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Abstract 

 
 

Social Media is used by practically everybody. It is used as a medium to express 

freely, the thoughts, opinions, beliefs, behaviours and a lot more. This information in 

regard of a product, service or anything being used by people can serve a great purpose. It 

serves the purpose of a feedback mechanism. In terms of business, such feedback may be 

used to improve the service being provided, upgrade the product already in the market so 

that better releases can be used. In terms of education, such feedback information can be 

used for feedback of a course, or a teacher. Hence this project has been thought of. Right 

now, what has already been developed is the part where we extract data from a social 

networking site, Twitter, and the part where we try to make something meaningful out of 

the sentences that have been extracted by tokenizing them and identifying parts of speech. 

Also discussed in the report are the procedures to go about the above two steps and the 

future work of the project, which includes comparing this lexicon based approach with a 

machine learning based approach and then if possible, integrating this project with the 

Student Feedback System of Jaypee University of Information Technology, Waknaghat.  
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CHAPTER 1 : INTRODUCTION 

From the point of view of data mining, a social network is a heterogeneous and 

multirelational data set represented by a graph. The graph is typically very large, with 

nodes corresponding to objects and edges corresponding to links representing relationships 

or interactions between objects. Both nodes and links have attributes. Objects may have 

class labels. Links can be one-directional and are not required to be binary.  

Social networks need not be social in context. There are many real-world instances 

of technological, business, economic, and biologic social networks. Examples include 

electrical power grids, telephone call graphs, the spread of computer viruses, the World 

Wide Web, and coauthorship and citation networks of scientists. Customer networks and 

collaborative filtering problems (where product recommendations are made based on the 

preferences of other customers) are other examples. In biology, examples range from 

epidemiological networks, cellular and metabolic networks, and food webs, to the neural 

network of the nematode worm Caenorhabditis elegans (the only creature whose neural 

network has been completely mapped). The exchange of e-mail messages within 

corporations, newsgroups, chat rooms, friendships, sex webs (linking sexual partners), and 

the quintessential “old-boy” network (i.e., the overlapping boards of directors of the largest 

companies in the United States) are examples from sociology.  

Small world (social) networks have received considerable attention as of late. They 

reflect the concept of “small worlds,” which originally focused on networks among 

individuals. The phrase captures the initial surprise between two strangers (“What a small 

world!”) when they realize that they are indirectly linked to one another through mutual 

acquaintances. In 1967, social psychologist Stanley Milgram performed an experiment to 

solve an unresolved hypothesis circulating in those days. The hypothesis was called the 

small-world problem. The claim of the small-world phenomenon is that the world, is in a 

sense small, when viewed as a network of social acquaintances, could be reached through 

a network of friends in a only a few steps. Milgram asked a few hundred randomly selected 

people to send letters to a stock broker in Boston via intermediaries. They can send the 

letter to people they knew on first name basis. Among the letters that reached the 
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destination correctly, the average path length was found to be six. This led to the phrase 

“six degrees of separation”. This experiment laid the stage for algorithmic aspects this new 

and emerging science.  

In order to make such a claim, instead of asking, “How small is our world”, one 

could ask, “What would it take for any world to be small?” In other words, we want to 

construct a mathematical model of the world in which the individuals are represented as 

nodes and relationships are represented as edges. This allows analysis using tools of 

mathematics. 

Imagine one has one hundred friends, each one of them also has hundred friends. 

So at one degree of separation one connects to one hundred people and at two degrees 

connects to one hundred times one hundred. Proceeding in a similar fashion, in five degrees 

he is connected to nine billion people. So if everyone has one hundred friends, then within 

six steps he can connect himself to the entire population. 

 In today’s era, almost four out of five users of internet use social media for some 

or other context. Some of these include friendship networks, blogging and micro-blogging 

sites, content and video sharing sites, e-commerce sites etc. The involvement and 

contribution of the users on the web is increasing day by day. One such contribution is 

reviews of users in social networking sites. The current trend of giving online reviews 

enables users to take better decisions who want to use a particular service or purchase a 

particular product. It helps them to check the popularity of the product. It also enables them 

to extract the positive or negative features of the products by reading reviews. But manual 

analysis of such a huge amount of reviews can lead to biased decision. So to provide 

automation, we are studying sentiment analysis. Sentiment analysis is the modern 

methodology which analyze huge amount of data to extract sentiments associated with the 

data. The growth of internet has a special significance in online service. Today, a large 

amount of population uses social media to give their reviews. The social media Universe 

is expanding. 

 



- 10 - 

 

Platform Monthly active Users 

Facebook 1.28 Billion 

Twitter 255 Million 

Linkedin 1.84 Million 

Youtube 1 Billion+ 

Google Plus 540 Million 

Table 1 : Social Media users worldwide 

 The use of social media is increasing day by day and this is represented by the 

number of monthly users in Table 1. Increasing growth of social media users over internet 

has also increased their participation in various discussions and activities simultaneously. 

In case of a product, reviews of users will help to take many important decisions about the 

services of the product. But manually reading such a bulk amount reviews is a very difficult 

task. So there is a need of an automatic system which will lead to automatically extract the 

positive and negative features of the product and make the decision making process easier. 

There are many sites which do this.  

Sentiment analysis is a text classification problem which deals with extracting 

information present within the text. This extracted information can be then further 

classified according to its polarity as positive, negative or neutral. It can be defined as a 

computational task of extracting sentiments from the opinion. Some opinions represent 

sentiments and some opinions do not represent any sentiment.  

 Sentiments: Opinions or in other sense can be recognized as someone’s linguistic 

expressions of emotions, beliefs, evaluations etc. 

 Analysis: To capture the opinions from a pool of users whether the opinion is 

positive, negative or neutral.  

 Benefit: Provide efficient information in decision making 
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Example:  

User’s Opinion:    Person a: it’s a great movie (positive statement)  

      Person b: the new iphone is awesome..!!! (Positive statement) 

                              Person c: Nah!! I didn’t like it at all.. (Negative statement) 

 Polarity :  

 Positive 

 Negative 

 Neutral 

Reading huge amount of reviews and discussions over internet is not an easy task 

and finally to take decision. But these discussions and reviews help in many sectors such 

as improving e-learning environment, providing personalization in e-learning environment, 

for getting public response to governmental activities. 

 

Figure 1 : General Flow of Process of Sentiment Analysis 
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1.1 Problem Statement 

From the given dataset, what we have to do is to extract the data and segment that data 

according to parts of speech. After that we will check the sentiments and assign tags to the 

extracted tokens. In the last step overall polarity of the text is calculated. If the polarity of 

data is positive, it is positive sentence and if polarity is negative it is negative sentence. 

1.2 Motivation 

In today’s era, almost four out of five users of internet use social media for some 

or other context. Some of these include friendship networks, blogging and micro-blogging 

sites, content and video sharing sites, e-commerce sites etc. The involvement and 

contribution of the users on the web is increasing day by day. One such contribution is 

reviews of users in social networking sites. In case of a product, reviews of users will help 

to take many important decisions about the services of the product. But manually reading 

such a bulk amount reviews is a very difficult task. So there is a need of an automatic 

system which will lead to automatically extract the positive and negative features of the 

product and make the decision making process easier. There are many sites which do this. 

But in case of education we can also use this sentiment analysis technique. In education, 

use of computers and internet leads to the explosion of study material for both teachers and 

students. This contribution of computers goes to e-learning systems and incorporation of 

adaptive methods and techniques goes to the development of adaptive e-learning systems. 

These adaptive e-learning systems will help each and every student in their personalized 

learning process. For providing personalization, information of each student should be 

stored in their personal student model. Sentiment analysis technique will help to extract 

student’s emotional state for a particular subject and accordingly will make motivational 

steps to create the interest of the student. Different types of tasks can be assigned to the 

students according the polarity of their reviews about a particular subject in adaptive e-

learning system. This system will help to know the potential needs of a student at a 

particular time. Also this adaptive e-learning system can act as a feedback for the teachers. 

According to the feedback, teachers can make the changes in methods and techniques used 

in learning process. 
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CHAPTER 2 : LITERATURE REVIEW 

The use of computers in education has meant a great contribution for students and 

teachers. The incorporation of adaptation methods and techniques allows the development 

of adaptive elearning systems, where each student receives personalized guidance during 

the learning process (Brusilovsky, 2001). In order to provide personalization, it is necessary 

to store information about each student in what is called the student model (Kobsa, 2007). 

The specific information to be collected and stored depends on the goals of the adaptive e-

learning system (e.g., preferences, learning styles, personality, emotional state, context, 

previous actions, and so on). 

Knowing the users’ emotions is useful not only in the educational context but also 

in many others (e.g., marketing, politics, online shopping, and so on) (Feldman, 2013). In 

general, in order for a system to be able to take decisions based on information about the 

users, it is necessary for it to get and store information about them. One of the most 

traditional procedures to obtain information about users consists of asking them to fill in 

questionnaires. However, the users can find this task too time-consuming. Recently, non 

intrusive techniques are preferred (de Montjoye, Quoidbach, Robic, & Pentland, 2013). 

We also think that information for student models should be obtained as unobtrusively as 

possible, yet without compromising the reliability of the model built (Ortigosa, Carro, & 

Quiroga, 2013) 

When reflecting about potential sources of information regarding user sentiment, 

we looked for digital places in which the users express themselves frequently and naturally. 

Nowadays, the number of users interacting with others through social networks is growing 

exponentially. Therefore, we focused on social networks. There exist an increasing number 

of online social networks available through the Web. From these applications, the social 

network chosen for this project is Twitter. It focuses on professional relationships, and 

serves as a source of information. Users are related to each other by the concept of 

following. A user can see the posts, called tweets of the users he is following and can make 

his tweets visible to the users who follow him/her. Users can also exchange personal text 

messages. 
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When dealing with users and sentiments, it is useful to know the users’ emotional 

state at a certain time (positive/neutral/negative), in order to provide each of them with 

personalized assistance accordingly. Moreover, it is also interesting to know whether this 

state corresponds to their ‘‘usual state’’ or, on the contrary, a noticeable variation might 

have taken place. Behavior variations, as detected in the messages written by a user (when 

sentiment histories are available), can indicate changes in the user’s mood, and specific 

actions could be potentially needed or recommended in such cases. 

2.1 Sentiment Analysis 

Sentiment analysis has been defined as the computational study of opinions, 

sentiments and emotions expressed in texts (Liu, 2010). For the sake of simplifying the 

development of an emotion recognition tool, we have tried to avoid complex and 

potentially controversial definitions of emotions and sentiments. In this direction, we take 

the simplified definition of sentiment as “a personal positive or negative feeling or 

opinion”. An example of a sentence transmitting a positive sentiment would be “I love it!”, 

whereas “It is a terrible movie” transmits a negative one. A neutral sentiment does not 

express any feeling (e.g. ‘‘I am commuting to work’’). Most of works in this research area 

focus on classifying texts according to their sentiment polarity, which can be positive, 

negative or neutral (Pang & Lee, 2008). Therefore, it can be considered a text classification 

problem, since its goal consists of categorizing texts within classes by means of algorithmic 

methods. 

 The earliest researches dealing with sentiment analysis consisted on classifying 

words or phrases according to semantic issues and date from the late 1990s 

(Hatzivassiloglou & McKeown, 1997). Linguistic heuristics or pre-selected sets of seed 

words were used. The results obtained in those works served as the basis for classifying 

entire documents, considering that the average semantic orientation of the words in a 

review may be an indicator of whether the text is positive or negative (Turney, 2002). The 

appearance of WordNet (Miller, 1995) and, in general, of annotated corpora, increased the 

production in this research area. On one hand, WordNet is useful because it allows knowing 

the semantic relationships between different words. Therefore, with a reduced set of 
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polarity words, every word could be labeled as positive, negative or neutral through its 

relationships. On the other hand, corpora and, in particular, the Treebanks, are very useful. 

They are corpora with the syntactic structure labeled, and are of great help for training the 

analyzers in order to label the words automatically. 

 One of the first works that used the term ‘‘sentiment analysis’’ as we currently 

know it was that presented in (Das & Chen, 2001), which analyzes messages written in 

stock boards in order to extract the market sentiment. Currently, many of the works in this 

area focus on document classification based on the sentiment expressed on it. One of the 

best known domains is that of reviews (Pang, Lee, & Vaithyanathan, 2002) (Dave, 

Lawrence, & Pennock, 2003). Review websites are examples of especially useful sources 

for sentiment analysis, such as, e.g. Epinions (Epinions, 1999). Other application areas in 

which sentiment analysis can be very useful are: 

– Recommendation systems (Tatemura, 2000). 

– Flame detection (Spertus, 1997). 

– Sensitive content detection for advertising (Jin, Li, Mah, & Tong, 2007). 

– Human–computer interaction (Liu, Lieberman, & Selker, 2003). – Business 

Intelligence (Mishne & Glance, 2006) 

– Prediction of hostile or negative sources (Abbasi, 2007). 

– Classification of citizens’ opinions on a law before its approval: 

‘‘eRuleMaking’’ (Cardie, Farina, Bruce, & Wagner, 2006). 

– Broadcasting based on the receiver sentiment (Rogers, 2003). 

– Dynamic adaptation of daily tools, such as e-mail (Carro, Ballesteros, 

Ortigosa, Guardiola, & Soriano, 2012). – Marketing or politics (Feldman, 2013). 

  In general, accuracy is strongly influenced by the context in which the words are 

used (Turney, 2002) (Aue & Gamon, 2005) (Engström, 2004). For instance, the sentence 
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“You must read the book” is positive in a book review but is negative if the review is about 

films.  

  Additionally, the position of words in text is an interesting factor to consider, since 

a word at the end of a sentence can change the polarity completely (Pang et al., 2002). For 

example the sentence “This book is very addictive, it can be read in one sitting, but I have 

to admit that it is rubbish” begins with the word “addictive” and the expression “one 

sitting” which are positive in the context of book reviews, but it finish with the word 

“rubbish” that is negative. Although the sentence contains two positive tokens against one 

negative, it should be marked as negative because the final word nullifies all the previous 

ones. 

  Another issue to be considered is the presence of figures of speech in the analyzed 

text. Some of them, such as the irony, can change the whole polarity of a text. Sometimes 

they are difficult to detect even for a human being, if additional information is not provided 

(e.g. context). Recent work in natural language processing focuses on the detection of these 

figures, such as (Reyes, Rosso, & Buscaldi, 2012), that build a training dataset of messages 

written in Twitter with the hashtag ‘#irony’ in order to set a model with machine-learning 

techniques. 

  With respect to the techniques used for sentiment analysis, two main approaches 

are considered: machine-learning methods and lexicon-based approach. The survey written 

by Pang and Lee (Pang & Lee, 2008) covers the most popular techniques and approaches. 

  On one hand, machine-learning methods are used to classify texts. An example of 

the use of machine-learning techniques in order to classify movie reviews is presented in 

(Pang et al., 2002). It compares different techniques to classify movie reviews, obtaining 

82.9% of accuracy when applying Support Vector Machines (SVM). Generally, it is 

difficult to obtain better results, due to characteristics of natural language. However, in 

specific domains, the use of machine learning algorithms for classifying texts according to 

their sentiment orientation performs well. 
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  On the other hand, the lexicon-based approach consists of analyzing the text 

grammar and executing a function to give a sentiment score to the text, considering a 

predefined sentiment lexicon (Turney, 2002) (Taboada, Brooke, Tofiloski, Voll, & Stede, 

2011). There exist some sentiment lexicon available, such as SentiWordNet (Esuli & 

Sebastiani, 2006), but it has been noticed that most of the researches build their own lexicon 

ad hoc, managing the semantic relationships between words with tools such as WordNet 

(Miller, 1995), already mentioned above. 

  The great advantage of the lexicon-based approach is that it is not necessary to have 

a labeled training set to start classifying texts. This approach tends to get worse results than 

machine learning approaches in specific domains, but when the domain is less bounded the 

results are better. This is because the lexicon approach analyzes the text grammar, whereas 

the machine-learning methods fit the algorithms to the training dataset particularities. As 

an example, in (Taboada et al., 2011) the authors use a lexicon-based method with six 

different corpora from different domains and obtained 75–80% accuracy. However, when 

using machine learning (with a preprocessing phase to summarize movie reviews), 86.4% 

accuracy was achieved (Pang & Lee, 2004). When comparing these two works, the 

machine-learning approach gets a better accuracy, but it may suffer overfitting to the 

training dataset, whereas the lexicon-based approach gets a lower accuracy, although is 

more robust when considering different domains. 

 The process is as follows : , a dictionary of words is used, in which each word has 

its sentiment orientation (positive/negative emotional polarity). Each message is classified 

by following a number of steps. These steps are as follows: 

 

1. Preprocessing: In the first step, message is preprocessed by converting all the 

words into lower-case. Then detection of the idioms is done and they are joined so 

as to consider as a unique word. For example, as good as is converted into as-good-

as. 

2. Segmentation into sentences: Then, the message is fragmented into sentences. 

Dots are considered as only punctuation marks that act as a separator at this step. 
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As other punctuation marks such as commas or semicolons can be part of the 

emoticons. 

3. Tokenization 1(partial): In this step, tokens are extracted from each sentence. In 

this only white spaces are considered to separate the tokens as other punctuation 

marks such as semi colon, hyphen can be the part of emoticons. 

4. Emoticon detection: Next is the detection of emoticons. Consecutive occurrence 

of symbols is considered as presence of emoticons which are compared with text 

files containing emoticons, extracted from Wikipedia. 

5. Tokenization 2(complete): in this step, the final set of tokens are extracted by 

removing all the punctuation marks such as commas, hyphen etc which are left after 

the removal of emoticons. 

6. Interjection detection: this step deals in detecting the interjections. The 

interjections such as hehehe, lolz etc are marked as positive whereas interjections 

such as uff (tiredness) are marked as negative. This detection of interjection is 

implemented by the use of regular expressions. Because interjections are observed 

as set of repeated letters in the word. Such as long sequence of hehehehehe can be 

considered as strong happy sentiment. 

7. Token score assignation: the next step is the assignment of the score to each token. 

1 is assigned if the token represents positive polarity, -1 is assigned if the token 

represent the negative polarity; and 0 is assigned if the token is having neutral 

polarity. To assign a score, the classifier checks if the token is positive/negative 

emoticons, positive/negative interjection, or whether the word is present in the 

predefined dictionary. Also repetitive letters are removed in this step if the word 

does not have any match in the predefined dictionary. As the language written in 

the social networking sites such as face book is very casual. As in greaaaaat 

repetition of a leads to undetected word. So removal of a leads to match of the word. 

Sometimes spelling mistake also lead to the failure of detection of the word, so 

spelling checker is also used so that word can be corrected and accordingly polarity 

can be assigned. 
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8. Syntactical analysis: in this stage, syntactical analysis is done, where each token 

is checked for whether its polarity can be reversed or not which is because of 

negations. Negations are detected and polarity is reversed for that token. 

9. Polarity calculation: For calculating polarity of a sentence, the numbers of tokens 

that are considered for conveying sentiment after the removal of determinant, 

articles, prepositions etc. are calculated. Such words are considered as stop words. 

Then each token is assigned a scored and polarity score for the sentiment of a 

sentence is calculated as the sum of the scores divided by the sum of all the 

candidates to receive a score. The score will lie between -1 to +1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 : Flow Chart of Procedure 

 

  In relation to language analysis, there are very few works dealing with texts in 

languages different from English. The works found are usually adaptations of already 

presented methods for English sentiment analysis. For example, in Martínez Cámara, 
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Perea, Valdivia, and Ureña (2011), different machine learning methods are applied in order 

to classify movie reviews, achieving an interesting 86.84% success with SVM in Spanish 

language. 

  Finally, in recent years, due to the increasing amount of information delivered 

through social networks, many researches are focusing on applying sentiment analysis to 

these data (Go, Bhayani, & Huang, 2009) (Pak & Paroubek, 2010). However, most all these 

works deal with English texts and retrieve them from Twitter, since it is easier to retrieve 

data from this social network than from others such as Facebook. 

2.2 Classification Levels of sentiment analysis 

Sentiment analysis is also known as opinion mining. Sentiment analysis is a natural 

language processing and information extraction task that aims to obtain writers feelings 

expressed in positive or negative comments, questions by analyzing a large number of 

documents.  

An opinion is a quadruple (g, s, h, t) 

Where g is the opinion (or sentiment) target, s is the sentiment about the target, h 

is the opinion holder and t is the time when the opinion was expressed. 

Sentiment analysis is an ongoing field of research in text mining field. SA is the 

computational study of Opinions, sentiments, subjectivity toward an entity. The entity can 

represent individuals, events or topics. The two expressions sentiment analysis and opinion 

mining are interchangeable. 

 They express a mutual meaning. But also in some contexts they have different 

meaning. Opinion mining extracts and analyzes people’s opinion about an entity while 

sentiment analysis identifies the sentiment expressed in a text then analyzes it. Therefore, 

the target of sentiment analysis is to find opinions, identify the sentiments they express, 

and then classify their polarity. Sentiment analysis can be considered as a classification 

process. 
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Sentiment analysis is considered as a classification process. There are main three 

classification levels in sentiment analysis: 

 

 Document Level 

 Sentence Level 

 Aspect Level 

 

1. Document Level: Document Level Sentiment Analysis aims to classify an opinion 

document as expressing a positive or negative opinion or sentiment. It considers 

the whole document a basic information unit (talking about one topic). 

2. Sentence Level: Sentence Level aims to classify sentiment expressed in each 

sentence. The first step is to identify whether the sentence is subjective or objective. 

If the sentence is subjective, the sentence level sentiment analysis will determine 

whether the sentence expresses positive or negative opinions. Sentiment 

expressions are not necessarily subjective in nature. However, there is no 

fundamental difference between document and sentence level classifications 

because sentences are just short documents. Classifying text at the document level 

or at the sentence level does not provide the necessary detail which is needed in 

many applications, to obtain these details; we need to go to the aspect level. 

3. Aspect Level: Aspect level sentiment analysis aims to classify the sentiment with 

respect to the specific aspects of entities. The first step is to identify the entity and 

their aspects. The opinion holder can give different opinions for different aspects 

of the same entity like this sentence: “The voice quality of this phone is not good, 

but the battery life is long”. 

 

2.3 Serendio: Simple and Practical lexicon based approach to Sentiment 

Analysis 

Abstract:  In this paper a lexicon based approach for discovering sentiments is used. 

Lexicon is built from the Serendio taxonomy which consists of positive, negative, negation, 

stop words and phrases. A typical tweet contains word variations, emoticons, hashtags etc. 

Some processing steps such as stemming, emoticon detection and normalization, 
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exaggerated word shortening and hashtag detection are used in the whole process After the 

preprocessing, the lexicon-based system classifies the tweets as positive or negative based 

on contextual sentiment orientation of the words. 

 

Introduction: Social media websites like Twitter, Facebook etc. are a major hub for users 

to express their opinions online. On these social media sites, users post comments and 

opinions on various topics. Hence these sites become rich sources of information to mine 

for opinions and analyze user behavior and provide insights for: User behaviors, Product 

feedback, User intentions, Lead generation. 

 

Approach:  Serendio Sentiment engine Extracts and analyzes sentiments for a given 

product and feature set. Serendio sentiment engine currently works for eight different 

domains such as banking, tablets, smartphones, televisions,apparel, gaming, automobiles 

and e-readers. The lexicon is manually created in this approach. Two types of lexicons are 

created.  

 

Common lexicon:  this contains data that would have the same semantic meaning or sense 

across different domains and categories. 

 Common or default sentiment word: positive and negative words that have the 

same sentiment value or sense across different domains. For e.g. sentiment word 

“good” always represents a positive sentiment and it is independent of any category. 

Positive or negative sentiment words have a sentiment score of +1 or -1 to indicate 

the respective polarity. 

 Negation Words: Negation Words are the words which reverse the polarity of 

sentiment. For example, “the battery life is not good” has negative sentiment. 

 Blind Negation words: in the sentence,” The T.V needs a better remote”, “needs” 

is a blind negation word. Blind negation words operate at a sentence level and 

points out the absence or presence of some sense that is not desired in a product 

feature. 

 Split words: Split words are the words used for splitting sentences into clauses. 

The split words list consists of conjunctions and punctuation marks. For example 
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the complex sentence,” Camera is good but the battery is bad” is split into two 

clauses “Camera is good” and “Battery is bad”. 

 

Category specific lexicon: Category specific lexicon contains the (1) Product Catalog 

which identifies all the products that we are interested in. (2) Feature Catalog which is a 

list of attributes that the product has. This enables the Serendio engine to do analysis at the 

feature level. (3) Sentiment words (Positive and negative) that are specific to the category. 

For example, for a category such as Televisions, a product would be Samsung TV. The 

feature would be LCD screen and the word “glare” would be the category specific negative 

sentiment word. 

Preprocessing: A typical tweet contains word variations, emoticons, hashtags etc. The 

objective of the preprocessing step is to normalize the text into an appropriate form to 

extract the sentiments. Below are the preprocessing steps used.  

 POS tagging 

 Stemming 

 Exaggerated word shortening  

 Emoticon detection 

 Hashtag Detection 

 

The following algorithm is used in this paper.  
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Figure 3 : Algorithm used for preprocessing 
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2.4 Method Proposed 

  In this work, it is proposed to obtain information about user emotional state by 

obtaining the messages written by them on twitter and applying sentiment analysis to them. 

The information. The emotion classifier will follow a lexicon-based approach. The 

outcome of the lexicon classifier will be that it will show classify the tweets as 

positive/negative/neutral. 

2.4.1 Extracting posts from Twitter 

  The programming language that has been used is Python, for extracting posts from 

twitter. 

  Python is a widely used general-purpose, high-level programming language. Its 

design philosophy emphasizes code readability, and its syntax allows programmers to 

express concepts in fewer lines of code than would be possible in languages such as C++ 

or Java. The language provides constructs intended to enable clear programs on both a 

small and large scale. 

Python supports the following programming paradigms :  

 Object Oriented Programming : Object-oriented programming (OOP) is a 

programming paradigm based on the concept of "objects", which are data structures 

that contain data, in the form of fields, often known as attributes; and code, in the 

form of procedures, often known as methods. A distinguishing feature of objects is 

that an object's procedures can access and often modify the data fields of the object 

with which they are associated. In object-oriented programming, computer 

programs are designed by making them out of objects that interact with one another. 

There is significant diversity in object-oriented programming, but most popular 

languages are class-based, meaning that objects are instances of classes, which 

typically also determines their type. 

 Imperative : Imperative programming is focused on describing how a program 

operates. In computer science terminologies, imperative programming is a 
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programming paradigm that describes computation in terms of statements that 

change a program state. In much the same way that the imperative mood in natural 

languages expresses commands to take action, imperative programs define 

sequences of commands for the computer to perform. The term is often used in 

contrast to declarative programming, which focuses on what the program should 

accomplish without prescribing how to do it in terms of sequences of actions to be 

taken. 

 Functional Programming : In computer science, functional programming is a 

programming paradigm, a style of building the structure and elements of computer 

programs, that treats computation as the evaluation of mathematical functions and 

avoids changing-state and mutable data. It is a declarative programming paradigm, 

which means programming is done with expressions. In functional code, the output 

value of a function depends only on the arguments that are input to the function, so 

calling a function f twice with the same value for an argument x will produce the 

same result f(x) each time. Eliminating side effects, i.e. changes in state that do not 

depend on the function inputs, can make it much easier to understand and predict 

the behavior of a program, which is one of the key motivations for the development 

of functional programming. Functional programming has its roots in lambda 

calculus, a formal system developed in the 1930s to investigate computability, the 

Entscheidungs problem, function definition, function application, and recursion. 

Many functional programming languages can be viewed as elaborations on the 

lambda calculus. In the other well-known declarative programming paradigm, logic 

programming, relations are at the base of respective languages. 

 Procedural Programming : Procedural programming is a programming paradigm, 

derived from structured programming, based upon the concept of the procedure 

call. Procedures, also known as routines, subroutines, methods, or functions (not to 

be confused with mathematical functions, but similar to those used in functional 

programming), simply contain a series of computational steps to be carried out. 

Any given procedure might be called at any point during a program's execution, 

including by other procedures or itself. Procedural programming is a list or set of 

instructions telling a computer what to do step by step and how to perform from the 
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first code to the second code. Procedural programming languages include C, Go, 

Fortran, Pascal, and BASIC. 

 

Paradigm(s)  

Multi-paradigm: object-oriented, imperative, functional, procedural, 

reflective 

Designed by  
Guido van Rossum  

Developer  
Python Software Foundation  

Appeared in 1991; 23 years ago 

Stable release  

3.4.2 / 6 October 2014[1] 

2.7.9 / 10 December 2014[2] 

Preview release  

3.4.2 rc1 / 22 September 2014[3] 

2.7.9 rc1 / 26 November 2014[4] 

Typing discipline 
duck, dynamic, strong 

Major 

implementations  

CPython, PyPy, IronPython, Jython 

Dialects  
Cython, RPython, Stackless Python 

Influenced by 
ABC, ALGOL 68, C, C++, Dylan, Haskell, Icon, Java, Lisp, 

Modula-3, Perl 

Influenced 
Boo, Cobra, D, F#, Falcon, Go, Groovy, JavaScript, Julia, Ruby, 

Swift 

OS 
Cross-platform  

License 
Python Software Foundation License  

Filename 

extension(s)  

.py, .pyw, .pyc, .pyo, .pyd 

Website www.python.org  

 

Table 2 : Python Introduction 

  Python has a large standard library, commonly cited as one of Python's greatest 

strengths,providing tools suited to many tasks. This is deliberate and has been described as 

a "batteries included" Python philosophy. For Internet-facing applications, a large number 

of standard formats and protocols (such as MIME and HTTP) are supported. Modules for 

creating graphical user interfaces, connecting to relational databases, pseudorandom 
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number generators, arithmetic with arbitrary precision decimals, manipulating regular 

expressions, and doing unit testing are also included.  

  Some parts of the standard library are covered by specifications (for example, the 

WSGI implementation wsgiref follows PEP 333), but the majority of the modules are not. 

They are specified by their code, internal documentation, and test suite (if supplied). 

However, because most of the standard library is cross-platform Python code, there are 

only a few modules that must be altered or completely rewritten by alternative 

implementations.  

  The standard library is not essential to run Python or embed Python within an 

application. Blender 2.49, for instance, omits most of the standard library. 

  As of October 2014, the Python Package Index, the official repository of third-party 

software for Python, contains more than 49,000 packages offering a wide range of 

functionality, including:  

 graphical user interfaces, web frameworks, multimedia, databases, networking and 

communications  

 test frameworks, automation and web scraping, documentation tools, system 

administration  

 scientific computing, text processing, image processing 

  Since 2008, Python has consistently ranked in the top eight most popular 

programming languages as measured by the TIOBE Programming Community Index.[17] 

It is the third most popular language whose grammatical syntax is not predominantly based 

on C, e.g. C++, C#, Objective-C, Java. Python does borrow heavily, however, from the 

expression and statement syntax of C, making it easier for C programmers to transition 

between languages. 

  An empirical study found scripting languages (such as Python) more productive 

than conventional languages (such as C and Java) for a programming problem involving 

string manipulation and search in a dictionary. Memory consumption was often "better 

than Java and not much worse than C or C++". 
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  Large organizations that make use of Python include Google, Yahoo!, CERN, 

NASA, and some smaller ones like ILM, and ITA. 

  Python has a very active developer community that creates many libraries which 

extend the language and make it easier to use various services. One of the many such 

libraries is Tweepy. Tweepy is open sourced, hosted on GitHub. GitHub is a code sharing 

and publishing service and a social networking site for programmers. At the heart of 

GitHub is Git, an open source project started by Linux creator Linus Torvalds. Matthew 

McCullough, a trainer at GitHub, explains that Git, like other version control systems, 

manages and stores revisions of projects. Although it’s mostly used for code, McCullough 

says Git could be used to manage any other type of file, such as Word documents or Final 

Cut projects.  

  Some of Git’s predecessors, such as CVS and Subversion, have a central 

“repository” of all the files associated with a project. McCullough explains that when a 

developer makes changes, those changes are made directly to the central repository. With 

distributed version control systems like Git, if you want to make a change to a project you 

copy the whole repository to your own system. You make your changes on your local copy, 

then you “check in” the changes to the central server. McCullough says this encourages 

the sharing of more granular changes since you don’t have to connect to the server every 

time you make a change. GitHub is a Git repository hosting service, but it adds many of its 

own features. While Git is a command line tool, GitHub provides a Web-based graphical 

interface. It also provides access control and several collaboration features, such as a wikis 

and basic task management tools for every project. 

  Tweepy can be installed in many ways. The particular way that has been used to 

install Tweepy is using pip. pip is a tool for installing and managing Python packages, such 

as those found in the Python Package Index. Some properties of pip are that : 

 All packages are downloaded before installation. Partially-completed installation 

doesn’t occur as a result. 

 Care is taken to present useful output on the console. 
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 The reasons for actions are kept track of. For instance, if a package is being 

installed, pip keeps track of why that package was required. 

 Error messages should be useful. 

 The code is relatively concise and cohesive, making it easier to use 

programmatically. 

 Packages don’t have to be installed as egg archives, they can be installed flat (while 

keeping the egg metadata). 

 Native support for other version control systems (Git, Mercurial and Bazaar) 

 Uninstallation of packages. 

 Simple to define fixed sets of requirements and reliably reproduce a set of packages.  

  Once Tweepy is installed, we are now ready to write down and implement the code 

for extracting tweets from Twitter and storing them in some file. 

2.4.2 Using a Dictionary Based Approach (In Progress) 

  For using a dictionary based approach on the data that has been extracted, we use 

the NLTK tool in Python.  

  NLTK stands for Natural Language Toolkit. NLTK is a leading platform for 

building Python programs to work with human language data. It provides easy-to-use 

interfaces to over 50 corpora and lexical resources such as WordNet, along with a suite of 

text processing libraries for classification, tokenization, stemming, tagging, parsing, and 

semantic reasoning, and an active discussion forum. 

  NLTK is suitable for linguists, engineers, students, educators, researchers, and 

industry users alike. NLTK is available for Windows, Mac OS X, and Linux. Best of all, 

NLTK is a free, open source, community-driven project. NLTK includes graphical 

demonstrations and sample data. It is accompanied by a book that explains the underlying 

concepts behind the language processing tasks supported by the toolkit. 

2.4.3 Sentiment analysis algorithms and applications: A survey 

  Sentiment analysis is considered as Sentiment Classification Problem. The first step 

in the sentiment classification problem is to extract and select text features. This is the 
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survey paper which described the sentiment analysis in detail. The survey paper gives brief 

explanation to famous feature selection and sentiment classification algorithms. Some of 

the current features are: 

 Term presence and frequency: These features are individual words or word 

n-grams and their frequency counts. It either gives the words binary weighting 

or uses term frequency weights to indicate the relative importance of features. 

 Parts of speech (POS): finding adjectives, as they are important indicators of 

opinions. 

 Opinion words and phrases: these are words commonly used to express 

opinions including good or bad, like or hate. On the other hand, some phrases 

express opinions without using opinion words. For example: cost me an arm 

and a leg. 

Negations: the appearance of negative words may change the opinion orientation like not 

good is equivalent to bad 
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CHAPTER 3 : METHODOLOGY 

  To start working with Python, we first need to install the Python interpreter, or 

simply Python on the computer. The Python interpreter can be downloaded right from the 

official website of python, www.python.org. On the website, choose the download link 

appropriate for windows, and a download for a .msi file will start. Name of the .msi file 

will depend upon the version of Python being downloaded.  

 

Figure 4 : Downloading Python 

  Next, we download and install an IDE to start developing in Python. The IDE that 

has been used here for this project is called PyCharm, developed by the Czech company 

JetBrains.  

  Pip can be installed by downloading getpip.py. This file can be found on the 

following link : https://pip.pypa.io/en/latest/installing.html and the file may then be 

securely downloaded from this link. 

http://www.python.org/
https://pip.pypa.io/en/latest/installing.html
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Figure 5 : Getting PIP 

  Once pip is installed, it will be visible in the Scripts folder of Python 

 

Figure 6 : Locating pip in PythonXX\Scripts 

  Next, we download Tweepy for installation. Tweepy can be found on 

https://github.com/tweepy/tweepy. From here, we download the zip file and extract the 

files in some folder. 

https://github.com/tweepy/tweepy
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Figure 7 : Downloading Tweepy 

  Once Tweepy is downloaded, we now run the command line and perform the 

installation.  

  The next step that was performed was creating an App on Twitter and obtaining the 

Authorization credentials to access Twitter’s stream of posts. For this, first step is to go to 

apps.twitter.com. Please note that a Twitter user account is required before registering 

ourselves as developers. 

 

Figure 8 : Creating an App 
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  The next page we will view will look like the figure that will follow. It will require 

the user to fill in the Name & Description of the App and Website of the user registering 

as a developer. 

 

Figure 9 : Registering and creating a Twitter App 

  Once this form is filled up, then after the successful creation of the app, the user 

will be redirected to the following page giving an overview of the details of the App that 

has just been created. 
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Figure 10 : Twitter App Drawer 

  From the above page, the user now needs to create access tokens, which can be 

created by going to the Keys and Access Tokens tab. The Consumer Key and Secret are 

already present there. All that was needed to do was to generate the Access Token and 

the Access Token Secret which can be done by pressing the “Generate My Access 

Token and Token Secret” Button. 
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Figure 11 : Generating Access Token and Access Token Secret 

  Since the above figure was captured from an existing app, therefore currently the 

button asks to “Regenerate My Access Token and Token Secret”. Once all the conditions 

are met, then we click on the “Test Oauth” button which takes us to the following 
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Figure 12: The OAuth Tool 

  From here, we record the four parameters for use in the Python Script for accessing 

the Twitter stream. Once all this is done, we are all set to proceed with the extraction of the 

Twitter Stream. Tweepy provides access to the well documented Twitter API. With 

tweepy, it's possible to get any object and use any method that the official Twitter API 

offers. One of the main usage cases of tweepy is monitoring for tweets and doing actions 

when some event happens. Key component of that is the StreamListener object, which 

monitors tweets in real time and catches them. The program in use has a StreamListener 

implemented and the code is set up to use OAuth. The Stream object is created, which uses 

that listener as output. Stream, being another important object in tweepy also has many 

methods and "track" is a list of keywords which will trigger the StreamListener. 

  Now that we have extracted the data, the next thing we need to do is break it into 

sentences. This part will be handled by NLTK. The installation of NLTK is similar to that 

of Tweepy. NLTK uses functions like word_tokenize() and pos_tag() for tokenizing the 

words and Part of Speech Tagging. word_tokenize() simply performs the tokenization 

process on the input text. Tokenization, as defined on Wikipedia, is breaking a stream of 
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text into words, phrases, symbols, or other meaningful elements called tokens. On the 

tokens that we obtain in the step above, we apply Part-of-Speech Tagging. Part-of-speech 

tagging (POS tagging or POST), also called grammatical tagging or word-category 

disambiguation, is the process of marking up a word in a text (corpus) as corresponding to 

a particular part of speech, based on both its definition, as well as its context—i.e. 

relationship with adjacent and related words in a phrase, sentence, or paragraph. One 

crucial thing in POS tagging is to identify named entities. These entities can be words that 

are not understood by the machine at first, but the machine has to be told what they are. 

For that, we categories these names as chunks, first. And then we apply named entity 

recognition to it, using the function ne_chunk , that belongs to the NLTK library. 

  Now we need to make our word base, which will actually be used to compare the 

words in a post, paragraph, or document, and hence find the result as to the 

positive/negative/neutral nature of the data being tested. A sample lexicon has been built 

up, using Thesaurus.com. Thesaurus is a tool that is used to find synonyms of a word. So 

if we search for a word that is positive in nature, ideally, the search results will also have 

positive words. So we make two tables for the synonym based lexicon. In the first table, 

we insert the search word itself, along with its score (+1 for positive, 0 for neutral, and -1 

for negative), and consequently the synonyms of the search word, and the score for the 

synonyms will be the same as that of the search word. In the second table, we store the 

words that have already been searched for. So, we make an entry into this table, once we 

have found the synonyms for a given word and stored in the table of words-values.  

  One problem with our word base that we build for Thesaurus.com is that even for 

some positive words like ‘good’, the synonyms listed are sometimes the words that mean 

the exact opposite, for example, ‘bad’. For that, we can make use of the function fetchone() 

from the sqlite3 library, which will ensure that a word is only inserted in the table if it does 

not already exist in the table. 
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  After populating our word base, we now proceed to check how accurately this 

works. For that, we can take one document each of type positive and negative and check 

what our system predicts based on the word base it has.  

  So we start by making two arrays – one each for positive and negative words.  We 

fetch the positive and negative words from the word-values table using their numeric scores 

of +1 and -1 respectively. Then we open a file that we want to check for its sentiment, and 

set the sentiment counter as 0 initially.as we scan the words of the file, we increment the 

sentiment counter by a certain number for every positive word that is encountered, and 

decrement the sentiment counter by a certain amount on encountering a negative word. 

Note that we may have to toggle the increment amount and decrement amount for positive 

and negative words to obtain more precise results.  

  The other thing that can be done to increase our accuracy in the testing of our 

lexicon is that we populate our word base even further. Currently the word base has more 

positive words than negative, so the positive data is likely to be tested correctly, whereas 

the negative data might be tested incorrectly and displayed as positive in the result.  
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4. CODE AND SCREENSHOTS 

4.1 Extracting Data from Twitter 

__author__ = 'SAMYAK' 

 

from tweepy import Stream 

from tweepy import OAuthHandler 

from tweepy.streaming import StreamListener 

import json 

 

ckey = '*************************' 

csecret = '**************************************************' 

atoken = ‘**************************************************’ 

asecret = '**************************************************' 
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class listener(StreamListener): 

 

    def on_data(self, data): 

 

        try: 

            #print data 

            decode = json.loads(data) 

            textT = decode["text"] + "\r\n\n" 

 

            print textT 

 

            f = open("E:/twitter.txt", "a+") 

            f.write(textT + "\r\n") 

            f.close() 

 

            return True 

 

        except Exception: 

            print "\n" 
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auth = OAuthHandler(ckey, csecret) 

auth.set_access_token(atoken, asecret) 

twitterStream = Stream(auth, listener()) 

twitterStream.filter(track=["hobbit"]) 
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4.2 Word Tokenization using NumPy and NLTK 

senti1.py 

from numpy import * 

import nltk 

import re 

import time 

try: 

    def splitParagraphIntoSentences(paragraph): 

        #break a paragraph into sentences 

         #and return a list 

        # to split by multiple characters 

        #   regular expressions are easiest (and fastest) 

        sentenceEnders = re.compile('[.]') 

        sentenceList = sentenceEnders.split(paragraph) 

        return sentenceList 

    text_file = open("C:\Users\SAMYAK\Desktop\comment.txt","r") 

    text_file1 = open("C:\Users\SAMYAK\Desktop\comment1.txt","w+") 

    lines=text_file.readlines() 

    for item in lines: 

        sentences = splitParagraphIntoSentences(item) 
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        for s in sentences: 

            #data.__add__(s.strip()) 

            data=s.strip() 

            text_file1.write(data) 

            for liness in data: 

                print liness 

 

except Exception,e: 

    print("\nThis is the exception block of senti 1") 

senti.py 

execfile('senti1.py') 

import numpy 

import nltk 

#execfile('senti1.py') 

try: 

    file_content=open("C:\Users\SAMYAK\Desktop\comment1.txt",'r') 

    tokens=nltk.word_tokenize(file_content) 

    tagged=nltk.pos_tag(tokens) 

    print tagged 

    chunkgram=r"""chunk:{<RB\w?>*<VB\w?>*<NNP>}""" 
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    chunkParser=nltk.RegexpParser(chunkgram) 

    chunked=chunkParser.parse(tagged) 

    print chunked 

    chunked.draw() 

except Exception,e: 

    print ("\n This is the exception Block of senti") 

senti2.py 

execfile('senti.py') 

from numpy import * 

import nltk 

#execfile('senti.py') 

try: 

    file_content=open("C:\Users\SAMYAK\Desktop\comment1.txt").read() 

    tokens=nltk.word_tokenize(file_content) 

    tagged=nltk.pos_tag(tokens) 

    print tagged 

    namedEnt=nltk.ne_chunk(tagged, binary=True) 

    namedEnt.draw() 

except Exception,e: 

print ("\nThis is the exception block of senti 2") 
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4.3 Building the Word Base 

__author__ = 'SAMYAK' 

 

import time 

import urllib2 

from urllib2 import urlopen 

import re 

import cookielib 

from cookielib import CookieJar 

import datetime 

import sqlite3 

import nltk 

 

cj = CookieJar() 

opener = urllib2.build_opener(urllib2.HTTPCookieProcessor(cj)) 

opener.addheaders = [('User-agent', 'Mozilla/5.0')] 

 

conn = sqlite3.connect('knowledgeBase.db') 

c = conn.cursor() 
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startingWord = 'excited' 

startingWordVal = 1 

 

synArray = [] 

 

 

def main(): 

    try: 

        page = 'http://thesaurus.com/browse/' + startingWord + '?s=t' 

        sourceCode = opener.open(page).read() 

 

        try: 

            synoNym = sourceCode.split('<div class="relevancy-list">') 

            x = 1 

            while x < len(synoNym): 

                try: 

                    synoNymSplit = synoNym[x].split('<section class="container-info 

antonyms">')[0] 

                    synoNyms = re.findall(r'<span class=\"text\">(\w*?)</span>', synoNymSplit) 

                    print synoNyms 
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                    for eachSyn in synoNyms: 

                        query = "SELECT * FROM wordVals WHERE word =?" 

                        c.execute(query, [(eachSyn)]) 

                        data = c.fetchone() 

 

                        if data is None: 

                            print 'not here yet. it is added now.' 

                            c.execute("INSERT INTO wordVals (word, value) VALUES (?,?)", 

                                      (eachSyn, startingWordVal)) 

                            conn.commit() 

                        else: 

                            print 'word already here' 

 

                except Exception, e: 

                    print str(e) 

                    print 'failed try block 3' 

 

                x += 1 

        except Exception, e: 

            print str(e) 
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            print 'failed try block 2' 

 

    except Exception, e: 

        print str(e) 

        print 'failed in the main loop' 

 

 

main() 

 

c.execute("INSERT INTO doneSyns (word, value) VALUES (?,?)", (startingWord, 

startingWordVal) ) 

conn.commit() 
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4.4 Testing the word base on a sample document 

__author__ = 'SAMYAK' 

 

import sqlite3 

import time 

 

conn = sqlite3.connect('knowledgeBase.db') 

c = conn.cursor() 

 

negativeWords = [] 

positiveWords = [] 

 

sql = "SELECT * FROM wordVals WHERE value = ?" 

 

def loadWordArrays(): 

    for negRow in c.execute(sql, [(-1)]): 

        negativeWords.append(negRow[0]) 

    print 'negative words loaded' 

 

    for posRow in c.execute(sql, [(1)]): 
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        positiveWords.append(posRow[0]) 

    print 'positive words loaded' 

 

 

def testSentiment(): 

    readFile = open('negativeIMDB.txt', 'r').read() 

 

    sentCounter = 0 

 

    for eachPosWord in positiveWords: 

        if eachPosWord in readFile: 

            print eachPosWord 

            sentCounter += .2 

 

    print '**************************************' 

 

    for eachNegWord in negativeWords: 

        if eachNegWord in readFile: 

            print eachNegWord 

            sentCounter -= 1.3 
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    if sentCounter > 0: 

        print 'this text is positive' 

 

    if sentCounter == 0: 

        print 'this text is neutral' 

 

    if sentCounter < 0: 

        print 'this text is negative' 

 

    print sentCounter 

 

loadWordArrays() 

testSentiment() 
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4.5 Screenshots 

 

Figure 13 : Text tokenization through Python and NLTK 

Task Performed: Dictionary based approach is implemented but not completed 

yet 

PyCharm IDE and  NLTK tools are used. Sub Tasks Performed: 

 Convert Document into sentences. 

 Sentences into tokens. 

 Tag the POS in tokens 

 Created a chunked and named Entity Tree of POS parts.  
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Figure 14 : Creating the chunked tree presenting POS and named entity 
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Figure 15 : Adding words to the Word Base 
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Figure 16 : Analyzing a document for sentiment   
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CHAPTER 5 : CONCLUSION 

5.1 Conclusion 

 So far, during the course of one academic year, as a part of the project, we have 

seen that quite a few tasks have been performed, like Extraction of Data from Twitter using 

python programming, where first we have made a developer account with twitter to gain 

access tokens to access the twitter data stream and then writing a python program to retrieve 

the data stream from twitter and store it in a text file. The next thing we did is tokenization, 

part of speech tagging and named entity recognition using NLTK, where we input a stream 

of sentences and break it into tokens, identify the parts of speech and the names in the 

sentences. Then we move on to building our word base in which we store words and their 

corresponding polarities. And then we finally take a document and check its sentiment 

using the word base that we build and populate. An attempt is being made to refine the 

lexicon that has been made to obtain more accurate results and determine an appropriate 

number by which the sentiment counter should be incremented in case of a positive word 

and another appropriate number by which the sentiment counter should be decremented to 

in case of a negative number. 
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