
Emotion Classification in Social Networking Sites Using

Lexicon Analysis

Project Report submitted in partial fulfillment of the requirement

for the degree of

Bachelor of Technology.

in

Information Technology

under the Supervision of

Dr. Pardeep Kumar

By

Samyak Handa, Roll No. 111411

Jaypee University of Information Technology

Waknaghat, Solan – 173234, Himachal Pradesh

- 2 -

Certificate

This is to certify that project report entitled “Emotion Classification in Social

Networking Sites using Lexicon Analysis”, submitted by Samyak Handa (Roll No.

111411) in partial fulfillment for the award of degree of Bachelor of Technology in

Information Technology to Jaypee University of Information Technology, Waknaghat,

Solan has been carried out under my supervision.

This work has not been submitted partially or fully to any other University or Institute for

the award of this or any other degree or diploma.

Date : 08.05.2015 Dr. Pardeep Kumar

Assistant Professor

(Senior Grade)

- 3 -

Acknowledgement

I express my sincere gratitude to my respected project supervisor Dr. Pardeep Kumar,

Department of Computer Science And Engineering, Jaypee University of Information

Technology, Waknaghat under whose supervision and guidance this work has been carried

out. His whole hearted involvement, advice, support and constant encouragement

throughout, have been responsible for carrying out this project work with confidence. I am

also grateful to him for providing me with required infrastructural facilities that have been

highly beneficial to me in undertaking the above mentioned project.

I am sincerely grateful to Brig. S.P. Ghrera, Professor and Head of Department of

Computer Science and Engineering, Jaypee University of Information Technology,

Waknaghat for providing all necessary facilities for the successful completion of my

project.

Last but not the least, I would also like to thank my parents, Dr. (Mrs.) Garima Handa and

Dr. Vivek Handa, and friends, Ms. Shivai Gupta, Mr. Anirudh Kaushik, Mr. Shubham

Gupta, and Mr. Ujjwal Syal, for all their moral support and technical help, in bits and

pieces, throughout the tenure of this project.

Date:08.05.2015 Samyak Handa

- 4 -

Table of Contents

S.No. Topic Page No.

1 Introduction 8

 1.1 Problem Statement 12

 1.2 Motivation 12

2 Literature Review 13

 2.1 Sentiment Analysis 14

 2.2 Classification Levels of sentiment analysis 20

 2.3 Serendio: Simple and Practical lexicon based approach to

Sentiment Analysis

21

 2.4 Method Proposed 25

 2.4.1 Extracting posts from Twitter 25

 2.4.2 Using a Dictionary Based Approach (In Progress) 30

 2.4.3 Sentiment analysis algorithms and applications: A survey 30

3 Methodology 32

4 Codes and Screenshots 41

 4.1 Extracting Data from Twitter 41

 4.2 Word Tokenization using NumPy and NLTK 44

 4.3 Building the Word Base 47

 4.4 Testing the word base on a sample document 51

 4.5 Screenshots 54

5 Conclusion 58

 5.1 Conclusion 58

 References 59

- 5 -

List of Figures

S.No. Title Page No.

1. General Flow of Process of Sentiment Analysis 11

2. Flow Chart of Procedure 19

3. Algorithm used for preprocessing 24

4. Downloading Python 32

5. Getting PIP 33

6. Locating pip in PythonXX\Scripts 33

7. Downloading Tweepy 34

8. Creating an App 34

9. Registering and creating a Twitter App 35

10. Twitter App Drawer 36

11. Generating Access Token and Access Token Secret 37

12. The OAuth Tool 38

13. Text tokenization through Python and NLTK 54

14. Creating the chunked tree presenting POS and named

entity

55

15. Adding words to the Word Base 56

16. Analyzing a document for sentiment 57

- 6 -

List of Tables

S.No. Title Page No.

1 Social Media users worldwide 10

2 Python Introduction 27

- 7 -

Abstract

Social Media is used by practically everybody. It is used as a medium to express

freely, the thoughts, opinions, beliefs, behaviours and a lot more. This information in

regard of a product, service or anything being used by people can serve a great purpose. It

serves the purpose of a feedback mechanism. In terms of business, such feedback may be

used to improve the service being provided, upgrade the product already in the market so

that better releases can be used. In terms of education, such feedback information can be

used for feedback of a course, or a teacher. Hence this project has been thought of. Right

now, what has already been developed is the part where we extract data from a social

networking site, Twitter, and the part where we try to make something meaningful out of

the sentences that have been extracted by tokenizing them and identifying parts of speech.

Also discussed in the report are the procedures to go about the above two steps and the

future work of the project, which includes comparing this lexicon based approach with a

machine learning based approach and then if possible, integrating this project with the

Student Feedback System of Jaypee University of Information Technology, Waknaghat.

- 8 -

CHAPTER 1 : INTRODUCTION

From the point of view of data mining, a social network is a heterogeneous and

multirelational data set represented by a graph. The graph is typically very large, with

nodes corresponding to objects and edges corresponding to links representing relationships

or interactions between objects. Both nodes and links have attributes. Objects may have

class labels. Links can be one-directional and are not required to be binary.

Social networks need not be social in context. There are many real-world instances

of technological, business, economic, and biologic social networks. Examples include

electrical power grids, telephone call graphs, the spread of computer viruses, the World

Wide Web, and coauthorship and citation networks of scientists. Customer networks and

collaborative filtering problems (where product recommendations are made based on the

preferences of other customers) are other examples. In biology, examples range from

epidemiological networks, cellular and metabolic networks, and food webs, to the neural

network of the nematode worm Caenorhabditis elegans (the only creature whose neural

network has been completely mapped). The exchange of e-mail messages within

corporations, newsgroups, chat rooms, friendships, sex webs (linking sexual partners), and

the quintessential “old-boy” network (i.e., the overlapping boards of directors of the largest

companies in the United States) are examples from sociology.

Small world (social) networks have received considerable attention as of late. They

reflect the concept of “small worlds,” which originally focused on networks among

individuals. The phrase captures the initial surprise between two strangers (“What a small

world!”) when they realize that they are indirectly linked to one another through mutual

acquaintances. In 1967, social psychologist Stanley Milgram performed an experiment to

solve an unresolved hypothesis circulating in those days. The hypothesis was called the

small-world problem. The claim of the small-world phenomenon is that the world, is in a

sense small, when viewed as a network of social acquaintances, could be reached through

a network of friends in a only a few steps. Milgram asked a few hundred randomly selected

people to send letters to a stock broker in Boston via intermediaries. They can send the

letter to people they knew on first name basis. Among the letters that reached the

- 9 -

destination correctly, the average path length was found to be six. This led to the phrase

“six degrees of separation”. This experiment laid the stage for algorithmic aspects this new

and emerging science.

In order to make such a claim, instead of asking, “How small is our world”, one

could ask, “What would it take for any world to be small?” In other words, we want to

construct a mathematical model of the world in which the individuals are represented as

nodes and relationships are represented as edges. This allows analysis using tools of

mathematics.

Imagine one has one hundred friends, each one of them also has hundred friends.

So at one degree of separation one connects to one hundred people and at two degrees

connects to one hundred times one hundred. Proceeding in a similar fashion, in five degrees

he is connected to nine billion people. So if everyone has one hundred friends, then within

six steps he can connect himself to the entire population.

 In today’s era, almost four out of five users of internet use social media for some

or other context. Some of these include friendship networks, blogging and micro-blogging

sites, content and video sharing sites, e-commerce sites etc. The involvement and

contribution of the users on the web is increasing day by day. One such contribution is

reviews of users in social networking sites. The current trend of giving online reviews

enables users to take better decisions who want to use a particular service or purchase a

particular product. It helps them to check the popularity of the product. It also enables them

to extract the positive or negative features of the products by reading reviews. But manual

analysis of such a huge amount of reviews can lead to biased decision. So to provide

automation, we are studying sentiment analysis. Sentiment analysis is the modern

methodology which analyze huge amount of data to extract sentiments associated with the

data. The growth of internet has a special significance in online service. Today, a large

amount of population uses social media to give their reviews. The social media Universe

is expanding.

- 10 -

Platform Monthly active Users

Facebook 1.28 Billion

Twitter 255 Million

Linkedin 1.84 Million

Youtube 1 Billion+

Google Plus 540 Million

Table 1 : Social Media users worldwide

 The use of social media is increasing day by day and this is represented by the

number of monthly users in Table 1. Increasing growth of social media users over internet

has also increased their participation in various discussions and activities simultaneously.

In case of a product, reviews of users will help to take many important decisions about the

services of the product. But manually reading such a bulk amount reviews is a very difficult

task. So there is a need of an automatic system which will lead to automatically extract the

positive and negative features of the product and make the decision making process easier.

There are many sites which do this.

Sentiment analysis is a text classification problem which deals with extracting

information present within the text. This extracted information can be then further

classified according to its polarity as positive, negative or neutral. It can be defined as a

computational task of extracting sentiments from the opinion. Some opinions represent

sentiments and some opinions do not represent any sentiment.

 Sentiments: Opinions or in other sense can be recognized as someone’s linguistic

expressions of emotions, beliefs, evaluations etc.

 Analysis: To capture the opinions from a pool of users whether the opinion is

positive, negative or neutral.

 Benefit: Provide efficient information in decision making

- 11 -

Example:

User’s Opinion: Person a: it’s a great movie (positive statement)

 Person b: the new iphone is awesome..!!! (Positive statement)

 Person c: Nah!! I didn’t like it at all.. (Negative statement)

 Polarity :

 Positive

 Negative

 Neutral

Reading huge amount of reviews and discussions over internet is not an easy task

and finally to take decision. But these discussions and reviews help in many sectors such

as improving e-learning environment, providing personalization in e-learning environment,

for getting public response to governmental activities.

Figure 1 : General Flow of Process of Sentiment Analysis

- 12 -

1.1 Problem Statement

From the given dataset, what we have to do is to extract the data and segment that data

according to parts of speech. After that we will check the sentiments and assign tags to the

extracted tokens. In the last step overall polarity of the text is calculated. If the polarity of

data is positive, it is positive sentence and if polarity is negative it is negative sentence.

1.2 Motivation

In today’s era, almost four out of five users of internet use social media for some

or other context. Some of these include friendship networks, blogging and micro-blogging

sites, content and video sharing sites, e-commerce sites etc. The involvement and

contribution of the users on the web is increasing day by day. One such contribution is

reviews of users in social networking sites. In case of a product, reviews of users will help

to take many important decisions about the services of the product. But manually reading

such a bulk amount reviews is a very difficult task. So there is a need of an automatic

system which will lead to automatically extract the positive and negative features of the

product and make the decision making process easier. There are many sites which do this.

But in case of education we can also use this sentiment analysis technique. In education,

use of computers and internet leads to the explosion of study material for both teachers and

students. This contribution of computers goes to e-learning systems and incorporation of

adaptive methods and techniques goes to the development of adaptive e-learning systems.

These adaptive e-learning systems will help each and every student in their personalized

learning process. For providing personalization, information of each student should be

stored in their personal student model. Sentiment analysis technique will help to extract

student’s emotional state for a particular subject and accordingly will make motivational

steps to create the interest of the student. Different types of tasks can be assigned to the

students according the polarity of their reviews about a particular subject in adaptive e-

learning system. This system will help to know the potential needs of a student at a

particular time. Also this adaptive e-learning system can act as a feedback for the teachers.

According to the feedback, teachers can make the changes in methods and techniques used

in learning process.

- 13 -

CHAPTER 2 : LITERATURE REVIEW

The use of computers in education has meant a great contribution for students and

teachers. The incorporation of adaptation methods and techniques allows the development

of adaptive elearning systems, where each student receives personalized guidance during

the learning process (Brusilovsky, 2001). In order to provide personalization, it is necessary

to store information about each student in what is called the student model (Kobsa, 2007).

The specific information to be collected and stored depends on the goals of the adaptive e-

learning system (e.g., preferences, learning styles, personality, emotional state, context,

previous actions, and so on).

Knowing the users’ emotions is useful not only in the educational context but also

in many others (e.g., marketing, politics, online shopping, and so on) (Feldman, 2013). In

general, in order for a system to be able to take decisions based on information about the

users, it is necessary for it to get and store information about them. One of the most

traditional procedures to obtain information about users consists of asking them to fill in

questionnaires. However, the users can find this task too time-consuming. Recently, non

intrusive techniques are preferred (de Montjoye, Quoidbach, Robic, & Pentland, 2013).

We also think that information for student models should be obtained as unobtrusively as

possible, yet without compromising the reliability of the model built (Ortigosa, Carro, &

Quiroga, 2013)

When reflecting about potential sources of information regarding user sentiment,

we looked for digital places in which the users express themselves frequently and naturally.

Nowadays, the number of users interacting with others through social networks is growing

exponentially. Therefore, we focused on social networks. There exist an increasing number

of online social networks available through the Web. From these applications, the social

network chosen for this project is Twitter. It focuses on professional relationships, and

serves as a source of information. Users are related to each other by the concept of

following. A user can see the posts, called tweets of the users he is following and can make

his tweets visible to the users who follow him/her. Users can also exchange personal text

messages.

- 14 -

When dealing with users and sentiments, it is useful to know the users’ emotional

state at a certain time (positive/neutral/negative), in order to provide each of them with

personalized assistance accordingly. Moreover, it is also interesting to know whether this

state corresponds to their ‘‘usual state’’ or, on the contrary, a noticeable variation might

have taken place. Behavior variations, as detected in the messages written by a user (when

sentiment histories are available), can indicate changes in the user’s mood, and specific

actions could be potentially needed or recommended in such cases.

2.1 Sentiment Analysis

Sentiment analysis has been defined as the computational study of opinions,

sentiments and emotions expressed in texts (Liu, 2010). For the sake of simplifying the

development of an emotion recognition tool, we have tried to avoid complex and

potentially controversial definitions of emotions and sentiments. In this direction, we take

the simplified definition of sentiment as “a personal positive or negative feeling or

opinion”. An example of a sentence transmitting a positive sentiment would be “I love it!”,

whereas “It is a terrible movie” transmits a negative one. A neutral sentiment does not

express any feeling (e.g. ‘‘I am commuting to work’’). Most of works in this research area

focus on classifying texts according to their sentiment polarity, which can be positive,

negative or neutral (Pang & Lee, 2008). Therefore, it can be considered a text classification

problem, since its goal consists of categorizing texts within classes by means of algorithmic

methods.

 The earliest researches dealing with sentiment analysis consisted on classifying

words or phrases according to semantic issues and date from the late 1990s

(Hatzivassiloglou & McKeown, 1997). Linguistic heuristics or pre-selected sets of seed

words were used. The results obtained in those works served as the basis for classifying

entire documents, considering that the average semantic orientation of the words in a

review may be an indicator of whether the text is positive or negative (Turney, 2002). The

appearance of WordNet (Miller, 1995) and, in general, of annotated corpora, increased the

production in this research area. On one hand, WordNet is useful because it allows knowing

the semantic relationships between different words. Therefore, with a reduced set of

- 15 -

polarity words, every word could be labeled as positive, negative or neutral through its

relationships. On the other hand, corpora and, in particular, the Treebanks, are very useful.

They are corpora with the syntactic structure labeled, and are of great help for training the

analyzers in order to label the words automatically.

 One of the first works that used the term ‘‘sentiment analysis’’ as we currently

know it was that presented in (Das & Chen, 2001), which analyzes messages written in

stock boards in order to extract the market sentiment. Currently, many of the works in this

area focus on document classification based on the sentiment expressed on it. One of the

best known domains is that of reviews (Pang, Lee, & Vaithyanathan, 2002) (Dave,

Lawrence, & Pennock, 2003). Review websites are examples of especially useful sources

for sentiment analysis, such as, e.g. Epinions (Epinions, 1999). Other application areas in

which sentiment analysis can be very useful are:

– Recommendation systems (Tatemura, 2000).

– Flame detection (Spertus, 1997).

– Sensitive content detection for advertising (Jin, Li, Mah, & Tong, 2007).

– Human–computer interaction (Liu, Lieberman, & Selker, 2003). – Business

Intelligence (Mishne & Glance, 2006)

– Prediction of hostile or negative sources (Abbasi, 2007).

– Classification of citizens’ opinions on a law before its approval:

‘‘eRuleMaking’’ (Cardie, Farina, Bruce, & Wagner, 2006).

– Broadcasting based on the receiver sentiment (Rogers, 2003).

– Dynamic adaptation of daily tools, such as e-mail (Carro, Ballesteros,

Ortigosa, Guardiola, & Soriano, 2012). – Marketing or politics (Feldman, 2013).

 In general, accuracy is strongly influenced by the context in which the words are

used (Turney, 2002) (Aue & Gamon, 2005) (Engström, 2004). For instance, the sentence

- 16 -

“You must read the book” is positive in a book review but is negative if the review is about

films.

 Additionally, the position of words in text is an interesting factor to consider, since

a word at the end of a sentence can change the polarity completely (Pang et al., 2002). For

example the sentence “This book is very addictive, it can be read in one sitting, but I have

to admit that it is rubbish” begins with the word “addictive” and the expression “one

sitting” which are positive in the context of book reviews, but it finish with the word

“rubbish” that is negative. Although the sentence contains two positive tokens against one

negative, it should be marked as negative because the final word nullifies all the previous

ones.

 Another issue to be considered is the presence of figures of speech in the analyzed

text. Some of them, such as the irony, can change the whole polarity of a text. Sometimes

they are difficult to detect even for a human being, if additional information is not provided

(e.g. context). Recent work in natural language processing focuses on the detection of these

figures, such as (Reyes, Rosso, & Buscaldi, 2012), that build a training dataset of messages

written in Twitter with the hashtag ‘#irony’ in order to set a model with machine-learning

techniques.

 With respect to the techniques used for sentiment analysis, two main approaches

are considered: machine-learning methods and lexicon-based approach. The survey written

by Pang and Lee (Pang & Lee, 2008) covers the most popular techniques and approaches.

 On one hand, machine-learning methods are used to classify texts. An example of

the use of machine-learning techniques in order to classify movie reviews is presented in

(Pang et al., 2002). It compares different techniques to classify movie reviews, obtaining

82.9% of accuracy when applying Support Vector Machines (SVM). Generally, it is

difficult to obtain better results, due to characteristics of natural language. However, in

specific domains, the use of machine learning algorithms for classifying texts according to

their sentiment orientation performs well.

- 17 -

 On the other hand, the lexicon-based approach consists of analyzing the text

grammar and executing a function to give a sentiment score to the text, considering a

predefined sentiment lexicon (Turney, 2002) (Taboada, Brooke, Tofiloski, Voll, & Stede,

2011). There exist some sentiment lexicon available, such as SentiWordNet (Esuli &

Sebastiani, 2006), but it has been noticed that most of the researches build their own lexicon

ad hoc, managing the semantic relationships between words with tools such as WordNet

(Miller, 1995), already mentioned above.

 The great advantage of the lexicon-based approach is that it is not necessary to have

a labeled training set to start classifying texts. This approach tends to get worse results than

machine learning approaches in specific domains, but when the domain is less bounded the

results are better. This is because the lexicon approach analyzes the text grammar, whereas

the machine-learning methods fit the algorithms to the training dataset particularities. As

an example, in (Taboada et al., 2011) the authors use a lexicon-based method with six

different corpora from different domains and obtained 75–80% accuracy. However, when

using machine learning (with a preprocessing phase to summarize movie reviews), 86.4%

accuracy was achieved (Pang & Lee, 2004). When comparing these two works, the

machine-learning approach gets a better accuracy, but it may suffer overfitting to the

training dataset, whereas the lexicon-based approach gets a lower accuracy, although is

more robust when considering different domains.

 The process is as follows : , a dictionary of words is used, in which each word has

its sentiment orientation (positive/negative emotional polarity). Each message is classified

by following a number of steps. These steps are as follows:

1. Preprocessing: In the first step, message is preprocessed by converting all the

words into lower-case. Then detection of the idioms is done and they are joined so

as to consider as a unique word. For example, as good as is converted into as-good-

as.

2. Segmentation into sentences: Then, the message is fragmented into sentences.

Dots are considered as only punctuation marks that act as a separator at this step.

- 18 -

As other punctuation marks such as commas or semicolons can be part of the

emoticons.

3. Tokenization 1(partial): In this step, tokens are extracted from each sentence. In

this only white spaces are considered to separate the tokens as other punctuation

marks such as semi colon, hyphen can be the part of emoticons.

4. Emoticon detection: Next is the detection of emoticons. Consecutive occurrence

of symbols is considered as presence of emoticons which are compared with text

files containing emoticons, extracted from Wikipedia.

5. Tokenization 2(complete): in this step, the final set of tokens are extracted by

removing all the punctuation marks such as commas, hyphen etc which are left after

the removal of emoticons.

6. Interjection detection: this step deals in detecting the interjections. The

interjections such as hehehe, lolz etc are marked as positive whereas interjections

such as uff (tiredness) are marked as negative. This detection of interjection is

implemented by the use of regular expressions. Because interjections are observed

as set of repeated letters in the word. Such as long sequence of hehehehehe can be

considered as strong happy sentiment.

7. Token score assignation: the next step is the assignment of the score to each token.

1 is assigned if the token represents positive polarity, -1 is assigned if the token

represent the negative polarity; and 0 is assigned if the token is having neutral

polarity. To assign a score, the classifier checks if the token is positive/negative

emoticons, positive/negative interjection, or whether the word is present in the

predefined dictionary. Also repetitive letters are removed in this step if the word

does not have any match in the predefined dictionary. As the language written in

the social networking sites such as face book is very casual. As in greaaaaat

repetition of a leads to undetected word. So removal of a leads to match of the word.

Sometimes spelling mistake also lead to the failure of detection of the word, so

spelling checker is also used so that word can be corrected and accordingly polarity

can be assigned.

- 19 -

& word scores

& scores

Raw text

(string)

SCORE

Raw text

(string)

Sentences

(List of

strings)

Tokenized

sentences

(List of lists of

strings)

Tokenized

sentences

Tokenized

sentences

Tokenized

sentences

Segmentation into

sentences

Preprocessing

(Lower-case, idiom

detection)

Tokenization

1(spaces)

Tokenized

sentences

Token score

assignation

Interjection

detection

Chunked

sentences

Emotion detection

Tokenization 2

(complete)

Polarity

Calculation

POS tagging &

syntactical analysis

8. Syntactical analysis: in this stage, syntactical analysis is done, where each token

is checked for whether its polarity can be reversed or not which is because of

negations. Negations are detected and polarity is reversed for that token.

9. Polarity calculation: For calculating polarity of a sentence, the numbers of tokens

that are considered for conveying sentiment after the removal of determinant,

articles, prepositions etc. are calculated. Such words are considered as stop words.

Then each token is assigned a scored and polarity score for the sentiment of a

sentence is calculated as the sum of the scores divided by the sum of all the

candidates to receive a score. The score will lie between -1 to +1.

Figure 2 : Flow Chart of Procedure

 In relation to language analysis, there are very few works dealing with texts in

languages different from English. The works found are usually adaptations of already

presented methods for English sentiment analysis. For example, in Martínez Cámara,

- 20 -

Perea, Valdivia, and Ureña (2011), different machine learning methods are applied in order

to classify movie reviews, achieving an interesting 86.84% success with SVM in Spanish

language.

 Finally, in recent years, due to the increasing amount of information delivered

through social networks, many researches are focusing on applying sentiment analysis to

these data (Go, Bhayani, & Huang, 2009) (Pak & Paroubek, 2010). However, most all these

works deal with English texts and retrieve them from Twitter, since it is easier to retrieve

data from this social network than from others such as Facebook.

2.2 Classification Levels of sentiment analysis

Sentiment analysis is also known as opinion mining. Sentiment analysis is a natural

language processing and information extraction task that aims to obtain writers feelings

expressed in positive or negative comments, questions by analyzing a large number of

documents.

An opinion is a quadruple (g, s, h, t)

Where g is the opinion (or sentiment) target, s is the sentiment about the target, h

is the opinion holder and t is the time when the opinion was expressed.

Sentiment analysis is an ongoing field of research in text mining field. SA is the

computational study of Opinions, sentiments, subjectivity toward an entity. The entity can

represent individuals, events or topics. The two expressions sentiment analysis and opinion

mining are interchangeable.

 They express a mutual meaning. But also in some contexts they have different

meaning. Opinion mining extracts and analyzes people’s opinion about an entity while

sentiment analysis identifies the sentiment expressed in a text then analyzes it. Therefore,

the target of sentiment analysis is to find opinions, identify the sentiments they express,

and then classify their polarity. Sentiment analysis can be considered as a classification

process.

- 21 -

Sentiment analysis is considered as a classification process. There are main three

classification levels in sentiment analysis:

 Document Level

 Sentence Level

 Aspect Level

1. Document Level: Document Level Sentiment Analysis aims to classify an opinion

document as expressing a positive or negative opinion or sentiment. It considers

the whole document a basic information unit (talking about one topic).

2. Sentence Level: Sentence Level aims to classify sentiment expressed in each

sentence. The first step is to identify whether the sentence is subjective or objective.

If the sentence is subjective, the sentence level sentiment analysis will determine

whether the sentence expresses positive or negative opinions. Sentiment

expressions are not necessarily subjective in nature. However, there is no

fundamental difference between document and sentence level classifications

because sentences are just short documents. Classifying text at the document level

or at the sentence level does not provide the necessary detail which is needed in

many applications, to obtain these details; we need to go to the aspect level.

3. Aspect Level: Aspect level sentiment analysis aims to classify the sentiment with

respect to the specific aspects of entities. The first step is to identify the entity and

their aspects. The opinion holder can give different opinions for different aspects

of the same entity like this sentence: “The voice quality of this phone is not good,

but the battery life is long”.

2.3 Serendio: Simple and Practical lexicon based approach to Sentiment

Analysis

Abstract: In this paper a lexicon based approach for discovering sentiments is used.

Lexicon is built from the Serendio taxonomy which consists of positive, negative, negation,

stop words and phrases. A typical tweet contains word variations, emoticons, hashtags etc.

Some processing steps such as stemming, emoticon detection and normalization,

- 22 -

exaggerated word shortening and hashtag detection are used in the whole process After the

preprocessing, the lexicon-based system classifies the tweets as positive or negative based

on contextual sentiment orientation of the words.

Introduction: Social media websites like Twitter, Facebook etc. are a major hub for users

to express their opinions online. On these social media sites, users post comments and

opinions on various topics. Hence these sites become rich sources of information to mine

for opinions and analyze user behavior and provide insights for: User behaviors, Product

feedback, User intentions, Lead generation.

Approach: Serendio Sentiment engine Extracts and analyzes sentiments for a given

product and feature set. Serendio sentiment engine currently works for eight different

domains such as banking, tablets, smartphones, televisions,apparel, gaming, automobiles

and e-readers. The lexicon is manually created in this approach. Two types of lexicons are

created.

Common lexicon: this contains data that would have the same semantic meaning or sense

across different domains and categories.

 Common or default sentiment word: positive and negative words that have the

same sentiment value or sense across different domains. For e.g. sentiment word

“good” always represents a positive sentiment and it is independent of any category.

Positive or negative sentiment words have a sentiment score of +1 or -1 to indicate

the respective polarity.

 Negation Words: Negation Words are the words which reverse the polarity of

sentiment. For example, “the battery life is not good” has negative sentiment.

 Blind Negation words: in the sentence,” The T.V needs a better remote”, “needs”

is a blind negation word. Blind negation words operate at a sentence level and

points out the absence or presence of some sense that is not desired in a product

feature.

 Split words: Split words are the words used for splitting sentences into clauses.

The split words list consists of conjunctions and punctuation marks. For example

- 23 -

the complex sentence,” Camera is good but the battery is bad” is split into two

clauses “Camera is good” and “Battery is bad”.

Category specific lexicon: Category specific lexicon contains the (1) Product Catalog

which identifies all the products that we are interested in. (2) Feature Catalog which is a

list of attributes that the product has. This enables the Serendio engine to do analysis at the

feature level. (3) Sentiment words (Positive and negative) that are specific to the category.

For example, for a category such as Televisions, a product would be Samsung TV. The

feature would be LCD screen and the word “glare” would be the category specific negative

sentiment word.

Preprocessing: A typical tweet contains word variations, emoticons, hashtags etc. The

objective of the preprocessing step is to normalize the text into an appropriate form to

extract the sentiments. Below are the preprocessing steps used.

 POS tagging

 Stemming

 Exaggerated word shortening

 Emoticon detection

 Hashtag Detection

The following algorithm is used in this paper.

- 24 -

Figure 3 : Algorithm used for preprocessing

- 25 -

2.4 Method Proposed

 In this work, it is proposed to obtain information about user emotional state by

obtaining the messages written by them on twitter and applying sentiment analysis to them.

The information. The emotion classifier will follow a lexicon-based approach. The

outcome of the lexicon classifier will be that it will show classify the tweets as

positive/negative/neutral.

2.4.1 Extracting posts from Twitter

 The programming language that has been used is Python, for extracting posts from

twitter.

 Python is a widely used general-purpose, high-level programming language. Its

design philosophy emphasizes code readability, and its syntax allows programmers to

express concepts in fewer lines of code than would be possible in languages such as C++

or Java. The language provides constructs intended to enable clear programs on both a

small and large scale.

Python supports the following programming paradigms :

 Object Oriented Programming : Object-oriented programming (OOP) is a

programming paradigm based on the concept of "objects", which are data structures

that contain data, in the form of fields, often known as attributes; and code, in the

form of procedures, often known as methods. A distinguishing feature of objects is

that an object's procedures can access and often modify the data fields of the object

with which they are associated. In object-oriented programming, computer

programs are designed by making them out of objects that interact with one another.

There is significant diversity in object-oriented programming, but most popular

languages are class-based, meaning that objects are instances of classes, which

typically also determines their type.

 Imperative : Imperative programming is focused on describing how a program

operates. In computer science terminologies, imperative programming is a

- 26 -

programming paradigm that describes computation in terms of statements that

change a program state. In much the same way that the imperative mood in natural

languages expresses commands to take action, imperative programs define

sequences of commands for the computer to perform. The term is often used in

contrast to declarative programming, which focuses on what the program should

accomplish without prescribing how to do it in terms of sequences of actions to be

taken.

 Functional Programming : In computer science, functional programming is a

programming paradigm, a style of building the structure and elements of computer

programs, that treats computation as the evaluation of mathematical functions and

avoids changing-state and mutable data. It is a declarative programming paradigm,

which means programming is done with expressions. In functional code, the output

value of a function depends only on the arguments that are input to the function, so

calling a function f twice with the same value for an argument x will produce the

same result f(x) each time. Eliminating side effects, i.e. changes in state that do not

depend on the function inputs, can make it much easier to understand and predict

the behavior of a program, which is one of the key motivations for the development

of functional programming. Functional programming has its roots in lambda

calculus, a formal system developed in the 1930s to investigate computability, the

Entscheidungs problem, function definition, function application, and recursion.

Many functional programming languages can be viewed as elaborations on the

lambda calculus. In the other well-known declarative programming paradigm, logic

programming, relations are at the base of respective languages.

 Procedural Programming : Procedural programming is a programming paradigm,

derived from structured programming, based upon the concept of the procedure

call. Procedures, also known as routines, subroutines, methods, or functions (not to

be confused with mathematical functions, but similar to those used in functional

programming), simply contain a series of computational steps to be carried out.

Any given procedure might be called at any point during a program's execution,

including by other procedures or itself. Procedural programming is a list or set of

instructions telling a computer what to do step by step and how to perform from the

- 27 -

first code to the second code. Procedural programming languages include C, Go,

Fortran, Pascal, and BASIC.

Paradigm(s)

Multi-paradigm: object-oriented, imperative, functional, procedural,

reflective

Designed by
Guido van Rossum

Developer
Python Software Foundation

Appeared in 1991; 23 years ago

Stable release

3.4.2 / 6 October 2014[1]

2.7.9 / 10 December 2014[2]

Preview release

3.4.2 rc1 / 22 September 2014[3]

2.7.9 rc1 / 26 November 2014[4]

Typing discipline
duck, dynamic, strong

Major

implementations

CPython, PyPy, IronPython, Jython

Dialects
Cython, RPython, Stackless Python

Influenced by
ABC, ALGOL 68, C, C++, Dylan, Haskell, Icon, Java, Lisp,

Modula-3, Perl

Influenced
Boo, Cobra, D, F#, Falcon, Go, Groovy, JavaScript, Julia, Ruby,

Swift

OS
Cross-platform

License
Python Software Foundation License

Filename

extension(s)

.py, .pyw, .pyc, .pyo, .pyd

Website www.python.org

Table 2 : Python Introduction

 Python has a large standard library, commonly cited as one of Python's greatest

strengths,providing tools suited to many tasks. This is deliberate and has been described as

a "batteries included" Python philosophy. For Internet-facing applications, a large number

of standard formats and protocols (such as MIME and HTTP) are supported. Modules for

creating graphical user interfaces, connecting to relational databases, pseudorandom

http://en.wikipedia.org/wiki/Programming_paradigm
http://en.wikipedia.org/wiki/Multi-paradigm_programming_language
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Imperative_programming
http://en.wikipedia.org/wiki/Functional_programming
http://en.wikipedia.org/wiki/Procedural_programming
http://en.wikipedia.org/wiki/Reflective_programming
http://en.wikipedia.org/wiki/Software_design
http://en.wikipedia.org/wiki/Guido_van_Rossum
http://en.wikipedia.org/wiki/Software_developer
http://en.wikipedia.org/wiki/Python_Software_Foundation
http://en.wikipedia.org/wiki/Software_release_life_cycle
http://en.wikipedia.org/wiki/Python_%28programming_language%29#cite_note-1
http://en.wikipedia.org/wiki/Python_%28programming_language%29#cite_note-2
http://en.wikipedia.org/wiki/Software_release_life_cycle
http://en.wikipedia.org/wiki/Python_%28programming_language%29#cite_note-3
http://en.wikipedia.org/wiki/Python_%28programming_language%29#cite_note-4
http://en.wikipedia.org/wiki/Type_system
http://en.wikipedia.org/wiki/Duck_typing
http://en.wikipedia.org/wiki/Dynamic_typing
http://en.wikipedia.org/wiki/Strong_typing
http://en.wikipedia.org/wiki/Programming_language_implementation
http://en.wikipedia.org/wiki/Programming_language_implementation
http://en.wikipedia.org/wiki/CPython
http://en.wikipedia.org/wiki/PyPy
http://en.wikipedia.org/wiki/IronPython
http://en.wikipedia.org/wiki/Jython
http://en.wikipedia.org/wiki/Dialect_%28computing%29
http://en.wikipedia.org/wiki/Cython
http://en.wikipedia.org/wiki/RPython
http://en.wikipedia.org/wiki/Stackless_Python
http://en.wikipedia.org/wiki/ABC_%28programming_language%29
http://en.wikipedia.org/wiki/ALGOL_68
http://en.wikipedia.org/wiki/C_%28programming_language%29
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Dylan_%28programming_language%29
http://en.wikipedia.org/wiki/Haskell_%28programming_language%29
http://en.wikipedia.org/wiki/Icon_%28programming_language%29
http://en.wikipedia.org/wiki/Java_%28programming_language%29
http://en.wikipedia.org/wiki/Lisp_%28programming_language%29
http://en.wikipedia.org/wiki/Modula-3
http://en.wikipedia.org/wiki/Perl
http://en.wikipedia.org/wiki/Boo_%28programming_language%29
http://en.wikipedia.org/wiki/Cobra_%28programming_language%29
http://en.wikipedia.org/wiki/D_%28programming_language%29
http://en.wikipedia.org/wiki/F_Sharp_%28programming_language%29
http://en.wikipedia.org/wiki/Falcon_%28programming_language%29
http://en.wikipedia.org/wiki/Go_%28programming_language%29
http://en.wikipedia.org/wiki/Groovy_%28programming_language%29
http://en.wikipedia.org/wiki/JavaScript
http://en.wikipedia.org/wiki/Julia_%28programming_language%29
http://en.wikipedia.org/wiki/Ruby_%28programming_language%29
http://en.wikipedia.org/wiki/Swift_%28Apple_programming_language%29
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Cross-platform
http://en.wikipedia.org/wiki/Software_license
http://en.wikipedia.org/wiki/Python_Software_Foundation_License
http://en.wikipedia.org/wiki/Filename_extension
http://en.wikipedia.org/wiki/Filename_extension
https://www.python.org/
http://en.wikipedia.org/wiki/File:Python_logo_and_wordmark.svg

- 28 -

number generators, arithmetic with arbitrary precision decimals, manipulating regular

expressions, and doing unit testing are also included.

 Some parts of the standard library are covered by specifications (for example, the

WSGI implementation wsgiref follows PEP 333), but the majority of the modules are not.

They are specified by their code, internal documentation, and test suite (if supplied).

However, because most of the standard library is cross-platform Python code, there are

only a few modules that must be altered or completely rewritten by alternative

implementations.

 The standard library is not essential to run Python or embed Python within an

application. Blender 2.49, for instance, omits most of the standard library.

 As of October 2014, the Python Package Index, the official repository of third-party

software for Python, contains more than 49,000 packages offering a wide range of

functionality, including:

 graphical user interfaces, web frameworks, multimedia, databases, networking and

communications

 test frameworks, automation and web scraping, documentation tools, system

administration

 scientific computing, text processing, image processing

 Since 2008, Python has consistently ranked in the top eight most popular

programming languages as measured by the TIOBE Programming Community Index.[17]

It is the third most popular language whose grammatical syntax is not predominantly based

on C, e.g. C++, C#, Objective-C, Java. Python does borrow heavily, however, from the

expression and statement syntax of C, making it easier for C programmers to transition

between languages.

 An empirical study found scripting languages (such as Python) more productive

than conventional languages (such as C and Java) for a programming problem involving

string manipulation and search in a dictionary. Memory consumption was often "better

than Java and not much worse than C or C++".

- 29 -

 Large organizations that make use of Python include Google, Yahoo!, CERN,

NASA, and some smaller ones like ILM, and ITA.

 Python has a very active developer community that creates many libraries which

extend the language and make it easier to use various services. One of the many such

libraries is Tweepy. Tweepy is open sourced, hosted on GitHub. GitHub is a code sharing

and publishing service and a social networking site for programmers. At the heart of

GitHub is Git, an open source project started by Linux creator Linus Torvalds. Matthew

McCullough, a trainer at GitHub, explains that Git, like other version control systems,

manages and stores revisions of projects. Although it’s mostly used for code, McCullough

says Git could be used to manage any other type of file, such as Word documents or Final

Cut projects.

 Some of Git’s predecessors, such as CVS and Subversion, have a central

“repository” of all the files associated with a project. McCullough explains that when a

developer makes changes, those changes are made directly to the central repository. With

distributed version control systems like Git, if you want to make a change to a project you

copy the whole repository to your own system. You make your changes on your local copy,

then you “check in” the changes to the central server. McCullough says this encourages

the sharing of more granular changes since you don’t have to connect to the server every

time you make a change. GitHub is a Git repository hosting service, but it adds many of its

own features. While Git is a command line tool, GitHub provides a Web-based graphical

interface. It also provides access control and several collaboration features, such as a wikis

and basic task management tools for every project.

 Tweepy can be installed in many ways. The particular way that has been used to

install Tweepy is using pip. pip is a tool for installing and managing Python packages, such

as those found in the Python Package Index. Some properties of pip are that :

 All packages are downloaded before installation. Partially-completed installation

doesn’t occur as a result.

 Care is taken to present useful output on the console.

- 30 -

 The reasons for actions are kept track of. For instance, if a package is being

installed, pip keeps track of why that package was required.

 Error messages should be useful.

 The code is relatively concise and cohesive, making it easier to use

programmatically.

 Packages don’t have to be installed as egg archives, they can be installed flat (while

keeping the egg metadata).

 Native support for other version control systems (Git, Mercurial and Bazaar)

 Uninstallation of packages.

 Simple to define fixed sets of requirements and reliably reproduce a set of packages.

 Once Tweepy is installed, we are now ready to write down and implement the code

for extracting tweets from Twitter and storing them in some file.

2.4.2 Using a Dictionary Based Approach (In Progress)

 For using a dictionary based approach on the data that has been extracted, we use

the NLTK tool in Python.

 NLTK stands for Natural Language Toolkit. NLTK is a leading platform for

building Python programs to work with human language data. It provides easy-to-use

interfaces to over 50 corpora and lexical resources such as WordNet, along with a suite of

text processing libraries for classification, tokenization, stemming, tagging, parsing, and

semantic reasoning, and an active discussion forum.

 NLTK is suitable for linguists, engineers, students, educators, researchers, and

industry users alike. NLTK is available for Windows, Mac OS X, and Linux. Best of all,

NLTK is a free, open source, community-driven project. NLTK includes graphical

demonstrations and sample data. It is accompanied by a book that explains the underlying

concepts behind the language processing tasks supported by the toolkit.

2.4.3 Sentiment analysis algorithms and applications: A survey

 Sentiment analysis is considered as Sentiment Classification Problem. The first step

in the sentiment classification problem is to extract and select text features. This is the

- 31 -

survey paper which described the sentiment analysis in detail. The survey paper gives brief

explanation to famous feature selection and sentiment classification algorithms. Some of

the current features are:

 Term presence and frequency: These features are individual words or word

n-grams and their frequency counts. It either gives the words binary weighting

or uses term frequency weights to indicate the relative importance of features.

 Parts of speech (POS): finding adjectives, as they are important indicators of

opinions.

 Opinion words and phrases: these are words commonly used to express

opinions including good or bad, like or hate. On the other hand, some phrases

express opinions without using opinion words. For example: cost me an arm

and a leg.

Negations: the appearance of negative words may change the opinion orientation like not

good is equivalent to bad

- 32 -

CHAPTER 3 : METHODOLOGY

 To start working with Python, we first need to install the Python interpreter, or

simply Python on the computer. The Python interpreter can be downloaded right from the

official website of python, www.python.org. On the website, choose the download link

appropriate for windows, and a download for a .msi file will start. Name of the .msi file

will depend upon the version of Python being downloaded.

Figure 4 : Downloading Python

 Next, we download and install an IDE to start developing in Python. The IDE that

has been used here for this project is called PyCharm, developed by the Czech company

JetBrains.

 Pip can be installed by downloading getpip.py. This file can be found on the

following link : https://pip.pypa.io/en/latest/installing.html and the file may then be

securely downloaded from this link.

http://www.python.org/
https://pip.pypa.io/en/latest/installing.html

- 33 -

Figure 5 : Getting PIP

 Once pip is installed, it will be visible in the Scripts folder of Python

Figure 6 : Locating pip in PythonXX\Scripts

 Next, we download Tweepy for installation. Tweepy can be found on

https://github.com/tweepy/tweepy. From here, we download the zip file and extract the

files in some folder.

https://github.com/tweepy/tweepy

- 34 -

Figure 7 : Downloading Tweepy

 Once Tweepy is downloaded, we now run the command line and perform the

installation.

 The next step that was performed was creating an App on Twitter and obtaining the

Authorization credentials to access Twitter’s stream of posts. For this, first step is to go to

apps.twitter.com. Please note that a Twitter user account is required before registering

ourselves as developers.

Figure 8 : Creating an App

- 35 -

 The next page we will view will look like the figure that will follow. It will require

the user to fill in the Name & Description of the App and Website of the user registering

as a developer.

Figure 9 : Registering and creating a Twitter App

 Once this form is filled up, then after the successful creation of the app, the user

will be redirected to the following page giving an overview of the details of the App that

has just been created.

- 36 -

Figure 10 : Twitter App Drawer

 From the above page, the user now needs to create access tokens, which can be

created by going to the Keys and Access Tokens tab. The Consumer Key and Secret are

already present there. All that was needed to do was to generate the Access Token and

the Access Token Secret which can be done by pressing the “Generate My Access

Token and Token Secret” Button.

- 37 -

Figure 11 : Generating Access Token and Access Token Secret

 Since the above figure was captured from an existing app, therefore currently the

button asks to “Regenerate My Access Token and Token Secret”. Once all the conditions

are met, then we click on the “Test Oauth” button which takes us to the following

- 38 -

Figure 12: The OAuth Tool

 From here, we record the four parameters for use in the Python Script for accessing

the Twitter stream. Once all this is done, we are all set to proceed with the extraction of the

Twitter Stream. Tweepy provides access to the well documented Twitter API. With

tweepy, it's possible to get any object and use any method that the official Twitter API

offers. One of the main usage cases of tweepy is monitoring for tweets and doing actions

when some event happens. Key component of that is the StreamListener object, which

monitors tweets in real time and catches them. The program in use has a StreamListener

implemented and the code is set up to use OAuth. The Stream object is created, which uses

that listener as output. Stream, being another important object in tweepy also has many

methods and "track" is a list of keywords which will trigger the StreamListener.

 Now that we have extracted the data, the next thing we need to do is break it into

sentences. This part will be handled by NLTK. The installation of NLTK is similar to that

of Tweepy. NLTK uses functions like word_tokenize() and pos_tag() for tokenizing the

words and Part of Speech Tagging. word_tokenize() simply performs the tokenization

process on the input text. Tokenization, as defined on Wikipedia, is breaking a stream of

- 39 -

text into words, phrases, symbols, or other meaningful elements called tokens. On the

tokens that we obtain in the step above, we apply Part-of-Speech Tagging. Part-of-speech

tagging (POS tagging or POST), also called grammatical tagging or word-category

disambiguation, is the process of marking up a word in a text (corpus) as corresponding to

a particular part of speech, based on both its definition, as well as its context—i.e.

relationship with adjacent and related words in a phrase, sentence, or paragraph. One

crucial thing in POS tagging is to identify named entities. These entities can be words that

are not understood by the machine at first, but the machine has to be told what they are.

For that, we categories these names as chunks, first. And then we apply named entity

recognition to it, using the function ne_chunk , that belongs to the NLTK library.

 Now we need to make our word base, which will actually be used to compare the

words in a post, paragraph, or document, and hence find the result as to the

positive/negative/neutral nature of the data being tested. A sample lexicon has been built

up, using Thesaurus.com. Thesaurus is a tool that is used to find synonyms of a word. So

if we search for a word that is positive in nature, ideally, the search results will also have

positive words. So we make two tables for the synonym based lexicon. In the first table,

we insert the search word itself, along with its score (+1 for positive, 0 for neutral, and -1

for negative), and consequently the synonyms of the search word, and the score for the

synonyms will be the same as that of the search word. In the second table, we store the

words that have already been searched for. So, we make an entry into this table, once we

have found the synonyms for a given word and stored in the table of words-values.

 One problem with our word base that we build for Thesaurus.com is that even for

some positive words like ‘good’, the synonyms listed are sometimes the words that mean

the exact opposite, for example, ‘bad’. For that, we can make use of the function fetchone()

from the sqlite3 library, which will ensure that a word is only inserted in the table if it does

not already exist in the table.

- 40 -

 After populating our word base, we now proceed to check how accurately this

works. For that, we can take one document each of type positive and negative and check

what our system predicts based on the word base it has.

 So we start by making two arrays – one each for positive and negative words. We

fetch the positive and negative words from the word-values table using their numeric scores

of +1 and -1 respectively. Then we open a file that we want to check for its sentiment, and

set the sentiment counter as 0 initially.as we scan the words of the file, we increment the

sentiment counter by a certain number for every positive word that is encountered, and

decrement the sentiment counter by a certain amount on encountering a negative word.

Note that we may have to toggle the increment amount and decrement amount for positive

and negative words to obtain more precise results.

 The other thing that can be done to increase our accuracy in the testing of our

lexicon is that we populate our word base even further. Currently the word base has more

positive words than negative, so the positive data is likely to be tested correctly, whereas

the negative data might be tested incorrectly and displayed as positive in the result.

- 41 -

4. CODE AND SCREENSHOTS

4.1 Extracting Data from Twitter

__author__ = 'SAMYAK'

from tweepy import Stream

from tweepy import OAuthHandler

from tweepy.streaming import StreamListener

import json

ckey = '*************************'

csecret = '**'

atoken = ‘**’

asecret = '**'

- 42 -

class listener(StreamListener):

 def on_data(self, data):

 try:

 #print data

 decode = json.loads(data)

 textT = decode["text"] + "\r\n\n"

 print textT

 f = open("E:/twitter.txt", "a+")

 f.write(textT + "\r\n")

 f.close()

 return True

 except Exception:

 print "\n"

- 43 -

auth = OAuthHandler(ckey, csecret)

auth.set_access_token(atoken, asecret)

twitterStream = Stream(auth, listener())

twitterStream.filter(track=["hobbit"])

- 44 -

4.2 Word Tokenization using NumPy and NLTK

senti1.py

from numpy import *

import nltk

import re

import time

try:

 def splitParagraphIntoSentences(paragraph):

 #break a paragraph into sentences

 #and return a list

 # to split by multiple characters

 # regular expressions are easiest (and fastest)

 sentenceEnders = re.compile('[.]')

 sentenceList = sentenceEnders.split(paragraph)

 return sentenceList

 text_file = open("C:\Users\SAMYAK\Desktop\comment.txt","r")

 text_file1 = open("C:\Users\SAMYAK\Desktop\comment1.txt","w+")

 lines=text_file.readlines()

 for item in lines:

 sentences = splitParagraphIntoSentences(item)

- 45 -

 for s in sentences:

 #data.__add__(s.strip())

 data=s.strip()

 text_file1.write(data)

 for liness in data:

 print liness

except Exception,e:

 print("\nThis is the exception block of senti 1")

senti.py

execfile('senti1.py')

import numpy

import nltk

#execfile('senti1.py')

try:

 file_content=open("C:\Users\SAMYAK\Desktop\comment1.txt",'r')

 tokens=nltk.word_tokenize(file_content)

 tagged=nltk.pos_tag(tokens)

 print tagged

 chunkgram=r"""chunk:{<RB\w?>*<VB\w?>*<NNP>}"""

- 46 -

 chunkParser=nltk.RegexpParser(chunkgram)

 chunked=chunkParser.parse(tagged)

 print chunked

 chunked.draw()

except Exception,e:

 print ("\n This is the exception Block of senti")

senti2.py

execfile('senti.py')

from numpy import *

import nltk

#execfile('senti.py')

try:

 file_content=open("C:\Users\SAMYAK\Desktop\comment1.txt").read()

 tokens=nltk.word_tokenize(file_content)

 tagged=nltk.pos_tag(tokens)

 print tagged

 namedEnt=nltk.ne_chunk(tagged, binary=True)

 namedEnt.draw()

except Exception,e:

print ("\nThis is the exception block of senti 2")

- 47 -

4.3 Building the Word Base

__author__ = 'SAMYAK'

import time

import urllib2

from urllib2 import urlopen

import re

import cookielib

from cookielib import CookieJar

import datetime

import sqlite3

import nltk

cj = CookieJar()

opener = urllib2.build_opener(urllib2.HTTPCookieProcessor(cj))

opener.addheaders = [('User-agent', 'Mozilla/5.0')]

conn = sqlite3.connect('knowledgeBase.db')

c = conn.cursor()

- 48 -

startingWord = 'excited'

startingWordVal = 1

synArray = []

def main():

 try:

 page = 'http://thesaurus.com/browse/' + startingWord + '?s=t'

 sourceCode = opener.open(page).read()

 try:

 synoNym = sourceCode.split('<div class="relevancy-list">')

 x = 1

 while x < len(synoNym):

 try:

 synoNymSplit = synoNym[x].split('<section class="container-info

antonyms">')[0]

 synoNyms = re.findall(r'(\w*?)', synoNymSplit)

 print synoNyms

- 49 -

 for eachSyn in synoNyms:

 query = "SELECT * FROM wordVals WHERE word =?"

 c.execute(query, [(eachSyn)])

 data = c.fetchone()

 if data is None:

 print 'not here yet. it is added now.'

 c.execute("INSERT INTO wordVals (word, value) VALUES (?,?)",

 (eachSyn, startingWordVal))

 conn.commit()

 else:

 print 'word already here'

 except Exception, e:

 print str(e)

 print 'failed try block 3'

 x += 1

 except Exception, e:

 print str(e)

- 50 -

 print 'failed try block 2'

 except Exception, e:

 print str(e)

 print 'failed in the main loop'

main()

c.execute("INSERT INTO doneSyns (word, value) VALUES (?,?)", (startingWord,

startingWordVal))

conn.commit()

- 51 -

4.4 Testing the word base on a sample document

__author__ = 'SAMYAK'

import sqlite3

import time

conn = sqlite3.connect('knowledgeBase.db')

c = conn.cursor()

negativeWords = []

positiveWords = []

sql = "SELECT * FROM wordVals WHERE value = ?"

def loadWordArrays():

 for negRow in c.execute(sql, [(-1)]):

 negativeWords.append(negRow[0])

 print 'negative words loaded'

 for posRow in c.execute(sql, [(1)]):

- 52 -

 positiveWords.append(posRow[0])

 print 'positive words loaded'

def testSentiment():

 readFile = open('negativeIMDB.txt', 'r').read()

 sentCounter = 0

 for eachPosWord in positiveWords:

 if eachPosWord in readFile:

 print eachPosWord

 sentCounter += .2

 print '**************************************'

 for eachNegWord in negativeWords:

 if eachNegWord in readFile:

 print eachNegWord

 sentCounter -= 1.3

- 53 -

 if sentCounter > 0:

 print 'this text is positive'

 if sentCounter == 0:

 print 'this text is neutral'

 if sentCounter < 0:

 print 'this text is negative'

 print sentCounter

loadWordArrays()

testSentiment()

- 54 -

4.5 Screenshots

Figure 13 : Text tokenization through Python and NLTK

Task Performed: Dictionary based approach is implemented but not completed

yet

PyCharm IDE and NLTK tools are used. Sub Tasks Performed:

 Convert Document into sentences.

 Sentences into tokens.

 Tag the POS in tokens

 Created a chunked and named Entity Tree of POS parts.

- 55 -

Figure 14 : Creating the chunked tree presenting POS and named entity

- 56 -

Figure 15 : Adding words to the Word Base

- 57 -

Figure 16 : Analyzing a document for sentiment

- 58 -

CHAPTER 5 : CONCLUSION

5.1 Conclusion

 So far, during the course of one academic year, as a part of the project, we have

seen that quite a few tasks have been performed, like Extraction of Data from Twitter using

python programming, where first we have made a developer account with twitter to gain

access tokens to access the twitter data stream and then writing a python program to retrieve

the data stream from twitter and store it in a text file. The next thing we did is tokenization,

part of speech tagging and named entity recognition using NLTK, where we input a stream

of sentences and break it into tokens, identify the parts of speech and the names in the

sentences. Then we move on to building our word base in which we store words and their

corresponding polarities. And then we finally take a document and check its sentiment

using the word base that we build and populate. An attempt is being made to refine the

lexicon that has been made to obtain more accurate results and determine an appropriate

number by which the sentiment counter should be incremented in case of a positive word

and another appropriate number by which the sentiment counter should be decremented to

in case of a negative number.

- 59 -

REFERENCES

[1] Jose M. Martin, Alvaro Ortigosa, Rosa M. Carro, “SentBuk: Sentiment analysis for

e-learning environments”, IEEE Conference, Computers in Education (SIIE), 2012,

pp. 1-6.

[2] Alvaro Ortigosa *, Jose M. Martin, Rosa M. Carro, “Sentiment analysis in

Facebook and its application to e-learning”, ELSEVIER, Journal of Computers in

Human Behavior, 2013, pp 1-15.

[3] Prabu Palanisamy, Vineet Yadav and Harsha Elchuri, “Serendio: Simple and

Practical lexicon based approach to Sentiment Analysis”, Second Joint Conference

on Lexical and Computational Semantics (*SEM), Volume 2: Seventh International

workshop on Semantic Evaluation (SemEval 2013), June 14-15, 2013, pp. 543-548.

[4] Walaa Medhat, Ahmed Hassan, Hoda Korashy, “Sentiment analysis algorithms and

applications: A survey”, ELSEVIER Ain Shams Engineering Journal, 2014, pp.

1093-1113.

[5] Ronen Feldman, “Techniques and Applications for Sentiment Analysis”,

Communications of the ACM, Vol. 56, No.4, April 2013, pp. 82-89.

[6] Xiaowen Ding Chicago, Bing Liu, Philip S. YU, “A holistic lexicon-based

approach to opinion mining” proceedings of the 2008 International Conference on

Web Search and Data Mining, 2008, pp. 231-240.

[7] http://en.wikipedia.org/wiki/Python_%28programming_language%29

[8] http://en.wikipedia.org/wiki/Object-oriented_programming

[9] http://en.wikipedia.org/wiki/Imperative_programming

[10] http://en.wikipedia.org/wiki/Functional_programming

[11] http://www.pythoncentral.io/introduction-to-tweepy-twitter-for-python/

[12] http://techcrunch.com/2012/07/14/what-exactly-is-github-anyway/

[13] https://pip.pypa.io/en/1.0.2/

[14] http://www.nltk.org/

[15] http://en.wikipedia.org/wiki/Natural_Language_Toolkit

[16] Jiawei Han and Micheline Kamber, “Graph Mining, Social Network Analysis, and

Multirelational Data Mining”, Data Mining Concepts and Techniques, 2nd edition,

Morgan Kauffman ,555-556

http://en.wikipedia.org/wiki/Python_%28programming_language%29
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Imperative_programming
http://en.wikipedia.org/wiki/Functional_programming
http://www.pythoncentral.io/introduction-to-tweepy-twitter-for-python/
http://techcrunch.com/2012/07/14/what-exactly-is-github-anyway/
https://pip.pypa.io/en/1.0.2/
http://www.nltk.org/
http://en.wikipedia.org/wiki/Natural_Language_Toolkit

