

i

Emotion Classification on Social Networking Sites

Project Report submitted in partial fulfillment of the

requirement for the degree of

Bachelor of Technology.

in

Computer Science & Engineering

under the Supervision of

Dr. Pardeep Kumar

By

 Geetanjali Vadehra (111341)

Jaypee University of Information and Technology

Waknaghat, Solan – 173234, Himachal Pradesh

ii

Certificate

This is to certify that project report entitled “Emotion Classification on Social

Networking Sites ”, submitted by Geetanjali Vadehra(111341) in partial fulfillment

for the award of degree of Bachelor of Technology in Computer Science &

Engineering to Jaypee University of Information Technology, Waknaghat, Solan has

been carried out under my supervision.

This work has not been submitted partially or fully to any other University or Institute

for the award of this or any other degree or diploma.

Date: Dr. Pardeep Kumar

 Assistant Professor (Senior Grade)
Computer Science & Engineering Department

Jaypee University of Information Technology, Solan (H.P) India

iii

Acknowledgement

“It is not possible to prepare a project without the assistance & encouragement of

other people. This one is certainly no exception.”

On the very outset of this report, I would like to extend my sincere & heartfelt

obligation towards all the personages who have helped me in this endeavor. Without

their active guidance, help, cooperation & encouragement, I would not have made

headway in the project.

I would like to show my greatest appreciation to Dr. Pardeep Kumar. I feel motivated

every time I get his encouragement. For his coherent guidance throughout the tenure

of the project, I feel fortunate to be taught by Dr. Pardeep Kumar, who gave me his

unwavering support. Besides being my mentor, he taught me that there is no substitute

for hard work.

I owe my heartiest thanks to Brig. (Retd.) S.P. Ghrera (HOD, CES/IT Department),

who has always inspired me to take initiatives and showed me the path for achieving

my goal.

In the light of new developments and recent findings, I devote the task that was asked

from me at Jaypee University of Information Technology to “Emotion Classification

in Social Networking Sites”.

Date: Geetanjali Vadehra

iv

Table of Content

S. No. Topic Page No.

1. Introduction 1

 1 Motivation 3

 2 Aims and Objectives 3

2. Project Requirements 4

 1 Software Requirements 5

 2 Hardware Requirements 5

3. Feature Selection in Sentiment Classification 6

 1 Feature Selection Methods 7

 2 Search Based Feature Selection 10

4. Sentiment Analysis Techniques 12

1 Machine Learning Approach 14

2 Lexicon Based Approach 18

5. Lexicon Based Approach 21

6. Naïve Bayes Classifier 38

7. Technical Challenges 50

8. Screenshots 53

9. Conclusion 58

10. Future Work 60

11. References 62

v

List of Figures

S.No. Title Page No.

1. Target of Sentiment Analysis 2

2. Sentiment Analysis Techniques 13

3. Support Vector Machines 16

4. Lexicon Based Approach I 22

5. Lexicon Based Approach II 25

vi

List of Tables

S.No. Title Page No.

1. Accuracy of different sentiment classifiers 20

vii

Abstract

Sentiment Analysis (SA) is an ongoing field of research in text mining field. SA is the

computational treatment of opinions, sentiments and subjectivity of text.

The decision-making process of people is affected by the opinions formed by thought

leaders and ordinary people. When a person wants to buy a product online he or she

will typically start by searching for reviews and opinions written by other people on

the various offerings. Sentiment analysis is one of the hottest research areas in

computer science. Over 7,000 articles have been written on the topic. Hundreds of

startups are developing sentiment analysis solutions and major statistical packages

such as SAS and SPSS include dedicated sentiment analysis modules. There is a huge

explosion today of 'sentiments' available from social media including Twitter,

Facebook, message boards, blogs, and user forums. These snippets of text are a gold

mine for companies and individuals that want to monitor their reputation and get

timely feedback about their products and actions. Sentiment analysis offers these

organizations the ability to monitor the different social media sites in real time and act

accordingly. Marketing managers, PR firms, campaign managers, politicians, and

even equity investors and online shoppers are the direct beneficiaries of sentiment

analysis technology.

This report tackles a comprehensive overview of the last update in this field and a

sophisticated categorization of the techniques used in Sentiment Analysis.

The report also presents two methods to extract information about the users’

sentiment polarity (positive, neutral or negative), as transmitted in the messages they

write. It also mentions the potential improvements that can be made to these methods.

1

CHAPTER 1:

INTRODUCTION

2

Sentiment Analysis (SA) or Opinion Mining (OM) is the computational study of

people’s opinions, attitudes and emotions toward an entity. The entity can represent

individuals, events or topics. These topics are most likely to be covered by reviews.

The two expressions SA or OM are interchangeable. They express a mutual meaning.

However, some researchers stated that OM and SA have slightly different notions.

Opinion Mining extracts and analyzes people’s opinion about an entity while

Sentiment Analysis identifies the sentiment expressed in a text then analyzes it.

Therefore, the target of SA is to find opinions, identify the sentiments they express,

and then classify their polarity as shown in figure.

Sentiment Analysis can be considered a classification process as illustrated in figure.

There are three main classification levels in SA: document-level, sentence-level, and

aspect-level SA. Document-level SA aims to classify an opinion document as

expressing a positive or negative opinion or sentiment. It considers the whole

document a basic information unit (talking about one topic). Sentence-level SA aims

to classify sentiment expressed in each sentence. The first step is to identify whether

the sentence is subjective or objective. If the sentence is subjective, Sentence-level SA

will determine whether the sentence expresses positive or negative opinions.

Sentiment expressions are not necessarily subjective in nature. However, there is no

fundamental difference between document and sentence level classifications because

sentences are just short documents. Classifying text at the document level or at the

sentence level does not provide the necessary detail needed opinions on all aspects of

the entity which is needed in many applications, to obtain these details; we need to go

3

to the aspect level. Aspect-level SA aims to classify the sentiment with respect to the

specific aspects of entities. The first step is to identify the entities and their aspects.

The opinion holders can give different opinions for different aspects of the same

entity like this sentence “The voice quality of this phone is not good, but the battery

life is long”.

1. Motivation

The social network sites and micro-blogging sites are considered a very good source

of information because people share and discuss their opinions about certain topics

freely. This project will be used to recognize people’s emotions about those topics. In

political debates for example, we could figure out people’s opinions on a certain

election candidates or political parties. The election results can also be predicted from

political posts.

Sentiment analysis can also be used in adaptive E-learning systems. In particular,

affective and emotional factors, among other aspects, seem to affect the student

motivation and, in general, the outcome of the learning process. Therefore, in learning

contexts, being able to detect and manage information about the students’ emotions at

a certain time can contribute to know their potential needs at that time. On one hand,

adaptive e-learning environments can make use of this information to fulfill those

needs at runtime: they can provide the user with recommendations about activities to

tackle or contents to interact with, adapted to his/her emotional state at that time. On

the other hand, information about the student emotions towards a course can act as

feedback for the teacher. This is especially useful for online courses, in which there is

little (or none) face-to-face contact between students and teachers and, therefore, there

are fewer opportunities for teachers to get feedback from the students.

Knowing the users’ emotions is useful not only in the educational context but also in

many others (e.g., marketing, politics, online shopping, and so on).

2. Aim and Objective

The aim of this project is to extract information about the users’ sentiment as

transmitted in the text they write on social networking sites, by assigning a score to

each subsequent word in the text and computing the cumulative score

4

CHAPTER 2:

PROJECT REQUIREMENTS

5

1. Software requirements

 Operating System: Windows 7/8/XP/Vista

 Software: Dev C++, Eclipse

1. Hardware requirements

 Processor: x86 compatible processor

 RAM: 512 MB or greater

 Hard Disk: 20 GB or greater

 Monitor: VGA/SVGA

 Keyboard: 104 keys standard

 Mouse: 2/3 button. Optical/ Mechanical.

6

CHAPTER 3:

FEATURE SELECTION IN SENTIMENT

CLASSIFICATION

7

Sentiment Analysis task is considered a sentiment classification problem. Feature

selection is often integrated as the first step in machine learning algorithms like SVM,

Neural Networks, k-Nearest Neighbors, etc. The main goal of the feature selection is

to decrease the dimensionality of the feature space and thus computational cost. As a

second objective, feature selection will reduce the overfitting of the learning scheme

to the training data. During this process, it is also important to find a good tradeoff

between the richness of features and the computational constraints involved when

solving the categorization task. Some of the current features are:

Terms presence and frequency: These features are individual words or word n-grams

and their frequency counts. It either gives the words binary weighting (zero if the

word appears or one if otherwise) or uses term frequency weights to indicate the

relative importance of features.

Parts of speech (POS): finding adjectives, as they are important indicators of

opinions.

Opinion words and phrases: these are words commonly used to express opinions

including good or bad, like or hate. On the other hand, some phrases express opinions

without using opinion words. For example: cost me an arm and a leg.

Negations: the appearance of negative words may change the opinion orientation

like not good is equivalent to bad.

1. Feature selection methods

Feature Selection methods can be divided into lexicon-based methods that need

human annotation, and statistical methods which are automatic methods that are more

frequently used. Lexicon-based approaches usually begin with a small set of ‘seed’

words. Then they bootstrap this set through synonym detection or on-line resources to

obtain a larger lexicon. This proved to have many difficulties as reported by Whitelaw

et al. Statistical approaches, on the other hand, are fully automatic.

The feature selection techniques treat the documents either as group of words (Bag of

Words (BOWs)), or as a string which retains the sequence of words in the document.

BOW is used more often because of its simplicity for the classification process. The

most common feature selection step is the removal of stop-words and stemming

(returning the word to its stem or root i.e. flies → fly).

8

In the next subsections, we present three of the most frequently used statistical

methods in FS and their related articles. There are other methods used in FS like

information gain and Gini index.

1.1. Point-wise Mutual Information (PMI)

The mutual information measure provides a formal way to model the mutual

information between the features and the classes. This measure was derived from the

information theory. The point-wise mutual information (PMI) Mi(w) between the

word w and the class i is defined on the basis of the level of co-occurrence between

the class i and word w. The expected co-occurrence of class i and word w, on the basis

of mutual independence, is given by Pi ⋅ F(w), and the true co-occurrence is given

by F(w) ⋅ pi(w).

The mutual information is defined in terms of the ratio between these two values and

is given by the following equation:

The word w is positively correlated to the class i, when Mi(w) is greater than 0. The

word w is negatively correlated to the class i when Mi(w) is less than 0.

1.2. Chi-square (χ
2
)

Let n be the total number of documents in the collection, pi(w) be the conditional

probability of class i for documents which contain w, Pi be the global fraction of

documents containing the class i, and F(w) be the global fraction of documents which

contain the word w. Therefore, the χ
2
-statistic of the word between wordw and

class i is defined as

1.3. Latent Semantic Indexing (LSI)

Feature selection methods attempt to reduce the dimensionality of the data by picking

from the original set of attributes. Feature transformation methods create a smaller set

of features as a function of the original set of features. LSI is one of the famous

feature transformation methods. LSI method transforms the text space to a new axis

9

system which is a linear combination of the original word features. Principal

Component Analysis techniques (PCA) are used to achieve this goal. It determines the

axis-system which retains the greatest level of information about the variations in the

underlying attribute values. The main disadvantage of LSI is that it is an unsupervised

technique which is blind to the underlying class-distribution. Therefore, the features

found by LSI are not necessarily the directions along which the class-distribution of

the underlying documents can be best separated

It is generally acknowledged that the ability to work with text on a semantic basis is

essential to modern information retrieval systems. As a result, the use of LSI has

significantly expanded in recent years as earlier challenges in scalability and

performance have been overcome.

1.4 Categorical Proportional Difference (PD)

Categorical Proportional Difference (PD) is a metric which tells us how close to being

equal two numbers are. We can use this to find unigrams that occur mostly in one

class of documents or the other, by using the positive document frequency and

negative document frequency of a unigram as the two numbers.

In other words if a unigram occurs predominantly in positive documents

or predominantly in negative documents then the PD of the unigram will be close to

one, whereas if it occurs in about as many positive documents as negative

documents then its PD will be close to zero. A high score from this equation indicates

that the unigram is telling us a lot, and a low score indicates that

the unigram is telling us very little. For example if the word “actor” appears in exactly

as many positive documents as negative documents then finding the word

“actor” in a new document will tell us nothing about it and as such its PD score will

be zero. Conversely, if the word “excellent” appears in only positive documents then

finding the word “excellent” in a new document would give us a good clue that the

document is positive, and as such it would have a PD score of one. So to use

PD as a feature selector we simply need to remove any features where the result of the

equation is less than or equal to some threshold value.

10

1.5 SWN Subjectivity Scores (SWNSS)

The SWN feature selector is actually able to distinguish objective and subjective

terms, which is useful since only subjective terms should carry sentiment. To do

this we use the SWN subjectivity score, which is found by adding the positive and

negative SWN scores of a unigram together. To use it as a feature selector we

simply remove any unigrams whose subjective score is less than a certain threshold.

When this feature selector is used, unigrams that are not found in SWN, such as

names and misspellings, are removed from the corpus as well (although arguably the

names of certain actors could give strong clues about the quality of a movie).

1.6 SWN Proportional Difference (SWNPD)

While the SWN subjectivity feature selector can find words that have some a priori

sentiment attached, it cannot tell us whether that sentiment is consistent or

meaningful. It is entirely possible that a word may have a SWN subjectivity score of

one, indicating that it is very subjective, but its positive and negative scores may

be 0.5 each. This may make the word uninformative as a feature so there could be

value in removing it. Similarly to PD, SWNPD will be high for words that are

mostly positive or negative, and low for words that are a mix of both. By using this

score we hope to remove subjective words that have an ambiguous polarity from

the corpus.

2. Search based feature selection

An advantage of search based feature selection methods over rankings are usually

more accurate results. These methods are based on both stochastic and heuristic

searching strategies, what implies higher computational complexity, which for very

large datasets that have a few thousands of variables may limit some algorithms

usability.

Typical solutions of search based feature selection are forward/backward selection

methods.

Forward selection

Forward selection starts from an empty feature set and, in each iteration, adds one

new attribute, form the set of remaining. One that is added is this feature which

maximizes certain criterion usually classification accuracy. To ensure the proper

11

outcome of adding a new feature to the feature subset, quality is measured in the cross

validation process.

Backward elimination

Backward elimination algorithm differs from forward selection by starting from the

full feature set, and iteratively removes one by one feature. In each iteration only one

feature is removed, which mostly affects overall model accuracy, as long as the

accuracy stops increasing.

12

CHAPTER 4:

 SENTIMENT ANALYSIS TECHNIQUES

13

Sentiment Classification techniques can be roughly divided into machine learning

approach, lexicon based approach and hybrid approach. The Machine Learning

Approach (ML) applies the famous ML algorithms and uses linguistic features.

The Lexicon-based Approach relies on a sentiment lexicon, a collection of known and

precompiled sentiment terms. It is divided into dictionary-based approach and corpus-

based approach which use statistical or semantic methods to find sentiment polarity.

The hybrid Approach combines both approaches and is very common with sentiment

lexicons playing a key role in the majority of methods.

The text classification methods using ML approach can be roughly divided into

supervised and unsupervised learning methods. The supervised methods make use of

a large number of labeled training documents. The unsupervised methods are used

when it is difficult to find these labeled training documents.

The lexicon-based approach depends on finding the opinion lexicon which is used to

analyze the text. There are two methods in this approach. The dictionary-based

approach which depends on finding opinion seed words, and then searches the

dictionary of their synonyms and antonyms. The corpus-based approach begins with a

seed list of opinion words, and then finds other opinion words in a large corpus to

help in finding opinion words with context specific orientations. This could be done

by using statistical or semantic methods. There is a brief explanation of both

approaches’ algorithms and related articles in the next subsections.

14

1. Machine learning approach

Machine learning approach relies on the famous ML algorithms to solve the SA as

a regular text classification problem that makes use of syntactic and/or linguistic

features.

Text Classification Problem Definition: We have a set of training

records D = {X1, X2, …, Xn} where each record is labeled to a class. The

classification model is related to the features in the underlying record to one of the

class labels. Then for a given instance of unknown class, the model is used to

predict a class label for it. The hard classification problem is when only one label

is assigned to an instance. The soft classification problem is when a probabilistic

value of labels is assigned to an instance.

1.1. Supervised learning

The supervised learning methods depend on the existence of labeled training

documents. There are many kinds of supervised classifiers in literature. In the next

subsections, we present in brief details some of the most frequently used

classifiers in SA.

Probabilistic classifiers

Probabilistic classifiers use mixture models for classification. The mixture model

assumes that each class is a component of the mixture. Each mixture component is

a generative model that provides the probability of sampling a particular term for

that component. These kinds of classifiers are also called generative classifiers.

Three of the most famous probabilistic classifiers are discussed in the next

subsections.

 Naïve Bayes Classifier (NB): The Naïve Bayes classifier is the simplest

and most commonly used classifier. Naïve Bayes classification model

computes the posterior probability of a class, based on the distribution of

the words in the document. The model works with the BOWs feature

extraction which ignores the position of the word in the document. It uses

Bayes Theorem to predict the probability that a given feature set belongs

to a particular label.

15

P(label) is the prior probability of a label or the likelihood that a random

feature set the label. P(features|label) is the prior probability that a given

feature set is being classified as a label. P(features) is the prior probability

that a given feature set is occurred. Given the Naïve assumption which

states that all features are independent, the equation could be rewritten as

follows:

 Bayesian Network (BN): The main assumption of the NB classifier is the

independence of the features. The other extreme assumption is to assume

that all the features are fully dependent. This leads to the Bayesian

Network model which is a directed acyclic graph whose nodes represent

random variables, and edges represent conditional dependencies. BN is

considered a complete model for the variables and their relationships.

Therefore, a complete joint probability distribution (JPD) over all the

variables is specified for a model. In Text mining, the computation

complexity of BN is very expensive; that is why, it is not frequently used

 Maximum Entropy Classifier (ME): The Maxent Classifier (known as a

conditional exponential classifier) converts labeled feature sets to vectors

using encoding. This encoded vector is then used to calculate weights for

each feature that can then be combined to determine the most likely label

for a feature set. This classifier is parameterized by a set ofX{weights},

which is used to combine the joint features that are generated from a

feature-set by anX{encoding}. In particular, the encoding maps

each C{(featureset, label)} pair to a vector.

Linear Classifiers

Given is the normalized document word frequency,

vector is a vector of linear coefficients with the same

dimensionality as the feature space, and b is a scalar; the output of the linear

predictor is defined as , which is the output of the linear classifier. The

predictor p is a separating hyperplane between different classes. There are many kinds

of linear classifiers; among them is Support Vector Machines (SVM) which is a form

16

of classifiers that attempt to determinegood linear separators between different

classes. Two of the most famous linear classifiers are discussed in the following

subsections.

 Support Vector Machines: The main principle of SVMs is to determine

linear separators in the search space which can best separate the different

classes. In the following figure, there are 2 classes x, o and there are 3

hyperplanes A, B and C. Hyperplane A provides the best separation between

the classes, because the normal distance of any of the data points is the largest,

so it represents the maximum margin of separation. Text data are ideally

suited for SVM classification because of the sparse nature of text, in which

few features are irrelevant, but they tend to be correlated with one another and

generally organized into linearly separable categories. SVM can construct

a nonlinear decision surface in the original feature space by mapping the data

instances non-linearly to an inner product space where the classes can be

separated linearly with a hyperplane.

SVMs are used in many applications, among these applications are classifying

reviews according to their quality.

 Neural Network (NN): Neural Network consists of many neurons where the

neuron is its basic unit. The inputs to the neurons are denoted by the

vector overline Xi which is the word frequencies in the i th document. There

are a set of weights A which are associated with each neuron used in order to

compute a function of its inputs f(⋅). The linear function of the neural network

17

is: . In a binary classification problem, it is assumed that the class

label of is denoted by yi and the sign of the predicted function pi yields the

class label. Multilayer neural networks are used for non-linear boundaries.

These multiple layers are used to induce multiple piece-wise linear

boundaries, which are used to approximate enclosed regions belonging to a

particular class. The outputs of the neurons in the earlier layers feed into the

neurons in the later layers. The training process is more complex because the

errors need to be back-propagated over different layers.

Decision Tree Classifiers

Decision tree classifier provides a hierarchical decomposition of the training data

space in which a condition on the attribute value is used to divide the data. The

condition or predicate is the presence or absence of one or more words. The division

of the data space is done recursively until the leaf nodes contain certain minimum

numbers of records which are used for the purpose of classification.

There are other kinds of predicates which depend on the similarity of documents to

correlate sets of terms which may be used to further partitioning of documents. The

different kinds of splits are Single Attribute split which use the presence or absence of

particular words or phrases at a particular node in the tree in order to perform the

split. Similarity-based multi-attribute split uses documents or frequent words clusters

and the similarity of the documents to these words clusters in order to perform the

split. Discriminant-based multi-attribute split uses discriminants such as the Fisher

discriminate for performing the split.

Rule Based Classifiers

In rule based classifiers, the data space is modeled with a set of rules. The left hand

side represents a condition on the feature set expressed in disjunctive normal form

while the right hand side is the class label. The conditions are on the term presence.

Term absence is rarely used because it is not informative in sparse data.

There are numbers of criteria in order to generate rules, the training phase construct

all the rules depending on these criteria. The most two common criteria are support

and confidence. The support is the absolute number of instances in the training data

set which are relevant to the rule. The Confidence refers to the conditional probability

that the right hand side of the rule is satisfied if the left-hand side is satisfied.

18

1.2 Weakly, semi and unsupervised learning

The main purpose of text classification is to classify documents into a certain number

of predefined categories. In order to accomplish that, large number of labeled training

documents are used for supervised learning, as illustrated before. In text classification,

it is sometimes difficult to create these labeled training documents, but it is easy to

collect the unlabeled documents. The unsupervised learning methods overcome these

difficulties.

2. Lexicon-based approach

Opinion words are employed in many sentiment classification tasks. Positive opinion

words are used to express some desired states, while negative opinion words are used

to express some undesired states. There are also opinion phrases and idioms which

together are called opinion lexicon. There are three main approaches in order to

compile or collect the opinion word list. Manual approach is very time consuming

and it is not used alone. It is usually combined with the other two automated

approaches as a final check to avoid the mistakes that resulted from automated

methods. The two automated approaches are presented in the following subsections.

2.1. Dictionary-based approach

A small set of opinion words is collected manually with known orientations. Then,

this set is grown by searching in the well known corpora WordNet or thesaurus for

their synonyms and antonyms. The newly found words are added to the seed list then

the next iteration starts. The iterative process stops when no new words are found.

After the process is completed, manual inspection can be carried out to remove or

correct errors.

The dictionary based approach has a major disadvantage which is the inability to find

opinion words with domain and context specific orientations.

2.2. Corpus-based approach

The Corpus-based approach helps to solve the problem of finding opinion words with

context specific orientations. Its methods depend on syntactic patterns or patterns that

occur together along with a seed list of opinion words to find other opinion words in a

large corpus. We start with a list of seed opinion adjectives, and use them along with a

19

set of linguistic constraints to identify additional adjective opinion words and their

orientations. The constraints are for connectives like AND, OR, BUT, EITHER-

OR……; the conjunction AND for example says that conjoined adjectives usually

have the same orientation. This idea is called sentiment consistency, which is not

always consistent practically. There are also adversative expressions such

asbut, however which are indicated as opinion changes. In order to determine if two

conjoined adjectives are of the same or different orientations, learning is applied to a

large corpus. Then, the links between adjectives form a graph and clustering is

performed on the graph to produce two sets of words: positive and negative.

Using the corpus-based approach alone is not as effective as the dictionary-based

approach because it is hard to prepare a huge corpus to cover all English words, but

this approach has a major advantage that can help to find domain and context specific

opinion words and their orientations using a domain corpus. The corpus-based

approach is performed using statistical approach or semantic approach as illustrated in

the following subsections:

Statistical approach

Finding co-occurrence patterns or seed opinion words can be done using statistical

techniques. This could be done by deriving posterior polarities using the co-

occurrence of adjectives in a corpus, as proposed by Fahrni and Klenner. It is possible

to use the entire set of indexed documents on the web as the corpus for the dictionary

construction. This overcomes the problem of the unavailability of some words if the

used corpus is not large enough.

The polarity of a word can be identified by studying the occurrence frequency of the

word in a large annotated corpus of texts. If the word occurs more frequently among

positive texts, then its polarity is positive. If it occurs more frequently among negative

texts, then its polarity is negative. If it has equal frequencies, then it is a neutral word.

The similar opinion words frequently appear together in a corpus. This is the main

observation that the state of the art methods are based on. Therefore, if two words

appear together frequently within the same context, they are likely to have the same

polarity. Therefore, the polarity of an unknown word can be determined by

calculating the relative frequency of co-occurrence with another word. This could be

done using PMI.

20

Latent Semantic Analysis (LSA) is a statistical approach which is used to analyze the

relationships between a set of documents and the terms mentioned in these documents

in order to produce a set of meaningful patterns related to the documents and terms.

Semantic approach

The Semantic approach gives sentiment values directly and relies on different

principles for computing the similarity between words. This principle gives similar

sentiment values to semantically close words. WordNet for example provides

different kinds of semantic relationships between words used to calculate sentiment

polarities. WordNet could be used too for obtaining a list of sentiment words by

iteratively expanding the initial set with synonyms and antonyms and then

determining the sentiment polarity for an unknown word by the relative count of

positive and negative synonyms of this word.

21

CHAPTER 5:

LEXICON BASED APPROACH

22

1. Method I

 Extracting sentiments from texts: message classification

1.1. Preprocessing (lower-case, idiom detection)

The first step consists of preprocessing the message to convert all the words into

lower-case. Afterwards, it detects idioms and joins the words involved in each of

them.

1.2. Segmentation into sentences

Then, the message is divided into sentences. Dots are the only punctuation marks

considered as separators at this step, since others such as commas or semicolons can

be part of emoticons.

1.3. Tokenization I (partial)

In the next step, tokens are extracted from each sentence. At this time, only

whitespaces are taken into consideration to separate tokens, since other separators,

such as hyphens, can be part of emoticons.

23

1.4. Emoticon detection

Next, emoticons are detected. In order to detect them, the classifier in the text all the

emoticons stored in two text files, containing positive and negative emoticons,

respectively.

1.5. Tokenization II (complete)

During this second tokenization phase, all the punctuation marks (including commas,

semicolons and so on) are considered as separators leading to obtain the final sets of

tokens for each sentence.

1.6. Interjection detection

The next step consists of detecting and labeling interjections. Those that express

laughs, such as ‘‘hehehe’’ or ‘‘hahaha’’, are marked as positive whereas interjections

such as ‘‘aaah’’ or “aaargh” are marked as negative. This is implemented through

regular expressions, because in most of the cases, the interjections are intensified by

repeating letters or sets of letters contained in the own word.

1.7. Token score assignation

The next phase consists of assigning a score to each token: 1to 5 if it transmits a

positive sentiment, 0 if it is neutral, and -1 to -5 if it is negative. To assign a score, the

classifier checks if the token is a positive/ negative emoticon, a positive/negative

interjection, or whether it matches one of the words stored in the sentiment lexicon

(L).

1.8. Removing repetitive letters

The next step is, for each token, to check whether it appears in any of the two

dictionary categories and, if it is the case, to tag it as either positive or negative,

accordingly. The messages written by users in Facebook usually contain very

casual language. It is frequent to find words with repeated letters or with non-

alphabetic characters. Consequently, for each token, it if was not found in the

dictionary in the form in which it appears in the message, letters occurring more than

twice in a row are replaced by only one occurrence and the new token is looked for in

24

the dictionary. Was this version of the token not found in the dictionary yet, then it is

reduced to its lexeme.

1.9. Spelling checking

If the token does not match any word yet, then it is checked with a spelling checker.

Since Facebook messages usually contain misspellings, a spelling checker is

incorporated into the classifier. However, the spelling checker must be applied

carefully, since some of the corrections it suggests produce bad results in the

classifier. With the purpose of avoiding these situations, a list of words that should not

be corrected, including names and surnames, is created and incorporated within the

dictionary, so that, since they are found in the dictionary, they are not checked by the

spelling checker. Finally, if a token is not classified into positive/ negative in any of

the previous steps (even after all those considerations) the token is labeled as neutral.

1.10. Syntactical analysis

Once each token has received a positive/neutral/negative score, each sentence is

syntactically analyzed in order to check whether any score (positive/negative) should

be reversed (e.g., because of negations). Firstly, we apply part of speech (POS)

tagging to discriminate words that do not reflect any sentiment (e.g. articles) and to

disambiguate words with multiple semantic meaning (e.g., words that can be both a

noun and a verb). Afterwards, suffixes are analyzed. And then, negations are detected.

1.11. Polarity calculation

In order to calculate the polarity of a sentence, the number of tokens susceptible of

conveying sentiments according to their grammatical category (i.e. noun, adjective,

interjection or verb) is calculated. Other types of words, which appear frequently in

texts (i.e. determinant, prepositions, etc.), are not considered, because they are

‘‘stopwords’’ for a sentiment analysis. Then, once each token has been scored, the

final polarity score of a sentence is calculated.

25

2. Method II

The Framework is divided into two main components: Emotion Ontology, Emotion

Detector.

2.1. Emotion Ontology

Ontology is an explicit specification of conceptualization. Ontologies have

definitional aspects like high level schemas and aspects like entities and attributes;

interrelationship is between entities, domain vocabulary. Ontologies provide an

understanding of particular domain. Ontologies allow the domain to be communicated

between persons, institutions, and application systems. Emotion word hierarchy is

converted into ontology. An ontology development tool is used to develop emotion

ontology. The ontology has class and subclass relationship format. Emotion classes at

the primary level in emotion hierarchy are at the top of emotion ontology and emotion

classes at the tertiary level are at the bottom of ontology. High weight age is assigned

to the upper level emotion classes and low to the lower level emotion classes.

2.2. Emotion Detector Algorithm

Emotion of the textual data can be recognized with the help of this emotion detection

algorithm. The algorithm calculates weight for particular emotion by adding weights

26

assigned at each level of hierarchy and also calculates same for its counter emotion,

then compares the both scores and greater one is taken as the detected emotion.

2.3. Parameters Used

Algorithm is to calculate weight age to be assigned to different emotion words so that

they can be sorted according to it. Certain parameters are required for this purpose.

The first step is calculation of parameters. This task is achieved with the help of Jena

library which allows traversal and parsing of ontology.

Different parameters are calculated as follows:

Parent-Child relationship

If a text document belongs to a child; it also indirectly refers to the parent of it. Hence

if a certain value is added to the child’s score, parent score also need to be modified.

This is achieved by traversing the ontology model in a breadth first manner using Jena

API. When any node is encountered all of its children are retrieved. Then same

method is applied to every child.

Depth in Ontology

This is required as it gives an idea about how specific is the term in relation to its

corresponding ontology structure. The more specific it is the more weight age should

be given to it. This value is calculated simultaneously while traversing the ontology

tree.

Frequency in Text document

This is also an important parameter as more is the frequency more will be the

importance of that term. This value is calculated by parsing the text document and

searching for occurrences of the words.

2.4 Algorithm

For each word in input text i

{ For each word in emotion lexicon e

 { Calculate length of i;

 compare each letter of i with each letter of e;

 if((no. of letters successfully compared=length of i)&(next

 letter of e is an alphabet))

 go to next input word;

27

 if((no. of letters successfully compared=length of i)||(next

 letter of e is ‘*’))

 { assign score of e to score of i;

 go to next input word;

 }

 }

}

3. Approaches to Building Sentiment Dictionaries

The computational speed and efficiency of dictionary-based approaches to sentiment

analysis, together with their intuitive appeal, make such approaches an attractive

alternative for extracting emotional context from text. At the same time, both types of

dictionary based approaches offer potential limitations as well. Pre-constructed

dictionaries for use with modern standard U.S. English have the advantage of being

exceptionally easy to use and extensively validated, making them strong contenders

for applications where the emotional content of the language under study is expressed

in conventional ways. At the same time, the validity of such dictionaries rests

critically on such conventional usage of emotional words and phrases. Conversely,

custom dictionaries developed for specific contexts are sensitive to variations in word

usage, but come with a high cost of creation and limited future applicability.

What we term specialized vocabularies arise in situations when the standard

emotional valences associated with particular words are no longer correct, either

because words that typically convey emotional content do not do so in the context in

question or vice versa. For example, in colloquial English the word “love” almost

always carries a positive valence (and its inclusion in pre-constructed sentiment

dictionaries reflects this fact) while the word “bagel” does not. For professional and

amateur tennis players, however, the two words might mean something very different;

“love” means no points scored (a situation which has, if anything, a negative valence)

and the word “bagel” refers specifically to the (negative) event of losing a set 6-0

(e.g., “putting up a bagel in the first set”). It is easy to see how the application of a

standard sentiment dictionary to a body of text generated from a discussion of tennis

could easily lead to inaccurate inferences about its content.

28

In such circumstances, an ideal approach is to develop a sentiment dictionary that

reflects the emotional valence of the words as they are used in that context. Such

dictionaries reflect the emotional valence of the language as it is used in context, and

so are more likely to yield accurate estimates of sentiment in specialized vocabularies.

Such dictionaries, however, are also difficult and time-consuming to construct, since

they typically involve specifying every emotionally-valenced word or phrase that

could be encountered in that context. The challenge, then, is to develop an approach

for building sentiment dictionaries in the context of specialized vocabularies that is

substantially more efficient and less costly than simple human coding.

4. Code

#include <stdio.h>

#include <stdlib.h>

#include<string.h>

#include <conio.h>

#define SIZE 2557

#define SMILE 112

struct{

char word[40];

char score[4];

} rec[SIZE];

struct{

char smi[25];

char score[4];

} emo[SMILE];

int main()

{

 int i,j,k,l,count,pos,neg,tot;

 signed int s;

 FILE *in_file;

29

 char sent[25][15];

 char nega[16][15];

 int negs=0;

 char in[200];

 int len;

 int temp;

 int words;

 int sc[25];

 int scor[25];

 in_file = fopen("neg.txt", "r");

 if (in_file == NULL) {

 fprintf(stderr, "Could not open file\n");

 exit(8);

 }

 for (i=0;i<17;i++)

 {

 fscanf(in_file, "%15[^,],",nega[i]);

 // printf("Name of Word:%s\n",nega[i]);

 }

 fclose(in_file);

 in_file = fopen("emo.txt", "r");

 if (in_file == NULL) {

 fprintf(stderr, "Could not open file\n");

 exit(8);

 }

 for (i=0;i<=SIZE;i++)

 {

 fscanf(in_file, "%39[^,],%s",rec[i].word, rec[i].score);

 //printf("Name of Word:%s - Score:%s\n",rec[i].word, rec[i].score);

 }

30

 fclose(in_file);

 in_file = fopen("smile.txt", "r");

 if (in_file == NULL) {

 fprintf(stderr, "Could not open file\n");

 exit(8);

 }

 for (i=0;i<=SMILE;i++)

 {

 fscanf(in_file, "%24[^k]k%s",emo[i].smi, emo[i].score);

 // printf("Name of Word:%s - Score:%s\n",emo[i].smi, emo[i].score);

 }

 fclose(in_file);

 for(i=0;i<25;i++)

 { for(j=0;j<15;j++)

 sent[i][j]='0';

 }

for(i=0;i<25;i++)

 sc[i]=0;

for(i=0;i<25;i++)

 scor[i]=0;

 printf("Enter the sentence to be evaluated\n\n");

 scanf ("%[^\n]%*c", in);

 len=strlen(in);

 i=0; j=0;

 for(k=0;k<len;k++)

 { if(in[k]!=' ')

 { sent[i][j]=in[k];

 // printf("%c", sent[i][j]);

 j++;

 }

31

 else

 { i++;

 j=0;

 }

 }

//for(i=0;i<15;i++)

//printf("%c %d\n",nega[1][i],i);

 words=i;

 //negations

 i=0;

 while(i<=words)

 {

 for(k=0;k<17;k++)

 { j=0;

 for(l=0;l<15;l++)

 { if(sent[i][l]=='0'||sent[i][l]=='!'||sent[i][l]=='.'||sent[i][l]==',')

 break;

 }

 count=1;

 while(sent[i][j]==nega[k][count])

 {

 j++;

 count++;

 }

 if((j==l)&&((int)nega[k][count]>=97&&(int)nega[k][count]<=122))

 continue;

 if(j==l)

 {

32

 negs++;

 break;

 }

 }

 i++;

 }

//if(negs!=1&&negs!=0)

//negs++;

 //emotion words

 i=0;

 while(i<=words)

 {

 if((sent[i][0]=='n'&&

 sent[i][1]=='e'&&

 sent[i][2]=='v'&&

 sent[i][3]=='e'&&

 sent[i][4]=='r'&&

 sent[i][5]=='0')||

 (sent[i][0]=='n'&&

 sent[i][1]=='o'&&

 sent[i][2]=='t'&&

 sent[i][3]=='0'))

 { i++;

 continue;

 }

 for(k=0;k<SIZE;k++)

 { j=0;

 for(l=0;l<15;l++)

 { if(sent[i][l]=='0'||sent[i][l]=='!'||sent[i][l]=='.'||sent[i][l]==',')

 break;

 }

33

 count=0;

 while((int)rec[k].word[count]<97||(int)rec[k].word[count]>122)

 count++;

 while(sent[i][j]==rec[k].word[count])

 {

 j++;

 count++;

 }

 if((j==l)&&((int)rec[k].word[count]>=97&&(int)rec[k].word[count]<=122))

 continue;

 if(j==l||rec[k].word[count]=='*')

 {

 if(rec[k].score[0]!='-')

 s=rec[k].score[0]-'0';

 else

 s=0-(rec[k].score[1]-'0');

 sc[i]=s;

 break;

 }

 }

 i++;

 }

 //emoticons

 i=0;

 while(i<=words)

 {

34

 if((int)sent[i][0]>=97&&(int)sent[i][0]<=122)

 { //printf("%d\n",i);

 i++;

 continue;

 }

 for(k=0;k<SMILE;k++)

 { j=0;

 for(l=0;l<15;l++)

 { if(sent[i][l]=='0')

 break;

 }

 // printf("%d",l);

 count=1;

 /*

 while(emo[k].smi[count]!='%'||

 emo[k].smi[count]!='('||

 emo[k].smi[count]!=')'||

 emo[k].smi[count]!='*'||

 emo[k].smi[count]!='-'||

 emo[k].smi[count]!='3'||

 emo[k].smi[count]!='8'||

 emo[k].smi[count]!=':'||

 emo[k].smi[count]!=';'||

 emo[k].smi[count]!='<'||

 emo[k].smi[count]!='='||

 emo[k].smi[count]!='>'||

 emo[k].smi[count]!='@'||

 emo[k].smi[count]!='B'||

 emo[k].smi[count]!='D'||

 emo[k].smi[count]!='X'||

 emo[k].smi[count]!='x'||

 emo[k].smi[count]!='|'||

35

 emo[k].smi[count]!='}'||

 emo[k].smi[count]!='^'

)

 count++;

 */

 while(sent[i][j]==emo[k].smi[count])

 {

 j++;

 count++;

 }

 // if((j==l)&&((int)rec[k].word[count]>=97&&(int)rec[k].word[count]<=122))

 // continue;

 //if(j==l||rec[k].word[count]=='*')

 if(j==l)

 {

 if(emo[k].score[0]!='-')

 s=emo[k].score[0]-'0';

 else

 s=0-(emo[k].score[1]-'0');

 scor[i]=s;

 break;

 }

 }

 i++;

 }

 for(i=0;i<=words;i++)

 { j=0;

36

 while(sent[i][j]!='0')

 {

 printf("%c",sent[i][j]);

 j++;

 }

 printf("(%d) ",sc[i]+scor[i]);

 if(i==words)

 break;

}

printf("\n\nNo. of negations: %d\n\n",negs);

pos=0;

neg=0;

tot=0;

for(i=0;i<=words;i++)

{ if(sc[i]>=0)

pos=pos+sc[i];

 else

 neg=neg+sc[i];

}

if(negs%2!=0)

{ temp=pos;

 pos=-1*neg;

 neg=-1*temp;

}

for(i=0;i<=words;i++)

{ if(scor[i]>=0)

pos=pos+scor[i];

 else

 neg=neg+scor[i];

}

37

printf("\n\nThe ratings are on a scale of -5(strongly -ve) to 0(neutral) to 5(strongly

+ve)");

printf("\n\nPositive emotion rating is: %d\nNegative emotion rating is: %d",pos,neg);

 printf("\n\nTotal score: %d",pos+neg);

 if(pos>0-neg)

 printf("\n\nThe sentence is positive");

 else if(0-neg>pos)

 printf("\n\nThe sentence is negative");

 else

 printf("\n\nThe sentence is neutral");

 getch();

 return (0);

}

38

CHAPTER 6:

 NAIVE BAYES CLASSIFIER

39

Simple Bayesian classifiers have been gaining popularity lately, and have been found

to perform surprisingly well. These probabilistic approaches make strong assumptions

about how the data is generated, and posit a probabilistic model that embodies these

assumptions; then they use a collection of labeled training examples to estimate the

parameters of the generative model. Classification on new examples is performed

with Bayes’ rule by selecting the class that is most likely to have generated the

example. The naive Bayes classifier is the simplest of these models, in that it assumes

that all attributes of the examples are independent of each other given the context of

the class. This is the so-called “Naive Bayes assumption.” While this assumption is

clearly false in most real-world tasks, naive Bayes often performs classification very

well. This paradox is explained by the fact that classification estimation is only a

function of the sign (in binary cases) of the function estimation; the function

approximation can still be poor while classification accuracy remains high. Because

of the independence assumption, the parameters for each attribute can be learned

separately, and this greatly simplifies learning, especially when the number of

attributes is large. Document classification is just such a domain with a large number

of attributes. The attributes of the examples to be classified are words, and the number

of different words can be quite large indeed. While some simple document

classification tasks can be accurately performed with vocabulary sizes less than one

hundred, many complex tasks on real-world data from the Web, UseNet and newswire

articles do best with vocabulary sizes in the thousands. Naive Bayes has been

successfully applied to document classification in many research efforts. Despite its

popularity, there has been some confusion in the document classification community

about the “Naive Bayes” classifier because there are two different generative models

in common use, both of which make the “Naive Bayes assumption.” Both are called

“Naive Bayes” by their practitioners. One model specifies that a document is

represented by a vector of binary attributes indicating which words occur and do not

occur in the document. The number of times a word occurs in a document is not

captured. When calculating the probability of a document, one multiplies the

probability of all the attribute values, including the probability of non-occurrence for

words that do not occur in the document. Here we can understand the document to be

the “event,” and the absence or presence of words to be attributes of the event. This

describes a distribution based on a multi-variate Bernoulli event model. This approach

is more traditional in the field of Bayesian networks, and is appropriate for tasks that

40

have a fixed number of attributes. The approach has been used for text classification

by numerous people. The second model specifies that a document is represented by

the set of word occurrences from the document. As above, the order of the words is

lost; however, the number of occurrences of each word in the document is captured.

When calculating the probability of a document, one multiplies the probability of the

words that occur. Here we can understand the individual word occurrences to be the

“events” and the document to be the collection of word events. We call this the

multinomial event model. This approach is more traditional in statistical language

modeling for speech recognition, where it would be called a “unigram language

model.” This approach has also been used for text classification by numerous people.

Results indicate that the multi-variate Bernoulli model sometimes performs better

than the multinomial at small vocabulary sizes. However, the multinomial usually

outperforms the multi-variate Bernoulli at large vocabulary sizes, and almost always

beats the multi-variate Bernoulli when vocabulary size is chosen optimally for both.

While sometimes the difference in performance is not great, on average across data

sets, the multinomial provides a 27% reduction in error over the multi-variate

Bernoulli.

1. Probabilistic Framework of Naive Bayes

Consider the task of text classification in a Bayesian learning framework. This

approach assumes that the text data was generated by a parametric model, and

uses training data to calculate Bayes-optimal estimates of the model parameters.

Then, equipped with these estimates, it classifies new test documents using Bayes’

rule to turn the generative model around and calculate the posterior probability

that a class would have generated the test document in question. Classification

then becomes a simple matter of selecting the most probable class.

Both scenarios assume that text documents are generated by a mixture model

parameterized by θ. The mixture model consists of mixture components cj ∈ C =

{c1, ..., c|C|}. Each component is parameterized by a disjoint subset of θ. Thus a

document, di, is created by (1) selecting a component according to the priors, P(cj

|θ), then (2) having the mixture component generate a document according to its

own parameters, with distribution P(di|cj; θ). We can characterize the likelihood of

a document with a sum of total probability over all mixture components:

41

Each document has a class label. We assume that there is a one-to-one

correspondence between classes and mixture model components, and thus use cj

to indicate both the j
th

 mixture component and the j
th

 class. In this setting,

(supervised learning from labeled training examples), the typically “hidden”

indicator variables for a mixture model are provided as these class labels.

1.1 Multi-variate Bernoulli Model

In the multi-variate Bernoulli event model, a document is a binary vector over the

space of words. Given a vocabulary V, each dimension of the space t, t ∈ {1,..., |V

|}, corresponds to word wt from the vocabulary. Dimension t of the vector for

document di is written Bit, and is either 0 or 1, indicating whether word wt occurs

at least once in the document. With such a document representation, we make the

naive Bayes assumption: that the probability of each word occurring in a

document is independent of the occurrence of other words in a document. Then,

the probability of a document given its class from Equation 1 is simply the

product of the probability of the attribute values over all word attributes:

Thus given a generating component, a document can be seen as a collection of

multiple independent Bernoulli experiments, one for each word in the vocabulary,

with the probabilities for each of these word events defined by each component,

P(wt|cj; θ). This is equivalent to viewing the distribution over documents as being

described by a Bayesian network, where the absence or presence of each word is

dependent only on the class of the document.

Given a set of labeled training documents, D = {d1,...,d|D|}, learning the

parameters of a probabilistic classification model corresponds to estimating each

of these class-conditional word probabilities. The parameters of a mixture

42

component are written θwt|cj = P(wt|cj; θ), where 0 ≤ θwt|cj ≤ 1. We can calculate

Bayes-optimal estimates for these probabilities by straightforward counting of

events, supplemented by a prior. We use the Laplacean prior, priming each word’s

count with a count of one to avoid probabilities of zero or one. Define P(cj|di) ∈

{0, 1} as given by the document’s class label. Then, we estimate the probability of

word wt in class cj with:

The class prior parameters, θcj , are set by the maximum likelihood estimate:

Note that this model does not capture the number of times each word occurs, and

that it explicitly includes the non-occurrence probability of words that do not

appear in the document

1.2 Multinomial Model

In contrast to the multi-variate Bernoulli event model, the multinomial model

captures word frequency information in documents. Consider, for example, the

occurrence of numbers in the Reuters newswire articles; our tokenization maps all

strings of digits to a common token. Since every news article is dated, and thus

has a number, the number token in the multi-variate Bernoulli event model is

uninformative. However, news articles about earnings tend to have a lot of

numbers compared to general news articles. Thus, capturing frequency

information of this token can help classification. In the multinomial model, a

document is an ordered sequence of word events, drawn from the same

vocabulary V. We assume that the lengths of documents are independent of class.

We again make a similar Naive Bayes assumption: that the probability of each

word event in a document is independent of the word’s context and position in the

document. Thus, each document di is drawn from a multinomial distribution of

words with as many independent trials as the length of di. This yields the familiar

“bag of words” representation for documents. Define Nit to be the count of the

43

number of times word wt occurs in document di. Then, the probability of a

document given its class from Equation 1 is simply the multinomial distribution:

2. Classification

Given estimates of these parameters calculated from the training documents,

classification can be performed on test documents by calculating the posterior

probability of each class given the evidence of the test document, and selecting the

class with the highest probability. We formulate this by applying Bayes’ rule:

The right hand side may be expanded by first substituting using Equations 1 and

4. Then the expansion of individual terms for this equation is dependent on the

event model used. Use Equations 2 and 3 for the multi-variate Bernoulli event

model. Use Equations 5 and 6 for the multinomial.

3. Code for training dataset

import weka.core.Instances;

import weka.filters.Filter;

import weka.filters.unsupervised.attribute.StringToWordVector;

import weka.classifiers.Evaluation;

import java.util.Random;

import weka.classifiers.bayes.NaiveBayes;

import weka.classifiers.meta.FilteredClassifier;

import weka.core.converters.ArffLoader.ArffReader;

import java.io.*;

public class text {

44

 Instances trainData;

 StringToWordVector filter;

 FilteredClassifier classifier;

 public void loadDataset(String fileName) {

 try {

 BufferedReader reader = new BufferedReader(new

FileReader(fileName));

 ArffReader arff = new ArffReader(reader);

 trainData = arff.getData();

 System.out.println("===== Loaded dataset: " + fileName + "

=====");

 reader.close();

 }

 catch (IOException e) {

 System.out.println("Problem found when reading: " +

fileName);

 }

 }

 public void evaluate() {

 try {

 trainData.setClassIndex(0);

 filter = new StringToWordVector();

 filter.setAttributeIndices("last");

 classifier = new FilteredClassifier();

 classifier.setFilter(filter);

 classifier.setClassifier(new NaiveBayes());

 Evaluation eval = new Evaluation(trainData);

45

 eval.crossValidateModel(classifier, trainData, 4, new

Random(1));

 System.out.println(eval.toSummaryString());

 System.out.println(eval.toClassDetailsString());

 System.out.println("===== Evaluating on filtered (training)

dataset done =====");

 }

 catch (Exception e) {

 System.out.println("Problem found when evaluating");

 }

 }

 public void learn() {

 try {

 trainData.setClassIndex(0);

 filter = new StringToWordVector();

 filter.setAttributeIndices("last");

 classifier = new FilteredClassifier();

 classifier.setFilter(filter);

 classifier.setClassifier(new NaiveBayes());

 classifier.buildClassifier(trainData);

 System.out.println(classifier);

 System.out.println("===== Training on filtered (training)

dataset done =====");

 }

 catch (Exception e) {

 System.out.println("Problem found when training");

 }

 }

 public void saveModel(String fileName) {

46

 try {

 ObjectOutputStream out = new ObjectOutputStream(new

FileOutputStream(fileName));

 out.writeObject(classifier);

 out.close();

 System.out.println("===== Saved model: " + fileName + "

=====");

 }

 catch (IOException e) {

 System.out.println("Problem found when writing: " +

fileName);

 }

 }

 public static void main (String[] args) {

 text learner;

 learner = new text();

 learner.loadDataset("C:\\Users\\Vadehra\\Desktop\\sms.txt");

 learner.evaluate();

 learner.learn();

 learner.saveModel("classy.dat");

 }

}

4. Code for testing data

import weka.core.*;

import weka.core.FastVector;

import weka.classifiers.meta.FilteredClassifier;

47

import java.util.List;

import java.util.ArrayList;

import java.io.*;

 public class text2 {

 String text;

 Instances instances;

 FilteredClassifier classifier;

 public void load(String fileName) {

 try {

 BufferedReader reader = new BufferedReader(new

FileReader(fileName));

 String line;

 text = "";

 while ((line = reader.readLine()) != null) {

 text = text + " " + line;

 }

 System.out.println("===== Loaded text data: " + fileName + "

=====");

 reader.close();

 System.out.println(text);

 }

 catch (IOException e) {

 System.out.println("Problem found when reading: " +

fileName);

 }

 }

48

 public void loadModel(String fileName) {

 try {

 ObjectInputStream in = new ObjectInputStream(new

FileInputStream(fileName));

 Object tmp = in.readObject();

 classifier = (FilteredClassifier) tmp;

 in.close();

 System.out.println("===== Loaded model: " + fileName + "

=====");

 }

 catch (Exception e) {

 System.out.println("Problem found when reading: " +

fileName);

 }

 }

 public void makeInstance() {

 FastVector fvNominalVal = new FastVector(2);

 fvNominalVal.addElement("spam");

 fvNominalVal.addElement("ham");

 Attribute attribute1 = new Attribute("class", fvNominalVal);

 Attribute attribute2 = new Attribute("text",(FastVector) null);

 FastVector fvWekaAttributes = new FastVector(2);

 fvWekaAttributes.addElement(attribute1);

 fvWekaAttributes.addElement(attribute2);

 instances = new Instances("Test relation", fvWekaAttributes, 1);

 instances.setClassIndex(0);

 Instance instance = new Instance(2);

 instance.setValue(attribute2, text);

 instances.add(instance);

 System.out.println("===== Instance created with reference dataset

=====");

49

 System.out.println(instances);

 }

 public void classify() {

 try {

 double pred = classifier.classifyInstance(instances.instance(0));

 System.out.println("===== Classified instance =====");

 System.out.println("Class predicted: " +

instances.classAttribute().value((int) pred));

 }

 catch (Exception e) {

 System.out.println("Problem found when classifying the text");

 }

 }

 public static void main (String[] args) {

 text2 classifier;

{

 classifier = new text2();

 classifier.load("C:\\Users\\Vadehra\\Desktop\\smstest.txt");

 classifier.loadModel("classy.dat");

 classifier.makeInstance();

 classifier.classify();

 }

}

50

CHAPTER 7:

TECHNICAL CHALLENGES

51

 When inspecting the sentences misclassified by my project, I can see that most

of the classification errors are related to the underlying ambiguity of the

natural language. In the following examples, I have first presented sentences

that were incorrectly labeled as negative. In the second case, there are

sentences incorrectly classified as having a positive sentiment by the model.

All these examples demonstrate the complexity of all natural language and the

need for developing language specific heuristics to better capture

phraseological expressions, contrasting statements, sarcasm, and allusions

made by the writer

Positive sentences classified as negative.

1. “Longley has constructed a remarkably coherent, horrifically vivid snapshot of

those turbulent days.”

2. “Romanek keeps the film constantly taut... reflecting the character's instability

with a metaphorical visual style and an unnerving, heartbeat-like score.”

3. “Compelling revenge thriller, though somewhat weakened by a miscast

leading lady.”

Negative sentences classified as positive.

1. “In the book-on-tape market, the film of "the kid stays in the picture" would be

an abridged edition.”

2. “A mechanical action-comedy whose seeming purpose is to market the

charismatic Jackie Chan to even younger audiences.”

3. “It's not so much a movie as a joint promotion for the national basketball

association and teenaged rap and adolescent poster-boy lil' bow wow.'”

4. “Director Tom Dey demonstrated a knack for mixing action and idiosyncratic

humor in his charming 2000 debut shanghai noon, but showtime's uninspired

send-up of tv cop show cliches mostly leaves him shooting blanks.”

 Another technical challenge is the inability to detect and rectify textese, or

SMS language, such as that used on Twitter.

 Using emotion keywords is a straightforward way to detect associated

emotions, the meanings of keywords could be multiple and vague, as most

words could change their meanings according to different usages and contexts.

Moreover, even the minimum set of emotion labels (without all their

52

synonyms) could have different emotions in some extreme cases such as ironic

or cynical sentences.

 Sentences without any keyword would imply that they do not contain any

emotion at all, which is obviously wrong. For example, “I passed my qualify

exam today” and “Hooray! I passed my qualify exam today” should imply the

same emotion (joy), but the former without “hooray” could remain undetected

if “hooray” is the only keyword to detect this emotion.

 Syntax structures and semantics also have influences on expressed emotions.

For example, “I laughed at him” and “He laughed at me” would suggest

different emotions from the first person’s perspective. As a result, ignoring

linguistic information also poses a problem to keyword-based methods.

53

CHAPTER 8:

SCREENSHOTS

54

1. Lexicon Approach

55

56

2. Machine Learning Approach

The model used for training the dataset has given an accuracy of 85% on 169

instances.

The model correctly classified this test instance as positive.

57

The model correctly classified this test instance as negative

The model correctly classified this test instance as negative

58

CHAPTER 9:

 CONCLUSION

59

Emotion Detection can be seen as an important field of research in human-computer

interaction. A sufficient amount of work has been done by researchers to detect

emotion from facial and audio information whereas recognizing emotions from

textual data is still a fresh and hot research area.

The report demonstrates that it is feasible to extract information about a person’s

sentiments from the text they write on social networking sites with high accuracy. The

method applied supports to get information about the users’ sentiment

polarity(positive, neutral or negative) according to the messages they write.

The classification method implemented follows a lexical-based approach.

 Adaptive and recommendation systems in general can take advantage of knowing the

users’ sentiments at a certain time, as well as significant emotional changes with

respect to their usual state. However, asking the users about their sentiments is

intrusive, can be bothering and, furthermore, in some contexts there is a high

probability that they do not admit negative sentiments, because of, e.g., their cultural

background or the need of social approval. In the educational context, in particular, it

is not highly probable that a student directly transmits the teacher his/her feelings

towards a subject or methodology when they are negative. The process to get this

information is usually harder (e.g., anonymous/ distinctive surveys at the end of the

semester, or teachers receiving comments through class delegates during the course,

at most). The work presented in this report demonstrates that it is possible to extract it

from the messages the students write on social networking sites.

This can be considered as input for adaptive e-learning systems to provide sentiment-

based adaptation, making it possible, e.g., to recommend the most suitable activities

to be performed by each student at a certain time according to his/her sentiment at that

time; another application of this work in the learning context deals with extracting

feedback for teachers about the sentiments of their students towards their courses or

teaching methodologies.

60

CHAPTER 10:

 FUTURE WORK

61

 One potential improvement to the project will be the ability to detect not just

the user’s emotions but also the significant emotional changes over a period of

time, like a day or a week. This can be useful in adaptive E-learning systems

to assess what effects the subjects taught are having on the student’s state of

mind.

 Another improvement is the ability to rectify and detect textese.

 One other change could be the ability to detect the emotion behind a word

based on the context it has been used in.

 The emotion of a word also changes based on its position in the sentence. A

potential improvement would be to take this position under account.

62

CHAPTER 11:

 REFERENCES

63

[1] Walaa Medhat, Ahmed Hassan and Hoda Korashy, “Sentiment analysis

algorithms and applications: A survey”, Ain Shams Engineering Journal,

April 2014

[2] Alvaro Ortigosa, José M. Martín and Rosa M. Carro, “Sentiment analysis

in Facebook and its application to e-learning”, Computers in Human

Behavior, 2013

[3] XIONG XiaoBing, ZHOU Gang, HUANG YongZhong,CHEN HaiYong

and XU Ke, “Dynamic evolution of collective emotions in social networks”,

July 2013, Vol. 56

[4] Shiv Naresh Shivhare and Prof. Saritha Khethawat, “Emotion Detection

from Text”, Department of CSE and IT, Maulana Azad National Institute of

Technology, 2011, Bhopal, Madhya Pradesh, India

[5] Cecilia Ovesdotter Alm, Dan Roth and Richard Spoath, “Emotions from

text: machine learning for text-based emotion prediction”, Proceedings of

Human Language Technology Conference and Conference on Empirical

Methods in Natural Language Processing (HLT/EMNLP), October 2005,

pages 579–586

[6] Bo Pang, Lillian Lee and Shivakumar Vaithyanathan, ”Thumbs up?

Sentiment Classification using Machine Learning Techniques”,
Proceedings of EMNLP 2002, pp. 79–86

[7] Douglas R. Rice and Christopher Zorn, “Corpus-Based Dictionaries for

Sentiment Analysis of Specialized Vocabularies”, Prepared for presentation

at the New Directions in Analyzing Text as DataWorkshop, 2013, Version 0.1,

September 2013

[8] Andrew McCallum and Kamal Nigam, “A Comparison of Event Models

for Naive Bayes Text Classication”

