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ABSTRACT

The sudden rise in covid-19 cases is affecting healthcare system around the world. But the limited

testing facility causes concern because it will put lot of pressure on medical infrastructure. Because

the limited inventory of testing kits are available it become difficult for us to test each patients with

the disease. The tests which are happening have long testing and limited sensitivity. Detecting

possible COVID-19 infections on Chest X-Ray may help quarantine high-risk patients while test

results are awaited. X-Ray machines are already available in most hospitals, and with the newest X-

Ray machines already digitized, there is no transportation time involved for the samples either.

During this project, we propose the deployment of chest X-Ray to prioritize the choice of patients

for further RT-PCR testing. This might be useful in an inpatient setting where the present systems

are struggling to make your mind up whether to stay the patient in the ward together with other

patients or isolate them in COVID-19 areas. It would also help in identifying patients with a high

likelihood of COVID-19 with a false negative RT-PCR who would wish to repeat testing. Further,

we propose the deployment of recent AI techniques to detect the COVID-19 patients automatically

using X-Ray images, particularly in settings where radiologists don't seem to be available and help

make the proposed testing technology scalable. We present COVID-19 AI Detector, a unique deep

neural network-based model to triage patients for appropriate testing. On the openly available covid

chest x-ray dataset, our model gives 94.4% accuracy with 100% sensitivity for the COVID-19

infection. We significantly improve upon the results of Covid-Net on the identical dataset.
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CHAPTER 1
INTRODUCTION

1.1 Introduction

The sudden spike in the number of patients with COVID-19, a new respiratory virus,

has put an unprecedented load on healthcare systems across the world. In many countries,

healthcare systems have already been overwhelmed. There are limited kits for diagnosis, limited

hospital beds for admission of such patients, limited personal protective equipment (PPE) for

healthcare personnel, and limited ventilators. It is thus important to differentiate which patients with

severe acute respiratory illness (SARI) could have COVID-19 infection to efficiently utilize the

limited resources. In this work, we propose the use of chest X-Ray to detect COVID-19 infection in

patients exhibiting symptoms of SARI. Using our tool one can classify a given X-Ray in one of the

four classes: normal, bacterial pneumonia, viral pneumonia, and COVID-19 pneumonia. The use of

X-Ray has several advantages over conventional diagnostic tests:

 X-ray imaging is much more widespread and cost-effective than conventional diagnostic tests.

 Transfer of digital X-Ray images does not require any transportation from point of acquisition

to the point of analysis, thus making the diagnostic process extremely quick.

 Unlike CT Scans, portable X-Ray machines also enable testing within an isolation ward itself,

hence reducing the requirement of additional Personal Protective Equipment (PPE), an

extremely scarce and valuable resource in this scenario. It also reduces the risk of hospital-

acquired infection for the patients.

The main contribution of this work is in proposing a novel deep neural network-based

model for highly accurate detection of COVID-19 infection from the chest X-Ray images of the

patients. Radiographs in the current setting are in most cases interpreted by non-radiologists.

Further, given the novelty of the virus, many of the radiologists themselves may not be familiar

with all the nuances of the infection and may be lacking in the adequate expertise to make a highly

accurate diagnosis. Therefore this automated tool can serve as a guide for those at the forefront of

this analysis.

We would like to re-emphasize that we are not proposing the use of the proposed model

as an alternative to the conventional diagnostic tests for COVID-19 infection, but as a triage tool to
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determine the suitability of a patient with SARI to undergo the test for COVID-19 infection.

1.2 Problem Statement

On October 24, India’s test positivity rate stood at 8.76%, a low value by international

standards (because the median test positivity rate was around 9.73%). On the same day, India’s

testing rate was 1380 persons tested per million population, an extremely low value, again, in

comparison to other countries of the world (the median testing rate around the world on that date

was about 5,897 persons tested per million population). Many people with coronavirus symptoms

have struggled to obtain a test nearby in recent weeks. Reports have emerged of people being asked

to drive long distances to test centres even when local ones are quiet. The problem is nationwide,

with people in Agra being sent to test sites in Noida and Lucknow, people in Solan being sent to

Chandigarh, and others in Surrey being sent to the Shimla, despite the need to hop on a bus.

1.3 Objective

In a covid-19 pandemic, we as a society are suffering a lot due to a stressed healthcare system and

poor medical infrastructure which has been put on a test due to pandemic. This Pandemic which is

originated from China has spread all over the world like a wildfire. And due to the unplanned and

sudden impact on the medical system has got everyone worry. Our objective is to make a cheap

testing system that is available for everyone in the furthest of the corner. The project that we are

building is very cheap and reliable. Its deployment will help billions of people around the world.

1.1 Methodology

In this project, we address the difficult issue of choice help in mechanized Covid-19

identification dependent on picture information in Electronic-healthcare system. It is to be noticed

that some Covid-19 side effects can be comparable to the indications of another irresistible infection,

for example pneumonia, anyway there is a reasonable distinction between these two sicknesses as

known in the field of medication. Consequently, it is huge to have the option to recognize Covid-19

cases from pneumonia cases while leading robotized identification. In view of this foundation, we

characterize our concern as follows. Given chest X-Ray pictures, characterize them as being Covid-

19 positive, pneumonia positive or ordinary. Provide the characterization with the end goal that

https://www.theguardian.com/society/2020/sep/08/englands-covid-testing-troubles-something-is-clearly-going-wrong
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pictures can't cover and should just find a way into one class each The information hotspot for our

work is ImageNet, which has openly accessible chest X-Ray pictures on these two infections, just as

expected X-Rays, for example those of individuals who tried negative for both these infections.

1.5 Organization

This pre-named information with satisfactory conclusion filling in as the idea of rightness,

frames the preparation information in our concern. As such, the named chest X-Ray pictures for

Covid-19 and pneumonia permit us to separate between the two and subsequently intend to get

exact grouping for Covid-19 by learning by means of existing information. Picture information on

chest X-Rays in open storehouses when all is said in done is immense, going from gigabytes to

higher requests. It is likewise mind boggling with critical varieties. Surmisings drawn from the

information are significant and should be confirmed with sufficient testing to determine their

legitimacy according to clinical finding. Subsequently, this issue manages three of the Vs of

enormous information, specifically, volume, assortment and veracity.
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CHAPTER i2
iLITERATURE iSURVEY i

Convolutional ineural inetworks iwith imany ilayers ihave irecently ibeen ishown ito iattain

iexcellent iresults ion imany ihigh-level itasks ilike iimage iclassification, iobject idetection iand

imore irecently ialso isemantic isegmentation. iParticularly ifor isemantic isegmentation, ia itwo-

stage iprocedure iis icommonly iemployed. iHereby, iconvolutional inetworks iare itrained ito

iproduce igood ilocal ipixel-wise ifeatures ifor ithe isecond istep ibeing itraditionally ia imore

iglobal igraphical imodel.

Anastasios iDoulamis, iNikolaos iDoulamis, iKlimis iNtalianis, iand iStefanos iKollias:

Proposed ian iunsupervised ivideo iobject i(VO) isegmentation iand itracking ialgorithm isupported

ian iadaptable ineural-network iarchitecture. iThe iproposed ischeme icomprises i1) ia iVO

itracking imodule iand i2) ian iinitial iVO iestimation imodule. iObject itracking iis ihandled ias ia

iclassification iproblem iand iimplemented ithrough ian iadaptive inetwork iclassifier, iwhich

iprovides ibetter iresults icompared ito istandard imotion-based itracking ialgorithms. iNetwork

iadaptation iis iaccomplished ithrough ian iefficient iand icost-effective iweight iupdating

ialgorithm, iproviding ia iminimum idegradation iof ithe iprevious inetwork iknowledge, iand

itaking iinto iconsideration ithe ipresent icontent iconditions. iA iretraining iset iis imade iand iused

ifor ithis ipurpose isupported iinitial iVO iestimation iresults. iTwo idifferent iscenarios iare

iinvestigated. ithe iprimary iconcerns ithe iextraction iof ihuman ientities iin ivideo iconferencing

iapplications, iwhile ithe isecond iexploits idepth iinformation ito ispot igeneric iVOs iin

istereoscopic ivideo isequences. iface ibody idetection isupported iGaussian idistributions iis

iaccomplished iwithin ithe ifirst iscenario, iwhile segmentation ifusion iis iobtained iusing icolor

iand idepth iinformation iwithin ithe isecond iscenario. iA decision imechanism iis iadditionally

iincorporated ito idetect itime iinstances ifor iweight iupdating. iExperimental iresults iand

icomparisons iindicate ithe igreat iperformance iof ithe iproposed ischeme even iin isequences iwith

icomplicated icontent i(object ibending, iocclusion).

Bharath iHariharan, iPablo iArbel´aez, iRoss iGirshick, iand iJitendra iMalik:
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Detect iall iinstances iof ia icategory iin ia ipicture iand, ifor ievery iinstance, imark ithe ipixels

ithat ibelong ithereto. iThey icall ithis itask iSimultaneous iDetection iand iSegmentation i(SDS).

iUnlike iclassical ibounding ibox idetection, iSDS irequires isegmentation iand inot ijust ia ibox.

iUnlike iclassical isemantic isegmentation, iwe irequire iindividual iobject iinstances. They ibuild

iupon irecent iwork ithat iuses iconvolutional ineural inetworks ito iclassify icategory iindependent

iregion iproposals i(R-CNN), iintroducing ia iunique iarchitecture itailored ifor iSDS. They ithen

iuse icategory-specific, itopdown ifigure-ground ipredictions ito irefine iour ibottom-up iproposals.

iThey ishow ia i7 ipoint iboost i(16% irelative) iover iour ibaselines ion iSDS, ia i5 ipoint iboost

i(10% irelative) iover ithe istate-of-the-art ion isemantic isegmentation, iand istate-of-the-art

iperformance iin iobject idetection.

iBogdan iAlexe, iThomas iDeselaers, iand iVittorio iFerrari:

Presented ia igeneric iobjectness imeasure, iquantifying ihow ilikely iit's ifor ia ipicture iwindow ito

icontain ian iobject iof iany iclass. iWe iexplicitly itrain iit ito idifferentiate iobjects iwith ia iwell-

defined iboundary iin ispace, isuch ias icows iand itelephones, ifrom iamorphous ibackground

ielements, ilike igrass iand iroad. iThe imeasure icombines iin ia ivery iBayesian iframework

iseveral iimage icues imeasuring icharacteristics iof iobjects, ilike iappearing idifferent ifrom itheir

isurroundings iand ihaving ia iclosed iboundary. iThese iinclude ian iinnovative icue ito ilive ithe

iclosed iboundary icharacteristic. iIn iexperiments ion ithe ichallenging iPASCAL iVOC i07

idataset, iwe ishow ithis inew icue ito ioutperform ia istate-of-the-art isaliency imeasure iand

itherefore ithe icombined iobjectness imeasure ito iperform ibetter ithan iany icue ialone. iWe ialso

icompare ito iinterest ipoint ioperators, ia iHOG idetector, iand ithree irecent iworks iaiming iat

iautomatic iobject isegmentation. iFinally, ithey ipresent itwo iapplications iof iobjectness. iwithin

ithe ifirst, iwe isample ia itiny ilow inumber iof iwindows iin iline iwith itheir iobjectness

iprobability iand iprovides ian ialgorithm ito iuse ithem ias ilocation ipriors ifor icontemporary

iclass-specific iobject idetectors. iAs ithey ishow iexperimentally, ithis igreatly ireduces ithe

iamount iof iwindows ievaluated iby ithe iexpensive iclass-specific imodel. iIn ithe isecond

iapplication, ithey iuse iobjectness ias ia icomplementary iscore iadditionally ito ithe iclass-specific

imodel, iwhich iresults iin ifewer ifalse ipositives. iAs ishown iin iseveral irecent ipapers,

iobjectness ican iact ias ia ivaluable ifocus iof iattention imechanism iin imany iother
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iapplications operating ion iimage iwindows, iincluding iweakly isupervised ilearning iof iobject

icategories, unsupervised ipixel-wise isegmentation, iand iobject itracking iin ivideo. iComputing

iobjectness iis ivery iefficient iand itakes ionly iabout i4 isec. iper iimage.

C.P. iTown iand iD. iSinclair:

Demonstrates ian iapproach ito icontent-based iimage iretrieval ifounded ion ithe isemantically

imeaningful ilabeling iof iimages iby ihigh-level ivisual icategories. iThe iimage ilabeling iis

iachieved iby imeans iof ia igroup iof itrained ineural inetwork iclassifiers ithat imap isegmented

iimage iregion idescriptors ionto isemantic iclass imembership iterms. iit's iargued ithat ithe

isemantic iterms iprovides ia igood iestimate iof ithe isalient ifeatures iwhich iare iimportant ifor

idiscrimination iin iimage iretrieval. iFurthermore, iit's ishown ithat ithe iselection iof ivisual

icategories ilike igrass ior isky iwhich imirror ihigh-level ihuman iperception iallows ithe

iimplementation iof iintuitive iand iversatile iquery icomposition iinterfaces iand ia ispread iof

iimage isimilarity imetrics ifor icontent-based iretrieval.

i

Cl´ement iFarabet, iCamille iCouprie, iLaurent iNajman, iYann iLecun:

Propose ia iway ithat iuses ia imultiscale iconvolutional inetwork itrained ifrom iraw ipixels ito

iextract idense ifeature ivectors ithat iencode iregions iof imultiple isizes icentered ion ieach ipixel.

ithe itactic ialleviates ithe ineed ifor iengineered ifeatures iand iproduces ia istrong irepresentation

ithat icaptures itexture, ishape, iand icontextual iinformation. iThey ireport iresults iusing imultiple

ipost-processing imethods ito iprovide ithe iultimate ilabeling. iAmong ithose, ithey ipropose ia

imethod ito iautomatically iretrieve, ifrom ia ipool iof isegmentation iunits, ian ioptimal iset iof

iunits ithat ibest iexplain ithe iscene; ithese iunits iare iarbitrary, ie.g. ithey'll ibe itaken ifrom ia

isegmentation itree, ior ifrom iany ifamily iof iover-segmentations.

Clément iFarabet, iCamille iCouprie, iLaurent iNajman iand iYann iLeCun:

Proposed iscene iparsing istrategy ihere ibeginnings iby ifiguring ia itree iof isections ifrom ia ichart

iof ipixel idissimilarities. iAll ithe iwhile, ia ibunch iof ithick icomponent ivectors iis ifigured

iwhich iencodes ilocales iof ivarious isizes ifixated ion ievery ipixel. iThe icomponent iextractor iis
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ia imultiscale iconvolutional inetwork iprepared ifrom icrude ipixels. iThe icomponent ivectors

irelated iwith ithe ifragments icanvassed iby ievery ihub iin ithe itree iare iamassed iand itaken icare

iof ito ia iclassifier iwhich iproduces ia igauge iof ithe iappropriation iof iitem iclasses icontained

iin ithe ifragment. iA isubset iof itree ihubs ithat icover ithe ipicture iare ithen ichosen ito iexpand

ithe inormal i"immaculateness" iof ithe iclass idisseminations, iconsequently iexpanding ithe

igeneral iprobability ithat ieach ifragment iwill icontain ia isolitary iarticle. iThe iconvolutional

inetwork ihighlight iextractor iis iprepared istart ito ifinish ifrom icrude ipixels, ireducing ithe

irequirement ifor idesigned ihighlights. iSubsequent ito ipreparing, ithe iframework iis iboundary

ifree. iThe iframework iyields irecord iexactnesses ion ithe iStanford iBackground iDataset i(8

iclasses), ithe iSift iFlow iDataset i(33 iclasses) iand ithe iBarcelona iDataset i(170 iclasses) iwhile

ibeing ia isignificant idegree iquicker ithan icontending iapproaches, idelivering ia i320 i× i240

ipicture imarking iin iunder i1 isecond.

iHongsheng iLi, iRui iZhao, iand iXiaogang iWang:

Present iprofoundly iproficient icalculations ifor iperforming iforward iand iin ireverse ispread iof

iConvolutional iNeural iNetwork i(CNN) ifor ipixelwise icharacterization ion ipictures. iFor

ipixelwise iarrangement iassignments, ifor iexample, ipicture idivision iand iarticle ilocation,

iencompassing ipicture ipatches iare itaken icare iof iinto iCNN ifor iforeseeing ithe iclasses iof

ifocused ipixels ithrough iforward iengendering iand ifor irefreshing iCNN iboundaries iby imeans

iof iin ireverse ispread. iNonetheless, iforward iand iin ireverse iengendering iwas iinitially

iintended ifor ientire ipicture iorder. iStraightforwardly iapplying iit ito ipixelwise igrouping iin ia

ifix iby-fix ifiltering iway iis ivery iwasteful, iin ilight iof ithe ifact ithat iencompassing ipatches iof

ipixels ihave ienormous icovers, iwhich ilead ito ia igreat ideal iof irepetitive icalculation. iThe

iproposed icalculations idispense iwith iall ithe irepetitive icalculation iin iconvolution iand

ipooling ion ipictures iby ipresenting inovel id-routinely iinadequate ipieces. iIt iproduces ithe ivery

isame ioutcomes ias ithose iby ifix iby-fix iexamining. iConvolution iand ipooling iactivities iwith

isuch iportions ican iconsistently iget ito imemory iand ican irun iproductively ion iGPUs. iA ismall

iamount iof ipatches iof iinterest ican ibe ibrowsed ieach ipreparation ipicture ifor iin ireverse

ispread iby iapplying ia icover ito ithe imistake imap iat ithe ilast iCNN ilayer. iIts icalculation

iintricacy iis iconsistent ias ifor ithe iquantity iof ipatches itested ifrom ithe ipicture. iTests ihave
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ishown ithat iour iproposed icalculations iaccelerate iusually iutilized ifix iby-fix ilooking iover

imultiple itimes iin iboth iforward iand iin ireverse iproliferation. iThe ispeedup iincrements iwith

ithe ispans iof ipictures iand ifixes. iSource icode iof iGPU iusage iis ifit ito ibe idelivered ito

igeneral isociety. i

The isubject iof isemantic idivision ihas iseen iextensive iadvancement idue ito ithe iamazing

ihighlights ilearned iby iconvolutional ineural iorganizations i(CNNs). iThe icurrent idriving

imethodologies ifor isemantic idivision imisuse ishape idata iby iremoving iCNN ihighlights ifrom

iconcealed ipicture idistricts. iThis itechnique ipresents ifake ilimits ion ithe ipictures iand imay

isway ithe inature iof ithe iseparated ihighlights. iIn iaddition, ithe iprocedure ion ithe icrude

ipicture ispace ineed ito iprocess ia ilarge inumber iof iorganizations ion ia isolitary ipicture, iwhich

iis itedious. i

Jonathan iLong, iEvan iShelhamer iand iTrevor iDarrell: i

Show ithat iconvolutional inetworks iby ithemselves, iprepared istart ito ifinish, ipixelsto-pixels,

isurpass ithe ibest iin iclass iin isemantic idivision. iTheir ikey iunderstanding iis ito iassemble

i"completely iconvolutional" inetworks ithat itake icontribution iof iself-assertive isize iand

iproduce icorrespondingly-sized iyield iwith iproficient ideduction iand ilearning. iThey

icharacterize iand idetail ithe ispace iof icompletely iconvolutional inetworks, idisclose itheir

iapplication ito ispatially ithick iforecast iundertakings, iand iattract iassociations iwith iearlier

imodels. iThey iadjust icontemporary iarrangement iorganizations i(AlexNet, ithe iVGG inet, iand

iGoogLeNet) iinto icompletely iconvolutional iorganizations iand imove itheir ieducated iportrayals

iby iadjusting ito ithe idivision itask. iThey iat ithat ipoint icharacterize ia inovel idesign ithat ijoins

isemantic idata ifrom ia iprofound, icoarse ilayer iwith iappearance idata ifrom ia ishallow, ifine

ilayer ito icreate iprecise iand ipoint iby ipoint idivisions. iTheir icompletely iconvolutional

inetwork iaccomplishes icondition iof-theart idivision iof iPASCAL iVOC i(20% irelative

iimprovement ito i62.2% imean iIU ion i2012), iNYUDv2, iand iSIFT iFlow, iwhile iderivation

itakes ishort iof iwhat ione ififth iof ia isecond ifor ia iregular ipicture.

Joseph iJ. iLim iC. iLawrence iZitnick iPiotr iDoll'ar:

Proposed ia inovel iway ito ideal iwith iboth ilearning iand irecognizing inearby iform ibased
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iportrayals ifor imid-level ihighlights. iTheir ihighlights, icalled isketch itokens, iare ifound iout

iutilizing iregulated imid-level idata iin ithe istructure iof ihand iattracted iforms ipictures. iPatches

iof ihuman iproduced ishapes iare igrouped ito iframe isketch itoken iclasses iand ian iarbitrary

itimberland iclassifier iis iutilized ifor iproficient iidentification iin inovel ipictures. iThey ishow

iour imethodology ion iboth itop idown iand ibase iup iundertakings. iThey ishow icutting iedge

iresults ion ithe itop-down iassignment iof ishape ilocation iwhile ibeing iover i200_ iquicker ithan

icontending istrategies. iThey iadditionally iaccomplish ihuge iupgrades iin iidentification

iexactness ifor ithe ibase iup iassignments iof ipasserby iand iarticle iidentification ias iestimated

ion iINRIA iand iPASCAL, iseparately. iThese iadditions iare ibecause iof ithe iintegral idata igave

iby isketch itokensto ilow-level ihighlights, ifor iexample, islope ihistograms.

Joao iCarreira iand iCristian iSminchisescu:

iIntroduced ia inovel istructure ifor iproducing iand ipositioning iconceivable iitems itheories iin ia

ipicture iutilizing ibase iup icycles iand imid-level iprompts. iThe iarticle ispeculations iare ispoken

ito ias ifigure-ground idivisions, iand iare iextricated iconsequently, iwithout iearlier iinformation

iabout iproperties iof iindividual iitem iclasses, iby itackling ia isuccession iof icompelled

iparametric imin-cut iissues i(CPMC) ion ia inormal ipicture iframework. iThey iat ithat ipoint

ifigure iout ihow ito irank ithe iitem ispeculations ivia ipreparing ia iconsistent imodel ito iforesee

ihow iconceivable ithe iportions iare, igiven itheir imid-level idistrict iproperties. iThey ishow ithat

ithis icalculation ifundamentally ioutflanks ithe icutting iedge ifor ilow-level idivision iin ithe

iVOC09 idivision idataset. iIt iaccomplishes ia isimilar inormal ibest idivision icovering ias ithe

ibest iperforming iprocedure ito idate, i0.61 iwhen iutilizing ionly ithe itop i7 ipositioned isections,

irather ithan ithe ifull ichain iof iimportance iin. iTheir itechnique iaccomplishes i0.78 inormal ibest

icovering iutilizing i154 isections. iIn ia ipartner ipaper, ithey ilikewise ishow ithat ithe icalculation

iaccomplishes icutting iedge iresults iwhen iutilized iin ia idivision ibased iacknowledgment

ipipeline. iProfound iConvolutional iNeural iNetworks i(DCNNs) ihave ias iof ilate iindicated ibest

iin iclass iexecution iin isignificant ilevel ivision ierrands, ifor iexample, ipicture icharacterization

iand iitem iidentification. iThis iwork iunites istrategies ifrom iDCNNs iand iprobabilistic

igraphical imodels ifor itending ito ithe ierrand iof ipixel-level iorder i(additionally icalled

i"semantic ipicture idivision"). i
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Liang-Chieh iChen, iGeorge iPapandreou, iIasonas iKokkinos, iKevin iMurphy iand iAlan iL.

iYuille: iShow ithat ireactions iat ithe ilast ilayer iof iDCNNs iare inot iadequately iconfined ifor

iprecise iitem idivision. iThis iis ibecause iof ithe ivery iinvariance iproperties ithat imake iDCNNs

iuseful ifor ielevated ilevel iundertakings. iThey iconquer ithis ihelpless irestriction iproperty iof

iprofound iorganizations iby ijoining ithe ireactions iat ithe ilast iDCNN ilayer iwith ia icompletely

iassociated iConditional iRandom iField i(CRF). iSubjectively, itheir i"DeepLab" iframework ican

ilimit iportion ilimits iat ia idegree iof iprecision iwhich iis ipast istrategies. iQuantitatively, iour

itechnique isets ithe inew icondition iof-craftsmanship iat ithe iPASCAL iVOC-2012 isemantic

ipicture idivision itask, icoming ito i71.6% iIOU iprecision iin ithe itest iset. iThey ishow ihow

ithese ioutcomes ican ibe igotten iproductively: iCautious iorganization ire-purposing iand ia inovel

iuse iof ithe i'opening' icalculation ifrom ithe iwavelet inetwork ipermit ithick icalculation iof

ineural inet ireactions iat i8 iedges ifor ieach isecond ion ian iadvanced iGPU. iMohammadreza

iMostajabi, iPayman iYadollahpour iand iGregory iShakhnarovich ipresent ia isimply ifeed-forward

idesign ifor isemantic idivision. iThey imap ilittle ipicture icomponents i(superpixels) ito irich

ielement iportrayals iremoved ifrom ia isuccession iof isettled iareas iof iexpanding idegree. iThese

iareas iare iacquired iby i"zooming iout" ifrom ithe isuperpixel iright ito iscene-level igoal. iThis

imethodology iabuses ifactual istructure iin ithe ipicture iand iin ithe imark ispace iwithout isetting

iup iunequivocal iorganized iexpectation icomponents, iwhat's imore, iconsequently istays iaway

ifrom iunpredictable iand icostly iderivation. iRather isuperpixels iare iarranged iby ia ifeedforward

imultilayer inetwork. iTheir iengineering iaccomplishes inew icutting iedge iexecution iin isemantic

idivision, iacquiring i64.4% inormal iexactness ion ithe iPASCAL iVOC i2012 itest iset.

Ning iZhang iet ial:

In ihis ipaper i"Part ibased iR-CNN's ifor ifine igrained iclass idiscovery" iindicated ithat isemantic

ipart iconfinement ican iencourage ine-grained iarrangement iby iunequivocally idisengaging

iunobtrusive iappearance idierences irelated iwith ispecifc iobject iparts. iTechniques ifor

iposenormalized iportrayals ihave ibeen iproposed, ihowever iby iand ilarge iassume ibouncing ibox

iexplanations iat itest itime ibecause iof ithe itrouble iof iarticle ilocation. iThey iproposed ia imodel

ifor ine-grained iclassification ithat idefeats ithese iimpediments iby iutilizing iprofound

iconvolutional ihighlights iregistered ion ibase iup iarea iproposition. iTheir istrategy ilearns ientire
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iarticle iand ipart ifinders, iimplements ilearned imathematical iimperatives iamong ithem, iand

ipredicts ia ine-grained iclassification ifrom ia iposture istandardized iportrayal. iInvestigations ion

ithe iCaltech-UCSD iwinged icreature idataset iconrm ithat ithis itechnique ibeats icutting iedge

ine-grained iarrangement itechniques iin ia istart ito ifinish iassessment iwithout irequiring ia

ibouncing ibox iat itest itime.

Pablo iArbeaez, iBharath iHariharau, iChunhui iGu, iSaurabh iGupta, iLubomir iBourdev

ialso, iJitendra iMalik:

Tended ito ithe iissue iof iportioning iand iperceiving iobjects iin igenuine iworld ipictures, izeroing

iin ion itesting iexplained iclassifications, ifor iexample, ipeople iand iother icreatures. iFor ithis

ireason, ithey ipropose ia inovel iplan ifor idistrict ibased iitem iidentifiers ithat icoordinates

iproficiently itop-down idata ifrom ichecking iwindows ipart imodels iand iworldwide iappearance

isigns. iTheir ifinders iproduce iclass-explicit iscores ifor ibase iup ilocales, iand iat ithat ipoint

itotal ithe ivotes iof idifferent icovering icompetitors ithrough ipixel icharacterization. iThey iassess

iour imethodology ion ithe iPASCAL idivision ichallenge, iand ireport iserious iexecution ias ifor

icurrent idriving iprocedures. iOn iVOC2010, itheir itechnique iacquires ithe ibest ioutcomes iin

i6/20 iclassifications iand ithe ibest ion iexpressed iarticles.

Pedro iH. iO. iPinheiro iRonan: i

Propose ia imethodology icomprising iof ia irepetitive iconvolutional ineural iorganization iwhich

ipermits ithem ito ithink iabout ia ihuge iinfo isetting, iwhile iat ithe isame itime irestricting ithe

ilimit iof ithe imodel. iCollobert iScene iparsing iis ia imethod ithat icomprise ion igiving ia imark

ito iall ipixels iin ia ipicture ias iper ithe iclass ithey ihave ia iplace iwith. iTo iguarantee ia idecent

ivisual icognizance iand ia ihigh iclass iexactness, iit iis ifundamental ifor ia iscene iparser ito icatch

ipicture ilong irange iconditions. iIn ia ifeed-forward idesign, ithis ican ibe ijust iaccomplished iby

iconsidering ian iadequately ienormous iinformation isetting ipatch, iaround ievery ipixel ito ibe

inamed. iOpposite ito imost istandard imethodologies, iour istrategy idoesn't idepend ion iany

idivision istrategies, inor iany itask-explicit ihighlights. iThe iframework iis iprepared iin ia istart

ito ifinish iway iover icrude ipixels, iand imodels icomplex ispatial iconditions iwith ilow

iderivation icost. iAs ithe isetting isize iincrements iwith ithe iimplicit irepeat, ithe iframework
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irecognizes iand irevises iits iown imistakes. iTheir imethodology iyields ibest iin iclass iexecution

ion iboth ithe iStanford iBackground iDataset iand ithe iSIFT iStream iDataset, iwhile istaying

iquick iat itest itime.

Philipp iKr¨ahenb¨uhl, iVladlen iKoltun:

Most icutting iedge iprocedures ifor imulti-class ipicture idivision iand imarking iutilize irestrictive

iirregular ifields i(CRF) icharacterized iover ipixels ior ipicture iareas. iWhile idistrict ilevel

imodels ifrequently iinclude ithick ipairwise inetwork, ipixellevel imodels iare iextensively ibigger

iand ihave ijust iallowed imeager idiagram istructures. iThe ipaper iconsiders icompletely

iassociated iCRF imodels icharacterized ion ithe itotal iarrangement iof ipixels iin ian ipicture. iThe

isubsequent icharts ihave ibillions iof iedges, imaking icustomary iinduction icalculations iillogical.

iThe icommitment iis ia iprofoundly iproficient irough isurmising icalculation ifor icompletely

iassociated iCRF imodels iin iwhich ithe ipairwise iedge ipossibilities iare icharacterized iby ia

istraight iblend iof iGaussian ibits. iTests ishows ithat ithick iavailability iat ithe ipixel ilevel

isignificantly iimproves idivision iand imarking iexactness.

i

Pierre iSermanet iDavid iEigen i, iXiang iZhang iMichael iMathieu iRob iFergus iYann

iLeCun:

Present ian iincorporated isystem ifor iutilizing iConvolutional iNetworks ifor iorder, ilimitation

iand ilocation. iThey ishow ihow ia imultiscale iand isliding iwindow iapproach ican ibe ieffectively

iexecuted iinside ia iConvNet. iThey ilikewise ipresent ia inovel iprofound ilearning iway ito ideal

iwith ilimitation iby ifiguring iout ihow ito iforesee iobject ilimits. iBouncing iboxes iare iat ithat

ipoint icollected ias iopposed ito ismothered ito iexpand idiscovery icertainty. iThey ishow ithat

ivarious iundertakings ican ibe iadapted iat ithe isame itime iutilizing ia isolitary ishared

iorganization. iThis iincorporated istructure iis ithe ivictor iof ithe irestriction iundertaking iof ithe

iImageNet iLarge iScale iVisual iAcknowledgment iChallenge i2013 i(ILSVRC2013) iand

iacquired iexceptionally iserious ioutcomes ifor ithe irecognition iand icharacterizations

iundertakings. iIn ipost-rivalry iwork, ithey ibuild iup ianother icondition iof ithe icraftsmanship

ifor ithe irecognition itask. iAt ilong ilast, ithey idischarge ian ielement iextractor ifrom iour ibest

imodel icalled iOverFeat.
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Rainer iLienhart iand iAxel iWernicke:

Propose ia inovel istrategy ifor ilimiting iand idividing itext iin icomplex ipictures iand irecordings.

iText ilines iare idistinguished iby iutilizing ia icomplex-esteemed imultilayer ifeed-forward

iorganization iprepared ito irecognize itext iat ia ifixed iscale iand iposition. iThe iorganization's

iyield iat iall iscales iand ipositions iis icoordinated iinto ia isolitary ibook isaliency imap, ifilling

iin ias ia ibeginning istage ifor iapplicant itext ilines. iOn iaccount iof ivideo, ithese iup-and-comer

itext ilines iare irefined iby imisusing ithe ifleeting iexcess iof itext iin ivideo. iConfined icontent

ilines iare ithen iscaled ito ia ifixed itallness iof i100 ipixels iand isectioned iinto ia iparallel ipicture

iwith idark icharacters ion iwhite ifoundation. iFor irecordings, ifleeting iexcess iis imisused ito

iimprove idivision iexecution. iInformation ipictures iand irecordings ican ibe iof iany isize

ibecause iof ia ivalid imultiresolution iapproach. iIn iaddition, ithe iframework iisn't isimply iready

ito ifind iand isection itext ievents iinto ihuge iparallel ipictures, ibut iat ithe isame itime ican

ifollow ievery icontent iline iwith isub-pixel iexactness iover ithe iwhole ievent iin ia ivideo, iwith

ithe igoal ithat ione icontent ibitmap iis imade ifor iall iexamples iof ithat itext iline. iThusly, itheir

icontent idivision iresults ican ilikewise ibe iutilized ifor iobject-based ivideo iencoding, ifor

iexample, ithat iempowered iby iMPEG-4.

Richard iSocher irichard, iCliff iChiung-Yu iLin, iAndrew iY. iNg, iand iChristopher iD.

iManning:

Present ia imaximum iedge istructure iexpectation idesign idependent ion irecursive ineural

inetworks ithat ican ieffectively irecuperate isuch istructure iboth iin icomplex iscene ipictures ialso

ias isentences. iA isimilar icalculation ican ibe iutilized iboth ito igive ia iserious isyntactic iparser

ifor icommon ilanguage isentences ifrom ithe iPenn iTreebank iand ito ioutflank ielective

iapproaches ifor isemantic iscene idivision, iexplanation iand icharacterization. iRecursive

istructure iis igenerally ifound iin ithe icontributions iof ivarious imodalities, ifor iexample,

icommon iscene ipictures ior inormal ilanguage isentences. iFinding ithis irecursive istructure

iencourages ius ito inot ijust idistinguish ithe iunits ithat ia ipicture ior isentence icontains iyet iin

iaddition ihow ithey icooperate ito iframe ia ientirety. iFor idivision iand iexplanation itheir

icalculation iacquires ianother idegree iof icondition iof-theart iexecution ion ithe iStanford
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ifoundation idataset i(78.1%). iThe ihighlights ifrom ithe ipicture iparse itree ioutflank iGist

idescriptors ifor iscene iarrangement iby i4%.

Ross iGirshick:

In i2015 iintroduced ithe istrategy i"Quick iR-CNN". iIn ihis ipaper ihe iproposed iFast iR-CNN, ia

iperfect iand iquick istructure ifor iobject iidentification. iContrasted iwith iconventional iR-CNN,

iwhat's imore, iits iquickened iadaptation iSPPnet, iFast iR-CNN itrains inetworks iutilizing ia

iperform imultiple itasks imisfortune iin ia isingle ipreparing istage. iThe iperform imultiple itasks

imisfortune idisentangles ilearning iand iimproves ilocation iexactness. iIn icontrast ito iSPPnet, iall

iorganization ilayers ican ibe irefreshed iduring iadjusting. iThey ishow ithat ithis icontrast ihas

iviable iimplications ifor iprofound iorganizations, ifor iexample, iVGG16, iwhere imAP iendures

iwhen ijust ithe icompletely iassociated ilayers iare irefreshed. iContrasted iwith i"moderate" iR-

CNN, iFast iRCNN iis i9 iquicker iat ipreparing iVGG16 ifor idiscovery, i213 iquicker iat itest-time,

iand iaccomplishes ia ifundamentally ihigher imAP ion iPASCAL iVOC i2012. iContrasted iwith

iSPPnet, iFast iR-CNN itrains iVGG16 i3 iquicker, itests i10 iquicker, iand iis imore iprecise.

Item idiscovery iexecution, ias iestimated ion ithe iaccepted iPASCAL iVOC idataset, ihas ileveled

iover ithe imost irecent icouple iof iyears. iThe ibest-performing istrategies iare iperplexing ioutfit

iframeworks ithat iordinarily iconsolidate inumerous ilow-level ipicture ihighlights iwith

isignificant ilevel isetting. iIn ithis ipaper, iRoss iGirshick, iJeff iDonahue, iTrevor iDarrell, iand

iJitendra iMalik ipropose ia ibasic ifurthermore, iversatile irecognition icalculation ithat iimproves

imean inormal iexactness i(mAP) iby imore ithan i30% icomparative iwith ithe ipast ibest ioutcome

ion iVOC i2012—accomplishing ia imAP iof i53.3%. iTheir iapproach ijoins itwo ikey iexperiences:

i(1) ione ican iapply ihigh-limit iconvolutional ineural inetworks i(CNNs) ito ibase iup idistrict

iproposition ito irestrict iand iportion iobjects iand i(2) iwhen inamed ipreparing iinformation iis

iscant, iregulated ipre-preparing ifor ian iassistant iundertaking, ifollowed iby ispace iexplicit

itweaking, iyields ia icritical ipresentation ihelp. iSince iThey ijoin idistrict iproposition iwith

iCNNs, iwe icall iour istrategy iR-CNN: iRegions iwith iCNN ihighlights. iWe ilikewise icontrast

iR-CNN iwith iOverFeat, ian ias iof ilate iproposed isliding-window ifinder iin ilight iof ia

icomparative iCNN iengineering. iThey ifind ithat iR-CNN ioutflanks iOverFeat iby ian ienormous

iedge ion ithe i200-class iILSVRC2013 iidentification idataset.
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Shaoqing iRen iet. iAl:

Distributed ipaper ion iFaster iR-CNN, iutilizing iit ifor iReal-Time iObject iDiscovery iwith

iRegion iProposal iNetworks. iBest iin iclass iobject iidentification inetworks idepend ion iarea

iproposition icalculations ito iestimate iobject iareas. iAdvances ilike iSPPnet iand iFast iR-CNN

ihave idiminished ithe irunning iseason iof ithese idiscovery iorganizations, iuncovering ilocale

iproposition icalculation ias ia ibottleneck. iIn ithis iwork, ithey ipresented ia iRegion iProposal

iNetwork i(RPN) ithat ioffers ifull-picture iconvolutional ihighlights iwith ithe irecognition

iorganization, ihence iempowering ialmost isans icost ilocale irecommendations. iA iRPN iis ia

icompletely iconvolutional inetwork ithat iat ithe isame itime ipredicts iobject ilimits iand

iobjectness iscores iat ieach iposition. iRPNs iare iprepared istart ito ifinish ito icreate iexcellent

ilocale iproposition, iwhich iare iutilized iby iFast iR-CNN ifor irecognition. iWith ia ibasic

isubstituting ienhancement, iRPN iand iFast iR-CNN ican ibe iprepared ito ishare iconvolutional

ihighlights. iFor ithe iextremely iprofound iVGG-16 imodel, itheir iidentification iframework ihas

ia icasing ipace iof i5fps (counting iall imeans) ion ia iGPU, iwhile iaccomplishing ibest iin iclass

iobject iidentification iprecision ion PASCAL iVOC i2007 i(73.2% imAP) iand i2012 i(70.4%

imAP) iutilizing i300 iproposition ifor ieach ipicture.

Shuai iZheng iSadeep iJayasumana, iBernardino iRomera-Paredes, iVibhav

iVineet, Zhizhong iSu,Dalong iDu, iChang iHuang, iand iPhilip iH. iS. Torr:

iPixel-level inaming iassignments, ifor iexample, isemantic idivision, iassume ia ifocal ifunction iin

ipicture iunderstanding. iLater iapproaches ihave iendeavored ito ibridle ithe iabilities iof iprofound

ilearning imethods ifor ipicture iacknowledgment ito ihandle ipixellevellabelling iundertakings.

iOne ifocal iissue iin ithis itechnique iis ithe irestricted ilimit iof iprofound ilearning imethods ito

idepict ivisual iitems. iTo itackle ithis iissue, iwe ipresent ianother itype iof iconvolutional ineural

iorganization ithat iconsolidates ithe iqualities iof iConvolutional iNeural iNetworks i(CNNs) iand

iConditional iRandom iFields i(CRFs)- ibased iprobabilistic igraphical idemonstrating. iTo ithis

iend, iConditional iRandom iFields ias iRepetitive iNeural iNetworks iis idefined. iThis
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iorganization, icalled iCRF-RNN, iis ithen iconnected ias ia ipiece iof ia iCNN ito iacquire ia

iprofound iorganization ithat ihas ialluring iproperties iof iboth iCNNs iand iCRFs. iCritically, ithe

iframework icompletely iincorporates iCRF idisplaying iwith iCNNs, imaking iit iconceivable ito

iprepare ithe ientire iprofound iorganization istart ito ifinish iwith ithe istandard iback-engendering

icalculation, imaintaining ia istrategic idistance ifrom idisconnected ipost ihandling istrategies ifor

iobject idepiction. iThe iproposed istrategy ito ithe iissue iof isemantic ipicture idivision, igetting

itop ioutcomes ion ithe idifficult iPascal iVOC i2012 idivision ibenchmark.

S. iJi iand iH.W. iPark:

iProposed iTwo-venture ipicture idivision icalculation, iwhich idepends ion idistrict icoherency ifor

ithe idivision iof ishading ipicture. iThe iinitial istep iis ithe iwatershed idivision, iand ithe

ifollowing ione iis ithe idistrict iconsolidating iutilizing ifake ineural inetworks. iSpatially

ihomogeneous idistricts iare iacquired iby ithe iinitial istep, iyet ithe iareas iare iover iportioned.

iThe isubsequent iadvance iconsolidations ithe iover idivided iareas. iThe iproposed itechnique

iabuses ithe iluminance iand ichrominance idistinction iparts iof ishading ipicture ito iverifv ilocale

icoherency. iThe iYUV ishading icoordinate iframework iis iutilized iin ithis iwork.

Diagram icut iadvancement iis ione iof ithe istandard iworkhorses iof ipicture idivision isince ifor

itwofold iirregular ifield iportrayals iof ithe ipicture, iit igives iall iaround ithe iworld iideal

ioutcomes iand ithere iare iproductive ipolynomial itime iusage. iRegularly, ithe iarbitrary ifield iis

iapplied iover ia ilevel iapportioning iof ithe ipicture iinto inon-crossing icomponents, ifor iexample,

ipixels ior isuper-pixels.

Victor iLempitsky, iAndrea iVedaldi iand iAndrew iZisserman:

In ithe ipaper ithey ishow ithat iif, irather ithan ia ilevel iapportioning, ithe ipicture iis ispoken ito

iby ia iprogressive idivision itree, iat ithat ipoint ithe icoming iabout ienergy iconsolidating iunary

iand ilimit iterms ican ieven inow ibe ienhanced iutilizing ichart icut i(with iall ithe irelating

iadvantages iof iworldwide ioptimality iand ieffectiveness). iBecause iof isuch iinduction, ithe

ipicture igets idivided iinto ia ibunch iof isections ithat imay icome ifrom ivarious ilayers iof ithe

itree. iThey iapply ithis idetailing, iwhich ithey icall ithe iarch imodel, ito ithe iundertaking iof
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isemantic idivision iwhere ithe iobjective iis ito iisolate ia ipicture iinto izones ihaving ia iplace

iwith idistinctive isemantic iclasses. iThe itests ifeature ithe iupside iof iinduction ion ia idivision

itree i(over ia ilevel idividing) iand ishow ithat ithe iadvancement iin ithe iarch imodel ican ideftly

ipick ithe idegree iof idivision iover ithe ipicture. iGenerally, ithe iproposed iframework ihas

iprevalent idivision iprecision ion ia ifew idatasets i(Graz-02, iStanford ifoundation) icontrasted

iwith irecently iproposed iapproaches.
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CHAPTER 3
SYSTEM DEVELOPMENT

3.1 Experimental Setup

To train the transfer learning models python programming language was used along with Keras and

Tenserflow. Keras is a neural network library built on top of Tenserflow and is very simple to use.

It provides all the functionality needed for building complicated deep learning models. All the work

was done on google colab which is a online platform for running jupyter notebook. Google colab

was built to write and execute arbitrary python code through browser.It provides free excess to the

computing resources including GPUs.

It allows the user to mount the google drive making it easy to import datasets directly to the

notebook. This setup was used along with the set of weights learned by the pre-trained model on

ImageNet.

3.1.1 Dataset Description

The dataset used in this experiment contains 940 X-rays images of confirmed Covid

cases ,pneumonia and normal(no infection) patients. The dataset is taken from a github repository

and contains 435x-ray image of covid patients and 505 x-ray image of Non-covid patients.The data

was collected from public sources as well as from hospitals and physicians. Data is evenly

distributed but contains a limitation that is not enough images are collected to train the model

accurately and with precision. Normal image do not imply that the patients do not have ant other

emerging diseases.

To supply the models with enough data we used a technique called data augmentation to increase its

volume. Data augmentation is a common process in deep learning which increases the number of

samples by creating a new sample by flipping the image, rotating left or right. This is done when

there is lack of samples to train the model.
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Figure 1: Sample of X-ray images

3.1.2 Performance Metrics

Performance metrics used are as follows:

Recall)n/(PrecisioRecall)n*2(PrecisioScore1F
FN)TP/(TPsitivity)Recall(Sen

FP)TP/(TPP)Precision(
/nTN)(TPCC)Accuracy(A







Where TP, TN, FP, FN are true positive, true negative, false positive, false negative samples for

each class. Micro average results were also calculated and used to present the classification

performance of the models. All metrics were computed every time after changing the number of

epochs. Models were trained at 10,100 and 500 epochs to compare the result of each experiments.

Accuracy is a commonly used classification metric which shows how well a algorithm can

discriminate the classes in the test set.It is measures as proportion of the predicted correct labels to

total number of test cases. Here accuracy means the total accuracy of the model. Precision tells us

how many of the true predicted are actually labeled as true. It is the proportion of predicted correct

to the total number of labels. Recall tells us how many labeled true are correctly labeled true. It is

the proportion of correctly labeled positive to total positive. It is also called true positive rate. F1

score is the harmonic mean of Precision and Recall.
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Figure 2: Classification report of Inception V3 model after 10 epoch

3.1.3 Parameter Tuning

There are some common parameters in CNN models. All images were set to 224*224 pixels. The

dataset was split into training and testing datasets. Training datasets contained randomly mixed 80%

of total data whereas testing dataset had 20% of the remaining data. The training was done with

different numbers of epochs(10,100,500) with the batch size of 32. All models were compiled with

optimizer as Adams and loss as categorical_cross entropy and the convolution layer were activated

by Rectified Linear Unit(ReLU). On top of pre-trained models we added few extra layer to fit the

model according to our problem. We added a flatten layer, a dropout layer and a dense layer. Flatten

layer help us to convert the data into a 1-dimensional array for inputting into the next layer. Dropout

layer helps us to drop some of the neurons randomly while training. A dropout layer of ).5 was

applied after the flatten layer which will set 50% of the neurons randomly in each epochs . This

helps with the problem of overfitting on small training thus creating regular distribution of the

weights. All the outputs from this layer act as a input for the dense layer. In dense layer all neurons

from previous layer are fully connected to the dense layer. This layer uses softmax activation

function classifies image into either Covid or Non-covid. Softmax assigns decimal probabilities to

each class in multi-class classification. Finally if probability from softmax is greater than 0.5 then

we will declare that Covid with ‘probability*100 Covid’ else we will declare Non-covid with’1-

probability*100 Non-covid’.

Categorical crossentropy compares the distribution of the predicted with the true distribution.True
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class is encoded with one hot coded vector and close the outputs to the vector less is the loss.





N

i
CyiyielPNCE

1
][modlog/1

Where ][mod CyiyielP  is the probability predicted by the model for the ith observation to belong

to the cth category.

3.2 Transfer learning with CNNs

Deep learning models require large datasets to be able to perform accurate feature extraction and

classification. As we are working on Covid dataset, the work done on this fiekd is minimal and is at

very early stage, Therefore, finding a large dataset is very difficult. To solve the problem we can

use transfer learming. In transfer learning we can use a pre-trained model with all its parameters and

weights. The models are alredy trained with large datasets and are stored. Users can import the pre-

trained model and use it to train a new model with smaller dataset.Thus the problem of training a

large model with large dataset is eliminated.

Transfer learning can be of two types feature extraction and fine tuning. In feature extraction a new

classifier is trained on top of the pre-trained model. Representation learned in pre-trained model are

used as such for extracting features from the new samples. The base network already contains

generic feature foe classification therefore, there is no need to train the model again. Next method is

fine tuning and it increases the performance of the model. We add layers to the already trained

model and fine tune the weights of pre-model along with added layers for the new data that is

available. Here we will be tuning weights from generic feature map to feature association specially

for the given dataset.

In our work, we have fine tuned the CNNs model to identify and classify two classes that are covid

and non-covid. The weights used by this pre-trained models are trained on ImageNet. ImageNet is a

huge image database containing over 14 million images that are divided int 20,000 categories

specially created for image recognition competitions.

We have used VGG19 and Inception V3 models for classifying the images. On top of these we have
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added a flatten layer, dropout layer with 0.5 and a dense layer with softmax activation layer which

will give classify the image to either of the two classes with decimal probability. One the basis of

the probability we will figure out its class.

3.2.1 VGG19

VGG19 is a pre-trained deep learning model based on convolution operation. VGG is a successor of

AlexNet but was created by different group named Visual Geometry Group at Oxford. It has 16 3*3

convolutional layers , 3 fully connected layer and a softmax layer. In between we also have 5

maxpooling layers which allows us to reduce the dimensionality and down sample an input

representation. It makes an assumption about feature contained in the sub-regions binned. The

dataset containing image of size 224*224 is fed to the model. Each filter is 3*3 size with stride size

of 1. Stride size of 1 and 3*3 filter helps to cover all the areas in the image. Also padding size 1 was

used to preserve the original resolution of the image. Maxpooling was performed with stride size of

2 and 2*2 pixel window. Max pooling is followed by ReLU which helps in making the model better

by introducinh non-linearity compared to previous version which used tanh or sigmoid activation

function. At last three fully connected layer are implemented out of which two have a size of 4096

and the last layer has channel size of 1000 for 1000 way ILSVRC classification. Final layer is

softmax layer.This model can can fine tuned and more layers can be added to use this network for

other tasks.
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Figure 3: Structure of VGG19 model

3.2.2 InceptionV3

InceptionV3 is a pre-trained model convolution neural network that is 48 layer deep. User can load

the pre-trained model which is trained on ImageNet dataset. It is extended network of GoogleNet

and was runner up in ILSVRC 2015. InceptionV3 gave a new inception model which concatenates

multiple different sized convolutional filter into new filter. This design decreases the number of

parameters to trained hence decreasing the computation cost and increasing efficiency. To reduce

the computational cost inception model takes the input from previous layer and performs a 1*1

convolution to reduce its size and this is also called bottleneck of the model as it will be the smallest

matrix . Followed by 1*1 layer 3*3 and 5*5 convolution filter is put behind the 1*1 convolution

filter. This operation reduces the computational cost to 1/10th of the what it would have been if we

had used 3*3 or 5*5 convolutional filter directly. We concat all the layers in that are 1*1 filter, max

pooling layer with stride 1 followed by 1*1 filter,1*1 filter followed by 3*3 filter and 1*1 filter

followed by 5*5 filter. This is the basic inception module and in inception V3 we have differently

designed inception modules which have more complex structure. InceptionV3 model uses Inception
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Module A,Module B and Module C.The final part consist of average pooling layer, dropout layer,

fully connected layer and final softmax layer. There is one side branch and it is called Auxillary

Clasifier and what is does is it tries to take input fro one of the hidden layer and predict output in

middle rather than at end.

Figure 4: InceptionV3 model

3.3 Model Implementation

To start with we mounted the drive containing the data in google colab jupyter notebook. All the

libraries were imported.Pandas was imported to help with reading the datset. Numpy was imported

to convert dataframe into arrys. Seaborn and matplotlib were imported as they are the librries that

help us to plot graphs. From scikit learn confusion matrix and roc curve were imported to evaluate

the model. From Keras many libraries such as Input, Lambda, Dropout, Dense, Flatten,

GlobalAveragePool, Model, load_model, VGG19, InceptionV3, preprocess_input, image,

ImageDataGenerator were imported. VGG19 and InceptionV3 are pretrained model that will be fine

tuned for doing the sepcific task of classifying image into Covid and Non-Covid. Dense, Flatten,

Dropout helps us to add dense layer, flatten layer, dropout layer respectively on top of fine tuned

pre-trained VGG and Inception model. Glob was imported to grab image from path in the system.

cv2 was imported to help us read image files using its functions imread(), it also has function

cvtColor() to convert images to RGB format, its resize function was used to convert the image into

224*224 format to match with the input given to the pre-trained models. Labels were prepared for
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the data and were converted into binary format.

The was splitted into 80% training data 20% testing data. To tacle the problem of having less data

we used a method called data augmentation to increase the number of samples. Also data were

randomly mixed so as to make the model run accurately for both labels.

For VGG19 model the top layers were not included for performing the task. Its fully connected

layer and softmax layer were removed for fine tuning process. On top of VGG19 a flatten layer, a

dropout layer with the value of 0.5 was given to set the 50% of neurons randomly so as to prevent

overfitting, a dense layer with 2 neurons and soft max activation function were added. While

compiling the whole model adam optimizer was used to optimize the model and categorical

crossantropy was used as loss function. Total numbers of parameter in the model are around 20

million out of which 50 thousand are trainable parameters and the rest are non-trainable parameters.
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Figure 5: Output of VGG19 model

For inceptionV3 model the top layers were excluded which consists of fully connected layers and

softmax activation function. A flatten layer, a dropout layer, a dense layer with softmax function

were added on top. The purpose of adding extra layers is to make the full model apapt to the new

data set. Total parameters in this model are around 22 million out of which 100 thousand were

trainable and rest were non-trainable. The ore-trained weights of the initial convolution layers serve

as the backbone of the model and are freezed and only the last convolution layers are trained to

convert those extracted features into prediction for the specified classes for the new data set.

Both the models were trained for 10,100,500 epoches. Values of precision, recall, F1 score were

recorded each time. Confusion matrix, roc-curve, model accuracy graph for each epoches, model

loss graph were also plotted.
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Figure 6: Output of Inception model
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Chapter 4

PERFORMANCE ANALYSIS

We haved trained the model with different number of epoch. Therefore all performance analysis are

done on all types of models with different number of epochs. The performance of models were

evaluated using receiver operating characteristic curve. The area under the curve represents the

usefulness of the model. It is plotted between false positive rate and true positive rate.

Figure 7: Roc curve for VGG19 a)10 epochs b)100 epochs c)500 epochs
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Figure 8: Roc curve for InceptionV3 model a)10 epochs b)100 epochs c)500 epochs

For all three cases area under the curve is greater for InceptionV3 model than VGG19 model.
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Confusion matrix is a N*N matrix which is used to evaluate the performance of a model where N is

the number of classes to be predicted. It compares actual values with the values predicted by the

model. This gives us view of how well our model is performing.

Figure 9: Confusion matrix of VGG19 a)10 epoch b)100 epochs c)500 epochs
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Figure 10: Confusion matrix of InceptionV3 a)10 epoch b)100 epochs c)500 epochs
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Loss value implies hoe poorly or well a model behaves after each iteration of optimization.

Accuracy is a measure of hoe accurate is the model’s accuracy compared to the true data.

Figure 11: Model Accuracy and Model Loss for VGG19(10 epochs)
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Figure 12: Model Accuracy and Model Loss for VGG19(100epochs)
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Figure 13: Model Accuracy and Model Loss for VGG19(500epochs)
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Figure 14: Model Accuracy and Model Loss for InceptionV3(10 epochs)
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Figure 15: Model Accuracy and Model Loss for InceptionV3(100 epochs)
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Figure 16: ModelAccuracy and Model Loss for InceptionV3(500 epochs)
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4.2 Comparison of VGG19 and Inception V3 model with regards to performance matrices

Table: Comparison of VGG19 and InceptionV3

Model #epochs Precision Recall F1-Score Accuracy

VGG19

10

0 0.82 0.91 0.86 0.87

1 0.91 0.83 0.87

100

0 0.93 0.86 0.89 0.91

1 0.89 0.94 0.91

500

0 0.88 0.99 0.93 0.93

1 0.99 0.88 0.93

InceptionV3

10

0 0.90 0.82 0.86 0.87

1 0.85 0.92 0.89

100

0 0.88 0.93 0.91 0.91

1 0.94 0.89 0.91

500

0 0.92 0.99 0.96 0.96

1 0.99 0.93 0.96

Accuracy of the model in increasing as we increase the no of epochs. VGG19 had accuracy of 0.87

when trained for 10 epochs ,0.91 when trained with 100 epochs and 0.93 when trained with 500

epochs. Inception V3 has accuracy of 0.87 when trained for 10 epochs ,0.91 when trained with 100

epochs and 0.99 when trained with 500 epochs. Overall the accuracy of InceptionV3 model is high

and is suitable for training sensitive medical data such as this one. With 500 epochs we get the best

result as the model were optimized with each epochs and can be seen in table above. It can also be

inferred from roc curve that inception model performs better.
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CHAPTER 5

CONCLUSIONS

5.1 Conclusion

We have introduced some underlying outcomes on distinguishing COVID-19 positive cases from

chest X-Rays utilizing a profound learning model. We have illustrated critical improvement in

execution over COVID-Net, the main openly kept up instrument for characterization of COVID-19

positive X-Rays, on the equivalent chest X-Rays pneumonia dataset. The outcomes look

encouraging, however the size of the openly accessible dataset is little. We intend to additionally

approve our methodology utilizing bigger COVID-19 X-Rays picture datasets and clinical

preliminaries. Overall the accuracy of InceptionV3 model is high and is suitable for training

sensitive medical data such as this one. With 500 epochs we get the best result as the model were

optimized with each epochs and can be seen in table above. It can also be inferred from roc curve

that inception model performs better.

5.2 Future Scope

• Extension of present model

• Improve Data Representation

• Introduce new features such CT Scans

• Introduce new models and parameters

• Deploy the project on web

5.3 Last Few Words

We learned a lot through this project. This project has sharpened our concept of machine

learning, deep learning and the software-hardware concepts.
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We learned a lot about different documentation. The piece of software we developed is

intended to serve the healthcare system of the world. The success of this project may give

happiness to millions of healthcare workers around the world. This project not only tested our

technical skills but also our temperament.

There were times that we almost lost hope but we recovered through constant concentration and

hard work.

If any kind of suggestion, improvements, more efficient development idea please feel free to

communicate with us.
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