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Abstract 

In today's world most of the communication is done using electronic media. Data 

Security plays a vital role in such communication. Hence, there is a need to protect data 

from malicious attacks. This can be achieved by using Cryptographic techniques. The 

earlier encryption algorithm is Data Encryption Standard (DES) which has several 

loopholes such as small key size and sensible to brute force attack etc. and it cannot 

provide high level, efficient and exportable security. These loopholes overcome by a 

new algorithm called as Advanced Encryption Standard (AES). It was created by two 

Belgian cryptographers, Vincent Rijmen and Joan Daemen, replacing the old Data 

Encryption Standard (DES). The Federal Information Processing Standard 197 used a 

standardized version of the algorithm called Rijndael for the Advanced Encryption 

Standard. AES was successful because it was easy to implement and could run in a 

reasonable amount of time on a regular computer. 

In this project work, the plain text of 128 bits is given as input to encryption block in 

which encryption of data is made and the cipher text of 128 bits is throughout as output. 

The key length of 128bits, 192bits or 256bits is used in process of encryption. The AES 

algorithm is a block cipher that uses the same binary key for both encryption and 

decryption of data blocks. Hence it is called a symmetric key cryptography. The rounds 

in decryption are exact inverse of encryption. There are four rounds in encrypt ions viz. 

Sub Bytes, ShiftRows, MixColumns and AddRoundKey. Similarly for Decryption we 

have InvSubBytes, InvShiffilows, InvMixColumns and InvAddRoundKey. The 

number of times operation performed is depend on key length i.e. for 128bis we have 

10 rounds. Since operations in AES are difficult, there exists no attack better than key 

exhaustion to read an encrypted message. Ultimately, anyone can use AES encryption 

methods, and it is free for public or private, commercial or non-commercial use. The 

simplest version encrypts and decrypts each 128 -bit block individually. It gives better 

security than DES versions and also better throughput. 
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Chapter 1 

Introduction 

In today’s world most of the communication is done using electronic media. 

Data security plays a vital role in communication via internet. Hence, there is a need to 

protect data from malicious attacks. This can be achieved by Cryptography. The earlier 

encryption algorithm is Data Encryption Standard (DES) which has several loopholes 

like small key size that makes it prone to brute force attacks, etc. It fails to provide high 

level, efficient and exportable security. These loopholes were overcome by a new 

algorithm called Advanced Encryption Standard (AES). 

In this project work, the plain text of 128 bits is given as input to encryption block in 

which encryption of data is made and the cipher text of 128 bits is throughout as output. 

The key length of 128bits, 192bits or 256bits is used in process of encryption. The AES 

algorithm is a block cipher that uses the same binary key for both encryption and 

decryption of data blocks. 

1.1. Purpose 

Due to the advancements in the Internet technology, huge digital data are 

transmitted over the public network. As the public network is open to all, protection of 

these data is a vital issue. Thus for protecting these data from the unauthorized people, 

Cryptography has come up as a solution which plays a vital role in information security 

system against various attacks. Advanced Encryption Standard is the current standard 

for symmetric key cryptography and is considered very much secure due to it 

1.2. Motivation 

The Advanced Encryption Standard, in the following referenced as AES is the 

winner of the contest, held in 1997 by the US Government, after the Data Encryption 

Standard (DES) was found too weak. Fifteen candidates were accepted in 1998 and 

based on public comments the pool was reduced to five finalists in 1999. In October 

2000, one of these five algorithms was selected as the forthcoming standard: a slightly 

modified version of the Rijndael. The Rijndael, whose name is based on the names of 

its two Belgian inventors Joan Daemen and Vincent Rijmen, is a Block cipher, which 

means that it works on fixed -length group of bits, which are called Blocks. It takes an 
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input block of a certain size usually 128 bits, and produces a corresponding output block 

of the same size. The transformation requires a second input, which is the secret key. It 

is important to know that the secret key can be of any size (depending on the cipher 

used) and that AES uses three different key sizes: 128, 192 and 256 bits. 

1.3. Overview 

Advanced Encryption Standard (AES) is a symmetric key cryptography and it 

has block cipher with a fixed block size of 128 bit and a variable key length i.e. it may 

be 128, 192 or 256 bits. The different transformations operate on the intermediate 

results, called state. The state is a rectangular array of bytes and since the block size is 

128 bits, which is 16 bytes, the rectangular array is of dimensions 4x4. (In the Rijndael 

version with variable block size, the row size is fixed to four and the number of columns 

varies. The number of columns is the block size divided by 32 and denoted Nb). The 

cipher key is similarly pictured as a rectangular array with four rows. The number of 

columns of the cipher key is equal to the key length divided by 32.  

AES uses a variable number of rounds, which are fixed: A key of size 128 has 

10 rounds. A key of size 192 has 12 rounds. A key of size 256 has 14 rounds. An 

algorithm starts with a random number, in which the key and data encrypted with it are 

scrambled though four mathematical operation processes. The key that is used to 

encrypt the number must also be used to decrypt it. For encryption, each rounds has 

four operations SubBytes, ShiftRows, MixColumns and AddRoundKey respectively 

and for decryption it use inverse of these function. 

AES does not use a Feistel structure but processes the entire data block in parallel 

during each round using substitutions and permutation. The key that is provided as input 

is expanded into an array of forty-four 32 –bit words. Four distinct words (128 bits) 

serve as a round key for each round. Four different stages are used, one of permutation 

and three of substitution. 

- SubstituteBytes: Uses a table, referred to as an S -box, to perform a byte by byte 

substitution of the block 

- ShiftRows: A simple permutation that is performed row by row 

- MixColumns: A substitution that alters each byte in a column as function of all 

of the bytes in the column 
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- AddRoundkey: A simple bitwise XOR of the current block with a portion of the 

expanded key 

The structure is quite simple. For both encryption and decryption, the cipher begins 

with an Add Round Key stage, followed by nine rounds that each includes all four 

stages, followed by a tenth round of three stages. 

Only the Add Round Key stage makes use of the key. For this reason, the cipher 

begins and ends with an Add Round Key stage. Any other stage, applied at the 

beginning or end, is reversible without knowledge of the key and so would add no 

security. 

 

 

Figure 1: AES Structure [1] 

 



12 
 

The Add Round Key stage by itself would not be formidable. The other three stages 

together scramble the bits, but by themselves, they would provide no security because 

they do not use the key. We can view the cipher as alternating operations of XOR 

encryption (Add Round Key) of a block, followed by scrambling of the block (the other 

three stages), and followed by XOR encryption, and so on. This scheme is both efficient 

and highly secure. Each stage is easily reversible. For the Substitute Byte. Shift Row, 

and Mix Columns stages, an inverse function is used in the decryption algorithm. For 

the Add Round Key stage, the inverse is achieved by X0Ring the same round key to the 

block, using the result that A (I) B (I) B = A. 

As with most block ciphers, the decryption algorithm makes use of the expanded 

key in reverse order. However, the decryption algorithm is not identical to the 

encryption algorithm. This is a consequence of the particular structure of AES. Once it 

is established that all four stages are reversible, it is easy to verify that decryption does 

recover the plaintext. 

1.4. Background 

On January 2, 1997 the National Institute of Standards and Technology (NIST) held 

a contest for a new encryption standard. The previous standard, DES, was no longer 

adequate for security. It had been the standard since November 23, 1976. Computing 

power had increased a lot since then and the algorithm was no longer considered safe. 

The earlier ciphers can be broken with ease on modern computation systems. In 1998 

DES was cracked in less than three days by a specially made computer called the DES 

cracker. The DES cracker was created by the Electronic Frontier Foundation for less 

than $250,000 and won the RSA DES Challenge II-2.  It was also far too slow in 

software as it was developed for mid-1970’s hardware and does not produce efficient 

software code. Triple DES on the other hand, has three times as many rounds as DES 

and is correspondingly slower. As well as this, the 64 bit block size of triple DES and 

DES is not very efficient and is questionable when it comes to security Current 

alternatives to a new encryption standard were Triple DES (3DES) and International 

Data Encryption Algorithm (IDEA). The problem was IDEA and 3DES were too slow 

and IDEA was not free to implement due to patents. NIST wanted a free and easy to 

implement algorithm that would provide good security. Additionally they wanted the 

algorithm to be efficient and flexible. 
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What was required was a brand new encryption algorithm. One that would be resistant 

to all known attacks. The National Institute of Standards and Technology (NIST) 

wanted to help in the creation of a new standard. However, because of the controversy 

that went with the DES algorithm, and the years of some branches of the U.S. 

government trying everything they could to hinder deployment of secure cryptography 

this was likely to raise strong skepticism. The problem was that NIST did actually want 

to help create a new excellent encryption standard but they couldn’t get involved 

directly. Unfortunately they were really the only ones with the technical reputation and 

resources to the lead the effort. 

Table 1: First Round Qualifiers [3] 

ALGORITHM NAME SUBMITTER 

CAST-256 Entrust Technologies, Inc. 

CRYPTON Future Systems, Inc. 

DEAL Richard Outerbridge, Lars Knudsen 

DFC 

CNRS - Centre National pour la 

Recherche Scientifique - Ecole 

Normale Superieure 

E2  
NTT - Nippon Telegraph and 

Telephone Corporation 

FROG TecApro Internacional S.A. 

HPC  Rich Schroeppel 

LOKI97  
Lawrie Brown, Josef Pieprzyk, 

Jennifer Seberry 

MAGENTA  Deutsche Telekom AG 

MARS IBM 

RC 6  RSA Laboratories 

Rijndael Joaen Daemen, Vincent Rijmen 

SAFER+ Cylink Corporation 

Serpent  

Ross Anderson, Eli Biham, Lars 

Knudsen 

 

Twofish 

Bruce Schneier, John Kelsey, 

Doug Whiting, David Wagner, 

Chris Hall, Niels Ferguson 

Instead of designing or helping to design a cipher, what they did instead was to set up 

a contest in which anyone in the world could take part. The contest was announced on 

the 2nd January 1997 and the idea was to develop a new encryption algorithm that would 

be used for protecting sensitive, non-classified, U.S. government information. The 

ciphers had to meet a lot of requirements and the whole design had to be fully 

documented (unlike the DES cipher). Once the candidate algorithms had been 
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submitted, several years of scrutiny in the form of cryptographic conferences took 

place. In the first round of the competition 15 algorithms were accepted and this was 

narrowed to 5 in the second round. The fifteen algorithms are shown in table below of 

which the 5 that were selected are shown in bold. The algorithms were tested for 

efficiency and security both by some of the world’s best publicly renowned 

cryptographers and NIST itself. 

After holding the contest for three years, NIST chose an algorithm created by two 

Belgian computer scientists, Vincent Rijmen and Joan Daemen. On November 26, 2001 

the Federal Information Processing Standards Publication 197 announced a 

standardized form of the Rijndael algorithm as the new standard for encryption. This 

standard was called Advanced Encryption Standard and is currently the standard for 

encryption. 

1.5. Definitions 

Cryptography: Cryptography is the science of secret codes, enabling the 

confidentiality of communication through an insecure channel. It protects against 

unauthorized parties by preventing unauthorized alteration of use. Generally speaking, 

it uses a cryptographic system to transform a plaintext into a cipher text most of the 

time using a key. It has different Encryption and Decryption algorithms to do so. 

Cipher Text: This is the scrambled message produced as output from Encryption 

algorithm. It depends on the plaintext and the secret key. For a given message, two 

different keys will produce two different cipher texts. 

Encryption: Encryption is the process of converting data, in plain text format into a 

meaningless cipher text by means of a suitable algorithm. The algorithm takes secret 

key and plain text as input and produces cipher text. 

Decryption: Decryption is converting the meaningless cipher text into the original 

information using decryption algorithms. The decryption algorithm is inverse of 

encryption algorithm. This takes key and cipher text as input and produces original 

plain text. 

Symmetric key cryptography: Symmetric cryptography uses the same secret (private) 

key to encrypt and decrypt its data. It requires that the secret key be known by the party 

encrypting the data and the party decrypting the data. 
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Asymmetric key cryptography: Asymmetric uses both a public and private key. This 

allows for distribution of your public key to anyone with which they can encrypt the 

data they want to send securely and then it can only be decoded by the person having 

the private key.  

1.6. AES vs DES 

There is a huge, important difference between these two encryption and decryption 

algorithms, Data Encryption Standard (DES) and the Advanced Encryption Standard 

(AES): AES is secure while DES is not. The federal government developed DES 

encryption algorithms more than 30 years ago to provide cryptographic security for all 

government communications. The idea was to ensure government systems all used the 

same, secure standard to facilitate interconnectivity. DES served as the cornerstone of 

government cryptography for more than two decades, but in 1999 researchers broke the 

algorithm's 56-bit key using a distributed computer system. AES data encryption is a 

more mathematically efficient and elegant cryptographic algorithm, but its main 

strength rests in the key length options. The time required to crack an encryption 

algorithm is directly related to the length of the key used to secure the communication. 

AES allows you to choose a 128-bit, 192-bit or 256-bit key, making it exponentially 

stronger than the 56-bit key of DES.  

Data Encryption Standard is a rather old way of encrypting data so that the 

information could not be read by other people who might be intercepting traffic. DES 

is rather quite old and has since been replaced by a newer and better Advanced 

Encryption Standard. The replacement was done due to the inherent weaknesses in DES 

that allowed the encryption to be broken using certain methods of attack. Common 

applications of AES, as of the moment, are still impervious to any type of cracking 

techniques, which makes it a good choice even for top secret information. 

The inherent weakness in DES is caused by a couple of things that are already 

addressed in AES. The first is the very short 56 bit encryption key. The key is like a 

password that is necessary in order to decrypt the information. A 56 bit has a maximum 

of 256 combinations, which might seem like a lot but is rather easy for a computer to 

do a brute force attack on. AES can use a 128, 192, or 256 bit encryption key with 

2^128, 2^192, 2^256 combinations respectively. The longer encryption keys make it 

much harder to break given that the system has no other weaknesses. 
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Another problem is the small block size used by DES, which is set at 64 bits. In 

comparison, AES uses a block size that is twice as long at 128 bits. In simple terms, the 

block size determines how much information you can send before you start having 

identical blocks, which leak information. People can intercept these blocks and use read 

the leaked information. For DES with 64 bits, the maximum amount of data that can be 

transferred with a single encryption key is 32GB; at this point another key needs to be 

used. With AES, it is at 256 exabytes or 256 billion gigabytes. It is probably safe to say 

that you can use a single AES encryption key for any application. 

In terms of structure, DES uses the Feistel network which divides the block into 

two halves before going through the encryption steps. AES on the other hand, uses 

permutation-substitution, which involves a series of substitution and permutation steps 

to create the encrypted block. Summing up we can say that: 

- DES is really old while AES is relatively new 

- DES is breakable while AES is still unbreakable 

- DES uses a much smaller key size compared to AES 

- DES uses a smaller block size compared to AES 

- DES uses a balanced Feistel structure while AES uses substitution-permutation 

 

1.7. AES vs 3DES 

Advance Encryption Standard (AES) and Triple DES (TDES or 3DES) are 

commonly used block ciphers.  Whether you choose AES or 3DES depend on your 

needs. DES was developed in 1977 and it was carefully designed to work better in 

hardware than software.  DES performs lots of bit manipulation in substitution and 

permutation boxes in each of 16 rounds. Even though it seems large but according to 

today’s computing power it is not sufficient and vulnerable to brute force attack.  

Therefore, DES could not keep up with advancement in technology and it is no longer 

appropriate for security. Because DES was widely used at that time, the quick solution 

was to introduce 3DES which is secure enough for most purposes today.  3DES is a 

construction of applying DES three times in sequence.  3DES with three different keys 

(K1, K2 and K3) has effective key length is 168 bits (The use of three distinct key is 

recommended of 3DES.).   Another variation is called two-key (K1 and K3 is same) 

3DES reduces the effective key size to 112 bits which is less secure. Two-key 3DES is 
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widely used in electronic payments industry.  3DES takes three times as much CPU 

power than compare with its predecessor which is significant performance hit.  AES 

outperforms 3DES both in software and in hardware. 

AES (Advanced Encryption Standard) and 3DES, or also known as Triple DES 

(Data Encryption Standard) are two of the current standards in data encryption. While 

AES is a totally new encryption that uses the substitution-permutation network, 3DES 

is just an adaptation to the older DES encryption that relied on the balanced Feistel 

network. Basically, 3DES is just DES applied three times to the information that is 

being encrypted. 

AES uses three common encryption key lengths, 128, 192, and 256 bits. When it 

comes to 3DES the encryption key is still limited to 56 bits as dictated by the DES 

standard. But since it is applied three times, the implementer can choose to have 3 

discrete 56 bit keys, or 2 identical and 1 discrete, or even three identical keys. This 

means that 3DES can have encryption key lengths of 168, 112, or 56 bit encryption key 

lengths respectively. But due to certain vulnerabilities when reapplying the same 

encryption thrice, using 168 bits has a reduced security equivalent to 112 bits and using 

112 bits has a reduced security equivalent to 80 bits.  

3DES also uses the same block length of 64 bits, half the size that of AES at 128 

bits. Using AES provides additional insurance that it is harder to sniff leaked data from 

identical blocks. When using 3DES, the user needs to switch encryption keys every 

32GB of data transfer to minimize the possibility of leaks; identical to when using the 

standard DES encryption. 

Lastly, repeating the same process three times does take some time. With all things 

held constant, AES is much faster compared to 3DES. This line gets blurred when you 

include software, hardware, and the complexity of hardware design to the mix. So if 

you have 3DES accelerated hardware, migrating to AES implemented by software 

alone may result in slower processing times. In this aspect, there is not better solution 

than to test each one and measure their speed. But when it comes to security, AES is 

the sure winner as it is still considered unbreakable in practical use. Summing up: 

- 3DES uses identical encryption to DES while AES uses a totally different 

- 3DES has shorter and weaker encryption keys compared to AES 

- 3DES uses repeating encryption keys while AES does not 
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- 3DES also uses a shorter block length compared to AES 

- 3DES encryption takes longer than AES encryption 

 

1.8. AES vs RSA 

RSA is one of the most successful, asymmetric encryption systems today. 

Originally discovered 1973 by the British intelligence agency GCHQ, it received the 

classification “top secret”. Its civil rediscovery is owned to the cryptologists Rivest, 

Shamir and Adleman, who discovered it during an attempt to break another 

cryptographic problem. As opposed to traditional, symmetric encryption systems, RSA 

works with two different keys: A “public” key, and a “private” one. Both work 

complementary to each other, a message encrypted with one of them can only be 

decrypted by its counterpart. Since the private key can’t be calculated from the public 

key, the latter is generally made available to the public. Those properties enable 

asymmetric cryptosystems to be used in a wide array of functions, such as digital 

signatures. In the process of signing a document, a fingerprint, encrypted with RSA, is 

appended to the file, and enables the receiver to verify both the sender and the integrity 

of the document.  

The security of RSA itself is mainly based on the mathematical problem of 

integer factorization. A message that is about to be encrypted is treated as one large 

number. When encrypting the message, it is raised to the power of the key, and divided 

with remainder by a fixed product of two primes. By repeating the process with the 

other key, the plaintext can be retrieved back. The best, currently known method to 

break the encryption requires factorizing the product used in the division. Currently, it 

is not possible to calculate these factors for numbers greater than 768 bits. None the 

less, modern cryptosystems use a minimum key length of 3072 bits. 

As first publicly accessible, from the NSA for the classification "top secret" 

approved cipher, the Advanced Encryption Standard (AES) is one of the most 

frequently used and most secure encryption algorithms available today. Its story of 

success started 1997, when the National Institute of Standards and Technology NIST 

announced the search for a successor to the aging encryption standard DES. An 

algorithm named "Rijndael", developed by the Belgian cryptographists Daemen and 

Rijmen, excelled in security as well as in performance and flexibility. It came out on 
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top of several competitors, and was officially announced as the new encryption standard 

AES in 2001. The algorithm is based on several substitutions, permutations and linear 

transformations, each executed on data blocks of 16 byte – therefore the term 

blockcipher. Those operations are repeated several times, called “rounds”. During each 

round, a unique roundkey is calculated out of the encryption key, and incorporated in 

the calculations. Based on this block structure of AES, the change of a single bit either 

in the key, or in the plaintext block results in a completely different ciphertext block – 

a clear advantage over traditional stream ciphers. The difference between AES-128, 

AES-192 and AES-256 finally is the length of the key: 128, 192 or 256 bit – all drastic 

improvements compared to the 56 bit key of DES. By way of illustration: Cracking a 

128 bit AES key with a state-of-the-art supercomputer would take longer than the 

presumed age of the universe. And Boxcryptor even uses 256 bit keys! As of today, no 

practicable attack against AES exists. Therefore, AES remains the preferred encryption 

standard for governments, banks and high security systems around the world.  

They're not really directly comparable. The number commonly bandied about 

is 2048-bit RSA is about equivalent to 128-bit AES. But that number shouldn't be relied 

on without understanding the caveats. Currently the most effective way of breaking 

AES crypto (and any other unbroken symmetric cipher, for that matter) is brute-force. 

You simply try every possibility until you reach the correct result. This means that it is 

possible, and well within today's technology, to encrypt data that (assuming no better 

attack is ever found), can never be broken, ever, by anyone. Simply use enough bits in 

your key such that there isn't enough energy in the universe to try enough candidate 

keys. The numbers are smaller than you'd think: Indeed, with AES, 128-bit is secure 

against modern technology, 256 is secure against any likely future technology, and 512 

is probably secure against even never-imagined hypothetical alien technology.  

Symmetric encryption, if not broken, doesn't leave you with a math problem to 

solve. The numbers are truly and literally scrambled, and the system is devised such the 

brute-force is by far the most efficient solution. Breaking RSA, on the other hand, is 

not so hard. Instead of brute-forcing the keys, you factor the modulus into primes and 

derive the keys yourself. This is dramatically simpler to do. It's a math problem, and 

we can do math. Specifically, the speed at which primes can be factored is increasing 

faster than the speed at which symmetric keys can be brute-forced. And that's with 

today's technology. But going forward, assuming quantum computers can be improved 
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such that qbit operations are a cheap as bit operations (which many people thinks is 

fairly close; this century at most, possibly decades), then no matter how large you make 

your RSA key, breaking the key is as fast as encrypting. 

Summing up one would say that equivalent security of RSA key length versus 

AES key length changes over time. Every so often, you have to increase your RSA key 

size relative to your AES key size to account for technological advances. And even 

then, it's an estimate at best. And while a 256-bit symmetric key should be secure for 

hundreds, thousands, or perhaps hundreds of thousands of years, no RSA key of any 

length should be assumed to be secure more than a few dozen years out, since RSA is 

expected to be completely and utterly broken by Shor's algorithm. 

Table 2: Comparison between DES, AES and RSA [3] 

S.NO. FACTOR DES AES RSA 

1 Developed 1977 2000 1978 

2 Key Length Value 56 bit 
128, 192 and 

256 bits 
>1024 bits 

3 Type of Algorithm Symmetric Symmetric Asymmetric 

4 Encryption Ratio Low High High 

5 Security Attacks Inadequate 
Highly 

Secured 
Timing attack 

6 Simulation Speed Fast Fast Fast 

7 Scalability 
Scalable 

algorithm 

No scalability 

occurs  

No scalability 

occurs 

8 Power Consumption Low Low High 

9 
Hardware and Software 

Implementations 

Better in 

hardware than 

in software 

Faster and 

efficient 

Not very 

efficient 

1.9. Organization of the Report 

This report document comprises of five chapters. The Chapter 1 gives the overview to 

AES algorithm, basic definitions of terms that are used in this report and purpose of 

project and also gives the motivation behind implementing this project. Chapter 2 gives 

the details of requirements for implementing the project. It gives hardware, software 

and user requirements and the performance parameters taken into consideration. 

Chapter 3 gives the research analysis regarding AES algorithm also the basics about 

multithreading and parallel execution. Chapter 4 gives the details of each modules used 

in this project and some implementation details. Chapter 5 gives conclusion, limitations 

and further enhancement to the project. References section provide source detail where 

we get information. Appendix contains snapshots of the project code execution.  
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Chapter 2 

System Requirement Specification 

The following are the system requirements: 

2.1. Hardware Requirements 

- 512MB RAM or above  

- X86 or above processor  

- 2MB Secondary memory or above 

 

2.2. Software Requirements 

- Operating System: LINUX, Windows 

- Language used: Java 

- Editor: Eclipse IDE 

 

2.3. Functional Requirements 

The functional requirements for the implementation are as follows: 

2.3.1. Input Specification 

- An input file/string type variable should contain some data. That can be used as 

plain text for encryption 

- Secret key used for encryption should of l28bits, 192bits or 256bits 

2.3.2. Output Specification 

- The second party should know secret key that used for encryption. 

- After providing secret key as input, it displays the original plain text. 

 

2.4. Performance Parameters 

The performance of AES algorithm can be measured by considering following 

parameters: 
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2.4.1. Time Taken 

The time taken for encryption as well as decryption of a given plain text is 

calculated by using system clock time: The system clock is recorded twice i.e. before 

and after the execution of the encryption module and their difference yields the time 

taken for encryption. The same procedure is followed to calculate decryption time, just 

that decryption module is invoked instead. 

2.4.2. Throughput 

In computer technology, throughput is the amount of work that a computer can do in a 

given time period. Throughput is one of the key factors to measure performance of an 

algorithm. Throughput will be given in the general form of completions per unit of time, 

the common throughput metric is instructions per cycle, In case of AES the throughput 

depends on size of block as well as time taken for encryption/decryption given by:  

𝑇 =
𝑏𝑙𝑜𝑐𝑘 𝑠𝑖𝑧𝑒

𝑡
 

Where, 

T - Throughput  

t - Time taken to encrypt/decrypt 

2.4.3. Speedup 

In the field of computer architecture, speedup is a metric for relative performance 

improvement when executing a task. The notion of speedup was established by 

Amdahl's law, which was particularly focused in the context of parallel processing. 

However, speedup can be used more generally to show the effect of any performance 

enhancement.  

Speedup can be defined for two different types of values: throughput and 

latency. Throughput metric is instructions per cycle whereas the reciprocal of this is 

cycles per instruction or CPI; this is a latency quantity because it is the length of time 

between successive completions or occurrences. 
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Speedup is given by the following relation: 

𝑆 =
𝑇𝑜𝑙𝑑

𝑇𝑛𝑒𝑤
 

Where, 

S is the resultant speedup. 

𝑇𝑜𝑙𝑑 is the old execution time, i.e., without the improvement. 

𝑇𝑛𝑒𝑤 is the new execution time, i.e., with the improvement. 
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Chapter 3 

Literature Review 

At present, there are many research achievements in the field of block cipher. 

Especially, the Advanced Encryption Standard AES algorithm should be considered the 

excellent representative of all the researches. When the data encryption standard was 

replaced by the advanced encryption standard, the whole world shifted their concern on 

the AES algorithm. Some research showed that the AES algorithm can be implemented 

with increased speed by shifting, XOR and looking up tables, etc. The analysis of some 

research work on AES algorithm based on increasing its speed and level of security by 

altering the parameters that have been described below: 

Table 3: Research Analysis [6], [7], [8] 

Author Name Year Technique Results 

Deguang Le, 

Jinyi Chang, 

Xingdou Gou, 

Ankang 

Zhang, 

Conglan Lu  

Parallel AES 

Algorithm 

for Fast Data 

Encryption 

on GPU 

2010 

Parallel 

encryption to 

design a fast data 

encryption system 

based on GPU. 

Speedup= GPU_Time 

/CPU_Time 

(For plaintext sizes: 

10KB     Speedup=2 

1MB       Speedup=4 

200MB    Speedup=7) 

Vishal Pachori, 

Gunjan Ansari, 

Neha 

Chaudhary 

Improved 

Performance 

of Advance 

Encryption 

Standard 

using Parallel 

Computing 

2012 

Parallel 

Implementation 

of AES using 

Java Parallel 

Programming 

Framework  

Speed up achieved for 

data parallelism and 

control parallelism is 

up to 2.16 

Ritu Pahal, 

Vikas kumar  

Efficient 

Implementati

on of AES 

2013 

The same 

conventional 

algorithm is 

implemented for 

200 bit block as 

well as key size. 

Encryption time 

decreased by 20% 

Throughput is   : 

T=200/t 

(conventional being 

T=128/t) 

 

3.1. Increasing the Block Size 

Symmetric cryptography, such as in the Data Encryption Standard (DES), 

3DES, and Advanced Encryption Standard (AES), uses an identical key for the sender 

and receiver, both to encrypt the message text and decrypt the cipher text. Symmetric 

cryptography is more suitable for the encryption of a large amount of data. The AES 
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algorithm defined by the National Institute of Standards and Technology (NIST) of the 

United States has been widely accepted to replace DES as the new symmetric 

encryption algorithm. The AES algorithm is a symmetric block cipher that processes 

data blocks of 128 bits using a cipher key of length 128, 192, or 256 bits. Each data 

block consists of a 4 × 4 array of bytes called the state, on which the basic operations 

of the AES algorithm are performed.  

The proposed algorithm differs from conventional AES [7] as it has 200 bits 

block size and key size both. Number of rounds is constant and equal to ten in this 

algorithm. The key expansion and substitution box generation are done in the same way 

as in conventional AES block cipher. AES has 10 rounds for 128-bit keys, 12 rounds 

for 192-bit keys, and 14 rounds for 256-bit keys and the same conventional 128 bit 

conventional AES algorithm is implemented for 200 bit using 5*5 Matrix. After the 

implementation, the proposed work is compared with 128 bit, 192 bits & 256 bits AES 

techniques on two points. These points are encryption and decryption time and 

throughput at both encryption and decryption sides. 

At the start of encryption, 200 bit input is copied to the State array of 5*5 matrix. 

The data bytes are filled first in the column then in the rows. Then after the initial round 

key addition, ten rounds of encryption are performed. The first nine rounds are same, 

with small difference in the final round. Each of the first nine rounds consists of 4 

transformations: SubBytes, ShiftRows, MixColumns and AddRoundKey. But in final 

round Mixcolumns transformation is not used. 

- SubBytes Transformation - In this transformation, each of the byte in the state 

matrix is replaced with another byte as per the S-box. The S-box is generated 

by firstly calculating the respective reciprocal of that byte in GF (2^8) and then 

affine transform is applied. 

- ShiftRows Transformation - In this transformation, the bytes in the first row of 

the State do not change. The second, third, fourth and fifth rows shift cyclically 

to the left by one byte, two bytes, three bytes and four bytes respectively. 
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Figure 2: Shift Rows Transformation [7] 

- MixColumns Transformation - It is the operation that mixes the bytes in each 

column by the multiplication of the state with a fixed polynomial matrix. It 

completely changes the scenario of the cipher even if the all bytes look very 

similar. The Inverse Polynomial Matrix does exist in order to reverse the mix 

column transformation. 

- AddRoundKey Transformation - In AddRoundKey transformation, a round key 

is added to the State by bitwise Exclusive-OR (XOR) operation. 

 

 

Figure 3: Polynomial Matrix and Its Inverse for mix column transformation [7] 

The Decryption structure of proposed algorithm is obtained by inverting the encryption 

structure. Corresponding to the transformations in the encryption, InvSubBytes, 

InvShiftRows, InvMixColumns, and AddRoundKey are the transformations used in the 

decryption. The round keys are the same as those in encryption generated by Key 

Expansion, but are used in reverse order. 
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From the experimentation results it is deduced that for large block of data AES-200 

encryption time per bit is reduced up to 20% and decryption time per bit is increased 

up to 25%. The throughput may be defined as number of bits that can be encrypted or 

decrypted during one unit of time. As it was mentioned earlier that all AES variant has 

equal block size of 128 bits and the proposed algorithm has block size of 200 bits. Thus, 

in form of equation the throughput may be defined as: 

𝑇𝐻𝑅𝐶𝐴 =
128

𝑇𝐸𝑁𝐶
 

𝑇𝐻𝑅𝑃𝐴 =
200

𝑇𝑃𝐸𝑁𝐶
 

Where, 𝑇𝐻𝑅𝐶𝐴 is representation of throughput for conventional algorithms, 𝑇𝐻𝑅𝑃𝐴 is 

representation of throughput for proposed algorithm, 𝑇𝐸𝑁𝐶 denotes the time taken to 

encrypt the 128 bit block message, 𝐸𝑁𝐶 represents time taken to encrypt the 200 bit 

block message of conventional algorithm.  

It is observed that the throughput at encryption end of AES-200 is 15% more than AES-

128, 20% more than AES-192 and 30% more than AES-256. The decryption process 

of AES-200 is slower than conventional AES, the proposed algorithm is 50% slower 

from AES-128, 40% from AES-192, and 25% from AES-256. 

 

3.2. Parallel Execution 

To improve the performance of AES algorithm using parallel computing there are two 

major approaches Control Parallelism and Data Parallelism [8]. 

In Data Parallelism the data is divided into more than one part and send different part 

to different nodes for execution. Each node is executing the same procedure or function 

but on different data. This approach is very effective when there is large data to process. 

AES can be implemented in the following manner using DATA parallelism. Server 

sends Plaintext with the Key on node 1 and it will compute the cipher text by running 

the AES algorithm and finally sends the result back to the Server. Node 2 follows the 

same procedure. The number of nodes can be increased according to our requirement 

and number of processing units available. 
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In Control Parallelism the operation or function is divided instead of data. The different 

operation or function is assigned to different nodes and then finally the output is send 

to the server for final processing. Although it is less scalable then data parallelism but 

more speed up can be achieved by this approach. In control parallelism approach, the 

four main operations in AES algorithm are divided into two parts and combination of 

these operations is Operation 1 and Operation 2. Node 1 will execute only operation 1 

and Node 2 will perform only operation 2. Nodes will communicate the result of each 

other when needed.  

The performance of proposed architecture is measured in terms of execution time. The 

performance is measured on 256 bits of data and on two nodes or processing units. The 

execution time of converting 256 bits plain text into cipher text on Java Parallel 

Programming Framework using two nodes. The time taken by single core to encrypt 

256 bits of data is 14, 15 and 13 seconds in different run. The time taken by the 1st run 

is more than the time taken in the subsequent run because in the first run the Hazelcast 

Framework is loaded which takes time to load. In the subsequent runs the time taken 

by the modified AES algorithm is almost same i.e. execution time gets stable. Speed up 

of the modified AES algorithm is shown below: 

𝑆𝑝𝑒𝑒𝑑 𝑈𝑝 =
𝑇𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 𝑏𝑦 𝑠𝑒𝑟𝑖𝑎𝑙 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚

𝑇𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 𝑏𝑦 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚
 

Speed up for Data parallelism (1st run) = 15/10 = 1.5  

Speed up for Data parallelism (2nd run) = 14/7 = 2.0  

Speed up for Data parallelism (3rd run) = 13/6 = 2.16  

Speed up for Data parallelism (4th run) = 13/7 = 1.85  

Speed up for Control parallelism (1st run) = 15/11 = 1.36  

Speed up for Control parallelism (2nd run) = 14/7 = 2.0  

Speed up for Control parallelism (3rd run) = 13/6 = 2.16  

Speed up for Control parallelism (4th run) = 13/6 = 2.16 

In order to overcome the issue of low efficiency over the traditional CPU-based 

implementation of AES [6], researchers designed and implemented the parallel AES 

algorithm based on GPU. The implementation achieves up to 7x speedup over the 
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implementation of AES on a comparable CPU. The implementation can be applied for 

the computer forensics which requires high speed of data encryption. 

 

3.3. Threads 

In computer science, a thread of execution is the smallest sequence of 

programmed instructions that can be managed independently by a scheduler, which is 

typically a part of the operating system. The implementation of threads and processes 

differs between operating systems, but in most cases a thread is a component of a 

process. Multiple threads can exist within the same process and share resources such as 

memory, while different processes do not share these resources. In particular, the 

threads of a process share its instructions (executable code) and its context (the values 

of its variables at any given moment). 

 

Figure 4: Life cycle of a thread [16] 

 

The thread is in the "new" state, once it is constructed. In this state, it is merely 

an object in the heap, without any system resources allocated for execution. From the 

"new" state, the only thing you can do is to invoke the start() method, which puts the 

thread into the "runnable" state. Calling any method besides the start() will trigger an 

IllegalThreadStateException. 



30 
 

The start() method allocates the system resources necessary to execute the 

thread, schedules the thread to be run, and calls back the run() once it is scheduled. This 

put the thread into the "runnable" state. However, most computers have a single CPU 

and time-slice the CPU to support multithreading. Hence, in the "runnable" state, the 

thread may be running or waiting for its turn of the CPU time. A thread cannot be started 

twice, which triggers a runtime IllegalThreadStateException. The thread enters the 

"not-runnable" state when one of these events occurs: The sleep() method is called to 

suspend the thread for a specified amount of time to yield control to the other threads. 

You can also invoke the yield() to hint to the scheduler that the current thread is willing 

to yield its current use of a processor. The scheduler is, however, free to ignore this 

hint. The wait() method is called to wait for a specific condition to be satisfied. The 

thread is blocked and waiting for an I/O operation to be completed. For the "non-

runnable" state, the thread becomes "runnable" again: If the thread was put to sleep, the 

specified sleep-time expired or the sleep was interrupted via a call to the interrupt() 

method. If the thread was put to wait via wait(), its notify() or notifyAll() method was 

invoked to inform the waiting thread that the specified condition had been fulfilled and 

the wait was over.If the thread was blocked for an I/O operation, the I/O operation has 

been completed. 

A thread is in a "terminated" state, only when the run() method terminates 

naturally and exits. The method isAlive() can be used to test whether the thread is alive. 

The isAlive() returns false if the thread is "new" or "terminated". It returns true if the 

thread is "runnable" or "not-runnable". JDK 1.5 introduces a new getState() method. 

This method returns an (nested) enum of type Thread.State, which takes a constant of 

{NEW, BLOCKED, RUNNABLE, TERMINATED, WAITING}. 

NEW: the thread has not yet started. 

RUNNABLE: 

WAITING: 

BLOCKED: the thread is blocked waiting for a monitor lock. 

TIMED_WAITING: the thread is waiting with a specified waiting time. 

TERMINATED: 
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On a single processor, multithreading is generally implemented by time-

division multiplexing (as in multitasking), and the central processing unit (CPU) 

switches between different software threads. This context switching generally happens 

frequently enough that the user perceives the threads or tasks as running at the same 

time. On a multiprocessor or multi-core system, threads can be executed in a true 

concurrent manner, with every processor or core executing a separate thread 

simultaneously. To implement multiprocessing, the operating system may use hardware 

threads that exist as a hardware-supported method for better utilization of a particular 

CPU, and are different from the software threads that are a pure software construct with 

no CPU-level representation. 

Process schedulers of many modern operating systems directly support both 

time-sliced and multiprocessor threading. The operating system kernel allows 

programmers to manipulate threads by exposing required functionality through the 

system call interface. Some threading implementations are called kernel threads, 

whereas lightweight processes (LWP) are a specific type of kernel thread that share the 

same state and information. 

Programs can have user-space threads when threading with timers, signals, or 

other methods to interrupt their own execution, performing a sort of ad hoc time-slicing. 

We can think of a thread as basically a lightweight process. In order to understand this 

let us consider the two main characteristics of a process: 

Unit of resource ownership 

- A process is allocated: 

- A virtual address space to hold the process image 

- Control of some resources (files, I/O devices...) 

Unit of dispatching 

- A process is an execution path through one or more programs: 

- Execution may be interleaved with other processes 

- The process has an execution state and a dispatching priority 

If we treat these two characteristics as being independent (as does modern OS theory): 
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The unit of resource ownership is usually referred to as a process or task. This Processes 

have: 

- A virtual address space which holds the process image. 

- Protected access to processors, other processes, files, and I/O resources. 

The unit of dispatching is usually referred to a thread or a lightweight process. Thus a 

thread: 

- Has an execution state (running, ready, etc.)  

- Saves thread context when not running 

- Has an execution stack and some per-thread static storage for local variables 

- Has access to the memory address space and resources of its process 

 All threads of a process share this when one thread alters a (non-private) 

memory item, all other threads (of the process) sees that a file open with one thread, is 

available to others.  

3.3.1. Benefits of Threads over Processes 

A process runs independently and isolated of other processes. It cannot directly 

access shared data in other processes. The resources of the process, e.g. memory and 

CPU time, are allocated to it via the operating system. 

A thread is a so called lightweight process. It has its own call stack, but can 

access shared data of other threads in the same process. Every thread has its own 

memory cache. If a thread reads shared data it stores this data in its own memory cache. 

A thread can re-read the shared data. A Java application runs by default in one process. 

Within a Java application you work with several threads to achieve parallel processing 

or asynchronous behavior. 

Threads in the same process share the same address space. This allows 

concurrently running code to couple tightly and conveniently exchange data without 

the overhead or complexity of an inter process communication. When shared between 

threads, however, even simple data structures become prone to race conditions if they 

require more than one CPU instruction to update: two threads may end up attempting 

to update the data structure at the same time and find it unexpectedly changing 

underfoot. Bugs caused by race conditions can be very difficult to reproduce and isolate. 
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- Simpler Program Design: If you were to program the above ordering of reading 

and processing by hand in a single threaded application, you would have to keep 

track of both the read and processing state of each file. Instead you can start two 

threads that each just reads and processes a single file. Each of these threads 

will be blocked while waiting for the disk to read its file. While waiting, other 

threads can use the CPU to process the parts of the file they have already read. 

The result is, that the disk is kept busy at all times, reading from various files 

into memory. This results in a better utilization of both the disk and the CPU. It 

is also easier to program, since each thread only has to keep track of a single 

file. 

- More responsive programs: Another common goal for turning a single threaded 

application into a multithreaded application is to achieve a more responsive 

application. Imagine a server application that listens on some port for incoming 

requests. When a request is received, it handles the request and then goes back 

to listening. If the request takes a long time to process, no new clients can send 

requests to the server for that duration. Only while the server is listening can 

requests be received. 

An alternate design would be for the listening thread to pass the request to a worker 

thread, and return to listening immediately. The worker thread will process the request 

and send a reply to the client. This way the server thread will be back at listening sooner. 

Thus more clients can send requests to the server. The server has become more 

responsive. 

The same is true for desktop applications. If you click a button that starts a long 

task, and the thread executing the task is the thread updating the windows, buttons etc., 

then the application will appear unresponsive while the task executes. Instead the task 

can be handed off to a worker thread. While the worker thread is busy with the task, the 

window thread is free to respond to other user requests. When the worker thread is done 

it signals the window thread. The window thread can then update the application 

windows with the result of the task. The program with the worker thread design will 

appear more responsive to the user.  
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If implemented correctly then threads have some advantages of (multi) 

processes, they take: 

- Less time to create a new thread than a process, because the newly created 

thread uses the current process address space. 

- Less time to terminate a thread than a process. 

- Less time to switch between two threads within the same process, partly because 

the newly created thread uses the current process address space. 

- Less communication overheads -- communicating between the threads of one 

process is simple because the threads share everything: address space, in 

particular. So, data produced by one thread is immediately available to all the 

other threads. 

 

3.3.2 Multithreading vs Single Threading 

Multithreading is mainly found in multitasking operating systems. Multithreading is a 

widespread programming and execution model that allows multiple threads to exist 

within the context of a single process. These threads share the process's resources, but 

are able to execute independently. The threaded programming model provides 

developers with a useful abstraction of concurrent execution. Multithreading can also 

be applied to a single process to enable parallel execution on a multiprocessing system. 

Multithreaded applications have the following advantages: 

- Responsiveness: Multi-threading can allow an application to remain responsive 

to input. In a single-threaded program, if the main execution thread blocks on a 

long-running task, the entire application can appear to freeze. By moving such 

long-running tasks to a worker thread that runs concurrently with the main 

execution thread, it is possible for the application to remain responsive to user 

input while executing tasks in the background. On the other hand, in most cases 

multithreading is not the only way to keep a program responsive, with non-

blocking I/O and/or Unix signals being available for gaining similar results. 

- Faster execution: This advantage of a multithreaded program allows it to operate 

faster on computer systems that have multiple or multi-core CPUs, or across a 

cluster of machines, because the threads of the program naturally lend 

themselves to truly concurrent execution. 
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- Lower resource consumption: Using threads, an application can serve multiple 

clients concurrently using fewer resources than it would need when using 

multiple process copies of itself. For example, the Apache HTTP server, which 

uses a pool of listener threads for listening to incoming requests and a pool of 

server threads for processing those requests. 

- Better system utilization: As an example, a file-system using multiple threads 

can achieve higher throughput and lower latency since data in a faster medium 

(such as cache memory) can be retrieved by one thread while another thread 

retrieves data from a slower medium (such as external storage) without either 

thread waitng for the other to complete. 

- Simplified sharing and communication: Unlike processes, which require a 

message passing or shared memory mechanism to perform inter-process 

communication, threads can communicate through data, code and files that they 

already share. 

- Parallelization: Applications looking to utilize multi-core and multi-CPU 

systems can use multi-threading to split data and tasks into parallel sub-tasks 

and let the underlying architecture manage how the threads run, either 

concurrently on a single core or in parallel on multiple cores. GPU computing 

environments like CUDA and OpenCL use the multi-threading model where 

dozens to hundreds of threads run in parallel on a large number of cores. 

Some of the Single Threading Benefits are: 

- Programming and debugging - These activities are easier compared to 

multithreaded applications due to the reduced complexity. 

- Less Overhead - Threads add overhead to an application. 

When developing multi-threaded applications, the following must be considered: 

- Deadlocks occur when two threads hold a monitor that the other one requires. 

In essence each task is blocking the other and both tasks are waiting for the other 

monitor to be released. This forces an application to hang or deadlock. 

- Resource allocation is used to prevent deadlocks because the system determines 

if approving the resource request will render the system in an unsafe state. An 

unsafe state could result in a deadlock. The system only approves requests that 

will lead to safe states. 
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- Thread Synchronization is used when multiple threads use the same instance of 

an object. The threads accessing the object can then be locked and then 

synchronized so that each task can interact with the static object on at a time. 

Multithreading has the following drawbacks: 

- Synchronization: Since threads share the same address space, the programmer 

must be careful to avoid race conditions and other non-intuitive behaviors. In 

order for data to be correctly manipulated, threads will often need to rendezvous 

in time in order to process the data in the correct order. Threads may also require 

mutually exclusive operations (often implemented using semaphores) in order 

to prevent common data from being simultaneously modified or read while in 

the process of being modified. Careless use of such primitives can lead to 

deadlocks. 

- Thread crashes a process: An illegal operation performed by a thread crashes 

the entire process; therefore, one misbehaving thread can disrupt the processing 

of all the other threads in the application. 

- Multiple threads can interfere with each other when sharing hardware resources 

such as caches or translation lookaside buffers (TLBs). 

- Execution times of a single thread are not improved but can be degraded, even 

when only one thread is executing. This is due to slower frequencies and/or 

additional pipeline stages that are necessary to accommodate thread-switching 

hardware. 

- Hardware support for multithreading is more visible to software, thus requiring 

more changes to both application programs and operating systems than 

multiprocessing. 

A process or program has its own address space and control blocks. It is called 

heavyweight because it consumes a lot of system resources. Within a process or 

program, we can run multiple threads concurrently to improve the performance. 

Threads, unlike heavyweight process, are lightweight and run inside a single 

process - they share the same address space, the resources allocated and the 

environment of that process. It is lightweight because it runs within the context of a 

heavyweight process and takes advantage of the resources allocated for that program 

and the program’s environment. A thread must carve out its own resources within the 
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running process. For example, a thread has its own stack, registers and program counter. 

The code running within the thread works only within that context, hence, a thread (of 

a sequential flow of operations) is also called an execution context. 

Multithreading within a program improves the performance of the program by 

optimizing the usage of system resources. For example, while one thread is blocked 

(e.g., waiting for completion of an I/O operation), another thread can use the CPU time 

to perform computations, resulted in better performance and overall throughput. 

Multithreading is also necessary to provide better interactivity with the users. 

For example, in a word processor, while one thread is printing or saving the file, another 

thread can be used to continue typing. In GUI applications, multithreading is essential 

in providing a responsive user interface. 

A typical Java program runs in a single process, and is not interested in multiple 

processes. However, within the process, it often uses multiple threads to run multiple 

tasks concurrently. A standalone Java application starts with a single thread (called 

main thread) associated with the main() method. This main thread can then start new 

user threads. 

3.3.3 Synchronization 

Thread synchronization is defined as a mechanism which ensures that two or more 

concurrent processes or threads do not simultaneously execute some particular program 

segment known as mutual exclusion. When one thread starts executing the critical 

section (serialized segment of the program) the other thread should wait until the first 

thread finishes. If proper synchronization techniques are not applied, it may cause a 

race condition where, the values of variables may be unpredictable and vary depending 

on the timings of context switches of the processes or threads.  

A way of making sure that if one process is using a shared modifiable data, the 

other processes will be excluded from doing the same thing. Formally, while one 

process executes the shared variable, all other processes desiring to do so at the same 

time moment should be kept waiting; when that process has finished executing the 

shared variable, one of the processes waiting; while that process has finished executing 

the shared variable, one of the processes waiting to do so should be allowed to proceed. 

In this fashion, each process executing the shared data (variables) excludes all others 
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from doing so simultaneously. This is called Mutual Exclusion. Mutual Exclusion needs 

to be enforced only when processes access shared modifiable data - when processes are 

performing operations that do not conflict with one another they should be allowed to 

proceed concurrently. 

Mutual Exclusion Conditions: 

- If we could arrange matters such that no two processes were ever in their critical 

sections simultaneously, we could avoid race conditions. We need four 

conditions to hold to have a good solution for the critical section problem 

(mutual exclusion). 

- No two processes may at the same moment inside their critical sections. 

- No assumptions are made about relative speeds of processes or number of 

CPUs. 

- No process should outside its critical section should block other processes. 

- No process should wait arbitrary long to enter its critical section. 

Other than mutual exclusion, synchronization also deals with the following: 

- Deadlock: This occurs when many processes are waiting for a shared resource 

(critical section) which is being held by some other process. In this case the 

processes just keep waiting and execute no further. 

- Starvation: A process is waiting to enter the critical section but other processes 

keep on executing the critical section and the first process just keeps on waiting. 

- Priority inversion: When a high priority process is in the critical section, it may 

be interrupted by a medium priority process. This is the violation of rules BUT 

this may happen and may lead to some serious consequences when dealing with 

real-time problems. 

- Busy waiting: It occurs when a process is waiting for its turn but simultaneously 

it is continuously checking that now its turn to process or not. This checking is 

basically robbing the processing time of other processes. 

Processes access to critical section is controlled by using synchronization techniques.  
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In Java, there are two common synchronization strategies to prevent thread interference 

and memory consistency errors: 

- Synchronized Method: It includes the synchronized keyword in the declaration 

of the method. So when any thread invokes this synchronized method, that 

method acquires the intrinsic lock by its own (automatically) for that method's 

object and it releases the lock when the method returns, even if the return was 

caused by some uncaught exception. 

- Synchronized Statement: Here we declare a block of code to be synchronized. 

Unlike synchronized methods, synchronized statements need to specify the 

objects that provide the intrinsic lock. To improve the concurrency with fine-

grained synchronization, synchronized statements are very useful because they 

prevent unnecessary blocking. 
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Chapter 4 

Design and Implementation 

AES algorithm is the current standard for symmetric key encryption, this section gives 

a detailed explanation about the various permutation and substitution steps followed in 

order to perform encryption and decryption.   

4.1.  Detailed Description 

The following is the brief overview of various terminologies used in implementation of 

the AES algorithm: 

4.1.1.  Terminology 

State: Defines the current condition (state) of the block. That is the block of bytes that 

are currently being worked on. The state starts off being equal to the block, however it 

changes as each round of the algorithms executes. Plainly said this is the block in 

progress. 

 

Figure 5: HEX Matrix [9] 

Block: AES is a block cipher. This means that the number of bytes that it encrypts is 

fixed. AES can currently encrypt blocks of w 16 bytes at a time; no other block sizes 
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are presently a part of the AES standard. If the bytes being encrypted are larger than the 

specified block then AES is executed concurrently. This also means that AES has to 

encrypt a minimum of 16 bytes. If the plain text is smaller than 16 bytes then it must be 

padded. Simply said the block is a reference to the bytes that are processed by the 

algorithm. 

 

HEX: Defines a notation of numbers in base 16. This simply means that; the highest 

number that can be represented in a single digit is 15, rather than the usual 9 in the 

decimal (base 10) system.  

XOR: Refers to the bitwise operator Exclusive Or. XOR operates on the individual bits 

in a byte in the following way: 

0 XOR 0 = 0 

1 XOR 0 = 1 

1 XOR 1 = 0 

0 XOR 1 = 1 

Most programming languages have the XOR operator built in. Another 

interesting property of the XOR operator is that it is reversible.  

So Hex 2B XOR FF = D4. AES is an iterated symmetric block cipher, which means 

that: 

- AES works by repeating the same defined steps multiple times. 

- AES is a secret key encryption algorithm. 

- AES operates on a fixed number of bytes 

AES as well as most encryption algorithms is reversible. This means that almost the 

same steps are performed to complete both encryption and decryption in reverse order. 

The AES algorithm operates on bytes, which makes it simpler to implement and 

explain. This key is expanded into individual sub keys, a sub keys for each operation 

round. This process is called Key Expansion, which is described at the end of this 

document. As mentioned before AES is an iterated block cipher. All that means is that 
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the same operations are performed many times on a fixed number of bytes. These 

operations can easily be broken down to the following functions: 

- ADD ROUND KEY 

- SUB BYTE 

- SHIFT ROW 

- MIX COLUMN 

An iteration of the above steps is called a round. The amount of rounds of the 

algorithm depends on the key size. The only exception being that in the last round the 

Mix Column step is not performed to make the algorithm reversible during decryption. 

Table 4: Number of rounds for various key sizes [3] 

Key Size  

(Bytes) 

Block Size  

(Bytes) 

Rounds 

16 16 10 

24 16 12 

32 16 14 

 

Encryption 

The following tables illustrates the number of rounds required for encryption depending 

on different key size length: 

Table 5: AES Encryption cipher using 16-bit key [3] 

Round Function 

- Add Round Key(State) 

1 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

2 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

3 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

4 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

5 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

6 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

7 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

8 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

9 Add Round Key(Shift Row(Byte Sub(State))) 
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Table 6: AES Encryption cipher using 24-bit key [3] 

Round Function 

- Add Round Key(State) 

1 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

2 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

3 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

4 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

5 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

6 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

7 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

8 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

9 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

10 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

11 Add Round Key(Shift Row(Byte Sub(State))) 

 

Table 7: AES Encryption cipher using 32-bit key [3] 

Round Function 

- Add Round Key(State) 

1 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

2 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

3 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

4 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

5 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

6 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

7 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

8 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

9 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

10 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

11 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

12 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

13 Add Round Key(Shift Row(Byte Sub(State))) 
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Decryption 

The following tables illustrates the number of rounds required for encryption depending 

on different key size length: 

Table 8: AES Decryption cipher using 16-bit key [3] 

Round Function 

- Add Round Key(State) 

1 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

2 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

3 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

4 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

5 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

6 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

7 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

8 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

9 Add Round Key(Byte Sub(Shift Row(State))) 

 

Table 9: AES Decryption cipher using 24-bit key [3] 

Round Function 

- Add Round Key(State) 

1 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

2 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

3 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

4 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

5 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

6 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

7 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

8 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

9 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

10 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

11 Add Round Key(Byte Sub(Shift Row(State))) 
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Table 10: AES Decryption cipher using 32-bit key [3] 

Round Function 

- Add Round Key(State) 

1 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

2 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

3 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

4 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

5 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

6 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

7 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

8 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

9 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

10 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

11 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

12 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

13 Add Round Key(Byte Sub(Shift Row(State))) 

 

4.2.  AES Cipher Functions 

Given below is the detailed description of all the 4 functions and the corresponding 

inverse functions that are used in various rounds of encryption as well as decryption 

process: 

4.2.1. Add Round Key 

Each of the 16 bytes of the state is XORed against each of the 16 bytes of a 

portion of the expanded key for the current round.  

 
Figure 6: Working of Add Round Key [1] 
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The Expanded Key bytes are never reused. So once the first 16 bytes are XORed against 

the first16 bytes of the expanded key then the expanded key bytes 1-16 are never used 

again. The next time the AddRound Key function is called bytes 17-32 are XORed 

against the state.  

 

4.2.2. Byte Sub 

During encryption each value of the state is replaced with the corresponding SBOX 

value. 

 

 

Figure 7: SBOX [1] 

 

For example HEX 19 would get replaced with HEX D4 

  

Whereas during decryption each value in the state is replaced with the corresponding 

inverse of the SBOX. 
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Figure 8: Inverse SBOX [1] 

 

For example HEX D4 would get replaced with HEX 19 

 

4.2.3. Shift Row 

Arranges the state in a matrix and then performs a circular shift for each row. 

This is not a bit wise shift. The circular shift just moves each byte one space over. A 

byte that was in the second position may end up in the third position after the shift. The 

circular part of it specifies that the byte in the last position shifted one space will end 

up in the first position in the same row. 

In Detail: 

- The state is arranged in a 4x4 matrix (square) 

- The confusing part is that the matrix is formed vertically but shifted 

horizontally. So the first 4 bytes of the state will form the first bytes in each row. 

So bytes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Will form a matrix: 

1 5   9 13 

2 6 10 14 

3 7 11 15 

4 8 12 16 
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Each row is then moved over (shifted) 1, 2 or 3 spaces over to the right, depending on 

the row of the state. First row is never shifted 

Row1 0 

Row2 1 

Row3 2 

Row4 3 

The following is the illustration of how the individual bytes are first arranged in the 

table and then moved over (shifted). 

Blocks 16 bytes long: 

From   To 

1 5   9 13  1 5 9 13 

2 6 10 14   6 10 14 2 

3 7 11 15   11 15 3 7 

4 8 12 16   16 4 8 12 

 

During decryption the same process is reversed and all rows are shifted to the left: 

From   To 

1 5   9 13    1   5   9 13 

2 6 10 14   14   2   6 10 

3 7 11 15  11 15   3   7 

4 8 12 16    8 12 16   4 

 

4.2.4. Mix Column 

This is perhaps the hardest step to both understand and explain. There are two parts 

to this step. The first will explain which parts of the state are multiplied against which 

parts of the matrix. 

Matrix Multiplication: 

The state is arranged into a 4 row table (as described in the Shift Row function). 

The multiplication is performed one column at a time (4 bytes). Each value in the 

column is eventually multiplied against every value of the matrix (16 total 

multiplications). The results of these multiplications are XORed together to produce 

only 4 result bytes for the next state. Therefore 4 bytes input, 16 multiplications 12 

XORs and 4 bytes output. The multiplication is performed one matrix row at a time 

against each value of a state column. 
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Multiplication Matrix 

2 3 1 1 

1 2 3 1 

1 1 2 3 

3 1 1 2 

 

16 byte State 

b1 b5   b9 b13 

b2 b6 b10 b14 

b3 b7 b11 b15 

b4 b8 b12 b16 

 

The first result byte is calculated by multiplying 4 values of the state column against 4 

values of the first row of the matrix. The result of each multiplication is then XORed to 

produce 1 byte: 

b1 = (b1 * 2) XOR (b2*3) XOR (b3*1) XOR (b4*1) 

 

The second result byte is calculated by multiplying the same 4 values of the state 

column against 4 values of the second row of the matrix. The result of each 

multiplication is then XORed to produce 1 byte: 

b2 = (b1 * 1) XOR (b2*2) XOR (b3*3) XOR (b4*1) 

 

The third result byte is calculated by multiplying the same 4 values of the state column 

against 4 values of the third row of the matrix. The result of each multiplication is then 

XORed to produce 1 byte: 

b3 = (b1 * 1) XOR (b2*1) XOR (b3*2) XOR (b4*3) 

 

The fourth result byte is calculated by multiplying the same 4 values of the state column 

against 4 values of the fourth row of the matrix. The result of each multiplication is then 

XORed to produce 1 byte: 

b4 = (b1 * 3) XOR (b2*1) XOR (b3*1) XOR (b4*2) 
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This procedure is repeated again with the next column of the state, until there are no 

more state columns.  

Putting it all together: 

The first column will include state bytes 1-4 and will be multiplied against the matrix 

in the following manner: 

 

b1 = (b1 * 2) XOR (b2*3) XOR (b3*1) XOR (b4*1) 

b2 = (b1 * 1) XOR (b2*2) XOR (b3*3) XOR (b4*1) 

b3 = (b1 * 1) XOR (b2*1) XOR (b3*2) XOR (b4*3) 

b4 = (b1 * 3) XOR (b2*1) XOR (b3*1) XOR (b4*2) 

(b1= specifies the first byte of the state) 

 

The second column will be multiplied against the second row of the matrix in the 

following manner. 

b5 = (b5 * 2) XOR (b6*3) XOR (b7*1) XOR (b8*1) 

b6 = (b5 * 1) XOR (b6*2) XOR (b7*3) XOR (b8*1) 

b7 = (b5 * 1) XOR (b6*1) XOR (b7*2) XOR (b8*3) 

b8 = (b5 * 3) XOR (b6*1) XOR (b7*1) XOR (b8*2) 

And so on until all columns of the state are exhausted. 

 

4.2.5. Mix Column Inverse 

During decryption the Mix Column the multiplication matrix is changed to: 

0E 0B 0D 09 

09 0E 0B 0D 

0D 09 0E 0B 

0B 0D 09 0E 

Apart from the change to the matrix table the function performs the same steps as during 

encryption. 

Mix Column Example 

The following examples are denoted in HEX. 

- Mix Column Example during Encryption 

Input = D4 BF 5D 30 

Output(0) = (D4 * 2) XOR (BF*3) XOR (5D*1) XOR (30*1) 

= E(L(D4) + L(02)) XOR E(L(BF) + L(03)) XOR 5D XOR 30 
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= E(41 + 19) XOR E(9D + 01) XOR 5D XOR 30 

= E(5A) XOR E(9E) XOR 5D XOR 3010 

= B3 XOR DA XOR 5D XOR 30 

= 04 

 

Output(1) = (D4 * 1) XOR (BF*2) XOR (5D*3) XOR (30*1) 

= D4 XOR E(L(BF)+L(02)) XOR E(L(5D)+L(03)) XOR 30 

= D4 XOR E(9D+19) XOR E(88+01) XOR 30 

= D4 XOR E(B6) XOR E(89) XOR 30 

= D4 XOR 65 XOR E7 XOR 30 

= 66 

 

Output(2) = (D4 * 1) XOR (BF*1) XOR (5D*2) XOR (30*3) 

= D4 XOR BF XOR E(L(5D)+L(02)) XOR E(L(30)+L(03)) 

= D4 XOR BF XOR E(88+19) XOR E(65+01) 

= D4 XOR BF XOR E(A1) XOR E(66) 

= D4 XOR BF XOR BA XOR 50 

= 81 

 

Output(3) = (D4 * 3) XOR (BF*1) XOR (5D*1) XOR (30*2) 

= E(L(D4)+L(3)) XOR BF XOR 5D XOR E(L(30)+L(02)) 

= E(41+01) XOR BF XOR 5D XOR E(65+19) 

= E(42) XOR BF XOR 5D XOR E(7E) 

= 67 XOR BF XOR 5D XOR 60 

= E5 

 

- Mix Column during Decryption 

Input 04 66 81 E5 

Output(0) = (04 * 0E) XOR (66*0B) XOR (81*0D) XOR (E5*09) 

=E(L(04)+L(0E)) XOR E(L(66)+L(0B)) XOR E(L(81)+L(0D)) XOR E(L(E5)+L(09)) 

= E(32+DF) XOR E(1E+68) XOR E(58+EE) XOR E(20+C7) 

= E(111-FF) XOR E(86) XOR E(146-FF) XOR E(E7) 

= E(12) XOR E(86) XOR E(47) XOR E(E7) 

= 38 XOR B7 XOR D7 XOR 8C 
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= D4 

 

Output(1) = (04 * 09) XOR (66*0E) XOR (81*0B) XOR (E5*0D) 

= E(L(04)+L(09)) XOR E(L(66)+L(0E)) XOR E(L(81)+L(0B)) XOR E(L(E5)+L(0D)) 

= E(32+C7) XOR E(1E+DF) XOR E(58+68) XOR E(20+ EE) 

= E(F9) XOR E(FD) XOR E(C0) XOR E(10E-FF) 

= E(F9) XOR E(FD) XOR E(C0) XOR E(0F) 

= 24 XOR 52 XOR FC XOR 35 

= BF 

 

Output(2) = (04 * 0D) XOR (66*09) XOR (81*0E) XOR (E5*0B) 

=E(L(04)+L(0D)) XOR E(L(66)+L(09) XOR E(L(81)+L(0E)) XOR E(L(E5)+(0B)) 

= E(32+EE) XOR E(1E+C7) XOR E(58+DF) XOR E(20+68) 

= E(120-FF) XOR E(E5) XOR E(137-FF) XOR E(88) 

= E(21) XOR E(E5) XOR E(38) XOR E(88) 

= 34 XOR 7B XOR 4F XOR 5D 

= 5D 

 

Output(3) = (04 * 0B) XOR (66*0D) XOR (81*09) XOR (E5*0E) 

= E(L(04)+L(0B)) XOR E(L(66)+L(0D)) XOR E(L(81)+L(09)) XOR E(L(E5)+L(0E)) 

= E(32+68) XOR E(1E+EE) XOR E(58+C7) XOR E(20+DF) 

= E(9A) XOR E(10C-FF) XOR E(11F-FF) XOR E(FF) 

= E(9A) XOR E(0D) XOR E(20) XOR E(FF) 

= 2C XOR F8 XOR E5 XOR 01 

= 30 

 

4.2.6. Key Expansion  

Prior to encryption or decryption the key must be expanded. The expanded key 

is used in the Add Round Key function defined above. Each time the Add Round Key 

function is called a different part of the expanded key is XORed against the state. In 

order for this to work the Expanded Key must be large enough so that it can provide 

key material for every time the AddRoundKey function is executed. The Add Round 

Key function gets called for each round as well as one extra time at the beginning of 

the algorithm. 
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Therefore the size of the expanded key will always be equal to: 

16 * (number of rounds + 1). 

The 16 in the above function is actually the size of the block in bytes. This 

provides key material for every byte in the block during every round +1 

Since the key size is much smaller than the size of the sub keys, the key is 

actually stretched out to provide enough key space for the algorithm. The key expansion 

routine executes a maximum of 4 consecutive functions. These functions are: 

ROT WORD 

SUB WORD  

RCON 

EK 

K 

An iteration of the above steps is called a round. The amount of rounds of the key 

expansion algorithm depends on the key size. 

Table 11: Key Expansion [3] 

 

 

The first bytes of the expanded key are always equal to the key. If the key is 16 bytes 

long the first 16 bytes of the expanded key will be the same as the original key. If the 

key size is 32 bytes then the first 32 bytes of the expanded key will be the same as the 

original key. 

Each round adds 4 bytes to the Expanded Key. With the exception of the first 

rounds each round also takes the previous rounds 4 bytes as input operates and returns 

4 bytes. One more important note is that not all of the 4 functions are always called in 

each round. The algorithm only calls all 4 of the functions every: 

4 Rounds for a 16 byte Key 

6 Rounds for a 24 byte Key 

8 Rounds for a 32 byte Key 

The rest of the rounds only a K function result is XORed with the result of the 

EK function. There is an exception of this rule where if the key is 32 bytes long an 
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additional call to the Sub Word function is called every 8 rounds starting on the 13th 

round. 

 

Key Expansion Functions 

The following are the various functions used in expanding the given key: 

- Rot Word (4 bytes) 

This does a circular shift on 4 bytes similar to the Shift Row Function. 

1,2,3,4 to 2,3,4,1 

- Sub Word (4 bytes) 

This step applies the S-box value substitution as described in Bytes Sub function to 

each of the 4 bytes in the argument. 

Rcon((Round/(KeySize/4))-1) 

This function returns a 4 byte value based on the following table 

Rcon(0) = 01000000 

Rcon(1) = 02000000 

Rcon(2) = 04000000 

Rcon(3) = 08000000 

Rcon(4) = 10000000 

Rcon(5) = 20000000 

Rcon(6) = 40000000 

Rcon(7) = 80000000 

Rcon(8) = 1B000000 

Rcon(9) = 36000000 

Rcon(10) = 6C000000 

Rcon(11) = D8000000 

Rcon(12) = AB000000 

Rcon(13) = 4D000000 

Rcon(14) = 9A000000 

For example for a 16 byte key Rcon is first called in the 4th round  

(4/(16/4))-1=0 

In this case Rcon will return 01000000  

For a 24 byte key Rcon is first called in the 6th round 

(6/(24/4))-1=0 

In this case Rcon will also return 01000000 
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- EK(Offset) 

EK function returns 4 bytes of the Expanded Key after the specified offset. For 

example if offset is 0 then EK will return bytes 0,1,2,3 of the Expanded Key 

- K(Offset) 

K function returns 4 bytes of the Key after the specified offset. For example if offset 

is 0 then K will return bytes 0,1,2,3 of the Expanded Key 

Since the expansion algorithm changes depending on the length of the key, it is 

extremely difficult to explain in writing. This is why the explanation of the Key 

Expansion Algorithm is provided in a table format. 

- 16 byte Key Expansion:  

Each round (except rounds 0, 1, 2 and 3) will take the result of the previous round and 

produce a 4 byte result for the current round. Notice the first 4 rounds simply copy the 

total of 16 bytes of the key. 

Table 12: 16-byte key expansion [9] 
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- 24 byte Key Expansion 

Each round (except rounds 0, 1, 2, 3, 4 and 5) will take the result of the previous round 

and produce a 4 byte result for the current round. Notice the first 6 rounds simply copy 

the total of 24 bytes of the key. 

 

Table 13: 24-byte key expansion [9] 
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- 32 byte Key Expansion 

Each round (except rounds 0, 1, 2, 3, 4, 5, 6 and 7) will take the result of the previous 

round and produce a 4 byte result for the current round. Notice the first 8 rounds simply 

copy the total of 32 bytes of the key. 

 

Table 14: 32-byte key expansion [9] 
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4.3. Implementation details 

The following functions are required by both encryption and decryption modules as 

these functions are required for key generation and some computational steps: 

generateSubkeys 

Input: byte[] key  

Returns: byte[] tmp 

Pseudo Code: 

byte[][] tmp = new byte[Nb * (Nr + 1)][4] 

int i = 0 

while (i < Nk)  

tmp[i][0] = key[i * 4] 

tmp[i][1] = key[i * 4 + 1] 

tmp[i][2] = key[i * 4 + 2] 

tmp[i][3] = key[i * 4 + 3] 

i++ 

i = Nk 

while (i < Nb * (Nr + 1))  

byte[] temp = new byte[4] 

for(int k = 0;k<4;k++) 

temp[k] = tmp[i-1][k] 

if (i % Nk == 0)  

temp = SubWord(rotateWord(temp)) 

temp[0] = (byte) (temp[0] ^ (Rcon[i / Nk] & 0xff)) 

else if (Nk > 6 && i % Nk == 4)  
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temp = SubWord(temp); 

tmp[i] = xor_func(tmp[i - Nk], temp) 

i++ 

return tmp 

 

xor_func 

Input: byte[] a, byte[] b  

Returns: byte[] out 

Pseudo Code: 

byte[] out = new byte[a.length] 

for (int i = 0; i < a.length; i++)  

out[i] = (byte) (a[i] ^ b[i]) 

return out 

 

SubWord  

Input: byte[] in  

Returns: byte[] tmp 

Pseudo code: 

byte[] tmp = new byte[in.length]  

for (int i = 0; i < tmp.length; i++) 

tmp[i] = (byte) (sbox[in[i] & 0x000000ff] & 0xff) 

return tmp 
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rotateWord  

Input: byte[] input  

Returns: byte[] tmp 

Pseudo code:       

byte[] tmp = new byte[input.length] 

tmp[0] = input[1] 

tmp[1] = input[2] 

tmp[2] = input[3] 

tmp[3] = input[0] 

return tmp 

 

FFMul  

Input: byte a, byte b 

Output: byte r 

Pseudo Code: 

byte aa = a, bb = b, r = 0, t 

while (aa != 0)  

if ((aa & 1) != 0) 

r = (byte) (r ^ bb) 

t = (byte) (bb & 0x80) 

bb = (byte) (bb << 1) 

if (t != 0) 

bb = (byte) (bb ^ 0x1b) 

aa = (byte) ((aa & 0xff) >> 1) 
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 return r 

 

4.3.1. Encryption 

The encryption algorithm has the following: 

Constants - Nb = 4; Nk = key.length/4; Nr = Nk + 6; int lenght=0; 

Inputs - byte[] in, byte[] key 

The input text is first checked and is passes through byte padding sequence in order to 

make sure it contains sufficient number of bytes for encryption. 

encryptBloc  

Input: byte[] in  

Returns: byte[] tmp 

Pseudo code:       

byte[] tmp = new byte[in.length] 

byte[][] state = new byte[4][Nb] 

for (int i = 0; i < in.length; i++) 

state[i / 4][i % 4] = in[i%4*4+i/4] 

state = AddRoundKey(state, w, 0) 

for (int round = 1; round < Nr; round++)  

state = SubBytes(state) 

state = ShiftRows(state) 

state = MixColumns(state) 

state = AddRoundKey(state, w, round) 

state = SubBytes(state) 

state = ShiftRows(state) 

state = AddRoundKey(state, w, Nr) 
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for (int i = 0; i < tmp.length; i++) 

tmp[i%4*4+i/4] = state[i / 4][i%4] 

return tmp 

 

AddRoundKey 

Input: byte[][] state, byte[][] w, int round 

Output: byte[][] tmp 

Pseudo Code: 

byte[][] tmp = new byte[state.length][state[0].length] 

for (int c = 0; c < Nb; c++) 

for (int l = 0; l < 4; l++) 

tmp[l][c] = (byte) (state[l][c] ^ w[round * Nb + c][l]) 

return tmp 

 

SubBytes 

Input: byte[][] state 

Output: byte[][] tmp 

Pseudo Code: 

byte[][] tmp = new byte[state.length][state[0].length] 

for (int row = 0; row < 4; row++) 

for (int col = 0; col < Nb; col++) 

tmp[row][col] = (byte) (sbox[(state[row][col] & 0x000000ff)] & 0xff) 

return tmp 

 



63 
 

ShiftRows 

Input: byte[][] state 

Output: byte[][] state 

Pseudo Code: 

byte[] t = new byte[4] 

for (int r = 1; r < 4; r++) 

for (int c = 0; c < Nb; c++) 

t[c] = state[r][(c + r) % Nb] 

for (int c = 0; c < Nb; c++) 

state[r][c] = t[c] 

return state 

 

MixColumns 

Input: byte[][] s 

Output: byte[][] tmp 

Pseudo Code: 

int[] sp = new int[4] 

byte b02 = (byte)0x02, b03 = (byte)0x03 

for (int c = 0; c < 4; c++)  

sp[0] = FFMul(b02, s[0][c]) ^ FFMul(b03, s[1][c]) ^ s[2][c]  ^ s[3][c] 

sp[1] = s[0][c]  ^ FFMul(b02, s[1][c]) ^ FFMul(b03, s[2][c]) ^ s[3][c] 

sp[2] = s[0][c]  ^ s[1][c]  ^ FFMul(b02, s[2][c]) ^ FFMul(b03, s[3][c]) 

sp[3] = FFMul(b03, s[0][c]) ^ s[1][c]  ^ s[2][c]  ^ FFMul(b02, s[3][c]) 

for (int i = 0; i < 4; i++)  
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s[i][c] = (byte)(sp[i]) 

return s 

 

4.3.2. Decryption 

The decryption algorithm has the following: 

Constants - Nb = 4; Nk = key.length/4; Nr = Nk + 6; int lenght=0; 

Inputs - byte[] in, byte[] key 

The input cipher text is first decrypted and is then passes through byte padding sequence 

in order to make sure it contains sufficient number of bytes as the input plain text. 

decryptBloc 

Input: byte[][] in 

Output: byte[] tmp 

Pseudo Code: 

byte[] tmp = new byte[in.length] 

byte[][] state = new byte[4][Nb] 

for (int i = 0; i < in.length; i++) 

state[i / 4][i % 4] = in[i%4*4+i/4] 

state = AddRoundKey(state, w, Nr) 

for (int round = Nr-1; round >=1; round--)  

state = InvSubBytes(state) 

state = InvShiftRows(state) 

state = AddRoundKey(state, w, round) 

state = InvMixColumns(state)  

state = InvSubBytes(state) 

state = InvShiftRows(state) 
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state = AddRoundKey(state, w, 0) 

for (int i = 0; i < tmp.length; i++) 

tmp[i%4*4+i/4] = state[i / 4][i%4] 

return tmp 

 

InvSubBytes 

Input: byte[][] state 

Output: byte[][] state 

Pseudo Code: 

for (int row = 0; row < 4; row++) 

for (int col = 0; col < Nb; col++) 

state[row][col] = (byte)(inv_sbox[(state[row][col] & 0x000000ff)]&0xff) 

return state 

 

InvShiftRows 

Input: byte[][] state 

Output: byte[][] state 

Pseudo Code: 

byte[] t = new byte[4] 

for (int r = 1; r < 4; r++)  

for (int c = 0; c < Nb; c++)  

t[(c + r)%Nb] = state[r][c] 

for (int c = 0; c < Nb; c++)  

state[r][c] = t[c] 
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return state 

 

InvMixColumns 

Input: byte[][] s 

Output: byte[][] state 

Pseudo Code: 

int[] sp = new int[4] 

byte b02 = (byte)0x0e, b03 = (byte)0x0b, b04 = (byte)0x0d, b05 = (byte)0x09  

for (int c = 0; c < 4; c++) 

sp[0] = FFMul(b02, s[0][c]) ^ FFMul(b03, s[1][c]) ^ FFMul(b04,s[2][c])  ^ 

FFMul(b05,s[3][c]) 

sp[1] = FFMul(b05, s[0][c]) ^ FFMul(b02, s[1][c]) ^ FFMul(b03,s[2][c])  ^ 

FFMul(b04,s[3][c])  

sp[2] = FFMul(b04, s[0][c]) ^ FFMul(b05, s[1][c]) ^ FFMul(b02,s[2][c])  ^ 

FFMul(b03,s[3][c]) 

sp[3] = FFMul(b03, s[0][c]) ^ FFMul(b04, s[1][c]) ^ FFMul(b05,s[2][c])  ^ 

FFMul(b02,s[3][c]) 

for (int i = 0; i < 4; i++)  

s[i][c] = (byte)(sp[i])  

return s 
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4.4. Performance Analysis 

The performance parameters considered for enhancement are calculated.  

The time taken for encryption and decryption in case of conventional and improved 

algorithm are as follows: 

 

For conventional AES: 

𝑇_𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛𝑐 = 5𝑚𝑠 – Time taken for encrypt 

𝑇_𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛𝑐 = 3𝑚𝑠 – Time taken to decrypt 

 

For modified AES: 

𝑇_𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛𝑝 = 3𝑚𝑠 – Time taken to encrypt 

𝑇_𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛𝑝 = 2𝑚𝑠 – Time taken to decrypt 

 

The following are the throughput values of encryption and decryption time for 

conventional AES algorithm. 

 

Throughput
𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛

=
𝐵𝑙𝑜𝑐𝑘 𝑆𝑖𝑧𝑒

𝑇𝑖𝑚𝑒 𝑇𝑎𝑘𝑒𝑛𝐶
     

=
128

5
        

   = 25.6  

               

Throughput
𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛

=
𝐵𝑙𝑜𝑐𝑘 𝑆𝑖𝑧𝑒

𝑇𝑖𝑚𝑒 𝑇𝑎𝑘𝑒𝑛𝐶

  

=
128

3
 

      = 42.67  
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The Throughput is given in the general form of completions per unit of time, the 

common throughput metric is instructions per cycle, In case of AES the throughput 

depends on size of block as well as time taken for encryption/decryption given by: 

𝑇 =
𝑏𝑙𝑜𝑐𝑘 𝑠𝑖𝑧𝑒

𝑡
 

Where, 

T - Throughput  

t - Time taken to encrypt/decrypt 

The following are the throughput values of encryption and decryption time for modified 

AES algorithm. 

    

Throughput
𝑝_𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛

=
𝐵𝑙𝑜𝑐𝑘 𝑆𝑖𝑧𝑒

𝑇𝑖𝑚𝑒 𝑇𝑎𝑘𝑒𝑛𝑝
      

          =
128

3
   

          = 42.67     

  

  Throughput
𝑝_𝑑𝑒𝑐𝑟𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛

=
𝐵𝑙𝑜𝑐𝑘 𝑆𝑖𝑧𝑒

𝑇𝑖𝑚𝑒 𝑇𝑎𝑘𝑒𝑛𝑝
 

                    =
128

2
 

                   = 64 
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Thus, the speedup achieved is given by the following relation: 

𝑆 =
𝑇𝑜𝑙𝑑

𝑇𝑛𝑒𝑤
 

Where, 

S is the resultant speedup. 

𝑇𝑜𝑙𝑑 is the old execution time, i.e., without the improvement. 

𝑇𝑛𝑒𝑤 is the new execution time, i.e., with the improvement. 

 

𝑆𝑝𝑒𝑒𝑑𝑢𝑝𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 =
𝑇𝑖𝑚𝑒 𝑇𝑎𝑘𝑒𝑛𝑐

𝑇𝑖𝑚𝑒 𝑇𝑎𝑘𝑒𝑛𝑝
    

             =
5

3
   

     = 1.67 

 

𝑆𝑝𝑒𝑒𝑑𝑢𝑝𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 =
𝑇𝑖𝑚𝑒 𝑇𝑎𝑘𝑒𝑛𝑐

𝑇𝑖𝑚𝑒 𝑇𝑎𝑘𝑒𝑛𝑝
  

                     =
3

2
 

                   = 1.5 
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Chapter 5 

Conclusion and Future Work 

The Advanced Encryption Technique was implemented successfully using Java with 

an increased throughput and thus speedup. Various data messages were encrypted using 

different keys and varying key sizes. The original data was properly retrieved via 

decryption of the cipher text. The modifications brought about in the code was tested 

and proved to be accurately encrypting and decrypting the data messages with even 

higher security and immunity against the unauthorized users. 

The limitations with this AES algorithm are: the successful attack against AES data 

encryption has been side channel attacks, which don't attack the actual AES cipher text, 

rather than its implementation. Since it drives on blocks of 200 bits it requires more 

processing for large data. 

Further enhancement to this project can be testing the security of the modified algorithm 

against modern attacks. Linear and differential cryptanalysis can be used to analyze the 

level of security provided by the improved algorithm.  
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Appendix 

 

Figure 9: Screen capture of Console 

 

 

Figure 10: Output of code 


