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Abstract 
 

Sentiment Analysis (SA) is an ongoing field of research in text mining field. SA is the 

computational treatment of opinions, sentiments and subjectivity of text.  

The decision-making process of people is affected by the opinions formed by thought 

leaders and ordinary people. When a person wants to buy a product online he or she 

will typically start by searching for reviews and opinions written by other people on 

the various offerings. Sentiment analysis is one of the hottest research areas in 

computer science. Over 7,000 articles have been written on the topic. Hundreds of 

startups are developing sentiment analysis solutions and major statistical packages 

such as SAS and SPSS include dedicated sentiment analysis modules. There is a huge 

explosion today of 'sentiments' available from social media including Twitter, 

Facebook, message boards, blogs, and user forums. These snippets of text are a gold 

mine for companies and individuals that want to monitor their reputation and get 

timely feedback about their products and actions. Sentiment analysis offers these 

organizations the ability to monitor the different social media sites in real time and act 

accordingly. Marketing managers, PR firms, campaign managers, politicians, and 

even equity investors and online shoppers are the direct beneficiaries of sentiment 

analysis technology. 

This report tackles a comprehensive overview of the last update in this field and a 

sophisticated categorization of the techniques used in Sentiment Analysis.  

The report also presents two methods to extract information about the users’ 

sentiment polarity (positive, neutral or negative), as transmitted in the messages they 

write. It also mentions the potential improvements that can be made to these methods.  
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CHAPTER 1: 

INTRODUCTION 
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Sentiment Analysis (SA) or Opinion Mining (OM) is the computational study of 

people’s opinions, attitudes and emotions toward an entity. The entity can represent 

individuals, events or topics. These topics are most likely to be covered by reviews. 

The two expressions SA or OM are interchangeable. They express a mutual meaning. 

However, some researchers stated that OM and SA have slightly different notions. 

Opinion Mining extracts and analyzes people’s opinion about an entity while 

Sentiment Analysis identifies the sentiment expressed in a text then analyzes it. 

Therefore, the target of SA is to find opinions, identify the sentiments they express, 

and then classify their polarity as shown in figure. 

 

Sentiment Analysis can be considered a classification process as illustrated in figure. 

There are three main classification levels in SA: document-level, sentence-level, and 

aspect-level SA. Document-level SA aims to classify an opinion document as 

expressing a positive or negative opinion or sentiment. It considers the whole 

document a basic information unit (talking about one topic). Sentence-level SA aims 

to classify sentiment expressed in each sentence. The first step is to identify whether 

the sentence is subjective or objective. If the sentence is subjective, Sentence-level SA 

will determine whether the sentence expresses positive or negative opinions. 

Sentiment expressions are not necessarily subjective in nature. However, there is no 

fundamental difference between document and sentence level classifications because 

sentences are just short documents. Classifying text at the document level or at the 

sentence level does not provide the necessary detail needed opinions on all aspects of 

the entity which is needed in many applications, to obtain these details; we need to go 
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to the aspect level. Aspect-level SA aims to classify the sentiment with respect to the 

specific aspects of entities. The first step is to identify the entities and their aspects. 

The opinion holders can give different opinions for different aspects of the same 

entity like this sentence “The voice quality of this phone is not good, but the battery 

life is long”.  

 

1. Motivation 

The social network sites and micro-blogging sites are considered a very good source 

of information because people share and discuss their opinions about certain topics 

freely. This project will be used to recognize people’s emotions about those topics. In 

political debates for example, we could figure out people’s opinions on a certain 

election candidates or political parties. The election results can also be predicted from 

political posts.  

Sentiment analysis can also be used in adaptive E-learning systems. In particular, 

affective and emotional factors, among other aspects, seem to affect the student 

motivation and, in general, the outcome of the learning process. Therefore, in learning 

contexts, being able to detect and manage information about the students’ emotions at 

a certain time can contribute to know their potential needs at that time. On one hand, 

adaptive e-learning environments can make use of this information to fulfill those 

needs at runtime: they can provide the user with recommendations about activities to 

tackle or contents to interact with, adapted to his/her emotional state at that time. On 

the other hand, information about the student emotions towards a course can act as 

feedback for the teacher. This is especially useful for online courses, in which there is 

little (or none) face-to-face contact between students and teachers and, therefore, there 

are fewer opportunities for teachers to get feedback from the students. 

Knowing the users’ emotions is useful not only in the educational context but also in 

many others (e.g., marketing, politics, online shopping, and so on). 

 

2. Aim and Objective 

The aim of this project is to extract information about the users’ sentiment as 

transmitted in the text they write on social networking sites, by assigning a score to 

each subsequent word in the text and computing the cumulative score 
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CHAPTER 2: 

PROJECT REQUIREMENTS 
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1. Software requirements 

 Operating System: Windows 7/8/XP/Vista 

 Software: Dev C++, Eclipse 

 

1. Hardware requirements 

 Processor: x86 compatible processor  

 RAM: 512 MB or greater 

 Hard Disk: 20 GB or greater 

 Monitor: VGA/SVGA 

 Keyboard: 104 keys standard 

 Mouse: 2/3 button. Optical/ Mechanical. 
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Sentiment Analysis task is considered a sentiment classification problem. Feature 

selection is often integrated as the first step in machine learning algorithms like SVM, 

Neural Networks, k-Nearest Neighbors, etc. The main goal of the feature selection is 

to decrease the dimensionality of the feature space and thus computational cost. As a 

second objective, feature selection will reduce the overfitting of the learning scheme 

to the training data. During this process, it is also important to find a good tradeoff 

between the richness of features and the computational constraints involved when 

solving the categorization task. Some of the current features are: 

Terms presence and frequency: These features are individual words or word n-grams 

and their frequency counts. It either gives the words binary weighting (zero if the 

word appears or one if otherwise) or uses term frequency weights to indicate the 

relative importance of features. 

Parts of speech (POS): finding adjectives, as they are important indicators of 

opinions. 

Opinion words and phrases: these are words commonly used to express opinions 

including good or bad, like or hate. On the other hand, some phrases express opinions 

without using opinion words. For example: cost me an arm and a leg. 

Negations: the appearance of negative words may change the opinion orientation 

like not good is equivalent to bad. 

 

1. Feature selection methods 

Feature Selection methods can be divided into lexicon-based methods that need 

human annotation, and statistical methods which are automatic methods that are more 

frequently used. Lexicon-based approaches usually begin with a small set of ‘seed’ 

words. Then they bootstrap this set through synonym detection or on-line resources to 

obtain a larger lexicon. This proved to have many difficulties as reported by Whitelaw 

et al. Statistical approaches, on the other hand, are fully automatic. 

The feature selection techniques treat the documents either as group of words (Bag of 

Words (BOWs)), or as a string which retains the sequence of words in the document. 

BOW is used more often because of its simplicity for the classification process. The 

most common feature selection step is the removal of stop-words and stemming 

(returning the word to its stem or root i.e. flies → fly). 
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In the next subsections, we present three of the most frequently used statistical 

methods in FS and their related articles. There are other methods used in FS like 

information gain and Gini index. 

 

1.1. Point-wise Mutual Information (PMI) 

The mutual information measure provides a formal way to model the mutual 

information between the features and the classes. This measure was derived from the 

information theory. The point-wise mutual information (PMI) Mi(w) between the 

word w and the class i is defined on the basis of the level of co-occurrence between 

the class i and word w. The expected co-occurrence of class i and word w, on the basis 

of mutual independence, is given by Pi ⋅ F(w), and the true co-occurrence is given 

by F(w) ⋅ pi(w). 

The mutual information is defined in terms of the ratio between these two values and 

is given by the following equation: 

 

The word w is positively correlated to the class i, when Mi(w) is greater than 0. The 

word w is negatively correlated to the class i when Mi(w) is less than 0. 

 

1.2. Chi-square (χ
2
) 

Let n be the total number of documents in the collection, pi(w) be the conditional 

probability of class i for documents which contain w, Pi be the global fraction of 

documents containing the class i, and F(w) be the global fraction of documents which 

contain the word w. Therefore, the χ
2
-statistic of the word between wordw and 

class i is defined as  

 

 

1.3. Latent Semantic Indexing (LSI) 

Feature selection methods attempt to reduce the dimensionality of the data by picking 

from the original set of attributes. Feature transformation methods create a smaller set 

of features as a function of the original set of features. LSI is one of the famous 

feature transformation methods. LSI method transforms the text space to a new axis 
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system which is a linear combination of the original word features. Principal 

Component Analysis techniques (PCA) are used to achieve this goal. It determines the 

axis-system which retains the greatest level of information about the variations in the 

underlying attribute values. The main disadvantage of LSI is that it is an unsupervised 

technique which is blind to the underlying class-distribution. Therefore, the features 

found by LSI are not necessarily the directions along which the class-distribution of 

the underlying documents can be best separated  

It is generally acknowledged that the ability to work with text on a semantic basis is 

essential to modern information retrieval systems. As a result, the use of LSI has 

significantly expanded in recent years as earlier challenges in scalability and 

performance have been overcome. 

 

1.4 Categorical Proportional Difference (PD) 

Categorical Proportional Difference (PD) is a metric which tells us how close to being 

equal two numbers are. We can use this to find unigrams that occur mostly in one 

class of documents or the other, by using the positive document frequency and 

negative document frequency of a unigram as the two numbers. 

In other words if a unigram occurs predominantly in positive documents 

or predominantly in negative documents then the PD of the unigram will be close to 

one, whereas if it occurs in about as many positive documents as negative 

documents then its PD will be close to zero.  A high score from this equation indicates 

that the unigram is telling us a lot, and a low score indicates that 

the unigram is telling us very little. For example if the word “actor” appears in exactly 

as many positive documents as negative documents then finding the word 

“actor” in a new document will tell us nothing about it and as such its PD score will 

be zero. Conversely, if the word “excellent” appears in only positive documents then 

finding the word “excellent” in a new document would give us a good clue that the 

document is positive, and as such it would have a PD score of one. So to use 

PD as a feature selector we simply need to remove any features where the result of the 

equation is less than or equal to some threshold value. 

 

 

 



 

10 

 

1.5 SWN Subjectivity Scores (SWNSS) 

The SWN feature selector is actually able to distinguish objective and subjective 

terms, which is useful since only subjective terms should carry sentiment. To do 

this we use the SWN subjectivity score, which is found by adding the positive and 

negative SWN scores of a unigram together. To use it as a feature selector we 

simply remove any unigrams whose subjective score is less than a certain threshold. 

When this feature selector is used, unigrams that are not found in SWN, such as 

names and misspellings, are removed from the corpus as well (although arguably the 

names of certain actors could give strong clues about the quality of a movie). 

 

1.6 SWN Proportional Difference (SWNPD) 

While the SWN subjectivity feature selector can find words that have some a priori 

sentiment attached, it cannot tell us whether that sentiment is consistent or 

meaningful. It is entirely possible that a word may have a SWN subjectivity score of 

one, indicating that it is very subjective, but its positive and negative scores may 

be 0.5 each. This may make the word uninformative as a feature so there could be 

value in removing it. Similarly to PD, SWNPD will be high for words that are 

mostly positive or negative, and low for words that are a mix of both. By using this 

score we hope to remove subjective words that have an ambiguous polarity from 

the corpus. 

 

2. Search based feature selection 

An advantage of search based feature selection methods over rankings are usually 

more accurate results. These methods are based on both stochastic and heuristic 

searching strategies, what implies higher computational complexity, which for very 

large datasets that have a few thousands of variables may limit some algorithms 

usability. 

Typical solutions of search based feature selection are forward/backward selection 

methods. 

Forward selection 

Forward selection starts from an empty feature set and, in each iteration, adds one 

new attribute, form the set of remaining. One that is added is this feature which 

maximizes certain criterion usually classification accuracy. To ensure the proper 
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outcome of adding a new feature to the feature subset, quality is measured in the cross 

validation process. 

 

Backward elimination 

Backward elimination algorithm differs from forward selection by starting from the 

full feature set, and iteratively removes one by one feature. In each iteration only one 

feature is removed, which mostly affects overall model accuracy, as long as the 

accuracy stops increasing. 
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Sentiment Classification techniques can be roughly divided into machine learning 

approach, lexicon based approach and hybrid approach. The Machine Learning 

Approach (ML) applies the famous ML algorithms and uses linguistic features. 

The Lexicon-based Approach relies on a sentiment lexicon, a collection of known and 

precompiled sentiment terms. It is divided into dictionary-based approach and corpus-

based approach which use statistical or semantic methods to find sentiment polarity. 

The hybrid Approach combines both approaches and is very common with sentiment 

lexicons playing a key role in the majority of methods.  

The text classification methods using ML approach can be roughly divided into 

supervised and unsupervised learning methods. The supervised methods make use of 

a large number of labeled training documents. The unsupervised methods are used 

when it is difficult to find these labeled training documents. 

The lexicon-based approach depends on finding the opinion lexicon which is used to 

analyze the text. There are two methods in this approach. The dictionary-based 

approach which depends on finding opinion seed words, and then searches the 

dictionary of their synonyms and antonyms. The corpus-based approach begins with a 

seed list of opinion words, and then finds other opinion words in a large corpus to 

help in finding opinion words with context specific orientations. This could be done 

by using statistical or semantic methods. There is a brief explanation of both 

approaches’ algorithms and related articles in the next subsections. 
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1. Machine learning approach 

Machine learning approach relies on the famous ML algorithms to solve the SA as 

a regular text classification problem that makes use of syntactic and/or linguistic 

features. 

Text Classification Problem Definition: We have a set of training 

records D = {X1, X2, …, Xn} where each record is labeled to a class. The 

classification model is related to the features in the underlying record to one of the 

class labels. Then for a given instance of unknown class, the model is used to 

predict a class label for it. The hard classification problem is when only one label 

is assigned to an instance. The soft classification problem is when a probabilistic 

value of labels is assigned to an instance. 

 

1.1. Supervised learning 

The supervised learning methods depend on the existence of labeled training 

documents. There are many kinds of supervised classifiers in literature. In the next 

subsections, we present in brief details some of the most frequently used 

classifiers in SA.  

Probabilistic classifiers 

Probabilistic classifiers use mixture models for classification. The mixture model 

assumes that each class is a component of the mixture. Each mixture component is 

a generative model that provides the probability of sampling a particular term for 

that component. These kinds of classifiers are also called generative classifiers. 

Three of the most famous probabilistic classifiers are discussed in the next 

subsections. 

 Naïve Bayes Classifier (NB): The Naïve Bayes classifier is the simplest 

and most commonly used classifier. Naïve Bayes classification model 

computes the posterior probability of a class, based on the distribution of 

the words in the document. The model works with the BOWs feature 

extraction which ignores the position of the word in the document. It uses 

Bayes Theorem to predict the probability that a given feature set belongs 

to a particular label. 
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P(label) is the prior probability of a label or the likelihood that a random 

feature set the label. P(features|label) is the prior probability that a given 

feature set is being classified as a label. P(features) is the prior probability 

that a given feature set is occurred. Given the Naïve assumption which 

states that all features are independent, the equation could be rewritten as 

follows: 

 

 Bayesian Network (BN): The main assumption of the NB classifier is the 

independence of the features. The other extreme assumption is to assume 

that all the features are fully dependent. This leads to the Bayesian 

Network model which is a directed acyclic graph whose nodes represent 

random variables, and edges represent conditional dependencies. BN is 

considered a complete model for the variables and their relationships. 

Therefore, a complete joint probability distribution (JPD) over all the 

variables is specified for a model. In Text mining, the computation 

complexity of BN is very expensive; that is why, it is not frequently used 

 Maximum Entropy Classifier (ME): The Maxent Classifier (known as a 

conditional exponential classifier) converts labeled feature sets to vectors 

using encoding. This encoded vector is then used to calculate weights for 

each feature that can then be combined to determine the most likely label 

for a feature set. This classifier is parameterized by a set ofX{weights}, 

which is used to combine the joint features that are generated from a 

feature-set by anX{encoding}. In particular, the encoding maps 

each C{(featureset, label)} pair to a vector.  

Linear Classifiers 

Given  is the normalized document word frequency, 

vector  is a vector of linear coefficients with the same 

dimensionality as the feature space, and b   is a scalar; the output of the linear 

predictor is defined as , which is the output of the linear classifier. The 

predictor p is a separating hyperplane between different classes. There are many kinds 

of linear classifiers; among them is Support Vector Machines (SVM) which is a form 
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of classifiers that attempt to determinegood linear separators between different 

classes. Two of the most famous linear classifiers are discussed in the following 

subsections.  

 Support Vector Machines: The main principle of SVMs is to determine 

linear separators in the search space which can best separate the different 

classes. In the following figure, there are 2 classes x, o and there are 3 

hyperplanes A, B and C. Hyperplane A provides the best separation between 

the classes, because the normal distance of any of the data points is the largest, 

so it represents the maximum margin of separation. Text data are ideally 

suited for SVM classification because of the sparse nature of text, in which 

few features are irrelevant, but they tend to be correlated with one another and 

generally organized into linearly separable categories. SVM can construct 

a nonlinear decision surface in the original feature space by mapping the data 

instances non-linearly to an inner product space where the classes can be 

separated linearly with a hyperplane.  

 

SVMs are used in many applications, among these applications are classifying 

reviews according to their quality. 

 Neural Network (NN): Neural Network consists of many neurons where the 

neuron is its basic unit. The inputs to the neurons are denoted by the 

vector overline Xi which is the word frequencies in the i th document. There 

are a set of weights A which are associated with each neuron used in order to 

compute a function of its inputs f(⋅). The linear function of the neural network 
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is: . In a binary classification problem, it is assumed that the class 

label of  is denoted by yi and the sign of the predicted function pi yields the 

class label. Multilayer neural networks are used for non-linear boundaries. 

These multiple layers are used to induce multiple piece-wise linear 

boundaries, which are used to approximate enclosed regions belonging to a 

particular class. The outputs of the neurons in the earlier layers feed into the 

neurons in the later layers. The training process is more complex because the 

errors need to be back-propagated over different layers.  

Decision Tree Classifiers 

Decision tree classifier provides a hierarchical decomposition of the training data 

space in which a condition on the attribute value is used to divide the data. The 

condition or predicate is the presence or absence of one or more words. The division 

of the data space is done recursively until the leaf nodes contain certain minimum 

numbers of records which are used for the purpose of classification. 

There are other kinds of predicates which depend on the similarity of documents to 

correlate sets of terms which may be used to further partitioning of documents. The 

different kinds of splits are Single Attribute split which use the presence or absence of 

particular words or phrases at a particular node in the tree in order to perform the 

split. Similarity-based multi-attribute split uses documents or frequent words clusters 

and the similarity of the documents to these words clusters in order to perform the 

split. Discriminant-based multi-attribute split uses discriminants such as the Fisher 

discriminate for performing the split. 

Rule Based Classifiers 

In rule based classifiers, the data space is modeled with a set of rules. The left hand 

side represents a condition on the feature set expressed in disjunctive normal form 

while the right hand side is the class label. The conditions are on the term presence. 

Term absence is rarely used because it is not informative in sparse data. 

There are numbers of criteria in order to generate rules, the training phase construct 

all the rules depending on these criteria. The most two common criteria are support 

and confidence. The support is the absolute number of instances in the training data 

set which are relevant to the rule. The Confidence refers to the conditional probability 

that the right hand side of the rule is satisfied if the left-hand side is satisfied.  
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1.2 Weakly, semi and unsupervised learning 

The main purpose of text classification is to classify documents into a certain number 

of predefined categories. In order to accomplish that, large number of labeled training 

documents are used for supervised learning, as illustrated before. In text classification, 

it is sometimes difficult to create these labeled training documents, but it is easy to 

collect the unlabeled documents. The unsupervised learning methods overcome these 

difficulties. 

 

2. Lexicon-based approach 

Opinion words are employed in many sentiment classification tasks. Positive opinion 

words are used to express some desired states, while negative opinion words are used 

to express some undesired states. There are also opinion phrases and idioms which 

together are called opinion lexicon. There are three main approaches in order to 

compile or collect the opinion word list. Manual approach is very time consuming 

and it is not used alone. It is usually combined with the other two automated 

approaches as a final check to avoid the mistakes that resulted from automated 

methods. The two automated approaches are presented in the following subsections. 

 

2.1. Dictionary-based approach 

A small set of opinion words is collected manually with known orientations. Then, 

this set is grown by searching in the well known corpora WordNet or thesaurus for 

their synonyms and antonyms. The newly found words are added to the seed list then 

the next iteration starts. The iterative process stops when no new words are found. 

After the process is completed, manual inspection can be carried out to remove or 

correct errors. 

The dictionary based approach has a major disadvantage which is the inability to find 

opinion words with domain and context specific orientations. 

 

2.2. Corpus-based approach 

The Corpus-based approach helps to solve the problem of finding opinion words with 

context specific orientations. Its methods depend on syntactic patterns or patterns that 

occur together along with a seed list of opinion words to find other opinion words in a 

large corpus. We start with a list of seed opinion adjectives, and use them along with a 
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set of linguistic constraints to identify additional adjective opinion words and their 

orientations. The constraints are for connectives like AND, OR, BUT, EITHER-

OR……; the conjunction AND for example says that conjoined adjectives usually 

have the same orientation. This idea is called sentiment consistency, which is not 

always consistent practically. There are also adversative expressions such 

asbut, however which are indicated as opinion changes. In order to determine if two 

conjoined adjectives are of the same or different orientations, learning is applied to a 

large corpus. Then, the links between adjectives form a graph and clustering is 

performed on the graph to produce two sets of words: positive and negative. 

Using the corpus-based approach alone is not as effective as the dictionary-based 

approach because it is hard to prepare a huge corpus to cover all English words, but 

this approach has a major advantage that can help to find domain and context specific 

opinion words and their orientations using a domain corpus. The corpus-based 

approach is performed using statistical approach or semantic approach as illustrated in 

the following subsections: 

Statistical approach 

Finding co-occurrence patterns or seed opinion words can be done using statistical 

techniques. This could be done by deriving posterior polarities using the co-

occurrence of adjectives in a corpus, as proposed by Fahrni and Klenner. It is possible 

to use the entire set of indexed documents on the web as the corpus for the dictionary 

construction. This overcomes the problem of the unavailability of some words if the 

used corpus is not large enough. 

The polarity of a word can be identified by studying the occurrence frequency of the 

word in a large annotated corpus of texts. If the word occurs more frequently among 

positive texts, then its polarity is positive. If it occurs more frequently among negative 

texts, then its polarity is negative. If it has equal frequencies, then it is a neutral word. 

The similar opinion words frequently appear together in a corpus. This is the main 

observation that the state of the art methods are based on. Therefore, if two words 

appear together frequently within the same context, they are likely to have the same 

polarity. Therefore, the polarity of an unknown word can be determined by 

calculating the relative frequency of co-occurrence with another word. This could be 

done using PMI. 
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Latent Semantic Analysis (LSA) is a statistical approach which is used to analyze the 

relationships between a set of documents and the terms mentioned in these documents 

in order to produce a set of meaningful patterns related to the documents and terms. 

Semantic approach 

The Semantic approach gives sentiment values directly and relies on different 

principles for computing the similarity between words. This principle gives similar 

sentiment values to semantically close words. WordNet for example provides 

different kinds of semantic relationships between words used to calculate sentiment 

polarities. WordNet could be used too for obtaining a list of sentiment words by 

iteratively expanding the initial set with synonyms and antonyms and then 

determining the sentiment polarity for an unknown word by the relative count of 

positive and negative synonyms of this word. 
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CHAPTER 5: 

LEXICON BASED APPROACH 
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1. Method I 

 

 Extracting sentiments from texts: message classification 

 

1.1. Preprocessing (lower-case, idiom detection) 

The first step consists of preprocessing the message to convert all the words into 

lower-case. Afterwards, it detects idioms and joins the words involved in each of 

them.  

 

1.2. Segmentation into sentences 

Then, the message is divided into sentences. Dots are the only punctuation marks 

considered as separators at this step, since others such as commas or semicolons can 

be part of emoticons. 

 

1.3. Tokenization I (partial) 

In the next step, tokens are extracted from each sentence. At this time, only 

whitespaces are taken into consideration to separate tokens, since other separators, 

such as hyphens, can be part of emoticons. 
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1.4. Emoticon detection 

Next, emoticons are detected. In order to detect them, the classifier in the text all the 

emoticons stored in two text files, containing positive and negative emoticons, 

respectively.  

 

1.5. Tokenization II (complete) 

During this second tokenization phase, all the punctuation marks (including commas, 

semicolons and so on) are considered as separators leading to obtain the final sets of 

tokens for each sentence. 

 

1.6. Interjection detection 

The next step consists of detecting and labeling interjections. Those that express 

laughs, such as ‘‘hehehe’’ or ‘‘hahaha’’, are marked as positive whereas interjections 

such as ‘‘aaah’’ or “aaargh” are marked as negative. This is implemented through 

regular expressions, because in most of the cases, the interjections are intensified by 

repeating letters or sets of letters contained in the own word.  

 

1.7. Token score assignation 

The next phase consists of assigning a score to each token: 1to 5 if it transmits a 

positive sentiment, 0 if it is neutral, and -1 to -5 if it is negative. To assign a score, the 

classifier checks if the token is a positive/ negative emoticon, a positive/negative 

interjection, or whether it matches one of the words stored in the sentiment lexicon 

(L). 

 

1.8. Removing repetitive letters 

The next step is, for each token, to check whether it appears in any of the two 

dictionary categories and, if it is the case, to tag it as either positive or negative, 

accordingly. The messages written by users in Facebook usually contain very 

casual language. It is frequent to find words with repeated letters or with non-

alphabetic characters. Consequently, for each token, it if was not found in the 

dictionary in the form in which it appears in the message, letters occurring more than 

twice in a row are replaced by only one occurrence and the new token is looked for in 
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the dictionary. Was this version of the token not found in the dictionary yet, then it is 

reduced to its lexeme. 

 

1.9. Spelling checking 

If the token does not match any word yet, then it is checked with a spelling checker. 

Since Facebook messages usually contain misspellings, a spelling checker is 

incorporated into the classifier. However, the spelling checker must be applied 

carefully, since some of the corrections it suggests produce bad results in the 

classifier. With the purpose of avoiding these situations, a list of words that should not 

be corrected, including names and surnames, is created and incorporated within the 

dictionary, so that, since they are found in the dictionary, they are not checked by the 

spelling checker. Finally, if a token is not classified into positive/ negative in any of 

the previous steps (even after all those considerations) the token is labeled as neutral. 

 

1.10. Syntactical analysis 

Once each token has received a positive/neutral/negative score, each sentence is 

syntactically analyzed in order to check whether any score (positive/negative) should 

be reversed (e.g., because of negations). Firstly, we apply part of speech (POS) 

tagging to discriminate words that do not reflect any sentiment (e.g. articles) and to 

disambiguate words with multiple semantic meaning (e.g., words that can be both a 

noun and a verb). Afterwards, suffixes are analyzed. And then, negations are detected. 

 

1.11. Polarity calculation 

In order to calculate the polarity of a sentence, the number of tokens susceptible of 

conveying sentiments according to their grammatical category (i.e. noun, adjective, 

interjection or verb) is calculated. Other types of words, which appear frequently in 

texts (i.e. determinant, prepositions, etc.), are not considered, because they are 

‘‘stopwords’’ for a sentiment analysis. Then, once each token has been scored, the 

final polarity score of a sentence is calculated. 
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2. Method II 

 

The Framework is divided into two main components: Emotion Ontology, Emotion 

Detector.  

 

2.1. Emotion Ontology  

Ontology is an explicit specification of conceptualization. Ontologies have 

definitional aspects like high level schemas and aspects like entities and attributes; 

interrelationship is between entities, domain vocabulary. Ontologies provide an 

understanding of particular domain. Ontologies allow the domain to be communicated 

between persons, institutions, and application systems. Emotion word hierarchy is 

converted into ontology. An ontology development tool is used to develop emotion 

ontology. The ontology has class and subclass relationship format. Emotion classes at 

the primary level in emotion hierarchy are at the top of emotion ontology and emotion 

classes at the tertiary level are at the bottom of ontology. High weight age is assigned 

to the upper level emotion classes and low to the lower level emotion classes.  

 

2.2. Emotion Detector Algorithm  

Emotion of the textual data can be recognized with the help of this emotion detection 

algorithm. The algorithm calculates weight for particular emotion by adding weights 
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assigned at each level of hierarchy and also calculates same for its counter emotion, 

then compares the both scores and greater one is taken as the detected emotion.  

 

2.3. Parameters Used  

Algorithm is to calculate weight age to be assigned to different emotion words so that 

they can be sorted according to it. Certain parameters are required for this purpose. 

The first step is calculation of parameters. This task is achieved with the help of Jena 

library which allows traversal and parsing of ontology.  

Different parameters are calculated as follows:  

Parent-Child relationship  

If a text document belongs to a child; it also indirectly refers to the parent of it. Hence 

if a certain value is added to the child’s score, parent score also need to be modified. 

This is achieved by traversing the ontology model in a breadth first manner using Jena 

API. When any node is encountered all of its children are retrieved. Then same 

method is applied to every child.  

Depth in Ontology  

This is required as it gives an idea about how specific is the term in relation to its 

corresponding ontology structure. The more specific it is the more weight age should 

be given to it. This value is calculated simultaneously while traversing the ontology 

tree.  

Frequency in Text document  

This is also an important parameter as more is the frequency more will be the 

importance of that term. This value is calculated by parsing the text document and 

searching for occurrences of the words.  

 

2.4 Algorithm  

For each word in input text i 

{  For each word in emotion lexicon e 

         { Calculate length of i; 

   compare each letter of i with each letter of e; 

   if((no. of letters successfully compared=length of i)&(next  

 letter of e is an alphabet)) 

   go to next input word; 
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   if((no. of letters successfully compared=length of i)||(next  

 letter of e is ‘*’)) 

   { assign score of e to score of i; 

      go to next input word; 

   } 

  } 

} 

 

3. Approaches to Building Sentiment Dictionaries 

The computational speed and efficiency of dictionary-based approaches to sentiment 

analysis, together with their intuitive appeal, make such approaches an attractive 

alternative for extracting emotional context from text. At the same time, both types of 

dictionary based approaches offer potential limitations as well. Pre-constructed 

dictionaries for use with modern standard U.S. English have the advantage of being 

exceptionally easy to use and extensively validated, making them strong contenders 

for applications where the emotional content of the language under study is expressed 

in conventional ways. At the same time, the validity of such dictionaries rests 

critically on such conventional usage of emotional words and phrases. Conversely, 

custom dictionaries developed for specific contexts are sensitive to variations in word 

usage, but come with a high cost of creation and limited future applicability. 

What we term specialized vocabularies arise in situations when the standard 

emotional valences associated with particular words are no longer correct, either 

because words that typically convey emotional content do not do so in the context in 

question or vice versa. For example, in colloquial English the word “love” almost 

always carries a positive valence (and its inclusion in pre-constructed sentiment 

dictionaries reflects this fact) while the word “bagel” does not. For professional and 

amateur tennis players, however, the two words might mean something very different; 

“love” means no points scored (a situation which has, if anything, a negative valence) 

and the word “bagel” refers specifically to the (negative) event of losing a set 6-0 

(e.g., “putting up a bagel in the first set”). It is easy to see how the application of a 

standard sentiment dictionary to a body of text generated from a discussion of tennis 

could easily lead to inaccurate inferences about its content. 
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In such circumstances, an ideal approach is to develop a sentiment dictionary that 

reflects the emotional valence of the words as they are used in that context. Such 

dictionaries reflect the emotional valence of the language as it is used in context, and 

so are more likely to yield accurate estimates of sentiment in specialized vocabularies. 

Such dictionaries, however, are also difficult and time-consuming to construct, since 

they typically involve specifying every emotionally-valenced word or phrase that 

could be encountered in that context. The challenge, then, is to develop an approach 

for building sentiment dictionaries in the context of specialized vocabularies that is 

substantially more efficient and less costly than simple human coding. 

 

4. Code 

#include <stdio.h> 

#include <stdlib.h>  

#include<string.h>   

#include <conio.h> 

#define SIZE 2557 

#define SMILE 112 

struct{ 

char word[40]; 

char score[4]; 

 

} rec[SIZE]; 

struct{ 

char smi[25]; 

char score[4]; 

 

} emo[SMILE]; 

int main() 

{ 

      

    int i,j,k,l,count,pos,neg,tot; 

    signed int s; 

    FILE           *in_file;     
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    char sent[25][15]; 

    char nega[16][15]; 

    int negs=0; 

    char in[200]; 

    int len; 

    int temp; 

    int words; 

    int sc[25]; 

    int scor[25]; 

     

    in_file = fopen("neg.txt", "r"); 

    if (in_file == NULL) { 

        fprintf(stderr, "Could not open file\n"); 

        exit(8); 

    } 

    for (i=0;i<17;i++) 

    { 

          fscanf(in_file, "%15[^,],",nega[i]);               

      //   printf("Name of Word:%s\n",nega[i]);   

     

          } 

    fclose(in_file); 

     

    in_file = fopen("emo.txt", "r"); 

    if (in_file == NULL) { 

        fprintf(stderr, "Could not open file\n"); 

        exit(8); 

    } 

    for (i=0;i<=SIZE;i++) 

    { 

          fscanf(in_file, "%39[^,],%s",rec[i].word, rec[i].score);               

          //printf("Name of Word:%s - Score:%s\n",rec[i].word, rec[i].score);   

     

          } 
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    fclose(in_file); 

     in_file = fopen("smile.txt", "r"); 

    if (in_file == NULL) { 

        fprintf(stderr, "Could not open file\n"); 

        exit(8); 

    } 

    for (i=0;i<=SMILE;i++) 

    { 

          fscanf(in_file, "%24[^k]k%s",emo[i].smi, emo[i].score);       

         // printf("Name of Word:%s - Score:%s\n",emo[i].smi, emo[i].score);          

     

          } 

    fclose(in_file); 

    for(i=0;i<25;i++) 

    { for(j=0;j<15;j++) 

      sent[i][j]='0'; 

     } 

for(i=0;i<25;i++) 

      sc[i]=0; 

 

for(i=0;i<25;i++) 

      scor[i]=0; 

       

    printf("Enter the sentence to be evaluated\n\n"); 

    scanf ("%[^\n]%*c", in); 

 

    len=strlen(in); 

    i=0; j=0; 

    for(k=0;k<len;k++) 

    { if(in[k]!=' ') 

      { sent[i][j]=in[k]; 

    //  printf("%c", sent[i][j]); 

         j++; 

         } 
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      else 

      { i++; 

        j=0; 

        }  

    } 

//for(i=0;i<15;i++) 

//printf("%c   %d\n",nega[1][i],i); 

     

    words=i; 

     

 //negations    

   i=0; 

   while(i<=words) 

   {  

     for(k=0;k<17;k++) 

     {  j=0;  

         for(l=0;l<15;l++) 

        { if(sent[i][l]=='0'||sent[i][l]=='!'||sent[i][l]=='.'||sent[i][l]==',') 

           break; 

           } 

    

        count=1; 

         

        while(sent[i][j]==nega[k][count]) 

        {  

        j++; 

        count++; 

        } 

   

   

    if((j==l)&&((int)nega[k][count]>=97&&(int)nega[k][count]<=122)) 

    continue;  

        if(j==l) 

       {   
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        negs++; 

    

       break; 

       } 

        }  

      i++; 

      }     

//if(negs!=1&&negs!=0)     

//negs++;  

     

 //emotion words    

  i=0; 

   while(i<=words) 

   {  

     if((sent[i][0]=='n'&& 

     sent[i][1]=='e'&& 

     sent[i][2]=='v'&& 

     sent[i][3]=='e'&& 

     sent[i][4]=='r'&& 

     sent[i][5]=='0')|| 

     (sent[i][0]=='n'&& 

     sent[i][1]=='o'&& 

     sent[i][2]=='t'&& 

     sent[i][3]=='0')) 

       { i++; 

         continue; 

         } 

     for(k=0;k<SIZE;k++) 

     {  j=0;  

         for(l=0;l<15;l++) 

        { if(sent[i][l]=='0'||sent[i][l]=='!'||sent[i][l]=='.'||sent[i][l]==',') 

           break; 

           } 
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        count=0; 

        while((int)rec[k].word[count]<97||(int)rec[k].word[count]>122) 

        count++; 

        

        

     

        while(sent[i][j]==rec[k].word[count]) 

        {  

        j++; 

        count++; 

        } 

   

   

    if((j==l)&&((int)rec[k].word[count]>=97&&(int)rec[k].word[count]<=122)) 

    continue;  

        if(j==l||rec[k].word[count]=='*') 

       {  

       if(rec[k].score[0]!='-') 

       s=rec[k].score[0]-'0';  

       else 

       s=0-(rec[k].score[1]-'0'); 

       sc[i]=s; 

    

       break; 

       } 

        }  

      i++; 

      }  

       

 //emoticons 

  

   i=0; 

   while(i<=words) 

   {  
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     if((int)sent[i][0]>=97&&(int)sent[i][0]<=122) 

     { //printf("%d\n",i); 

       i++; 

       continue; 

     } 

     for(k=0;k<SMILE;k++) 

     {  j=0;  

        

     

         for(l=0;l<15;l++) 

        { if(sent[i][l]=='0') 

           break; 

           } 

  // printf("%d",l); 

        count=1; 

      /*   

        while(emo[k].smi[count]!='%'|| 

        emo[k].smi[count]!='('|| 

        emo[k].smi[count]!=')'|| 

        emo[k].smi[count]!='*'|| 

        emo[k].smi[count]!='-'|| 

        emo[k].smi[count]!='3'|| 

        emo[k].smi[count]!='8'|| 

        emo[k].smi[count]!=':'|| 

        emo[k].smi[count]!=';'|| 

        emo[k].smi[count]!='<'|| 

        emo[k].smi[count]!='='|| 

        emo[k].smi[count]!='>'|| 

        emo[k].smi[count]!='@'|| 

        emo[k].smi[count]!='B'|| 

        emo[k].smi[count]!='D'|| 

        emo[k].smi[count]!='X'|| 

        emo[k].smi[count]!='x'|| 

        emo[k].smi[count]!='|'|| 
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        emo[k].smi[count]!='}'|| 

        emo[k].smi[count]!='^' 

        ) 

       count++; 

    */   

 

        while(sent[i][j]==emo[k].smi[count]) 

        {  

        j++; 

        count++; 

        } 

   

   

   

   // if((j==l)&&((int)rec[k].word[count]>=97&&(int)rec[k].word[count]<=122)) 

   // continue;  

        //if(j==l||rec[k].word[count]=='*') 

        if(j==l) 

       { 

       if(emo[k].score[0]!='-') 

       s=emo[k].score[0]-'0';  

       else 

       s=0-(emo[k].score[1]-'0'); 

       scor[i]=s; 

    

       break; 

       } 

        }  

      i++; 

      }  

    

       

   for(i=0;i<=words;i++) 

   {  j=0; 
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     while(sent[i][j]!='0') 

    { 

    printf("%c",sent[i][j]); 

    j++; 

    }       

    printf("(%d) ",sc[i]+scor[i]); 

    if(i==words) 

    break; 

}     

printf("\n\nNo. of negations: %d\n\n",negs); 

 

pos=0; 

neg=0; 

tot=0; 

for(i=0;i<=words;i++) 

{ if(sc[i]>=0) 

pos=pos+sc[i]; 

  else 

  neg=neg+sc[i]; 

} 

if(negs%2!=0) 

{ temp=pos; 

  pos=-1*neg; 

  neg=-1*temp; 

 

} 

for(i=0;i<=words;i++) 

{ if(scor[i]>=0) 

pos=pos+scor[i]; 

  else 

  neg=neg+scor[i]; 

} 
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printf("\n\nThe ratings are on a scale of -5(strongly -ve) to 0(neutral) to 5(strongly 

+ve)"); 

printf("\n\nPositive emotion rating is: %d\nNegative emotion rating is: %d",pos,neg); 

   printf("\n\nTotal score: %d",pos+neg); 

   if(pos>0-neg) 

   printf("\n\nThe sentence is positive"); 

   else if(0-neg>pos) 

   printf("\n\nThe sentence is negative"); 

   else 

   printf("\n\nThe sentence is neutral"); 

    getch(); 

    return (0); 

} 
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CHAPTER 6: 

 NAIVE BAYES CLASSIFIER 
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Simple Bayesian classifiers have been gaining popularity lately, and have been found 

to perform surprisingly well. These probabilistic approaches make strong assumptions 

about how the data is generated, and posit a probabilistic model that embodies these 

assumptions; then they use a collection of labeled training examples to estimate the 

parameters of the generative model. Classification on new examples is performed 

with Bayes’ rule by selecting the class that is most likely to have generated the 

example. The naive Bayes classifier is the simplest of these models, in that it assumes 

that all attributes of the examples are independent of each other given the context of 

the class. This is the so-called “Naive Bayes assumption.” While this assumption is 

clearly false in most real-world tasks, naive Bayes often performs classification very 

well. This paradox is explained by the fact that classification estimation is only a 

function of the sign (in binary cases) of the function estimation; the function 

approximation can still be poor while classification accuracy remains high. Because 

of the independence assumption, the parameters for each attribute can be learned 

separately, and this greatly simplifies learning, especially when the number of 

attributes is large. Document classification is just such a domain with a large number 

of attributes. The attributes of the examples to be classified are words, and the number 

of different words can be quite large indeed. While some simple document 

classification tasks can be accurately performed with vocabulary sizes less than one 

hundred, many complex tasks on real-world data from the Web, UseNet and newswire 

articles do best with vocabulary sizes in the thousands. Naive Bayes has been 

successfully applied to document classification in many research efforts. Despite its 

popularity, there has been some confusion in the document classification community 

about the “Naive Bayes” classifier because there are two different generative models 

in common use, both of which make the “Naive Bayes assumption.” Both are called 

“Naive Bayes” by their practitioners. One model specifies that a document is 

represented by a vector of binary attributes indicating which words occur and do not 

occur in the document. The number of times a word occurs in a document is not 

captured. When calculating the probability of a document, one multiplies the 

probability of all the attribute values, including the probability of non-occurrence for 

words that do not occur in the document. Here we can understand the document to be 

the “event,” and the absence or presence of words to be attributes of the event. This 

describes a distribution based on a multi-variate Bernoulli event model. This approach 

is more traditional in the field of Bayesian networks, and is appropriate for tasks that 
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have a fixed number of attributes. The approach has been used for text classification 

by numerous people. The second model specifies that a document is represented by 

the set of word occurrences from the document. As above, the order of the words is 

lost; however, the number of occurrences of each word in the document is captured. 

When calculating the probability of a document, one multiplies the probability of the 

words that occur. Here we can understand the individual word occurrences to be the 

“events” and the document to be the collection of word events. We call this the 

multinomial event model. This approach is more traditional in statistical language 

modeling for speech recognition, where it would be called a “unigram language 

model.” This approach has also been used for text classification by numerous people. 

Results indicate that the multi-variate Bernoulli model sometimes performs better 

than the multinomial at small vocabulary sizes. However, the multinomial usually 

outperforms the multi-variate Bernoulli at large vocabulary sizes, and almost always 

beats the multi-variate Bernoulli when vocabulary size is chosen optimally for both. 

While sometimes the difference in performance is not great, on average across data 

sets, the multinomial provides a 27% reduction in error over the multi-variate 

Bernoulli. 

 

1. Probabilistic Framework of Naive Bayes 

Consider the task of text classification in a Bayesian learning framework. This 

approach assumes that the text data was generated by a parametric model, and 

uses training data to calculate Bayes-optimal estimates of the model parameters. 

Then, equipped with these estimates, it classifies new test documents using Bayes’ 

rule to turn the generative model around and calculate the posterior probability 

that a class would have generated the test document in question. Classification 

then becomes a simple matter of selecting the most probable class. 

Both scenarios assume that text documents are generated by a mixture model 

parameterized by θ. The mixture model consists of mixture components cj ∈ C = 

{c1, ..., c|C|}. Each component is parameterized by a disjoint subset of θ. Thus a 

document, di, is created by (1) selecting a component according to the priors, P(cj 

|θ), then (2) having the mixture component generate a document according to its 

own parameters, with distribution P(di|cj; θ). We can characterize the likelihood of 

a document with a sum of total probability over all mixture components: 
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Each document has a class label. We assume that there is a one-to-one 

correspondence between classes and mixture model components, and thus use cj 

to indicate both the j
th

 mixture component and the j
th

 class. In this setting, 

(supervised learning from labeled training examples), the typically “hidden” 

indicator variables for a mixture model are provided as these class labels. 

 

1.1 Multi-variate Bernoulli Model 

In the multi-variate Bernoulli event model, a document is a binary vector over the 

space of words. Given a vocabulary V, each dimension of the space t, t ∈ {1,..., |V 

|}, corresponds to word wt from the vocabulary. Dimension t of the vector for 

document di is written Bit, and is either 0 or 1, indicating whether word wt occurs 

at least once in the document. With such a document representation, we make the 

naive Bayes assumption: that the probability of each word occurring in a 

document is independent of the occurrence of other words in a document. Then, 

the probability of a document given its class from Equation 1 is simply the 

product of the probability of the attribute values over all word attributes: 

 

Thus given a generating component, a document can be seen as a collection of 

multiple independent Bernoulli experiments, one for each word in the vocabulary, 

with the probabilities for each of these word events defined by each component, 

P(wt|cj; θ). This is equivalent to viewing the distribution over documents as being 

described by a Bayesian network, where the absence or presence of each word is 

dependent only on the class of the document. 

Given a set of labeled training documents, D = {d1,...,d|D|}, learning the 

parameters of a probabilistic classification model corresponds to estimating each 

of these class-conditional word probabilities. The parameters of a mixture 
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component are written θwt|cj = P(wt|cj; θ), where 0 ≤ θwt|cj ≤ 1. We can calculate 

Bayes-optimal estimates for these probabilities by straightforward counting of 

events, supplemented by a prior. We use the Laplacean prior, priming each word’s 

count with a count of one to avoid probabilities of zero or one. Define P(cj|di) ∈ 

{0, 1} as given by the document’s class label. Then, we estimate the probability of 

word wt in class cj with: 

 

The class prior parameters, θcj , are set by the maximum likelihood estimate: 

 

Note that this model does not capture the number of times each word occurs, and 

that it explicitly includes the non-occurrence probability of words that do not 

appear in the document 

 

1.2 Multinomial Model  

In contrast to the multi-variate Bernoulli event model, the multinomial model 

captures word frequency information in documents. Consider, for example, the 

occurrence of numbers in the Reuters newswire articles; our tokenization maps all 

strings of digits to a common token. Since every news article is dated, and thus 

has a number, the number token in the multi-variate Bernoulli event model is 

uninformative. However, news articles about earnings tend to have a lot of 

numbers compared to general news articles. Thus, capturing frequency 

information of this token can help classification. In the multinomial model, a 

document is an ordered sequence of word events, drawn from the same 

vocabulary V. We assume that the lengths of documents are independent of class. 

We again make a similar Naive Bayes assumption: that the probability of each 

word event in a document is independent of the word’s context and position in the 

document. Thus, each document di is drawn from a multinomial distribution of 

words with as many independent trials as the length of di. This yields the familiar 

“bag of words” representation for documents. Define Nit to be the count of the 
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number of times word wt occurs in document di. Then, the probability of a 

document given its class from Equation 1 is simply the multinomial distribution: 

 

 

2. Classification 

Given estimates of these parameters calculated from the training documents, 

classification can be performed on test documents by calculating the posterior 

probability of each class given the evidence of the test document, and selecting the 

class with the highest probability. We formulate this by applying Bayes’ rule: 

 

The right hand side may be expanded by first substituting using Equations 1 and 

4. Then the expansion of individual terms for this equation is dependent on the 

event model used. Use Equations 2 and 3 for the multi-variate Bernoulli event 

model. Use Equations 5 and 6 for the multinomial. 

 

3. Code for training dataset  

import weka.core.Instances; 

import weka.filters.Filter; 

import weka.filters.unsupervised.attribute.StringToWordVector; 

import weka.classifiers.Evaluation; 

import java.util.Random; 

import weka.classifiers.bayes.NaiveBayes; 

import weka.classifiers.meta.FilteredClassifier; 

import weka.core.converters.ArffLoader.ArffReader; 

import java.io.*; 

 

public class text { 
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 Instances trainData; 

  

 StringToWordVector filter; 

  

 FilteredClassifier classifier; 

   

  

 public void loadDataset(String fileName) { 

  try { 

   BufferedReader reader = new BufferedReader(new 

FileReader(fileName)); 

   ArffReader arff = new ArffReader(reader); 

   trainData = arff.getData(); 

   System.out.println("===== Loaded dataset: " + fileName + " 

====="); 

   reader.close(); 

  } 

  catch (IOException e) { 

   System.out.println("Problem found when reading: " + 

fileName); 

  } 

 } 

  

 public void evaluate() { 

  try { 

   trainData.setClassIndex(0); 

   filter = new StringToWordVector(); 

   filter.setAttributeIndices("last"); 

   classifier = new FilteredClassifier(); 

   classifier.setFilter(filter); 

   classifier.setClassifier(new NaiveBayes()); 

   Evaluation eval = new Evaluation(trainData); 
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   eval.crossValidateModel(classifier, trainData, 4, new 

Random(1)); 

   System.out.println(eval.toSummaryString()); 

   System.out.println(eval.toClassDetailsString()); 

   System.out.println("===== Evaluating on filtered (training) 

dataset done ====="); 

  } 

  catch (Exception e) { 

   System.out.println("Problem found when evaluating"); 

  } 

 } 

  

  

 public void learn() { 

  try { 

   trainData.setClassIndex(0); 

   filter = new StringToWordVector(); 

   filter.setAttributeIndices("last"); 

   classifier = new FilteredClassifier(); 

   classifier.setFilter(filter); 

   classifier.setClassifier(new NaiveBayes()); 

   classifier.buildClassifier(trainData); 

    

   System.out.println(classifier); 

   System.out.println("===== Training on filtered (training) 

dataset done ====="); 

  } 

  catch (Exception e) { 

   System.out.println("Problem found when training"); 

  } 

 } 

  

  

 public void saveModel(String fileName) { 
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  try { 

            ObjectOutputStream out = new ObjectOutputStream(new 

FileOutputStream(fileName)); 

            out.writeObject(classifier); 

            out.close(); 

    System.out.println("===== Saved model: " + fileName + " 

====="); 

        }  

  catch (IOException e) { 

   System.out.println("Problem found when writing: " + 

fileName); 

  } 

 } 

  

  

 public static void main (String[] args) { 

  

  text learner; 

  

   learner = new text(); 

   learner.loadDataset("C:\\Users\\Vadehra\\Desktop\\sms.txt"); 

 

   learner.evaluate(); 

   learner.learn(); 

   learner.saveModel("classy.dat"); 

   

 } 

}  

 

4. Code for testing data 

import weka.core.*; 

import weka.core.FastVector; 

import weka.classifiers.meta.FilteredClassifier; 
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import java.util.List; 

import java.util.ArrayList; 

import java.io.*; 

 

 public class text2 { 

 

  

 String text; 

  

 Instances instances; 

  

 FilteredClassifier classifier; 

   

  

 public void load(String fileName) { 

  try { 

   BufferedReader reader = new BufferedReader(new 

FileReader(fileName)); 

   String line; 

   text = ""; 

   while ((line = reader.readLine()) != null) { 

                text = text + " " + line; 

            } 

   System.out.println("===== Loaded text data: " + fileName + " 

====="); 

   reader.close(); 

   System.out.println(text); 

  } 

  catch (IOException e) { 

   System.out.println("Problem found when reading: " + 

fileName); 

  } 

 } 
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 public void loadModel(String fileName) { 

  try { 

   ObjectInputStream in = new ObjectInputStream(new 

FileInputStream(fileName)); 

            Object tmp = in.readObject(); 

   classifier = (FilteredClassifier) tmp; 

            in.close(); 

    System.out.println("===== Loaded model: " + fileName + " 

====="); 

       }  

  catch (Exception e) { 

   System.out.println("Problem found when reading: " + 

fileName); 

  } 

 } 

  

  

 public void makeInstance() { 

  FastVector fvNominalVal = new FastVector(2); 

  fvNominalVal.addElement("spam"); 

  fvNominalVal.addElement("ham"); 

  Attribute attribute1 = new Attribute("class", fvNominalVal); 

  Attribute attribute2 = new Attribute("text",(FastVector) null); 

  FastVector fvWekaAttributes = new FastVector(2); 

  fvWekaAttributes.addElement(attribute1); 

  fvWekaAttributes.addElement(attribute2); 

  instances = new Instances("Test relation", fvWekaAttributes, 1);            

  instances.setClassIndex(0); 

  Instance instance = new Instance(2); 

  instance.setValue(attribute2, text); 

  instances.add(instance); 

   System.out.println("===== Instance created with reference dataset 

====="); 
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  System.out.println(instances); 

 } 

  

  

 public void classify() { 

  try { 

   double pred = classifier.classifyInstance(instances.instance(0)); 

   System.out.println("===== Classified instance ====="); 

   System.out.println("Class predicted: " + 

instances.classAttribute().value((int) pred)); 

  } 

  catch (Exception e) { 

   System.out.println("Problem found when classifying the text"); 

  }   

 } 

  

  

 public static void main (String[] args) { 

  

  text2 classifier; 

{ 

   classifier = new text2(); 

   classifier.load("C:\\Users\\Vadehra\\Desktop\\smstest.txt"); 

   classifier.loadModel("classy.dat"); 

   classifier.makeInstance(); 

   classifier.classify(); 

 

 } 

}  
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CHAPTER 7: 

TECHNICAL CHALLENGES 
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 When inspecting the sentences misclassified by my project, I can see that most 

of the classification errors are related to the underlying ambiguity of the 

natural language. In the following examples, I have first presented sentences 

that were incorrectly labeled as negative. In the second case, there are 

sentences incorrectly classified as having a positive sentiment by the model. 

All these examples demonstrate the complexity of all natural language and the 

need for developing language specific heuristics to better capture 

phraseological expressions, contrasting statements, sarcasm, and allusions 

made by the writer 

Positive sentences classified as negative. 

1. “Longley has constructed a remarkably coherent, horrifically vivid snapshot of 

those turbulent days.” 

2. “Romanek keeps the film constantly taut... reflecting the character's instability 

with a metaphorical visual style and an unnerving, heartbeat-like score.” 

3. “Compelling revenge thriller, though somewhat weakened by a miscast 

leading lady.” 

Negative sentences classified as positive. 

1. “In the book-on-tape market, the film of "the kid stays in the picture" would be 

an abridged edition.” 

2. “A mechanical action-comedy whose seeming purpose is to market the 

charismatic Jackie Chan to even younger audiences.” 

3. “It's not so much a movie as a joint promotion for the national basketball 

association and teenaged rap and adolescent poster-boy lil' bow wow.'” 

4. “Director Tom Dey demonstrated a knack for mixing action and idiosyncratic 

humor in his charming 2000 debut shanghai noon, but showtime's uninspired 

send-up of tv cop show cliches mostly leaves him shooting blanks.” 

 Another technical challenge is the inability to detect and rectify textese, or 

SMS language, such as that used on Twitter. 

 Using emotion keywords is a straightforward way to detect associated 

emotions, the meanings of keywords could be multiple and vague, as most 

words could change their meanings according to different usages and contexts. 

Moreover, even the minimum set of emotion labels (without all their 
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synonyms) could have different emotions in some extreme cases such as ironic 

or cynical sentences. 

 Sentences without any keyword would imply that they do not contain any 

emotion at all, which is obviously wrong. For example, “I passed my qualify 

exam today” and “Hooray! I passed my qualify exam today” should imply the 

same emotion (joy), but the former without “hooray” could remain undetected 

if “hooray” is the only keyword to detect this emotion. 

 Syntax structures and semantics also have influences on expressed emotions. 

For example, “I laughed at him” and “He laughed at me” would suggest 

different emotions from the first person’s perspective. As a result, ignoring 

linguistic information also poses a problem to keyword-based methods. 
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CHAPTER 8: 

SCREENSHOTS 
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1. Lexicon Approach
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2. Machine Learning Approach 

 

 

 

The model used for training the dataset has given an accuracy of 85% on 169 

instances. 

 

The model correctly classified this test instance as positive. 
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The model correctly classified this test instance as negative 

 

 

 

The model correctly classified this test instance as negative 
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CHAPTER 9: 

 CONCLUSION 
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Emotion Detection can be seen as an important field of research in human-computer 

interaction. A sufficient amount of work has been done by researchers to detect 

emotion from facial and audio information whereas recognizing emotions from 

textual data is still a fresh and hot research area. 

The report demonstrates that it is feasible to extract information about a person’s 

sentiments from the text they write on social networking sites with high accuracy. The 

method applied supports to get information about the users’ sentiment 

polarity(positive, neutral or negative) according to the messages they write. 

The classification method implemented follows a lexical-based approach. 

 Adaptive and recommendation systems in general can take advantage of knowing the 

users’ sentiments at a certain time, as well as significant emotional changes with 

respect to their usual state. However, asking the users about their sentiments is 

intrusive, can be bothering and, furthermore, in some contexts there is a high 

probability that they do not admit negative sentiments, because of, e.g., their cultural 

background or the need of social approval. In the educational context, in particular, it 

is not highly probable that a student directly transmits the teacher his/her feelings 

towards a subject or methodology when they are negative. The process to get this 

information is usually harder (e.g., anonymous/ distinctive surveys at the end of the 

semester, or teachers receiving comments through class delegates during the course, 

at most). The work presented in this report demonstrates that it is possible to extract it 

from the messages the students write on social networking sites. 

This can be considered as input for adaptive e-learning systems to provide sentiment-

based adaptation, making it possible, e.g., to recommend the most suitable activities 

to be performed by each student at a certain time according to his/her sentiment at that 

time; another application of this work in the learning context deals with extracting 

feedback for teachers about the sentiments of their students towards their courses or 

teaching methodologies. 

 

 

 

 

 

 



 

60 

 

 

 

 

 

 

 

 

 

CHAPTER 10: 

 FUTURE WORK 
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 One potential improvement to the project will be the ability to detect not just 

the user’s emotions but also the significant emotional changes over a period of 

time, like a day or a week. This can be useful in adaptive E-learning systems 

to assess what effects the subjects taught are having on the student’s state of 

mind. 

 Another improvement is the ability to rectify and detect textese. 

 One other change could be the ability to detect the emotion behind a word 

based on the context it has been used in. 

 The emotion of a word also changes based on its position in the sentence. A 

potential improvement would be to take this position under account.  
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