Dr. Naveen Taflan

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -2 EXAMINATION-Apr 2019

B.Tech 4th Semester

COURSE CODE: 17B11EC411

MAX. MARKS: 25

COURSE NAME: Electromagnetic Engineering

COURSE CREDITS: 4

MAX. TIME: 1 Hr. 30 Min

Note: All questions are compulsory. Carrying of mobile phone during examinations will be treated as case of unfair means.

- 1. For Silver, $\sigma = 6.1 \times 10^7 \, \text{S/m}$, $\mu_r = \varepsilon_r = 1$, determine the frequency at which the plane wave penetration depth is 2mm. [CO-3; 2 Marks]
- 2. Which of the following media may be treated as conducting at 8 MHz?
 - (a) Wet marshy soil $(\varepsilon = 15\varepsilon_0, \mu = \mu_0, \sigma = 10^{-2} S/m)$
 - (b) Intrinsic Germanium $(\varepsilon = 16\varepsilon_0, \mu = \mu_0, \sigma = 0.025S \text{ m})$
 - (c) Sea Water $(\varepsilon = 81\varepsilon_0, \mu = \mu_0, \sigma = 25S/m)$

[CO-2,3; 2 Marks]

- 3. Suppose $E(y,t)=E_{01}Cos(\omega t-\beta y)\mathbf{a}_x+E_{02}Cos(\omega t-\beta y+\phi)\mathbf{a}_y$ V/m. Determine the polarization of wave at $\phi=0$, $\phi=\frac{\pi}{2}$ and $\phi=\pi$. [CO-2; 2 Marks]
- 4. Write the Maxwell's equations (differential and integral forms) in final form for a linear, homogeneous and isotropic medium. [CO-2; 2 Marks]
- 5. What is the significance of Poynting theorem? Derive the expressions for instantaneous and average Poynting vector. [CO-2; 4 Marks]
- 6. In certain region, $J = (2y\mathbf{a}_x + xz\mathbf{a}_y + z^3\mathbf{a}_z)\sin 10^4 t \text{ A/m}^2$. Find ρ_v using continuity equation if $\rho_v(x, y, 0, t) = 0$ [CO-3; 2 Marks]
- 7. Two extensive homogeneous isotropic dielectrics meet on plane z=0. For, z>0 $\varepsilon_{r1}=4$ and for z<0 $\varepsilon_{r2}=3$. A uniform field $\mathbf{E_1}=5\mathbf{a_x}-2\mathbf{a_y}+3\mathbf{a_z}$ V/m exists for $z\geq0$ find:
 - (a) $\mathbf{E_2}$ for $z \leq 0$
 - (b) The angles E_1 and E_2 makes with the interface.
 - (c) The Energy density (J/m³) in both the dielectrics.
 - (d) The Energy within a cube of side 2 m centered at (3,4,-5) [CO-3; 4 Marks]

8. Express Vector:

$$\mathbf{B} = \frac{10}{r} \mathbf{a_r} + r \cos\theta \mathbf{a_\theta} + \mathbf{a_\phi}$$

In Cartesian and cylindrical Co-ordinates and Find B(-3,4,0) and B(5, $\frac{\pi}{2}$,-2)

[CO-1; 4 Marks]

9. If $\mu_1 = 2\mu_0$ for medium 1 $(0 < \varphi < \pi)$ and $\mu_2 = 5\mu_0$ for region $2(\pi < \varphi < 2\pi)$ and

 $\mathbf{B_2} = 10\mathbf{a_p} + 15\mathbf{a_\phi} - 20\mathbf{a_z} \text{mWb/m}^2$. Calculate:

- (a) B_1
- (b) The energy density in two media.

[CO-3; 3 Marks]