DESIGN OF HIGH-RISE BUILDING

A

PROJECT REPORT

Submitted in partial fulfilment of the requirements for the award of the degree

of

BACHELOR OF TECHNLOGY

IN

CIVIL ENGINEERING

Under the supervision

of

Prof. Dr. Ashok Kumar Gupta

(HoD) Head of Department

And

Mr. Akash Bhardwaj

Assistant Professor

by

Leki (171673)

Sonam Rinchen (171680)

to

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY

WAKNAGHAT, SOLAN – 173234

HIMACHAL PRADESH, INDIA

 17^{th} May - 2021

STUDENT'S DECLARATION

I hereby declare that the work presented in the project report entitled "A DESIGN OF HIGH-RISE BUILDING" submitted for partial fulfilment of the requirements for the degree of Bachelor of Technology in Civil Engineering at Jaypee University of Information Technology, Waknaghat is an authentic record of my work carried out under the supervision of Prof. Dr. Ashok Kumar Gupta and Mr. Akash Bhardwaj. This work has not been submitted elsewhere for the reward of any other degree/diploma. We are fully liable for the contents of our project report.

•••••	•••••
Sonan	n Rinchen

CE171680

.....

Leki

CE171673

Department of Civil Engineering

Jaypee University of Information Technology, Waknaghat, India

Date: 17th May, 2021

CERTIFICATE

This is to certify that the work which is being presented in the project report titled "**Design of High-Rise Building**" in partial fulfilment of the requirements for the award of the degree of Bachelor of Technology in Civil Engineering submitted to the Department of Civil Engineering, **Jaypee University of Information Technology, Waknaghat** is an authentic record of work carried out by **Sonam Rinchen (171680) and Leki (171673)** during a period from August, 2020 to May, 2021 under the supervision of **Prof. Dr. Ashok Kumar Gupta and Mr. Akash Bhardwaj,** Department of Civil Engineering, Jaypee University of Information Technology, Waknaghat.

The above statement made is correct to the best of our knowledge.

Date: 17th May, 2021

HOD CE DEPT

Dr. Ashok Kumar Gupta

Professor and HoD

HOD CE DEPT

External Examiner

Professor and Head of Department

Department of Civil Engineering

JUIT, Waknaghat.

Toressor and Hob

Dr. Ashok Kumar Gupta

Department of Civil Engineering

JUIT, Waknaghat

Mr. Akash Bhardwaj Assistant Professor

Department of Civil Engineering

JUIT, Waknaghat.

ACKNOWLEDGEMENT

We would like to heartily express our deepest gratitude and respect to our guide or a mentor **Dr. Ashok Kumar Gupta and Mr. Akash Bhardwaj** for providing us such a conducive environment in making our pursuit of unique and enthusiastic dreams come true. We would also like to deeply thank both of our mentor for keeping their faith and relentless support to us in every way possible.

We are indeed highly grateful to Professor **Dr. Ashok Kumar Gupta** (*Head of The Department of Civil Engineering*) and all the faculties of Department of Civil Engineering, Jaypee University of Information Technology, in providing us such an arena to do research and innovate with an immense enthusiasm of our career development and make us understand the trajectory of our present-day scenario.

Moreover, we would also like to sincerely thank with utmost respect and acknowledgement to the Project Manager / Structural Engineer, **Mr. Tashi Tshering** of **National Pension and Provident Fund (NPPF), Thimphu – Bhutan,** for his tireless support in making us confident-enough to go with all the designs and analysis required in this project.

Finally, at this time of global unrest, we would like to thank our parents and family members for giving us such a valuable times, without any distraction and troubles for the progress of this work.

ABSTRACT

An earthquake is one of the major and inevitable natural calamities that impedes the safety and a reliability of a structures. Therefore, in retrospect, the design of a seismic resistant structures has become one of the important considerations to be made in order to prevent the damages and casualties caused due to the seismic forces on the structure. Retrofitting and providing a RC shear wall has been the best and ubiquitous techniques to overcome the insufficient response of a structure against seismic forces. Providing a steel bracings merged to an existing RC framed structures has shown a promising outcome, both during the construction as well as the adherence to a Code's provision in a design phase as compared to the RC shear wall. The use of bracings has been economical and easy to fabricate with least coverage of spaces while providing a required strength and stiffness against external loadings. Hence, in the highly seismic prone regions, high-rise structures are preferred to be constructed using a steel bracings than the RC infilled shear walls. This work shows the response of a steel bracing and a RC shear wall against seismic and wind loads for a G+20 storied RCC residential building and analysed for different parameters like storey drift, base shear, storey displacement and overturning moment of a structure. The response and significance of a structure has been studied by modelling two structures, one with shear wall and another with steel bracings but having the same structural dimensions, gravity loads, wind loads and the seismic loads as per the IS code provisions, using STAAD.Pro. The results has been compared based on the above mentioned parameters and verified the effectiveness of this two construction techniques.

Keywords: Retrofitting; Equivalent Shear Wall; Steel Bracings; Storey Drift; Overturning Moments; Base Shear; AAC Blocks; STAAD.Pro

TABLE OF CONTENTS

CONTENTS	PAGE NO.
STUDENT'S DECLARATION	. ii
CERTIFICATE	. iii
ACKNOWLEDGEMENT	. iv
ABSTRACT	v
TABLE OF CONTENTS	. vi – vii
LIST OF TABLES	. viii
LIST OF FIGURES	xv
LIST OF ACRONYMS	X
CHAPTER 1: INTRODUCTION	
1.1 GENERAL	. 1
CHAPTER 2: LITERATURE REVIEW	
2.1 INTRODUCTION	. 2
2.1.1 STUDIES CONDUCTED ON SHEAR WALL BUILDINGS	2-3
2.1.2 PREVIOUS STUDIES ON BRACED STRUCTURES	3-4
2.2 SUMMARY OF LITERATURE REVIEW	4 – 5
2.3 OBJECTIVE OF THE STUDY	. 5
CHAPTER 3: METHODOLOGY	
3.1 INTRODUCTION	. 6
3.2 STAAD.Pro SOFTWARE	6
3.3 STRUCTURAL MODELLING AND ANALYSIS	7
3.3.1 MODELLING WITH EQUAVALENT SHEAR WALL	7- 10

3.3.2 MODELLING WITH STEEL BRACING	10 - 13
CHAPTER 4: RESULTS AND DISCUSSIONS	
4.1 INTRODUCTION	14
4.2 COMPARISON OF THE SEISMIC RESPONSE OF MODELS	14
4.2.1 STOREY DRIFT	14 – 15
4.2.2 STOREY DISPLACEMENT	16 – 17
4.2.3 BASE SHEAR	17- 18
4.2.4 OVERTURNING MOMENTS	18 – 20
CHAPTER 5: DESIGN OF STRUCTURAL COMPONENTS	
5.1 DESIGN OBJECTIVES	21
5.2 DESIGN OF BEAM	21
5.2.1 DESIGN PARAMETERS AND DETAILING OF BEAM	21 – 23
5.3 DESIGN OF COLUMN	24
5.3.1 DESIGN PARAMETERS AND DESIGN OF COLUMN	24 - 25
5.3.2 COLUMN DETALING IN REVIT STRUCTURE	25 – 26
5.4 DESIGN OF SLAB	27
5.4.1 MANUAL DESIGN OF SLAB	27 – 29
5.4.2 DETAILING OF SLAB IN REVIT STRUCTURE	30
5.5 DESIGN OF STAIRCASE	31
5.5.1 MANUAL DESIGN OF STAIRCASE	31 - 32
5.5.2 STAIRCASE DETAILING IN REVIT STRUCTURE	33
5.6 DESIGN OF FOOTING	33 - 34
5.6.1 MANUAL DESIGN OF COMBINED FOOTING	34 - 37
5.6.2 DETAILING OF FOOTING IN REVIT STRUCTURE	37 – 38
CHAPTER 6: CONCLUSION	
5.1 CONCLUSION	39
REFERENCES	40
PLAGIARISM VERIFICATION CERTIFICATE	41

LIST OF TABLES

Table No.	Title	Page No.
3.1	Calculation of equivalent diagonal strut for infill wall	10
4.1	Storey drift in x direction	15
4.2	Storey drift in z direction	15
4.3	Storey displacement in x direction	16
4.4	Storey displacement in z direction	16
4.5	Base shear in x direction	17 – 18
4.6	Base shear in z direction	17 – 18
4.7	Overturning moments along x direction	19
4.8	Overturning moments along z direction	20
5.1	Beam reinforcement schedule	23
5.2	Column reinforcement schedule	26
5.3	Schedule of combined footing	38

LIST OF FIGURES

Figure No.	Title	Page No.
3.1 (a)	Typical plan of a structure	9
3.1 (b)	3-D view of structure with an equivalent shear wall	9
3.2 (a)	Typical plan of a structure	13
3.2 (b)	3-D view of structure with steel bracings	13
4.1	Storey drift vs Storey height along x direction	15
4.2	Storey drift vs Storey height along z direction	15
4.3	Storey displacement vs Storey height along x direction	17
4.4	Storey displacement vs Storey height along z direction	17
4.5	Base shear vs storey height along x direction	18
4.6	Base shear vs storey height along z direction	18
4.7	Overturning moment vs Storey height along x direction	19
4.8	Overturning moment vs Storey height along z direction	20
5.1	Design of concrete beam in STAAD.Pro	22
5.2	Typical detailing of beam in Revit structure	22
5.3	Reinforcement details of beam	23
5.4	Concrete design of column in STAAD.Pro	25
5.5	Column rebar details	25
5.6	Typical detailing of column	26
5.7	Plan view of slab	30
5.8	Typical detailing of slab	30
5.9	Reinforcement detailing of staircase	33
5.10	Typical detailing of three column combined footing	37

LIST OF ACRONYMS & ABBREVIATIONS

AAC	Autoclaved Aerated Concrete
Е	Modulus of Elasticity
ETABS	Extended Three Dimensional Analysis of Building System
f_y	Yield Strength of Steel
f_u	Ultimate Strength of Concrete
FEM	Finite Element Method
G+20	Ground floor plus 20 stories above without considering the roof floor
IS	Indian Standard
JUIT	Jaypee University of Information Technology
Mo	Overturning Moment
Mr	Resisting Moment
SMRF	Special Moment Resisting Frame
RCC	Reinforced Cement Concrete
RC	Reinforced Concrete
STAAD.Pro	Structural Analysis and Designing Program
VB	Base Shear

CHAPTER 1

INTRODUCTION

1.1 General

With the change in time and an augmented capacity of a human intelligence, there has been an unrealistic shift in the way we perceive our standards of living and the livelihood. And, with the rapid increase in a global population, having limited space and resources remaining, there has been a massive rise in the needs of a shelter and spaces to execute our every-day works. Therefore, the construction of high-rise buildings has been one of the major steps taken by the engineers and designers to mitigate the ever rising real estate crisis in the global community as a whole. But, the structures that houses-in the people, shouldn't come into existence by compromising its safety and a reliability against all the natural and manmade calamities.

Many researchers had conducted a major studies on the seismic analysis of a RC buildings by considering different types of construction methods, such as retrofitting of RC frames, providing a shear walls at different points of location on the structures, installing the tuned mass dampers, base isolation methods and many more. Here, in this work based on the past studies and their conclusions, we have segregated the most commonly used and the efficient construction techniques, and analysed to check for the most efficient alternatives.

During the seismic actions, an unprecedented deformations will occur across the structure, because of this an internal forces will develop, thereby, causing a various displacement in a structure. The function of any structural member is to carry and transfer the gravity loads to the foundation effectively. But other than the gravity loads, horizontal loads due to the action of seismic forces, wind forces, blasting, etc. will also act on the structure, developing a huge amount of stresses and then causing a vibration in the structural member. Therefore, it is vital that the structures are designed to have a sufficient strength and stiffness in order to withstand these lateral loads. Although the provision of shear walls can be adopted to do so, bracing systems are chosen to be more effective as compared to shear wall in the RC structures. Braced structures has high plastic deformation and can withstand both tension and compression action of the system. It was found that the cross (X) bracing is more effective in resisting the seismic loads.

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction

This section gives an outline of an already published studies and journals on the analysis of a RC structures and the alternatives to be adopted for a safe and conservative construction techniques in resisting the seismic forces and other horizontal loads acting on the body. It contains guidelines, procedures and the latest studies as well as already completed projects in the design of high rise building.

2.1.1 Studies conducted on shear wall buildings

Tarun Magendra, Abhyuday Titiksh and A.A Qureshi (2016): in this research paper "Optimum Positioning of Shear Walls in Multi-storey Building", the researchers have analysed different models with shear walls and compared them using the STAAD.Pro, to get the optimum positioning of shear walls inside the structure.

They have concluded that the shear walls can provide more safety to the designers although it came out to be more costly, however, they are extremely effective in terms of structural stability.

Anshumn. S, Dipendu Bhunia, Bhavin Rmjiyani (2018): in this research paper "Solution of Shear Wall Location in Multi-storey Building", the researchers have done an analysis of G+15 storied building by providing shear walls on different Locations in it. They have come to a conclusion that the shear walls provided at the centre of the geometry in the form of box or at the corners, the structure can have a maximum response to the horizontal forces. I this way shear walls are more popular in the high-rise structures due to its dual purpose, i.e. it can be also used as a lift system.

M. Asharaf, Z. A. Siddiqi, M. A. Javed (2019): in this research paper "Configuration of Multistorey Building Subjected to lateral Forces", the researchers have done an analysis of G+20 storied building and compared the results obtained from the analysis. Finally, they have come to a conclusion that the storey drift and the storey displacements of a structures to be much lesser in the case of a building when the shear walls are provided at all the corners and the core of a building. Sid Ahmed Meftah, Abdelouahed Tounsi, Adda Bedi El Abbas (2019): in this research paper "A Simplified Approach for Seismic Calculation of a Tall Building Braced by Shear walls and Thin-walled Open Section Structures", the researchers have used a various approach of analysis of the tall building using the STAAD.Pro and ETABS. They have concluded that the value of storey shear of a structure with the braced shear walls at the core and at the corners to be high, which proved to be the best and fit to be used in construction. But, they have also concluded that the overturning moments for such structures to be high as compared to the structures without the provision of shear walls.

Lakshmi K O Prof. Ramanujan JSunil B, Kottallil L, Poweth J (2016): in this research paper "Effect of Shear Wall Locations in Buildings Subjected to Seismic Loads", the researchers have done a study on the behaviour of a structure to seismic loads by modelling a different buildings with shear walls on various position using FEM method of design, both by manual calculation and using STAD.Pro. They finally came to a conclusion that the provision of shear wall in the multi-storied buildings can ultimately increase the stiffness and strength of the structure and it was observed that the base shear was increased and the storey displacement was decreased, when the shear wall is provided. Which is probably due to the increase in stiffness of the structure

2.1.2 Previous studies on braced structures

Prof. BhosleAshwiniTanaji, Prof. Shaikh A. N. (2018): in this research paper "Analysis pf Reinforced concrete Building with Different Arrangement of Concrete and Steel Bracing System", the researchers have done the study on the design of tall buildings using a steel bracing system. They have tried to compare the response of braced and unbraced building subjected to lateral load, and identified the suitable bracing systems for resisting the seismic loads efficiently. They have concluded the steel bracing to be one of the best methods to strengthen or retrofit the existing structures. They have also found that the chevron type of steel bracing to be more efficient in seismic zones II and III and X type bracing in seismic zones IV & V.

VaniPrasad & Nivin Philip (2016): in this research paper "Effectiveness of Inclusion of Steel Bracing in Existing RC Framed Structure", the researchers have done an analysis of a G+20 storied RC framed building by providing steel bracings and shear walls at the various location. They have tried to compare the seismic performance of braced system and shear wall system in different seismic zones, and find out the better strengthening or retrofitting techniques. They

have found out that the percentage difference in variation of parameters such as, storey drift and storey displacements of braced building and shear wall building lies in the range of 15 to 20%. And finally it is found that the steel braced building has significantly reduced the lateral drift as compared to shear wall building.

A.Massumi and A.A Tasnimi (2017): in this research paper "Strengthening of Low Ductile Reinforced Concrete Frames Using Steel X Bracings with Different Details", the researchers have done a study on the analysis of a building with low ductile RC frame using the retrofitting techniques such as steel bracing of the RC frames. They have come up with the conclusion that the steel bracings can be used as an alternative to other strengthening or retrofitting techniques as the gross weight of the existing structures won't change drastically.

Umesh. and R.B, Shivaraj M (2016): in this research paper "Seismic Response of Reinforced Concrete Structure by Using Different Bracing System", the researchers have used STAAD.Pro to analyse the G+15 storied building wherein a different bracing systems were provided and then compared as per different parameters. They have concluded that the X bracing is more effective than other bracing system as it takes both compression and tension effects of a structure due to any horizontal loadings. And also they have found that the steel section ISMC300 to perform better in resisting the lateral loads when compared to ISMC200.

Sachin Dhiman and Mohd. Nauman (2018): in this research paper "Behaviour of Multi-Storey Steel Section with Different Types of Bracing", the researchers have studied on how the steel braced buildings are responding against lateral loads. They have found out that the X bracing to be most efficient in increasing shear capacity of RC frame without bracing which indicates that the stiffness of the building has increased. And also the base overturning moment capacity of RC frame has increased after the application of all bracing systems.

2.2 Summary of literature review

This chapter concludes that, although there are lots of research being done in this field, not much of the information on the seismic loads and response of the structures has been known and recorded so far. This gives another level of challenge for the engineers and designers to make a building 100% earthquake resistant.

However, according to the research and journals being published so far, many have come up with the different methods of optimizing the seismic effects on the structure – out of which a provision of steel bracings as a retrofitting technique and shear wall has been adopted and verified here, considering different parameters of comparison.

2.3 Objectives of the study

The primary objectives of this work is:

- To design G+20 storied RC framed structures by providing an equivalent shear wall and steel bracing system by response spectrum analysis.
- To compare the response of the two models, i.e. braced building and shear wall building on the basis of the parameters such as, storey drift, storey displacements, base shear (VB) and then the overturning moments of the structure.
- To compare and find out the most efficient, strengthening and retrofitting techniques that can be adopted as a construction method, in a seismic zone V.
- To do software and also a manual concrete design and perform a reinforcement detailing as per IS: 13920 in Revit structure for the structural member. This includes beam, column, slab and staircase, and footing.

CHAPTER 3

METHODOLOGY

3.1 Introduction

For this work, we have done an analysis considering G+20 storied residential building using STAAD.Pro software to study the various response of a structural system to horizontal seismic loads. Since, the steel members are very strong in tension and can also withstand the compressive loads, with light weight and requiring least cost of provision, they are widely used as a retrofitting members in tall structures. Thus, it was shown that the steel bracing exhibits a better response with stiffer and stronger structural system as compared to the shear wall building.

Here, the more emphasis is given in the analysis and comparisons of a seismic response rather than getting into the design and details. A software analysis, is carried out to determine the various parameters and the curves are drawn accordingly, for the two models with steel bracing and equivalent shear wall.

3.2 STAAD.Pro Software

STAAD.Pro is one of the finite element method (FEM) of structural analysis and designing software containing multiple programing features used in a various building industries. Some of them are as follows:

- Graphical model generation as well as text editor commands for creating the models. These allows the user to draw the geometry, assign properties, define a cross sections and assign materials like steel, concrete, timber, aluminium, etc. We can specify the supports, apply the loads as well as make program generate loads, design parameters, etc.
- Analysis engines used for performing various types of static and dynamic analysis.
- Design engines for the check of reinforcement, aluminium and timber members' optimization and checking the codes. Calculation of the percentage and quantities of reinforcement for all the concrete members.
- Results viewing, verification and report generation for various parameters.
- Import and export of data from and to other widely accepted formats.

A successful results or an output can be generated only if all the input values and commands are well defined.

3.3 Structural modelling and analysis

The types of models used for the analysis and computation of the seismic response are as follows:

- a) Model with an equivalent shear walls at its corner and at the core (lift).
- b) Model with a steel bracings at all the corners (i.e. at the same position where a shear wall is provided)

In the case of steel braced model, the core was kept as an equivalent shear wall just as in the case of shear wall model, considering that the elevator and lifts are made up of RC shear wall in both the case. The models were analysed and compared with respect to some structural response for a seismic actions.

3.3.1 Modelling with equivalent shear wall

It is obvious that the models can be designed and analysed by using the various approach of analysis. Therefore, here in this case, we have used an equivalent shear wall method for infill shear wall design. This provided us with the easiest and least time consuming approach, without any software glitches and system crashes while analysing the models.

1. Description of the model: The input data used in modelling the building is mentioned below.

Plan dimension:	$25 \times 25 \text{ m}$
Structure type:	SMRF
Number of storey:	G+20
Floor to floor height:	3.2 m
Type of building:	Residential
Soil strata:	Medium
Infill wall types:	AAC Blocks
Foundation types:	Isolated footings

2. Material properties

Grade of concrete (fu):	M40
-------------------------	-----

Grade of steel (fy):	Fe500
Density of concrete:	25 kN/m ³
Density of AAC Block:	6 kN/m ³
Modulus of Elasticity of Concre	ete (Ec): 2.17185 kN/m^2
Modulus of Elasticity of steel (Es): $2 \times 10^5 \text{ kN/m}^2$

3. Member properties

Thickness of slab:	150 mm
Beam size:	$300\times 500 \text{ mm}$
Column size:	$600 \times 600 \text{ mm}$
Exterior wall thickness:	250 mm
Interior wall thickness:	150 mm
Equivalent Shear wall:	$250 \times 825 \text{ mm}$ (Below GL)
	$250 \times 801 \text{ mm}$ (Above GL)

4. Load values

Dead Load (DL):	a. Floor load = - 3.75 - 1.25 (floor finish) kN/m^2
	b. Roof Load = - 1.5 kN/m^2
	c. AAC wall load = -4.05 kN/m (Exterior)
	= -2.745 kN/m (Interior)
	d. Equivalent shear wall= -16.875 kN/m

Live Load (LL):	i. At Ground floor (Retail shops and mercantile) = -4 kN/m^2
	ii. At first floor (Restaurants, café and dining) = -3 kN/m^2
	iii. Above first floor (Residential) = -2 kN/m^2
	iv. Roof floor = -0.75 kN/m ²

_

5. Seismic Definition

 $\label{eq:code-IS} \begin{array}{l} Code-IS \ 1893-2002/2005\\ \\ Zone \ (V)-0.36\\ \\ Response \ reduction \ factor \ (RF)-5\\ \\ Importance \ factor-1 \end{array}$

Rock and soil site factor (SS) - 2Damping ratio -5%Depth of foundation -2.5 m

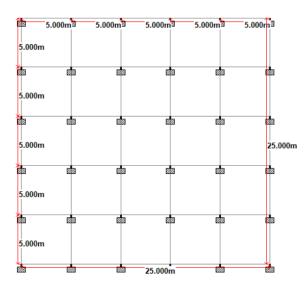


Fig. 3.1 (a): Typical plan of a structure

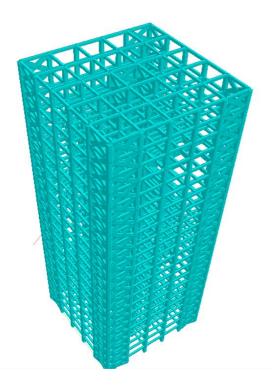


Fig. 3.1 (b): 3-D View of structure with equivalent shear wall

Table 3.1: Calculation of Equivalent Diagonal Strut for Infill Walls

Design Data			
Frame Properties			
Grade of Concrete	fck	40	MPa
Width of beam	bb	0.300	m
Depth of beam	db	0.500	m
Type of Column		Rectangular	
Width /Diameter of Column	bc	0.6	m
Depth of Column	dc	0.6	m
Elastic Modulus of RCC Frame	Ef	31623	MPa
Moment of Inertia of Column	Ic	0.01080	m4
Moment of Inertia of Beam	Ib	0.00313	m4

Infill F	Properties	5
----------	------------	---

nijin Flopercies			
Elastic Modulus of Infill Wall	Em	31623	MPa
Thickness of the Infill Wall	t	0.25	m
Height of Infill wall	h	2.7	m
Length of Infill wall	L	5	m

Design Calculation			
$Angle(\theta) = \tan^{-1}(h/L)$	θ	28.25	Degree
$\alpha_h = \frac{\pi}{2} \left[\frac{E_f I_c h}{2E_m t \sin 2\theta} \right]^{1/4}$	αh	0.8078	m
$\alpha_{L} = \pi \left[\frac{E_{f} I_{b} L}{2E_{m} t \sin 2\theta} \right]^{1/4}$	αL	1.3823	m
$Width, W = \frac{1}{2}\sqrt{\alpha_h^2 + \alpha_L^2}$	W	0.801	m
Length of strut	Ld	5.682	m
Area of strut	Ad	0.200	m2

Results			
Equivalent Width of diagonal Strut	W	0.801	m
Thickness of diagonal Strut	t	0.250	m
Equivalent Length of diagonal			
Strut	Ld	5.682	m
Equivalent Area of diagonal Strut	Ad	0.200	m2

3.3.2 Modelling with steel bracing

Retrofitting the structures with a steel bracing is another technique that we have opted, for the comparison of a structure with that of shear walled structure.

Here the X type steel bracings, of ISMC300 sections were placed at the corners of the building in place of the shear walls. However, the core shear wall was kept common for both the models. The same plan and models were considered as that of the structure designed using shear wall.

1. Description of the model: The input data used in modelling the building is mentioned

Plan dimension:	$25 \times 25 \text{ m}$
Structure type:	SMRF
Number of storey:	G+20
Floor to floor height:	3.2 m
Type of building:	Residential
Soil strata:	Medium
Infill wall types:	AAC Blocks
Foundation types:	Isolated footings

2. Material properties

below.

Grade of concrete (fu):	M40
Grade of steel (fy):	Fe500
Density of concrete:	25 kN/m ³
Density of AAC Block:	6 kN/m ³
Modulus of Elasticity of Concr	rete (Ec): 2.17185 kN/m^2
Modulus of Elasticity of steel (Es): $2 \times 10^5 \text{ kN/m}^2$

3. Member properties

Thickness of slab:	150 mm
Beam size:	$300\times500\ mm$
Column size:	$600 \times 600 \text{ mm}$
Steel bracing:	ISMC300
Exterior wall thickness:	250 mm
Interior wall thickness:	150 mm

Equivalent Shear wall (only for the core lift system): $250 \times 825 \text{ mm}$ (Below GL) $250 \times 801 \text{ mm}$ (Above GL)

4. Load values

Dead Load (DL):	a. Floor load = - 3.75 - 1.25 (floor finish) kN/m^2
	b. Roof Load = - 1.5 kN/m^2
	c. AAC wall load = -4.05 kN/m (Exterior)
	= -2.745 kN/m (Interior)
	d. Equivalent shear wall= -16.875 kN/m

Live Load (LL):	i. At Ground floor (Retail shops and mercantile) = -4 kN/m^2
	ii. At first floor (Restaurants, café and dining) = -3 kN/m^2
	iii. Above first floor (Residential) = -2 kN/m^2
	iv. Roof floor = -0.75 kN/m^2

5. Seismic Definition

Code – IS 1893 - 2002/2005Zone (V) – 0.36 Response reduction factor (RF) – 5 Importance factor – 1 Rock and soil site factor (SS) – 2 Damping ratio – 5% Depth of foundation – 2.5 m

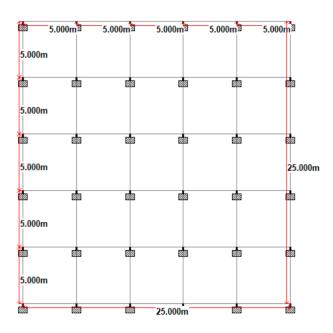


Fig. 3.2 (a): Typical plan of a structure

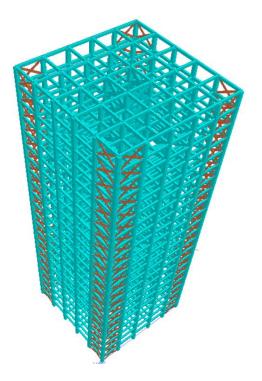


Fig. 3.2 (b): 3-D View of structure with steel bracings

CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 Introduction

This section provides and describes the results obtained for the FEM of analysis. The equivalent shear walled building and braced structures were modelled and analysed using STAAD.Pro software. After modelling and then assigning all the loads and member properties, the structure is analysed to check for zero errors. The results for the defined parameters are then extracted from the output section as well as from the post processing option.

4.2 Comparison of the seismic response of models

After the completion and verification of all the design and analysis of both the structures, the output results were recorded. Some of the important parameters used for the comparison of the results were mentioned in the following sections.

4.2.1 Storey Drift

The relative displacement of the floors above and the considered floor underneath is called as storey drift. According to IS 1893: 2016, the maximum allowable drift of stories are limited to 0.4% of the storey height, under the action of design base shear V_B .

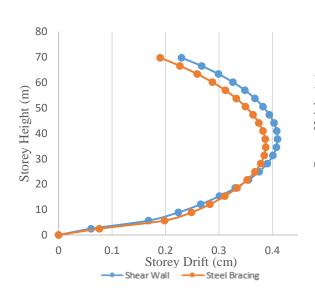

The following results were obtained from the analysis of the two models considering the seismic zone (V) factor of 0.36:

Table 4.1: Storey drift in X-direction

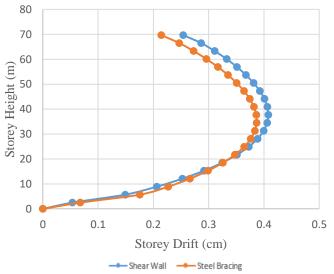

Storey Height (m)	Shear Wall (cm)	Steel Bracing (cm)
0	0	0
2.5	0.0608	0.0765
5.7	0.1683	0.1984
8.9	0.224	0.2486
12.1	0.2659	0.2831
15.3	0.3009	0.3109
18.5	0.3307	0.334
21.7	0.3554	0.3529
24.9	0.3753	0.3675
28.1	0.3905	0.3781
31.3	0.4011	0.3847
34.5	0.4075	0.3875
37.7	0.4097	0.3866
40.9	0.4083	0.3823
44.1	0.403	0.3746
47.3	0.3944	0.3637
50.5	0.3824	0.3496
53.7	0.3673	0.3324
56.9	0.3487	0.312
60.1	0.3262	0.2878
63.3	0.2992	0.2595
66.5	0.2676	0.2271
69.7	0.23	0.1901

Table 4.2: Storey drift in Z-direction

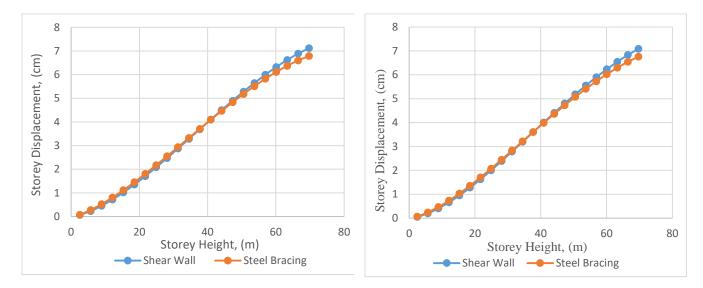
Storey Height	Shear Wall	
(m)	(cm)	Steel Bracing(cm)
0	0	0
2.5	0.0536	0.0678
5.7	0.1491	0.1754
8.9	0.2061	0.2266
12.1	0.2524	0.2661
15.3	0.2916	0.2988
18.5	0.3244	0.3258
21.7	0.3513	0.3475
24.9	0.3725	0.3642
28.1	0.3885	0.3761
31.3	0.3994	0.3835
34.5	0.4058	0.3868
37.7	0.4079	0.3861
40.9	0.4062	0.3819
44.1	0.4009	0.3744
47.3	0.3925	0.3639
50.5	0.3813	0.3506
53.7	0.3674	0.3349
56.9	0.3512	0.3167
60.1	0.3325	0.296
63.3	0.3109	0.2728
66.5	0.2864	0.2468
69.7	0.2538	0.2142

Fig. 4.1: Storey drift vs Storey height along X direction

Fig. 4.2: Storey drift vs Storey height along Z direction

4.2.2 Storey Displacement

r,


Storey displacement is the relative displacement of the floors with respect to the base of the building.

Results obtained from the analysis are shown below.

		Steel
Storey	Shear Wall	Bracing
Height (m)	(cm)	(cm)
2.5	0.068	0.0765
5.7	0.229	0.2749
8.9	0.4531	0.5235
12.1	0.719	0.8065
15.3	1.0199	1.1174
18.5	1.3506	1.4514
21.7	1.706	1.8043
24.9	2.0813	2.1718
28.1	2.4718	2.5499
31.3	2.8729	2.9346
34.5	3.2804	3.3221
37.7	3.6901	3.7087
40.9	4.0983	4.091
44.1	4.5013	4.4655
47.3	4.8957	4.8292
50.5	5.2781	5.1788
53.7	5.6454	5.5113
56.9	5.994	5.8232
60.1	6.3203	6.1111
63.3	6.6195	6.3706
66.5	6.8871	6.5977
69.7	7.1171	6.7878

Storey	Shear	Steel
Height	Wall	Bracing
(m)	(cm)	(cm)
2.5	0.0536	0.0678
5.7	0.2028	0.2432
8.9	0.4089	0.4698
12.1	0.6613	0.736
15.3	0.9529	1.0348
18.5	1.2774	1.3606
21.7	1.6287	1.7081
24.9	2.0012	2.0723
28.1	2.3897	2.4484
31.3	2.7891	2.8319
34.5	3.1949	3.2187
37.7	3.6028	3.6048
40.9	4.009	3.9867
44.1	4.4099	4.3611
47.3	4.8025	4.725
50.5	5.1837	5.0757
53.7	5.5512	5.4105
56.9	5.9024	5.7272
60.1	6.2349	6.0233
63.3	6.5457	6.296
66.5	6.8321	6.5428
69.7	7.0859	6.757

Table 4.4: Storey displacement in Z direction

Fig 4.3: Storey displacement vs Storey height along X direction

Fig. 4.4: Storey displacement vs Storey height along Z direction

4.2.3 Base Shear

Base shear is the maximum lateral or a sliding force that is generated at the base of the structure mainly due to seismic actions. The base shear of any structure is directly dependent on its self-weight.

Following results were obtained from the analysis.

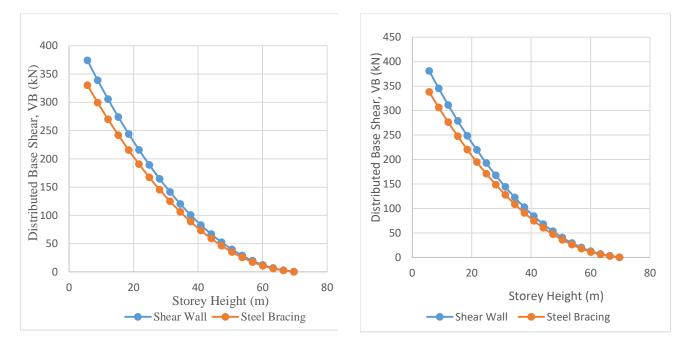

Table 4.5: Base Shear in X direction					
Storey Height (m)	Shear Wall (kN)	Steel Bracing (kN)			
2.5	0.291	0.229			
5.7	3.075	2.754			
8.9	6.834	6.05			
12.1	12.386	10.937			
15.3	19.804	17.487			
18.5	28.954	25.567			
21.7	39.837	35.177			
24.9	52.453	46.316			
28.1	66.801	58.986			
31.3	82.882	73.186			
34.5	100.695	88.915			
37.7	120.241	106.174			
40.9	141.52	124.964			
44.1	164.531	145.283			
47.3	189.275	167.132			
50.5	215.752	190.511			
53.7	243.961	215.42			
56.9	273.902	241.858			

Table 4.6: Base Shear in Z direction	1
--------------------------------------	---

Storey Height (m)	Shear Wall (kN)	Steel Bracing (kN)
2.5	0.296	0.234
5.7	3.132	2.818
8.9	6.961	6.191
12.1	12.617	11.192
15.3	20.172	17.895
18.5	29.493	26.163
21.7	40.578	35.997
24.9	53.428	47.397
28.1	68.043	60.362
31.3	84.423	74.892
34.5	102.567	90.988
37.7	122.477	108.65
40.9	144.151	127.878
44.1	167.59	148.671
47.3	192.794	171.029
50.5	219.762	194.953
53.7	248.496	220.443
56.9	278.994	247.499

60.1	305.577	269.827
63.3	338.984	299.326
66.5	374.123	330.354
69.7	151.189	140.032

60.1	311.257	276.12
63.3	345.285	306.306
66.5	381.078	338.058
69.7	154	143.297

Fig. 4.5: Base Shear vs Storey height along X direction

Fig. 4.6: Base Shear vs Storey height along Z direction

4.2.4 Overturning moments

Since the structures are subjected to various horizontal loads, the system acts like a cantilever beam. Hence, any structures designed should be safe against all the failure modes about its base. Here, in this structure we have considered the extents of an overturning moments about its base and compared between the two models. The results are obtained as follows.

Storey Height (m)	Shear Wall (kN)	Steel Bracing (kN)	Mo in Shear Wall (kN.m)	Mo in Steel Bracing (kN.m)
2.5	0.291	0.229	0.7275	0.5725
5.7	3.075	2.754	17.5275	15.6978
8.9	6.834	6.05	60.8226	53.845
12.1	12.386	10.937	149.8706	132.3377
15.3	19.804	17.487	303.0012	267.5511
18.5	28.954	25.567	535.649	472.9895
21.7	39.837	35.177	864.4629	763.3409
24.9	52.453	46.316	1306.0797	1153.2684
28.1	66.801	58.986	1877.1081	1657.5066
31.3	82.882	73.186	2594.2066	2290.7218
34.5	100.695	88.915	3473.9775	3067.5675
37.7	120.241	106.174	4533.0857	4002.7598
40.9	141.52	124.964	5788.168	5111.0276
44.1	164.531	145.283	7255.8171	6406.9803
47.3	189.275	167.132	8952.7075	7905.3436
50.5	215.752	190.511	10895.476	9620.8055
53.7	243.961	215.42	13100.7057	11568.054
56.9	273.902	241.858	15585.0238	13761.7202
60.1	305.577	269.827	18365.1777	16216.6027
63.3	338.984	299.326	21457.6872	18947.3358
66.5	374.123	330.354	24879.1795	21968.541
69.7	151.189	140.032	10537.8733	9760.2304

Table 4.7: Overturning moments along X direction

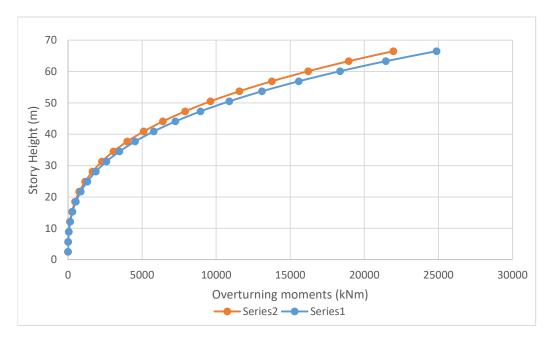


Fig 4.7: Overturning moments vs Storey height along X direction

Storey	Shear Wall	Steel Bracing	Mo in Shear Wall	Mo in Steel Bracing
Height (m)	(kN)	(kN)	(kN.m)	(kN.m)
2.5	0.296	0.234	0.74	0.585
5.7	3.132	2.818	17.8524	16.0626
8.9	6.961	6.191	61.9529	55.0999
12.1	12.617	11.192	152.6657	135.4232
15.3	20.172	17.895	308.6316	273.7935
18.5	29.493	26.163	545.6205	484.0155
21.7	40.578	35.997	880.5426	781.1349
24.9	53.428	47.397	1330.3572	1180.1853
28.1	68.043	60.362	1912.0083	1696.1722
31.3	84.423	74.892	2642.4399	2344.1196
34.5	102.567	90.988	3538.5615	3139.086
37.7	122.477	108.65	4617.3829	4096.105
40.9	144.151	127.878	5895.7759	5230.2102
44.1	167.59	148.671	7390.719	6556.3911
47.3	192.794	171.029	9119.1562	8089.6717
50.5	219.762	194.953	11097.981	9845.1265
53.7	248.496	220.443	13344.235	11837.7891
56.9	278.994	247.499	15874.759	14082.6931
60.1	311.257	276.12	18706.546	16594.812
63.3	345.285	306.306	21856.541	19389.1698
66.5	381.078	338.058	25341.687	22480.857
69.7	154	143.297	10733.8	9987.8009

 Table 4.8: Overturning moments along Z direction

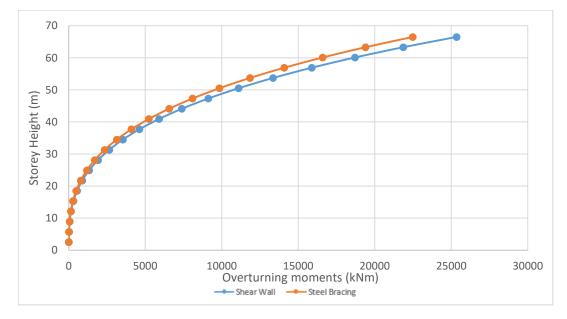


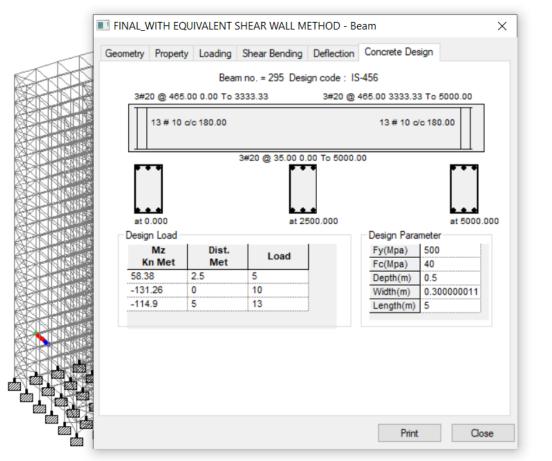
Fig 4.8: Overturning moments vs Storey height along Z direction

CHAPTER 5

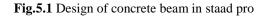
DESIGN OF STRUCTURAL COMPONENTS

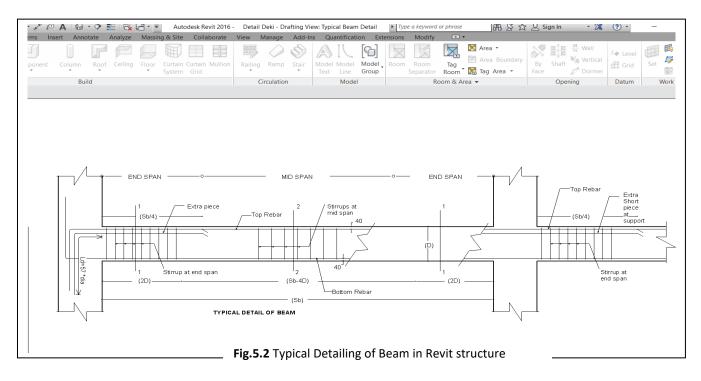
5.1 DESIGN OBJECTIVES

The design of structural components has been carried out with the primary objectives:


- i. To select an appropriate dimensions, depth, width and the concrete covers for an individual structural member.
- ii. To determine the required percentage and number of reinforcements both in longitudinal and transverse directions.
- iii. To select the workable and economic structural system in order to support a given external loads such as walls and slabs of roof and floor systems.
- iv. Detailing of reinforcements as per the provisions of IS: 13920 2016

5.2 DESIGN OF BEAM


Here, only one component of the beam (i.e. Beam no. 295^{th}) was considered and the design was carried out in STAAD.Pro using IS: 456 - 2000 and the ductile detailing was done using IS: 13920 - 2016 in Revit structure. The sectional plan and scheduling has been carried out and it is shown in the following sections.


5.2.1 Design parameters and detailing of concrete beam

1. Design parameters: Width of beam, b = 300 mm Depth of beam, d = 500 mm Grade of concrete, fck = M40 (N/mm2) Grade of steel, fy = Fe500 (N/mm2) Clear cover = 40 mm, Load factor = 1.5Bearing capacity of soil, $q_a = 150$ kN/m2

Load 1

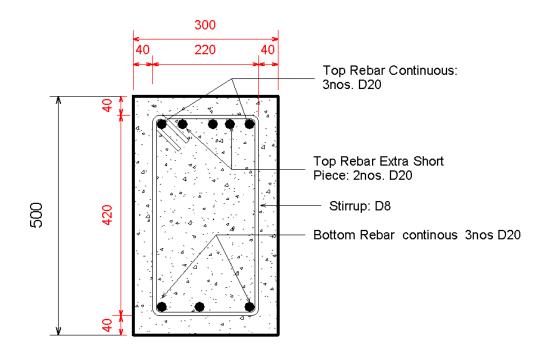


Fig5.3 Reinforcement details of Beam

Column Roof			Railing Ramp Stair	Model Model Model Text Line Group		🖉 Area Boundary 🔀 Tag Area 🔹	By Shaft Face Dormer	the Level Herei Crid Set Set
Build			Circulation	Model			Opening	Datum
			BEAM SCHEDU	LE				
MARK	SIZE (mm) M/		IN REINFORCEME	EINFORCEMENT STIRRUP		STIRRUP		
	w	D	BOTTOM	ТОР	EXTRA BAR AT TOP NEAR SUPPORT (SHORT PIECE)	END SPAN	MID SPAN	TYPE
PB	300	500	3- D20	3- D20		D8 @ 100 c/c	D8 @ 180 c/c	
FFB	300	500	3-D20	3 - D20	2-D20	D8 @ 100 c/c	D8 @ 180c/c	
RB	300	500	3- D20	3- D20		D8 @ 100 c/c	D8 @ 180 c/c	
F	Build MARK PB FFB	Build Sys Build W MARK SIZI W PB 300 FFB	WARK Size (mm) W D PB 300 500 FFB 300 500	Build Circulation Build Circulation BEAM SCHEDU MARK W D BOTTOM PB 300 500 3- D20 FFB 300	V V V Text Line Group Build Circulation Model BEAM SCHEDULE MARK SIZE (mm) MAIN REINFORCEME W D BOTTOM TOP PB 300 500 3- D20 3- D20 FFB 300 500 3-D20 3- D20	ware System Grid ware Text Line Group Separator Room & Arr Build Circulation Model Room & Arr BEAM SCHEDULE MARK SIZE (mm) MAIN REINFORCEMENT W D BOTTOM TOP PB 300 500 3- D20 3- D20 FFB 300 500 3-D20 3- D20	v v v Text Line Group Separator Room & Tag Area * Build Circulation Model Room & Area * Room & Area * BEAM SCHEDULE MARK SiZE (mm) MAIN REINFORCEMENT END SPAN W D BOTTOM TOP EXTRA BAR AT TOP PIECE) END SPAN PB 300 500 3- D20 3- D20 D8 @ 100 c/c FFB 300 500 3-D20 3- D20 2-D20 D8 @ 100 c/c	System Grid Text Line Group Separator Tage Pormer Build Circulation Model Room & Area + Opening BEAM SCHEDULE BEAM SCHEDULE MARK SiZE (mm) MAIN REINFORCEMENT End SPAN Mild SPAN W D BOTTOM TOP EXTRA BAR AT TOP HEAR SUPPORT (SHORT) END SPAN Mild SPAN PB 300 500 3- D20 3- D20 D8 @ 100 c/c D8 @ 180 c/c FFB 300 500 3-D20 2-D20 D8 @ 100 c/c D8 @ 180 c/c

Table.5.1 Beam reinforcement scheduling

5.3 DESIGN OF COLUMN

A column is mainly the compression member in a structural system carrying a loads transferred from the beams and slabs. Columns are of two types, mainly short and long column. When the ratio of effective length of a column to the least lateral dimension of it is not more than 12, then it is considered as short column and considered long or slender column if it is otherwise.

The design of column is carried out using STAAD.Pro by inputting all the design parameters and load combinations. The results obtained as given in the fig.5.4 is studied carefully and the percentage and quantity of reinforcements both in transverse and longitudinal directions and shear reinforcements are provided as shown in the fig.5.4.

The columns in the structural system are subjected to many external loads or a gravity loads such as live load on slabs and beams, dead load of slabs and beams and the self-weight of its own.

5.3.1 Design parameters and design of column

1. Design parameters: Width of column, W = 600 mmDepth of column, D = 600 mmGrade of concrete, fck = M40 (N/mm2) Grade of steel, fy = Fe500 (N/mm2) Clear cover = 40 mm, Load factor = 1.5 Bearing capacity of soil, $q_a = 150 \text{ kN/m2}$

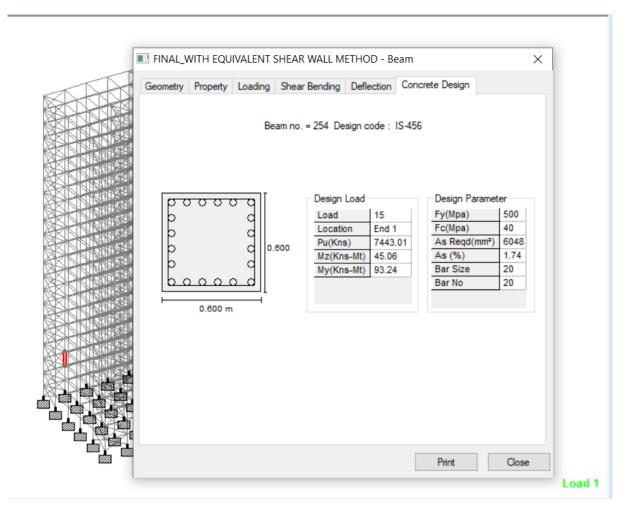


Fig.5.4 Concrete design of column in staad pro

5.3.2 Column detailing in Revit structure

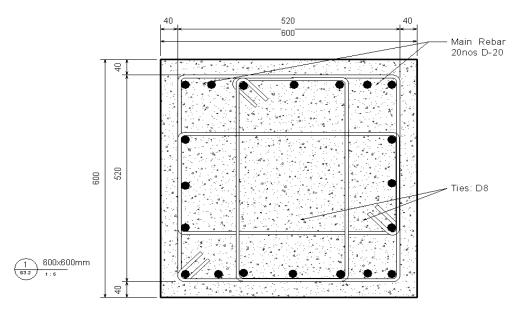
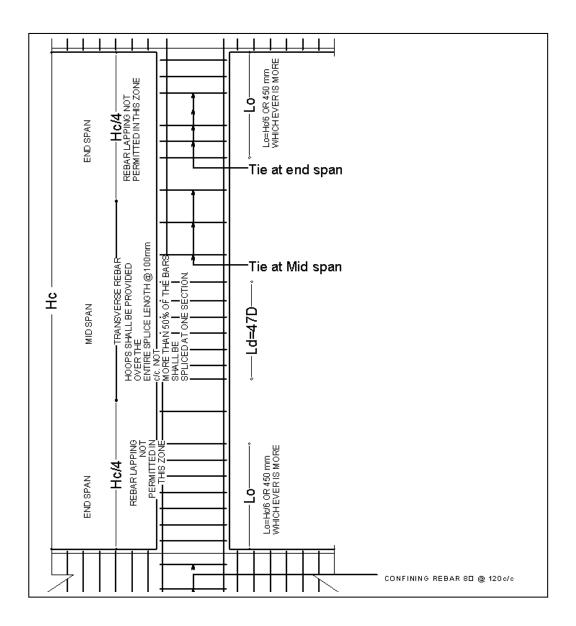



Fig.5.5 Column rebar details

Fig.5.6 Typical detailing of column

* *	 System (Grid T	Stair Model Model Model Text Line Group	Room Room Tag Separator Room Tag	Area • Face 🖉 Dorm
Build		Circulation	n Model	Room & Area 👻	Opening
				ENT SCHEDUL	E.
		COLONIN			L
			Tie Spacing		LAPPING
Mar		MAIN BAR	110 00		LENGTH
	(mm)		End Span	Mid Span	(47*DIA)
				•	
с		20nos D20	D8 @ 100 c/c	D8 @ 150 c/c	940mm for D20

Table.5.2 Column Reinforcement scheduling

5.4 DESIGN OF SLAB

The design of slab has been carried out with the help of IS: 456-2000, by the limit state method. The design properties and material data are provided in the excel sheet made as below, and the slab design procedures are already formulated in each cell.

5.4.1 Manual design of slab

Inside Length of Shorter					
Span (LX)	5.00	m	lx	5.13	m
Inside Length of Longer	5100			0.120	
Span (LY)	5.00	m	ly	5.13	m
Over all thickness of Slab			Éffective		
(D)	0.15	m	thickness	0.122	m
			(d)		
Material Data					
Grade of Concrete (fck)	30	N/mm2			
Grade of Steel (fy)	500	N/mm2			
Unit Weight of Concrete	25	kN/m3			
Xu,max/d	0.46				
Ru	4.017				
Loads					
Floor Finish	1.25	kN/m2			
Imposed Live Load	3	kN/m2			
			(Brick		
Other Load	0	kN/m2	walls)		
Load Factor	1.5				
Total factored load (Wu)	12.00	kN/m2/m			
Reinforcement Data:					
Dia. Of Bottom Rebar					
Along Span	16	mm			
Dia. Of Top Rebar Along					
Span	16	mm			
Clear Cover	20	mm			

ly/lx	Bending Moment Coefficients		Moment Per metre width (kNm/m)		Effective Depth from Bending (mm)	Area of Steel (mm2)	Minimum Ast (mm2)	Calculated Spacing (mm)
	αx (-ve)	0.032	Mx (-ve)	10.106	50	195.75		1010
1.00	αx (+ve)	0.024	Mx (+ve)	7.579	(Provided depth is SAFE)	145.79	180	1100
	αy (-ve)	0.032	My (-ve)	10.106		195.75		1010
	αy (+ve)	0.024	Mx (+ve)	7.579		145.79		1100

Steel Provided	Dia. (mm)	Spacing Calculated (mm)	Spacing provided (mm)	Area Provided (mm2)	% Steel
Bottom Rebar Along Shorter					
Span	16	250	200.00	1005.31	0.67
Bottom Rebar Along Longer					
Span	16	250	200.00	1005.31	0.67
Top Rebar at edge Along					
Shorter Span	16	250	200.00	1005.31	0.67
Top Rebar at edge Along					
Longer Span	16	250	200.00	1005.31	0.67

Check for Shear and Development Length in Short S	pan	
Percentage of tension steel	0.67	%
Permissible Shear Stress :	0.554	N/mm2
Value of K for Depth 150mm=	1.3	
Revised Permissible Shear Stress :	0.7202	N/mm2
Max. Shear Force at Edge:	20.52	KN
Nominal Shear stress at edge:	0.1368	N/mm2
	Which is smaller than Permissible Shear Stress	, thus OK

Area of Steel at supports	1005.31	mm2
Xu	40.49	mm
Moment M1	35644439	N-mm
Lo	188	mm
Development Length, Ld= 56*dia. Of bar	896	mm
Max. Permissible Length for given dia. Of bar	2446	mm
	Which is more than I.d. thus OK	

Which is more than Ld, thus OK.

Check for Shear and Development Length in Lo	nger Span	
Percentage of tension steel	0.67	%
Permissible Shear Stress :	0.554	N/mm2
Value of K for Depth 150mm=	1.3	
Revised Permissible Shear Stress :	0.7202	N/mm2
Max. Shear Force at Edge:	20.52	KN
Nominal Shear stress at edge:	0.1368	N/mm2

Which is smaller than Permissible Shear Stress, thus OK

Area of Steel at supports	1005.31	mm2
Xu	40.49	mm
Moment M1	35644439	N-mm
Lo	188	mm
Development Length, Ld= 56*dia. Of bar	896	mm
Max. Permissible Length for given dia. Of bar	2446	mm
		_

Which is smaller than Permissible Shear Stress, thus OK

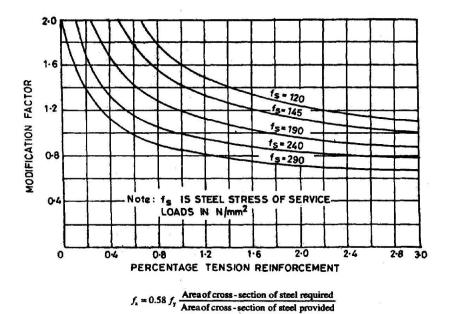
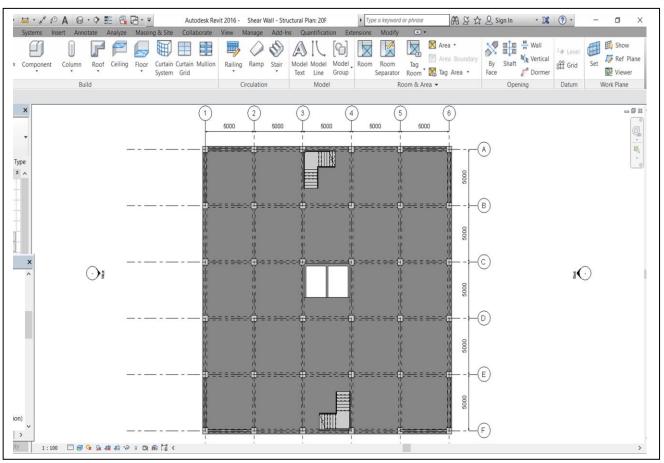



FIG. 4 MODIFICATION FACTOR FOR TENSION REINFORCEMENT

Check for Depth from Deflection point of view:

Area of Tension Reinforcement	0.67	%	fs=	42
Modification factor for Fe500 from Fig. 4 of IS 456	2	% of Tension	Rebar =	0.67%
Value of span to effective				
depth	52			
Minimum Depth from deflection point of view	98.65	mm		
	Which is le	ess than provi	ded depth	, thus OK.

5.4.2 Detailing of slab in Revit Structure

Fig.5.7 Plan view of slab

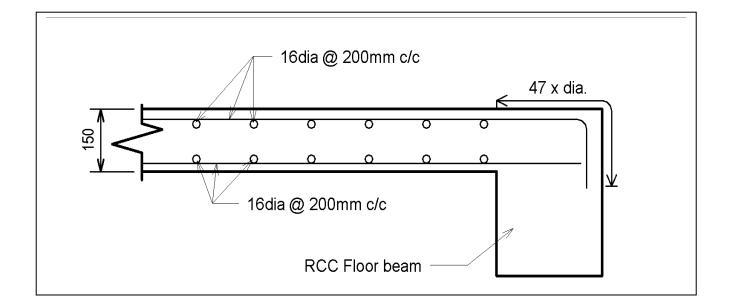
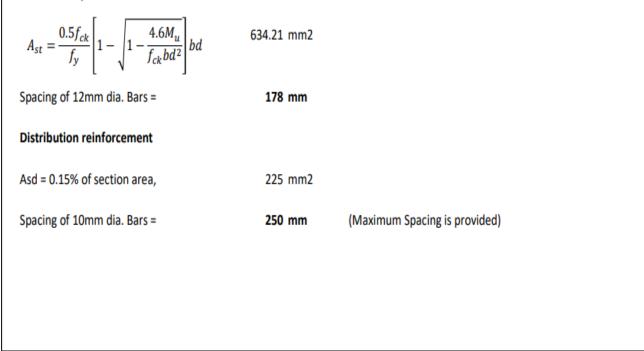
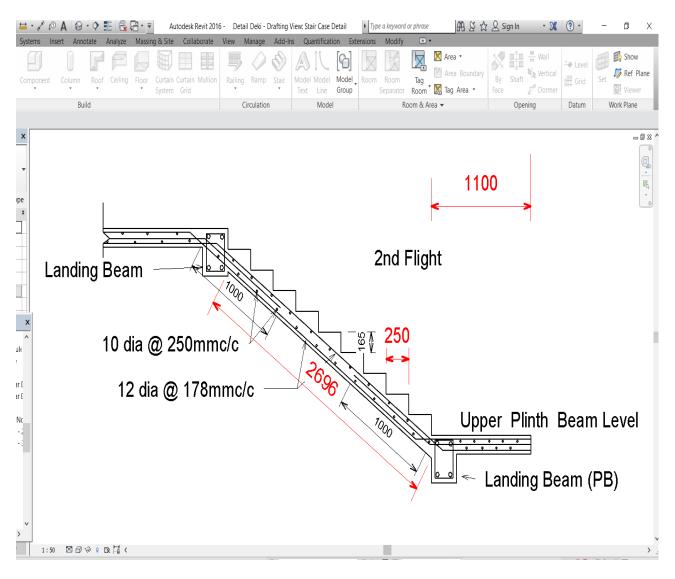



Fig.5.8 Typical detailing of slab

5.5 DESIGN OF STAIRCASE


5.5.1 Manual design of staircase

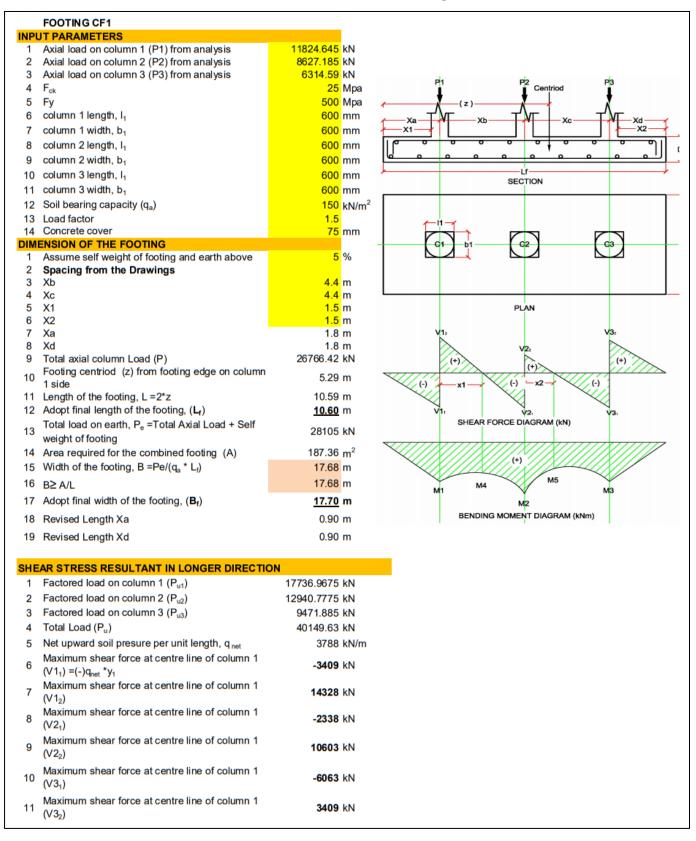


Which is less than provided effective depth, thus OK.

Steel Reinforcement Calculation

Area of steel,

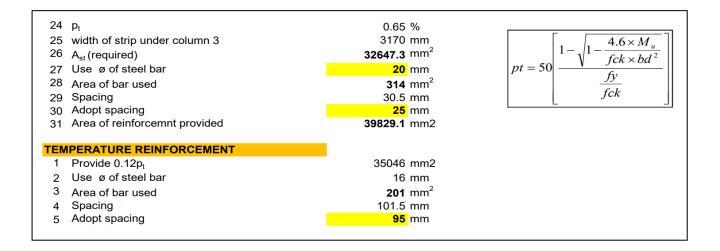
5.5.2 Staircase detailing in Revit structure


Fig.5.9 Reinforcement detailing of staircase

5.6 DESIGN OF FOOTING

The design of footing has been done by considering the three column combined. The maximum vertical loads is taken for the considered footings and the calculations has been done in the excel sheet prepared as follows.

Here we have designed for the combined footing as the loads transferred from the superstructure is very high thereby overlapping the foundations if it is designed as an isolated footing. They can safely distribute the pressures from the superstructure to the ground where


the bearing capacity of soil is very low. The design parameters and material constants are all provided in the input data.

5.6.1 Manual calculations of three column combined footing

12	Point of zero (x1) shear from Column 1	3.78 m				
13	Point of zero (x2) shear from Column 2	2.80 m				
BEN	DING STRESS RESULTANT IN LONGER DIRECT	TION				
1	Positive bending moment at Coulmn 1, M1	1534.02 kN-m	/m			
2	Positive Bending moment at Column 2, M2	-24844.40 kN-m				
3	Positive Bending moment at Column 2, M3	1534.02 kN-m	/m			
4	Maximum negative moment occurs at the					
	location of zero shear, which is at distance x from Column 1 computed from LHS, M4	-25565.88 kN-m	/m			
5	Maximum negative moment occurs at the					
	location of zero shear, which is at distance $(L_{\Gamma}x)$ from Column 2 computed from RHS, M5	-39684.81447 kN-m	/m			
DEP	TH OF FOOTING					
	Take larger moment for computing depth of footing	and reinforcement				
2	depth (d)	806.15 mm	← d =	$\sqrt{BM \div 0.138}$	$\sigma_{ck} * b$	
3	Adopt Overall depth (D) Therefore, effective depth (d)	1650 mm 1575 mm				4
	IGN OF LONGITUDINAL FLEXURAL REINFORCE		Mu = 0	$.87 * \sigma_y * A_{st}$	$d - \frac{\sigma_y}{\tau}$	$\frac{A_{st}}{b}$
						[*] ⁰
1	Maximum negative moment, M _u	-39684.81447 kN-m	/m substitu	ti ng $A_{st} = \frac{p}{1}$	$\frac{bd}{b}$	
2	Pt	0.22 % 🖌		1	00	
3	A _{st} (required)	60585.83696 mm ²	Ast 1	pt		
4	A_{st} (min)=0.12p _t	35046.00 mm ²	= - <u>-</u>	00		
5	If A _{st} (min) < A _{st} , then Ast, otherwise A _{st(min)}	Ast				
6	Number of bars at top between the two column	S				
7	Use ø of steel bar	20 mm				
8	Area of bar used	314 mm ²				
9 10	Spacing Adopt spacing	91.8 mm 150 mm				
11	Area of reinforcement provided	37070.79331 mm ²				
12	p _t provided	0.13 %				
13	Ld for M25 =47ø	940 mm			0.15	0.29
14		check with $X_{\rm a}$ and $X_{\rm b}$			0.13	0.29
ADE	QUACY OF THICKNESS OF THE FOOTING PAD				0.25	0.36
				Table 19 of IS:456 pt (%)		M25
	Permissible Shear	$\tau_c = Shear \div b \times d$		0.15	0.28	0.29
1	Shear stress (τ_c) for M25 at pt=0.48 from IS:415 of table 19	0.29 Mpa		0.25	0.36	0.36
2	The max. shear force at distance d from the face of column, $V_{\rm u}$	7226.10 kN		0.50	0.48	0.49
	Nomial shear stress, $\tau_{v} = V_u/bd$	0.26 Mpa		0.75	0.56	0.57
	If $\tau_c > \tau_v$, then OK, otherwise Not OK	ОК		1.00	0.62	0.64
	permissibleshear >= actualshear			1.25	0.67	0.7
	·			1.50 1.75	0.72	0.74 0.78
Ш	TWO WAY SHEAR			2.00	0.79	0.82
1	The critical section is located at d/2 from the periph	hery of columns		2.25	0.81	0.85
2	Shear stress of concrete (τ'_c)			3.00	0.82	0.92
3	$\tau_c = k_s \tau_c \qquad K_s = 0.5 + \beta_c \le 1 \qquad \beta_c$	1		2.75	0.82	0.9
4	short dimension of column	1.5		2.50	0.82	0.88
5	$\beta_{c} = \frac{shortdimensionofcolumn}{l_{col}} \qquad Usek_{s}$	1 1.25 Mpc				
6	Γ_c long dimsion of column τ_c	1.25 Mpa				
7		1 76 0000				
7	$\boxed{\tau_c = 0.25 \times \sqrt{Fck}}$	1.25 Mpa				

8 9	The factored soil pressure Shear force at critical section at Column 1, V_{u1}	214 16984.64	kN/m ²			
0	Nomial shear stress at Coulmn 1, $\tau_{v1} = V_{u1}/b_0d$		Мра			
1	If $\tau'_{c} > \tau_{v1}$, then OK, otherwise Not OK	OK				
12			•			
	Shear force at critical section at Column 2, V_{u2}	12188.45				
13	Nomial shear stress at Coulmn 2, $\tau_{v1} = V_{u1}/b_0 d$		Мра			
14	If $\tau'_c > \tau_{v2}$, then OK, otherwise Not OK	ок	•			
	Shear force at critical section at Column 2, V_{u2}	8719.56				
	Nomial shear stress at Coulmn 3, $\tau_{v1} = V_{u1}/b_0d$		Мра			
	If $\tau'_c > \tau_{v2}$, then OK, otherwise Not OK	ОК				
A)	IMUM POSITIVE MOMENT BEYOND COLUMN F	ACES				
1	Net upward soil presure per unit length, q _{net}		kN/m ²			
2	BM at the face of Column 1	681.7861698				
3	BM at the face of Column 2	-30696.4		Development	length	
4	BM at the face of Column 2		kN-m			
5	Maximum positive moment, M _u	681.8	kN-m	Tension Zone		
6	Pt	0.004	-	Fe (Mpa)	415	500
7	A _{st} (required)	996.3	mm²	M15	56Ø	69Ø
8	A _{st} (min)=0.12p _t	35046.0	mm ²	M20	47Ø	58Ø
9	If A _{st} (min) < A _{st} , then Ast, otherwise A _{st(min)}	Ast (min)		M25	40Ø	48Ø
	Number of bars at bottom of the two columns		•	M30	37Ø	45Ø
	Use ø of steel bar	16	mm	Compression 2	Zone	
	Area of bar used	201	mm ²	Fe (Mpa)	415	500
9	Spacing	101.5	mm	M15	45Ø	54Ø
10	Adopt spacing	95	mm	M20	38Ø	46Ø
	Area of reinforcemnt provided Ld for M20=47 ø	37461.01219 752	mm2 mm	M25 M30	32Ø 30Ø	39Ø 36Ø
12	Ld for M20=47 ø	752	mm			
12	Ld for M20=47 ø NSVERSE REINFORCEMENT To be provided proportionately in sectional area un	752 nder column loa	mm ds	M30		
12 RA	Ld for M20=47 ø NSVERSE REINFORCEMENT To be provided proportionately in sectional area un i.e. within a band of width equal to the column width	752 nder column loa th plus 2 times t	mm ds he effective depth	M30		
12	Ld for M20=47 ø NSVERSE REINFORCEMENT To be provided proportionately in sectional area un i.e. within a band of width equal to the column width Effective depth, d=D-cover-bar dia	752 nder column loa	mm ds he effective depth	M30	30ø	
12 RA	Ld for M20=47 ø NSVERSE REINFORCEMENT To be provided proportionately in sectional area un i.e. within a band of width equal to the column width	752 nder column loa th plus 2 times t	mm ds he effective depth mm	M30 DESIGN RESI	30ø	36Ø
12 R / 1	Ld for M20=47 ø NSVERSE REINFORCEMENT To be provided proportionately in sectional area un i.e. within a band of width equal to the column width Effective depth, d=D-cover-bar dia COLUMN 1	752 nder column loa th plus 2 times t 1584	mm ds the effective depth mm kN/m	M30 DESIGN RESI	30Ø JLT	36Ø
12 R 1 2 3	Ld for M20=47 ø NSVERSE REINFORCEMENT To be provided proportionately in sectional area un i.e. within a band of width equal to the column width Effective depth, d=D-cover-bar dia COLUMN 1 Factored upward pressure under column 1	752 nder column loa th plus 2 times t 1584 1002.1 36627.6	mm ds he effective depth mm kN/m kN-m	M30 DESIGN RESI Top rebars	30Ø JLT Barø(mm)	36Ø spacing (mm
12 R 1 2 3 4	Ld for M20=47 ø NSVERSE REINFORCEMENT To be provided proportionately in sectional area un i.e. within a band of width equal to the column width Effective depth, d=D-cover-bar dia COLUMN 1 Factored upward pressure under column 1 BM at the face of column 1 Pt	752 nder column loa th plus 2 times t 1584 1002.1	mm ds he effective depth mm kN/m kN-m %	M30 DESIGN RESI Top rebars a) main	30Ø JLT Barø(mm) 20	36Ø
12 R 1 2 3 4 5	Ld for M20=47 ø NSVERSE REINFORCEMENT To be provided proportionately in sectional area un i.e. within a band of width equal to the column width Effective depth, d=D-cover-bar dia COLUMN 1 Factored upward pressure under column 1 BM at the face of column 1	752 nder column loa th plus 2 times t 1584 1002.1 36627.6 1.16	mm ds he effective depth mm kN/m kN-m % mm	M30 DESIGN RESI Top rebars	30Ø JLT Bar ø (mm) 20 16	36Ø spacing (mm
12 R 1 2 3	Ld for M20=47 ø NSVERSE REINFORCEMENT To be provided proportionately in sectional area un i.e. within a band of width equal to the column width Effective depth, d=D-cover-bar dia COLUMN 1 Factored upward pressure under column 1 BM at the face of column 1 Pt width of strip under column 1	752 nder column loa th plus 2 times t 1584 1002.1 36627.6 1.16 3768 69256.6	mm ds he effective depth mm kN/m kN-m % mm	M30 DESIGN RESU Top rebars a) main b) temperature	30Ø JLT Bar ø (mm) 20 16	36Ø spacing (mm
12 1 2 3 4 5 6	Ld for M20=47 ø NSVERSE REINFORCEMENT To be provided proportionately in sectional area un i.e. within a band of width equal to the column width Effective depth, d=D-cover-bar dia COLUMN 1 Factored upward pressure under column 1 BM at the face of column 1 Pt width of strip under column 1 A _{st} (required)	752 nder column loa th plus 2 times t 1584 1002.1 36627.6 1.16 3768 69256.6 16	mm ds he effective depth mm kN/m kN-m % mm mm ² mm	M30 DESIGN RESI Top rebars a) main b) temperature Bottom rebars 1) Column 1	30Ø JLT Bar ø (mm) 20 16 s	36Ø spacing (mm 150 95
12 R 1 2 3 4 5 6 7	Ld for M20=47 ø INSVERSE REINFORCEMENT To be provided proportionately in sectional area un i.e. within a band of width equal to the column width Effective depth, d=D-cover-bar dia COLUMN 1 Factored upward pressure under column 1 BM at the face of column 1 Pt width of strip under column 1 A _{st} (required) Use ø of steel bar	752 nder column loa th plus 2 times t 1584 1002.1 36627.6 1.16 3768 69256.6 16 201	mm ds he effective depth mm kN/m kN-m % mm mm ²	M30 DESIGN RESI Top rebars a) main b) temperature Bottom rebars	30Ø JLT Bar ø (mm) 20 16	36Ø spacing (mm
12 R 1 2 3 4 5 6 7 8 9	Ld for M20=47 ø NSVERSE REINFORCEMENT To be provided proportionately in sectional area un i.e. within a band of width equal to the column width Effective depth, d=D-cover-bar dia COLUMN 1 Factored upward pressure under column 1 BM at the face of column 1 Pt width of strip under column 1 A _{st} (required) Use ø of steel bar Area of bar used	752 nder column loa th plus 2 times t 1584 1002.1 36627.6 1.16 3768 69256.6 16 201 10.9	mm ds the effective depth mm kN/m kN-m % mm mm ² mm mm ²	M30 DESIGN RESI Top rebars a) main b) temperature Bottom rebars <u>1) Column 1</u> a) Transverse	30Ø JLT Bar ø (mm) 20 16 s 16	36ø spacing (mm 150 95 2
12 R 1 2 3 4 5 6 7 8 9 10	Ld for M20=47 ø INSVERSE REINFORCEMENT To be provided proportionately in sectional area un i.e. within a band of width equal to the column width Effective depth, d=D-cover-bar dia COLUMN 1 Factored upward pressure under column 1 BM at the face of column 1 P_t width of strip under column 1 A_{st} (required) Use ø of steel bar Area of bar used Spacing Adopt spacing Area of reinforcemnt provided	752 nder column loa th plus 2 times t 1584 1002.1 36627.6 1.16 3768 69256.6 16 201 10.9	mm ds the effective depth mm kN/m kN-m % mm mm ² mm mm ² mm mm ² mm	M30 DESIGN RESI Top rebars a) main b) temperature Bottom rebars 1) Column 1 a) Transverse b) +ve rebars 2) Column 2 a) Transverse	30Ø JLT Bar ø (mm) 20 16 s s 16 16 16	36ø spacing (mm 150 95 2 95 2 95 10
12 1 2 3 4 5 6 7 8 9 10	Ld for M20=47 ø INSVERSE REINFORCEMENT To be provided proportionately in sectional area un i.e. within a band of width equal to the column width Effective depth, d=D-cover-bar dia COLUMN 1 Factored upward pressure under column 1 BM at the face of column 1 P_t width of strip under column 1 A_{st} (required) Use ø of steel bar Area of bar used Spacing Adopt spacing Area of reinforcemnt provided COLUMN 2	752 nder column loa th plus 2 times t 1584 1002.1 36627.6 1.16 3768 69256.6 16 201 10.9 2 378800.7	mm ds the effective depth mm kN/m kN-m % mm mm ² mm mm ² mm mm ² mm mm ² mm	M30 DESIGN RESI Top rebars a) main b) temperature Bottom rebars 1) Column 1 a) Transverse b) +ve rebars 2) Column 2 a) Transverse b) +ve rebars	30Ø JLT Bar ø (mm) 20 16 s 16 16 16	36ø spacing (mm 150 95 2 95
12 1 2 3 4 5 6 7 8 9 10 11 12	Ld for M20=47 ø INSVERSE REINFORCEMENT To be provided proportionately in sectional area un i.e. within a band of width equal to the column width Effective depth, d=D-cover-bar dia COLUMN 1 Factored upward pressure under column 1 BM at the face of column 1 Pt width of strip under column 1 A _{st} (required) Use ø of steel bar Area of bar used Spacing Adopt spacing Area of reinforcemnt provided COLUMN 2 Factored upward pressure under column 2	752 nder column loa th plus 2 times t 1584 1002.1 36627.6 1.16 3768 69256.6 16 201 10.9 2 378800.7 731.1	mm ds the effective depth mm kN/m kN-m % mm mm ² mm mm ² mm mm ² mm mm ² kN/m	M30 DESIGN RESI Top rebars a) main b) temperature Bottom rebars 1) Column 1 a) Transverse b) +ve rebars 2) Column 2 a) Transverse b) +ve rebars 3) Column 3	30Ø JLT Bar ø (mm) 20 16 5 5 16 16 16 16 16	36Ø spacing (mm 150 95 2 95
12 R 1 2 3 4 5 6 7 8 9 10 11 12 13	Ld for M20=47 ø NSVERSE REINFORCEMENT To be provided proportionately in sectional area un i.e. within a band of width equal to the column widt Effective depth, d=D-cover-bar dia COLUMN 1 Factored upward pressure under column 1 BM at the face of column 1 Pt width of strip under column 1 A _{st} (required) Use ø of steel bar Area of bar used Spacing Adopt spacing Area of reinforcemnt provided COLUMN 2 Factored upward pressure under column 2 BM at the face of column 2	752 nder column loa th plus 2 times t 1584 1002.1 36627.6 1.16 3768 69256.6 16 201 10.9 2 378800.7 731.1 26723.3	mm ds the effective depth mm kN/m kN-m % mm mm ² mm mm ² mm mm ² kN/m kN/m kN-m	M30 DESIGN RESU Top rebars a) main b) temperature Bottom rebars 1) Column 1 a) Transverse b) +ve rebars 2) Column 2 a) Transverse b) +ve rebars 3) Column 3 a) Transverse	30Ø JLT Bar ø (mm) 20 16 s 16 16 16 16 16 16 16 20	36Ø spacing (mm 150 95 2 95
12 R 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Ld for M20=47 ø NSVERSE REINFORCEMENT To be provided proportionately in sectional area un i.e. within a band of width equal to the column widt Effective depth, d=D-cover-bar dia COLUMN 1 Factored upward pressure under column 1 BM at the face of column 1 Pt width of strip under column 1 A _{st} (required) Use ø of steel bar Area of bar used Spacing Adopt spacing Area of reinforcemnt provided COLUMN 2 Factored upward pressure under column 2 BM at the face of column 2 Pt	752 nder column loa th plus 2 times t 1584 1002.1 36627.6 1.16 3768 69256.6 16 201 10.9 2 378800.7 731.1 26723.3 0.77	mm ds the effective depth mm kN/m kN-m % mm mm ² mm mm ² mm mm ² kN/m kN/m kN-m %	M30 DESIGN RESU Top rebars a) main b) temperature Bottom rebars 1) Column 1 a) Transverse b) +ve rebars 2) Column 2 a) Transverse b) +ve rebars 3) Column 3 a) Transverse b) +ve rebars	30Ø JLT Bar ø (mm) 20 16 s 16 16 16 16 16 20 16 20 16	36ø spacing (mm 150 95 2 95
12 R A 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 15 16 16 17 10 10 10 10 10 10 10 10 10 10	Ld for M20=47 ø NSVERSE REINFORCEMENT To be provided proportionately in sectional area unitive i.e. within a band of width equal to the column width effective depth, d=D-cover-bar dia COLUMN 1 Factored upward pressure under column 1 BM at the face of column 1 P_t width of strip under column 1 A_{st} (required) Use ø of steel bar Area of bar used Spacing Adopt spacing Area of reinforcemnt provided COLUMN 2 Factored upward pressure under column 2 BM at the face of column 2 P_t width of strip under column 2	752 nder column loa th plus 2 times t 1584 1002.1 36627.6 1.16 3768 69256.6 16 201 10.9 2 378800.7 731.1 26723.3 0.77 3768	mm ds he effective depth mm kN/m kN-m % mm mm ² mm mm ² mm mm ² kN/m kN-m % mm	M30 DESIGN RESU Top rebars a) main b) temperature Bottom rebars 1) Column 1 a) Transverse b) +ve rebars 2) Column 2 a) Transverse b) +ve rebars 3) Column 3 a) Transverse b) +ve rebars c) temperature	30Ø JLT Bar ø (mm) 20 16 5 16 16 16 16 16 16 16 16 16 16	36Ø spacing (mm 150 95 2 95
12 R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	Ld for M20=47 ø NSVERSE REINFORCEMENT To be provided proportionately in sectional area un i.e. within a band of width equal to the column widt Effective depth, d=D-cover-bar dia COLUMN 1 Factored upward pressure under column 1 BM at the face of column 1 Pt width of strip under column 1 A _{st} (required) Use ø of steel bar Area of bar used Spacing Area of reinforcemnt provided COLUMN 2 Factored upward pressure under column 2 BM at the face of column 2 Pt width of strip under column 2 A _{st} (required)	752 nder column loa th plus 2 times t 1584 1002.1 36627.6 1.16 3768 69256.6 16 201 10.9 2 378800.7 731.1 26723.3 0.77 3768 45845.8	mm ds he effective depth mm kN/m kN-m % mm mm ² mm mm ² mm mm2 kN/m kN-m % mm mm2	M30 DESIGN RESU Top rebars a) main b) temperature Bottom rebars 1) Column 1 a) Transverse b) +ve rebars 2) Column 2 a) Transverse b) +ve rebars 3) Column 3 a) Transverse b) +ve rebars c) temperature Footing Pad s	30Ø JLT Bar ø (mm) 20 16 s 16 16 16 16 16 16 16 16 16 16	36ø spacing (mm 150 95 2 95 2 10 95 95 95 95
12 R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 16 17 16 17 16 17 16 16 16 16 16 16 16 16 16 16	Ld for M20=47 ø INSVERSE REINFORCEMENT To be provided proportionately in sectional area unitive within a band of width equal to the column width Effective depth, d=D-cover-bar dia COLUMN 1 Factored upward pressure under column 1 BM at the face of column 1 P_t width of strip under column 1 A_{st} (required) Use ø of steel bar Area of bar used Spacing Area of reinforcemnt provided COLUMN 2 Factored upward pressure under column 2 BM at the face of column 2 P_t width of strip under column 2 Ast (required) Use ø of steel bar	752 nder column loa th plus 2 times t 1584 1002.1 36627.6 1.16 3768 69256.6 16 201 10.9 2 378800.7 731.1 26723.3 0.77 3768 45845.8 16	mm ds he effective depth mm kN/m kN-m % mm mm ² mm mm ² mm mm2 kN/m kN-m % mm mm2 mm mm ² mm	M30 DESIGN RESI Top rebars a) main b) temperature Bottom rebars 1) Column 1 a) Transverse b) +ve rebars 2) Column 2 a) Transverse b) +ve rebars 3) Column 3 a) Transverse b) +ve rebars c) temperature Footing Pad s Length, L	30Ø JLT Bar ø (mm) 20 16 5 16 16 16 16 16 16 16 16 16 16	36ø spacing (mm 150 95 2 95 2 95 95 95 mm
12 R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 10 10 10 10 10 10 10 10 10 10	Ld for M20=47 ø INSVERSE REINFORCEMENT To be provided proportionately in sectional area unitive within a band of width equal to the column width Effective depth, d=D-cover-bar dia COLUMN 1 Factored upward pressure under column 1 BM at the face of column 1 P_t width of strip under column 1 A_{st} (required) Use ø of steel bar Area of bar used Spacing Area of reinforcemnt provided COLUMN 2 Factored upward pressure under column 2 BM at the face of column 2 P_t width of strip under column 2 A_{st} (required) Use ø of steel bar Area of bar used 2 P_t	752 nder column loa th plus 2 times t 1584 1002.1 36627.6 1.16 3768 69256.6 16 201 10.9 2 378800.7 731.1 26723.3 0.77 3768 45845.8 16 201	mm ds he effective depth mm kN/m kN-m % mm mm ² mm mm ² mm mm2 kN/m kN-m % mm mm2 mm mm ² mm mm ² mm mm ² mm mm ² mm	M30 DESIGN RESI Top rebars a) main b) temperature Bottom rebars 1) Column 1 a) Transverse b) +ve rebars 2) Column 2 a) Transverse b) +ve rebars 3) Column 3 a) Transverse b) +ve rebars c) temperature Footing Pad s Length, L Breadth, B	30Ø JLT Bar ø (mm) 20 16 5 16 16 16 16 16 16 16 16 16 16	36Ø spacing (mm) 150 95 2 95 2 95 95 95 95 mm mm
1 234567891011 12341567891011 123141516171819	Ld for M20=47 ø INSVERSE REINFORCEMENT To be provided proportionately in sectional area unit.e. within a band of width equal to the column width Effective depth, d=D-cover-bar dia COLUMN 1 Factored upward pressure under column 1 BM at the face of column 1 P_t width of strip under column 1 A_{st} (required) Use ø of steel bar Area of bar used Spacing Area of reinforcemnt provided COLUMN 2 Factored upward pressure under column 2 BM at the face of column 2 P_t width of strip under column 2 Ast (required) Use ø of steel bar Area of bar used Spacing Attended the face of column 2 P_t width of strip under column 2 Ast (required) Use ø of steel bar Area of bar used Spacing	752 nder column loa th plus 2 times t 1584 1002.1 36627.6 1.16 3768 69256.6 16 201 10.9 2 378800.7 731.1 26723.3 0.77 3768 45845.8 16 201 16.5	mm ds he effective depth mm kN/m kN-m % mm mm ² mm mm ² mm mm ² kN/m kN-m % mm mm ² mm mm ² mm mm ² mm mm ² mm	M30 DESIGN RESI Top rebars a) main b) temperature Bottom rebars 1) Column 1 a) Transverse b) +ve rebars 2) Column 2 a) Transverse b) +ve rebars 3) Column 3 a) Transverse b) +ve rebars c) temperature Footing Pad s Length, L	30Ø JLT Bar ø (mm) 20 16 5 16 16 16 16 16 16 16 16 16 16	36Ø spacing (mm) 150 95 2 95 2 95 95 95 95 mm mm
12 R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 5 16 17 18 19 20	Ld for M20=47 ø INSVERSE REINFORCEMENT To be provided proportionately in sectional area unit.e. within a band of width equal to the column width Effective depth, d=D-cover-bar dia COLUMN 1 Factored upward pressure under column 1 BM at the face of column 1 P_t width of strip under column 1 A_{st} (required) Use ø of steel bar Area of bar used Spacing Area of reinforcemnt provided COLUMN 2 Factored upward pressure under column 2 BM at the face of column 2 P_t width of strip under column 2 Ast (required) Use ø of steel bar Area of bar used Spacing Adopt spacing Adopt spacing Area of bar used Spacing Adopt spacing Adopt spacing Adopt spacing Adopt spacing	752 nder column loa th plus 2 times t 1584 1002.1 36627.6 1.16 3768 69256.6 16 201 10.9 2 378800.7 731.1 26723.3 0.77 3768 45845.8 16 201 16.5 10	mm ds he effective depth mm kN/m kN-m % mm mm ² mm mm ² mm mm ² kN/m kN-m % mm mm ² mm mm ² mm mm ² mm mm ² mm mm ² mm	M30 DESIGN RESI Top rebars a) main b) temperature Bottom rebars 1) Column 1 a) Transverse b) +ve rebars 2) Column 2 a) Transverse b) +ve rebars 3) Column 3 a) Transverse b) +ve rebars c) temperature Footing Pad s Length, L Breadth, B	30Ø JLT Bar ø (mm) 20 16 5 16 16 16 16 16 16 16 16 16 16	36Ø spacing (mm) 150 95 2 95 2 95 95 95 95 mm mm
12 R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 5 16 17 18 9 10 11 12 14 15 16 17 18 9 10 11 12 13 14 5 16 7 8 9 10 11 12 13 14 15 16 16 17 16 17 16 16 16 16 16 16 16 16 16 16	Ld for M20=47 ø INSVERSE REINFORCEMENT To be provided proportionately in sectional area unit.e. within a band of width equal to the column width Effective depth, d=D-cover-bar dia COLUMN 1 Factored upward pressure under column 1 BM at the face of column 1 P_t width of strip under column 1 A_{st} (required) Use ø of steel bar Area of bar used Spacing Area of reinforcemnt provided COLUMN 2 Factored upward pressure under column 2 BM at the face of column 2 P_t width of strip under column 2 A_{st} (required) Use ø of steel bar Area of bar used Spacing Adopt spacing Adopt spacing Area of bar used Spacing Adopt spacing Adopt spacing Adopt spacing Adopt spacing Adopt spacing Adopt spacing Adopt spacing Area of reinforcemnt provided	752 nder column loa th plus 2 times t 1584 1002.1 36627.6 1.16 3768 69256.6 16 201 10.9 2 378800.7 731.1 26723.3 0.77 3768 45845.8 16 201 16.5	mm ds he effective depth mm kN/m kN-m % mm mm ² mm mm ² mm mm ² kN/m kN-m % mm mm ² mm mm ² mm mm ² mm mm ² mm mm ² mm	M30 DESIGN RESI Top rebars a) main b) temperature Bottom rebars 1) Column 1 a) Transverse b) +ve rebars 2) Column 2 a) Transverse b) +ve rebars 3) Column 3 a) Transverse b) +ve rebars c) temperature Footing Pad s Length, L Breadth, B	30Ø JLT Bar ø (mm) 20 16 5 16 16 16 16 16 16 16 16 16 16	36Ø spacing (mm) 150 95 2 95 2 95 95 95 95 mm mm
12 R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 5 16 17 18 9 20 21 12 10 10 10 10 10 10 10 10 10 10	Ld for M20=47 ø INSVERSE REINFORCEMENT To be provided proportionately in sectional area unit.e. within a band of width equal to the column width Effective depth, d=D-cover-bar dia COLUMN 1 Factored upward pressure under column 1 BM at the face of column 1 P_t width of strip under column 1 A_{st} (required) Use ø of steel bar Area of bar used Spacing Area of reinforcemnt provided COLUMN 2 Factored upward pressure under column 2 BM at the face of column 2 P_t width of strip under column 2 Ast (required) Use ø of steel bar Area of bar used Spacing Area of reinforcemnt provided COLUMN 2 Factored upward pressure under column 2 BM at the face of column 2 P_t width of strip under column 2 Ast (required) Use ø of steel bar Area of bar used Spacing Adopt spacing Adopt spacing Area of reinforcemnt provided COLUMN 3	752 nder column loa th plus 2 times t 1584 1002.1 36627.6 1.16 3768 69256.6 16 201 10.9 2 378800.7 731.1 26723.3 0.77 3768 45845.8 16 201 16.5 10 75760.1	mm ds he effective depth mm kN/m kN-m % mm mm ² mm mm ² mm	M30 DESIGN RESI Top rebars a) main b) temperature Bottom rebars 1) Column 1 a) Transverse b) +ve rebars 2) Column 2 a) Transverse b) +ve rebars 3) Column 3 a) Transverse b) +ve rebars c) temperature Footing Pad s Length, L Breadth, B	30Ø JLT Bar ø (mm) 20 16 5 16 16 16 16 16 16 16 16 16 16	36Ø spacing (mm) 150 95 2 95 2 95 95 95 95 mm mm
12 R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 5 16 17 18 9 20 21 12 12 12 13 14 15 16 17 18 19 10 10 10 10 10 10 10 10 10 10	Ld for M20=47 ø INSVERSE REINFORCEMENT To be provided proportionately in sectional area unit.e. within a band of width equal to the column width Effective depth, d=D-cover-bar dia COLUMN 1 Factored upward pressure under column 1 BM at the face of column 1 P_t width of strip under column 1 A_{st} (required) Use ø of steel bar Area of bar used Spacing Area of reinforcemnt provided COLUMN 2 Factored upward pressure under column 2 BM at the face of column 2 P_t width of strip under column 2 A_{st} (required) Use ø of steel bar Area of bar used Spacing Adopt spacing Adopt spacing Area of bar used Spacing Adopt spacing Adopt spacing Adopt spacing Adopt spacing Adopt spacing Adopt spacing Adopt spacing Area of reinforcemnt provided	752 nder column loa th plus 2 times t 1584 1002.1 36627.6 1.16 3768 69256.6 16 201 10.9 2 378800.7 731.1 26723.3 0.77 3768 45845.8 16 201 16.5 10 75760.1	mm ds he effective depth mm kN/m kN-m % mm mm ² mm mm ² mm mm ² mm mm ² mm mm ² mm mm ² mm mm ² mm mm ² kN/m kN-m % kN/m kN-m % kN/m kN-m % kN/m kN-m kN-m k kN/m k k k k k k k k k k k k k k k k k k k	M30 DESIGN RESI Top rebars a) main b) temperature Bottom rebars 1) Column 1 a) Transverse b) +ve rebars 2) Column 2 a) Transverse b) +ve rebars 3) Column 3 a) Transverse b) +ve rebars c) temperature Footing Pad s Length, L Breadth, B	30Ø JLT Bar ø (mm) 20 16 5 16 16 16 16 16 16 16 16 16 16	36ø spacing (mm 150 95 2 95 2 10 95 25 95 95 95 mm mm

5.6.2. Detailing of footing in Revit structure

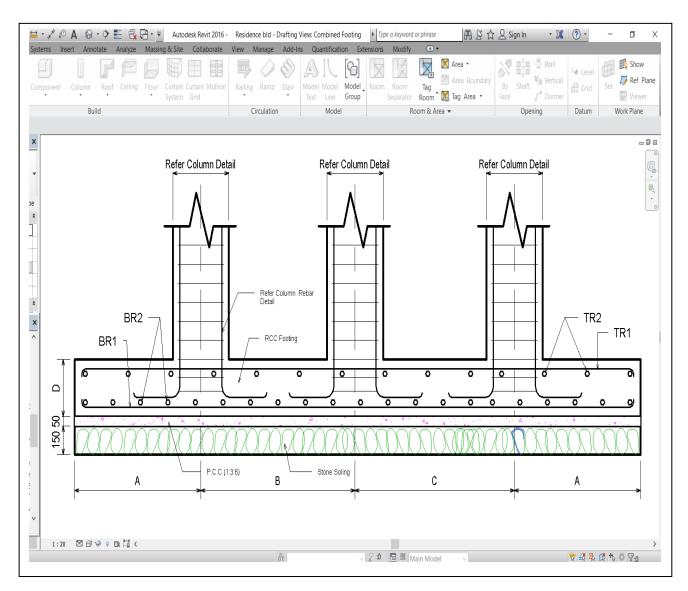


Fig.5.10 Typical detailing of three column combined footing

COMBINED FOOTING SCHEDULE											
MARK		SI	IZE (mr	ו)		BOTTON	I REBAR	TOP REI	BAR		
	Le	ength(L			_					REMARKS	
	Α	В	С	W	D	BR1	BR2	TR1	TR2		
CF1						D16@100c/c	D16@100c/c	D20@150c/c	D20@150c/c		
CF2	1800	5000	5000	17,700	1650	D16@100c/c	D16@100c/c	D20@150c/c	D20@150c/c		
CF3						D16@100c/c	D16@100c/c	D20@150c/c	D20@150c/c		

Table.5.3 Schedule of combined footing

CHAPTER 6

CONCLUSION

STAAD.Pro is one of the finite element analysis method of design software, wherein, any users can have an excess to wide range of programing, designing and analysis. In this study, the analysis of G+20 storied structures subjected to the seismic loads, located in the seismic zone V, is presented. All the essential properties were assigned after the thorough survey and literature studies, and then the results were validated with the output data in reference to the research papers and other sources.

Upon analysis and finalising the models as per the objectives summarized in the section [2.3], the subsequent conclusions were drawn.

- Although, in both of the cases, the response of the structure towards horizontal loads such as seismic force, wind force, blast loads, etc. were good enough, the response due to steel bracings have shown a mind blowing results.
- 2. On comparison of the seismic response for the two models, it was found that the steel braced building has significantly reduced the story drift, base shear and overturning moments as compared to the shear wall building. This indicates that the structure has drastically increased its stiffness, when the X bracings are provided in the structure.
- The storey displacements of the two models were found to be quite nearer but as found earlier, the storey displacements in the case of shear wall building has shown slightly more than the braced building.
- 4. The steel bracings are more advantageous as it was found to be the most efficient retrofitting techniques, and also the fabrication and installation cost is assumed to be the least as compared to the shear wall.
- 5. The overturning moment's capacity of a shear wall building is found to be low, as the slenderness ratio of a shear wall becomes inadequate with the rise in height of a building. Hence, the weight of an infill wall tends displace the centre of gravity of the building, thereby, trying to overturn the building about its base. Therefore it is evident that such type of buildings should be accompanied by a strong and rigid raft foundation, in order to provide a sufficient resisting moments (Mr) against overturning.

REFERENCES

[1] Viswanath. K.G, Prakash. K.B, Anant. D, "Seismic Analysis of Steel Braced Reinforced Concrete Frames," International Journal of Civil and Structural Engineering, Integrated Publishing services, Volume 1, 2010.

[2] Anes Babu, Dr. Chandhan KumarPatnaikuni, Dr. Balaji, K.V.G.D, B.SantosgKumar, (2017), "Effect of Steel Bracings on RC Framed Structure." International Journal of Mechanics and Solids.

[3] A. Massumi and A.A. Tasnimi, "Strengthening Of Low Ductile Reinforced Concrete Frames Using Steel X-Bracings With Different Details," The 14th World Conference on Earthquake Engineering October 12-17, 2008, Beijing, China.

[4] SachdevaGourav, Jain Rajesh, Chandak Rajeev, "Effect of R. C. Shear Wall Position on Parameters of R. C. Multi-storey Frame," IJSTE - International Journal of Science Technology & Engineering | Volume 2 | Issue 4 | October 2015.

[5 Anshumn. S, Dipendu Bhunia, Bhavin Rmjiyani (2011), "Solution of Shear wall location in Multi-storey building." International Journal of Civil Engineering.

[6] Sachin Dhiman, Mohammed Nauman, Nazrul Islam, (2015), "Behaviour of Multi-story Steel Structure with Different types of Bracing System", IRJEST.

[7] Ashok K. Jain, 2016, "Seismic Response of RC frames with Steel Braces," By Journal of Structural Engineering.

[8] Suresh P et.al. (2012), "Influence of Diagonal Braces in RCC Multi-Storied Frames under Wind Loads." A case study, International Journal of Civil and Structural Engineering, 3

[10] A Rahimi, Mahmoud R.Maheri, (2018), "The Effects of Retrofitting RC Frames by X-Bracing on the Seismic Performance of Columns" Engineering Structures.

[11] Tarun Magendra, Abhyuday Titiksh and A.A. Qureshi, (2016), "Optimum Positioning of Shear Walls in MultistoreyBuildings."

[12] Quanfeng Wang, Lingyun Wang, Qiangsheng Liu, (2001), "Effect of Shear Wall Height on Earthquake Response." Pages 376–384

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT <u>PLAGIARISM VERIFICATION REPORT</u>

M.Tech Dissertation/Report

Date: 17-05-2021
Type of Document (Tick): PhD Thesis

Name: Sonam Rinchen & Leki Department: Civil Engineering Enrolment No: <u>171680</u>, <u>171673</u> Contact No. +97577307704, +97517515915 E-mail. <u>171680@juitsolan.in</u>, <u>171673@juitsolan.in</u>

Name of the Supervisor: Professor Dr. Ashok Kumar Gupta & Mr. Akash Bhardwaj

Title of the Thesis/Dissertation/Project Report/Paper (In Capital letters): DESIGN OF HIGH RISE BUILDING

UNDERTAKING

I undertake that I am aware of the plagiarism related norms/ regulations, if I found guilty of any plagiarism and copyright violations in the above thesis/report even after award of degree, the University reserves the rights to withdraw/revoke my degree/report. Kindly allow me to avail Plagiarism verification report for the document mentioned above.

Complete Thesis/Report Pages Detail:

- Total No. of Pages = 40
- Total No. of Preliminary pages = 10
- Total No. of pages accommodate bibliography/references = 1

FOR DEPARTMENT USE

We have checked the thesis/report as per norms and found **Similarity Index** at ...**14**..... (%). Therefore, we are forwarding the complete thesis/report for final plagiarism check. The plagiarism verification report may be handed over to the candidate.

(Signature of Guide/Supervisor)

Excluded **Generated Plagiarism Report Details** Copy Received on Similarity Index (Title, Abstract & Chapters) (%) Word Counts All Preliminary Pages Character Counts Report Generated on Bibliography/Ima ges/Quotes **Total Pages Scanned** Submission ID 14 Words String File Size

FOR LRC USE

The above document was scanned for plagiarism check. The outcome of the same is reported below:

Checked by

Name & Signature

Librarian

Please send your complete thesis/report in (PDF) with Title Page, Abstract and Chapters in (Word File) through the supervisor at plagcheck.juit@gmail.com

(Signature of Student)

Paper

B.Tech Project Report

A____,

HOD CE DEPT

Signature of HOD