
SECURITY SYSTEM FOR DNS USING CRYPTOGRAPHY

PROJECT REPORT SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENT FOR THE DEGREE OF

BACHELOR OF TECHNOLOGY

IN

COMPUTER SCIENCE AND ENGINEERING

UNDER THE SUPERVISION OF

PROF. DR. SATYA PRAKSH GHRERA

BY

SAKSHI– 111282

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY

WAKNAGHAT, SOLAN- 173234, HIMACHAL PRADESH

CERTIFICATE

This is to certify that project report entitled “SECURITY SYSTEM FOR

DNS USING CRYPTOGRAPHY”, submitted by SAKSHI(111282) in

partial fulfillment for the award of degree of Bachelor of Technology in

Computer Science & Engineering to Jaypee University of Information

Technology, Waknaghat, Solan has been carried out under my supervision.

This work has not been submitted partially or fully to any other University

or Institute for the award of this or any other degree or diploma.

Prof. Dr. Satya Prakash Ghrera Date:

(Head Of The Department ,CSE)

Department of CSE & IT

Jaypee University of Information Technology

Waknaghat, Solan , H.P- 173234

ACKNOWLEDGEMENT

On the very outset of this report, I would like to extend my sincere &

heartfelt obligation towards all the personages who have helped me in this

endeavor. Without their active guidance, help, cooperation &

encouragement, I would not have made headway in the project.

I would like to show my greatest appreciation to Mr. Prof. Dr. Satya Prakash

Ghrera. I feel motivated every time I get his encouragement. For his

coherent guidance throughout the tenure of the project, I feel fortunate to be

taught by Prof. Dr. Satya Prakash Ghrera, who gave me his unwavering

support. Besides being my mentor, he taught me that there is no substitute

for hard work.

In the light of new developments and recent findings, I devote the task that

was asked from me at Jaypee University of Information Technology to

“SECURITY SYSTEM FOR DNS USING CRYPTOGRAPHY”.

Date: Sakshi

 111282

 TABLE OF CONTENTS

S.No. TITLE PAGE NO.

i LIST OF FIGURES v

ii ABSTRACT vi

1 INTRODUCTION 1

1.1 Scope of the Project 1

1.2 What is DNS? 2

1.3 DNS Security Problems 3

1.3.1 Misdirected Destination 3

1.3.2 Name Based Authentication/Authorization 4

1.3.3 Trusting Supplementary 5

1.4 DNS Security Extension 8

1.4.1 Involving Cryptography 8

1.5 DNSSEC Objectives 8

1.5.1 Performance Consideration 9

1.5.2 DNSSEC Scope 10

1.5.3 Key Distribution 10

1.5.4 Data Origin Authentication 10

1.5.5 DNS Transaction and request authentication 11

1.5.6 Public Key Retrieval 13

2 Literature Review 14

3 Problem Statement 16

4 Proposed Model 17

4.1 Functionality 18

4.1.1 MD5 18

4.1.2 RSA 19

4.1.3 DSA 20

4.2 Screen Captures 22

5 Testing 24

6 Conclusion and Future work 27

 APPENDICES

 REFERENCES

 LIST OF FIGURES

Figure 1. A cache poisoning example 7

Figure 2. Example of a DNS cross check that fails 12

Figure 3 DNSSEC query & response messages 12

Figure 4. Project model 18

Figure 5. Working of MD5 19

Figure 6.Working of DSA 22

Figure7. User login screen 22

Figure8. RSA key generation 23

Figure9. Signature generation 23

Figure 10. Domain Name Space example 31

Figure 11. Example of inverse domains and the Domain Name Space 32

 ABSTRACT

To reach another person on the Internet we have to type an address into our

computer - a name or a number. That address has to be unique so computers

know where to find each other. ICANN coordinates these unique identifiers

across the world. Without that coordination we wouldn't have one global

Internet. When typing a name, that name must be first translated into a

number by a system before the connection can be established. That system is

called the Domain Name System (DNS) and it translates names like

www.icann.org into the numbers – called Internet Protocol (IP)

addresses. ICANN coordinates the addressing system to ensure all the

addresses are unique.

Recently vulnerabilities in the DNS were discovered that allow an attacker

to hijack this process of looking some one up or looking a site up on the

Internet using their name. The purpose of the attack is to take control of the

session to, for example, send the user to the hijacker's own deceptive web

site for account and password collection.

These vulnerabilities have increased interest in introducing a technology

called DNS Security Extensions (DNSSEC) to secure this part of the

Internet's infrastructure. DNSSEC will ensure the end user is connecting to

the actual web site or other service corresponding to a particular domain

name.

1

CHAPTER 1

INTRODUCTION

1.1 SCOPE OF THE PROJECT

The Domain Name System(DNS) has become a critical operational part of the

Internet Infrastructure, yet it has no strong security mechanisms to assure Data

Integrity or Authentication. Extensions to the DNS are described that provide these

services to security aware resolves are applications through the use of

Cryptographic Digital Signatures. These Digital Signatures are included zones as

resource records.

The extensions also provide for the storage of Authenticated Public keys in the

DNS. This storage of keys can support general Public key distribution services as

well as DNS security. These stored keys enables security aware resolvers to learn

the authenticating key of zones, in addition to those for which they are initially

configured. Keys associated with DNS names can be retrieved to support other

protocols. In addition, the security extensions provide for the Authentication of

DNS protocol transactions.

The DNS Security is designed to provide security by combining the concept of

both the Digital Signature and Asymmetric key (Public key) Cryptography. Here

the Public key is send instead of Private key. The DNS security uses Message

Digest Algorithm to compress the Message(text file). The message combines with

the Private key to form a Signature using DSA Algorithm, which is send along

with the Public key.

2

The receiver uses the Public key and DSA Algorithm to form a Signature. If this

Signature matches with the Signature of the message received, the message is

Decrypted and read else discarded.

1.2 WHAT IS DNS?

DNS is the shorthand for the Domain Name System. The Domain Name System

provides a mechanism of conversion with a double functionality: it translates both

symbolic host names to IP addresses and IP addresses to host

names.

The DNS has three major components:

• The first category contains:

– the Domain Name Space and

– the Resource Records, that are specifications for a tree structured name space

and the data associated with these names.

• Name Servers are server programs which maintain the information about the

DNS tree structure and can set information. A name server may cache information

about any part of the domain tree, but in general it has complete information about

a specific part of the DNS. This means the name server has authority for that sub

domain of the name space - therefore it will be called authoritative.

• Resolvers are programs that extract the information from name servers in

response to client requests.

.A more detailed presentation of the DNS can be found in the appendix

3

1.3 DNS SECURITY PROBLEMS

It is known the fact that DNS is weak in several places. Using the Domain Name

System we face the problem of trusting the information that came from a non

authenticated authority, the name-based authentication process, and the problem of

accepting additional information that was not requested and that may be

incorrect.“Many of the classic security breaches in the history of computers and

computer networking have had to do not with fundamental algorithm or protocol

flaws, but with implementation errors. While we do not intend to demean the

efforts of those involved in upgrading the Internet protocols to make security a

more realistic goal, we have observed that if BIND would just do what the DNS

specifications say it should do, stop crashing, and start checking its inputs, then

most of the existing security holes in DNS as practiced would go away.” - Paul

Vixie, founder of ISC and main programmer of BIND.

1.3.1. Misdirected Destination: Trusting Faked Information

Suppose the following scenario: a user wants to connect to host A by means of a

telnet client. The telnet client asks through a resolver the local name server to

resolve the name A into an IP address, it receives a faked answer, and then initiates

a TCP connection to the telnet server on the machine A (so it thinks). The user

sends his login and password to the fake address. Now, the connection drops and

the user retries the whole procedure this time to the correct IP address of the host

A. He might ignore what just happened but the malicious attacker that spoofed the

name of the host A is now in control of his login and password. This happened

because the present routers have no capacity to disallow packets with fake source

addresses. So, if the attacker can route packets to someone, then he is capable of

forging those packets to look as if they come from a trustworthy host. Therefore,

4

in our case the attacker predicts the time when a query will be sent and he starts to

flood the resolver with his fake answers. With a firewall for the user’s network the

resolver would not be reachable from the outside world, but his local name server

would. So, if the local name server can be corrupted in the same manner as

described above then the attacker can redirect such application with vital

information towards hosts con- trolled by him and capture these information.

Following these assumptions, we observe that in this case we have the possibility of

a Denial of Service (DoS) attack. In case of such an attack, if the name server can

be spoofed and the attacker’s machine can impersonate the true name server then it

can maliciously provide that certain names in the domain do not exist. Later on, we

present a way in which such an attack is annihilated in DNSSEC.

1.3.2. Name Based Authentication/Authorization

Some applications, unfortunately spread all over the Internet, make use of an

extremely insecure mechanism: name based authentication/authorization. It is the

case, for example, of the Unix “r-commands” such as rlogin, rshor rcpthat use the

concept of “remote equivalence” to allow the remote access to a computer.

In these networks, system administrators or, even worse, users can declare the

remote equivalence of two accounts on two different machines (e.g., by means

of the files /etc/hosts.equiv or .rhosts). This equivalence associates two users of

two different hosts simply on the basis of their names. The access to a remote

computer is then granted if the remote user is declared equivalent to a local user,

and if the requesting hostname matches the one contained in the equivalence

definition. No other authentication mechanisms are used, so we can talk of name

based (weak) authentication. As an example, user joe can login as the user doe to

the computer host.mydomain.com from the computer otherhost.mydomain.com if

5

the file /etc/hosts.equiv contains the equivalence between the local user doe and

the user joe@otherhost.mydomain.com.

Remote commands have been designed at the dawn of the Internet for the use in

trusted local network, where all the users were known to the system administrator,

and the network was not connected to the big Internet. Unfortunately, remote

commands survived to the Internet growth and they are still present and used in

many networks.

If name based authentication/authorization is used, it is possible to access to a

remote machine simply spoofing the name of a host. Also, if the local network is

protected by a firewall, all the hosts that use name based

authentication/authorization are at risk if an attacker can get control of a single

machine of the firewall-protected network. The attacker can monitor network

traffic learning the equivalences used in that network, and spoof the IP address of

an equivalent host (e.g., performing a denial of service at- tack on that machine, or

simply waiting for the machine to shut-down). Now, the attacker’s host is

completely equivalent to the spoofed host for all the computers using remote

equivalence.

1.3.3. Trusting Supplementary : Non-Authoritative Information

This is another side of the DNS weakness. For the goal of efficiency the DNS was

designed to have the additional section in its standard message format. Therefore,

in certain cases when a supplementary information is considered necessary to speed

up the response for a given query, it is included in the additional section. One

example, if we ask our name server, i.e. ns.mydomain.com, to retrieve the mail

exchange RR for the domain comp-craiova.ro, the server responds with a

mail.gate.comp-craiova.ro RR in the answer section of the DNS message and in

6

the additional section the name and the IP address of the name server authoritative

for the comp-craiova.ro domain are included.

Remember that this information was not explicitly asked by us, rather it was

cached by our name server, in its pursuit for solving our query, in order to avoid

further lookups for the name server authoritative for that domain.

The type of attack possible in this case is called “cache poisoning”. How does this

happen? Suppose the following situation described in figure 1. An attacker

controlling the name server for his domain evil.com wants to poison the cache of

another name server called ns.broker.com used by a broker’s agency in order to

impersonate the machine www.bank.com that is often accessed by the users in the

domain broker.com. From his machine the attacker asks the name server

ns.broker.com for a name under the authority of his own name server, e.g.

anyhost.evil.com. The name server ns.broker.com will contact the attacker’s name

server - authoritative for that name. This name server will answer the query and

will also get the query ID which it stores for later use. This query ID is placed in

the header section of any DNS message and is assigned by the pro- gram that

generated the query (i.e., the target name server). This identifier is copied in the

corresponding reply and can be used by the requester to match up replies to

outstanding queries - as mentioned in the RFC 1035 [2]. The at- tack continues

with another query from the attacker’s side. He knows that the broker’s agency is

frequently contacting a certain bank site whose name he is willing to spoof.

Therefore, he will ask the ns.broker.com name server for the address of the

www.bank.com. Normally, the name server ns.broker.com will contact the DNS

server authoritative for the domain bank.com (e.g., ns.bank.com). At this point, the

attacker will start to flood the ns.broker.com server with replies in which the

address of the attacker’s machine is mapped to the name www.bank.com before

7

the true response can arrive from the authoritative name server (that is

ns.bank.com). He also can predict correctly the query and reply ID, since he

already has the last query ID generated by ns.broker.com. In this way, the server

ns.broker.com receives an information which is not proper and also caches it after

responding to the former attacker’s query for www.bank.com. Now, the trap is set

and all the attacker has to do is wait until a connection from broker.com domain is

made to www.bank.com. Since the IP address of the attacker’s machine is mapped

incorrectly, in the server’s cache (ns.broker.com), to the name www.bank.com all

the connections to the bank will be directed to the attacker’s machine. The name

server will not try to query again for www.bank.com, it will just use the

information it cached during previous DNS lookups. This is another reason why

data received by the name servers in the DNS need origin authentication and

integrity verification.

8

Figure 1. A cache poisoning example

1.4. DNS SECURITY EXTENSIONS

“DNS implementation and specification” - the security considerations were not

forgotten since it is emphasized that the cache integrity is of maxi- mum

importance. Despite this statement, the need for performance has pushed the

present implementations to the situation of adding unauthorized records to the

additional section and - lacking a strong authentication mechanism believing that

all information provided by DNS is trust- worthy.

1.4.1. Involving Cryptography

The need for security extensions to DNS was acknowledged and standardized in an

organized manner within the DNSSEC IETF working group. The first step is to

provide data authentication of the resource records travelling back and forth in the

internet. With authentication come also data integrity and data source

authentication. The authentication is obtained by means of cryptographic digital

signatures. The public key algorithms used for authentication in DNSSEC are

MD5/RSA and DSA. The digital signatures generated with public key algorithms

have the advantage that anyone having the public key can verify them. Each

resource record in the DNS messages exchanged can be digitally signed providing

data origin authentication and integrity of the message.

1.5 DNSSEC Objectives

A fundamental principle of the DNS is that it is a public service. It requires correct

and consistent responses to queries, but the data is considered public data. As such,

9

the need for authentication and integrity exists, but not for access control and

confidentiality. Thus, the objectives of DNSSEC are to provide authentication and

integrity to the DNS. Authentication and integrity of information held within DNS

zones is provided through the use of cryptographic signatures generated through

the use of public key technology. Security aware servers, resolvers, and

applications can then take advantage of this technology to assure that the

information obtained from a security aware DNS server is authentic and has not

been altered.

Although the DNSSEC WG chose not to provide confidentiality to DNS

transactions, they did not eliminate the ability to provide support for

confidentiality. Other applications outside of the DNS may choose to use the

public keys contained within the DNS to provide confidentiality. Thus the DNS, in

essence, can become a worldwide public key distribution mechanism. Issues such

as cryptographic export are not, and may never be, solved worldwide; however, the

DNS provides mechanisms to have multiple keys, each from a different

cryptographic algorithm for a given DNS name, as a means to help alleviate this

problem.

1.5.1 Performance Considerations

Performance issues are a concern for the security extensions to the DNS protocol

and several aspects in the design of DNSSEC are targeted to avoid the overhead

associated with processing the extensions. For instance, formulating another query

that asks for the signature belonging to the RRSet just retrieved is not necessarily

the most efficient way to retrieve a signature for the RRSet. This additional query

is avoided whenever possible by allowing information retrieved from secured

10

zones to be accompanied by the signature(s) and key(s) that validate the

information.

1.5.2 DNSSEC Scope

The scope of the security extensions to the DNS can be summarized into three

services: key distribution, data origin authentication, and transaction and request

authentication.

1.5.3 Key Distribution

The key distribution service not only allows for the retrieval of the public key of a

DNS name to verify the authenticity of the DNS zone data, but it also provides a

mechanism through which any key associated with a DNS name can be used for

purposes other than DNS. The public key distribution service supports several

different types of keys and several different types of key algorithms.

1.5.4 Data Origin Authentication

Data origin authentication is the crux of the design of DNSSEC. It mitigates such

threats as cache poisoning and zone data compromise on a DNS server. The RR

Sets within a zone are cryptographically signed thereby giving a high level of

assuredness to resolvers and servers that the data just received can be trusted.

DNSSEC makes use of digital signature technology to sign DNS RR Set. The

digital signature contains the encrypted hash of the RR Set. The hash is a

cryptographic checksum of the data contained in the RR Set. The hash is signed

(i.e., digitally encrypted) using a private key usually belonging to the originator of

the information, known as the signer or the signing authority. The recipient of the

RR Set can then check the digital signature against the data in the RR Set just

11

received. The recipient does this by first decrypting the digital signature using the

public key of the signer to obtain the original hash of the data. Then the recipient

computes its own hash on the RR Set data using the same cryptographic checksum

algorithm, and compares the results of the hash found in the digital signature

against the hash just computed. If the two hash values match, the data has integrity

and the origin of the data is authentic [CHAR].

1.5.5 DNS Transaction and Request Authentication

DNS transaction and request authentication provides the ability to authenticate

DNS requests and DNS message headers. This guarantees that the answer is in

response to the original query and that the response came from the server for which

the query was intended. Providing the assurance for both is done in one step. Part

of the information, returned in a response to a query from a security aware server,

is a signature. This signature is produced from the concatenation of the query and

the response. This allows a security aware resolver to perform any necessary

verification concerning the transaction.

Another use of transaction and request authentication is for DNS Dynamic

Updates. Without DNSSEC, DNS Dynamic Update does not provide a mechanism

that prohibits any system with access to a DNS authoritative server from updating

zone information. In order to provide security for such modifications, Secure DNS

Dynamic Update incorporates DNSSEC to provide strong authentication for

systems allowed to dynamically manipulate DNS zone information on the primary

server [RFC 2137].

Figure 2. Example of a DNS cross check that fails

Figure 3. DNSSEC query & response messages

Example of a DNS cross check that fails

DNSSEC query & response messages

12

13

1.5.6 Public Key Retrieval

Resolvers can obtain public keys of zones in one of two ways. Resolvers can

utilize the DNS to query for the public key or they can be statically configured

with the key. Regardless of the method used, problems exist with both. In the case

where keys are obtained through the DNS, the issue of trusting the key arises. In

order to trust the retrieved key, it must be signed and this signature must be

reliable. Providing the assurance that the signature on the key is reliable means that

the public key of the signing authority must also be obtained, be signed, and be

found reliable and so on. The solution to ending this recursive chain of events is to

configure the resolver with the public key that authenticates the signed keys below

it. In other words, a trusted zone key can be used as a starting point for verifying

all keys found below it. A likely set of trusted public keys with which a secure

zone can be statically configured are those of the root zone.

The static configuration of a resolver with the public keys from many different

zones has one advantage in that the compromise of one of the zone's private key

does not result in the compromise of the keys for all the other zones. The

disadvantage of statically configuring each resolver with keys for many different

zones is that it does not scale well. If one key for one zone must change, then all

the resolvers must be configured to reflect this change.

14

CHAPTER 2

LITERATURE REVIEW

2.1. TITLE -

‘A New Approach To DNS Security(DNSSEC)’

SUMMARY –

The proposed model has following features-

(1) Secure DNS is a big change but inevitable.DNS has been extended to provide

security services (DNSSEC) through symmetric-key cryptography. Offers the

highest level of security while reducing network traffic. In addition, it reduces

storage requirements and enables efficient mutual authentication.

(2)Here proposal for DNSSEC is that, when properly implemented, offers the

highest level of security while reducing network traffic. In addition, it reduces

storage requirements and enables efficient mutual authentication.

DNSSEC can not provide protection against threats from information leakage. This

is more of an issue of controlling access, which is beyond the scope of coverage

for DNSSEC. Adequate protection against information leakage is already provided

through such things as split DNS configuration.

15

DNSSEC demonstrates some promising capability to protect the Internet

infrastructure from DNS based attacks. DNSSEC has some fairly complicated

issues surrounding its development, configuration, and management.

16

 CHAPTER 3

 PROBLEM STATEMENT

Authenticity is based on the identity of some entity. This entity has to prove that it

is genuine. In many Network applications the identity of participating entities is

simply determined by their names or addresses. High level applications use mainly

names for authentication purposes, because address lists are much harder to create,

understand, and maintain than name lists.

Assuming an entity wants to spoof the identity of some other entity, it is enough to

change the mapping between its low level address and its high level name. It

means that an attacker can fake the name of someone by modifying the association

of his address from his own name to the name he wants to impersonate. Once an

attacker has done that, an authenticator can no longer distinguish between the true

and fake entity.

17

 CHAPTER 4

 PROPOSED MODEL

PROPOSED SYSTEM

Taking the above prevailing system into consideration the first step is to provide

data authentication of the resource records travelling back and forth in the internet.

With authentication come also data integrity and data source authentication. The

authentication is obtained by means of cryptographic digital signatures. The

public key algorithms used for authentication in DNSSEC are MD5/RSA and

DSA. The digital signatures generated with public key algorithms have the

advantage that anyone having the public key can verify them. Each resource record

in the DNS messages exchanged can be digitally signed providing data origin

authentication and integrity of the message.

Each time the System get the message, the Destination System generates Signature

using Public Key and DSA Algorithm and verifies it with received one. If it

matches it Decrypts otherwise it discards.

The Following functions avoids the pitfalls of the existing system.

Fast and efficient work

Ease of access to system

Manual effort is reduced

DIAGRAM

Figure 5 : Project model

4.1 FUNCTIONALITY

4.1.1 MD5

Message digest algorithm is

digest algorithm) is a widely used

bit (16-byte) hash value, typically expressed in text format as a 32

digit hexadecimal number. MD5 has been utilized in a wide variety of

cryptographic applications, and is also commonly used to verify

FUNCTIONALITY

is used to provide data integrity. The MD5

is a widely used cryptographic hash function producing a 128

, typically expressed in text format as a 32

number. MD5 has been utilized in a wide variety of

cryptographic applications, and is also commonly used to verify data integrity

18

MD5 (message-

producing a 128

, typically expressed in text format as a 32

number. MD5 has been utilized in a wide variety of

a integrity.

Figure 5. Working of MD5

4.1.2 RSA

RSA is used to create public and private key.

practical public-key cryptosystems

RSA is made of the initial letters of the surnames of

Shamir and Leonard Adleman

In such a cryptosystem, the

the decryption key which is kept secret. In RS

practical difficulty of factoring

the factoring problem

used to create public and private key. RSA is one of the first

key cryptosystems and is widely used for secure data transmission.

RSA is made of the initial letters of the surnames of Ron Rivest

Leonard Adleman, who first publicly described the algorithm in 1977.

, the encryption key is public and differs from

which is kept secret. In RSA, this asymmetry is based on the

factoring the product of two large prime numbers

19

is one of the first

is widely used for secure data transmission.

Ron Rivest, Adi

, who first publicly described the algorithm in 1977.

is public and differs from

A, this asymmetry is based on the

prime numbers,

20

A user of RSA creates and then publishes a public key based on the two

large prime numbers, along with an auxiliary value. The prime numbers must be

kept secret. Anyone can use the public key to encrypt a message, but with currently

published methods, if the public key is large enough, only someone with

knowledge of the prime numbers can feasibly decode the message.

4.1.3 DSA

DSA is used to provide data authentication. DSA is a United States Federal

Government standard for digital signatures. It was proposed by the National

Institute of Standards and Technology (NIST) in August 1991 for use in their

Digital Signature Standard (DSS).

A digital signature is a mathematical scheme for demonstrating the authenticity of

a digital message or document. A valid digital signature gives a recipient reason to

believe that the message was created by a known sender, and that it was not altered

in transit.

The first part of the DSA algorithm is the public key and private key generation,

which can be described as:

(1)Choose a prime number q, which is called the prime divisor.

(2)Choose another primer number p, such that p-1 mod q = 0. p is called the prime

modulus.

(3)Choose an integer g, such that 1 < g < p, g**q mod p = 1 and g = h**((p–1)/q)

mod p. q is also called g's multiplicative order modulo p.

(4)Choose an integer, such that 0 < x < q.

(5)Compute y as g**x mod p.

21

The second part of the DSA algorithm is the signature generation and signature

verification, which can be described as:

(1)To generate a message signature, the sender can follow these steps:

(2)Generate the message digest h, using hash algorithm like.

(3)Generate a random number k, such that 0 < k < q.

(4)Compute r as (g**k mod p) mod q. If r = 0, select a different k.

(5)Compute i, such that k*i mod q = 1. i is called the modular multiplicative

inverse of k modulo q.

(6)Compute s = i*(h+r*x) mod q. If s = 0, select a different k.

To verify a message signature, the receiver of the message and the digital

signature can follow these steps:

(1)Generate the message digest h, using the same hash algorithm.

(2)Compute w, such that s*w mod q = 1. w is called the modular multiplicative

inverse of s modulo q.

(3)Compute u1 = h*w mod q.

(4)Compute u2 = r*w mod q.

(5)Compute v = (((g**u1)*(y**u2)) mod p) mod q.

(6)If v == r, the digital signature is valid.

Figure 6: Working of DSA

4.2 SCREEN CAPTURESSCREEN CAPTURES

22

23

Figure 7: User login screen

Figure8: RSA key generation

Figure 9:Signature generation

24

 CHAPTER 5

 TESTING

Software Testing is a process of executing program within the intent of finding an

error. Software testing is a critical element of software quality assurance and

represents The ultimate review of system specification, design, coding. Testing is

last chance to uncover the error defects in the software and facilities delivery of

quality system.

5.1 SYSTEM TESTING REQUIREMENTS

Software testing is not an activity to take up when the product is ready. An

effective testing begins with a proper plan forms the user requirement stage itself.

Software testability is the case with which a computer program is tested. Metrics

can be used to measure the testability of a product.

5.2 PHASES OF THE TESTING

Several testing strategies and lead to the following generic characteristics:

Testing begins then unit level and works “outward” toward the integration of the

entire system.

Different testing techniques are appropriate at different points of software

development cycle.

5.2.1 UNIT TESTING

System security refers to the technical innovations and procedure applied to the

hardware and operating system to product against deliberate or accidental damage.

25

Data security refers to the protection of data from loss, disclosure, modification

and distraction. Privacy defines the rights of the users or organization to determine

what information they willing to share with others and protect the information to

minimize the possible invasion of privacy. To achieve all the above objectives.

5.2.2 INTERGRATION TESTING

System integrity refers to the proper functioning of hardware and software,

Appropriate physical security and safety against external threats like wiretapping.

Data integrity makes sure that data do not differ from their original form.

5.2.3 SYSTEM TESTING

After the Integration testing gets over the system has a whole is tested for

validation. Here the testing is done by a complete tour of all the modules in a

sequence. In case of further development of the system in the future, the

programmer has to know t he logic involved. Documents to a programmer are like

Road map to a traveler on the move.

Having the above facts in mind, a lot of care was taken in documenting at every

stage of the project. By reading these documents the logic’s involved in the

programs will be crystal clear to the Programmer, in future. These documents will

be of extensive use for debugging if any bugs are detected in the future.

5.2.4 PERFORMANCE TESTING

The system is very much user friendly and has a good user interface. This has been

tested. Every user who needs to access this system is given an user Id and

password and no one else can access. This too has been tested. It has been tested

whether the loading of the screens of the application is fast and the migration from

one form to another took less time. The time taken for this had been calculated.

26

The application is designed in such a way that it occupies less memory space; the

database is also designed in such a way that it avoids duplication of records -i.e.

the database avoids redundancy in all possible ways. Redundancy in storing the

same data multiple times leads to several problems. Due to this storage place is

also wasted. The files that represent the same data may be inconsistent. All these

problems are looked after and rectified for efficient execution of the application.

5.2.5 VALIDATION TESTING

Here in this validation testing, all the values entered in each and every module are

tested for correctness and validation as it has been entered before updating to the

back end system.

The developed prototype of is verified and validated upon the software testing

methods.

27

 CHAPTER 6

 CONCLUSION AND FUTURE WORK

The DNS as an Internet standard to solve the issues of scalability surrounding the

hosts.txt file. Since then, the widespread use of the DNS and its ability to resolve

host names into IP addresses for both users and applications alike in a timely and

fairly reliable manner, makes it a critical component of the Internet. The

distributed management of the DNS and support for redundancy of DNS zones

across multiple servers promotes its robust characteristics. However, the original

DNS protocol specifications did not include security. Without security, the DNS is

vulnerable to attacks stemming from cache poisoning techniques, client flooding,

dynamic update vulnerabilities, information leakage, and compromise of a DNS

server’s authoritative files.

In order to add security to the DNS to address these threats, the IETF added

security extensions to the DNS, collectively known as DNSSEC. DNSSEC

provides authentication and integrity to the DNS. With the exception of

information leakage, these extensions address the majority of problems that make

such attacks possible. Cache poisoning and client flooding attacks are mitigated

with the addition of data origin authentication for RR Sets as signatures are

computed on the RR Sets to provide proof of authenticity. Dynamic update

vulnerabilities are mitigated with the addition of transaction and request

authentication, providing the necessary assurance to DNS servers that the update is

authentic. Even the threat from compromise of the DNS server’s authoritative files

is almost eliminated as the SIG RR are created using a zone’s private key that is

kept off-line as to assure key’s integrity which in turn protects the zone file from

28

tampering. Keeping a copy of the zone’s master file off-line when the SIGs are

generated takes that assurance one step further.

DNSSEC can not provide protection against threats from information leakage. This

is more of an issue of controlling access, which is beyond the scope of coverage

for DNSSEC. Adequate protection against information leakage is already provided

through such things as split DNS configuration.

DNSSEC demonstrates some promising capability to protect the Internet

infrastructure from DNS based attacks. DNSSEC has some fairly complicated

issues surrounding its development, configuration, and management.

29

 APPENDICES

(I) INTRODUCTION TO DNS

A bit of History

DNS is the shorthand for the Domain Name System. It represents the set of

protocols and services on a TCP/IP network which allow users of the network to

use hierarchical user-friendly names when looking for other hosts instead of

having to remember and use their IP addresses. This system is used almost by any

other application and protocol that is involved in network communication (e.g.,

web browsing, ftp, telnet or other TCP/IP utilities on Internet).

At the beginning of Internet, the name resolution was performed by means of

“hosts” files (e.g., /etc/hosts in UNIX) which contained the complete list of names

and their associated IP addresses. These files were administered centrally, by the

Network Information Center (NIC), and each computer connected to the Internet

had to update its file periodically. With the exponential growth of the Internet, this

became a burden for system administrators, so a better solution was needed. And

it was given by prof. Paul Mockapetris the main designer of the Domain Name

System.

So, the best known function of DNS consists in mapping symbolic names to IP

addresses and viceversa. One exam- ple, if we need to connect to a certain web

site, we need to know the IP address of the machine that supports this service, (for

example, something like this 131.87.24.29), instead of this sequence of ciphers,

not so easy to re- member and use, we could use the more suggestive name

www.mydomain.com. This is where DNS gets involved.

In the ISO/OSI hierarchy, DNS finds itself on the ap- plication level, even though

its usage is transparent to the users that simply refers to names instead of IP

30

addresses, and it can use either TCP or UDP as transport protocols. Usually, the

resolvers are mainly relying on UDP (since the DNS queries and responses are

well-suited for this protocol), but TCP might be used whenever truncation of the

returned data occurs.

The Domain Name Space: Overview

The DNS is a hierarchical tree structure whose root node is known as the root

domain. A label in a DNS name directly corresponds with a node in the DNS tree

structure. A label is an alphanumeric string that uniquely identifies that node from

its brothers. Labels are connected together with a dot notation, ".", and a DNS

name containing multiple labels represents its path along the tree to the root.

Labels are written from left to right. Only one zero length label is allowed and is

reserved for the root of the tree. This is commonly referred to as the root zone. Due

to the root label being zero length, all FQDNs end in a dot [RFC 1034].

As a tree is traversed in an ascending manner (i.e., from the leaf nodes to the root),

the nodes become increasingly less specific (i.e., the leftmost label is most specific

and the right most label is least specific). Typically in an FQDN, the left most label

is the host name, while the next label to the right is the local domain to which the

host belongs. The local domain can be a subdomain of another domain. The name of

the parent domain is then the next label to the right of the subdomain (i.e., local

domain) name label, and so on, till the root of the tree is reached.

Figure 1

When the DNS is used to map an IP address back into a host name (i.e., inverse

resolution), the DNS makes use of the same notion of labels from left to right (i.e.,

most specific to least specific) when writing the IP address. This is in contrast to

the typical representation of an IP address whose dotted decimal notation from left

to right is least specific to most specific. To handle this, IP addresses in the DNS

are typically represented in reverse order. By doing this, using IP addresses to find

DNS host names are handled just like DNS host name lookups to find IP addresses.

Figure 10. Domain Name Space example

used to map an IP address back into a host name (i.e., inverse

resolution), the DNS makes use of the same notion of labels from left to right (i.e.,

most specific to least specific) when writing the IP address. This is in contrast to

tion of an IP address whose dotted decimal notation from left

to right is least specific to most specific. To handle this, IP addresses in the DNS

are typically represented in reverse order. By doing this, using IP addresses to find

led just like DNS host name lookups to find IP addresses.

31

used to map an IP address back into a host name (i.e., inverse

resolution), the DNS makes use of the same notion of labels from left to right (i.e.,

most specific to least specific) when writing the IP address. This is in contrast to

tion of an IP address whose dotted decimal notation from left

to right is least specific to most specific. To handle this, IP addresses in the DNS

are typically represented in reverse order. By doing this, using IP addresses to find

led just like DNS host name lookups to find IP addresses.

Figure 11. Example of inverse domains and the Domain Name Space

1.2.4 DNS Transactions

DNS transactions occur continuously across the Internet. The two most common

transactions are DNS zone transfers and DNS queries/responses. A DNS zone

transfer occurs when the secondary server updates its copy of a zone for which it is

authoritative. The secondary server makes use of information it has on the zone,

namely the serial number, and checks to see if the primary server has a more recent

version. If it does, the secondary server retrieves a new copy of the zone.

A DNS query is answered by a DNS r

servers, usually not more than three, to determine where to send queries. If the first

name server in the list is available to answer the query, than the others in the list

are never consulted. If it is unavaila

until one is found that can return an answer to the query. The name server that

receives a query from a client can act on behalf of the client to resolve the query.

Example of inverse domains and the Domain Name Space

DNS transactions occur continuously across the Internet. The two most common

transactions are DNS zone transfers and DNS queries/responses. A DNS zone

transfer occurs when the secondary server updates its copy of a zone for which it is

econdary server makes use of information it has on the zone,

namely the serial number, and checks to see if the primary server has a more recent

version. If it does, the secondary server retrieves a new copy of the zone.

A DNS query is answered by a DNS response. Resolvers use a finite list of name

servers, usually not more than three, to determine where to send queries. If the first

name server in the list is available to answer the query, than the others in the list

are never consulted. If it is unavailable, each name server in the list is consulted

until one is found that can return an answer to the query. The name server that

receives a query from a client can act on behalf of the client to resolve the query.

32

Example of inverse domains and the Domain Name Space

DNS transactions occur continuously across the Internet. The two most common

transactions are DNS zone transfers and DNS queries/responses. A DNS zone

transfer occurs when the secondary server updates its copy of a zone for which it is

econdary server makes use of information it has on the zone,

namely the serial number, and checks to see if the primary server has a more recent

version. If it does, the secondary server retrieves a new copy of the zone.

esponse. Resolvers use a finite list of name

servers, usually not more than three, to determine where to send queries. If the first

name server in the list is available to answer the query, than the others in the list

ble, each name server in the list is consulted

until one is found that can return an answer to the query. The name server that

receives a query from a client can act on behalf of the client to resolve the query.

33

Then the name server can query other name servers one at a time, with each server

consulted being presumably closer to the answer. The name server that has the

answer sends a response back to the original name server, which then can cache the

response and send the answer back to the client. Once an answer is cached, a DNS

server can use the cached information when responding to subsequent queries for

the same DNS information. Caching makes the DNS more efficient, especially

when under heavy load. This efficiency gain has its tradeoffs; the most notable is

in security.

Source code

Java source codes used in the project-

SOURCE

import java.io.*;

import java.awt.*;

import java.awt.event.*;

import java.util.*;

import java.net.*;

import java.util.zip.*;

import java.security.*;

import java.security.SecureRandom.*;

import java.security.spec.*;

import javax.swing.*;

34

public class SwingMes extends JFrame implements ActionListener

{

JTabbedPane tp ;

JButton send,browse,send1;

JTextField tf1;

JTextArea ta,ta1;

JScrollPane sp,sp1;

String g1=" ";

byte str[];

byte realSig[];

String y="";

String st="";

Client ct;

public SwingMes(Client ct)

{

super("Transaction");

this.ct=ct;

setSize(500,500);

Container c = getContentPane();

JPanel jp = new JPanel(new FlowLayout());

JLabel jl = new JLabel("Enter the Text: ");

35

ta = new JTextArea(20,40);

sp = new JScrollPane(ta);

send= new JButton("Send");

jp.add(jl);

jp.add(sp);

jp.add(send);

jp.setVisible(true);

JPanel jp1 = new JPanel(new FlowLayout());

JLabel jl1 = new JLabel("Enter the File Name ",JLabel.LEFT);

tf1 = new JTextField(15);

browse = new JButton("Browse");

send1= new JButton("Send");

send.addActionListener(this);

browse.addActionListener(this);

send1.addActionListener(this);

jp1.add(jl1);

jp1.add(tf1);

jp1.add(browse);

jp1.add(sp1);

jp1.add(send1);

jp1.setVisible(true);

tp = new JTabbedPane();

tp.addTab("Message",null,jp,"Enter the Message here");

36

tp.addTab("File",null,jp1,"Enter the File Name here");

c.add(tp);

setDefaultCloseOperation(EXIT_ON_CLOSE);

setVisible(true);

setResizable(false);

}

/* MESSAGE DIGEST ALOGORITHM */

private byte[] content;

public byte[] digestValue(byte[] in_text1)

{

byte[] in_text=in_text1;

content=in_text;

MessageDigest mg1=null;

try

{

mg1=MessageDigest.getInstance("SHA1");

}

catch (Exception e)

{

37

System.out.println(e);

}

mg1.update(content);

byte[] digest1=mg1.digest();

System.out.println("Message Digest:"+digest1);

return digest1;

}

public void keys()

{

try

{

KeyPairGenerator keygen = KeyPairGenerator.getInstance("DSA","SUN");

/* cryptographically strong pseudo-random number generator
(PRNG) */

SecureRandom random = SecureRandom.getInstance("SHA1PRNG","SUN");

keygen.initialize(1024,random);

KeyPair keypair = keygen.generateKeyPair();

PrivateKey privatekey = keypair.getPrivate();

PublicKey publickey = keypair.getPublic();

FileOutputStream pubkeyfos = new
FileOutputStream("public.txt");

pubkeyfos.write(publickey.getEncoded());

38

System.out.println("PublicKey"+publickey.getEncoded());

pubkeyfos.close();

FileOutputStream prikeyfos = new
FileOutputStream("private.txt");

prikeyfos.write(privatekey.getEncoded());

System.out.println("PrivateKey:"+privatekey);

prikeyfos.close();

JOptionPane.showMessageDialog(null, "keys are
created","Keys", JOptionPane.INFORMATION_MESSAGE);

}

catch(Exception e)

{

System.out.println(e);

}

}

public void met2(String dis2)

{

System.out.println("FileName:"+dis2);

try

{

int i;

String g=" ";

char x[]=new char[50];

39

char d,s;

String s1;

InputStream in = new FileInputStream(dis2);

str=new byte[in.available()];

in.read(str, 0, str.length);

System.out.println(new String (str));

ta1.setText(new String (str));

FileOutputStream fos=new FileOutputStream("input.txt");

fos.write(str);

int len=str.length;

System.out.println("StringLength:"+len);

int a[]=new int[len];

System.out.print("HASH-CODE:");

for(i=0;i<len;i++)

{

int aa= str[i];

System.out.print("\t"+ aa);

a[i]=aa;

}

System.out.print("HEX-CODE:");

for(i=0;i<len;i++)

{

40

g=" ";

b[i]=a[i]%16;

a[i]=a[i]/16;

g1=g1+g.trim();

}

str=g1.getBytes();

digestValue(g1.getBytes());

}

catch(IOException e)

{

System.out.println(e);

}

keys();

genSig("input.txt");

String inputValue = JOptionPane.showInputDialog("Enter the System
Name for Domain1");

try

{

Socket s1 = new
Socket(InetAddress.getByName(inputValue),7878);

PrintStream ps = new PrintStream(s1.getOutputStream());

ps.println(ct.SenderName.getText());

System.out.println("SenderName
:"+ct.SenderName.getText());

41

ps.println(ct.SenderPassword.getText());

ps.println(ct.ReceiverName.getText());

System.out.println("ReceiverName
:"+ct.ReceiverName.getText());

System.out.println("Encrypted Data:"+ new String(str));

ps.flush();

s1.close();

}

catch(Exception ex)

{

System.out.println(ex);

}

}

public void genSig(String fname)

{

try

{

byte[] md;

String args=fname;

FileInputStream fin=new FileInputStream(args);

byte[] in_text=new byte[fin.available()];

fin.read(in_text);

42

fin.close();

md=digestValue(in_text);

FileInputStream fins=new FileInputStream("private.txt");

byte[] enc_priv=new byte[fins.available()];

fins.read(enc_priv);

fins.close();

Signature
dsa=Signature.getInstance("SHA1withDSA","SUN");

PKCS8EncodedKeySpec privKeySpec=new
PKCS8EncodedKeySpec(enc_priv);

KeyFactory
keyFactory=KeyFactory.getInstance("DSA","SUN");

PrivateKey
priv=(PrivateKey)keyFactory.generatePrivate(privKeySpec);

FileOutputStream sigfos = new
FileOutputStream("realSign.txt");

sigfos.write(realSig);

sigfos.close();

JOptionPane.showMessageDialog(null, "Signature are
Generated","Signature", JOptionPane.ERROR_MESSAGE);

}

catch(Exception e)

{

System.out.println(e);

}

43

}

public void actionPerformed(ActionEvent e)

{

if(e.getSource() == browse)

{

JFileChooser fc = new JFileChooser();

int option = fc.showOpenDialog(SwingMes.this);

if(option == JFileChooser.APPROVE_OPTION)

{

tf1.setText(fc.getSelectedFile().getAbsolutePath());

}

}

else if(e.getSource() == send)

{

if (ta.getText() == null)

else

{

int i;

int b[]=new int[5000];

int a[]=new int[5000];

String g=" ";

char x[]=new char[50];

char d,s;

44

String h=ta.getText();

System.out.println("Message Entered:"+h);

int len=h.length();

System.out.println("StringLength:"+len);

for(i=0;i<len;i++)

{

int aa= h.charAt(i);

System.out.print("\t"+ aa);

a[i]=aa;

}

for(i=0;i<len;i++)

{

g=" ";

b[i]=a[i]%16;

a[i]=a[i]/16;

g1=g1+g.trim();

}

System.out.println(g1);

str=g1.getBytes();

System.out.println(str);

st=new String(str);

digestValue(g1.getBytes());

keys();

45

genSig("input.txt");

try

{

Socket s1 = new
Socket(InetAddress.getByName(inputValue),7878);

PrintStream ps = new
PrintStream(s1.getOutputStream());

ps.println(ct.SenderName.getText());

ps.println(new String(str));

ps.println("public.txt");

ps.println("realSign.txt");

ps.flush();

BufferedReader br=new BufferedReader(new
InputStreamReader(s1.getInputStream()));

{
JOptionPane.showMessageDialog(null,"Valid

Password","Password",JOptionPane.ERROR_MESSAGE);

}

}

}

}

}

46

DESTINATION

import java.io.*;

import java.awt.*;

import java.awt.event.*;

import java.util.*;

import java.net.*;

import java.util.zip.*;

import java.security.*;

import java.security.SecureRandom.*;

import java.security.spec.*;

import javax.swing.*;

public class SwingRMes extends JFrame implements ActionListener

{

JTabbedPane tp ;

JLabel jl,jl1,jl2,jL;

JButton jb,jb1,jb2;

JTextField tf1,tf2,tfd,tfd1;

JTextArea tf,ta1;

JScrollPane sp,sp1;

static String g1=" ";

static String n,n1,n2;

47

static String y="";

static String str6,str61,str2,str12,str13;

static String t,st="",st1="",vj="";

public SwingRMes()

{

super("Reception");

String
inf="com.sun.java.swing.plaf.windows.WindowsLookAndFeel";

try

{

UIManager.setLookAndFeel(inf);

}

catch(Exception e){}

setSize(400,450);

Container c = getContentPane();

JPanel jp = new JPanel();

jp.setLayout(null);

jl = new JLabel("Sender Name ",JLabel.LEFT);

jL = new JLabel("Receiver Name ",JLabel.LEFT);

tfd = new JTextField(15);

tfd1 = new JTextField(15);

tf = new JTextArea(20,40);

48

jb= new JButton("OPEN");

jp.add(jl);

jp.add(tfd);

jp.add(jL);

jl.setBounds(25,10,150,25);

tfd.setBounds(150,10,150,25);

jL.setBounds(25,40,150,25);

tfd1.setBounds(150,40,150,25);

JPanel jp1 = new JPanel();

jp1.setLayout(null);

jl1 = new JLabel("Sender Name ",JLabel.LEFT);

jl2 = new JLabel("Receiver Name ",JLabel.LEFT);

tf1 = new JTextField(15);

sp1 = new JScrollPane(ta1);

jb2= new JButton("Retrive");

jl1.setBounds(25,10,150,25);

tf1.setBounds(150,10,150,25);

jl2.setBounds(25,40,150,25);

tf2.setBounds(150,40,150,25);

jp1.add(jl1);

jp1.add(tf1);

jp1.add(jl2);

jp1.setVisible(true);

49

tp = new JTabbedPane();

setDefaultCloseOperation(EXIT_ON_CLOSE);

}

public static void ServSoc()

{

try

{

ServerSocket ss = new ServerSocket(5555);

Socket s11 = ss.accept();

System.out.println(" Server Started..... ");

BufferedReader ps2=new BufferedReader(new
InputStreamReader(s11.getInputStream()));

str2 = ps2.readLine();

str2=str2.trim();

System.out.println("File Name : " +str2);

char a[]=new char[50000];

char res[]=new char[9];

char s1[]=new char[5];

String w =new String();

String r =new String();

System.out.println("Verify Signature are Generated");

try

{

50

verifySig(str12);

}

catch(Exception e)

{

System.out.println(e);

}

InputStream in3 = new
FileInputStream(str12);

FileOutputStream out2=new
FileOutputStream("Sign1.txt");

byte[] str3=new byte[512];

while(in3.read(str3)!=-1)

{

String r1=new String(str3);

out2.write(str3);

}

 /* Converting Hexcode into Bits */

for(i=0;i<len;i++)

{

char aa=
((str2).charAt(i));

51

a[i]=aa;

if(a[i]=='A')

{

st="1010";

st1=st;

}

else if(a[i]=='B')

{

st="1011";

st1=st;

}

else if(a[i]=='C')

{

st="1100";

st1=st;

}

else if(a[i]=='D')

{

st="1101";

st1=st;

}

else if(a[i]=='E')

{

52

st="1110";

st1=st;

}

else if(a[i]=='F')

{

st="1111";

st1=st;

}

else if(a[i]=='0')

{

st="0000";

st1=st;

}

else if(a[i]=='1')

{

st="0001";

st1=st;

}

else if(a[i]=='2')

{

st="0010";

st1=st;

}

53

else if(a[i]=='3')

{

st="0011";

st1=st;

}

else if(a[i]=='4')

{

st="0100";

st1=st;

}

else if(a[i]=='5')

{

st="0101";

st1=st;

}

else if(a[i]=='6')

{

st="0110";

st1=st;

}

else if(a[i]=='7')

{

st="0111";

54

st1=st;

}

else if(a[i]=='8')

{

st="1000";

}

else if(a[i]=='9')

{

st="1001";

}

w=w+st;

}

char w_ch[]=w.toCharArray();

String x=w.toString();

System.out.print(x);

System.out.println("Length:"+len);

public static boolean verifySig(String fname) throws Exception

{

55

byte[] md;

byte[] sign;

byte[] realSig;

String args=fname;

FileInputStream fin=new FileInputStream(args);

byte[] in_text=new byte[fin.available()];

fin.read(in_text);

fin.close();

//SHA sha=new SHA(in_text);

md=digestValue(in_text);

FileInputStream finPublic=new FileInputStream(str12);

byte[] enc_pub=new byte[finPublic.available()];

finPublic.read(enc_pub);

finPublic.close();

FileInputStream sigfis=new FileInputStream(str13);

sign=new byte[sigfis.available()];

sigfis.read(sign);

Signature dsa1 =
Signature.getInstance("SHA1withDSA","SUN");

56

PublicKey
pub=keyFactoryPub.generatePublic(pubKeySpec);

dsa1.initVerify(pub);

dsa1.update(md);

}

public void actionPerformed(ActionEvent e)

{

if(e.getSource() == jb2)

{

tf1.setText(str6);

tf2.setText(str61);

ta1.setText(vj);

}

else if(e.getSource() == jb)

{

JOptionPane.showMessageDialog(null, "Signature are
Verified","Verify Sign", JOptionPane.INFORMATION_MESSAGE);

tfd1.setText(str61);

tf.setText(vj);

}

}

}

57

REFERENCES

[1]Antonio Lioy, Fabio Maino, Marius Marian, Daniele Mazzocchi“DNS

Security”, Department of Control and Computer Engineering Turin (Italy)

[2]Charishma G Shivaratri “Domain Name System with Security

Extensions”Computer Science and Engineering University of Texas at Arlington

[3]“Domain Name System Security Extensions”, Donald Eastlake, IBM, March

1999.

[4]“DSA KEYs and SIGs in the Domain Name System(DNS)”, Donald Eastlake,

IBM, March 1999.

[5]“DNS Security Operational Considerations”, Donald Eastlake, IBM, March

1999.

[6] Internet Draft “Secret Key Transaction Signatures for DNS (TSIG)”, Paul

Vixie (Ed.) (ISC), Olafur Gudmundsson (NAIL- abs), Donald Eastlake (IBM),

Brian Wellington (NAILabs), July 1999.

[7]Brian Wellington, “An Introduction to Domain Name System Security”, TIS

Labs, January 1999.

[8]“Domain Name System - Concepts and Facilities”, Paul Mockapetris, ISI,

November 1987.

[9]“Domain Name System - Implementation and Specifi- cation”, Paul

Mockapetris, ISI, November 1987.

[10]“Domain Name System Security Extensions”, Donald Eastlake, IBM, C.

Kaufman, January 1997.

58

[11]Paul Albitz, Cricket Liu,”DNS and BIND”, Third Edition, O’Reilly,

Sebastopol, CA, 1998, ISBN 1-56592-512-2

[12]http://www.ijert.org/view.php?id=2533&title=security-system-for-dns-using-

cryptography

[13]http://www.cs.jhu.edu/~ateniese/papers/dnssec.pdf

[14]http://www.sans.org/reading-room/whitepapers/dns/security-issues-dns-1069

[15]William Stallings,‘Cryptography and Network Security’ Prentice Hall of India

publication

