
Implementation of Locality Sensitive

Hashing Techniques

Project Report submitted in partial fulfillment of the requirement
for the degree of

Bachelor of Technology.

in

Computer Science & Engineering

under the Supervision of

 Dr. Nitin Chanderwal

By

 Srishti Tomar(111210)

to

Jaypee University of Information and TechnologyWaknaghat, Solan – 173234, Himachal
Pradesh

i

Certificate

This is to certify that project report entitled “Implementaion of Locality Sensitive

Hashing Techniques”, submitted by Srishti Tomar in partial fulfillment for the award of

degree of Bachelor of Technology in Computer Science & Engineering to Jaypee

University of Information Technology, Waknaghat, Solan has been carried out under my

supervision.

This work has not been submitted partially or fully to any other University or Institute for

the award of this or any other degree or diploma.

Date:

Supervisor’s Name: Dr. Nitin Chanderwal

Designation : Associate Professor

ii

Acknowledgement

I am highly indebted to Jaypee University of Information Technology for their guidance

and constant supervision as well as for providing necessary information regarding the

project & also for their support in completing the project.

I would like to express my gratitude towards my parents & Project Guide for their kind

co-operation and encouragement which help me in completion of this project.

I would like to express my special gratitude and thanks to industry persons for giving me

such attention and time.

My thanks and appreciations also go to my colleague in developing the project and

people who have willingly helped me out with their abilities

Date: Name of the student: Srishti Tomar

iii

Table of Content

S. No. Topic Page No.

1. Abstract 1

2. Motivation 2

3. Introduction 3
 3.1 Definition 3
 3.1.1Amplification 4
 3.2 Minhash 5
 3.3 Simhash 6
 3.4 Nilsimsa Hash 6
 3.4.1 6
 3.4.2 6
 3.4.3 6
 3.5 Random Projection 7
 3.6 TLSH 7
 3.7 Application 7
4. MinHash 9
 4.1 Variants 12
 4.1.1 Many Hash Functions 12
 4.1.2Single Hash Function 12
 4.2Algorithm Used for comparing minhashes 15
5. Simhash 16

6. Nilsimsa Hash 26

 6.1Origin of requirements 26

 6.2Filters 30

7. Conclusion 32

8. Tools and Technologies 33

9. References 34

10. Appendices 36
 Appendix A 36
 Appendix B 44

iv

 List of Figures

S. No. Title Page No.

1. Querying using Hash Functions 4

2. Hashing: Big Picture 9

3. Minwise Hashing 10

4. Minhash Example 11

5. Simhash 17

6. Simhash Example 20

7. 32-bit Simhash for the code fragments 22

8. Simhash in databases 25

9. Nilsimsa Algorithm 30

v

1.Abstract

Locality-sensitive hashing (LSH) is a method of performing probabilistic dimension

reduction of high-dimensional data. The basic idea is to hash the input items so that

similar items are mapped to the same buckets with high probability (the number of

buckets being much smaller than the universe of possible input items). The hashing used

in LSH is different from conventional hash functions, such as those used in cryptography,

as in the LSH case the goal is to maximize probability of "collision" of similar items

rather than avoid collisions. Locality-sensitive hashing, in many ways, mirrors data

clustering and Nearest neighbor search.

The idea behind LSH is to construct a family of functions that hash objects into buckets

such that objects that are similar will be hashed to the same bucket with high probability.

Here, the type of the objects and the notion of similarity between them determine the par-

ticular hash function family. Typical instances include the Jaccard coefficient as

similarity when the underlying objects are sets and the ℓ-2 norm as distance (i.e.,

dissimilarity) or the cosine/angle as similarity when the underlying objects are vectors.

LSH in nearest-neighbor applications can improve performance by significant amounts.

Locality Sensitive Hashing (LSH) is widely recognized as one of the most promising

approaches to similarity search in high-dimensional spaces. Based on LSH, a

considerable number of nearest neighbor search algorithms have been proposed in the

past, with some of them having been used in many real-life applications. Apart from their

demonstrated superior performance in practice, the popularity of the LSH algorithms is

mainly due to their provable performance bounds on query cost, space consumption and

failure probability.

1

 2.Motivation

Locality-sensitive hashing helps to deal with the Curse of Dimensionality. The curse of

dimensionality refers to various phenomena that arise when analyzing and organizing

data in high-dimensional spaces (often with hundreds or thousands of dimensions) that do

not occur in low-dimensional settings such as the three-dimensional physical space of

everyday experience. There are multiple phenomena referred to by this name in domains

such as numerical analysis, sampling, combinatorics, machine learning, data mining and

databases. The common theme of these problems is that when the dimensionality

increases, the volume of the space increases so fast that the available data become sparse.

This sparsity is problematic for any method that requires statistical significance. In order

to obtain a statistically sound and reliable result, the amount of data needed to support the

result often grows exponentially with the dimensionality. Also organizing and searching

data often relies on detecting areas where objects form groups with similar properties; in

high dimensional data however all objects appear to be sparse and dissimilar in many

ways which prevents common data organization strategies from being efficient. Thus the

application of Locality-sensitive hashing can be useful in all of the above fields.

2

 3.Introduction

The idea behind LSH is to construct a family of functions that hash objects into buckets

such that objects that are similar will be hashed to the same bucket with high probability.

Here, the type of the objects and the notion of similarity between them determine the par-

ticular hash function family. Typical instances include the Jaccard coefficient as

similarity when the underlying objects are sets and the ℓ-2 norm as distance (i.e.,

dissimilarity) or the cosine/angle as similarity when the underlying objects are vectors.

LSH in nearest-neighbor applications can improve performance by significant amounts.

3.1 Definition:

An LSH family F is defines for a metric space M= (M,d) , a threshold R>0 and an

approximation factor c>1. This family F is a family of functions h : M → S which map

elements from the metric space to a bucket s ϵ S. The LSH family of functions satisfies

the following conditions for any two points p,q ϵ M, using the function h ϵ F which is

chosen uniformly at random:

• if d(p,q) ≤ R, then h(p)=h(q) (ie, p and q collide) with probablity at least P1,

• if d(p,q) ≥ cR, then h(p)=h(q) with probability at most P2.

A family is interesting when P1> P2. Such a family F is called (R,cR,P1,P2)-sensitive.

Alternatively ,it is defined with respect to a universe of items U that have a similarity

function Φ : U x U → [0,1]. An LSH scheme is a family of hash functions H coupled

with a probability distribution D over the functions such that a function h ϵ H chosen

according to D satisfies the property that Pr [h(a)=h(b)] = Φ(a,b) for any a,b ϵ U.

3

3.1.1Amplification:

Given a (d1,d2,p1,p2)-sensitive family F , we can construct new families G by either the

AND-construction or OR-construction of F.

To create an AND-construction,we define a new family G of hash functions g, where

each function g is constructed from k random functions h1,...., hk from F. We then say that

for a hash function g ϵ G, g(x)=g(y) if and only if hi(x)=hi(y) for i = 1,2,...,k.

Since the members of F are independently chosen for any g ϵ G , G is a (d1,d2,p1
k,p2

k)-

sensitive family.

To create an OR-construction,we define a new family G of hash functions g, where each

function g is constructed from k random functions h1,...., hk from F. We then say that for a

hash function g ϵ G, g(x)=g(y) if and only if hi(x)=hi(y) for one or more values of I.

Since the members of F are independently chosen for any g ϵ G , G is a (d1,d2,(1-p1)k,(1-

p2)k)-sensitive family.

 Figure 1. Querying using Hash Functions

4

3.2 Minhash:

MinHash (or the min-wise independent permutations locality sensitive hashing

scheme) is a technique for quickly estimating how similar two sets are. The scheme was

invented by Andrei Broder in (1997), and initially used in the AltaVista search engine to

detect duplicate web pages and eliminate them from search results, It has also been

applied in large-scale clustering problems, such as clustering documents by the similarity

of their sets of words.

Suppose U is composed of subsets of some ground set of enumerable items S and the

similarity function of interest is the Jaccard index J. If Π is a permutation on the indices

of S, for A (subset of S) let h(A) = min a ϵA {Π (a)}. Each possible choice of Π defines a

single hash function h mapping input sets to elements of S.

Define the function family H to be the set of all such functions and let D be the uniform

distribution. Given two sets A,B (both subsets of S) the event that h(A)=h(B) corresponds

exactly to the event that the minimizer of Π over AUB lies inside intersection of the sets

A,B. As h was chosen uniformly at random, Pr[h(A)=h(B)]= J(A,B) and (H,D) define an

LSH scheme for Jaccard Index.

Because the symmetric group on n elements has size n!, choosing a truly random

permutation from the full symmetric group is infeasible for even moderately sized n.

Because of this fact, there has been significant work on finding a family of permutations

that is "min-wise independent" - a permutation family for which each element of the

domain has equal probability of being the minimum under a randomly chosen Π . It has

been established that a min-wise independent family of permutations is at least of size

lcm(1,2,...,n)≥ en-o(n) and that this bound is tight.

Because min-wise independent families are too big for practical applications, two variant

notions of min-wise independence are introduced: restricted min-wise independent

permutations families, and approximate min-wise independent families. Restricted min-

wise independence is the min-wise independence property restricted to certain sets of

cardinality at most k. Approximate min-wise independence differs from the property by

at most a fixed ϵ .
5

3.3 Simhash:

SimHash is an algorithm created by Moses Charikar, from Google. It is an effective tool

to compare easily and very fast two datasets. Computers are very pragmatic. They can

find very fast if two elements are differents or not. It's a binary world: equal or different.

Imagine now that we would like to have an idea of the similarity between these two

elements. That would be a much bigger problem: a computer is not designed to do such

comparison by nature. It's difficult, so it takes resources. o compare fingerprints, we need

an algorithm that generate them using a bigger dataset. The firs idea would be to use hash

(md5, sha1). However, these hash change if the input change a bit. We need another

algorithm that change a bit if the text does not change a lot. Simhash does that.

3.4Nilsimsa Hash:

Nilsimsa is an anti-spam focused locality-sensitive hashing algorithm originally proposed

the cmeclax remailer operator in 2001 and then reviewed by Damiani et al. in their 2004

paper titled, "An Open Digest-based Technique for Spam Detection". The goal of

Nilsimsa is to generate a hash digest of an email message such that the digests of two

similar messages are similar to each other. In comparison with cryptographic hash

functions such as SHA-1 or MD5, making a small modification to a document does not

substantially change the resulting hash of the document. Nilsimsa satisfies three

requirements outlined by the paper's authors:

3.4.1 The digest identifying each message should not vary significantly (sic) for changes

that can be produced automatically.

3.4.2 The encoding must be robust against intentional attacks.

3.4.3 The encoding should support an extremely low risk of false positives.

6

Nilsimsa similarity matching was taken in consideration by Jesse Kornblum when
developing the fuzzy hashing in 2006, that used the algorithms of spamsum by Andrew
Tridgell (2002).

Several implementations of Nilsimsa exist as open-source software in languages like c
and python.

3.5 Random Projection:

The random projection method of LSH (termed arccos by Andoni and Indyk) is designed

to approximate the cosine distance between vectors. The basic idea of this technique is to

choose a random hyperplane (defined by a normal unit vector) at the outset and use the

hyperplane to hash input vectors.

3.6 TLSH:

TLSH is locality-sensitive hashing algorithm designed for a range of security and digital

forensic applications.The goal of TLSH is to generate a hash digest of document such

that if two digests have a low distance between them, then it is likely that the messages

are similar to each other.

Testing performed in the paper demonstrates that on a range of file types identified the

Nilsimsa hash as having a significantly higher false positive rate when compared to other

similarity digest schemes such as TLSH, Ssdeep and Sdhash.

An implementations of TLSH is available as open-source software.

3.7Applications:

LSH has been applied to several problem domains including

• Near-duplicate detection

7

• Hierarchical clustering

• Genome-wide association study

• Image similarity identification

• Gene expression similarity identification

• Audio similarity identification

• Nearest neighbor search

• Audio fingerprint

• Digital video fingerprinting

8

4.Minhash

MinHash (or the min-wise independent permutations locality sensitive hashing

scheme) is a technique for quickly estimating how similar two sets are. The scheme was

invented by Andrei Broder (1997), and initially used in the AltaVista search engine to

detect duplicate web pages and eliminate them from search results. It has also been

applied in large-scale clustering problems, such as clustering documents by the similarity

of their sets of words.

Jaccard Similarity is a number between 0 and 1; it is 0 when the two sets are disjoint, 1

when they are equal, and strictly between 0 and 1 otherwise. It is a commonly used

indicator of the similarity between two sets: two sets are more similar when their Jaccard

index is closer to 1, and more dissimilar when their Jaccard index is closer to 0.

9

 Figure 2: Hashing: Big Picture

Let h be a hash function that maps the members of A and B to distinct integers, and for

any set S define hmin(S) to be the member x of S with the minimum value of h(x). Then

hmin(A) = hmin(B) exactly when the minimum hash value of the union A ∪ B lies in the

intersection A ∩ B. Therefore,

Pr[hmin(A) = hmin(B)] = J(A,B).

10

 Figure 3. Minwise Hashing

In other words, if r is a random variable that is one when hmin(A) = hmin(B) and zero

otherwise, then r is an unbiased estimator of J(A,B), although it has too high a variance to

be useful on its own. The idea of the MinHash scheme is to reduce the variance by

averaging together several variables constructed in the same way.

11

 Figure 4. Minhash Example

12

4.1Variants:

4.1.1Many hash functions

The simplest version of the minhash scheme uses k different hash functions, where k is a

fixed integer parameter, and represents each set S by the k values of hmin(S) for these k

functions.

To estimate J(A,B) using this version of the scheme, let y be the number of hash functions

for which hmin(A) = hmin(B), and use y/k as the estimate. This estimate is the average of k

different 0-1 random variables, each of which is one when hmin(A) = hmin(B) and zero

otherwise, and each of which is an unbiased estimator of J(A,B). Therefore, their average

is also an unbiased estimator, and by standard Chernoff bounds for sums of 0-1 random

variables, its expected error is O(1/√k).

Therefore, for any constant ε > 0 there is a constant k = O(1/ε2) such that the expected

error of the estimate is at most ε. For example, 400 hashes would be required to estimate

J(A,B) with an expected error less than or equal to .05.

4.1.2Single hash function

It may be computationally expensive to compute multiple hash functions, but a related

version of MinHash scheme avoids this penalty by using only a single hash function and

uses it to select multiple values from each set rather than selecting only a single minimum

value per hash function. Let h be a hash function, and let k be a fixed integer. If S is any

set of k or more values in the domain of h, define h(k)(S) to be the subset of the k

members of S that have the smallest values of h. This subset h(k)(S) is used as a signature

for the set S, and the similarity of any two sets is estimated by comparing their signatures.

Specifically, let A and B be any two sets. Then X = h(k)(h(k)(A) ∪ h(k)(B)) = h(k)(A ∪ B) is

a set of k elements of A ∪ B, and if h is a random function then any subset of k elements

13

is equally likely to be chosen; that is, X is a simple random sample of A ∪ B. The subset

Y = X ∩ h(k)(A) ∩ h(k)(B) is the set of members of X that belong to the intersection A ∩ B.

Therefore, |Y|/k is an unbiased estimator of J(A,B). The difference between this estimator

and the estimator produced by multiple hash functions is that X always has exactly k

members, whereas the multiple hash functions may lead to a smaller number of sampled

elements due to the possibility that two different hash functions may have the same

minima. However, when k is small relative to the sizes of the sets, this difference is

negligible.

By standard Chernoff bounds for sampling without replacement, this estimator has

expected error O(1/√k), matching the performance of the multiple-hash-function scheme.

In order to implement the MinHash scheme as described above, one needs the hash

function h to define a random permutation on n elements, where n is the total number of

distinct elements in the union of all of the sets to be compared. But because there are n!

different permutations, it would require Ω(n log n) bits just to specify a truly random

permutation, an infeasibly large number for even moderate values of n. Because of this

fact, by analogy to the theory of universal hashing, there has been significant work on

finding a family of permutations that is "min-wise independent", meaning that for any

subset of the domain, any element is equally likely to be the minimum. It has been

established that a min-wise independent family of permutations must include at least

different permutations, and therefore that it needs Ω(n) bits to specify a single

permutation, still infeasibly large.

Because of this impracticality, two variant notions of min-wise independence have been

introduced: restricted min-wise independent permutations families, and approximate min-

wise independent families. Restricted min-wise independence is the min-wise

independence property restricted to certain sets of cardinality at most k. Approximate

min-wise independence has at most a fixed probability ε of varying from full

independence.

14

The original applications for MinHash involved clustering and eliminating near-

duplicates among web documents, represented as sets of the words occurring in those

documents. Similar techniques have also been used for clustering and near-duplicate

elimination for other types of data, such as images: in the case of image data, an image

can be represented as a set of smaller sub-images cropped from it, or as sets of more

complex image feature descriptions.

In data mining, Cohen et al. use MinHash as a tool for association rule learning. Given a

database in which each entry has multiple attributes (viewed as a 0-1 matrix with a row

per database entry and a column per attribute) they use MinHash-based approximations to

the Jaccard index to identify candidate pairs of attributes that frequently co-occur, and

then compute the exact value of the index for only those pairs to determine the ones

whose frequencies of co-occurrence are below a given strict threshold.

The MinHash scheme may be seen as an instance of locality sensitive hashing, a

collection of techniques for using hash functions to map large sets of objects down to

smaller hash values in such a way that, when two objects have a small distance from each

other, their hash values are likely to be the same. In this instance, the signature of a set

may be seen as its hash value. Other locality sensitive hashing techniques exist for

Hamming distance between sets and cosine distance between vectors; locality sensitive

hashing has important applications in nearest neighbor search algorithms. For large

distributed systems, and in particular MapReduce, there exist modified versions of

MinHash to help compute similarities with no dependence on the point dimension.

15

4.2Algorithm Used for comparing minhashes:

for each row r do

 begin

 compute h(r)

 for each column c do

 if c has 1 in row r

 if h(r) is smaller than M(i,c) then

 M(i,c)=h(r)

16

5. Simhash

A hash function usually hashes different values to totally different hash values simhash is

one where similiar items are hashed to similiar hash values(by similar we mean the

bitwise hamming distance between hash values).

Simhash is useful because if the simhash bitwise hamming distance of two phrases is low

then their jaccard coefficient is high. In the case that two numbers have a low bitwise

hamming distance and the difference in their bits are in the lower order bits then it turns

out that they will end up close to each other if the list is sorted.

 Figure 5. Simhash

SimHash is an algorithm created by Moses Charikar, from Google. It is an effective tool

to compare easily and very fast two datasets. Computers are very pragmatic. They can

find very fast if two elements are differents or not. It's a binary world: equal or different.

17

Imagine now that we would like to have an idea of the similarity between these two

elements. That would be a much bigger problem: a computer is not designed to do such

comparison by nature. It's difficult, so it takes resources.

The computer will find if the texts are equals (strictly) by browsing the first text and see

if the letter in its current position is the same in the other text.

But the point here is that if the computer find a difference, it stops. It does not use

anymore resources. It knows that the strings are strictly different.

That's where similarity is a challenge. If we check for strict equality, we only need to stop
on the first difference. If we want a similarity estimation, we have to check the entire
text. In math, similarity is:

 similarity(A,B)=A∩BA∪B

For big datasets, the part

A∩B

take some time to compute. That's where SimHash is useful.

With SimHash, we will create a fingerprint that will replace the datasets A and B:

simhash(A)∩simhash(A)

Thus we will compare much smaller elements, the comparison time will be dramatically
reduced.

To compare fingerprints, we need an algorithm that generate them using a bigger dataset.

The firs idea would be to use hash (md5, sha1). However, these hash change if the input

18

change a bit. We need another algorithm that change a bit if the text does not change a

lot. Simhash does that.

The official SimHash algorithm is:

• Define a fingerprint size (for instance 32 bits)

• Create an array V[] filled with this size of zeros

• For each element in the dataset, we create a unique hash with md5, sha1 of any
other hash algorithm that give same-sized results

• For each hash, for each bit i in this hash

• If the bit is 0, we add 1 to V[i]

• If the bit is 1, we take 1 to V[i]

• For each i

• If V[i] > 0, i = 1

• If V[i] < 0, i = 0

It gives us a fingerprint characterizing our text, an approximation of the text data.

A fingerprint is in fact a binary number, for instance:

10101011100010001010000101111100. Now, to find

simhash(A)∩simhash(A)

we only have to use a XOR operation, by example:

--- 10101011100010001010000101111100

XOR 10101011100010011110000101111110

 = 00000000000000010100000000000010

19

Here, the 1 in the XOR result are the differences between the two fingerprints. To get an

idea of the difference between the original texts, we juste have to count the number of 1

and divide it by the total size.

We have 3 ones for 32 characters, so we have 3 differences per 32 elements : the

estimation of the difference is 3 / 32 = 0,09375.

And for the similarity: 1 - 3 / 32 = 0,90625, a bit more than 90%. We have a

similarity index!

 Figure 6. Simhash Example

20

21

 Figure 7. 32-bit Simhash for the code fragments

22

SimHash is currently used by Google to compare page with its database, to avoid

duplicate contents.

But the main usage of SimHash is to compare things in a database. For instance, let's

imagine we want to find the most similar articles of the one we are currently reading. It

appears complicated at the first sight using only SQL. However with SimHash it's not

that difficult: we just have to store a fingerprint for each aticle, and use the XOR

operation in SQL to count the 1s in the binary result.

Most hash functions are used to separate and obscure data, so that similar data hashes to

very different keys. We propose to use hash functions for the opposite purpose: to detect

similarities between data. Detecting similar and classifying documents is a well-studied

problem, but typically involves complex heuristics and/or O(n2) pair-wise comparisons.

Using a hash function that hashed similar to similar values, similarity could be

determined simply by comparing pre-sorted hash key values. The challenge is to find a

similarity hash that minimizes false positives. We have implemented a family of

similarity hash functions with this intent. We have further enhanced their performance by

storing the auxiliary data used to compute our hash keys. This data is used as a second

lteration after a hash key comparison indicates that two are potentially similar. We use

these tests to explore the notion of “similarity”.

As storage capacities become larger it is increasingly difficult to organize and manage

growing file systems. Identical copies or older versions of file often become separated

and scattered across a directory structure. Consolidating or removing multiple versions of

a file becomes desirable. However, duplication technologies do not extend well to the

case where file are not identical. Techniques for identifying similar file could also be

useful for classification purposes and as an aid to search. A standard technique in

similarity detection is to map features of a file into some high dimensional space, and

then use distance within this space as a measure of similarity. Unfortunately, this

typically involves computing the distance between all pairs of file, which leads to O(n2)

23

similarity detection algorithms. If these file-to-vector mappings could be reduced to a

one-dimensional space, then the data points could be sorted in O(n log n) time,

greatly increasing detection speed. Typically, hash functions are designed to minimize

collisions (where two different inputs map to the same key value). With cryptographic

hash functions, collisions should be nearly impossible, and nearly identical data should

hash to very different keys."Similarity" is a vague word, and can have numerous

meanings in the context of computer files. We take the view that in order for two files to

be similar they must share content. However, there are different ways to define that

sharing. For example, the content of a file, Take a text file encoded in

rtf as an example. Content could refer to the entire file, just the text portion of the file

(not including rtf header information), or the semantic meaning of the text portion of the

file (irrespective of the actual text).Many previous attempts at file similarity detection

have focused on detecting similarity on the text level. We decided to use binary similarity

as our metric. Two file are similar if only a small percentage of their raw bit patterns are

different. This often fails to detect other types of similarity. For example, adding a line to

source code might shift all line numbers within the compiled code. The two source file

would be detected as similar under our metric; the compiled results would not. We

decided on binary similarity because we did not want to focus on one particular file type

(e.g. text documents) or structure. Another issue we do not explore is that of semantic

similarity. For example, two text files may use different words but contain the same

content in terms of meaning. Or, two MP3 files of the same song with different encodings

may result in completely different binary content. The focus is on syntactic, not semantic,

similarity. In the words of Udi Manber, no effort is made to understand the contents of

the files. Broder made clear the distinction between resemblance (when two files

resemble each other) and containment (when one file is contained inside of another). As

an example of a containment relationship, take the case where one file consists of

repeated copies of another smaller file. The focus of SimHash has been on resemblance

detection. Two file with a size disparity (as in the example above) are implicitly different;

containment relationships between files do not necessarily make two files 'similar' under

our metric.

24

In order for files to be similar under our type

of metric, they must contain a large number of

common pieces. Another dividing point of

techniques is the granularity and coverage of

these pieces. SimHash operates at a very fine

granularity, specifically byte or word level.

Complete coverage is not attempted; only care

about the portions of the file which match our

set of bit patterns. Given some similarity

metric, there needs to be a threshold to

determine how close within that metric files

need to be to count as similar. Focus is on

files which have a strong degree of

 Figure 8. Simhash in databases similarity,ideally within 1-2% of each other.

Another issue is whether a form of similarity detection is meant to operate on a relative or

absolute level. In other words, is the focus retrieving a set of similar to a given file, or

retrieving all pairs of similar files. SimHash does both.The problem of identifying

similarity is not a new one, although no one seems to have discovered a consistently good

general solution. The most relevant paper to SimHash is over ten years old . There has

also been a body of research focusing on redundancy elimination or deduplication. Much

of the research on similarity detection since then has focused on very specific

applications and filetypes. This includes:

technical documentation

software systems

plagiarism detection

music

web pages

In most cases, the main goal of redundancy elimination is a reduction in either bandwidth

or storage. Redundancy elimination can focus on eliminating multiple copies of the same

25

file, or else preventing repeats of specific blocks shared between files. The standard way

to identify duplicate blocks is by hashing each block.

As files are modified, new copies of modified blocks are written to disk, without

changing references to unmodified blocks. Shared or unmodified blocks are identified by

comparing hashes of the blocks within a file before writing to disk.

A natural question when classifying blocks is how to identify block boundaries. The

options for this include fixed size chunking (for example, filesystem blocks), fixed size

chunking over a sliding window, or some form of dynamic content-based chunking .

Content-defined chunking consistently outperforms fixed sized chunking at identifying

redundancies, but involves larger time and space overheads .Instead of coalescing

repeated blocks, delta encoding works at a finer granularity. Essentially, it uses the

difference (or delta) between two files to represent the second one. This is only effective

when the two files resemble each other closely Different versions in a version control

system is a good example.

26

 6.Nilsimsa Hash

Nilsimsa is an anti-spam focused locality-sensitive hashing algorithm originally proposed

the cmeclax remailer operator in 2001 and then reviewed by Damiani et al. in their 2004

paper titled, "An Open Digest-based Technique for Spam Detection". The goal of

Nilsimsa is to generate a hash digest of an email message such that the digests of two

similar messages are similar to each other. In comparison with cryptographic hash

functions such as SHA-1 or MD5, making a small modification to a document does not

substantially change the resulting hash of the document. Nilsimsa satisfies three

requirements outlined by the paper's authors:

1. The digest identifying each message should not vary significantly (sic) for

changes that can be produced automatically.

2. The encoding must be robust against intentional attacks.

3. The encoding should support an extremely low risk of false positives.

6.1Origin of requirements:

If a generic hash function like MD5 (or SHA-1) is used to produce the digests of a

message, the spammer can easily fool this protection measure by inserting into each

message, in an arbitrary position, a few random characters(called hash busters) that will

immediately make the message unique, with practically no impact on the user perception

of the message. This observation gives birth to the first requirement given above which

is:

 The digest identifying each message should not vary significantly (sic) for changes that

can be produced automatically.

What is needed is a localized hashing function such as those applied in information

retrieval systems. However, the techniques designed for information retrieval have to be

carefully adapted since they were not designed to tolerate malicious behavior which must

27

instead be considered in our environment. For instance , MIME encoding is often used

by spammers to disguise message content while it is in transit, thereby allowing it to

sneak past content-based spam filtering.

Less often, spammers will use HTML character entity codes to disguise selected

characters in an HTML body.This originates the second requirement mentioned above

which is :

 The encoding must be robust against intentional attacks.

A solution to the spam problem must assume that spammers are technically competent

and after an analysis of the characteristics of the filtering solutions they may spend

resources to design tools that are able to automatically produce spam that bypasses the

checks put in place.

Finally an encoding suitable for use in the framework of an anti-spam filter should not

put the user at risk of accidental deletion of important messages.Therefore, we have a

third requirement:

 The encoding should support an extremely low risk of false positives.

It is worth noting that the risk of classifying a legitimate email as spam (false positive),

is far more costly than the risk of missing one spam (false positive).

Nilsimsa similarity matching was taken in consideration by Jesse Kornblum when

developing the fuzzy hashing in 2006,[that used the algorithms of spam by Andrew

Tridgell (2002).

A promising anti-spam technique consists in collecting users opinions that given email

messages are spam and using this collective judgment to block message propagation to

other users .To be effective, this strategy requires away to identify similarity among

28

http://en.wikipedia.org/wiki/Nilsimsa_Hash#cite_note-3

email messages, even if the program used by the spammer to generate the messages may

try to obfuscate their common origin.

Nilsimsa operates by using a window of 5 characters that slides along the text of the

message one character at a time. When a new character enters the window, the algorithm

generates the trigrams associated with the window and passes each of them to a hash

function h().The hash function h() computes a value i = h(trigram) between 0 and 255

that corresponds to the ith counter in an array of integers of size 255, called

accumulator ,and whose value is increased by 1. After the text analysis , the accumulator

will present in the i-th cell the number of trigrams that have been found in the text

producing i by the application of the hash function. The relative frequency of each bucket

is compared with the average bucket frequency observed for a large collection of

messages and the value representing this ratio is associated with the bucket.

29

 Figure 9. Nilsimsa Algorithm

Then, the ratio of each bucket is considered and if the i-th ratio is greater than the

median, the i-th bit of the nilsimsa code is set to 1; it is set to 0 otherwise.In this way a

32-byte code is produced.

To determine if two messages present the same textual content, their Nilsimsa digests are

compared, checking the number of bits in the same position that have the same value.

The Nilsimsa Compare Value is the number of bits that are equal minus 128. The

maximum value of Nilsimsa Compare Value is 128, for two identical digests.

The use of internet has been extensively increasing over the past decade and it continues

to be on the ascent. Hence the Internet is gradually becoming an integral part of everyday

life. Internet usage is expected to continue growing and email has become a powerful tool

intended for idea and information exchange. Negligible time delay during transmission,

30

security of the data being transferred, low costs are few of the multifarious advantages

that email enjoys over other physical methods. However there are few issues that spoil

the efficient usage of emails. Spam email is one among them. The term spam is used to

describe any “unwanted” thing.

Email spam is a set of unwanted electronic spam mail that contains nearly identical

messages sent to huge number of recipients. Spam mail can be not only annoying but also

dangerous to recipients. Clicking on links contained in spam emails may send users to

phishing and malware .It also may include malware as scripts or other risky executable

file attachments.

The problem of spam or Unsolicited Bulk Email (UBE) is becoming a pressing issue.

Spam email characterized by three main features:

•Anonymity: The address and identity of the sender are concealed.

•Mass Mailing: The email is sent to large groups of people.

•Unsolicited: The email is not requested by the recipients. While no effective and

complete solution to the spam problem is currently available,several moderately

successful anti-spam techniques have been proposed, each operating along a different

line.

6.2Filters:

List Based Filters: List-based filters attempt to stop spam by categorizing senders as

spammers or trusted users, and blocking or allowing their messages accordingly.Senders

in blacklist are considered spammers and all mails sent by them are blocked, where

senders in whitelist are trustees and all mails sent by them are allowed.

31

Content-Based Filters: Rather than enforcing across the board policies for all messages

from a particular email or IP address, content-based filters evaluate words or phrases

found in each individual message to determine whether an email is spam or legitimate.

A word-based spam filter is the simplest type of content-based filter. Generally speaking,

word-based filters simply block any email that contains certain terms.

Heuristic (or rule-based) filters like Spam Assassin take things a step beyond simple

word-based filters. Rather than blocking messages that contain a suspicious word,

heuristic filters take multiple terms found in an email into consideration.

Bayesian filters employ the laws of mathematical probability to determine which

messages are legitimate and which are spam. In order for a Bayesian filter to effectively

block spam,the end user must initially "train" it by manually flagging each message as

either junk or legitimate. Over time, the filter takes words and phrases found in legitimate

emails and adds them to a list; it does the same with terms found in spam.

32

 7.Conclusion

Locality-sensitive hashing (LSH) reduces the dimensionality of high-dimensional data.

LSH hashes input items so that similar items map to the same “buckets” with high

probability (the number of buckets being much smaller than the universe of possible

input items). LSH differs from conventional and cryptographic hash functions because it

aims to maximize the probability of a “collision” for similar items. Locality-sensitive

hashing has much in common with data clustering and nearest neighbor search.

Locality-sensitive hashing can be used to calculate similarities between files to various

degrees of accuracy.

There has been considerable research and use of similarity digests and Locality Sensitive

Hashing (LSH) schemes - those hashing schemes where small changes in a file result in

small changes in the digest. These schemes are useful in security and forensic

applications. We examine how well three similarity digest schemes (Ssdeep, Sdhash and

TLSH) work when exposed to random change. Various file types are tested by randomly

manipulating source code, Html, text and executable files. In addition, we test for

similarities in modified image files that were generated by cybercriminals to defeat fuzzy

hashing schemes (spam images). The experiments expose shortcomings in the Sdhash

and Ssdeep schemes that can be exploited in straight forward ways. The results suggest

that the TLSH scheme is more robust to the attacks and random changes considered.

Similarity digest schemes exhibit the property that small changes to the file being hashed

results in a small change to the hash. The similarity between two files can be determined

by comparing the digests of the original files.

33

 8.Tools and Technologies

 Eclipse IDE for Java:

 Version: Eclipse Luna(4.4)

Eclipse is an integrated development environment (IDE). It contains a base workspace

and an extensible plug-in system for customizing the environment. Written mostly in

Java, Eclipse can be used to develop applications. By means of various plug-ins, Eclipse

may also be used to develop applications in other programming languages: Ada, Java etc.

can also be used to develop packages for the software Mathematica. Development

environments include the Eclipse Java development tools (JDT) for Java and Scala,

Eclipse CDT for C/C++ and Eclipse PDT for PHP, among others.

The initial codebase originated from IBM VisualAge.The Eclipse software development

kit (SDK), which includes the Java development tools, is meant for Java developers.

Users can extend its abilities by installing plug-ins written for the Eclipse Platform, such

as development toolkits for other programming languages, and can write and contribute

their own plug-in modules.

Released under the terms of the Eclipse Public License, Eclipse SDK is free and open

source software (although it is incompatible with the GNU General Public License). It

was one of the first IDEs to run under GNU Classpath and it runs without problems under

IcedTea.

34

 9.References

1.Moses S. Charikar, “Similarity Estimation Techniques”

2.Locality-sensitive hashing wikipedia

3.Kernelized Locality-Sensitive Hashing -Brian Kulis and Kristen Grauman(2009)

4.Locality sensitive hashing: a comparison of hash function types and querying

mechanisms- Loic Pauleve, Herve Jegou, Laurent Amsaleg (2010)

5.Damiani et. al (2004). "An Open Digest-based Technique for Spam Detection"

6.Qin Liv (2007).”Multi-Probe LSH”

7.Nilsimsa Hash vs. SimHash

https://outofthemine.wordpress.com/2015/01/10/nilsimsa-vs-simhash/

8.Nilsimsa hash http://en.wikipedia.org/wiki/Nilsimsa_Hash

9.G. Forman, K. Eshghi, and S. Chiocchetti. Finding similar in large document

repositories.Conference on Knowledge Discovery in Data, pages 394{400, 2005.[2] T.C.

Hoad and J. Zobel. Methods for identifying versioned and plagiarized documents. Journal

of the American Society for Information Science and Technology, 54(3):203{215, 2003.

10.U. Manber. Finding similar system. Proceedings of the USENIX Winter 1994

Technical Conference on USENIX Winter 1994 Technical Conference table of contents,

pages 2{ 2, 1994.

11.A. Broder. On the resemblance and containment of documents. Proceedings of the

Compression and Complexity of Sequences, page 21, 1997.

12. T. Yamamoto, M. Matsusita, T. Kamiya, and K. Inoue. Measuring Similarity of Large

Software Systems Based on Source Code Correspondence. Proceedings of the 6th

35

International Conference on Product Focused Software Process Improvement

(PROFES05), 2005.

13. M. Welsh, N. Borisov, J. Hill, R. von Behren, and A. Woo. Querying large

collections of music for similarity, 1999.

14. D. Buttler. A Short Survey of Document Structure Similarity Algorithms.

International Conference on Internet Computing, 2004.

15. B. S. Baker. “A Program for Identifying Duplicated Code”. Proc.CSS Interface,1999,

Vol. 24, pp. 49-57.

16. M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A Density-Based Algorithm for

Discovering Clusters in Large Spatial Databases with Noise”, Proc. KDD, 1996, pp. 226-

231.

17. C. Gong, Y. Huang, X. Cheng and S. Bai. “Detecting near-duplicates in large-scale

short text databases”, Proc.PAKDD, 2008, pp. 877-883.

18. M. Henzinger, “Finding near-duplicate web pages: a large-scale evaluation of

algorithms”, Proc. SIGIR, 2006, pp. 284-291

36

 10.Appendices

Appendix A

Minhash:
Class:Minhash1.java:
Imported Files:

import java.io.*;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Map;
import java.util.Random;
import java.util.Set;
Code:

public class minhash1 {
 Set<String> set1 = new HashSet<>();
 Set<String> set2 = new HashSet<>();
 Map<String, boolean[]> bitArray = new HashMap<String, boolean[]>();
 int setnum=2,hashNum;
 int minHashValues[][];
 int hash[];
 public void initialize()
 for (int i = 0; i < setnum; i++)
 for (int j = 0; j < hashNum; j++)

 minHashValues[i][j] = Integer.MAX_VALUE;

 System.out.println("minHashValuesArray");
 for(int i = 0; i < setnum; i++)
 for (int j = 0; j < hashNum; j++)

 System.out.print(minHashValues[i][j]+" ");
 System.out.println();
 hash = new int[hashNum];

 Random r = new Random(11);

 for (int i = 0; i <hashNum; i++)
 int a = (int) r.nextInt();

 int b = (int) r.nextInt();

 int c = (int) r.nextInt();

37

 int x = hash(a * b * c, a, b, c);

 hash[i] = x;

}
 }
public static void main(String args[])
{

}
public void buildSetsFromFiles()
{
 // Build sets from the two files to be compared for similarity

 try{
 File myFile = new File("C:\\Users\\x-Srishti-
x\\Documents\\NetBeansProjects\\JavaApplication1\\src\\javaapplication1\\TextFile1.txt"
);
 FileReader fileReader = new FileReader(myFile);
 BufferedReader br = new BufferedReader(fileReader);
 String line;
 while((line = br.readLine())!=null)
 {
 String[] result = line.split(" ");
 for(String token: result)
 {
 set1.add(token);

 }

 }
 br.close();
 System.out.println(set1);

 File myFile1 = new File("C:\\Users\\x-Srishti-
x\\Documents\\NetBeansProjects\\JavaApplication1\\src\\javaapplication1\\TextFile2.txt"
);

38

 FileReader fileReader1 = new FileReader(myFile1);
 BufferedReader br1 = new BufferedReader(fileReader1);

 while((line = br1.readLine())!=null)
 {
 String[] result = line.split(" ");
 for(String token: result)
 {
 set2.add(token);

 }

 }
 br.close();
 System.out.println(set2);
 hashNum=set1.size()+set2.size();
 System.out.println(hashNum);
 minHashValues = new int[setnum][hashNum];
 initialize();

 buildBitmapsFromSets();
}
catch(Exception ex)
{
}

}
 private static int hash(int x, int a, int b, int c)

 {

 int hashValue = (int) ((a * (x >> 4) + b * x + c)&131071)+5;

 return Math.abs(hashValue);

 }
public void buildBitmapsFromSets()
{

 for (String t : set1)

39

 {

 bitArray.put(t, new boolean[] { true, false });

 }

 for (String t : set2)

 {

 if (bitArray.containsKey(t))

 {

 bitArray.put(t, new boolean[] { true, true });

 }

 else if (!bitArray.containsKey(t))

 {

 bitArray.put(t, new boolean[] { false, true });

 }

 }
 System.out.println(bitArray);

}
public void sim()
{

 //calculating minhash signatures for the sets
 minhashSig(set1,0);
 minhashSig(set2,1);

 int similarMinHash = 0;

40

 double similarity;

 for (int i = 0; i < hashNum; i++)

 {

 if (minHashValues[0][i] == minHashValues[1][i])

 {
 System.out.println(minHashValues[0][i]);
 similarMinHash++;

 }

 }
 System.out.println("similarMinhashes"+similarMinHash+"hashNum"+hashNum);

 similarity =(double) similarMinHash/hashNum;

 System.out.println("Similarity between the two documents is"+similarity
+"or"+similarity*100+"%");

}

public void minhashSig(Set<String> set, int in)
{
 int index = 0;
 System.out.println("MINSIG");
 for (String element : bitArray.keySet())

 {

 // for every element

 for (int i = 0; i < hashNum; i++)

 {

 // for every hash value

41

 if (set.contains(element))

 {

 int hindex = hash[index];

 if (hindex < minHashValues[in][index])

 {
 System.out.println(hindex);

 minHashValues[in][index] = hindex;//if the hash is smaller, replace it

 }

 }

 }

 index++;

 }
}

}

42

Minhash2.java:

package javaapplication1;

import java.util.HashSet;
import java.util.Set;
public class minhash2 {
 public static void main(String args[])
 {
 minhash1 min = new minhash1();
 min.buildSetsFromFiles();
 min.sim();

 }
}

43

Appendix B

Nilsimsa Hash:

 Nilsimsa.java:

import java.io.*;
import java.util.Random;

public class Nilsimsa{
int g,g1,g2;//hash functions
 Random r = new Random();

 int r1=r.nextInt(2)+1;
 String[] trigrams=

{"the","and","ing","her","hat","his","tha","ere","for","ent","ion","ter","was","you","ith","
ver","all","wit","thi","tio","eth","dth","men","sth","oft","tis","edt","has","nde","ent"};
 //list of the most common trigrams

int[] avgfreq= new int[256];
int[] accum= new int[256];
int[] ratios= new int[256];
int[] nilsimsaCode=new int[256];

int[] Code1=new int[256];
int[] Code2=new int[256];
int flag=0,check;

//float avgfreq=2;
float median=0;

public Nilsimsa()
{

for(int i=0;i<=255;i++)
{

accum[i]=0;
}

}
 public static void main(String[] args)throws IOException
 {

 }
 public void setFlag()

44

 {
 flag=1;

 }
 public int h1(String x) {

 char ch[];
 ch = x.toCharArray();
 int i, sum;
 for (sum=0, i=0; i < x.length(); i++)
 sum += ch[i];
 i= (255)*(sum-33000)/(123000);
 return i;
 }

 public int h2(String x)
 {

 int a=x.hashCode();
 int b= (255)*(a-33000)/(123000);

 return b;
 }
 public void hashgen(String x)
 {

//System.out.println("r1:"+r1);

 if(r1==1)

 g=h1(x)+2*h2(x);

 if(r1==2)

 g=h1(x)+h2(x)*3;

 if(r1==3)

 g=h1(x)+h2(x)%5;

 if(g<0)

 g=-g;
 if(g>255)

 g=(255);

 acc(g);

 }
 public void slidewindow()

45

 {

 }
 public void makeTrigrams(String s)
 {
 char a,b,c;
 int i=0;

 while(i<3)
 {

 a=s.charAt(i);
 b=s.charAt(i+1);
 c=s.charAt(i+2);
 //System.out.println(a+""+b+""+c);
 /* if(a>=65&&a<=90){
 int x=a+32;
 a=(char)x;
 }
 if(b>=65 && b<=90){
 int x=b+32;
 b=(char)x;
 }
 if(c>=65&& c<=90){
 int x=c+32;
 c=(char)x;
 }

 if((int)a>(int)b)
 {
 temp=a;
 a=b;
 b=temp;
 }
 if((int)a>(int)c)
 {
 temp=a;
 a=c;
 c=temp;
 }
 if((int)b>(int)c)

46

 {
 temp=b;
 b=c;
 c=temp;
 }
 //System.out.println(a+" "+b+" "+c);
 */
 String x=""+a+b+c;
 //System.out.println(x);
 check=checkTrigram(x);
 if(check==1)
 hashgen(x);
 i++;
 }
 //System.out.println("Accumulator");
 for(int f=0;f<256;f++)
 {
 //System.out.print(accum[f]+" ");
 }
 //System.out.println();

 }
 public int checkTrigram(String x)
 {
 check=1;
 for(int i=0;i<30;i++)
 {
 if(x.equals(trigrams[i])==true)
 {
 check=0;
 }

 }
 return check;
 }
 /* public void multihash(String x)
 {
 //using three hash functions
 int a=x.hashCode();
 int b= (255)*(a-33000)/(123000);

 //System.out.println(b);
 acc(b);
 }*/

47

 public void acc(int a)
 {
 accum[a]++;
 }
 public void calcRatio()
 {
 System.out.println();
 System.out.println("Accumulator");

 for(int i=0;i<256;i++)
 {
 System.out.print(accum[i]+" ");

 }
 System.out.println();
 //System.out.println("ratios");
 for(int i=0;i<256;i++)
 {
 if(avgfreq[i]!=0)
 {
 ratios[i]=(accum[i]/avgfreq[i]);

 }
 else
 ratios[i]=0;
 median+=ratios[i];
 //System.out.print(ratios[i]);
 }
 System.out.println();
 median/=256;
 System.out.println();
 System.out.println("median:"+median);
 }
 public void genByteCode()
 {
 System.out.println();
 System.out.println("Nilsimsa Code");
 for(int i=0;i<256;i++)
 {
 if(ratios[i]>median)
 nilsimsaCode[i]=1;
 else
 nilsimsaCode[i]=0;
 if(flag==0)

48

 Code1[i]=nilsimsaCode[i];
 else
 Code2[i]=nilsimsaCode[i];
 System.out.print(nilsimsaCode[i]);
 }

 System.out.println();

 }
 public void compValue()
 {
 int ctr=0,cmpvalue;
 for(int i=0;i<256;i++)
 {
 if(Code1[i]==Code2[i])
 ctr++;
 }
 cmpvalue=ctr-128;
 System.out.println("Nilsimsa Compare Value:"+cmpvalue);
 }
}

49

NilsimsaObject.java:
import java.io.FileReader;

import java.io.IOException;

import java.util.Random;

public class NilsimsaObject {

public static void main(String[] args) throws IOException {
//AvgBucketFrequency abf= new AvgBucketFrequency();

Nilsimsa nim=new Nilsimsa(); //creating an object of nilsimsa class
 String win="";

 int ctr=0;
 Random r = new Random();
 String[] file1=
{"E://EclipseLunaWorkspace//final//bin//Spam_Catalog//Spam1.txt","E://EclipseLunaW
orkspace//final//bin//Spam_Catalog//Spam2.txt","E://EclipseLunaWorkspace//final//bin//
Spam_Catalog//Spam3.txt","E://EclipseLunaWorkspace//final//bin//Spam_Catalog//Spa
m4.txt","E://EclipseLunaWorkspace//final//bin//Spam_Catalog//Spam5.txt","E://EclipseL
unaWorkspace//final//bin//Spam_Catalog//Spam6.txt","E://EclipseLunaWorkspace//final/
/bin//Spam_Catalog//Spam7.txt","E://EclipseLunaWorkspace//final//bin//Spam_Catalog//
Spam8.txt","E://EclipseLunaWorkspace//final//bin//Spam_Catalog//Spam9.txt","E://Ecli
pseLunaWorkspace//final//bin//Spam_Catalog//Spam10.txt","E://EclipseLunaWorkspace/
/final//bin//Spam_Catalog//Spam11.txt","E://EclipseLunaWorkspace//final//bin//Spam_C
atalog//Spam12.txt","E://EclipseLunaWorkspace//final//bin//Spam_Catalog//Spam13.txt"
,"E://EclipseLunaWorkspace//final//bin//Spam_Catalog//Spam14.txt","E://EclipseLunaW
orkspace//final//bin//Spam_Catalog//Spam15.txt","E://EclipseLunaWorkspace//final//bin/
/Spam_Catalog//Spam16.txt","E://EclipseLunaWorkspace//final//bin//Spam_Catalog//Sp
am17.txt","E://EclipseLunaWorkspace//final//bin//Spam_Catalog//Spam18.txt","E://Eclip
seLunaWorkspace//final//bin//Spam_Catalog//Spam19.txt","E://EclipseLunaWorkspace//
final//bin//Spam_Catalog//Spam20.txt"};
 //file1 contains the addresses of all the files in the spam catalog
 int r2=r.nextInt(20);

 FileReader inputStream = null;

 try {

 inputStream = new
FileReader("E://EclipseLunaWorkspace//final//bin//Spam.txt"); //Reading the file that
contains 100 spam emails

50

 //outputStream = new FileWriter("characteroutput.txt");

 int c;

 while ((c = inputStream.read()) != -1) {
 //outputStream.write(c);
 //System.out.print((char)c);
 ctr++;
 win+=(char)c;
 if(ctr==5)
 {
 ctr=0;
 //System.out.println(win);
 nim.makeTrigrams(win);
 win="";
 }
 }
 }
 finally {

 if (inputStream != null)
 {
 inputStream.close();
 }

 }
 System.out.println("Average Bucket Frequency");
 for(int i=0;i<256;i++)
 {

 nim.avgfreq[i]=(nim.accum[i]/100);
 // System.out.print(nim1.accum[i]+" ");

 System.out.print(nim.avgfreq[i]+" ");
 nim.accum[i]=0;

 }

 try {
 inputStream = new FileReader(file1[r2]);
 //outputStream = new FileWriter("characteroutput.txt");

51

 int c;
 while ((c = inputStream.read()) != -1) {
 //outputStream.write(c);
 //System.out.print((char)c);
 ctr++;
 win+=(char)c;
 if(ctr==5)
 {
 ctr=0;
 //System.out.println(win);
 nim.makeTrigrams(win);
 win="";
 }
 }
 }

 finally {

 if (inputStream != null)
 {
 inputStream.close();
 }

 }
 nim.calcRatio();
 nim.genByteCode();
 for(int i=0;i<=255;i++)
 {
 nim.accum[i]=0;
 }
 System.out.println();
 try {

 inputStream = new
FileReader("E://EclipseLunaWorkspace//final//bin//MyFile2.txt");
 //outputStream = new FileWriter("characteroutput.txt");

 int c;
 while ((c = inputStream.read()) != -1)
 {
 //outputStream.write(c);
 //System.out.print((char)c);
 ctr++;

52

 win+=(char)c;

 if(ctr==5)
 {
 ctr=0;
 //System.out.println(win);
 nim.makeTrigrams(win);
 win="";
 }
 }
 }

 finally {

 if (inputStream != null)
 {
 inputStream.close();
 }

 }
 nim.calcRatio();
 nim.genByteCode();
 nim.compValue();

}

}

53

	Implementation of Locality Sensitive Hashing Techniques
	Computer Science & Engineering
	Dr. Nitin Chanderwal
	Srishti Tomar(111210)

	
	Certificate
	Figure 4. Minhash Example
	4.1Variants:
	4.1.1Many hash functions
	4.1.2Single hash function

