
I

Music Player In Android

Project Report submitted in partial fulfillment of the requirement for the

degree of

Bachelor of Technology.

in

Computer Science & Engineering

under the Supervision of

Mr. Arvind Kumar

Assistant Professor, Dept. of CSE

By

Shubham Kajaria

Enrollment No: 111294

to

Jaypee University of Information and Technology

Waknaghat, Solan – 173234, Himachal Pradesh

II

Certificate

This is to certify that project report entitled “Music Player In Android”, submitted by Shubham

Kajaria in partial fulfillment for the award of degree of Bachelor of Technology in Computer

Science & Engineering to Jaypee University of Information Technology, Waknaghat, Solan has

been carried out under my supervision.

This work has not been submitted partially or fully to any other University or Institute for the

award of this or any other degree or diploma.

Date: Mr. Arvind Kumar

 (Assistant Professor)

III

Acknowledgement

I would like to express my gratitude to all those who gave me the possibility to do this project. I

want to thank the Department of CSE & IT in JUIT for giving us the permission to commence

this project in the first instance, to do the necessary research work.

The satisfaction that accompanies that the successful completion of any task would be

incomplete without the mention of people whose ceaseless cooperation made it possible, whose

constant guidance and encouragement crown all efforts with success. I am grateful to my project

guide Mr. Arvind Kumar for the guidance, inspiration and constructive suggestions that helpful

me in the preparation of this project. I also thank myfaculty who have helped in successful

completion of the project.

Date: Shubham Kajaria(111294)

IV

Abstract

This software is used for android operating system, it can be used easily for playing music and

it’s convenient and quick , use simple UI and unique menu can give the users perfect experience.

This report gives an idea on how to design a music player based on Android OS. The music

player, which uses the front-back end architecture, is divided into the part of music playback and

the part of player interface and music list.

The Android platform provides resources for handling media playback, which your apps can use

to create an interface between the user and their music files. Through this report, we will create a

basic music player application for Android. The app will present a list of songs on the user

device, so that the user can select songs to play.

Application will be written using Android SDK in Java and should run on all Android OS

handsets.

The music player runs stably and conveniently during testing.

V

Table of Content

S. No. Topic Page No.

1. Motivation 1

2. Introduction to Android 2

 2.1 The birth of Android 3

 2.1.1 Open Handset alliance found 3

2.1.2 Hardware 3

2.2 Features of android OS 4

 2.3 Interface Of android 4

 2.4 Sensors In Android devices 5

3. Literature Review 6

3.1 Literature Survey 6

 3.1.1 Research Paper1 6

 3.1.2 Research paper 2 7

VI

4. Android architecture 8

 4.1 Application framework 8

 4.2 Libraries 9

 4.3 Android Runtime 10

 4.4 Android Versions 11

 4.5 Symbol of Android OS 12

5. Security and permissions in Android 13

 5.1 Development Tools 14

 5.2 Android Emulator 14

 5.3 Memory management of Android OS 15

 6. Design 16

 6.1 Android Development Life Cycle 17

 6.2 State Diagram 18

 6.3 Requirements 19

 6.4 Level-0 DFD 20

 6.5 Level-1 DFD 21

VII

 6.6 System Chart 22

 6.7 Flow Chart 23

 6.8 Building Blocks of Android Code 24

 6.9 Screenshots 25

7. Implementation 27

 8. Result 33

 8.1 Notification panel 33

 8.2 On pressing fast forward button 34

 8.3 On releasing fast forward button 35

 8.4 On pressing record button 36

 8.5 On pressing play button 37

 8.6 On pressing stop button 38

 8.7 No album cover 39

9. Future Enhancements & Conclusion 40

VIII

List of Figures

S.No. Title Page No.

1. Fig 2.3.1: Interface of Android 5

2. Fig 4.1: Android Architecture 8

3. Fig 4.3.1: Android Runtime 10

4. Fig 4.4.1: Android Version Distribution 11

5. Fig 4.5.1: Symbol of Android OS 12

6. Fig 6.1: Design 16

7. Fig 6.1.1: Android Development Lifecycle 17

8. Fig 6.2.1: State Diagram 18

9. Fig 6.4.1: Level-0 DFD 20

10. Fig 6.5.1: Level-1 DFD 21

11. Fig 6.6.1: System Chart 22

12. Fig 6.7.1: Flow Chart 23

13. Fig 6.8.1: Building blocks of Android code 24

IX

 14. Fig 6.9.1: Screenshot1 25

15. Fig 6.9.2: Screenshot 2 26

16. Fig 8.1: Notification panel 33

17. Fig 8.2: On pressing fast forward button 34

18. Fig 8.3: On releasing fast forward button 35

19. Fig 8.4: On pressing record button 36

20. Fig 8.5: On pressing play button 37

21. Fig 8.6: On pressing stop button 38

22. Fig 8.7: Default album cover 39

1

Chapter 1: Motivation

Use of Android OS with more public interest and make it more user friendly so all

can use it. As today’s market speaks lot of android and lots of app are being built on

it and most common of them all is music player application. Everyone loves to listen

music but apart from a good music, a good music player is required which will

enhance the quality of played music.

So, by making one of those player I will add it in Google Play Store.

2

 Chapter 2: Introduction to Android

Android is an operating system based on the Linux , and designed primarily for touch

screen mobile devices such as Smartphone’s and tablet computers. The first Android-

powered phone was sold in October 2008.

The user interface of Android is based on direct manipulation, using touch inputs that

loosely correspond to real-world actions, like swiping, tapping, pinching and reverse

pinching to manipulate on-screen objects.

Android allows users to customize their home screens with shortcuts to applications

and widgets, which allow users to display live content, such as emails and weather

information, directly on the home screen. Applications can further send notifications

to the user to inform them of relevant information, such as new emails and text

messages.

Android is open source and Google releases the code under the Apache License.

Android has a large community of developers writing applications ("apps") that

extend the functionality of devices, written primarily in the Java programming

language

Android is the world's most widely used smart phone platform,
[
overtaking Symbian

in the fourth quarter of 2010. Android is popular with technology companies who

require a ready-made, low-cost, customizable and lightweight operating system for

high tech devices.

Despite being primarily designed for phones and tablets, it also has been used in

televisions, games consoles, digital cameras and other electronics.

Android's open nature has encouraged a large community of developers and

enthusiasts to use the open-source code as a foundation for community-driven

projects, which add new features for advanced usersor bring Android to devices

which were officially released running other operating systems.

Android has a large community of developers writing applications that extend the

functionality of devices, written primarily in the Java programming language

3

Android is popular with technology companies who require a ready-made, low-cost,

customizable and lightweight operating system for high tech devices.

2.1 THE BIRTH OF ANDROID

Google Acquires Android Inc. In July 2005, Google acquired Android Inc., a small

startup company based in Palo Alto, CA. Android's co-founders who went to work at

Google included Andy Rubin (co-founder of Danger), Rich Miner (co-founder of

Wildfire Communications, Inc), Nick Sears (once VP at T-Mobile), and Chris White

(one of the first engineers at WebTV). At the time, little was known about the

functions of Android Inc. other than they made software for mobile phones.

2.1.1 Open Handset Alliance Founded

On 5 November 2007, the Open Handset Alliance, a consortium of several companies

which include Google, HTC, Intel, Motorola, Qualcomm, T-Mobile, Sprint Nextel

and NVIDIA, was unveiled with the goal to develop open standards for mobile

devices. Along with the formation of the Open Handset Alliance, the OHA also

unveiled their first product, Android, an open source mobile device platform based on

the Linux operating system.

2.1.2 Hardware

Google has unveiled at least three prototypes for Android, at the Mobile World

Congress on February 12, 2008. One prototype at the ARM booth displayed several

basic Google applications. A 'd-pad' control zooming of items in the dock with a

relatively quick response.

4

2.2 Features Of Android OS

 Application framework enabling reuse and replacement of components

 Dalvik virtual machine optimized for mobile devices

 Integrated browser based on the open source Web Kit engine Optimized

graphics powered by a custom 2D graphics library; 3D graphics based on the

OpenGL ES 1.0 specification (hardware acceleration optional)

 SQLite for structured data storage

 Media support for common audio, video, and still image formats (MPEG4,

H.264, MP3, AAC, AMR, JPG, PNG, GIF)

 GSM Telephony (hardware dependent)

 Bluetooth, EDGE, 3G, and WiFi (hardware dependent)

 Camera, GPS, compass, and accelerometer (hardware dependent)

 Rich development environment including a device emulator, tools for

debugging, memory and performance profiling, and a plugin for the Eclipse

IDE.

2.3 Interface of Android

Android home screens are typically made up of app icons and widgets. A home screen

may be made up of several pages that the user can swipe back and forth between,

though Android's home screen interface is heavily customizable, allowing the user to

adjust the look and feel of the device to their taste.

 Present along the top of the screen is a status bar, showing information about the

device and its connectivity. This status bar can be "pulled" down to reveal a

notification screen where apps display important information or updates, such as a

newly received email or SMS text, in a way that does not immediately interrupt or

inconvenience the user.

5

Fig 2.3.1: Interface of Android

2.4 Sensors in Android Devices

Interesting for music making:

• Gyro Sensors

• Accelerometer

• Geomagnetic Sensors

• Touchscreen

• Microphone

• Camera

• Motion Sensors

• Environmental Sensors

• Position Sensors

• Gesture Sensor

6

Chapter 3: Literature Review

3.1 Literature Survey:

3.1.1 Paper 1: Research and Development of Mobile Application for Android

Platform

Abstract:

Today, as the developing of hardware of mobile is getting better, the performance

index is much higher than the actual requirements of the software configuration.

Phone's features more depend on software. As the Android operating system is getting

more popular, the application based on Android SDK attracts much more attention.

But now, some of the Android application interface is too cumbersome, pop-up ads is

overmuch and the function is too single, these cause some inconvenience to the users.

This article presents the application by eliminating the redundancy. Three kinds of

applications are developed base on Java and Android SDK --- Weibo client, video

player and audio player. The audio player uses the ContentResolver and Curor to

obtain music files and plays the music by using the Service Components to call the

Media Player class in the background. The video player uses the Media Player class

provided by Android SDK. This class loads the file through URL, realize the

multimedia file parsing by calling the OpenCore Library, which is at the bottom of

Android, through JNI and by calling the SurfaceFlinger interface to realize the video

files’ playback. The users’ data is collected through the Sina open platform called by

Sina client and the data will be returned under the format of JSON by the Sina server.

The system uses the authentication method for user authorization to complete the

login process. The specific functions of this system are developed based on Android

Weibo SDK. The interfaces of these Android apps are pretty and the operation is

smooth. What’s more, the cumbersomeinterface and excessive advertising are

eliminated, so that users are able to manipulate these apps more conveniently and

smoothly[1].

Keywords: Android, Weibo client, Video Player, audio player, Android SDK

7

Introduction

In recent years, the emergence of smart phones has changed the definition of mobile

phones. Phone is no longer just a communication tool, but also an essential part of the

people's communication and daily life. Various applications added unlimited fun for

people's lives. It is certain that the future of the network will be the mobile terminal.

Now the Android system in the electronics market is becoming more and more

popular, especially in the smart phone market. Because of the open source, some of

the development tools are free, so there are plenty of applications generated

3.1.2 Paper 2: Design of Android based Media Player

Abstract:

Many users like to watch video by a mobile phone, but the media player has many

limitations. With a rapid development of communication and network, multimedia

based technology is adopted in media player. Different approaches of media player

shown in this paper are plug-in extension technology, multimedia based on hierarchy,

media player based on file browser, media player based on FFmpeg (Fast Forward

Moving Picture Expert Group), media player based on file server.

Keywords: media player, FFmpeg, file browser, file server.

Introduction

With the continuous development of science and technology, mobile phone is no

longer just communication, but a multimedia platform that provides multimedia

capabilities. Playing a video on media player becomes basic function, but the media

player has many limitations since there’re limited format supported by media player.

At present, the decode module of most of the media players is based on FF mpeg

decode library which supports more than 90 kinds of decoders, such as Storm Codec,

KMP Codec, etc and the display module is based on SDL (Simple DirectMedia

Layer) . This paper shows different approaches for design of media player. First is

plug-in extension technology on android multimedia player software platform. Second

is media player based on hierarchy

8

Chapter 4: Android Architecture

The following diagram shows the major components of Android. [3]

Fig 4.1: Architecture of Android OS

4.1 Application Framework

Developers have full access to the same framework APIs used by the core

applications. The application architecture is designed to simplify the reuse of

components; any application can publish its capabilities and any other application

9

may then make use of those capabilities (subject to security constraints enforced by

the framework).

This same mechanism allows components to be replaced by the user. Underlying all

applications is a set of services and systems, including: A rich and extensible set of

Views that can be used to build an application, including lists, grids, text boxes,

buttons, and even an embeddable web browser Content Providers that enable

applications to access data from other applications (such as Contacts), or to share their

own data ·A Resource Manager, providing access to non-code resources such as

localized strings, graphics, and lat files.

A Notification Manager that enables all applications to display custom alerts in the

status bar An Activity Manager that manages the life cycle of applications and

provides a common navigation backstack.

4.2 Libraries

Android includes a set of C/C++ libraries used by various components of the Android

system. These capabilities are exposed to developers through the Android application

framework.

Some of the core libraries are listed below: System C library - a BSD-derived

implementation of the standard C system library (libc), tuned for embedded Linux-

based devices Media Libraries - based on PacketVideo's Open CORE; the libraries

support playback and recording of many popular audio and video formats, as well as

static image files, including MPEG4, H.264, MP3, AAC, AMR, JPG, and PNG.

Surface Manager - manages access to the display subsystem and seamlessly

composites 2D and 3D graphic layers from multiple applications

LibWebCore - a modern web browser engine which powers both the Android browser

and an embeddable web view

SGL - the underlying 2D graphics engine

3D libraries - an implementation based on OpenGL ES 1.0 APIs; the libraries use

either hardware 3D acceleration (where available) or the included, highly optimized

3D software rasterizer

10

Free Type - bitmap and vector font rendering

SQLite - a powerful and lightweight relational database engine available to all

applications.

4.3 Android Runtime

Android includes a set of core libraries that provides most of the functionality

available in the core libraries of the Java programming language. Every Android

application runs in its own process, with its own instance of the Dalvik virtual

machine. Dalvik has been written so that a device can run multiple VMs efficiently.

The Dalvik VM executes files in the Dalvik Executable (.dex) format which is

optimized for minimal memory footprint. The VM is register-based, and runs classes

compiled by a Java language compiler that have been transformed into the .dex format

by the included "dx" tool. The Dalvik VM relies on the Linux kernel for underlying

functionality such as threading and low-level memory management.

At the same level there is Android Runtime, where the main component Dalvik

Virtual Machine is located. It was designed specifically for Android running in

limited environment, where the limited battery, CPU, memory and data storage are

the main issues. Android gives an integrated tool “dx”, which converts generated byte

code from .jar to .dex file, after this byte code becomes much more efficient to run on

the small processors.

Fig 4.3.1: Conversion from .java to .dex file

As the result, it is possible to have multiple instances of Dalvik virtual machine

running on the single device at the same time. The Core libraries are written in Java

language and contains of the collection classes, the utilities, IO and other tools.

11

4.4 Android Versions:

Fig 4.4.1: Android version Distribution

Android 1.0 (API level 1)

Android 1.1 (API level 2)

Android 1.5 Cupcake (API level 3)

Android 1.6 Donut (API level 4)

Android 2.0 Eclair (API level 5)

Android 2.1 Eclair (API level 7)

Android 2.2–2.2.3 Froyo (API level 8)

Android 2.3–2.3.2 Gingerbread (API level 9)

Android 2.3.3–2.3.7 Gingerbread (API level 10)

Android 3.0 Honeycomb (API level 11)

Android 3.1 Honeycomb (API level 12)

Android 3.2 Honeycomb (API level 13)

–

–

Android 4.3 Jelly Bean (API level 18)

Android 4.4 KitKat (API level 19)

Android 5.0 Lollipop(API level 21)

12

4.5 Symbol OF Android OS

Fig 4.5.1: Symbol of Android OS

13

Chapter 5: Security and permissions in Android

Android is a multi-process system, where each application (and parts of the system)

runs in its own process. Most security between applications and the system is

enforced at the process level through standard Linux facilities, such as user and group

IDs that are assigned to applications. Additional finer-grained security features are

provided through a "permission" mechanism that enforces restrictions on the specific

operations that a particular process can perform.

Android mobile phone platform is going to be more secure than Apple’s iPhone or

any other device in the long run. There are several solutions nowadays to protect

Google phone from various attacks. One of them is security vendor McAfee, a

member of Linux Mobile (LiMo) Foundation. This foundation joins particular

companies to develop an open mobile-device software platform. Many of the

companies listed in the LiMo Foundation have also become members of the Open

Handset Alliance (OHA).

As a result, Linux secure coding practice should successfully be built into the Android

development process. However, open platform has its own disadvantages, such as

source code vulnerability for black-hat hackers. In parallel with great opportunities for

mobile application developers, there is an expectation for exploitation and harm.

Stealthy Trojans hidden in animated images, particular viruses passed from friend to

friend, used for spying and identity theft, all these threats will be active for a long run.

Another solution for such attacks is SMobile Systems mobile package. Security

Shield –an integrated application that includes anti-virus, anti-spam, firewall and

other mobile protection is up and ready to run on the Android operating system.

Currently, the main problem is availability for viruses to pose as an application and do

things like dial phone numbers, send text messages or multi-media messages or make

connections to the Internet during normal device use. It is possible for somebody to

use the GPS feature to track a person’s location without their knowledge. Hence

SMobile Systems is ready to notify and block these secure alerts. But the truth is that

it is not possible to secure r mobile device or personal computer completely, as it

connects to the internet. And neither the Android phone nor other devices will prove

to be the exception. [5]

14

5.1 Development Tools

The Android SDK includes a variety of custom tools that help develop mobile

applications on the Android platform. The most important of these are the Android

Emulator and the Android Development Tools plugin for Eclipse, but the SDK also

includes a variety of other tools for debugging, packaging, and installing r

applications on the emulator.

5.2 Android Emulator

A virtual mobile device that runs on computer use the emulator to design, debug, and

test r applications in an actual Android run-time environment.

Android Development Tools Plugin for the Eclipse IDE.The ADT plugin adds

powerful extensions to the Eclipse integrated environment, making creating and

debugging r Android applications easier and faster. If use Eclipse, the ADT plugin

gives an incredible boost in developing Android applications:

It gives access to other Android development tools from inside the Eclipse IDE. For

example, ADT lets access the many capabilities of the DDMS tool — taking

screenshots, managing port-forwarding, setting breakpoints, and viewing thread and

process information — directly from Eclipse.

It provides a New Project Wizard, which helps quickly create and set up all of the

basic files’ll need for a new Android application. It automates and simplifies the

process of building r Android application.

It provides an Android code editor that helps write valid XML for r Android manifest

and resource files.

15

5.3 Memory Management of Android OS

Since Android devices are usually battery-powered, Android is designed to manage

memory (RAM) to keep power consumption at a minimum.

When an Android app is no longer in use, the system will automatically suspend it in

memory – while the app is still technically "open," suspended apps consume no

resources (e.g. battery power or processing power)

Android manages the apps stored in memory automatically: when memory is low, the

system will begin killing apps and processes that have been inactive for a while, in

reverse order since they were last used (i.e. oldest first).

This process is designed to be invisible to the user, such that users do not need to

manage memory or the killing of apps themselves. [6]

16

Chapter 6: Design

Fig 6.1: Design

Windows 7 (64 bit)

Android SDK(Standard Development Kit)

Eclipse

ADT(Android

Development

Tool)

Windows 7(32 bit)

17

6.1 Android Development Lifecycle

Fig 6.1.1: Android Development Life Cycle

Android ships with a debugging tool called the Dalvik Debug Monitor Server (DDMS),

which provides port-forwarding services, screen capture on the device, thread and heap

information on the device, logcat, process, and radio state information, incoming call and

SMS spoofing, location data spoofing, and more. The Android SDK includes a variety of

tools that help you develop mobile applications for the Android platform. The tools are

classified into two groups: SDK tools and platform tools. SDK tools are platform

independent and are required no matter which Android platform you are developing on.

The most important SDK tools include the Android SDK Manager (android sdk), the

AVD Manager (android avd) the emulator (emulator), and the Dalvik Debug Monitor

Server (ddms).

18

6.2 State Diagram

Fig 6.2.1:State Diagram

This diagram used to describe the behavior of systems. State diagrams are used to give an

abstract description of the behavior of a system. This behavior is analyzed and

represented in series of events, that could occur in one or more possible states. Hereby

"each diagram usually represents objects of a single class and track the different states

of its objects through the system".

19

6. 3 Requirements

Functional Requirements:.

 Android operating system on the Smartphone.

 The target device should be sound enabled.

 The android version should not be less than 2.3.5

External Interface Requirements:

User Interface Tested on:

 Android emulator version 4.3

 Samsung Duos mobile

Software Requirement:

 Android SDK Manager

 Eclipse

 ADT(Android Development Tool)

20

6.4 Level-0 DFD

User Input

Show Result

Fig 6.4.1: level-0 DFD

Here user will give input to the mp3 player and in turn player will play the requested

music file as an output.

User

Android mp3

player

21

6.5 Level-1 DFD

Taking

instructio

n from

user to go

to the next

step

carrrrying

instructin

receiving

from OS

Fig 6.5.1: level-0 DFD

This is a detailed view of level-1 DFD where user will give instructions to mp3 player

and inside that player, OS will take instructions and move to the next step and

similarly requested file will be played as an output.

User

Andro

id OS

Menu

Music

Player

User input for entering into required

OS

Show Result

22

6.6 System Chart

Fig 6.6.1: State Chart

This chart shows the breakdown of a system to its lowest manageable levels like

MediaPlayer here is broken down into file browser and audio player.

23

6.7 Flow Chart

Fig 6.7.1: Flow Chart

This diagram that represents workflow or process, showing the steps as boxes of

various kinds, and their order by connecting them with arrows.

24

6.8 Building Blocks of Android code

Fig 6.8.1: Building Blocks of Android Code

MediaPlayer class, XML code and various classes and functions for writing the code

for various operations like play/pause, stop, rewind, etc. are the major building blocks

for this music player.

Android media

player class
XML Code

Writing class for

reading

mp3,Play,Stop,Pause

AndroidMP3Player

25

6.9 Screenshots:

There are several songs which can be played by the user.

Fig 6.9.1: Screenshot1

26

After being played any song, screen goes into the next intent where several operations

can be applied to it.

Fig 6.9.2: Sscreenshot2

27

Chapter 7: Implementation

Music player has several widgets and one of those is button. Buttons has to be created

as per the requirement of music player application and giving their identifications

(ids) through xml file created in the project.

Button record, rewind, fastfwd, pause, stop;

record=(Button) findViewById(R.id.button1);

pause=(Button) findViewById(R.id.button2);

rewind=(Button) findViewById(R.id.button3);

fastfwd=(Button) findViewById(R.id.button4);

stop=(Button) findViewById(R.id.button5);

After the button has been set, path has to be set where list of songs can be added i.e.

from external sdcard.

private static final String sd_path=new String("/storage/extSdCard/");

 .

Before playing any song updateplaylist() will be called in order to add new songs to

the list.
private void updatePlaylist() {

 // TODO Auto-generated method stub

 File home=new File(sd_path);

 if(home.listFiles(new Mp3Filter()).length>0)

 {

 for(File file :home.listFiles(new Mp3Filter()))

 {

 songs.add(file.getName());

 }

 //ListAdapter songList;

 ArrayAdapter<String> songList=new

ArrayAdapter<String>(this,R.layout.song_item,songs);

 setListAdapter(songList);

 }

 }

Various OnClickListener() on different buttons is to be set in order to perform a

particular task like:- rewind.setOnClickListener(), fastforward.setOnClickListener(),

etc.

pause.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 // TODO Auto-generated method stub

 if(musicplayer.getCurrentPosition()!=0){

 if(i%2==0)

28

 {

 musicplayer.pause();

 i++;

 }

 else if(i%2!=0)

 {

 musicplayer.start();

 i++;

 }

 }

 else if(musicplayer.getCurrentPosition()==0)

 {

 try{

 musicplayer.reset();

 musicplayer.setDataSource(abc);

 musicplayer.prepare();

 musicplayer.start();

 updateseekbar.start();

 sb.setProgress(musicplayer.getCurrentPosition());

 }

 catch(Exception e)

 {}

 }

 }

 });

rewind.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 if(i%2==0)

 {// TODO Auto-generated method stub

 int currentPosition = musicplayer.getCurrentPosition();

 if (currentPosition - seekBackwardTime >= 0) {

 //d.setText("Rewinding...");

 musicplayer.seekTo(currentPosition - seekBackwardTime);

 } else {

 musicplayer.seekTo(0);

 //d.setText("Rewinding...");

 }

 }

}

});

fastfwd.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 // TODO Auto-generated method stub

 if(i%2==0)

 {

 int currentPosition = musicplayer.getCurrentPosition();

29

 if (currentPosition + seekForwardTime <= musicplayer.getDuration())

{

 //c.setText("Forwarding...");

 musicplayer.seekTo(currentPosition + seekForwardTime);

 } else {

 //c.setText("Forwarding...");

 musicplayer.seekTo(musicplayer.getDuration());

 }

 }

}

});

stop.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 // TODO Auto-generated method stub

 musicplayer.seekTo(0);

 sb.setProgress(musicplayer.getCurrentPosition());

 cancelNotification();

 musicplayer.stop();

 i=0;

 TelephonyManager mgr = (TelephonyManager)

getSystemService(TELEPHONY_SERVICE);

 if(mgr != null) {

mgr.listen(phoneStateListener,PhoneStateListener.LISTEN_NONE);

 }

 }

 });

 // return true;

record.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 // TODO Auto-generated method stub

 if(record.getText().toString().equals("Rec."))

 {

 try {

 startRecord();

 } catch (Exception e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 record.setText("End");

 }

 else if(record.getText().toString().equals("End"))

 {

30

 stopRecord();

 record.setText("Play");

 }

 else if(record.getText().toString().equals("Play"))

 {

 try {

 startPlayback();

 } catch (Exception e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 record.setText("Stop");

 }

 else if(record.getText().toString().equals("Stop"))

 {

 stopPlayback();

 record.setText("Rec.");

 }

 }

 });

Here MediaPlayer and MediaRecorder object has been created in order to play and

record any music file. For showing the current time index of any song, SeekBar

widget has been imported .Notification for each song being played is shown by

importing Notification and NotificationManager class.

private void initNotification() {

 //Song currSong = songs.get(position);

 //get title and artist strings (Mapping the strings to

views in song Layout file)

 //String songView=currSong.getTitle();

 String ns = Context.NOTIFICATION_SERVICE;

 NotificationManager mNotificationManager =

(NotificationManager) getSystemService(ns);

 int icon = R.drawable.ic_launcher;

 CharSequence tickerText = "Music In Play";

 long when = System.currentTimeMillis();

 Notification notification = new Notification(icon,

tickerText, when);

 notification.flags = Notification.FLAG_ONGOING_EVENT;

 Context context = getApplicationContext();

 CharSequence contentTitle = "Music In play";

 CharSequence contentText = "Listen To Music While

Performing Other Tasks";

 Intent notificationIntent = new Intent(this,

MainActivity.class);

 PendingIntent contentIntent =

PendingIntent.getActivity(context, 0,notificationIntent, 0);

31

notification.setLatestEventInfo(context, contentTitle, abc,contentIntent);

 mNotificationManager.notify(NOTIFICATION_ID,

notification);

 }

 // Cancel Notification

 private void cancelNotification() {

 String ns = Context.NOTIFICATION_SERVICE;

 NotificationManager mNotificationManager =

(NotificationManager) getSystemService(ns);

 mNotificationManager.cancel(NOTIFICATION_ID);

 }

If while listening a song any call comes on your phone or you have to make any call

than automatically song will be paused and after making a call or receiving a call song

will be played, this can be done by importing PhoneStateListener and

TelephonyManager class.

final PhoneStateListener phoneStateListener = new PhoneStateListener() {

 @Override

 public void onCallStateChanged(int state, String

incomingNumber) {

 if (state == TelephonyManager.CALL_STATE_RINGING) {

 //Incoming call: Pause music

 musicplayer.pause();

 i++;

 } else if(state == TelephonyManager.CALL_STATE_IDLE) {

 //Not in call: Play music

 musicplayer.start();

 } else if(state ==

TelephonyManager.CALL_STATE_OFFHOOK) {

 //A call is dialing, active or on hold

 musicplayer.pause();

 i++;

 }

 super.onCallStateChanged(state, incomingNumber);

 }

 };

 TelephonyManager mgr = (TelephonyManager)

getSystemService(TELEPHONY_SERVICE);

 if(mgr != null) {

 mgr.listen(phoneStateListener,

PhoneStateListener.LISTEN_CALL_STATE);

 }

Headset functionality is also implemented by importing broadcastReciever class.

// If headset gets unplugged, stop music and service.

 private BroadcastReceiver headsetReceiver = new

BroadcastReceiver() {

 private boolean headsetConnected = false;

 @Override

 public void onReceive(Context context, Intent intent) {

 // TODO Auto-generated method stub

 // Log.v(TAG, "ACTION_HEADSET_PLUG Intent

received");

32

 if (intent.hasExtra("state")) {

 if (headsetConnected &&

intent.getIntExtra("state", 0) == 0) {

 headsetConnected = false;

 headsetSwitch = 0;

 // Log.v(TAG, "State = Headset

disconnected");

 // headsetDisconnected();

 } else if (!headsetConnected

 &&

intent.getIntExtra("state", 0) == 1) {

 headsetConnected = true;

 headsetSwitch = 1;

 // Log.v(TAG, "State = Headset

connected");

 }

 }

 switch (headsetSwitch) {

 case (0):

 headsetDisconnected();

 break;

 case (1):

 break;

 }

 }

 };

 private void headsetDisconnected() {

 musicplayer.pause();

 i++;

 }

After clicking a particular song from the list, it will play that song and several other

functionalities can be applied to it by using different buttons. Functionalities will be

performed according to the task designated to the button like:-

Play/Pause, Record, Fast forward, Rewind a particular song. As the song is being

played it will move into the next intent and album cover associated with that

particular song will be shown else default gray layout will be set.

metaRetriever = new MediaMetadataRetriever();

 metaRetriver.setDataSource(abc);

 try {

 art = metaRetriver.getEmbeddedPicture();

 Bitmap songImage = BitmapFactory

.decodeByteArray(art, 0, art.length);

 album_art.setImageBitmap(songImage);

}

 catch (Exception e)

 {

album_art.setBackgroundColor(Color.GRAY);

 }

33

Chapter 8: Result

Notification panel will add automatically showing the path and

name of the song after the song is played.

Fig 8.1: Notification panel

34

On pressing the fast forward button, the track moves forward by

5 sec, each time the user clicks on it.

Fig 8.2: On pressing fast forward button

35

On pressing fast forward button once the current track moves

forward by 5 sec.

Fig 8.3: On releasing fast forward button

36

On pressing the record button, song starts getting recorded and

in order to end that recording, end button is to be pressed.

Fig 8.4: On pressing Record button

37

On pressing the end button, play button will appear

automatically and if you want to listen that recording, you can

do so by clicking on that button.

Fig 8.5: On pressing play button

38

In between if you want to stop listening the recording, you can

simply press the stop button on the left side of the bottom of the

screen.

Fig 8.6: On pressing stop button

39

If any song does not have any album cover than by default gray

layout will be set else album cover associated with a particular

song will be set.

Fig 8.7: Default album cover

40

Chapter 9: Future Enhancements & Conclusion

Android is a truly open, free development platform based on Linux and open source.

Handset makers can use and customize the platform without paying a royalty. Like

most people, music is a huge part of everyone’s life and our tastes are constantly

changing based on how we feel or what we’re doing .

Several future enhancements can be done in this player like:-

 Polish interface i.e. working on interface to make it more attractive and user

friendly.

 Creating an additional field such as Star like songs in order to review later.

 Thumbs Up/ Thumbs Down for taking any song input.

 Add music visualizations and be able to share stations with a friends list.

 Ability to sync stations between friends so that the same song is played for

both users with song selection taken from a mix of both users.

 Gesture recognition can also be added so that if you shake your android

mobile phone, it will move to the next song in the current playlist.

This music player application in android will not only help the user to listen the

music but also it will lead to a better listening with enhanced effects. This app has

several functionalities beside play/pause like- recording, fast forwarding, rewinding,

play/pause ,etc. It has also a catchy background layout along with album cover of

each song, which will attract users to use it.

41

List of References Used:

[1] Li Ma, Lei Gu and Jin Wang, ” Research and Development of Mobile Application

for Android Platform,” International Journal of Multimedia and Ubiquitous

Engineering Vol.9, No.4 (2014), pp.187-198.

[2] Akshay R. Mukadam, Darshal N. Manchekar, Gaurav G. Panchal, Prasad P.

Kanade, Atul Yadav, ”Android Based Media Player,” International Journal of

Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 5,

September 2013.

[3] Herbert Schildt, Complete Reference JAVA, 5th edition, Tata McGraw Hill.

[4] Android Programming: The Big Nerd Ranch Guide.

[5] Introduction to Android: http://developer.android.com/guide/index.html.

[5] Android Architecture:http://www.tutorialspoint.com/android_architecture.htm

[6] Application Framework: http://developer.android.com/guide/faq/framework.html

[7] Security Permissions:http://developer.android.com/train/articles/security-tips.html

[8] Memory Management:http://mobworld.wordpress.com/2010/07/05/memory-

management-in-android/

http://nimooli.com/go/bignerdandroid
http://developer.android.com/guide/index.html

	Chapter 1: Motivation
	Chapter 2: Introduction to Android
	[4] Android Programming: The Big Nerd Ranch Guide.

