (6,2) , Traffic = 34

o 24 AWAZ (6,8) , Traffic = 38

o 25 AZAW (8,6) , Traffic = 38

40

o 26 AWAR (6,1) , Traffic = 59

o 27 ARAW (1,6) , Traffic = 59

o 28 ARAU (1,4) , Traffic = 45

o 29 AUAR (4,1) , Traffic = 45

o 30 AUAY (4,7) , Traffic = 58

o 31 AYAU (7,4) , Traffic = 58

o 32 AUAV (4,5) , Traffic = 48

o 33 AVAU (5,4) , Traffic = 48

o 34 AVBI (5,10) , Traffic = 81

o 35 BIAV (10,5) , Traffic = 81

o 36 BIBJ (10,11) , Traffic = 36

o 37 BJBI (11,10) , Traffic = 36

o 38 BJAU (11,4) , Traffic = 40

o 39 AUBJ (4,11) , Traffic = 40

o 40 ARAQ (1,0) , Traffic = 25

o 41 AQAR (0,1) , Traffic = 25

o 42 AQAV (0,5) , Traffic = 61

o 43 AVAQ (5,0) , Traffic = 61

The program is executed and the graph is formed by fetching the coordinates from the

file specified above. The congestion parameters are computed and displayed along with

the graph. The values of congestion are displayed in the output window as shown below:

o 0 BHCB (9,14) , Congestion = 83

o 1 CBBH (14,9) , Congestion = 83

o 2 CBCC (14,15) , Congestion = 53

o 3 CCCB (15,14) , Congestion = 53

o 4 CCAT (15,3) , Congestion = 69

o 5 ATCC (3,15) , Congestion = 69

o 6 ATBH (3,9) , Congestion = 27

o 7 BHAT (9,3) , Congestion = 27

41

o 8 BLCB (13,14) , Congestion = 105

o 9 CBBL (14,13) , Congestion = 105

o 10 BLAZ (13,8) , Congestion = 143

o 11 AZBL (8,13) , Congestion = 143

o 12 AZCC (8,15) , Congestion = 60

o 13 CCAZ (15,8) , Congestion = 60

o 14 BLBK (13,12) , Congestion = 87

o 15 BKBL (12,13) , Congestion = 87

o 16 BKAY (12,7) , Congestion = 126

o 17 AYBK (7,12) , Congestion = 126

o 18 AYAZ (7,8) , Congestion = 70

o 19 AZAY (8,7) , Congestion = 70

o 20 ATAS (3,2) , Congestion = 154

o 21 ASAT (2,3) , Congestion = 154

o 22 ASAW (2,6) , Congestion = 96

o 23 AWAS (6,2) , Congestion = 96

o 24 AWAZ (6,8) , Congestion = 82

o 25 AZAW (8,6) , Congestion = 82

o 26 AWAR (6,1) , Congestion = 68

o 27 ARAW (1,6) , Congestion = 68

o 28 ARAU (1,4) , Congestion = 191

o 29 AUAR (4,1) , Congestion = 191

o 30 AUAY (4,7) , Congestion = 89

o 31 AYAU (7,4) , Congestion = 89

o 32 AUAV (4,5) , Congestion = 184

o 33 AVAU (5,4) , Congestion = 184

o 34 AVBI (5,10) , Congestion = 39

o 35 BIAV (10,5) , Congestion = 39

o 36 BIBJ (10,11) , Congestion = 95

o 37 BJBI (11,10) , Congestion = 95

o 38 BJAU (11,4) , Congestion = 156

42

o 39 AUBJ (4,11) , Congestion = 156

o 40 ARAQ (1,0) , Congestion = 199

o 41 AQAR (0,1) , Congestion = 199

o 42 AQAV (0,5) , Congestion = 153

o 43 AVAQ (5,0) , Congestion = 153

However, the User has to enter the values of the source and the destination vertices by

looking at the mapping of the nodes in the Hashmap. The output window displays the

map –value associated with each node as shown below:

 AQ Map = 0

 AR Map = 1

 AS Map = 2

 AT Map = 3

 AU Map = 4

 AV Map = 5

 AW Map = 6

 AY Map = 7

 AZ Map = 8

 BH Map = 9

 BI Map = 10

 BJ Map = 11

 BK Map = 12

 BL Map = 13

 CB Map = 14

 CC Map = 15

In the end, after successful implementation of the algorithm, we find out all the

augmenting paths between the source and the destination and also get the final max flow

value. The augmenting paths can be used to practically solve the Ford-Fulkerson problem

to check the correct functioning of the algorithm.

43

The augmenting paths obtained for the graph shown in figure 1.8 are:

 Flow increased By 127 Augmenting path is 4->1->0

 Flow increased By 105 Augmenting path is 4->5->0

 Flow increased By 21 Augmenting path is 4->11->10->5->0

However, for each execution the paths come out to be different due to the different values

of capacities generated along each edge due to random Gaussian distribution.

The end result would show the final flow value as shown below:

 Max Flow =253

In the end we can infer that if the algorithm is working optimally for a portion of the

graph, it would work optimally even by taking the whole graph of the city of Chandigarh

thereby showing the correctness of the algorithm and its successful implementation on

the project model.

Also, the comparison can be made by generating random traffic and then comparing it

with the Gaussian values of traffic, which acts as a capacity for the max flow

implementation. Given below is a graph to show the comparison between the random and

Gaussian values of traffic.

44

Fig 1.14 Graph to show the Random and Gaussian traffic comparison

4.1.2 User Input

On execution of the program, the max flow along with the augmenting paths and the

mapped values of the nodes is displayed on the output screen. These mapped values can

be used to determine the start and the end vertices as per the value of the node stored in

the Hashmap. Each time the User wants to change the start and end vertices, he has to

look for the specific value of the node on the Hashmap and enter it in the function.

In order to display all possible paths between the source and the destination, the User is

prompted to enter the start and end vertices which are fed to the Depth-First Search

Algorithm. Fig 1.12(a) and Fig 1.12(b) show the two dialog boxes where the User enters

the input.

0

20

40

60

80

100

120

(9
,1

4
)

(1
4

,1
5

)

(1
5

,3
)

(3
,9

)

(1
3

,1
4

)

(1
3

,8
)

(8
,1

5
)

(1
3

,1
2

)

9
1

2
,7

)

(7
,8

)

(3
,2

)

(2
,6

)

(6
,8

)

(6
,1

)

(1
,4

)

(4
,7

)

(4
,5

)

(5
,1

0
)

(1
0

,1
1

)

(1
1

,4
)

(1
,0

)

(0
,5

)

Random

Gaussian

45

Fig 1.15(a) Dialog box to enter Start vertex

Fig 1.15(b) Dialog box to enter End vertex

After successful execution of the DFS algorithm we can see the all possible paths

between the starting and the end vertex are highlighted. Fig 1.13 shows all possible paths

between the nodes A and D highlighted with red color. The coloring has been shown

using the Cascading Style Sheets as discussed above.

46

Fig 1.16 Graph showing all possible paths between A and D

Thus, as a result I was able to generate a graph of the map of the city Chandigarh and was

successfully able to calculate all the possible paths between the source and destination

vertices entered by the User.

Thereafter, I made use of Gaussian distribution to represent the traffic randomly on each

edge and calculated congestion associated with each edge. The congestion value was

further fed to the Max Flow function and used to detect all the augmenting paths and max

flow between the entered vertices thereby highlighting successful implementation of the

algorithm on the project.

47

6. CONCLUSION AND FUTURE WORK

Graphs can be used to represent road maps which can further be used to analyze and

build traffic management systems. They can help in analyzing traffic conditions and

choosing routes accordingly. In the form of an application, this can be used a tool to help

users fight traffic conditions in daily life. Traffic being a real-time problem would tend to

exist so, we need to develop tools to helps reduce heavy traffic conditions which would

further lead to less accidents and coordinated traffic on every road.

The following project on Traffic Congestion Mapping can be expanded for:

 Developing Intelligent Transportation Systems that can efficiently manage traffic

and help in avoiding traffic problems.

 The interface can be used to build a mobile application which would be a utility

tool for the users which they can carry in their pockets and use in heavy traffic

conditions.

 Integrating the module with better designing methods so as to provide a user-

friendly interface. This will also help in providing more accuracy and

dependability on the application or program.

 The congestion values combined with the distance of each edge, can be used to

form a combination to find out the least distance and least traffic between the start

and end points. Thus, helping people to get through heavy traffic easily and to

avoid wastage of time.

48

7. REFERENCES

1. Grier N., Chabini L.,” A new approach to compute minimum time path trees in

FIFO time dependent networks in Intelligent Transportation Systems”,

Proceedings of the IEEE 5th International Conference,IEEE, 2002, 485-490.

2. Ben Alexander Wuest and Darka Mioc, ”Visualization and modeling of traffic

congestion in urban environments”, 10th AGILE International Conference on

Geographic Information Science,2007,10

3. William Kocay, Donald L. Krehe, ”Paths and Walks”, Graphs, Algorithms, and

Optimization,2005,CRC Press,469.

4. http://graphstream-project.org/doc/Tutorials

5. http://en.wikipedia.org/wiki/Graph_theory

6. http://en.wikipedia.org/wiki/Depth-first_search

7. http://en.wikipedia.org/wiki/Normal_distribution

8. http://en.wikipedia.org/wiki/Ford%E2%80%93Fulkerson_algorithm

9. http://graphstream-project.org/api/gs-algo/org/graphstream/algorithm/class-

use/Algorithm.html#org.graphstream.algorithm.flow

10. http://graphstream-project.org/api/gs-

algo/org/graphstream/algorithm/flow/FlowAlgorithm

11. http://graphstream-project.org/api/gs-

algo/org/graphstream/algorithm/flow/FordFulkersonAlgorithm

12. en.wikipedia.org/wiki/Intelligent_transportation_system

13. Kashif Naseer Qureshi and Abdul Hanan Abdullah, “A Survey on Intelligent

Transportation Systems”, Middle-East Journal of Scientific Research 15 (5): 629-

642, 2013

