
1

Efficient Implementation of Advanced Encryption

Standard

Project Report submitted in partial fulfillment of the

requirement for the degree of

Bachelor of Technology

in

Computer Science & Engineering

under the Supervision of

Mr. Amit Kumar Singh

by

Shubham Dwivedee

Enrollment No.111339

to

Jaypee University of Information Technology

Waknaghat, Solan – 173234, Himachal Pradesh

2

Certificate

This is to certify that project report entitled “Efficient Implementation of Advanced

Encryption Standard” submitted by Shubham Dwivedee in partial fulfillment for the

award of degree of Bachelor of Technology in Computer Science & Engineering to

Jaypee University of Information Technology, Waknaghat, Solan has been carried out

under my supervision.

This work has not been submitted partially or fully to any other University or Institute

for the award of this or any other degree or diploma.

Date: Supervisor’s Name

 Designation

3

Acknowledgement

I wish to express my profound gratitude and indebtedness to Mr. Amit Kumar Singh,

for their continuous support, inspiring guidance, constructive criticism and valuable

suggestion throughout the project work. Their guidance has helped me at all times of

my research and writing of this report.

I would also like to thank Prof. Dr. Satya Prakash Ghrera for sharing his vast expanse

of knowledge in guiding me with the correct books and sparing his valuable time and

helped me in striving to move forward to this point. Without their valuable inputs, I

wouldn’t have been able to incrementally work well and go ahead with the project.

Last but not the least, my sincere thanks to all my friends who have patiently extended

all sorts of help for accomplishing this undertaking.

Date: Name of the Student

4

Table of Contents

Chapter 1 Introduction .. 1

1.1 Purpose ... 1

1.2 Motivation .. 1

1.3 Overview .. 2

1.4 Background .. 4

1.5 Definitions .. 6

1.6 AES vs DES ... 7

1.7 AES vs 3DES ... 8

1.8 AES vs RSA ... 10

1.9 Organization of the report .. 12

Chapter 2 System Requirement Specification 13

2.1 Hardware Requirements ... 13

2.2 Software Requirements .. 13

2.3 Functional Requirements ... 13

2.3.1 Input Specification ... 13

2.3.2 Output Specification .. 13

2.4 Performance Parameters .. 13

2.4.1 Time Taken .. 14

2.4.2 Throughput ... 14

2.4.3 Speedup .. 14

Chapter 3 Literature Review .. 16

3.1 Increasing the Block Size ... 16

3.2 Parallel Execution .. 19

3.3 Threads ... 21

3.3.1 Benefits of Threads over Processes .. 24

3.3.2 Multithreading vs Single Threading ... 26

3.3.3 Synchronization .. 29

Chapter 4 Design and Implementation ... 32

4.1 Detailed Description .. 32

4.1.1 Terminology .. 32

4.2 AES Cipher Functions ... 37

5

4.2.1 Add Round Key .. 37

4.2.2 Byte Sub .. 38

4.2.3 Shift Row .. 39

4.2.4 Mix Column .. 40

4.2.5 Mix Column Inverse ... 42

4.2.6 Key Expansion .. 44

4.3 Implementation details ... 50

4.3.1 Encryption .. 53

4.3.2 Decryption ... 56

4.4 Performance Analysis .. 59

Chapter 5 Conclusion and Future Work .. 62

 References…………………………………………………………………………...63

Appendix………………………………………………………………………….....65

6

List of Figures

S. No. Title Page No.

Figure 1 AES Structure .. 3

Figure 2 Shift Rows Transformation. ... 18

Figure 3 Polynomial Matrix and Its Inverse for mix column transformation 18

Figure 4 Life Cycle of a Thread. .. 21

Figure 5 HEX Matrix ... 32

Figure 6 Working of Add Round Key ... 37

Figure 7 SBOX .. 38

Figure 8 Inverse SBOX. ... 39

Figure 9 Screen capture of console .. 65

Figure 10 Output of code. .. 65

7

List of Tables

S. No. Title Page No.

Table 1 First Round Qualifiers ... 5

Table 2 Comparison between DES, AES and RSA .. 12

Table 3 Research Analysis ... 16

Table 4 Number of rounds for various key sizes ... 34

Table 5 AES Encryption cipher using 16-bit key ... 34

Table 6 AES Encryption cipher using 24-bit key .. 35

Table 7 AES Encryption cipher using 32-bit key .. 35

Table 8 AES Decryption cipher using 16-bit key .. 36

Table 9 AES Decryption cipher using 24-bit key .. 36

Table 10 AES Decryption cipher using 32-bit key .. 37

Table 11 Key Expansion .. 45

Table 12 16-byte key expansion ... 47

Table 13 24-byte key expansion ... 48

Table 14 32-byte key expansion .. 49

8

Abstract

In today's world most of the communication is done using electronic media. Data

Security plays a vital role in such communication. Hence, there is a need to protect data

from malicious attacks. This can be achieved by using Cryptographic techniques. The

earlier encryption algorithm is Data Encryption Standard (DES) which has several

loopholes such as small key size and sensible to brute force attack etc. and it cannot

provide high level, efficient and exportable security. These loopholes overcome by a

new algorithm called as Advanced Encryption Standard (AES). It was created by two

Belgian cryptographers, Vincent Rijmen and Joan Daemen, replacing the old Data

Encryption Standard (DES). The Federal Information Processing Standard 197 used a

standardized version of the algorithm called Rijndael for the Advanced Encryption

Standard. AES was successful because it was easy to implement and could run in a

reasonable amount of time on a regular computer.

In this project work, the plain text of 128 bits is given as input to encryption block in

which encryption of data is made and the cipher text of 128 bits is throughout as output.

The key length of 128bits, 192bits or 256bits is used in process of encryption. The AES

algorithm is a block cipher that uses the same binary key for both encryption and

decryption of data blocks. Hence it is called a symmetric key cryptography. The rounds

in decryption are exact inverse of encryption. There are four rounds in encrypt ions viz.

Sub Bytes, ShiftRows, MixColumns and AddRoundKey. Similarly for Decryption we

have InvSubBytes, InvShiffilows, InvMixColumns and InvAddRoundKey. The

number of times operation performed is depend on key length i.e. for 128bis we have

10 rounds. Since operations in AES are difficult, there exists no attack better than key

exhaustion to read an encrypted message. Ultimately, anyone can use AES encryption

methods, and it is free for public or private, commercial or non-commercial use. The

simplest version encrypts and decrypts each 128 -bit block individually. It gives better

security than DES versions and also better throughput.

9

Chapter 1

Introduction

In today’s world most of the communication is done using electronic media.

Data security plays a vital role in communication via internet. Hence, there is a need to

protect data from malicious attacks. This can be achieved by Cryptography. The earlier

encryption algorithm is Data Encryption Standard (DES) which has several loopholes

like small key size that makes it prone to brute force attacks, etc. It fails to provide high

level, efficient and exportable security. These loopholes were overcome by a new

algorithm called Advanced Encryption Standard (AES).

In this project work, the plain text of 128 bits is given as input to encryption block in

which encryption of data is made and the cipher text of 128 bits is throughout as output.

The key length of 128bits, 192bits or 256bits is used in process of encryption. The AES

algorithm is a block cipher that uses the same binary key for both encryption and

decryption of data blocks.

1.1. Purpose

Due to the advancements in the Internet technology, huge digital data are

transmitted over the public network. As the public network is open to all, protection of

these data is a vital issue. Thus for protecting these data from the unauthorized people,

Cryptography has come up as a solution which plays a vital role in information security

system against various attacks. Advanced Encryption Standard is the current standard

for symmetric key cryptography and is considered very much secure due to it

1.2. Motivation

The Advanced Encryption Standard, in the following referenced as AES is the

winner of the contest, held in 1997 by the US Government, after the Data Encryption

Standard (DES) was found too weak. Fifteen candidates were accepted in 1998 and

based on public comments the pool was reduced to five finalists in 1999. In October

2000, one of these five algorithms was selected as the forthcoming standard: a slightly

modified version of the Rijndael. The Rijndael, whose name is based on the names of

its two Belgian inventors Joan Daemen and Vincent Rijmen, is a Block cipher, which

means that it works on fixed -length group of bits, which are called Blocks. It takes an

10

input block of a certain size usually 128 bits, and produces a corresponding output block

of the same size. The transformation requires a second input, which is the secret key. It

is important to know that the secret key can be of any size (depending on the cipher

used) and that AES uses three different key sizes: 128, 192 and 256 bits.

1.3. Overview

Advanced Encryption Standard (AES) is a symmetric key cryptography and it

has block cipher with a fixed block size of 128 bit and a variable key length i.e. it may

be 128, 192 or 256 bits. The different transformations operate on the intermediate

results, called state. The state is a rectangular array of bytes and since the block size is

128 bits, which is 16 bytes, the rectangular array is of dimensions 4x4. (In the Rijndael

version with variable block size, the row size is fixed to four and the number of columns

varies. The number of columns is the block size divided by 32 and denoted Nb). The

cipher key is similarly pictured as a rectangular array with four rows. The number of

columns of the cipher key is equal to the key length divided by 32.

AES uses a variable number of rounds, which are fixed: A key of size 128 has

10 rounds. A key of size 192 has 12 rounds. A key of size 256 has 14 rounds. An

algorithm starts with a random number, in which the key and data encrypted with it are

scrambled though four mathematical operation processes. The key that is used to

encrypt the number must also be used to decrypt it. For encryption, each rounds has

four operations SubBytes, ShiftRows, MixColumns and AddRoundKey respectively

and for decryption it use inverse of these function.

AES does not use a Feistel structure but processes the entire data block in parallel

during each round using substitutions and permutation. The key that is provided as input

is expanded into an array of forty-four 32 –bit words. Four distinct words (128 bits)

serve as a round key for each round. Four different stages are used, one of permutation

and three of substitution.

- SubstituteBytes: Uses a table, referred to as an S -box, to perform a byte by byte

substitution of the block

- ShiftRows: A simple permutation that is performed row by row

- MixColumns: A substitution that alters each byte in a column as function of all

of the bytes in the column

11

- AddRoundkey: A simple bitwise XOR of the current block with a portion of the

expanded key

The structure is quite simple. For both encryption and decryption, the cipher begins

with an Add Round Key stage, followed by nine rounds that each includes all four

stages, followed by a tenth round of three stages.

Only the Add Round Key stage makes use of the key. For this reason, the cipher

begins and ends with an Add Round Key stage. Any other stage, applied at the

beginning or end, is reversible without knowledge of the key and so would add no

security.

Figure 1: AES Structure [1]

12

The Add Round Key stage by itself would not be formidable. The other three stages

together scramble the bits, but by themselves, they would provide no security because

they do not use the key. We can view the cipher as alternating operations of XOR

encryption (Add Round Key) of a block, followed by scrambling of the block (the other

three stages), and followed by XOR encryption, and so on. This scheme is both efficient

and highly secure. Each stage is easily reversible. For the Substitute Byte. Shift Row,

and Mix Columns stages, an inverse function is used in the decryption algorithm. For

the Add Round Key stage, the inverse is achieved by X0Ring the same round key to the

block, using the result that A (I) B (I) B = A.

As with most block ciphers, the decryption algorithm makes use of the expanded

key in reverse order. However, the decryption algorithm is not identical to the

encryption algorithm. This is a consequence of the particular structure of AES. Once it

is established that all four stages are reversible, it is easy to verify that decryption does

recover the plaintext.

1.4. Background

On January 2, 1997 the National Institute of Standards and Technology (NIST) held

a contest for a new encryption standard. The previous standard, DES, was no longer

adequate for security. It had been the standard since November 23, 1976. Computing

power had increased a lot since then and the algorithm was no longer considered safe.

The earlier ciphers can be broken with ease on modern computation systems. In 1998

DES was cracked in less than three days by a specially made computer called the DES

cracker. The DES cracker was created by the Electronic Frontier Foundation for less

than $250,000 and won the RSA DES Challenge II-2. It was also far too slow in

software as it was developed for mid-1970’s hardware and does not produce efficient

software code. Triple DES on the other hand, has three times as many rounds as DES

and is correspondingly slower. As well as this, the 64 bit block size of triple DES and

DES is not very efficient and is questionable when it comes to security Current

alternatives to a new encryption standard were Triple DES (3DES) and International

Data Encryption Algorithm (IDEA). The problem was IDEA and 3DES were too slow

and IDEA was not free to implement due to patents. NIST wanted a free and easy to

implement algorithm that would provide good security. Additionally they wanted the

algorithm to be efficient and flexible.

13

What was required was a brand new encryption algorithm. One that would be resistant

to all known attacks. The National Institute of Standards and Technology (NIST)

wanted to help in the creation of a new standard. However, because of the controversy

that went with the DES algorithm, and the years of some branches of the U.S.

government trying everything they could to hinder deployment of secure cryptography

this was likely to raise strong skepticism. The problem was that NIST did actually want

to help create a new excellent encryption standard but they couldn’t get involved

directly. Unfortunately they were really the only ones with the technical reputation and

resources to the lead the effort.

Table 1: First Round Qualifiers [3]

ALGORITHM NAME SUBMITTER

CAST-256 Entrust Technologies, Inc.

CRYPTON Future Systems, Inc.

DEAL Richard Outerbridge, Lars Knudsen

DFC

CNRS - Centre National pour la

Recherche Scientifique - Ecole

Normale Superieure

E2
NTT - Nippon Telegraph and

Telephone Corporation

FROG TecApro Internacional S.A.

HPC Rich Schroeppel

LOKI97
Lawrie Brown, Josef Pieprzyk,

Jennifer Seberry

MAGENTA Deutsche Telekom AG

MARS IBM

RC 6 RSA Laboratories

Rijndael Joaen Daemen, Vincent Rijmen

SAFER+ Cylink Corporation

Serpent

Ross Anderson, Eli Biham, Lars

Knudsen

Twofish

Bruce Schneier, John Kelsey,

Doug Whiting, David Wagner,

Chris Hall, Niels Ferguson

Instead of designing or helping to design a cipher, what they did instead was to set up

a contest in which anyone in the world could take part. The contest was announced on

the 2nd January 1997 and the idea was to develop a new encryption algorithm that would

be used for protecting sensitive, non-classified, U.S. government information. The

ciphers had to meet a lot of requirements and the whole design had to be fully

documented (unlike the DES cipher). Once the candidate algorithms had been

14

submitted, several years of scrutiny in the form of cryptographic conferences took

place. In the first round of the competition 15 algorithms were accepted and this was

narrowed to 5 in the second round. The fifteen algorithms are shown in table below of

which the 5 that were selected are shown in bold. The algorithms were tested for

efficiency and security both by some of the world’s best publicly renowned

cryptographers and NIST itself.

After holding the contest for three years, NIST chose an algorithm created by two

Belgian computer scientists, Vincent Rijmen and Joan Daemen. On November 26, 2001

the Federal Information Processing Standards Publication 197 announced a

standardized form of the Rijndael algorithm as the new standard for encryption. This

standard was called Advanced Encryption Standard and is currently the standard for

encryption.

1.5. Definitions

Cryptography: Cryptography is the science of secret codes, enabling the

confidentiality of communication through an insecure channel. It protects against

unauthorized parties by preventing unauthorized alteration of use. Generally speaking,

it uses a cryptographic system to transform a plaintext into a cipher text most of the

time using a key. It has different Encryption and Decryption algorithms to do so.

Cipher Text: This is the scrambled message produced as output from Encryption

algorithm. It depends on the plaintext and the secret key. For a given message, two

different keys will produce two different cipher texts.

Encryption: Encryption is the process of converting data, in plain text format into a

meaningless cipher text by means of a suitable algorithm. The algorithm takes secret

key and plain text as input and produces cipher text.

Decryption: Decryption is converting the meaningless cipher text into the original

information using decryption algorithms. The decryption algorithm is inverse of

encryption algorithm. This takes key and cipher text as input and produces original

plain text.

Symmetric key cryptography: Symmetric cryptography uses the same secret (private)

key to encrypt and decrypt its data. It requires that the secret key be known by the party

encrypting the data and the party decrypting the data.

15

Asymmetric key cryptography: Asymmetric uses both a public and private key. This

allows for distribution of your public key to anyone with which they can encrypt the

data they want to send securely and then it can only be decoded by the person having

the private key.

1.6. AES vs DES

There is a huge, important difference between these two encryption and decryption

algorithms, Data Encryption Standard (DES) and the Advanced Encryption Standard

(AES): AES is secure while DES is not. The federal government developed DES

encryption algorithms more than 30 years ago to provide cryptographic security for all

government communications. The idea was to ensure government systems all used the

same, secure standard to facilitate interconnectivity. DES served as the cornerstone of

government cryptography for more than two decades, but in 1999 researchers broke the

algorithm's 56-bit key using a distributed computer system. AES data encryption is a

more mathematically efficient and elegant cryptographic algorithm, but its main

strength rests in the key length options. The time required to crack an encryption

algorithm is directly related to the length of the key used to secure the communication.

AES allows you to choose a 128-bit, 192-bit or 256-bit key, making it exponentially

stronger than the 56-bit key of DES.

Data Encryption Standard is a rather old way of encrypting data so that the

information could not be read by other people who might be intercepting traffic. DES

is rather quite old and has since been replaced by a newer and better Advanced

Encryption Standard. The replacement was done due to the inherent weaknesses in DES

that allowed the encryption to be broken using certain methods of attack. Common

applications of AES, as of the moment, are still impervious to any type of cracking

techniques, which makes it a good choice even for top secret information.

The inherent weakness in DES is caused by a couple of things that are already

addressed in AES. The first is the very short 56 bit encryption key. The key is like a

password that is necessary in order to decrypt the information. A 56 bit has a maximum

of 256 combinations, which might seem like a lot but is rather easy for a computer to

do a brute force attack on. AES can use a 128, 192, or 256 bit encryption key with

2^128, 2^192, 2^256 combinations respectively. The longer encryption keys make it

much harder to break given that the system has no other weaknesses.

16

Another problem is the small block size used by DES, which is set at 64 bits. In

comparison, AES uses a block size that is twice as long at 128 bits. In simple terms, the

block size determines how much information you can send before you start having

identical blocks, which leak information. People can intercept these blocks and use read

the leaked information. For DES with 64 bits, the maximum amount of data that can be

transferred with a single encryption key is 32GB; at this point another key needs to be

used. With AES, it is at 256 exabytes or 256 billion gigabytes. It is probably safe to say

that you can use a single AES encryption key for any application.

In terms of structure, DES uses the Feistel network which divides the block into

two halves before going through the encryption steps. AES on the other hand, uses

permutation-substitution, which involves a series of substitution and permutation steps

to create the encrypted block. Summing up we can say that:

- DES is really old while AES is relatively new

- DES is breakable while AES is still unbreakable

- DES uses a much smaller key size compared to AES

- DES uses a smaller block size compared to AES

- DES uses a balanced Feistel structure while AES uses substitution-permutation

1.7. AES vs 3DES

Advance Encryption Standard (AES) and Triple DES (TDES or 3DES) are

commonly used block ciphers. Whether you choose AES or 3DES depend on your

needs. DES was developed in 1977 and it was carefully designed to work better in

hardware than software. DES performs lots of bit manipulation in substitution and

permutation boxes in each of 16 rounds. Even though it seems large but according to

today’s computing power it is not sufficient and vulnerable to brute force attack.

Therefore, DES could not keep up with advancement in technology and it is no longer

appropriate for security. Because DES was widely used at that time, the quick solution

was to introduce 3DES which is secure enough for most purposes today. 3DES is a

construction of applying DES three times in sequence. 3DES with three different keys

(K1, K2 and K3) has effective key length is 168 bits (The use of three distinct key is

recommended of 3DES.). Another variation is called two-key (K1 and K3 is same)

3DES reduces the effective key size to 112 bits which is less secure. Two-key 3DES is

17

widely used in electronic payments industry. 3DES takes three times as much CPU

power than compare with its predecessor which is significant performance hit. AES

outperforms 3DES both in software and in hardware.

AES (Advanced Encryption Standard) and 3DES, or also known as Triple DES

(Data Encryption Standard) are two of the current standards in data encryption. While

AES is a totally new encryption that uses the substitution-permutation network, 3DES

is just an adaptation to the older DES encryption that relied on the balanced Feistel

network. Basically, 3DES is just DES applied three times to the information that is

being encrypted.

AES uses three common encryption key lengths, 128, 192, and 256 bits. When it

comes to 3DES the encryption key is still limited to 56 bits as dictated by the DES

standard. But since it is applied three times, the implementer can choose to have 3

discrete 56 bit keys, or 2 identical and 1 discrete, or even three identical keys. This

means that 3DES can have encryption key lengths of 168, 112, or 56 bit encryption key

lengths respectively. But due to certain vulnerabilities when reapplying the same

encryption thrice, using 168 bits has a reduced security equivalent to 112 bits and using

112 bits has a reduced security equivalent to 80 bits.

3DES also uses the same block length of 64 bits, half the size that of AES at 128

bits. Using AES provides additional insurance that it is harder to sniff leaked data from

identical blocks. When using 3DES, the user needs to switch encryption keys every

32GB of data transfer to minimize the possibility of leaks; identical to when using the

standard DES encryption.

Lastly, repeating the same process three times does take some time. With all things

held constant, AES is much faster compared to 3DES. This line gets blurred when you

include software, hardware, and the complexity of hardware design to the mix. So if

you have 3DES accelerated hardware, migrating to AES implemented by software

alone may result in slower processing times. In this aspect, there is not better solution

than to test each one and measure their speed. But when it comes to security, AES is

the sure winner as it is still considered unbreakable in practical use. Summing up:

- 3DES uses identical encryption to DES while AES uses a totally different

- 3DES has shorter and weaker encryption keys compared to AES

- 3DES uses repeating encryption keys while AES does not

18

- 3DES also uses a shorter block length compared to AES

- 3DES encryption takes longer than AES encryption

1.8. AES vs RSA

RSA is one of the most successful, asymmetric encryption systems today.

Originally discovered 1973 by the British intelligence agency GCHQ, it received the

classification “top secret”. Its civil rediscovery is owned to the cryptologists Rivest,

Shamir and Adleman, who discovered it during an attempt to break another

cryptographic problem. As opposed to traditional, symmetric encryption systems, RSA

works with two different keys: A “public” key, and a “private” one. Both work

complementary to each other, a message encrypted with one of them can only be

decrypted by its counterpart. Since the private key can’t be calculated from the public

key, the latter is generally made available to the public. Those properties enable

asymmetric cryptosystems to be used in a wide array of functions, such as digital

signatures. In the process of signing a document, a fingerprint, encrypted with RSA, is

appended to the file, and enables the receiver to verify both the sender and the integrity

of the document.

The security of RSA itself is mainly based on the mathematical problem of

integer factorization. A message that is about to be encrypted is treated as one large

number. When encrypting the message, it is raised to the power of the key, and divided

with remainder by a fixed product of two primes. By repeating the process with the

other key, the plaintext can be retrieved back. The best, currently known method to

break the encryption requires factorizing the product used in the division. Currently, it

is not possible to calculate these factors for numbers greater than 768 bits. None the

less, modern cryptosystems use a minimum key length of 3072 bits.

As first publicly accessible, from the NSA for the classification "top secret"

approved cipher, the Advanced Encryption Standard (AES) is one of the most

frequently used and most secure encryption algorithms available today. Its story of

success started 1997, when the National Institute of Standards and Technology NIST

announced the search for a successor to the aging encryption standard DES. An

algorithm named "Rijndael", developed by the Belgian cryptographists Daemen and

Rijmen, excelled in security as well as in performance and flexibility. It came out on

19

top of several competitors, and was officially announced as the new encryption standard

AES in 2001. The algorithm is based on several substitutions, permutations and linear

transformations, each executed on data blocks of 16 byte – therefore the term

blockcipher. Those operations are repeated several times, called “rounds”. During each

round, a unique roundkey is calculated out of the encryption key, and incorporated in

the calculations. Based on this block structure of AES, the change of a single bit either

in the key, or in the plaintext block results in a completely different ciphertext block –

a clear advantage over traditional stream ciphers. The difference between AES-128,

AES-192 and AES-256 finally is the length of the key: 128, 192 or 256 bit – all drastic

improvements compared to the 56 bit key of DES. By way of illustration: Cracking a

128 bit AES key with a state-of-the-art supercomputer would take longer than the

presumed age of the universe. And Boxcryptor even uses 256 bit keys! As of today, no

practicable attack against AES exists. Therefore, AES remains the preferred encryption

standard for governments, banks and high security systems around the world.

They're not really directly comparable. The number commonly bandied about

is 2048-bit RSA is about equivalent to 128-bit AES. But that number shouldn't be relied

on without understanding the caveats. Currently the most effective way of breaking

AES crypto (and any other unbroken symmetric cipher, for that matter) is brute-force.

You simply try every possibility until you reach the correct result. This means that it is

possible, and well within today's technology, to encrypt data that (assuming no better

attack is ever found), can never be broken, ever, by anyone. Simply use enough bits in

your key such that there isn't enough energy in the universe to try enough candidate

keys. The numbers are smaller than you'd think: Indeed, with AES, 128-bit is secure

against modern technology, 256 is secure against any likely future technology, and 512

is probably secure against even never-imagined hypothetical alien technology.

Symmetric encryption, if not broken, doesn't leave you with a math problem to

solve. The numbers are truly and literally scrambled, and the system is devised such the

brute-force is by far the most efficient solution. Breaking RSA, on the other hand, is

not so hard. Instead of brute-forcing the keys, you factor the modulus into primes and

derive the keys yourself. This is dramatically simpler to do. It's a math problem, and

we can do math. Specifically, the speed at which primes can be factored is increasing

faster than the speed at which symmetric keys can be brute-forced. And that's with

today's technology. But going forward, assuming quantum computers can be improved

20

such that qbit operations are a cheap as bit operations (which many people thinks is

fairly close; this century at most, possibly decades), then no matter how large you make

your RSA key, breaking the key is as fast as encrypting.

Summing up one would say that equivalent security of RSA key length versus

AES key length changes over time. Every so often, you have to increase your RSA key

size relative to your AES key size to account for technological advances. And even

then, it's an estimate at best. And while a 256-bit symmetric key should be secure for

hundreds, thousands, or perhaps hundreds of thousands of years, no RSA key of any

length should be assumed to be secure more than a few dozen years out, since RSA is

expected to be completely and utterly broken by Shor's algorithm.

Table 2: Comparison between DES, AES and RSA [3]

S.NO. FACTOR DES AES RSA

1 Developed 1977 2000 1978

2 Key Length Value 56 bit
128, 192 and

256 bits
>1024 bits

3 Type of Algorithm Symmetric Symmetric Asymmetric

4 Encryption Ratio Low High High

5 Security Attacks Inadequate
Highly

Secured
Timing attack

6 Simulation Speed Fast Fast Fast

7 Scalability
Scalable

algorithm

No scalability

occurs

No scalability

occurs

8 Power Consumption Low Low High

9
Hardware and Software

Implementations

Better in

hardware than

in software

Faster and

efficient

Not very

efficient

1.9. Organization of the Report

This report document comprises of five chapters. The Chapter 1 gives the overview to

AES algorithm, basic definitions of terms that are used in this report and purpose of

project and also gives the motivation behind implementing this project. Chapter 2 gives

the details of requirements for implementing the project. It gives hardware, software

and user requirements and the performance parameters taken into consideration.

Chapter 3 gives the research analysis regarding AES algorithm also the basics about

multithreading and parallel execution. Chapter 4 gives the details of each modules used

in this project and some implementation details. Chapter 5 gives conclusion, limitations

and further enhancement to the project. References section provide source detail where

we get information. Appendix contains snapshots of the project code execution.

21

Chapter 2

System Requirement Specification

The following are the system requirements:

2.1. Hardware Requirements

- 512MB RAM or above

- X86 or above processor

- 2MB Secondary memory or above

2.2. Software Requirements

- Operating System: LINUX, Windows

- Language used: Java

- Editor: Eclipse IDE

2.3. Functional Requirements

The functional requirements for the implementation are as follows:

2.3.1. Input Specification

- An input file/string type variable should contain some data. That can be used as

plain text for encryption

- Secret key used for encryption should of l28bits, 192bits or 256bits

2.3.2. Output Specification

- The second party should know secret key that used for encryption.

- After providing secret key as input, it displays the original plain text.

2.4. Performance Parameters

The performance of AES algorithm can be measured by considering following

parameters:

22

2.4.1. Time Taken

The time taken for encryption as well as decryption of a given plain text is

calculated by using system clock time: The system clock is recorded twice i.e. before

and after the execution of the encryption module and their difference yields the time

taken for encryption. The same procedure is followed to calculate decryption time, just

that decryption module is invoked instead.

2.4.2. Throughput

In computer technology, throughput is the amount of work that a computer can do in a

given time period. Throughput is one of the key factors to measure performance of an

algorithm. Throughput will be given in the general form of completions per unit of time,

the common throughput metric is instructions per cycle, In case of AES the throughput

depends on size of block as well as time taken for encryption/decryption given by:

𝑇 =
𝑏𝑙𝑜𝑐𝑘 𝑠𝑖𝑧𝑒

𝑡

Where,

T - Throughput

t - Time taken to encrypt/decrypt

2.4.3. Speedup

In the field of computer architecture, speedup is a metric for relative performance

improvement when executing a task. The notion of speedup was established by

Amdahl's law, which was particularly focused in the context of parallel processing.

However, speedup can be used more generally to show the effect of any performance

enhancement.

Speedup can be defined for two different types of values: throughput and

latency. Throughput metric is instructions per cycle whereas the reciprocal of this is

cycles per instruction or CPI; this is a latency quantity because it is the length of time

between successive completions or occurrences.

23

Speedup is given by the following relation:

𝑆 =
𝑇𝑜𝑙𝑑

𝑇𝑛𝑒𝑤

Where,

S is the resultant speedup.

𝑇𝑜𝑙𝑑 is the old execution time, i.e., without the improvement.

𝑇𝑛𝑒𝑤 is the new execution time, i.e., with the improvement.

24

Chapter 3

Literature Review

At present, there are many research achievements in the field of block cipher.

Especially, the Advanced Encryption Standard AES algorithm should be considered the

excellent representative of all the researches. When the data encryption standard was

replaced by the advanced encryption standard, the whole world shifted their concern on

the AES algorithm. Some research showed that the AES algorithm can be implemented

with increased speed by shifting, XOR and looking up tables, etc. The analysis of some

research work on AES algorithm based on increasing its speed and level of security by

altering the parameters that have been described below:

Table 3: Research Analysis [6], [7], [8]

Author Name Year Technique Results

Deguang Le,

Jinyi Chang,

Xingdou Gou,

Ankang

Zhang,

Conglan Lu

Parallel AES

Algorithm

for Fast Data

Encryption

on GPU

2010

Parallel

encryption to

design a fast data

encryption system

based on GPU.

Speedup= GPU_Time

/CPU_Time

(For plaintext sizes:

10KB Speedup=2

1MB Speedup=4

200MB Speedup=7)

Vishal Pachori,

Gunjan Ansari,

Neha

Chaudhary

Improved

Performance

of Advance

Encryption

Standard

using Parallel

Computing

2012

Parallel

Implementation

of AES using

Java Parallel

Programming

Framework

Speed up achieved for

data parallelism and

control parallelism is

up to 2.16

Ritu Pahal,

Vikas kumar

Efficient

Implementati

on of AES

2013

The same

conventional

algorithm is

implemented for

200 bit block as

well as key size.

Encryption time

decreased by 20%

Throughput is :

T=200/t

(conventional being

T=128/t)

3.1. Increasing the Block Size

Symmetric cryptography, such as in the Data Encryption Standard (DES),

3DES, and Advanced Encryption Standard (AES), uses an identical key for the sender

and receiver, both to encrypt the message text and decrypt the cipher text. Symmetric

cryptography is more suitable for the encryption of a large amount of data. The AES

25

algorithm defined by the National Institute of Standards and Technology (NIST) of the

United States has been widely accepted to replace DES as the new symmetric

encryption algorithm. The AES algorithm is a symmetric block cipher that processes

data blocks of 128 bits using a cipher key of length 128, 192, or 256 bits. Each data

block consists of a 4 × 4 array of bytes called the state, on which the basic operations

of the AES algorithm are performed.

The proposed algorithm differs from conventional AES [7] as it has 200 bits

block size and key size both. Number of rounds is constant and equal to ten in this

algorithm. The key expansion and substitution box generation are done in the same way

as in conventional AES block cipher. AES has 10 rounds for 128-bit keys, 12 rounds

for 192-bit keys, and 14 rounds for 256-bit keys and the same conventional 128 bit

conventional AES algorithm is implemented for 200 bit using 5*5 Matrix. After the

implementation, the proposed work is compared with 128 bit, 192 bits & 256 bits AES

techniques on two points. These points are encryption and decryption time and

throughput at both encryption and decryption sides.

At the start of encryption, 200 bit input is copied to the State array of 5*5 matrix.

The data bytes are filled first in the column then in the rows. Then after the initial round

key addition, ten rounds of encryption are performed. The first nine rounds are same,

with small difference in the final round. Each of the first nine rounds consists of 4

transformations: SubBytes, ShiftRows, MixColumns and AddRoundKey. But in final

round Mixcolumns transformation is not used.

- SubBytes Transformation - In this transformation, each of the byte in the state

matrix is replaced with another byte as per the S-box. The S-box is generated

by firstly calculating the respective reciprocal of that byte in GF (2^8) and then

affine transform is applied.

- ShiftRows Transformation - In this transformation, the bytes in the first row of

the State do not change. The second, third, fourth and fifth rows shift cyclically

to the left by one byte, two bytes, three bytes and four bytes respectively.

26

Figure 2: Shift Rows Transformation [7]

- MixColumns Transformation - It is the operation that mixes the bytes in each

column by the multiplication of the state with a fixed polynomial matrix. It

completely changes the scenario of the cipher even if the all bytes look very

similar. The Inverse Polynomial Matrix does exist in order to reverse the mix

column transformation.

- AddRoundKey Transformation - In AddRoundKey transformation, a round key

is added to the State by bitwise Exclusive-OR (XOR) operation.

Figure 3: Polynomial Matrix and Its Inverse for mix column transformation [7]

The Decryption structure of proposed algorithm is obtained by inverting the encryption

structure. Corresponding to the transformations in the encryption, InvSubBytes,

InvShiftRows, InvMixColumns, and AddRoundKey are the transformations used in the

decryption. The round keys are the same as those in encryption generated by Key

Expansion, but are used in reverse order.

27

From the experimentation results it is deduced that for large block of data AES-200

encryption time per bit is reduced up to 20% and decryption time per bit is increased

up to 25%. The throughput may be defined as number of bits that can be encrypted or

decrypted during one unit of time. As it was mentioned earlier that all AES variant has

equal block size of 128 bits and the proposed algorithm has block size of 200 bits. Thus,

in form of equation the throughput may be defined as:

𝑇𝐻𝑅𝐶𝐴 =
128

𝑇𝐸𝑁𝐶

𝑇𝐻𝑅𝑃𝐴 =
200

𝑇𝑃𝐸𝑁𝐶

Where, 𝑇𝐻𝑅𝐶𝐴 is representation of throughput for conventional algorithms, 𝑇𝐻𝑅𝑃𝐴 is

representation of throughput for proposed algorithm, 𝑇𝐸𝑁𝐶 denotes the time taken to

encrypt the 128 bit block message, 𝐸𝑁𝐶 represents time taken to encrypt the 200 bit

block message of conventional algorithm.

It is observed that the throughput at encryption end of AES-200 is 15% more than AES-

128, 20% more than AES-192 and 30% more than AES-256. The decryption process

of AES-200 is slower than conventional AES, the proposed algorithm is 50% slower

from AES-128, 40% from AES-192, and 25% from AES-256.

3.2. Parallel Execution

To improve the performance of AES algorithm using parallel computing there are two

major approaches Control Parallelism and Data Parallelism [8].

In Data Parallelism the data is divided into more than one part and send different part

to different nodes for execution. Each node is executing the same procedure or function

but on different data. This approach is very effective when there is large data to process.

AES can be implemented in the following manner using DATA parallelism. Server

sends Plaintext with the Key on node 1 and it will compute the cipher text by running

the AES algorithm and finally sends the result back to the Server. Node 2 follows the

same procedure. The number of nodes can be increased according to our requirement

and number of processing units available.

28

In Control Parallelism the operation or function is divided instead of data. The different

operation or function is assigned to different nodes and then finally the output is send

to the server for final processing. Although it is less scalable then data parallelism but

more speed up can be achieved by this approach. In control parallelism approach, the

four main operations in AES algorithm are divided into two parts and combination of

these operations is Operation 1 and Operation 2. Node 1 will execute only operation 1

and Node 2 will perform only operation 2. Nodes will communicate the result of each

other when needed.

The performance of proposed architecture is measured in terms of execution time. The

performance is measured on 256 bits of data and on two nodes or processing units. The

execution time of converting 256 bits plain text into cipher text on Java Parallel

Programming Framework using two nodes. The time taken by single core to encrypt

256 bits of data is 14, 15 and 13 seconds in different run. The time taken by the 1st run

is more than the time taken in the subsequent run because in the first run the Hazelcast

Framework is loaded which takes time to load. In the subsequent runs the time taken

by the modified AES algorithm is almost same i.e. execution time gets stable. Speed up

of the modified AES algorithm is shown below:

𝑆𝑝𝑒𝑒𝑑 𝑈𝑝 =
𝑇𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 𝑏𝑦 𝑠𝑒𝑟𝑖𝑎𝑙 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚

𝑇𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 𝑏𝑦 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚

Speed up for Data parallelism (1st run) = 15/10 = 1.5

Speed up for Data parallelism (2nd run) = 14/7 = 2.0

Speed up for Data parallelism (3rd run) = 13/6 = 2.16

Speed up for Data parallelism (4th run) = 13/7 = 1.85

Speed up for Control parallelism (1st run) = 15/11 = 1.36

Speed up for Control parallelism (2nd run) = 14/7 = 2.0

Speed up for Control parallelism (3rd run) = 13/6 = 2.16

Speed up for Control parallelism (4th run) = 13/6 = 2.16

In order to overcome the issue of low efficiency over the traditional CPU-based

implementation of AES [6], researchers designed and implemented the parallel AES

algorithm based on GPU. The implementation achieves up to 7x speedup over the

29

implementation of AES on a comparable CPU. The implementation can be applied for

the computer forensics which requires high speed of data encryption.

3.3. Threads

In computer science, a thread of execution is the smallest sequence of

programmed instructions that can be managed independently by a scheduler, which is

typically a part of the operating system. The implementation of threads and processes

differs between operating systems, but in most cases a thread is a component of a

process. Multiple threads can exist within the same process and share resources such as

memory, while different processes do not share these resources. In particular, the

threads of a process share its instructions (executable code) and its context (the values

of its variables at any given moment).

Figure 4: Life cycle of a thread [16]

The thread is in the "new" state, once it is constructed. In this state, it is merely

an object in the heap, without any system resources allocated for execution. From the

"new" state, the only thing you can do is to invoke the start() method, which puts the

thread into the "runnable" state. Calling any method besides the start() will trigger an

IllegalThreadStateException.

30

The start() method allocates the system resources necessary to execute the

thread, schedules the thread to be run, and calls back the run() once it is scheduled. This

put the thread into the "runnable" state. However, most computers have a single CPU

and time-slice the CPU to support multithreading. Hence, in the "runnable" state, the

thread may be running or waiting for its turn of the CPU time. A thread cannot be started

twice, which triggers a runtime IllegalThreadStateException. The thread enters the

"not-runnable" state when one of these events occurs: The sleep() method is called to

suspend the thread for a specified amount of time to yield control to the other threads.

You can also invoke the yield() to hint to the scheduler that the current thread is willing

to yield its current use of a processor. The scheduler is, however, free to ignore this

hint. The wait() method is called to wait for a specific condition to be satisfied. The

thread is blocked and waiting for an I/O operation to be completed. For the "non-

runnable" state, the thread becomes "runnable" again: If the thread was put to sleep, the

specified sleep-time expired or the sleep was interrupted via a call to the interrupt()

method. If the thread was put to wait via wait(), its notify() or notifyAll() method was

invoked to inform the waiting thread that the specified condition had been fulfilled and

the wait was over.If the thread was blocked for an I/O operation, the I/O operation has

been completed.

A thread is in a "terminated" state, only when the run() method terminates

naturally and exits. The method isAlive() can be used to test whether the thread is alive.

The isAlive() returns false if the thread is "new" or "terminated". It returns true if the

thread is "runnable" or "not-runnable". JDK 1.5 introduces a new getState() method.

This method returns an (nested) enum of type Thread.State, which takes a constant of

{NEW, BLOCKED, RUNNABLE, TERMINATED, WAITING}.

NEW: the thread has not yet started.

RUNNABLE:

WAITING:

BLOCKED: the thread is blocked waiting for a monitor lock.

TIMED_WAITING: the thread is waiting with a specified waiting time.

TERMINATED:

31

On a single processor, multithreading is generally implemented by time-

division multiplexing (as in multitasking), and the central processing unit (CPU)

switches between different software threads. This context switching generally happens

frequently enough that the user perceives the threads or tasks as running at the same

time. On a multiprocessor or multi-core system, threads can be executed in a true

concurrent manner, with every processor or core executing a separate thread

simultaneously. To implement multiprocessing, the operating system may use hardware

threads that exist as a hardware-supported method for better utilization of a particular

CPU, and are different from the software threads that are a pure software construct with

no CPU-level representation.

Process schedulers of many modern operating systems directly support both

time-sliced and multiprocessor threading. The operating system kernel allows

programmers to manipulate threads by exposing required functionality through the

system call interface. Some threading implementations are called kernel threads,

whereas lightweight processes (LWP) are a specific type of kernel thread that share the

same state and information.

Programs can have user-space threads when threading with timers, signals, or

other methods to interrupt their own execution, performing a sort of ad hoc time-slicing.

We can think of a thread as basically a lightweight process. In order to understand this

let us consider the two main characteristics of a process:

Unit of resource ownership

- A process is allocated:

- A virtual address space to hold the process image

- Control of some resources (files, I/O devices...)

Unit of dispatching

- A process is an execution path through one or more programs:

- Execution may be interleaved with other processes

- The process has an execution state and a dispatching priority

If we treat these two characteristics as being independent (as does modern OS theory):

32

The unit of resource ownership is usually referred to as a process or task. This Processes

have:

- A virtual address space which holds the process image.

- Protected access to processors, other processes, files, and I/O resources.

The unit of dispatching is usually referred to a thread or a lightweight process. Thus a

thread:

- Has an execution state (running, ready, etc.)

- Saves thread context when not running

- Has an execution stack and some per-thread static storage for local variables

- Has access to the memory address space and resources of its process

 All threads of a process share this when one thread alters a (non-private)

memory item, all other threads (of the process) sees that a file open with one thread, is

available to others.

3.3.1. Benefits of Threads over Processes

A process runs independently and isolated of other processes. It cannot directly

access shared data in other processes. The resources of the process, e.g. memory and

CPU time, are allocated to it via the operating system.

A thread is a so called lightweight process. It has its own call stack, but can

access shared data of other threads in the same process. Every thread has its own

memory cache. If a thread reads shared data it stores this data in its own memory cache.

A thread can re-read the shared data. A Java application runs by default in one process.

Within a Java application you work with several threads to achieve parallel processing

or asynchronous behavior.

Threads in the same process share the same address space. This allows

concurrently running code to couple tightly and conveniently exchange data without

the overhead or complexity of an inter process communication. When shared between

threads, however, even simple data structures become prone to race conditions if they

require more than one CPU instruction to update: two threads may end up attempting

to update the data structure at the same time and find it unexpectedly changing

underfoot. Bugs caused by race conditions can be very difficult to reproduce and isolate.

33

- Simpler Program Design: If you were to program the above ordering of reading

and processing by hand in a single threaded application, you would have to keep

track of both the read and processing state of each file. Instead you can start two

threads that each just reads and processes a single file. Each of these threads

will be blocked while waiting for the disk to read its file. While waiting, other

threads can use the CPU to process the parts of the file they have already read.

The result is, that the disk is kept busy at all times, reading from various files

into memory. This results in a better utilization of both the disk and the CPU. It

is also easier to program, since each thread only has to keep track of a single

file.

- More responsive programs: Another common goal for turning a single threaded

application into a multithreaded application is to achieve a more responsive

application. Imagine a server application that listens on some port for incoming

requests. When a request is received, it handles the request and then goes back

to listening. If the request takes a long time to process, no new clients can send

requests to the server for that duration. Only while the server is listening can

requests be received.

An alternate design would be for the listening thread to pass the request to a worker

thread, and return to listening immediately. The worker thread will process the request

and send a reply to the client. This way the server thread will be back at listening sooner.

Thus more clients can send requests to the server. The server has become more

responsive.

The same is true for desktop applications. If you click a button that starts a long

task, and the thread executing the task is the thread updating the windows, buttons etc.,

then the application will appear unresponsive while the task executes. Instead the task

can be handed off to a worker thread. While the worker thread is busy with the task, the

window thread is free to respond to other user requests. When the worker thread is done

it signals the window thread. The window thread can then update the application

windows with the result of the task. The program with the worker thread design will

appear more responsive to the user.

34

If implemented correctly then threads have some advantages of (multi)

processes, they take:

- Less time to create a new thread than a process, because the newly created

thread uses the current process address space.

- Less time to terminate a thread than a process.

- Less time to switch between two threads within the same process, partly because

the newly created thread uses the current process address space.

- Less communication overheads -- communicating between the threads of one

process is simple because the threads share everything: address space, in

particular. So, data produced by one thread is immediately available to all the

other threads.

3.3.2 Multithreading vs Single Threading

Multithreading is mainly found in multitasking operating systems. Multithreading is a

widespread programming and execution model that allows multiple threads to exist

within the context of a single process. These threads share the process's resources, but

are able to execute independently. The threaded programming model provides

developers with a useful abstraction of concurrent execution. Multithreading can also

be applied to a single process to enable parallel execution on a multiprocessing system.

Multithreaded applications have the following advantages:

- Responsiveness: Multi-threading can allow an application to remain responsive

to input. In a single-threaded program, if the main execution thread blocks on a

long-running task, the entire application can appear to freeze. By moving such

long-running tasks to a worker thread that runs concurrently with the main

execution thread, it is possible for the application to remain responsive to user

input while executing tasks in the background. On the other hand, in most cases

multithreading is not the only way to keep a program responsive, with non-

blocking I/O and/or Unix signals being available for gaining similar results.

- Faster execution: This advantage of a multithreaded program allows it to operate

faster on computer systems that have multiple or multi-core CPUs, or across a

cluster of machines, because the threads of the program naturally lend

themselves to truly concurrent execution.

35

- Lower resource consumption: Using threads, an application can serve multiple

clients concurrently using fewer resources than it would need when using

multiple process copies of itself. For example, the Apache HTTP server, which

uses a pool of listener threads for listening to incoming requests and a pool of

server threads for processing those requests.

- Better system utilization: As an example, a file-system using multiple threads

can achieve higher throughput and lower latency since data in a faster medium

(such as cache memory) can be retrieved by one thread while another thread

retrieves data from a slower medium (such as external storage) without either

thread waitng for the other to complete.

- Simplified sharing and communication: Unlike processes, which require a

message passing or shared memory mechanism to perform inter-process

communication, threads can communicate through data, code and files that they

already share.

- Parallelization: Applications looking to utilize multi-core and multi-CPU

systems can use multi-threading to split data and tasks into parallel sub-tasks

and let the underlying architecture manage how the threads run, either

concurrently on a single core or in parallel on multiple cores. GPU computing

environments like CUDA and OpenCL use the multi-threading model where

dozens to hundreds of threads run in parallel on a large number of cores.

Some of the Single Threading Benefits are:

- Programming and debugging - These activities are easier compared to

multithreaded applications due to the reduced complexity.

- Less Overhead - Threads add overhead to an application.

When developing multi-threaded applications, the following must be considered:

- Deadlocks occur when two threads hold a monitor that the other one requires.

In essence each task is blocking the other and both tasks are waiting for the other

monitor to be released. This forces an application to hang or deadlock.

- Resource allocation is used to prevent deadlocks because the system determines

if approving the resource request will render the system in an unsafe state. An

unsafe state could result in a deadlock. The system only approves requests that

will lead to safe states.

36

- Thread Synchronization is used when multiple threads use the same instance of

an object. The threads accessing the object can then be locked and then

synchronized so that each task can interact with the static object on at a time.

Multithreading has the following drawbacks:

- Synchronization: Since threads share the same address space, the programmer

must be careful to avoid race conditions and other non-intuitive behaviors. In

order for data to be correctly manipulated, threads will often need to rendezvous

in time in order to process the data in the correct order. Threads may also require

mutually exclusive operations (often implemented using semaphores) in order

to prevent common data from being simultaneously modified or read while in

the process of being modified. Careless use of such primitives can lead to

deadlocks.

- Thread crashes a process: An illegal operation performed by a thread crashes

the entire process; therefore, one misbehaving thread can disrupt the processing

of all the other threads in the application.

- Multiple threads can interfere with each other when sharing hardware resources

such as caches or translation lookaside buffers (TLBs).

- Execution times of a single thread are not improved but can be degraded, even

when only one thread is executing. This is due to slower frequencies and/or

additional pipeline stages that are necessary to accommodate thread-switching

hardware.

- Hardware support for multithreading is more visible to software, thus requiring

more changes to both application programs and operating systems than

multiprocessing.

A process or program has its own address space and control blocks. It is called

heavyweight because it consumes a lot of system resources. Within a process or

program, we can run multiple threads concurrently to improve the performance.

Threads, unlike heavyweight process, are lightweight and run inside a single

process - they share the same address space, the resources allocated and the

environment of that process. It is lightweight because it runs within the context of a

heavyweight process and takes advantage of the resources allocated for that program

and the program’s environment. A thread must carve out its own resources within the

37

running process. For example, a thread has its own stack, registers and program counter.

The code running within the thread works only within that context, hence, a thread (of

a sequential flow of operations) is also called an execution context.

Multithreading within a program improves the performance of the program by

optimizing the usage of system resources. For example, while one thread is blocked

(e.g., waiting for completion of an I/O operation), another thread can use the CPU time

to perform computations, resulted in better performance and overall throughput.

Multithreading is also necessary to provide better interactivity with the users.

For example, in a word processor, while one thread is printing or saving the file, another

thread can be used to continue typing. In GUI applications, multithreading is essential

in providing a responsive user interface.

A typical Java program runs in a single process, and is not interested in multiple

processes. However, within the process, it often uses multiple threads to run multiple

tasks concurrently. A standalone Java application starts with a single thread (called

main thread) associated with the main() method. This main thread can then start new

user threads.

3.3.3 Synchronization

Thread synchronization is defined as a mechanism which ensures that two or more

concurrent processes or threads do not simultaneously execute some particular program

segment known as mutual exclusion. When one thread starts executing the critical

section (serialized segment of the program) the other thread should wait until the first

thread finishes. If proper synchronization techniques are not applied, it may cause a

race condition where, the values of variables may be unpredictable and vary depending

on the timings of context switches of the processes or threads.

A way of making sure that if one process is using a shared modifiable data, the

other processes will be excluded from doing the same thing. Formally, while one

process executes the shared variable, all other processes desiring to do so at the same

time moment should be kept waiting; when that process has finished executing the

shared variable, one of the processes waiting; while that process has finished executing

the shared variable, one of the processes waiting to do so should be allowed to proceed.

In this fashion, each process executing the shared data (variables) excludes all others

38

from doing so simultaneously. This is called Mutual Exclusion. Mutual Exclusion needs

to be enforced only when processes access shared modifiable data - when processes are

performing operations that do not conflict with one another they should be allowed to

proceed concurrently.

Mutual Exclusion Conditions:

- If we could arrange matters such that no two processes were ever in their critical

sections simultaneously, we could avoid race conditions. We need four

conditions to hold to have a good solution for the critical section problem

(mutual exclusion).

- No two processes may at the same moment inside their critical sections.

- No assumptions are made about relative speeds of processes or number of

CPUs.

- No process should outside its critical section should block other processes.

- No process should wait arbitrary long to enter its critical section.

Other than mutual exclusion, synchronization also deals with the following:

- Deadlock: This occurs when many processes are waiting for a shared resource

(critical section) which is being held by some other process. In this case the

processes just keep waiting and execute no further.

- Starvation: A process is waiting to enter the critical section but other processes

keep on executing the critical section and the first process just keeps on waiting.

- Priority inversion: When a high priority process is in the critical section, it may

be interrupted by a medium priority process. This is the violation of rules BUT

this may happen and may lead to some serious consequences when dealing with

real-time problems.

- Busy waiting: It occurs when a process is waiting for its turn but simultaneously

it is continuously checking that now its turn to process or not. This checking is

basically robbing the processing time of other processes.

Processes access to critical section is controlled by using synchronization techniques.

39

In Java, there are two common synchronization strategies to prevent thread interference

and memory consistency errors:

- Synchronized Method: It includes the synchronized keyword in the declaration

of the method. So when any thread invokes this synchronized method, that

method acquires the intrinsic lock by its own (automatically) for that method's

object and it releases the lock when the method returns, even if the return was

caused by some uncaught exception.

- Synchronized Statement: Here we declare a block of code to be synchronized.

Unlike synchronized methods, synchronized statements need to specify the

objects that provide the intrinsic lock. To improve the concurrency with fine-

grained synchronization, synchronized statements are very useful because they

prevent unnecessary blocking.

40

Chapter 4

Design and Implementation

AES algorithm is the current standard for symmetric key encryption, this section gives

a detailed explanation about the various permutation and substitution steps followed in

order to perform encryption and decryption.

4.1. Detailed Description

The following is the brief overview of various terminologies used in implementation of

the AES algorithm:

4.1.1. Terminology

State: Defines the current condition (state) of the block. That is the block of bytes that

are currently being worked on. The state starts off being equal to the block, however it

changes as each round of the algorithms executes. Plainly said this is the block in

progress.

Figure 5: HEX Matrix [9]

Block: AES is a block cipher. This means that the number of bytes that it encrypts is

fixed. AES can currently encrypt blocks of w 16 bytes at a time; no other block sizes

41

are presently a part of the AES standard. If the bytes being encrypted are larger than the

specified block then AES is executed concurrently. This also means that AES has to

encrypt a minimum of 16 bytes. If the plain text is smaller than 16 bytes then it must be

padded. Simply said the block is a reference to the bytes that are processed by the

algorithm.

HEX: Defines a notation of numbers in base 16. This simply means that; the highest

number that can be represented in a single digit is 15, rather than the usual 9 in the

decimal (base 10) system.

XOR: Refers to the bitwise operator Exclusive Or. XOR operates on the individual bits

in a byte in the following way:

0 XOR 0 = 0

1 XOR 0 = 1

1 XOR 1 = 0

0 XOR 1 = 1

Most programming languages have the XOR operator built in. Another

interesting property of the XOR operator is that it is reversible.

So Hex 2B XOR FF = D4. AES is an iterated symmetric block cipher, which means

that:

- AES works by repeating the same defined steps multiple times.

- AES is a secret key encryption algorithm.

- AES operates on a fixed number of bytes

AES as well as most encryption algorithms is reversible. This means that almost the

same steps are performed to complete both encryption and decryption in reverse order.

The AES algorithm operates on bytes, which makes it simpler to implement and

explain. This key is expanded into individual sub keys, a sub keys for each operation

round. This process is called Key Expansion, which is described at the end of this

document. As mentioned before AES is an iterated block cipher. All that means is that

42

the same operations are performed many times on a fixed number of bytes. These

operations can easily be broken down to the following functions:

- ADD ROUND KEY

- SUB BYTE

- SHIFT ROW

- MIX COLUMN

An iteration of the above steps is called a round. The amount of rounds of the

algorithm depends on the key size. The only exception being that in the last round the

Mix Column step is not performed to make the algorithm reversible during decryption.

Table 4: Number of rounds for various key sizes [3]

Key Size

(Bytes)

Block Size

(Bytes)

Rounds

16 16 10

24 16 12

32 16 14

Encryption

The following tables illustrates the number of rounds required for encryption depending

on different key size length:

Table 5: AES Encryption cipher using 16-bit key [3]

Round Function

- Add Round Key(State)

1 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

2 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

3 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

4 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

5 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

6 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

7 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

8 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

9 Add Round Key(Shift Row(Byte Sub(State)))

43

Table 6: AES Encryption cipher using 24-bit key [3]

Round Function

- Add Round Key(State)

1 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

2 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

3 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

4 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

5 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

6 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

7 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

8 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

9 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

10 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

11 Add Round Key(Shift Row(Byte Sub(State)))

Table 7: AES Encryption cipher using 32-bit key [3]

Round Function

- Add Round Key(State)

1 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

2 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

3 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

4 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

5 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

6 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

7 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

8 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

9 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

10 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

11 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

12 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

13 Add Round Key(Shift Row(Byte Sub(State)))

44

Decryption

The following tables illustrates the number of rounds required for encryption depending

on different key size length:

Table 8: AES Decryption cipher using 16-bit key [3]

Round Function

- Add Round Key(State)

1 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

2 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

3 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

4 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

5 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

6 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

7 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

8 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

9 Add Round Key(Byte Sub(Shift Row(State)))

Table 9: AES Decryption cipher using 24-bit key [3]

Round Function

- Add Round Key(State)

1 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

2 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

3 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

4 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

5 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

6 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

7 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

8 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

9 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

10 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

11 Add Round Key(Byte Sub(Shift Row(State)))

45

Table 10: AES Decryption cipher using 32-bit key [3]

Round Function

- Add Round Key(State)

1 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

2 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

3 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

4 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

5 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

6 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

7 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

8 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

9 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

10 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

11 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

12 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

13 Add Round Key(Byte Sub(Shift Row(State)))

4.2. AES Cipher Functions

Given below is the detailed description of all the 4 functions and the corresponding

inverse functions that are used in various rounds of encryption as well as decryption

process:

4.2.1. Add Round Key

Each of the 16 bytes of the state is XORed against each of the 16 bytes of a

portion of the expanded key for the current round.

Figure 6: Working of Add Round Key [1]

46

The Expanded Key bytes are never reused. So once the first 16 bytes are XORed against

the first16 bytes of the expanded key then the expanded key bytes 1-16 are never used

again. The next time the AddRound Key function is called bytes 17-32 are XORed

against the state.

4.2.2. Byte Sub

During encryption each value of the state is replaced with the corresponding SBOX

value.

Figure 7: SBOX [1]

For example HEX 19 would get replaced with HEX D4

Whereas during decryption each value in the state is replaced with the corresponding

inverse of the SBOX.

47

Figure 8: Inverse SBOX [1]

For example HEX D4 would get replaced with HEX 19

4.2.3. Shift Row

Arranges the state in a matrix and then performs a circular shift for each row.

This is not a bit wise shift. The circular shift just moves each byte one space over. A

byte that was in the second position may end up in the third position after the shift. The

circular part of it specifies that the byte in the last position shifted one space will end

up in the first position in the same row.

In Detail:

- The state is arranged in a 4x4 matrix (square)

- The confusing part is that the matrix is formed vertically but shifted

horizontally. So the first 4 bytes of the state will form the first bytes in each row.

So bytes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Will form a matrix:

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

48

Each row is then moved over (shifted) 1, 2 or 3 spaces over to the right, depending on

the row of the state. First row is never shifted

Row1 0

Row2 1

Row3 2

Row4 3

The following is the illustration of how the individual bytes are first arranged in the

table and then moved over (shifted).

Blocks 16 bytes long:

From To

1 5 9 13 1 5 9 13

2 6 10 14 6 10 14 2

3 7 11 15 11 15 3 7

4 8 12 16 16 4 8 12

During decryption the same process is reversed and all rows are shifted to the left:

From To

1 5 9 13 1 5 9 13

2 6 10 14 14 2 6 10

3 7 11 15 11 15 3 7

4 8 12 16 8 12 16 4

4.2.4. Mix Column

This is perhaps the hardest step to both understand and explain. There are two parts

to this step. The first will explain which parts of the state are multiplied against which

parts of the matrix.

Matrix Multiplication:

The state is arranged into a 4 row table (as described in the Shift Row function).

The multiplication is performed one column at a time (4 bytes). Each value in the

column is eventually multiplied against every value of the matrix (16 total

multiplications). The results of these multiplications are XORed together to produce

only 4 result bytes for the next state. Therefore 4 bytes input, 16 multiplications 12

XORs and 4 bytes output. The multiplication is performed one matrix row at a time

against each value of a state column.

49

Multiplication Matrix

2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2

16 byte State

b1 b5 b9 b13

b2 b6 b10 b14

b3 b7 b11 b15

b4 b8 b12 b16

The first result byte is calculated by multiplying 4 values of the state column against 4

values of the first row of the matrix. The result of each multiplication is then XORed to

produce 1 byte:

b1 = (b1 * 2) XOR (b2*3) XOR (b3*1) XOR (b4*1)

The second result byte is calculated by multiplying the same 4 values of the state

column against 4 values of the second row of the matrix. The result of each

multiplication is then XORed to produce 1 byte:

b2 = (b1 * 1) XOR (b2*2) XOR (b3*3) XOR (b4*1)

The third result byte is calculated by multiplying the same 4 values of the state column

against 4 values of the third row of the matrix. The result of each multiplication is then

XORed to produce 1 byte:

b3 = (b1 * 1) XOR (b2*1) XOR (b3*2) XOR (b4*3)

The fourth result byte is calculated by multiplying the same 4 values of the state column

against 4 values of the fourth row of the matrix. The result of each multiplication is then

XORed to produce 1 byte:

b4 = (b1 * 3) XOR (b2*1) XOR (b3*1) XOR (b4*2)

50

This procedure is repeated again with the next column of the state, until there are no

more state columns.

Putting it all together:

The first column will include state bytes 1-4 and will be multiplied against the matrix

in the following manner:

b1 = (b1 * 2) XOR (b2*3) XOR (b3*1) XOR (b4*1)

b2 = (b1 * 1) XOR (b2*2) XOR (b3*3) XOR (b4*1)

b3 = (b1 * 1) XOR (b2*1) XOR (b3*2) XOR (b4*3)

b4 = (b1 * 3) XOR (b2*1) XOR (b3*1) XOR (b4*2)

(b1= specifies the first byte of the state)

The second column will be multiplied against the second row of the matrix in the

following manner.

b5 = (b5 * 2) XOR (b6*3) XOR (b7*1) XOR (b8*1)

b6 = (b5 * 1) XOR (b6*2) XOR (b7*3) XOR (b8*1)

b7 = (b5 * 1) XOR (b6*1) XOR (b7*2) XOR (b8*3)

b8 = (b5 * 3) XOR (b6*1) XOR (b7*1) XOR (b8*2)

And so on until all columns of the state are exhausted.

4.2.5. Mix Column Inverse

During decryption the Mix Column the multiplication matrix is changed to:

0E 0B 0D 09

09 0E 0B 0D

0D 09 0E 0B

0B 0D 09 0E

Apart from the change to the matrix table the function performs the same steps as during

encryption.

Mix Column Example

The following examples are denoted in HEX.

- Mix Column Example during Encryption

Input = D4 BF 5D 30

Output(0) = (D4 * 2) XOR (BF*3) XOR (5D*1) XOR (30*1)

= E(L(D4) + L(02)) XOR E(L(BF) + L(03)) XOR 5D XOR 30

51

= E(41 + 19) XOR E(9D + 01) XOR 5D XOR 30

= E(5A) XOR E(9E) XOR 5D XOR 3010

= B3 XOR DA XOR 5D XOR 30

= 04

Output(1) = (D4 * 1) XOR (BF*2) XOR (5D*3) XOR (30*1)

= D4 XOR E(L(BF)+L(02)) XOR E(L(5D)+L(03)) XOR 30

= D4 XOR E(9D+19) XOR E(88+01) XOR 30

= D4 XOR E(B6) XOR E(89) XOR 30

= D4 XOR 65 XOR E7 XOR 30

= 66

Output(2) = (D4 * 1) XOR (BF*1) XOR (5D*2) XOR (30*3)

= D4 XOR BF XOR E(L(5D)+L(02)) XOR E(L(30)+L(03))

= D4 XOR BF XOR E(88+19) XOR E(65+01)

= D4 XOR BF XOR E(A1) XOR E(66)

= D4 XOR BF XOR BA XOR 50

= 81

Output(3) = (D4 * 3) XOR (BF*1) XOR (5D*1) XOR (30*2)

= E(L(D4)+L(3)) XOR BF XOR 5D XOR E(L(30)+L(02))

= E(41+01) XOR BF XOR 5D XOR E(65+19)

= E(42) XOR BF XOR 5D XOR E(7E)

= 67 XOR BF XOR 5D XOR 60

= E5

- Mix Column during Decryption

Input 04 66 81 E5

Output(0) = (04 * 0E) XOR (66*0B) XOR (81*0D) XOR (E5*09)

=E(L(04)+L(0E)) XOR E(L(66)+L(0B)) XOR E(L(81)+L(0D)) XOR E(L(E5)+L(09))

= E(32+DF) XOR E(1E+68) XOR E(58+EE) XOR E(20+C7)

= E(111-FF) XOR E(86) XOR E(146-FF) XOR E(E7)

= E(12) XOR E(86) XOR E(47) XOR E(E7)

= 38 XOR B7 XOR D7 XOR 8C

52

= D4

Output(1) = (04 * 09) XOR (66*0E) XOR (81*0B) XOR (E5*0D)

= E(L(04)+L(09)) XOR E(L(66)+L(0E)) XOR E(L(81)+L(0B)) XOR E(L(E5)+L(0D))

= E(32+C7) XOR E(1E+DF) XOR E(58+68) XOR E(20+ EE)

= E(F9) XOR E(FD) XOR E(C0) XOR E(10E-FF)

= E(F9) XOR E(FD) XOR E(C0) XOR E(0F)

= 24 XOR 52 XOR FC XOR 35

= BF

Output(2) = (04 * 0D) XOR (66*09) XOR (81*0E) XOR (E5*0B)

=E(L(04)+L(0D)) XOR E(L(66)+L(09) XOR E(L(81)+L(0E)) XOR E(L(E5)+(0B))

= E(32+EE) XOR E(1E+C7) XOR E(58+DF) XOR E(20+68)

= E(120-FF) XOR E(E5) XOR E(137-FF) XOR E(88)

= E(21) XOR E(E5) XOR E(38) XOR E(88)

= 34 XOR 7B XOR 4F XOR 5D

= 5D

Output(3) = (04 * 0B) XOR (66*0D) XOR (81*09) XOR (E5*0E)

= E(L(04)+L(0B)) XOR E(L(66)+L(0D)) XOR E(L(81)+L(09)) XOR E(L(E5)+L(0E))

= E(32+68) XOR E(1E+EE) XOR E(58+C7) XOR E(20+DF)

= E(9A) XOR E(10C-FF) XOR E(11F-FF) XOR E(FF)

= E(9A) XOR E(0D) XOR E(20) XOR E(FF)

= 2C XOR F8 XOR E5 XOR 01

= 30

4.2.6. Key Expansion

Prior to encryption or decryption the key must be expanded. The expanded key

is used in the Add Round Key function defined above. Each time the Add Round Key

function is called a different part of the expanded key is XORed against the state. In

order for this to work the Expanded Key must be large enough so that it can provide

key material for every time the AddRoundKey function is executed. The Add Round

Key function gets called for each round as well as one extra time at the beginning of

the algorithm.

53

Therefore the size of the expanded key will always be equal to:

16 * (number of rounds + 1).

The 16 in the above function is actually the size of the block in bytes. This

provides key material for every byte in the block during every round +1

Since the key size is much smaller than the size of the sub keys, the key is

actually stretched out to provide enough key space for the algorithm. The key expansion

routine executes a maximum of 4 consecutive functions. These functions are:

ROT WORD

SUB WORD

RCON

EK

K

An iteration of the above steps is called a round. The amount of rounds of the key

expansion algorithm depends on the key size.

Table 11: Key Expansion [3]

The first bytes of the expanded key are always equal to the key. If the key is 16 bytes

long the first 16 bytes of the expanded key will be the same as the original key. If the

key size is 32 bytes then the first 32 bytes of the expanded key will be the same as the

original key.

Each round adds 4 bytes to the Expanded Key. With the exception of the first

rounds each round also takes the previous rounds 4 bytes as input operates and returns

4 bytes. One more important note is that not all of the 4 functions are always called in

each round. The algorithm only calls all 4 of the functions every:

4 Rounds for a 16 byte Key

6 Rounds for a 24 byte Key

8 Rounds for a 32 byte Key

The rest of the rounds only a K function result is XORed with the result of the

EK function. There is an exception of this rule where if the key is 32 bytes long an

54

additional call to the Sub Word function is called every 8 rounds starting on the 13th

round.

Key Expansion Functions

The following are the various functions used in expanding the given key:

- Rot Word (4 bytes)

This does a circular shift on 4 bytes similar to the Shift Row Function.

1,2,3,4 to 2,3,4,1

- Sub Word (4 bytes)

This step applies the S-box value substitution as described in Bytes Sub function to

each of the 4 bytes in the argument.

Rcon((Round/(KeySize/4))-1)

This function returns a 4 byte value based on the following table

Rcon(0) = 01000000

Rcon(1) = 02000000

Rcon(2) = 04000000

Rcon(3) = 08000000

Rcon(4) = 10000000

Rcon(5) = 20000000

Rcon(6) = 40000000

Rcon(7) = 80000000

Rcon(8) = 1B000000

Rcon(9) = 36000000

Rcon(10) = 6C000000

Rcon(11) = D8000000

Rcon(12) = AB000000

Rcon(13) = 4D000000

Rcon(14) = 9A000000

For example for a 16 byte key Rcon is first called in the 4th round

(4/(16/4))-1=0

In this case Rcon will return 01000000

For a 24 byte key Rcon is first called in the 6th round

(6/(24/4))-1=0

In this case Rcon will also return 01000000

55

- EK(Offset)

EK function returns 4 bytes of the Expanded Key after the specified offset. For

example if offset is 0 then EK will return bytes 0,1,2,3 of the Expanded Key

- K(Offset)

K function returns 4 bytes of the Key after the specified offset. For example if offset

is 0 then K will return bytes 0,1,2,3 of the Expanded Key

Since the expansion algorithm changes depending on the length of the key, it is

extremely difficult to explain in writing. This is why the explanation of the Key

Expansion Algorithm is provided in a table format.

- 16 byte Key Expansion:

Each round (except rounds 0, 1, 2 and 3) will take the result of the previous round and

produce a 4 byte result for the current round. Notice the first 4 rounds simply copy the

total of 16 bytes of the key.

Table 12: 16-byte key expansion [9]

56

- 24 byte Key Expansion

Each round (except rounds 0, 1, 2, 3, 4 and 5) will take the result of the previous round

and produce a 4 byte result for the current round. Notice the first 6 rounds simply copy

the total of 24 bytes of the key.

Table 13: 24-byte key expansion [9]

57

- 32 byte Key Expansion

Each round (except rounds 0, 1, 2, 3, 4, 5, 6 and 7) will take the result of the previous

round and produce a 4 byte result for the current round. Notice the first 8 rounds simply

copy the total of 32 bytes of the key.

Table 14: 32-byte key expansion [9]

58

4.3. Implementation details

The following functions are required by both encryption and decryption modules as

these functions are required for key generation and some computational steps:

generateSubkeys

Input: byte[] key

Returns: byte[] tmp

Pseudo Code:

byte[][] tmp = new byte[Nb * (Nr + 1)][4]

int i = 0

while (i < Nk)

tmp[i][0] = key[i * 4]

tmp[i][1] = key[i * 4 + 1]

tmp[i][2] = key[i * 4 + 2]

tmp[i][3] = key[i * 4 + 3]

i++

i = Nk

while (i < Nb * (Nr + 1))

byte[] temp = new byte[4]

for(int k = 0;k<4;k++)

temp[k] = tmp[i-1][k]

if (i % Nk == 0)

temp = SubWord(rotateWord(temp))

temp[0] = (byte) (temp[0] ^ (Rcon[i / Nk] & 0xff))

else if (Nk > 6 && i % Nk == 4)

59

temp = SubWord(temp);

tmp[i] = xor_func(tmp[i - Nk], temp)

i++

return tmp

xor_func

Input: byte[] a, byte[] b

Returns: byte[] out

Pseudo Code:

byte[] out = new byte[a.length]

for (int i = 0; i < a.length; i++)

out[i] = (byte) (a[i] ^ b[i])

return out

SubWord

Input: byte[] in

Returns: byte[] tmp

Pseudo code:

byte[] tmp = new byte[in.length]

for (int i = 0; i < tmp.length; i++)

tmp[i] = (byte) (sbox[in[i] & 0x000000ff] & 0xff)

return tmp

60

rotateWord

Input: byte[] input

Returns: byte[] tmp

Pseudo code:

byte[] tmp = new byte[input.length]

tmp[0] = input[1]

tmp[1] = input[2]

tmp[2] = input[3]

tmp[3] = input[0]

return tmp

FFMul

Input: byte a, byte b

Output: byte r

Pseudo Code:

byte aa = a, bb = b, r = 0, t

while (aa != 0)

if ((aa & 1) != 0)

r = (byte) (r ^ bb)

t = (byte) (bb & 0x80)

bb = (byte) (bb << 1)

if (t != 0)

bb = (byte) (bb ^ 0x1b)

aa = (byte) ((aa & 0xff) >> 1)

61

 return r

4.3.1. Encryption

The encryption algorithm has the following:

Constants - Nb = 4; Nk = key.length/4; Nr = Nk + 6; int lenght=0;

Inputs - byte[] in, byte[] key

The input text is first checked and is passes through byte padding sequence in order to

make sure it contains sufficient number of bytes for encryption.

encryptBloc

Input: byte[] in

Returns: byte[] tmp

Pseudo code:

byte[] tmp = new byte[in.length]

byte[][] state = new byte[4][Nb]

for (int i = 0; i < in.length; i++)

state[i / 4][i % 4] = in[i%4*4+i/4]

state = AddRoundKey(state, w, 0)

for (int round = 1; round < Nr; round++)

state = SubBytes(state)

state = ShiftRows(state)

state = MixColumns(state)

state = AddRoundKey(state, w, round)

state = SubBytes(state)

state = ShiftRows(state)

state = AddRoundKey(state, w, Nr)

62

for (int i = 0; i < tmp.length; i++)

tmp[i%4*4+i/4] = state[i / 4][i%4]

return tmp

AddRoundKey

Input: byte[][] state, byte[][] w, int round

Output: byte[][] tmp

Pseudo Code:

byte[][] tmp = new byte[state.length][state[0].length]

for (int c = 0; c < Nb; c++)

for (int l = 0; l < 4; l++)

tmp[l][c] = (byte) (state[l][c] ^ w[round * Nb + c][l])

return tmp

SubBytes

Input: byte[][] state

Output: byte[][] tmp

Pseudo Code:

byte[][] tmp = new byte[state.length][state[0].length]

for (int row = 0; row < 4; row++)

for (int col = 0; col < Nb; col++)

tmp[row][col] = (byte) (sbox[(state[row][col] & 0x000000ff)] & 0xff)

return tmp

63

ShiftRows

Input: byte[][] state

Output: byte[][] state

Pseudo Code:

byte[] t = new byte[4]

for (int r = 1; r < 4; r++)

for (int c = 0; c < Nb; c++)

t[c] = state[r][(c + r) % Nb]

for (int c = 0; c < Nb; c++)

state[r][c] = t[c]

return state

MixColumns

Input: byte[][] s

Output: byte[][] tmp

Pseudo Code:

int[] sp = new int[4]

byte b02 = (byte)0x02, b03 = (byte)0x03

for (int c = 0; c < 4; c++)

sp[0] = FFMul(b02, s[0][c]) ^ FFMul(b03, s[1][c]) ^ s[2][c] ^ s[3][c]

sp[1] = s[0][c] ^ FFMul(b02, s[1][c]) ^ FFMul(b03, s[2][c]) ^ s[3][c]

sp[2] = s[0][c] ^ s[1][c] ^ FFMul(b02, s[2][c]) ^ FFMul(b03, s[3][c])

sp[3] = FFMul(b03, s[0][c]) ^ s[1][c] ^ s[2][c] ^ FFMul(b02, s[3][c])

for (int i = 0; i < 4; i++)

64

s[i][c] = (byte)(sp[i])

return s

4.3.2. Decryption

The decryption algorithm has the following:

Constants - Nb = 4; Nk = key.length/4; Nr = Nk + 6; int lenght=0;

Inputs - byte[] in, byte[] key

The input cipher text is first decrypted and is then passes through byte padding sequence

in order to make sure it contains sufficient number of bytes as the input plain text.

decryptBloc

Input: byte[][] in

Output: byte[] tmp

Pseudo Code:

byte[] tmp = new byte[in.length]

byte[][] state = new byte[4][Nb]

for (int i = 0; i < in.length; i++)

state[i / 4][i % 4] = in[i%4*4+i/4]

state = AddRoundKey(state, w, Nr)

for (int round = Nr-1; round >=1; round--)

state = InvSubBytes(state)

state = InvShiftRows(state)

state = AddRoundKey(state, w, round)

state = InvMixColumns(state)

state = InvSubBytes(state)

state = InvShiftRows(state)

65

state = AddRoundKey(state, w, 0)

for (int i = 0; i < tmp.length; i++)

tmp[i%4*4+i/4] = state[i / 4][i%4]

return tmp

InvSubBytes

Input: byte[][] state

Output: byte[][] state

Pseudo Code:

for (int row = 0; row < 4; row++)

for (int col = 0; col < Nb; col++)

state[row][col] = (byte)(inv_sbox[(state[row][col] & 0x000000ff)]&0xff)

return state

InvShiftRows

Input: byte[][] state

Output: byte[][] state

Pseudo Code:

byte[] t = new byte[4]

for (int r = 1; r < 4; r++)

for (int c = 0; c < Nb; c++)

t[(c + r)%Nb] = state[r][c]

for (int c = 0; c < Nb; c++)

state[r][c] = t[c]

66

return state

InvMixColumns

Input: byte[][] s

Output: byte[][] state

Pseudo Code:

int[] sp = new int[4]

byte b02 = (byte)0x0e, b03 = (byte)0x0b, b04 = (byte)0x0d, b05 = (byte)0x09

for (int c = 0; c < 4; c++)

sp[0] = FFMul(b02, s[0][c]) ^ FFMul(b03, s[1][c]) ^ FFMul(b04,s[2][c]) ^

FFMul(b05,s[3][c])

sp[1] = FFMul(b05, s[0][c]) ^ FFMul(b02, s[1][c]) ^ FFMul(b03,s[2][c]) ^

FFMul(b04,s[3][c])

sp[2] = FFMul(b04, s[0][c]) ^ FFMul(b05, s[1][c]) ^ FFMul(b02,s[2][c]) ^

FFMul(b03,s[3][c])

sp[3] = FFMul(b03, s[0][c]) ^ FFMul(b04, s[1][c]) ^ FFMul(b05,s[2][c]) ^

FFMul(b02,s[3][c])

for (int i = 0; i < 4; i++)

s[i][c] = (byte)(sp[i])

return s

67

4.4. Performance Analysis

The performance parameters considered for enhancement are calculated.

The time taken for encryption and decryption in case of conventional and improved

algorithm are as follows:

For conventional AES:

𝑇_𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛𝑐 = 5𝑚𝑠 – Time taken for encrypt

𝑇_𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛𝑐 = 3𝑚𝑠 – Time taken to decrypt

For modified AES:

𝑇_𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛𝑝 = 3𝑚𝑠 – Time taken to encrypt

𝑇_𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛𝑝 = 2𝑚𝑠 – Time taken to decrypt

The following are the throughput values of encryption and decryption time for

conventional AES algorithm.

Throughput
𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛

=
𝐵𝑙𝑜𝑐𝑘 𝑆𝑖𝑧𝑒

𝑇𝑖𝑚𝑒 𝑇𝑎𝑘𝑒𝑛𝐶

=
128

5

 = 25.6

Throughput
𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛

=
𝐵𝑙𝑜𝑐𝑘 𝑆𝑖𝑧𝑒

𝑇𝑖𝑚𝑒 𝑇𝑎𝑘𝑒𝑛𝐶

=
128

3

 = 42.67

68

The Throughput is given in the general form of completions per unit of time, the

common throughput metric is instructions per cycle, In case of AES the throughput

depends on size of block as well as time taken for encryption/decryption given by:

𝑇 =
𝑏𝑙𝑜𝑐𝑘 𝑠𝑖𝑧𝑒

𝑡

Where,

T - Throughput

t - Time taken to encrypt/decrypt

The following are the throughput values of encryption and decryption time for modified

AES algorithm.

Throughput
𝑝_𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛

=
𝐵𝑙𝑜𝑐𝑘 𝑆𝑖𝑧𝑒

𝑇𝑖𝑚𝑒 𝑇𝑎𝑘𝑒𝑛𝑝

 =
128

3

 = 42.67

 Throughput
𝑝_𝑑𝑒𝑐𝑟𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛

=
𝐵𝑙𝑜𝑐𝑘 𝑆𝑖𝑧𝑒

𝑇𝑖𝑚𝑒 𝑇𝑎𝑘𝑒𝑛𝑝

 =
128

2

 = 64

69

Thus, the speedup achieved is given by the following relation:

𝑆 =
𝑇𝑜𝑙𝑑

𝑇𝑛𝑒𝑤

Where,

S is the resultant speedup.

𝑇𝑜𝑙𝑑 is the old execution time, i.e., without the improvement.

𝑇𝑛𝑒𝑤 is the new execution time, i.e., with the improvement.

𝑆𝑝𝑒𝑒𝑑𝑢𝑝𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 =
𝑇𝑖𝑚𝑒 𝑇𝑎𝑘𝑒𝑛𝑐

𝑇𝑖𝑚𝑒 𝑇𝑎𝑘𝑒𝑛𝑝

 =
5

3

 = 1.67

𝑆𝑝𝑒𝑒𝑑𝑢𝑝𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 =
𝑇𝑖𝑚𝑒 𝑇𝑎𝑘𝑒𝑛𝑐

𝑇𝑖𝑚𝑒 𝑇𝑎𝑘𝑒𝑛𝑝

 =
3

2

 = 1.5

70

Chapter 5

Conclusion and Future Work

The Advanced Encryption Technique was implemented successfully using Java with

an increased throughput and thus speedup. Various data messages were encrypted using

different keys and varying key sizes. The original data was properly retrieved via

decryption of the cipher text. The modifications brought about in the code was tested

and proved to be accurately encrypting and decrypting the data messages with even

higher security and immunity against the unauthorized users.

The limitations with this AES algorithm are: the successful attack against AES data

encryption has been side channel attacks, which don't attack the actual AES cipher text,

rather than its implementation. Since it drives on blocks of 200 bits it requires more

processing for large data.

Further enhancement to this project can be testing the security of the modified algorithm

against modern attacks. Linear and differential cryptanalysis can be used to analyze the

level of security provided by the improved algorithm.

71

References

1. William Stallings, Cryptography and Network Security, Fifth Edition, Pearson

Education, 2013.

2. Neal R. Wagner, “The Laws of Cryptography with Java Code”, 2003 Edition.

3. Edward Chu, Paul Kim, Frank Liu, Jason Sharma and Jeffrey Yu, “The selection

of Advanced Encryption Standard”, MIT 6, 933J, fall 2000.

4. Douglas Selent, “Advanced Encryption Standard”, Rivier Academic Journal,

Vol. 6, No. 2, pp. 1-14 fall 2010.

5. Shaaban Sahmoud, Wisam Elmasry and Shadi Abudalfa, “Enhancement the

Security of AES Against Modern Attacks by Using Variable Key Block

Cipher”, International Arab Journal of e -Technology, Vol. 3, No. 1, pp. 17-26,

Jan 2013.

6. The Deguang Le, Jinyi Chang, Xingdou Gou, Ankang Zhang and Conglan Lu,

“Parallel AES Algorithm for Fast Data Encryption on GPU”, 2nd International

Conference on Computer Engineering and Technology, Vol. 6, pp. 1-6, 2010.

7. Ritu Pahal and Vikas kumar, “Efficient Implementation of AES”, International

Journal of Advanced Research in Computer Science and Software Engineering,

Vol. 3, Issue 7, pp. 290-295, Jul 2013.

8. Vishal Pachori, Gunjan Ansari and Neha Chaudhary, “Improved Performance

of Advance Encryption Standard using Parallel Computing”, International

Journal of Engineering Research and Applications, Vol. 2, Issue 1, pp. 967-971,

Jan-Feb 2012.

9. Adam Berent, “Advanced Encryption Standard by Example”, documentation

for ABI Software Development.

10. Kundankumar Rameshwar Saraf, Vishal Prakash Jagtap and Amit Kumar

Mishra, “Text and Image Encryption Decryption Using Advanced Encryption

Standard”, International Journal of Emerging Trends & Technology in

Computer Science, Vol. 3, Issue 3, pp.118-126, May-Jun 2014.

11. Alan Kaminsky, Michael Kurdziel and Stanisław Radziszowski1, “An

Overview of Cryptanalysis Research for the Advanced Encryption Standard”,

Military Communications Conference, pp. 1310-1316, Oct-Nov 2010.

72

12. M.Pitchaiah, Philemon Daniel and Praveen, “Implementation of Advanced

Encryption Standard Algorithm”, International Journal of Scientific &

Engineering Research Vol 3, Issue 3, pp. 1-6, Mar 2012.

13. Mg Suresh and Dr.Nataraj K.R., “Area Optimized and Pipelined FPGA

Implementation of AES Encryption and Decryption”, International Journal of

Computational Engineering Research, Vol. 2, Issue 7, pp. 133-139, Nov 2012.

14. M. Shahraki, “Implementation Aspects of Rijndael Encryption Algorithm”,

Lecture Series on Computer and Computational Sciences, Vol. 2, pp. 166-169,

2005.

15. Vandana C. Koradia, “Modification in Advanced Encryption Standard”, Journal

of Information, Knowledge and Research in Computer Engineering”, Vol. 2,

Issue 2, pp. 356-358, 2013.

16. Amit Kumar Mangal, “Multithreaded Java Applications Performance

Improvement”, International Journal of Advanced Research in Computer

Science and Software Engineering, Vol. 3, Issue 3, pp. 47-50, March 2013.

73

Appendix

Figure 9: Screen capture of Console

Figure 10: Output of code

