

Outlier Detection Algorithm

Suite in MATLAB
Project Report submitted in partial fulfillment of the

requirement for the degree of

Bachelor of Technology

in

Computer Science & Engineering

under the Supervision of

 Dr. Sakshi Babbar

By

 Shaunik Seth

 Roll No.: 111223

to

Jaypee University of Information and Technology

Waknaghat, Solan – 173234, Himachal Pradesh

Certificate

This is to certify that project report entitled “Outlier Detection Algorithm

Suite in MATLAB”, submitted by Shaunik Seth(111223) in partial

fulfillment for the award of degree of Bachelor of Technology in

Computer Science And Engineering to Jaypee University of Information

Technology , Waknaghat, Solan has been carried out under my

supervision.

 This work has not been submitted partially or fully to any other

University or Institute for the award of this or any other degree or

diploma.

Date: Dr. Sakshi Babbbar

Assistant Professor(Senior Grade)

Acknowledgement

I would like to express my gratitude to all those who gave me the

possibility to complete this project. I want to thank the Department of

CSE & IT in JUIT for giving me the permission to commence this project

in the first instance, to do the necessary research work.

 I am deeply indebted to my project guide Dr. Sakshi Babbar, whose

help, stimulating suggestions and encouragement helped me in all the

time of research on this project. I feel motivated and encouraged every

time I get her encouragement. For her coherent guidance throughout the

tenure of the project, I am very thankful. I feel fortunate to be taught by

her.

 I am also grateful to Mr. Amit Singh(CSE Project lab) for his practical

help and guidance.

Date: Name of the student

iv

Table of Contents

CH No. Topic Page No
1. Introduction 1

 1.1 Challenges 3

 1.2 Contribution 4

2. Introduction to outliers 5

 2.1 What are outliers? 5

 2.2 Applications 6

 2.3 Types of outliers 7

 2.4 Types of outlier detection techniques 11

3. Outlier detection algorithms 14

 3.1 Univariate Outlier Detection using 14

 Box Plot

 3.2 Multivariate Outlier Detection using 15

 Mahalanobis Distance Measure

 3.3 Mining distance based outliers 16

 using K nearest neighbor criteria

 (Euclidean distance)

 3.4 Mining distance based outliers in 16

 near linear time using randomization

 3.5 Identifying density based local outliers- 17

 local outlier factor

 3.6 Conditional Anomaly Detection 19

 3.7 Bayesian Network based outlier 21

 detection

4. Implementation 24

 4.1 Codes 24

 4.2 Dataset 42

 4.3 Result 43

5. Future work and Conclusion 51

6. References 52

v

List of Figures

S.No Title Page No.
1. A simple example of anomalies in a two- 5

 dimensional data set

2. Contextual anomaly t2 in a temperature 9

 time series. Note that the temperature at

 time t1 is same as that at time t2 but occurs

 in a different context and hence is not

 considered an anomaly

3. Collective anomaly corresponding to an Atrial 10

 Premature Contraction in a human electro-

 -cardiogram output

4. A box plot for a univariate data set 14

5. Graph of various runtime complexities 17

6. Advantages of local density based techniques 18

 over global density based techniques

7. Difference between the neighborhoods computed 19

 by Local Outlier Factor and Connectivity based

 Outlier Factor

8. Syndromic Surveillance Application 20

9. Bayesian Network Example 22

10. Gaussian Distribution graph with mean µ 23

 and standard deviation σ
11. Depicts the Graphical User Interface for the suite 43

12. Result obtained by running Box Plot algorithm 43

 on Iris plant dataset in MATLAB

13. Red points on the figure depict outliers in Iris 44

 Plant dataset obtained using box plot

14. Result obtained by running Mahalanobis distance 44

 algorithm on Iris plant dataset in MATLAB

15. Plot depicting normal points in green and outliers 45

 in red of Iris Plant dataset obtained by using

 Mahalanobis Distance algorithm

16. Result obtained by running Euclidean distance 45

 algorithm on Iris plant dataset in MATLAB

17. Plot depicting normal points in green and outliers 46

 in red of Iris Plant dataset obtained by using

 Euclidean Distance algorithm

18. Result obtained by running Randomization & 46

 Pruning algorithm on Iris plant dataset in

 MATLAB

vi

19. Plot depicting normal points in green and outliers 47

 in red of Iris Plant dataset obtained by using

 Randomization & Pruning algorithm

20. Bayesian Network for Effects of Smoking 47

 example generated in MATLAB

21. Result obtained by running Bayesian network 48

 based outlier detection algorithm for discrete

 nodes in MATLAB

22. Result obtained by running Bayesian network 49

 based outlier detection algorithm for discrete and

 continuous nodes in MATLAB

23. Bayesian Network for Iris Plant data set example 50

 generated in MATLAB

vii

Abstract

For many applications, data mining systems are required to detect

anomalous (abnormal or unexpected) observations. This has so far proven

to be a difficult challenge because anomalies are usually considered to be

“non-normal” observations, where “normality” is typically defined by

very complex concepts. Because of these and other reasons, there are no

standard and principled approaches for outlier detection. Outlier detection

is an important problem that has been researched within diverse research

areas and application domains. Many outlier detection techniques have

been specifically developed for certain application domains, while others

are more generic.

 Although outliers are often considered as an error or noise, they may

carry important information. Detected outliers are candidates for aberrant

data that may adversely lead to model misspecification and incorrect

results.

 The aim of this project is to implement various well known outlier

detection algorithms for use by people dealing in data mining as well as

for general purposes. Different approaches for outlier detection namely

Statistical based approach, Distance based approach and Conditional

Anomaly Detection are covered under this project. Various algorithms are

implemented namely Univariate outlier detection using Boxplot,

Multivariate outlier detection using Mahalanobis Distance Measure,

Multivariate outlier detection using Euclidean Distance Measure,

Multivariate outlier detection using Randomization and Pruning,

Bayesian Network based outlier detection for discrete nodes using

conditional probability tables and Bayesian Network based outlier

detection for discrete and continuous nodes using parameter learning. The

project also includes a graphical user interface for the suite in MATLAB.

In addition to above, the recall for above stated algorithms has been

calculated.

1

CHAPTER 1

INTRODUCTION

1. Introduction

Today, technology is changing the way people produce and handle information. From

business to science and engineering, there has been a massive proliferation of huge

databases storing valuable information. The opportunities of an effective use of these

new data sources, Gigabytes up to Terabytes, are enormous, however, traditional data

analysis techniques have not kept in pace with the type of processing needed by the

new volumes of data.

 The huge size and dimensionality of current large databases require new ideas to

scale up current statistical and computational approaches. This is especially critical

when the system needs to interact with a human expert, as it is usually the case. If a

data analysis tool takes weeks or months to return a result, the interaction between the

analyst and the data is severely limited. In this paper we present various algorithms

for detection of anomalous records in a large database.

 Outlier detection refers to the problem of finding patterns in data that do not conform

to expected behaviour. These nonconforming patterns are often referred to as

anomalies, outliers, discordant observations, exceptions, aberrations, surprises,

peculiarities, or contaminants in different application domains. Of these, anomalies

and outliers are two terms used most commonly in the context of anomaly detection;

sometimes interchangeably. Outlier detection finds extensive use in a wide variety of

applications such as fraud detection for credit cards, insurance, or health care,

intrusion detection for cyber-security, fault detection in safety critical systems, and

military surveillance for enemy activities.

 The importance of anomaly detection is due to the fact that anomalies in data

translate to significant, and often critical, actionable information in a wide variety of

application domains. For example, an anomalous traffic pattern in a computer

network could mean that a hacked computer is sending out sensitive data to an

unauthorized destination. An anomalous MRI image may indicate the presence of

malignant tumors. Anomalies in credit card transaction data could indicate credit card

or identity theft, or anomalous readings from a space craft sensor could signify a fault

in some component of the space craft .

 Outlier detection has a long history in statistics, but has largely focussed on data that

is univariate, and data with a known (or parametric) distribution. These two

limitations have restricted the ability to apply these types of methods to large real-

world databases which typically have many different fields and have no easy way of

characterizing the multivariate distribution of examples. Other researchers have taken

a non-parametric approach and proposed using an example's distance to its nearest

neighbours as a measure of unusualness. Although distance is an effective non-

parametric approach to detecting outliers, the drawback is the amount of computation

2

time required. Straightforward algorithms, such as hose based on nested loops,

typically require O(N2) distance computations. This quadratic scaling means that it

will be very difficult to mine outliers as we tackle increasingly larger data sets. This is

a major problem for many real databases where there are often millions of records.

Recently, researchers have presented many different algorithms for efficiently finding

distance-based outliers. These approaches vary from spatial indexing trees to

partitioning of the feature space with clustering algorithms. The common goal is

developing algorithms that scale to large real data sets.

 Anomaly detection has been an active area of computer science research for a very

long time. Applications include medical informatics, computer vision, computer

security, sensor networks, general-purpose data analysis and mining, and many other

areas. However, in contrast to problems in supervised learning where studies of

classification accuracy are the norm, little research has systematically addressed the

issue of accuracy in general-purpose unsupervised anomaly detection methods. Papers

have suggested many alternate problem definitions that are designed to boost the

chances of finding anomalies, but there been few systematic attempts to maintain high

coverage at the same time that false positives are kept to a minimum. Accuracy in

unsupervised anomaly detection is important because if used as a data mining or data

analysis tool, an unsupervised anomaly detection methodology will be given a

“budget” of a certain number of data points that it may call anomalies.

 In most realistic scenarios, a human being must investigate candidate anomalies

reported by an automatic system, and usually has a limited capacity to do so. This

naturally limits the number of candidate anomalies that a detection methodology may

usefully produce. Given that this number is likely to be small, it is important that most

of those candidate anomalies are interesting to the end user. This is especially true in

applications where anomaly detection software is used to monitor incoming data in

order to report anomalies in real time. When such events are detected, an alarm is

sounded that requires immediate human investigation and response. Unlike the offline

case where the cost and frustration associated with human involvement can usually be

amortized over multiple alarms in each batch of data, each false alarm in the online

case will likely result in an additional notification of a human expert, and the cost

cannot be amortized.

 Detecting outliers or anomalies in data has been studied in the statistics community

as early as the 19th century. Over time, a variety of anomaly detection techniques

have been developed in several research communities. Many of these techniques have

been specifically developed for certain application domains, while others are more

generic.

 I begin with univariate anomaly detection and then move to multivariate where we

use the distance based approach for anomaly detection with complexity O(n
2
), then

reduce the complexity to O(nlogn) and after that head towards conditions involved in

anomaly detection through the use of Bayesian Networks. It further involves two

cases, first for discrete nodes using conditional probability table and second for both

discrete and continuous nodes using parameter learning where continuous nodes are

represented using Gaussian distribution. The algorithms that have been implemented

in this project include:

3

1. Univariate Outlier Detection using Box Plot. [7]

2. Multivariate Outlier Detection using Mahalanobis Distance Measure. [2]

3. Mining distance based outliers using K nearest neighbor criteria (quadratic

complexity). [2]

4. Mining distance based outliers in near linear time using randomization (near linear

complexity). [3]

5. Bayesian Network based Outlier Detection for discrete nodes using conditional

probability table. [6]

6. Bayesian Network based Outlier Detection using parameter learning. [6]

1.1 Challenges

At an abstract level, an anomaly is defined as a pattern that does not conform to

expected normal behaviour. A straightforward anomaly detection approach, therefore,

is to define a region representing normal behaviour and declare any observation in the

data that does not belong to this normal region as an anomaly. But several factors

make this apparently simple approach very challenging:

1. Defining a normal region that encompasses every possible normal behaviour is

very difficult. In addition, the boundary between normal and anomalous behaviour is

often not precise. Thus an anomalous observation that lies close to the boundary can

be difficult to predict.

2. When anomalies are the result of malicious actions, the malicious adversaries often

adapt themselves to make the outlier observations appear normal, thereby making the

task of defining normal behaviour more difficult.

3. In many domains normal behaviour keeps evolving and a current notion of normal

behaviour might not be sufficiently representative in the future.

4. The exact notion of an anomaly is different for different application domains. For

example, in the medical domain a small deviation from normal (e.g., fluctuations in

body temperature) might be an anomaly, while similar deviation in the stock market

domain (e.g., fluctuations in the value of a stock) might be considered as normal.

Thus applying a technique developed in one domain to another, is not straightforward.

5. Availability of labelled data for training/validation of models used by anomaly

detection techniques is usually a major issue.

6. Often the data contains noise that tends to be similar to the actual anomalies and

hence is difficult to distinguish and remove.[1]

 Due to these challenges, the anomaly detection problem, in its most general form, is

not easy to solve. In fact, most of the existing anomaly detection techniques solve a

specific formulation of the problem. The formulation is induced by various factors

such as the nature of the data, availability of labelled data, type of anomalies to be

detected, and so on. Often, these factors are determined by the application domain in

4

which the anomalies need to be detected. Researchers have adopted concepts from

diverse disciplines such as statistics, machine learning, data mining, information

theory, spectral theory, and have applied them to specific problem formulations.

1.2 Contribution

This project is an attempt to provide a structured and broad overview of extensive

research on anomaly detection techniques spanning multiple research areas and

application domains.

1.Implemented outlier detection based on Statistical approach.

2.Algorithmic development of univariate outlier detection using box plot.

3.Algorithmic implementation of multivariate outlier detection using Mahalanobis

Distance Measure.

4.Implemented outlier detection techniques on Distance based approach.

5.Implemented algorithm for detecting distance based outliers using K nearest

neighbour approach criteria (Euclidean Distance).

6.Applied randomization and pruning technique to reduce the complexity of detecting

distance based outliers to O(nlogn) from O(n
2
).

7.Implemented Conditional Anomaly Detection with focus on Bayesian Networks.

8.Implemented algorithm for outlier detection in Bayesian Networks of discrete nodes

using conditional probability tables.

9.Implemented algorithm for outlier detection in Bayesian Networks comprising of

both discrete and continuous nodes using parameter learning.

10.Calculated recall for various outlier detection techniques.

11.Developed visualization for the outliers detected through various detection

algorithms.

12.Developed a graphical user interface for the suite in MATLAB.

5

CHAPTER 2

INTRODUCTION TO OUTLIERS

2.1 What are Outliers?

Outliers are patterns in data that do not conform to a well defined notion of normal

behaviour. Figure 1 illustrates anomalies in a simple two-dimensional data set. The

data has two normal regions, N1 and N2, since most observations lie in these two

regions. Points that are sufficiently far away from these regions, for example, points

O1 and O2, and points in region O3, are anomalies[2]

Fig. 1. A simple example of anomalies in a two-dimensional data set.[2]

 Anomalies might be induced in the data for a variety of reasons, such as malicious

activity, for example, credit card fraud, cyber-intrusion, terrorist activity or

breakdown of a system, but all of the reasons have the common characteristic that

they are interesting to the analyst. The interestingness or real life relevance of

anomalies is a key feature of anomaly detection.

 Anomaly detection is related to, but distinct from noise removal and noise

accommodation , both of which deal with unwanted noise in the data. Noise can be

defined as a phenomenon in data that is not of interest to the analyst, but acts as a

hindrance to data analysis. Noise removal is driven by the need to remove the

unwanted objects before any data analysis is performed. Noise accommodation refers

to immunizing a statistical model estimation against anomalous observations.

6

 Another topic related to anomaly detection is novelty detection, which aims at

detecting previously unobserved (emergent, novel) patterns in the data, for example, a

new topic of discussion in a news group. The distinction between novel patterns and

anomalies is that the novel patterns are typically incorporated into the normal model

after being detected.

2.2 Applications[1]

1. Intrusion Detection

Intrusion detection refers to detection of malicious activity (break-ins, penetrations,

and other forms of computer abuse) in a computer related system. These malicious

activities or intrusions are interesting from a computer security perspective. An

intrusion is different from the normal behaviour of the system, and hence anomaly

detection techniques are applicable in intrusion detection domain.

 The key challenge for anomaly detection in this domain is the huge volume of data.

The anomaly detection techniques need to be computationally efficient to handle

these large sized inputs. Moreover the data typically comes in a streaming fashion,

thereby requiring online analysis. Another issue that arises because of the large sized

input is the false alarm rate. Since the data amounts to millions of data objects, a few

percent of false alarms can make analysis overwhelming for an analyst. Labelled data

corresponding to normal behaviour is usually available, while labels for intrusions are

not. Thus, semi-supervised and unsupervised anomaly detection techniques are

preferred in this domain.

2. Fraud Detection

Fraud detection refers to detection of criminal activities occurring in commercial

organizations such as banks, credit card companies, insurance agencies, cell phone

companies, stock market, and so on. The malicious users might be the actual

customers of the organization or might be posing as customers (also known as identity

theft). The fraud occurs when these users consume the resources provided by the

organization in an unauthorized way. The organizations are interested in immediate

detection of such frauds to prevent economic losses.

 Fawcett and Provost introduced the term activity monitoring as a general approach to

fraud detection in these domains. The typical approach of anomaly detection

techniques is to maintain a usage profile for each customer and monitor the profiles to

detect any deviations.

7

3. Medical and Public Health Anomaly Detection

Anomaly detection in the medical and public health domains typically works with

patient records. The data can have anomalies due to several reasons, such as abnormal

patient condition, instrumentation errors, or recording errors. Several techniques have

also focussed on detecting disease outbreaks in a specific area. Thus the anomaly

detection is a very critical problem in this domain and requires a high degree of

accuracy.

 The data typically consists of records that may have several different types of

features, such as patient age, blood group, and weight. The data might also have a

temporal as well as spatial aspect to it. Most of the current anomaly detection

techniques in this domain aim at detecting anomalous records (point anomalies).

Typically the labelled data belongs to the healthy patients, hence most of the

techniques adopt a semi-supervised approach. Another form of data handled by

anomaly detection techniques in this domain is time-series data, such as

Electrocardiograms (ECG) and Electroencephalograms (EEG). Collective anomaly

detection techniques have been applied to detect anomalies in such data.

 The most challenging aspect of the anomaly detection problem in this domain is that

the cost of an anomaly being undetected can be very high.

4. Industrial Damage Detection

Industrial units suffer damage due to continuous usage and normal wear and tear.

Such damage needs to be detected early to prevent further escalation and losses. The

data in this domain is usually referred to as sensor data because it is recorded using

different sensors and collected for analysis. Anomaly detection techniques have been

extensively applied in this domain to detect such damage. Industrial damage detection

can be further classified into two domains, one that deals with defects in mechanical

components such as motors, engines, and so on, and the other that deals with defects

in physical structures.

5. Financial Applications

Based on the past records of the client ,his past bank balances, financial transactions

and assets in hand, the probability of his repaying the loan can be determined and

consequently interest rates that are applicable to him can be calculated. Here the

outliers would indicate the potential clients who have higher probability of not

repaying the loan.

2.3 Type of Outliers[1]

An important aspect of an outlier detection technique is the nature of the desired

anomaly. Outliers can be classified into following three categories:

8

2.3.1 Point Outliers

 If an individual data instance can be considered as anomalous with respect to the rest

of data, then the instance is termed a point anomaly. This is the simplest type of

anomaly and is the focus of majority of research on anomaly detection.

 For example, in Figure 1, points O1 and O2, as well as points in region O3, lie outside

the boundary of the normal regions, and hence are point anomalies since they are

different from normal data points.

 As a real-life example, consider credit card fraud detection. Let the data set

correspond to an individual’s credit card transactions. For the sake of simplicity, let us

assume that the data is defined using only one feature: amount spent. A transaction

for which the amount spent is very high compared to the normal range of expenditure

for that person will be a point anomaly.

2.3.2 Contextual Outliers

If a data instance is anomalous in a specific context, but not otherwise, then it is

termed a contextual anomaly (also referred to as conditional anomaly).

 The notion of a context is induced by the structure in the data set and has to be

specified as a part of the problem formulation. Each data instance is defined using the

following two sets of attributes:

(1) Contextual attributes. The contextual attributes are used to determine the context

(or neighbourhood) for that instance. For example, in spatial data sets, the longitude

and latitude of a location are the contextual attributes. In time-series data, time is a

contextual attribute that determines the position of an instance on the entire sequence.

(2) Behavioural attributes. The behavioural attributes define the non-contextual

characteristics of an instance. For example, in a spatial data set describing the average

rainfall of the entire world, the amount of rainfall at any location is a behavioural

attribute.

 The anomalous behaviour is determined using the values for the behavioural

attributes within a specific context. A data instance might be a contextual anomaly in

a given context, but an identical data instance (in terms of behavioural attributes)

could be considered normal in a different context. This property is key in identifying

contextual and behavioural attributes for a contextual anomaly detection technique.

Contextual anomalies have been most commonly explored in time-series data and

spatial data . Figure 3 shows one such example for a temperature time-series that

shows the monthly temperature of an area over the last few years. A temperature of

35◦F might be normal during the winter (at time t1) at that place, but the same value

during the summer (at time t2) would be an anomaly.

9

Fig. 2. Contextual anomaly t2 in a temperature time-series. Note that the

temperature at time t1 is same as that at time t2 but occurs in a different

context and hence is not considered as an anomaly.

 A similar example can be found in the credit card fraud detection domain. A

contextual attribute in the credit card domain can be the time of purchase. Suppose an

individual usually has a weekly shopping bill of $100 except during the Christmas

week, when it reaches $1000. A new purchase of $1000 in a week in July will be

considered a contextual anomaly, since it does not conform to the normal behaviour

of the individual in the context of time even though the same amount spent during

Christmas week will be considered normal.

 The choice of applying a contextual anomaly detection technique is determined by

the meaningfulness of the contextual anomalies in the target application domain.

Another key factor is the availability of contextual attributes. In several cases defining

a context is straightforward, and hence applying a contextual anomaly detection

technique makes sense. In other cases, defining a context is not easy, making it

difficult to apply such techniques.

2.3.3 Collective Outliers

If a collection of related data instances is anomalous with respect to the entire data set,

it is termed a collective anomaly. The individual data instances in a collective

anomaly may not be anomalies by themselves, but their occurrence together as a

collection is anomalous. Figure 4 is an example that shows a human

electrocardiogram output [Goldberger et al. 2000]. The highlighted region denotes an

anomaly because the same low value exists for an abnormally long time

(corresponding to an Atrial Premature Contraction). Note that that low value by

itself is not an anomaly.

As an another illustrative example, consider a sequence of actions occurring in a

computer as shown below:

. . . http-web, buffer-overflow, http-web, http-web, smtp-mail, ftp, http-web, ssh,

smtp-mail, http-web, ssh, buffer-overflow, ftp, http-web, ftp, smtp-mail,http-web

10

 The highlighted sequence of events (buffer-overflow, ssh, ftp) correspond to a

typical Web-based attack by a remote machine followed by copying of data from the

host computer to a remote destination via ftp. It should be noted that this collection of

events is an anomaly, but the individual events are not anomalies when they occur in

other locations in the sequence.

Fig. 3. Collective anomaly corresponding to an Atrial Premature

Contraction in a human electrocardiogram output.

 Collective anomalies have been explored for sequence data, graph data, and spatial

data. It should be noted that while point anomalies can occur in any data set,

collective anomalies can occur only in data sets in which data instances are related. In

contrast, occurrence of contextual anomalies depends on the availability of context

attributes in the data. A point anomaly or a collective anomaly can also be a

contextual anomaly if analyzed with respect to a context. Thus a point anomaly

detection problem or collective anomaly detection problem can be transformed to a

contextual anomaly detection problem by incorporating the context information.

The techniques used for detecting collective anomalies are very different than the

point and contextual anomaly detection techniques, and require a separate detailed

discussion.

11

2.4 Types of Outlier Detection Techniques

The basic techniques for outlier detection are:

2.4.1 Statistical Based Outlier Detection

The underlying principle of any statistical anomaly detection technique is: “An

anomaly is an observation which is suspected of being partially or wholly irrelevant

because it is not generated by the stochastic model assumed”. Statistical anomaly

detection techniques are based on the following key assumption:

 Assumption: Normal data instances occur in high probability regions of a stochastic

model, while anomalies occur in the low probability regions of the stochastic model.

Statistical techniques fit a statistical model (usually for normal behaviour) to the given

data and then apply a statistical inference test to determine if an unseen instance

belongs to this model or not. Instances that have a low probability of being generated

from the learned model, based on the applied test statistic, are declared as anomalies.

Both parametric as well as nonparametric techniques have been applied to fit a

statistical model. While parametric techniques assume the knowledge of the

underlying distribution and estimate the parameters from the given data,

nonparametric techniques do not generally assume knowledge of the underlying

distribution.

2.4.2 Distance Based Outlier Detection

The concept of nearest neighbour analysis has been used in several anomaly detection

techniques. Such techniques are based on the following key assumption:

 Assumption. Normal data instances occur in dense neighbourhoods, while anomalies

occur far from their closest neighbours.

 Nearest neighbour-based anomaly detection techniques require a distance or

similarity measure defined between two data instances. Distance (or similarity)

between two data instances can be computed in different ways. For continuous

attributes, Euclidean distance is a popular choice, but other measures can be used. For

categorical attributes, a simple matching coefficient is often used but more complex

distance measures can also be used. For multivariate data instances, distance or

similarity is usually computed for each attribute and then combined.

 Nearest neighbour-based anomaly detection techniques can be broadly grouped into

two categories:

(1) techniques that use the distance of a data instance to its kth nearest neighbour as

the anomaly score;

(2) techniques that compute the relative density of each data instance to compute its

anomaly score.

12

 A basic nearest neighbour anomaly detection technique is based on the following

definition: The anomaly score of a data instance is defined as its distance to its kth

nearest neighbour in a given data set. This basic technique has been applied to detect

land mines from satellite ground images and to detect shorted turns (anomalies) in the

DC field windings of large synchronous turbine-generators. In the latter paper the

authors use k = 1. Usually, a threshold is then be applied on the anomaly score to

determine if a test instance is anomalous or not. On the other hand, select n instances

with the largest anomaly scores as the anomalies.

 The basic technique has been extended by researchers in three different ways. The

first set of variants modifies the definition to obtain the anomaly score of a data

instance. The second set of variants uses different distance/similarity measures to

handle different data types. The third set of variants focuses on improving the

efficiency of the basic technique (the complexity of the basic technique is O(N2),

where N is the data size) in different ways.

2.4.3 Density Based Outlier Detection

Density-based anomaly detection techniques estimate the density of the

neighbourhood of each data instance. An instance that lies in a neighbourhood with

low density is declared to be anomalous while an instance that lies in a dense

neighbourhood is declared to be normal.

 Density-based techniques perform poorly if the data has regions of varying densities.

To handle the issue of varying densities in the data set, a set of techniques has been

proposed to compute the density of instances relative to the density of their

neighbours. We may assign an anomaly score to a given data instance, known as

Local Outlier Factor (LOF). For any given data instance, the LOF score is equal to

ratio of average local density of the k nearest neighbours of the instance and the local

density of the data instance itself.

 For a given data instance, the distance to its kth nearest neighbour is equivalent to

the radius of a hyper-sphere, centred at the given data instance, which contains k other

instances. Thus the distance to the kth nearest neighbour for a given data instance can

be viewed as an estimate of the inverse of the density of the instance in the data set

and the basic nearest neighbour-based technique described in the previous subsection

can be considered as a density-based anomaly detection technique.

2.4.4 Conditional Anomaly Detection

The anomaly detection methodology considered in this project called conditional

anomaly detection, or CAD, takes into account the difference between the user

specified environmental and indicator attributes during the anomaly detection process,

and how this affects the idea of an “anomaly”.

13

 This technique is used to detect contextual outliers. The context is of utmost

importance in this approach. Two algorithms are famous in this approach.

1. Conditional Anomaly Detection

2. Bayesian network based outlier detection

 The focus of this project is on Bayesian Network based outlier detection. Bayesian

networks (BNs) are graphical models for reasoning under uncertainty, where the

nodes represent variables (discrete or continuous) and arcs represent direct

connections between them. These direct connections are often causal connections. In

addition, BNs model the quantitative strength of the connections between variables,

allowing probabilistic beliefs about them to be updated automatically as new

information becomes available.

 Despite the name, Bayesian networks do not necessarily imply a commitment to

Bayesian statistics. Rather, they are so called because they use Bayes' rule for

probabilistic inference, as we explain below. (The term "directed graphical model" is

perhaps more appropriate). Bayesian nets are a useful representation for hierarchical

Bayesian models, which form the foundation of applied Bayesian statistics. In such a

model, the parameters are treated like any other random variable, and becomes nodes

in the graph.

14

CHAPTER 3

OUTLIER DETECTION ALGORITHMS

3.1 Univariate Outlier Detection using Box Plot

The box plot rule (Figure 4) is the simplest statistical technique that has been applied

to detect univariate and multivariate anomalies in medical domain data and turbine

rotors data. A box plot graphically depicts the data using summary attributes such as

smallest non-anomaly observation (min), lower quartile (Q1), median, upper quartile

(Q3), and largest non-anomaly observation (max). The quantity Q3 − Q1 is called the

Inter Quartile Range (IQR). The box plots also indicates the limits beyond which any

observation will be treated as an anomaly. A data instance that lies more than 1.5*

IQR lower than Q1 or 1.5* IQR higher than Q3 is declared as an anomaly. The region

between Q1 −1.5IQR and Q3 +1.5IQR contains 99.3% of observations, and hence the

choice of the 1.5IQR boundary makes the box plot rule equivalent to the 3σ

technique for Gaussian data.

Fig. 4. A box plot for a univariate data set.

15

3.2 Multivariate Outlier Detection using Mahalanobis

 Distance Measure

A basic nearest neighbour anomaly detection technique is based on the following

definition: The anomaly score of a data instance is defined as its distance to its kth

nearest neighbour in a given data set. This basic technique has been applied to detect

land mines from satellite ground images and to detect shorted turns (anomalies) in the

DC field windings of large synchronous turbine-generators.

 Nearest neighbour-based anomaly detection techniques require a distance or

similarity measure defined between two data instances. Distance (or similarity)

between two data instances can be computed in different ways. In this approach

Mahalanobis Distance Measure is used.

 Nearest neighbour-based anomaly detection techniques can be broadly grouped into

two categories:

(1) techniques that use the distance of a data instance to its kth nearest neighbour as

the anomaly score;

(2) techniques that compute the relative density of each data instance to compute its

anomaly score.

For two data points p and q Mahalanobis distance is given by:

Where, ∑ is covariance matrix

𝑐𝑜𝑣(𝑥, 𝑦) =
 (𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦)
𝑛
𝑖=1

𝑛 − 1

Where, x & y are variables and x & y are means of their respective variables and n is

the number of data points in the sample.

Tqpqpqpsmahalanobi)()(),(1  

16

3.3 Mining distance based outliers using K nearest

 neighbor criteria (Euclidean distance)

A basic nearest neighbour anomaly detection technique is based on the following

definition: The anomaly score of a data instance is defined as its distance to its kth

nearest neighbour in a given data set. This basic technique has been applied to detect

land mines from satellite ground images and to detect shorted turns (anomalies) in the

DC field windings of large synchronous turbine-generators. In the latter paper the

authors use k = 1. Usually, a threshold is then be applied on the anomaly score to

determine if a test instance is anomalous or not. On the other hand, select n instances

with the largest anomaly scores as the ouliers .

The Euclidean Distance Formula is:

𝑑𝑖𝑠𝑡 = (𝑝𝑘 − 𝑞𝑘)
2

𝑛

𝑘=1

 Where n is the number of dimensions (attributes) and pk and qk are, respectively, the

k
th

 attributes of data points p and q.

3.4 Mining distance based outliers in near linear time using

randomization

Several variants of the basic technique have been proposed to improve the efficiency.

Some techniques prune the search space by either ignoring instances that cannot be

anomalous or by focussing on instances that are most likely to be anomalous. It can be

shown that for sufficiently randomized data, a simple pruning step could result in the

average complexity of the nearest neighbour search to be nearly linear. After

calculating the nearest neighbours for a data instance, the algorithm sets the anomaly

threshold for any data instance to the score of the weakest anomaly found so far.

 Using this pruning procedure, the technique discards instances that are close, and

hence not interesting. This reduces the complexity to O(nlogn) from O(n
2
).

17

 Fig 5. Graph of various runtime complexities

3.5 Identifying density based local outliers- local outlier

factor

Density-based techniques perform poorly if the data has regions of varying densities.

For example, consider the two-dimensional data set shown in Figure 7. Due to the low

density of the cluster C1, it is apparent that for every instance q inside the cluster C1,

the distance between the instance q and its nearest neighbour is greater than the

distance between the instance p2 and the nearest neighbour from the cluster C2, and

the instance p2 will not be considered as anomaly. Hence, the basic technique will fail

to distinguish between p2 and instances in C1. However, the instance p1 may be

detected.

 To handle the issue of varying densities in the data set, a set of techniques has been

proposed to compute the density of instances relative to the density of their

neighbours. We may assign an anomaly score to a given data instance, known as

Local Outlier Factor (LOF). For any given data instance, the LOF score is equal to

ratio of average local density of the k nearest neighbours of the instance and the local

density of the data instance itself. To find the local density for a data instance, the

authors first find the radius of the smallest hyper-sphere centred at the data instance,

that contains its k nearest neighbours. The local density is then computed by dividing

k by the volume of this hyper-sphere. For a normal instance lying in a dense region,

its local density will be similar to that of its neighbours, while for an anomalous

18

instance, its local density will be lower than that of its nearest neighbours. Hence the

anomalous instance will get a higher LOF score.

Fig.6. Advantage of local density-based techniques over global density-

based techniques.

 In the example shown in Figure 7, LOF will be able to capture both anomalies, p1

and p2, due to the fact that it considers the density around the data instances. Several

researchers have proposed variants of the LOF technique. Some of these variants

estimate the local density of an instance in a different way. Some variants have

adapted the original technique to more complex data types. Since the original LOF

technique is O(N
2
) (N is the data size), several techniques have been proposed that

improve the efficiency of LOF.

 Lets discuss a variation of the LOF, called Connectivity-based Outlier Factor

(COF). The difference between LOF and COF is the manner in which the k

neighbourhood for an instance is computed. In COF, the neighbourhood for an

instance is computed in an incremental mode. To start, the closest instance to the

given instance is added to the neighbourhood set. The next instance added to the

neighbourhood set is such that its distance to the existing neighbourhood set is

minimum among all remaining data instances. The distance between an instance and a

set of instances is defined as the minimum distance between the given instance and

any instance belonging to the given set. The neighbourhood is grown in this manner

until it reaches size k. Once the neighbourhood is computed, the anomaly score (COF)

is computed in the same manner as LOF. COF is able to capture regions such as

straight lines, as shown in Figure 7.

19

Fig. 7. Difference between the neighbourhoods computed by LOF and

COF

3.6 Conditional Anomaly Detection

Rather than trying to find new and intriguing classes of anomalies, it is perhaps more

important to ensure that those data points that a method does find are in fact

surprising. To accomplish this, we ask the questions: What is the biggest source of

inaccuracy for existing anomaly detection methods? Why might they return a large

number of points that are not anomalies? To answer, we note that by definition,

“statistical” methods for anomaly detection look for data points that refute a standard

null hypothesis asserting that all data were produced by the same generative process.

The null hypothesis is represented either explicitly or implicitly. However, the

questionable assumption made by virtually all existing methods is that there is no

apriori knowledge indicating that all data attributes should not be treated in the same

fashion.

 This is an assumption that is likely to cause problems with false positives in many

problem domains. In almost every application of anomaly detection, there are likely to

be several data attributes that a human being would never consider to be directly

indicative of an anomaly. By allowing an anomaly detection methodology to consider

such attributes equally, accuracy may suffer.

 For example, consider the application of online anomaly detection to syndromic

surveillance, where the goal is to detect a disease outbreak at the earliest possible

instant. Imagine that we monitor two variables: max daily temp and num fever. max

daily temp tells us the maximum outside temperature on a given day, and num fever

tells us how many people were admitted to a hospital emergency room complaining of

a high fever. Clearly, max daily temp should never be taken as direct evidence of an

anomaly. Whether it was hot or cold on a given day should never directly indicate

whether or not we think we have seen the start of an epidemic. For example, if the

high in Gainesville, Florida on a given June day was only 70 degrees Fahrenheit

(when the average high temperature is closer to 90 degrees), we simply have to accept

that it was an abnormally cool day, but this does not indicate in any way that an

outbreak has occurred.

20

 While the temperature may not directly indicate an anomaly, it is not acceptable to

simply ignore max daily temp, because num fever (which clearly is of interest in

detecting an outbreak) may be directly affected by max daily temp, or by a hidden

variable whose value can easily be deduced by the value of the max daily temp

attribute. In this example, we know that people are generally more susceptible to

illness in the winter, when the weather is cooler. We call attributes such as max daily

temp environmental attributes. The remainder of the date attributes (which the user

would consider to be directly indicative of anomalous data) are called indicator

attributes.

 The anomaly detection methodology considered in this project called conditional

anomaly detection, or CAD, takes into account the difference between the user

specified environmental and indicator attributes during the anomaly detection process,

and how this affects the idea of an “anomaly”. For example, consider Figure 9. In this

Figure, Point A and Point B are both anomalies or outliers based on most

conventional definitions. However, if we make use of the additional information that

max daily temp is not directly indicative of an anomaly, then it is likely safe for an

anomaly detection system to ignore Point A. Why? If we accept that it is a cold day,

then encountering a large number of fever cases makes sense, reducing the interest of

this observation. For this reason, the CAD methodology will only label Point B an

anomaly.

 Fig.8. Syndromic Surveillance Application

21

3.7 Bayesian network based outlier detection

Bayesian networks (BNs) are graphical models for reasoning under uncertainty,

where the nodes represent variables (discrete or continuous) and arcs represent direct

connections between them. These direct connections are often causal connections. In

addition, BNs model the quantitative strength of the connections between variables,

allowing probabilistic beliefs about them to be updated automatically as new

information becomes available.

Bayesian networks (BNs) are graphical models for reasoning under uncertainty,

where the nodes represent variables (discrete or continuous) and arcs represent direct

connections between them. These direct connections are often causal connections. In

addition, BNs model the quantitative strength of the connections between variables,

allowing probabilistic beliefs about them to be updated automatically as new

information becomes available.

 My attention is on the case of linear conditional Gaussian (also known as Normal)

distributions and the case of linear conditional Gaussian Bayesian networks. We refer

to a linear conditional Gaussian Bayesian network as an LCG Bayesian network. In

such Bayesian networks discrete nodes can't have continuous parents.

 Bayesian networks have been used for anomaly detection in the multi-class setting.

A basic technique for a univariate categorical data set using a Na¨ıve Bayesian

network estimates the posterior probability of observing a class label from a set of

normal class labels and the anomaly class label, given a test data instance. The class

label with largest posterior is chosen as the predicted class for the given test instance.

The likelihood of observing the test instance given a class and the prior on the class

probabilities, is estimated from the training data set.

 The basic technique can be generalized to multivariate categorical data sets by

aggregating the per-attribute posterior probabilities for each test instance and using

the aggregated value to determine the outliers. The outlier in this case being the test

instance with least joint probability.

 This basic technique assumes independence between the different attributes. Several

variations of the basic technique have been proposed that capture the conditional

dependencies between the different attributes using more complex Bayesian networks.

This is used for computing the joint probability for different possibilities of

occurrences. The occurrences that have low joint probability i.e. low probability of

occurrence are termed as outliers. This approach in particular will be used in the

project.

I have implemented two algorithms using this approach.

1. Bayesian Network based Outlier Detection for discrete nodes using conditional

probability table

2. Bayesian Network based Outlier Detection using parameter learning

22

 The algorithms have been implemented in MATLAB using an additional tool called

Bayesian Network Toolbox (BNT). BNT is an open-source collection of MATLAB

functions for inference and learning of (directed) graphical models. It was written by

Kevin Murphy in 1997 and has been updated many times. It has 43,000 lines of code

of which 8,000 are comments.

 First algorithm is for discrete nodes and makes use of conditional probability tables

which are used to compute marginal probability of each node and hence joint

probability for the network.

 Fig.9. Bayesian Network discrete node Example

Bayesian Joint Probability:

where pa stands for parents of Xi.

 Second algorithm is for continuous and discrete nodes where continuous nodes

follow Gaussian distribution and detects outliers using parameter learning of BNT.

23

Fig.10. Gaussian Distribution graph with mean µ and standard deviation

σ

24

CHAPTER 4

Implementation

Working Assumption:

1.The basic approach followed for outlier detection is unsupervised.

2.The attributes in data sets that are discrete or non-numeric in character are

transformed by giving them numerals for each class value.

3.There are considerably more normal observations than abnormal observations.

4.1 Codes

This includes:

1. Code for Graphical User Interface developed in MATLAB.

2. Code for various Outlier Detection Algorithms.

4.1.1 Code for Graphical User Interface:

function varargout = suite(varargin)

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...

 'gui_Singleton', gui_Singleton, ...

 'gui_OpeningFcn', @suite_OpeningFcn, ...

 'gui_OutputFcn', @suite_OutputFcn, ...

 'gui_LayoutFcn', [] , ...

 'gui_Callback', []);

if nargin && ischar(varargin{1})

 gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

 gui_mainfcn(gui_State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before suite is made visible.

function suite_OpeningFcn(hObject, eventdata, handles, varargin)

% Choose default command line output for suite

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

25

% --- Outputs from this function are returned to the command line.

function varargout = suite_OutputFcn(hObject, eventdata, handles)

varargout{1} = handles.output;

function input_Callback(hObject, eventdata, handles)

function input_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

function recall_input_Callback(hObject, eventdata, handles)

function recall_input_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

% --- Executes on button press in discrete_nodes.

function discrete_nodes_Callback(hObject, eventdata, handles)

cla;

legend(handles.axes1,'hide');

[handles.inp,handles.recall]=bayesian();

set(handles.input,'String',handles.inp);

set(handles.recall_input,'String',handles.recall);

% --- Executes on button press in continuous_nodes.

function continuous_nodes_Callback(hObject, eventdata, handles)

cla;

legend(handles.axes1,'hide');

[handles.inp,handles.recall]=bayescontinuous();

set(handles.input,'String',handles.inp);

set(handles.recall_input,'String',handles.recall);

guidata(hObject, handles);

% --- Executes on button press in euclidean_distance.

function euclidean_distance_Callback(hObject, eventdata, handles)

cla;

[handles.inp,handles.recall]=euclidean();

set(handles.input,'String',handles.inp);

set(handles.recall_input,'String',handles.recall);

guidata(hObject, handles);

% --- Executes on button press in mahalanobis_distance.

function mahalanobis_distance_Callback(hObject, eventdata, handles)

cla;

[handles.inp,handles.recall]=mahalanobis();

set(handles.input,'String',handles.inp);

set(handles.recall_input,'String',handles.recall);

guidata(hObject, handles);

% --- Executes on button press in randomization_pruning.

26

function randomization_pruning_Callback(hObject, eventdata, handles)

cla;

[handles.inp,handles.recall]=pruning();

set(handles.input,'String',handles.inp);

set(handles.recall_input,'String',handles.recall);

guidata(hObject, handles);

% --- Executes on button press in boxplot.

function boxplot_Callback(hObject, eventdata, handles)

cla;

[handles.inp,handles.recall]=box();

set(handles.input,'String',handles.inp);

set(handles.recall_input,'String',handles.recall);

guidata(hObject, handles);

4.1.2 Code for Univariate Outlier Detection using Box Plot:

%Box Plot

function [inp,recall]=box()

clear all;

clc;

%Reading Data from csv file and storing in variables

file=uigetfile('*.csv','Select a file');

a=CSVREAD(file);

slength=a(:,1);

slength=sort(slength);

[m,n]=size(slength);

inp=sprintf('n/a');

%Computing Median and Separating halves

if(mod(m,2)==0)

 t=m/2;

 q=(slength(t)+slength(t+1))/2;

 for i=1:t

 slength1(1,i)=slength(i,1);

 end

 for i=(t+1):m

 slength2(1,(i-t))=slength(i,1);

 end

else

 t=(m+1)/2;

 q=slength(t);

 for i=1:(t-1)

 slength1(1,i)=slength(i,1);

 end

 for i=(t+1):m

 slength2(1,(i-t))=slength(i,1);

27

 end

end

%Computing Q1,Q3 & other factors

[m,n]=size(slength1);

if(mod(n,2)==0)

 t=n/2;

 q1=(slength1(t)+slength1(t+1))/2;

else

 t=(n+1)/2;

 q1=slength1(t);

end

[m,n]=size(slength2);

if(mod(n,2)==0)

 t=n/2;

 q3=(slength2(t)+slength2(t+1))/2;

else

 t=(n+1)/2;

 q3=slength2(t);

end

iqr=q3-q1;

lif=q1-(1.5*iqr);

lof=q1-(3*iqr);

uif=q3+(1.5*iqr);

uof=q3+(3*iqr);

%Computing Outliers

[m,n]=size(slength);

counte=0;

countm=0;

mo=[];

eo=[];

for i=1:m

 if (slength(i,1)<lof) | (slength(i,1)>uof)

 counte=counte+1;

 eo(1,counte)=slength(i,1);

 elseif (slength(i,1)<lif) | (slength(i,1)>uif)

 countm=countm+1;

 mo(1,countm)=slength(i,1);

 end

end

%Displaying

disp('The 1st parameter values are as follows:'),disp(slength);

X=sprintf('Q=%f',q);

disp(X);

X=sprintf('Q1=%f',q1);

disp(X);

28

X=sprintf('Q3=%f',q3);

disp(X);

X=sprintf('IQR=%f',iqr);

disp(X);

X=sprintf('Lower Inner Fence=%f',lif);

disp(X);

X=sprintf('Lower Outer Fence=%f',lof);

disp(X);

X=sprintf('Upper Inner Fence=%f',uif);

disp(X);

X=sprintf('Upper Outer Fence=%f',uof);

disp(X);

disp('Mild Outliers:');

disp(mo);

disp('Extreme Outliers:');

disp(eo);

boxplot(slength);

xlabel('Box Plot');

ylabel('1st Dimension');

%Code for printing outliers

h=flipud(findobj(gcf,'tag','Outliers')); % flip order of handles

for jj=1:length(h)

 x=get(h(jj),'XData');

 y=get(h(jj),'YData');

 for ii=1:length(x)

 if not(isnan(x(ii)))

 text(x(ii),y(ii),sprintf('\\leftarrowOutlier'))

 end

 end

end

[c,d]=size(mo);

[e,f]=size(eo);

recall=sprintf('No. of Mild Oultiers=%d, No. of Extreme Outliers=%d',d,f);

4.1.3 Code for Multivariate Outlier Detection using

 Mahalanobis Distance measure:

%Mahalanobis Distance

function [inp,Result]=mahalanobis()

clear all;

clc;

%Reading Data from csv file and storing in variables

file=uigetfile('*.csv','Select a file');

a=CSVREAD(file);

29

C=cov(a);

C=inv(C);

[M,N]=size(a);

mah=zeros(M);

n=8;

answer=inputdlg('Enter the value of k:','Enter the number');

k=str2num(answer{1});

inp=sprintf('k=%d',k);

%Introducing outliers

for i=1:M

 cat(i)='n';

end

cat(8)='o';

cat(24)='o';

cat(30)='o';

cat(65)='o';

cat(83)='o';

cat(97)='o';

cat(120)='o';

cat(150)='o';

%Calculating Mahalanobis Distance

for i=1:M

 for j=1:M

 for c=1:N

 pq(1,c)=a(i,c)-a(j,c);

 end

 product=C*pq';

 product=pq*product;

 product=sqrt(product);

 mah(i,j)=product;

 end

end

neighbour=mah; %Mahalanobis Distance Matrix

neighbour=sort(neighbour,2,'ascend'); %Calculating Nearest Neighbours

points=neighbour(:,k); %Selecting the k^th neighbours

parranged=sort(points,'descend'); %Arrange in Descending order

outliers=parranged(1:n,1); %Selecting the outliers

for i=1:length(points)

 check(1,i)=0;

end

i=1;

while i~=n+1

 for j=1:length(points)

 if points(j)==outliers(i) && check(1,j)==0

 p(1,i)=j; %Storing the respective data entries

30

 i=i+1;

 break;

 end

 end

end

%Calculating recall for the method

count=0;

for i=1:n

 if (cat(p(1,i))=='o')

 count=count+1;

 end

end

recall=(count/n)*100;

%Storing values for displaying on graph

for i=1:n

 for j=1:N

 values(i,j)=a(p(1,i),j); %storing outlier values to plot

 end

end

%Displaying

disp('Following are the outliers distance:'),disp(outliers);

disp('Following are the outlier points:'),disp(p);

disp('Corresponding values are as follows:'),disp(values);

X=sprintf('For the Method, Recall= %f',recall);

disp(X);

%Plots

plot(a(:,1),a(:,2),'g*',values(:,1),values(:,2),'r*')

xlabel('1st Dimension');

ylabel('2nd Dimension');

legend('Non-Outliers','Outliers');

Result=sprintf('Recall= %f %',recall);

4.1.4 Code for Multivariate Outlier Detection using

 Euclidean Distance measure:

%Euclidean Distance

function [inp,Result]=euclidean()

clear all;

clc;

%Reading Data from csv file and storing in variables

file=uigetfile('*.csv','Select a file');

a=CSVREAD(file);

[M,N]=size(a);

euc=zeros(M);

31

answer=inputdlg('Enter the value of k:','Enter the number');

k=str2num(answer{1});

n=8;

inp=sprintf('k=%d',k);

%Introducing outliers

for i=1:M

 cat(i)='n';

end

cat(8)='o';

cat(24)='o';

cat(30)='o';

cat(65)='o';

cat(83)='o';

cat(97)='o';

cat(120)='o';

cat(150)='o';

%Calculating Euclidean and Hamming Distance Matrix

for i=1:M

 for j=1:M

 esum=0;

 for c=1:N

 esum=esum+((a(i,c)-a(j,c))*(a(i,c)-a(j,c)));

 end

 euc(i,j)=sqrt(esum);

 end

end

neighbour=euc; %Total Distance Matrix

neighbour=sort(neighbour,2,'ascend'); %Calculating Nearest Neighbours

points=neighbour(:,k); %Selecting the k^th neighbours

parranged=sort(points,'descend'); %Arrange in Descending order

outliers=parranged(1:n,1); %Selecting the outliers

for i=1:length(points)

 check(1,i)=0;

end

i=1;

while i~=n+1

 for j=1:length(points)

 if points(j)==outliers(i) && check(1,j)==0

 p(1,i)=j; %Storing the respective data entries

 i=i+1;

 break;

 end

 end

end

%Calculating recall for the method

32

count=0;

for i=1:n

 if (cat(p(1,i))=='o')

 count=count+1;

 end

end

recall=(count/n)*100;

%Storing values for displaying on graph

for i=1:n

 for j=1:N

 values(i,j)=a(p(1,i),j); %storing outlier values to plot

 end

end

%Displaying

disp('Following are the outliers distance:'),disp(outliers);

disp('Following are the outlier points:'),disp(p);

disp('Corresponding values are as follows:'),disp(values);

X=sprintf('For the Method, Recall= %f',recall);

disp(X);

%Plots

plot(a(:,1),a(:,2),'g*',values(:,1),values(:,2),'r*')

xlabel('1st Dimension');

ylabel('2nd Dimension');

legend('Non-Outliers','Outliers');

Result=sprintf('Recall= %f %',recall);

4.1.5 Code for Multivariate Outlier Detection using

 Randomization and Pruning:

%Pruning Algorithm

function [inp,Result]=pruning()

clear all;

clc;

%Reading Data from csv file and storing in variables

file=uigetfile('*.csv','Select a file');

a=CSVREAD(file);

[M,N]=size(a);

arr=randperm(M); %generating random numbers for blocks

answer=inputdlg('Enter the value of k:','Enter the number');

k=str2num(answer{1});

n=8;

c=0; %set the cut off for pruning to zero

outlier(1:M)=0;

inp=sprintf('k=%d',k);

33

%Introducing outliers

for i=1:M

 cat(i)='n';

end

cat(8)='o';

cat(24)='o';

cat(30)='o';

cat(65)='o';

cat(83)='o';

cat(97)='o';

cat(120)='o';

cat(150)='o';

%initialize score as high value

%Separating into blocks

M1=M/5; %1st block and also size of each block

M1=floor(M1);

M2=2*M1;

M3=3*M1;

M4=4*M1;

for i=1:M

 if i<=M1

 B(1,i)=arr(i);

 elseif i<=M2

 B(2,(i-M1))=arr(i);

 elseif i<=M3

 B(3,(i-M2))=arr(i);

 elseif i<=M4

 B(4,(i-M3))=arr(i);

 else

 B(5,(i-M4))=arr(i);

 end

 score(i)=100;

end

%General Algorithm

block=0;

while block~=5

 block=block+1;

 neighbour(1:M1,1:M)=100; %initialize neighbours as high value

 for d=1:M

 for b=1:M1

 j=B(block,b);

 dist=0;

 if j~=-1

 esum=0;

 for f=1:N

34

 esum=esum+((a(d,f)-a(j,f))*(a(d,f)-a(j,f)));

 end

 dist=sqrt(esum);

 end

 if dist~=0

 z=1;

 while neighbour(b,z)~=100

 z=z+1;

 end

 neighbour(b,z)=dist;

 neighbour=sort(neighbour,2,'ascend'); %Calculating Nearest Neighbours

 score(j)=neighbour(b,k); %Calculating score

 if score(j)~=100

 if score(j)<c

 B(block,b)=-1; %Remove b from B

 end

 end

 end

 end

 end

 %Taking top n outliers

 t=1;

 while outlier(t)~=0

 t=t+1;

 end

 t=t-1;

 for i=1:M1

 j=B(block,i);

 if j~=-1

 t=t+1;

 outlier(t)=j;

 for i=2:t

 temp=outlier(i);

 j=i-1;

 while (j>=1 & score(temp)>score(outlier(j)))

 outlier(j+1)=outlier(j);

 j=j-1;

 end

 outlier(j+1)=temp;

 end

 end

 end

 for i=1:length(outlier)

 if i>n

 outlier(i)=0;

35

 end

 end

 c=min(score); %redefinig cut off

end

%Calculating recall for the method

count=0;

for i=1:n

 if (cat(outlier(i))=='o')

 count=count+1;

 end

end

recall=(count/n)*100;

%Storing values for displaying on graph

for i=1:n

 for j=1:N

 values(i,j)=a(outlier(i),j); %storing outlier values to plot

 end

end

%Displaying

disp('Following are the outlier points:'),disp(outlier(1:n));

disp('Corresponding values are as follows:'),disp(values);

X=sprintf('For the Method, Recall= %f',recall);

disp(X);

%Plots

plot(a(:,1),a(:,2),'g*',values(:,1),values(:,2),'r*')

xlabel('1st Dimension');

ylabel('2nd Dimension');

legend('Non-Outliers','Outliers');

Result=sprintf('Recall= %f %',recall);

4.1.6 Code for Bayesian Network based Outlier Detection for

discrete nodes using conditional probability tables:

%Bayesian Network

function [inp,Result]=bayesian()

clear all;

clc;

recall=sprintf('n/a');

answer=inputdlg('Enter 1 for the built in network and 2 to generate your own

network','Enter the option');

k=str2num(answer{1});

answer=inputdlg('Enter the no. of outliers to be detected:','Enter the number');

o=str2num(answer{1});

inp=sprintf('Option=%d, No. of Outliers=%d',k,o);

if k==1

36

 n=4;

 dag=zeros(n,n); %Directed Acylic Graph

 for i=1:n

 a(1,i)=i;

 end

 dag(a(1,1),a(1,2))=1;

 dag(a(1,1),a(1,3))=1;

 dag(a(1,3),a(1,4))=1;

 dag(a(1,2),a(1,4))=1;

 node_sizes=2*ones(1,n);

bnet=mk_bnet(dag,node_sizes,'names',{'cloudy','sprinkler','rain','wet'},'discrete',1:n);

 G=bnet.dag;

 draw_graph(G);

 C=bnet.names('cloudy');

 R=bnet.names('rain');

 S=bnet.names('sprinkler');

 W=bnet.names('wet');

 bnet.CPD{C}=tabular_CPD(bnet,C,[0.5 0.5]);

 bnet.CPD{R}=tabular_CPD(bnet,R,[0.8 0.2 0.2 0.8]);

 bnet.CPD{S}=tabular_CPD(bnet,S,[0.5 0.9 0.5 0.1]);

 bnet.CPD{W}=tabular_CPD(bnet,W,[1 0.1 0.1 0.01 0 0.9 0.9 0.99]);

elseif k==2

 answer=inputdlg('Enter the number of nodes:','Enter the number');

 n=str2num(answer{1});

 dag=zeros(n,n);

 for i=1:n

 a(1,i)=i;

 end

 for i=1:n

 for j=1:n

 X=sprintf('Connection from %d to %d:',i,j);

 answer=inputdlg(X,'Enter 1 for a connection and 0 otherwise');

 x=str2num(answer{1});

 dag(i,j)=x;

 end

 end

 node_sizes=2*ones(1,n);

 bnet=mk_bnet(dag,node_sizes,'discrete',1:n);

 for i=1:n

 [c,d]=size(parents(dag,i));

 d=d+1;

 m=1;

 for l=1:d

 m=2*m;

37

 end

 X=sprintf('%d probability values have to be entered',m);

 for j=1:m

 answer=inputdlg('Enter the value of p:',X);

 p=str2num(answer{1});

 value(i,j)=p;

 end

 bnet.CPD{i}=tabular_CPD(bnet,i,value(i,1:m));

 end

end

%Generating random conditions

condition=1+rand(20,n);

condition=round(condition);

%Calculating marginal probability of each node

[e,f]=size(condition);

for k=1:e

 product=1;

 for i=1:n

 engine=jtree_inf_engine(bnet);

 evidence=cell(1,n);

 ps=parents(dag,i);

 [c,d]=size(ps);

 for j=1:d

 evidence{a(1,ps(1,j))}=condition(k,ps(1,j));

 end

 [engine,ll]=enter_evidence(engine, evidence);

 m=marginal_nodes(engine,a(1,i));

 product=product*m.T(condition(k,a(1,i)));

 end

 probability(k,1)=product;

end

%Detecting top o outliers

parranged=sort(probability,'ascend'); %Arrange in Descending order

outliers=parranged(1:o,1); %Selecting the outliers

for i=1:length(probability)

 check(1,i)=0;

end

i=1;

while i~=o+1

 for j=1:length(probability)

 if probability(j)==outliers(i) && check(1,j)==0

 p(1,i)=j; %Storing the respective data entries

 i=i+1;

 break;

 end

38

 end

end

%Storing values of conditions

for i=1:o

 for j=1:n

 values(i,j)=condition(p(1,i),j); %storing outlier values to plot

 end

end

disp('Joint Probability for different conditions are as follows:');

probability

disp('Logic: Lower probability means that the condition has lower chance of

occurrence and hence an outlier');

disp('Top outliers have probability');

outliers

disp('Index: 1 for false and 2 for true')

disp('Corresponding conditions are as follows:');

values

G=bnet.dag;

draw_graph(G);

xlabel('Bayesian Network');

ylabel('');

Result=sprintf('The top outlier has probability %f\nThe conditions are as

follows:',outliers(1));

r=sprintf('%d ',values(1,:));

Result=strcat(Result,r);

4.1.7 Code for Bayesian Network based Outlier Detection for

discrete and continuous nodes where continuous nodes

follow Gaussian distribution using parameter learning:

%Bayesian Network with continuous variables

function [inp,Result]=bayescontinuous()

clear all;

clc;

answer=inputdlg('Enter 1 for the built in network and 2 to generate your own

network','Enter the option');

k=str2num(answer{1});

o=8; %No. of outliers present in the test dataset

correct=1;

inp=sprintf('Option=%d',k);

if k==1

 n=5;

 data=load('E:\Project Work\iris_bayes.csv');

 ncases=size(data,1);

 cases=cell(n,ncases);

39

 cases(:,:)=num2cell(data');

 dag=zeros(n,n); %Directed Acylic Graph

 for i=1:n

 a(1,i)=i;

 end

 dag(a(1,5),a(1,1))=1;

 dag(a(1,5),a(1,2))=1;

 dag(a(1,5),a(1,3))=1;

 dag(a(1,5),a(1,4))=1;

 node_sizes=[1 1 1 1 3];

 bnet=mk_bnet(dag,node_sizes,'discrete',5);

 bnet.CPD{a(1,1)}=gaussian_CPD(bnet,a(1,1));

 bnet.CPD{a(1,2)}=gaussian_CPD(bnet,a(1,2));

 bnet.CPD{a(1,3)}=gaussian_CPD(bnet,a(1,3));

 bnet.CPD{a(1,4)}=gaussian_CPD(bnet,a(1,4));

 bnet.CPD{a(1,5)}=tabular_CPD(bnet,a(1,5));

 engine=jtree_inf_engine(bnet);

 bnet2=learn_params(bnet,cases);

 engine2=jtree_inf_engine(bnet2);

else if k==2

 answer=inputdlg('Enter the number of nodes:','Enter the number');

 n=str2num(answer{1});

 dag=zeros(n,n);

 for i=1:n

 a(1,i)=i;

 end

 for i=1:n

 for j=1:n

 X=sprintf('Connection from %d to %d:',i,j);

 answer=inputdlg(X,'Enter 1 for a connection and 0 otherwise');

 x=str2num(answer{1});

 dag(i,j)=x;

 end

 end

 answer=inputdlg('Enter the number of discrete nodes:','Enter the number');

 y=str2num(answer{1});

 for i=1:y

 answer=inputdlg('Enter the discrete node:','Enter the number');

 dnodes(1,i)=str2num(answer{1});

 end

 for i=1:n

 X=sprintf('Enter the size of node %d',i);

 answer=inputdlg(X,'Enter the size of each node');

 node_sizes(1,i)=str2num(answer{1});

 end

40

 %Checking for correct bayesian network

 for i=1:n

 if node_sizes(1,i)~=1

 ps=parents(dag,i);

 [c,d]=size(ps);

 for j=1:d

 if node_sizes(1,ps(1,j))==1

 correct=0;

 end

 end

 end

 end

 if correct==0

 disp('Bayesian Network entered is not correct as it does not follow LCG

conditions');

 return;

 end

 file=uigetfile('*.csv','Select a file for training dataset');

 data=load(file);

 ncases=size(data,1);

 cases=cell(n,ncases);

 cases(:,:)=num2cell(data');

 bnet=mk_bnet(dag,node_sizes,'discrete',dnodes);

 for i=1:n

 if node_sizes(1,i)==1

 bnet.CPD{a(1,i)}=gaussian_CPD(bnet,a(1,i));

 else

 bnet.CPD{a(1,i)}=tabular_CPD(bnet,a(1,i));

 end

 end

 engine=jtree_inf_engine(bnet);

 bnet2=learn_params(bnet,cases);

 engine2=jtree_inf_engine(bnet2);

 end

end

G=bnet.dag;

draw_graph(G);

xlabel('Bayesian Network');

ylabel('');

%Getting test dataset

file=uigetfile('*.csv','Select a file for test dataset');

condition=csvread(file);

[M,N]=size(a);

%Introducing outliers

for i=1:M

41

 cat(i)='n';

end

cat(2)='o';

cat(6)='o';

cat(8)='o';

cat(11)='o';

cat(13)='o';

cat(16)='o';

cat(24)='o';

cat(30)='o';

%Calculating marginal probability of each node

[e,f]=size(condition);

for k=1:e

 product=1;

 for i=1:n

 engine2=jtree_inf_engine(bnet2);

 evidence=cell(1,n);

 ps=parents(dag,i);

 [c,d]=size(ps);

 for j=1:d

 evidence{a(1,ps(1,j))}=condition(k,ps(1,j));

 end

 [engine3,ll]=enter_evidence(engine2, evidence);

 m=marginal_nodes(engine3,a(1,i));

 if node_sizes(1,i)==1

 prob=normpdf(condition(k,a(1,i)),m.mu,m.Sigma);

 product=product*prob;

 else

 product=product*m.T(condition(k,a(1,i)));

 end

 end

 probability(k,1)=product;

end

%Detecting top o outliers

parranged=sort(probability,'ascend'); %Arrange in Ascending order

outliers=parranged(1:o,1); %Selecting the outliers

for i=1:length(probability)

 check(1,i)=0;

end

i=1;

while i~=o+1

 for j=1:length(probability)

 if probability(j)==outliers(i) && check(1,j)==0

 p(1,i)=j; %Storing the respective data entries

 i=i+1;

42

 check(1,j)=1;

 break;

 end

 end

end

%Calculating recall for the method

count=0;

for i=1:o

 if (cat(p(1,i))=='o')

 count=count+1;

 end

end

recall=(count/o)*100;

%Storing values of conditions

for i=1:o

 for j=1:n

 values(i,j)=condition(p(1,i),j); %storing outlier values to plot

 end

end

disp('Probability for different conditions are as follows:');

probability

disp('Logic: Lower probability means that the condition has lower chance of

occurrence and hence an outlier');

disp('Top outliers have probability');

outliers

disp('Corresponding conditions are as follows:');

values

X=sprintf('For the Method, Recall= %f',recall);

disp(X);

Result=sprintf('Recall= %f %',recall);

4.2 Example Datasets

Datasets Dimensions
Iris Plant 150X4

Wine Quality 178X14

Forest Fires 517X11

Breast Cancer 699X10

43

4.3 Results

4.3.1 Graphical User Interface for the Suite

Fig 11. Depicts the Graphical User Interface for the suite

4.3.2 Univariate Outlier Detection using Box Plot

Fig 12. Result obtained by running Box Plot algorithm on Iris plant

dataset in MATLAB

Fig 13 shows corresponding visualization.

44

Fig 13. Red points on the figure depict outliers in Iris Plant dataset

obtained using box plot

4.3.3 Multivariate Outlier Detection using Mahalanobis

Distance Measure

Fig 14. Result obtained by running Mahalanobis distance algorithm on

Iris plant dataset in MATLAB
Fig 15 shows corresponding visualization.

45

Fig 15. Plot depicting normal points in green and outliers in red of Iris

Plant dataset obtained by using Mahalanobis Distance algorithm

4.3.4 Mining distance based outliers using K nearest

neighbor criteria (Euclidean distance)

Fig 16. Result obtained by running Euclidean distance algorithm on Iris

plant dataset in MATLAB
Fig 17 shows corresponding visualization.

46

Fig 17. Plot depicting normal points in green and outliers in red of Iris

Plant dataset obtained by using Euclidean Distance algorithm

4.3.5 Mining distance based outliers in near linear time

using randomization

Fig 18. Result obtained by running Randomization & Pruning algorithm

on Iris plant dataset in MATLAB

Fig 19 shows corresponding visualization.

47

Fig 19. Plot depicting normal points in green and outliers in red of Iris

Plant dataset obtained by using Randomization & Pruning algorithm

4.3.6 Bayesian Network based Outlier Detection for discrete

nodes using conditional probability tables:

Fig 20.Bayesian Network for Effects of Smoking example generated in

MATLAB

48

Fig 21. Result obtained by running Bayesian network based outlier

detection algorithm for discrete nodes in MATLAB

49

4.3.7 Bayesian Network based Outlier Detection for discrete

and continuous nodes where continuous nodes follow

Gaussian distribution using parameter learning

50

Fig 22. Result obtained by running Bayesian network based outlier

detection algorithm for discrete nodes in MATLAB

Fig 23. Bayesian Network for Iris Plant data set example generated in

MATLAB

51

CHAPTER 5

Future Work and Conclusion

This project has discussed different ways in which the problem of anomaly detection

has been formulated in the literature, and has attempted to provide an overview of the

huge literature on various techniques.

 This project has implementations of various well known outlier detection algorithms

for use by people dealing in data mining. Different approaches for outlier detection

namely Statistical based approach, Distance based approach and Conditional

Anomaly Detection have been covered under this project. Various algorithms have

been implemented namely Univariate outlier detection using Boxplot, Multivariate

outlier detection using Mahalanobis Distance Measure, Multivariate outlier detection

using Euclidean Distance Measure, Multivariate outlier detection using

Randomization and Pruning, Bayesian Network based outlier detection for discrete

nodes using conditional probability tables and Bayesian Network based outlier

detection for discrete and continuous nodes using parameter learning. The project also

includes a graphical user interface for the suite in MATLAB. In addition to above, the

recall for above stated algorithms has been calculated and depicted. The suite also has

an implementation for visualization of outliers detected using various techniques.

 The algorithms implemented in this project have a lot of future scope and can be

applied to various data sets to detect the outliers. A lot of work is being done in this

field and will continue to grow as the time progresses. The Outlier Detection

Algorithm Suite that has been developed can be used by people dealing in data mining

and also for general purposes to detect outliers in data sets.

52

References

1. Varun Chandola, Arindam Banerjee, and Vipin Kumar.

2009. Anomaly detection: A survey. ACM Comput.

Surv. 41, 3, Article 15 (July 2009), 58 pages.

DOI=10.1145/1541880.1541882

http://doi.acm.org/10.1145/1541880.1541882

2. Edwin M. Knorr, Raymond T. Ng, and

VladimirTucakov.2000. Distance-based outliers:

algorithms and applications. The VLDB Journal 8, 3-4

(February2000),237253. DOI=10.1007/s007780050006

http://dx.doi.org/10.1007/s007780050006

3. Stephen D. Bay and Mark Schwabacher. 2003. Mining

distance-based outliers in near linear time with

randomization and a simple pruning rule. In Proceedings

of the ninth ACM SIGKDD international conference on

Knowledge discovery and data mining (KDD '03). ACM,

New York, NY, USA, 29-38.

DOI=10.1145/956750.956758

http://doi.acm.org/10.1145/956750.956758

4. Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng,

and Jörg Sander. 2000. LOF: identifying density-based

local outliers. SIGMOD Rec. 29, 2 (May 2000), 93-104.

DOI=10.1145/335191.335388

http://doi.acm.org/10.1145/335191.335388

5. Xiuyao Song, Mingxi Wu, Christopher Jermaine, and

Sanjay Ranka. 2007. Conditional Anomaly

Detection. IEEE Trans. on Knowl. and Data Eng. 19, 5

(May 2007), 631-645. DOI=10.1109/TKDE.2007.1009

http://dx.doi.org/10.1109/TKDE.2007.1009

53

6. Antonio Cansado and Alvaro Soto. 2008.

UNSUPERVISED ANOMALY DETECTION IN LARGE

DATABASES USING BAYESIAN NETWORKS. Appl.

Artif. Intell. 22, 4 (April 2008), 309-330.

DOI=10.1080/08839510801972801

http://dx.doi.org/10.1080/08839510801972801

7. http://www.physics.csbsju.edu/stats/box2.html

8. Edwin M. Knorr and Raymond T. Ng. 1999. Finding

Intensional Knowledge of Distance-Based Outliers.

In Proceedings of the 25th International Conference on

Very Large Data Bases (VLDB '99), Malcolm P.

Atkinson, Maria E. Orlowska, Patrick Valduriez, Stanley

B. Zdonik, and Michael L. Brodie (Eds.). Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 211-

222.

9. Victoria Hodge and Jim Austin. 2004. A Survey of Outlier

Detection Methodologies. Artif. Intell. Rev. 22, 2 (October

2004),85-126. OI=10.1023/B:AIRE.0000045502.10941.a9

http://dx.doi.org/10.1023/B:AIRE.0000045502.10941.a9

10. Stephen J. Chapman. 2001. MATLAB Programming for

 Engineers (2nd Edition) (2nd ed.). Brooks/Cole

 Publishing Co., Pacific Grove, CA, USA.

11. Aggarwal, C.C.A. (2011). Introduction to Outlier

 Analysis. IBM T. J. Watson Research Center, Yorktown

 Heights, NY, USA: Kluwer Academic Publishers.

