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Abstract 
 

 

Collaborative online social media (CSM) applications such as Wikipedia have not only revolutionized the 

World Wide Web, but they also have had a hugely positive effect on modern free societies. Unfortunately, 

Wikipedia has also become target to a wide-variety of vandalism attacks. Most existing vandalism detection 

techniques rely upon simple textual features such as existence of abusive language or spammy words. These 

techniques are ineffective against sophisticated vandal edits, which often do not contain the tell-tale markers 

associated with vandalism. 

                      A plethora of methods have been developed within the Wikipedia and the scientific community 

to tackle this problem.This project has participated in this effort and proposes a content context-aware 

vandalism detection framework. The main idea is to quantify how well the words contained in the edit fit 

into the topic and the existing content of theWikipedia article. 

.  
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Chapter 1 

 
                                          Introduction 

 
1.1 What is Wikipedia 

 
Wikipedia is an online encyclopedia that is free, collaborative, multilingual and global-scale. Free because 

anyone is free to use, copy, redistribute and modify Wikipedia content, even with commercial purposes, as 

long as the result is also shared with the same license. Collaborative because Wikipedia contents are created 

by the collaboration of thousands of individuals. Anyone can edit Wikipedia, even without being registered, 

and participate in the discussions about content and policies. Multilingual because there are editions of 

Wikipedia in 240 languages and growing. Global-scale because in its 10 years of life, Wikipedia has had an 

enormous growth. Today, it is the most popular source of encyclopaedic knowledge and one of the most 

visited websites on the Internet, with 365 million estimated readers. Only the English edition contains more 

than 3 million articles,over 13 million registered users and 130 thousand active users. 

 

                        In short, the success of Wikipedia is also a key factor for the development of a wide range of 

academic, social and commercial projects beyond Wikipedia. 

 

 

1.2 What is Vandalism 

 
The fact that anyone can edit Wikipedia at any time with very little practical restrictions is at the core of its 

success and, at the same time, it is one of its main sources of trouble. By guaranteeing any person freedom to 

edit its contents, Wikipedia has become a target for pranksters and, with its increasing popularity, for 

spammers, lobbyists and other people interested in self-promotion, manipulation and propaganda. This has a 

wide-ranging negative impact in Wikipedia itself and all applications that use Wikipedia as a knowledge 

source. The phenomenon of vandalism can be defined as, any addition, removal, or change of content made 

in a deliberate attempt to compromise the integrity of Wikipedia. Common types of vandalism are the 

addition of obscenities or crude humour, page blanking, and the insertion of nonsense into articles. Any 

good-faith effort to improve the encyclopaedia, even if misguided or ill-considered, is not vandalism. Even 

harmful edits that are not explicitly made in bad faith are not vandalism. 

 

1.3 Why does Vandalism matter 
 

Considering the increasingly important role that Wikipedia is playing in the modern world, it is important to 

ensure the trustworthiness of the information that gets shared on it. Unfortunately, the very foundational 
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features of Wikipedia namely end-user anonymity and low information sharing barrier have made it 

susceptible to a variety of vandalism attacks. 

                       Studies show that around 5% of Wikipedia edits involve vandalism. Some of these edits were 

not rectified for several hours (in some, albeit in frequent, cases even days). In addition to exposing false 

information to Wikipedia users, vandalism has the potential to inflict wider damage. It can cause progressive 

degradation of quality of information which can lead to frustration among honest contributors, some of 

whom may loose interest in contributing content and participating in Wikipedia activities. 

 More importantly, vandalism can create social tensions and may even lead to violence in certain regions of 

the world. Thus, it is important to develop effective techniques for detecting vandalism in Wikipedia as well 

as other CSM applications. 

 

Chapter 2 

Wikipedia Vandalism 
 

2.1 Kinds of Vandalism 

 
Vandalism is a highly subjective and wide concept. There have been attempts to give a concise definition by 

creating taxonomies of vandalism. There are many kinds of vandalism,as shown in Table 2.1. 

Tightly attached to the concept of vandalism are good and bad faith, which are terms regularly used in the 

Wikipedia community. However, from a computational point of view, we are actually studying vandalism as 

damage to the encyclopedia, regardless of intentions and leaving 

Judgemental issues to human experts. 

 

                         Tightly attached to the concept of vandalism are good and bad faith, which are terms 

regularly used in the Wikipedia community. However, from a computational point of view, we are actually 

studying vandalism as damage to the encyclopedia, regardless of intentions and leaving judgamental issues 

to human experts. 

 

Table 2.1: Summary of types of vandalism 

 

Type Description 

Blanking Removing all or significant parts of a page’s content without any 

reason. 

Edit summary vandalism Making offensive edit summaries in an attempt to leave a mark that 

cannot be easily expunged from the record. 

Hidden vandalism Any form of vandalism not visible in the final article 

but visible during editing. 
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Image vandalism Uploading shock images, inappropriately placing explicit images on 

pages, or simply using any image in a way that is disruptive. 

Link vandalism Adding or changing internal or external links on a 

page to disruptive, irrelevant, or inappropriate targets. 

Illegitimate page creation Creating new pages with the sole intent of malicious behaviour. 

Page lengthening Adding very large amounts of content to a page so as to make the 

page’s load time abnormally long. 

Page-move vandalism Changing the names of pages to disruptive, irrelevant and 

inappropriate names. 

Silly vandalism Adding profanity, graffiti or patent nonsense to pages. 

Sneaky vandalism Vandalism that is harder to spot, or that otherwise circumvents 

detection, including adding plausible misinformation and hiding 

vandalism through multiple edits. 

Spam external linking Adding links to irrelevant sites after having been warned. 

Template vandalism Modifying the wiki language or text of a template in a harmful or 

disruptive manner. 

 

2.2   Vandalism Statistics and Impact 

 
The Wikipedia community conducts its own quantitative and qualitative studie on vandalism. Study 1 

consisted of manually checking 100 random articles with a total of 668. Observed vandalism constituted a 

4.6%. The observed time period comprised 2004, 2005 and 2006 and vandalism percentage appeared to be 

stable, oscillating between 3% and 6% of total edits. The most common vandalism type was obvious 

vandalism (83.87%) followed by deletion vandalism (9.68%). Currently, the most accurate estimation of 

vandalism in the English edition of Wikipedia is around 7% of all edits (Potthast 2010). If we consider that 

there were 10 million edits between August 20 and October 10 2010, which makes almost 200 thousand 

edits per day on average2, we can assume the order of magnitude of vandalism edits per day is 104. 

 

                      According to Wikipedia’s Study 1, 96.77% of all vandalism edits were performed by 

unregistered users. In 74.19% of cases, vandalism was reverted by a registered user.Another important 

statistic is how much time vandalism remains in Wikipedia and how many people view it. It is estimated that 

mass deletions remain 7.7 days on average with a median time of 2.8 minutes,while mass deletions involving 

obscenities remain 1.8 days on average with a median time of 1.7 minutes.  

 

                     Another important statistic is how much time vandalism remains inWikipedia and how many 

people view it. Viégas, Wattenberg, and Dave (2004) estimated that mass deletions remain 7.7 days on 

average with a median time of 2.8 minutes, while mass deletions involving obscenities remain 1.8 days on 

average with a median time of 1.7 minutes. Priedhorsky et al. (2007) further studied the problem with results 

consistent with those by Viégas, Wattenberg, and Dave (2004), and estimated that the probability that a view 
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of Wikipedia between 2003 and 2006 included damaged content was of 0.0037. This probabily can be 

translated to 188 million views of vandalism during the studied perior. 

 

 

2.3 Vandalism Impact: An Anecdote 

 

To further illustrate the impact of vandalism, we expose an anecdote. On March 14th 2010, a prankster 

edited the Wikipedia article of a small belgian town:Kaster. After this edit, Kaster’s article introduction was 

the following: Kaster is a village in Belgium, part of the municipality of Anzegem.Recently, the town made 

headlines when a serial rapist dressed as a Blastoise Pokemon raped and killed 65 men. 

 

                           Most of the time, this would have been corrected quickly and nobody would have noticed. 

However, the edit was not reverted until April 9th 20105. During that month, Google’s spider fetched the 

article and indexed it its database and as a result, typing define:kaster in Google’s search engine would show 

up the above prank as the definition for Kaster. 

 

                          What started as a small prank by two brothers ended up being an embarrassing thing 

forWikipedia and Google. Leaving aside the fun that this provided to many people, Wikipedia needs to put 

measures in place to fight vandalism and prevent damages on the credibility of the project. 

 

Chapter 3 

Wikipedia Vandalism Detection 

 

3.1   Practical Tools Against Vandalism 

3.1.1   Anti-vandalism Patrolling 

The main force against vandalism is people who manually checks latest changes made to Wikipedia and 

review them to find vandalism and revert it. This activity is known as patrolling. 

 

                      The classic method of patrolling is opening a browser tab with the list of recent changes and 

skim through the list, then open in other tabs suspicious edits, check them and revert them if necessary. 

 

3.1.2   Patrolling Assistance 
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A wide variety of tools have been developed to assist patrollers in their work. These range from tools aimed 

at browsing and editing Wikipedia in a faster and more convenient way, such as Twinkle or Huggle, to 

automatic detection systems that work with human supervision, such as STiki. 

 

3.1.3   Automatic Systems, Bots and Edit Filters 

Automatic detection systems are designed to work with very limited human intervention or no intervention 

at all. In practice, there are two ways of implement them: as bots or edit filters. 

On one hand, bots operate autonomously as agents external toWikipedia, and as such, they detect and revert 

vandalism some time after it is performed. 

                      On the other hand, edit filters are a recent addition to the MediaWiki, deployed since 2009. 

They look for common patterns of vandalism at the edit time.If the edit matches one of these patterns, 

MediaWiki will reject it. The advantage of this approach is that when a vandalism edit is detected, it is 

rejected before it takes effect. 

 

3.2   Why consider context? 

One of the central limitations of traditional vandalism detection techniques is that most of them treat edits as 

independent and isolated pieces of texts. Because of this, most of them just focus on the text that appears in 

the edit. However, edits in Wikipedia are not isolated pieces of text. They occur in certain context, and  

hence the contextual attributes are an integral part of an edit’s characteristics. For instance, an edit occurs on 

a certain version of an article. Thus, the edit cannot be completely characterized without including the 

content of the article at the time the edit occurred. In fact, the edit may become meaningless if it were to be 

performed on a different article or a different version of the same article. 

 

                      In addition to article and version, an edit carries with it several other powerful contextual 

attributes. These include the identity (or lack thereof) of the user performing the edit, the previous history of 

edits performed by the user, the geographical location from where the edit originated, and the time at which 

the edit was performed. Many of these contextual attributes can be very powerful features in identifying 

vandalism. The importance of context is evident by the fact that even humans (implicitly) rely upon context 

when identifying vandalism. For example, most humans will immediately identify an edit containing the 

word “Nazi” as vandalism if the edit is on, say, President Obama’s Wikipedia page, whereas they will not 

classify the same edit as vandalism if it is on Goebbels’ page. The human is implicitly relying on whether 

the edit fits into the overall context of the article to determine whether it is vandalism.  

 

                      There are many challenges to utilizing context for vandalism detection. First, we need to 

identify contextual attributes that have strong distinguishing capabilities. Second, context is often an abstract 
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concept, and for machines to understand and process it, context has to be made quantifiable. This means that 

we have to not only invent meaningful metrics for various contextual attributes, but also devise measurement 

mechanisms. Third, we need to design efficient and scalable vandalism detection techniques that utilize 

these quantifiable contextual attributes. 

 

3.3   Problem Definition and Notation 

A revision r is the state of an article in a given point of its history. We use r- and r+ to denote a past or future 

revision with respect to r, respectively.Using subindices ri, ri+1 or ri_1  to denote specific past or future 

revisions. An edit e is the transition between two consecutive revisions. The Wikipedia vandalism detection 

task consists in decide whether a given edit e is vandalism or not. From the point of view of machine 

learning, given the set of E of all edits, 

 

 A corpus Ec E of labeled edits.  

 An edit model α: E  E that maps each edit e onto a feature set e quantifying characteristics of e that 

are useful for discriminating between vandalism and non-vandalism edits. 

 A classifier c : E[0,1] . The result of this classifier is the confidence of a given edit e being 

vandalism. 

 A threshold Ƭ is defined so that any  c(e) ≥ Ƭ indicates vandalism and c(e) ≤ Ƭ indicates otherwise, 

            we check whether it is vandalism or not by 

 For any unseen edit e that belongs to  E Ec  ,check whether it is vandalism or not by computing  

c(α(e)) >Ƭ . 

 

3.3.1 Immediate and Historic Detection 

Vandalism detection includes two different tasks: immediate8 and historic detection. Immediate detection is 

the most extended: detecting vandalism right after it happens. The historic variant is detecting vandalism at 

any point in the past.The technical difference between them is that, in the case of historic detection, 

information about everything that happened after the vandalism act is available to the system. Immediate 

detection is the most applied and useful to maintain Wikipedia clean of vandalism. The interest in historic 

detection is that much higher performance can be achieved, making it useful for building corpora to train 

immediate detection systems and also creating clean snapshots of Wikipedia, by selecting revisions of each 

articles that are guaranteed to be vandalism-free. 

 

3.4   Corpora 

For the best of our knowledge, there are sixWikipedia vandalism corpora. All our work used the PAN-

WVC-10 corpus, although we will present all the six corpus for reference. 
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3.4.1 Webis-WVC-07 

 The Webis Wikipedia vandalism corpus11, or Webis-WVC-07, is the first public Wikipedia vandalism 

corpus reported in the literature. It consists of 940 edits annotated by humans, 301 of them annotated as 

vandalism. (Potthast and Gerling 2007; Potthast, Stein, and Gerling 2008). 

 

3.4.2   Chin 2010 

This corpus was built and used for (Chin et al. 2010). It was built based on the Wikipedia revision history up 

to February 24th, 2009 and it consists of the full history of two of the most vandalized pages12: Abraham 

Lincoln (8,816 revisions) and Microsoft (8,220 revisions).Annotation was performed in an active learning 

fashion. A first classification model was built using the Webis-WVC-07 corpus, and that model was used to 

get a rank of the top 50 candidates to be vandalism. An annotator revised these candidates and annotated 

them. The annotated edits were added to the training corpus and the process was repeated iteratively. 

This annotation method makes (Chin et al. 2010) an interesting approach to solve the problem of annotating 

a corpus big enough to be used for supervised classification. 

 

3.4.3   West 2010 

West, Kannan, and Lee 2010 use a unique approach to annotate their corpus13. In Wikipedia, some 

privileged users have the right to revert an edit using a singleclick feature called rollback, used to undo 

blatantly unproductive edits. 

 

                      The authors define an offending edit as one that was reverted using the rollback 

function.Although this is only a small portion of vandalism edits, this approach results in a very high 

confidence for positive annotations. The corpus contains 5,713,762 edits labeled as blatantly unproductive 

using the described automaitc method; it also contains 5,291 vandalism edits that were manually annotated. 

This makes West 2010 the largest Wikipedia vandalism corpus reported until now. 

 

3.4.4   PAN-WVC-10 

 
The PAN Wikipedia Vandalism Corpus 201014, or PAN-WVC-10, is the successor of Webis-WVC-07 

(Potthast 2010). It consists of 32,439 edits, of which 2,394 are annotated as vandalism. Amazon Mechanical 

Turk was used to distribute the task amongst hundreds of human annotators. Each edit was annotated by 3 

people. If they did not agree, the edit was annotated by 3 more people. This process was repeated until every 

edit had an annotation with more than 2/3 of inter-annotator agreement. After 8 iterations, there were 70 tie 

edits that were reviewed by the corpus authors. 
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                      Due to its use in the 1st International Competition on Wikipedia Vandalism Detection 

(Potthast, Stein, and Holfeld 2010) it is one of the most widely used corpus in the scientific literature. 

In this project, I will use a modified version of PAN-WVC-10 where 157 edits were removed. This was 

because of these edits were deleted from the Wikipedia History  at the time of writing (Adler et al. 2011). 

Statistics for our corpus version are: 32,282 total edits, with 2,395 vandalism edits. 

 

3.4.5   PAN-WVC-11 

The PAN Wikipedia Vandalism Corpus 2011, or PAN-WVC-11, is a supplement to PAN-WVC-10. It is the 

first multilingual corpus, including sections for English, German and Spanish.The English section consists of 

new 9985 annotated edits of the same time period as those compiled for PAN-WVC-10. 1144 of them are 

annotated as vandalism.The German section consists of 9990 edits, 589 of them annotated as vandalism. The 

Spanish section consists of 9974 edits, 1081 of them annotated as vandalism. 

 

3.4.6 ClueBot-NG dataset 

 
ClueBot-NG dataset is an ever evolving one. Through its online review interface a multitude of Wikipedia 

users annotate edits as vandalism, constructive or skipped. The final classification is decided as follows: 

 

 A minimum of 2 annotators agreeing is required for the edit to be considered as annotated. 

 If more than a half of annotators skipped the edit, it is annotated as skipped. 

 If, at least, constructive annotations are thrice the vandalism annotations,the edit is annotated as 

constructive. 

 If, at least, vandalism annotations are thrice the constructive annotations, the edit is annotated as 

vandalism. 

 If none of the previous criteria is met, the edit is not considered as annotated and therefore it is not 

added to the final dataset. 

The strong point of this corpus is that it is annotated by experts. Therefore, we can expect a high 

quality in annotation and compliance with Wikipedia standards. This is an advantage over PAN-

WVC-10, whose annotations might be less reliable; and over West 2010, which has a high amount of 

false negatives. However, its size is one order of magnitude below PAN-WVC-10 and four below 

West 2010. 

 

3.4.7   Wikipedia dumps 

 
Wikimedia offers XML and SQL dumps of the entire database for all its projects. These dumps include the 

full revision history of every article, along with other information. This is a resource commonly used to build 

Wikipedia vandalism corpora and detection systems. 
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3.4.8   Wikipedia User Contribution Dataset 

 
Javanmardi, Lopes, and Baldi (2010) created a dataset24 of content insertions and deletions per user. This 

dataset comprehends all Wikipedia insertions and deletions since its creation to January 30th, 2010. This is a 

valuable approach for user reputation methods. 

 

 

CHAPTER 4 

Literature Review 

 

4.1   Research Papers 

Paper 1 

Name Wikipedia Vandalism Detection: Combining Natural Language, Metadata, 

and Reputation Features 

Description Integrated three approaches to detect vandalism. They are - spatio- temporal 

analysis of metadata (STiki), a reputation-based system (Wiki-Trust), and 

natural language processing features.The resulting joint system improved the 

state-of-the-art from all previous methods and establishes a new baseline for 

Wikipedia vandalism detection. 

Authors B. Thomas Adler, Luca de Alfaro, Santiago M. Mola-Velasco, Paolo Rosso, 

Andrew G. West 

Approaches Spatio-temporal analysis of metadata, Reputation-based system, Natural 

language processing features. 

Algorithm Random forest 

 

Paper 2  

Name Automatic Wikipedia Vandalism Detection 

Description Discussed the characteristics of vandalism as humans recognize it and 

develop features to render vandalism detection as a machine learning task. 

Compiled a large number of vandalism edits in a corpus, which allowed for 

the comparison of existing and new detection approaches. 

Authors Martin Potthast, Benno Stein, and Robert Gerling 

Approaches Logitboost 

Algorithm Logistic regression  
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Paper 3 

Name Automatic Vandalism Detection in Wikipedia: Towards a Machine Learning 

Approach 

Description Investigated the possibility of using machine learning techniques to build an 

autonomous system capable to distinguish vandalism from legitimate edits. 

Highlighted the results of a small but important step in this direction by 

applying commonly known machine learning algorithms using a 

straightforward feature representation. 

Authors Koen Smets,Bart Goethals and Brigitte Verdonk 

Approaches Applied two machine learning algorithm 

Algorithm Naïve Baye’s Classifier, Probablistic sequence modelling  

 

Paper 4 

Name Detecting Wikipedia Vandalism via Spatio-Temporal Analysis of Revision 

Metadata 

Description Leveraged the spatio-temporal properties of revision metadata to detect 

vandalism. An administrative form of reversion called rollback was used 

which enablesd the tagging of malicious edits, which were contrasted with 

non-offending edits in numerous dimensions. 

Authors Andrew G West, Sampath Kannan and Insup Lee 

Approaches Spatio-temoral features 

Algorithm SVM 

 

Paper 5 

Name A Content-Context-Centric Approach for Detecting Vandalism in Wikipedia 

Description Proposed a content context-aware vandalism detection framework. The main 

idea was to quantify how well the words contained in the edit fit into the 

topic and the existing content of theWikipedia article. 

Authors 9th ieee international conference 

Approaches WWW co-occurrence probability,top-ranked co-occurrence probability  

Algorithm AdaBoost ,Naïve Bayes ,Decision Tree 
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4.2    Integrated Literature review 

 

Various research have been proposed with the same aim i.e. creation of an antivandalism bot for the 

detection of Wikipedia. The basic idea was the same with tuning some features and introducing others , 

explored features based on word lists, expanding them beyond vulgarisms and improving results by creating 

new categories. Different well known machine learning classifiers were discussed ,varied the parameters to 

observe  changes in performance. Mostly a 10 fold cross validation on the training data and measured 

precision (P), recall (R), F-score, area under precision-recall curve (AUC-PR) and area under receiver 

operating characteristic curve (AUC-ROC). 

                      The papers analyzed the different categories of features like Text,language and metadata. 

Drawbacks of the existing bots like ClueBot and VoABot II were addressed. It was observed that these tools 

were built around the same primitives that was included in Vandal Fighter. They use lists of regular 

expressions and consulted databases with blocked users or IP addresses to keep legitimate edits apart from 

vandalism. The major drawback of these approaches was the fact that these bots utilize static lists of 

obscenities and ‘grammar’ rules which are hard to maintain and easy to deceive. As statistics show that they 

only detected 30% of the committed vandalism. So there was certainly a need for improvement. 

 

                      It was observed that improvement were achieved by applying machine learning and natural 

language processing (NLP) techniques. Not in the very least because machine learning algorithms have 

already proven their usefulness for related tasks such as intrusion detection and spam filtering for email as 

well as for weblogs. Also most existing works in this area focused on utilizing simple textual features for 

identifying vandalism. They worked by considering whether an edit contains features that have statistically 

high likelihood of being associated with vandalism. Examples of such features include abusive/obscene 

words, spammy words/phrases  and certain URLs. These simple approaches, however, have had limited 

success in combating sophisticated vandal edits often referred to as elusive vandalism . These type of vandal 

attacks are not likely to contain the tell-tale textual features associated with vandalism, and hence they evade 

common vandalism filters.  

 

                        A better method was devised to deal with this problem. One paper argued for a context-aware 

approach for detecting vandalism in Wikipedia. The main motivation for considering context was the 

important observation that the edits in Wikipedia and other CSM applications are not isolated pieces of text. 

Rather, they happen in a specific context. This is in fact a key feature of Wikipedia, and hence it can be 

highly effective in detecting vandalism. The context of a Wikipedia edit can have multiple distinct aspects 

such as the relationship of the edit to the article, whether the edit was performed by a registered or an 

unregistered user, the identity (or the IP address) of the user performing the edit, and the geographical 
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location from where the edit was performed. The challenge however lied in designing vandalism detection 

techniques that can effectively harness these various contextual attributes. 

 

                      Based on these papers a comparative analysis was performed as shown in Table 4.2 below. The 

table is a summary of the different algorithms that was used in various research papers and jots the 

advantages and disadvantages of each algorithm. 

 

Table 4.2  Summary of the algorithms 

 

Name Advantages Disadvantages 

Bayesian Learning  Handles small data limit. 

Very flexible 

Interpolates to engineering 

Information theoretically problematic. 

Computationally difficult problems 

Decision  tree Well automated. 

Quite fast 

Lack of available memory, when dealing with 

large  databases. 

 Learning problems which can not be solved by 

decision trees 

Neural  Network  Able to tolerate noisy data. 

Successful on several real world 

application.  

Involves long learning time. 

Require number of parameters that are to be 

determined empirically. 

Support Vector 

machine  

 

Most robust and accurate 

methods. 

Has a sound theoretical 

foundation.  

Computationally expensive. 

Extremely slow in learning, requiring large  

amount of training time 

Random forest  Not sensitive to noise in the data 

set. 

Not subject to over fitting 

Observed to over fit for some dataset. 

Sometimes the variable importance scores are not 

reliable 

Logistic regression  Easily to update  model to take in 

new data . 

No worries about features being 

correlated 

Requires large sample size to achieve stable 

results.  
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Chapter 5 

Developing a Wikipedia Vandalism Detection System 

 
5.1   Features 

 
All the features are calculated using metadata and the text of single edits. They can be divided in three 

groups: Metadata, Text, and Language. Metadata based features are the following: 

 

Anonymous : Whether the editor is anonymous or not.Vandals are likely to be anonymous. This feature is 

used in a way or another in most antivandalism working bots such as ClueBot and AVBOT. In the PAN-

WVC-10 training set (Potthast 2010) anonymous edits represent 29% of the regular edits and 87% of 

vandalism edits. 

Comment length: Length in characters of the edit summary.Long comments might indicate regular editing 

and short or blank ones might suggest vandalism. However, this feature is quite weak, since leaving an 

empty comment in regular editing is a common practice. 

Size increment: Absolute increment of size, i.e., |new| - |old|.The value of this feature is already well-

established since first-generation systems. For example, ClueBot uses various thresholds of size increment 

for its heuristics, e.g. a big size decrement is considered an indicator of blanking. 

Size ratio: Size of the new revision relative to the old revision, i.e., |1+new|/|1+old|. Complements size 

increment. 

Text-based features are the following: 

Upper to lower ratio: Uppercase to lowercase letters ratio, i.e., 1+|upper|/1+jlowerj .Vandals often do not 

follow capitalization rules, writing everything in lowercase or in uppercase. 

 

Upper to all ratio: Uppercase letters to all letters to ratio, i.e., 1+|upper|/1+|lowe|+|upper| . 

 

Digit ratio: Digit to all characters ratio, i.e., 1+|digit|/1+|all| . 

This feature helps to spot minor edits that only change numbers. This might help to find some cases of subtle 

vandalism where the vandal changes arbitrarily a date or a number to introduce misinformation. 

Non-alphanumeric ratio: Non-alphanumeric to all characters ratio, i.e., 1+|nonalphanumeric|/1+|all|. An 

excess of non-alphanumeric characters in short texts might indicate use of emoticons, excessive use of 

exclamation marks or gibberish. 

Character diversity: Measure of different characters compared to the length of 

inserted text, given by the expression length1/different char  . This feature helps to spot random keyboard hits and 

other non-sense. 

Character distribution: Kullback-Leibler divergence of the character distribution of the inserted text with 

respect the expectation. Useful to detect nonsense. 
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Compressibility: Compression rate of inserted text using the LZW algorithm.Useful to detect non-sense, 

repetitions of the same character or words, etc. 

 

Good tokens: Number of tokens rarely used by vandals, mainly wiki-syntax elements 

(e.g. __TOC__, <ref>). 

 

Average term frequency: Average relative frequency of inserted words in the new revision. 

In long and well-established articles too many words that do not appear in the rest of the article indicates that 

the edit might be including non-sense or non-related content. 

 

Longest word:Length of the longest inserted word. Its value is 0 if there are no inserted words. 

Useful to detect non-sense. 

 

Longest character sequence: Longest sequence of the same character in the inserted Text. 

 
The language-dependent features are based in counters of words in certain categories. For each word 

category, two features are calculated: frequency and impact. Frequency is the frequency of these words 

relative to the total words inserted during the edit. Impact is the percentage by which the edit increases the 

amount of these words. Word categories are : 

 

Vulgarisms: Vulgar and offensive words (eg.shit). 

 

Pronouns: First and second person pronouns, including slang spellings (e.g. I,you, ya). 

 

Bad : Hodgepodge category for colloquial contractions and some typos associated with bad (e.g. wanna, 

gotcha) and some typos associated with bad writing skills (e.g. dosent). 

All: A meta-category containing words from all the previous ones. 

  

Table 5.1: Summary of features 

Feature Description  (Metadata) 

Anonymous Whether the editor is anonymous or not. 

Comment length Length in characters of the edit summary. 

Size increment Absolute increment of size. 

Size ratio Size of the new revision relative to the old revision. 

Feature Description (Text) 

Upper to lower ratio Uppercase to lowercase letters ratio. 

Upper to all ratio Uppercase letters to all letters to ratio. 

Digit ratio Digit to all characters ratio. 

Nonalphanumeric Non-alphanumeric to all characters ratio. 
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ratio 

Character distribution KLd between the character distribution of the inserted text and the 

expectation 

Compressibility Compression rate of inserted text using LZW. 

Good tokens Number of tokens rarely used by vandals, mainly wiki-syntax elements. 

Average term 

frequency 

Average relative frequency of inserted words in the new revision. 

Longest word Length of the longest inserted word. 

Longest character 

Sequence. 

Longest sequence of the same character in the inserted text. 

Feature Description (Language) 

Vulgarisms Vulgar and offensive words. 

Pronouns First and second person pronouns, including slang spellings. 

Bad Hodgepodge category for colloquial contractions and some typos 

associated with bad and typos associated with bad writing skills. 

All A meta-category containing words from all the previous ones. 

 

 

5.2   Combining Natural Language, Metadata, and Reputation 

 

5.2.1   Textual and Language features 

 

Text (T): Language-independent features derived from analysis of the edit content. Very long articles may 

require a significant amount of processing. As the content of the edit is the true guide to its usefulness, there 

are several ideas for how to measure that property: 

Uppercase ratio and digit ratio: Vandals sometimes will add text consisting primarily of capital letters to 

attract attention; others will change only numerical content. These ratios (and similar ones create features 

which capture behaviors observed in vandals. 

Average and minimum edit quality: Comparing the content of an edit against a future version of the article 

provides a way to measure the Wikipedia community’s approval of the edit .To address the issue of edit 

warring, the comparison is done against several future revisions. This feature uses edit distance (rather than 

the blunt detection of reverts) to produce an implicit quality judgement by later edits. 

 

Language 

Similar to text features, Language (L) features must inspect edit content. A distinction is made because these 

features require expert knowledge about the (natural) language. Thus, these features require effort to be re-

implemented for each different language. Some of the features included in our analysis are: 
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Pronoun frequency and pronoun impact : The use of first and second-person pronouns, including slang 

spellings, is indicative of a biased style of writing discouraged on Wikipedia (non-neutral point-of-view). 

Frequency considers the ratio of first and second-person pronouns relative to the size of the edit. Impact is 

the percentage increase in first and second-person pronouns that the edit contributes to the overall article. 

Biased and bad words  : Certain words indicate a bias by the author (e.g. superlatives: “coolest”, “huge”), 

which is captured by a list of regular expressions. Similarly, a list of bad words captures edits which appear 

inappropriate for an encyclopedia (e.g. “wanna”, “gotcha”) and typos (e.g. “seperate”). Both these lists have 

corresponding frequency and impact features that indicate how much they dominate the edit and increase the 

presence of biased or bad words in the overall article. 

 

5.2.2   Reputation 

We consider a feature in the Reputation (R) category if it necessitates extensive historical processing of 

Wikipedia to produce a feature value. The high cost of this computational complexity is sometimes 

mitigated by the ability to build on earlier computations, using incremental calculations. 

 

User reputation : User reputation as computed by WikiTrust . The intuition is that users who have a history 

of good contributions, and therefore high reputation, are unlikely to commit vandalism. 

Country reputation : For anonymous/IP edits, it is useful to consider the geographic region from which an 

edit originates. This feature represents the likelihood that an editor from a particular country is a vandal, by 

aggregating behavior histories from that same region.Location is determined by geo-locating the IP address 

of the editor. 

Previous and current text trust histogram :  When high-reputation users revise an article and leave text 

intact, that text accrues reputation, called “trust”. Features are- 

 (1) the histogram of word trust in the edit, and 

 (2) the difference between the histogram before and after the edit. 

 

5.2.3   Metadata 

Metadata (M) refers to properties of a revision that are immediately available, such as the identity of the 

editor, or the timestamp of the edit. This is an important class of features because it has minimal 

computational complexity. Beyond the properties of each revision found directly in the database (e.g. 

whether the editor is anonymous, used by nearly every previous work), there are some examples that we feel 

expose the unexpected similarities in vandal behaviour. 

 

Time since article last edited : Highly edited articles are frequent targets of vandalism. Similarly, quick 

fluctuations in content may be indicative of edit wars or other controversy. 
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Local time-of-day and day-of-week: Using IP geolocation, it is possible to determine the local time when 

an edit was made. Evidence shows vandalism is most prominent during weekday “school/office hours.” 

 

Revision comment length : Vandals decline to follow community convention by leaving either very short 

revision comments or very long ones. 

 

5.3   Proposed Approach 

 

The main idea is to check how well the words contained in the edit fit into the topic and the existing content 

of the Wikipedia article. For this, two unique content-based metrics is used to quantifying how compatible 

an edit is with the context of a Wikipedia article. The first metric, called WWW co-occurrence probability 

(WCoP) quantifies how often the words in the edit and words in the document appear together (i.e., in the 

same document) in the corpus of World Wide Web (WWW) documents. The second metric, called top-

ranked co-occurrence probability (TCop) is based upon a similar theme, but the corpus is limited to top-

ranked (hence, presumably high-quality)WWW documents. The Approach would be as follows-: 

 

                      For each incoming edit, extract the keywords of the incoming edit and the keywords from the 

existing version to construct W(E) and W(D) respectively. Using a popular search engine to compute the 

WCoP and TCop values. These values are fed into machine learning-based classifiers that have been trained 

on known vandal and nonvandal edit instances. The machine learning-based classifiers determine whether 

the edit is vandalism. In addition to WCoP/TCop, the machine language-based classifiers utilize more 

features like Text, Metadata, Language, etc. 

 

5.3.1 Weka 

Weka is a popular suite of machine learning software written in Java, developed at the University of 

Waikato, New Zealand. Weka is free software available under the GNU General Public License. 

 

                            Weka  is a workbench that contains a collection of visualization tools and algorithms for 

data analysis and predictive modeling, together with graphical user interfaces for easy access to this 

functionality. The original non-Java version of Weka was a TCL/TK front-end to (mostly third-party) 

modeling algorithms implemented in other programming languages, plus data preprocessing utilities in C, 

and a Makefile-based system for running machine learning experiments. This original version was primarily 

designed as a tool for analyzing data from agricultural domains,but the more recent fully Java-based version 

(Weka 3), for which development started in 1997, is now used in many different application areas, in 

particular for educational purposes and research. Advantages of Weka include: free availability under the 

GNU General Public License portability, since it is fully implemented in the Java programming language 
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and thus runs on almost any modern computing platform a comprehensive collection of data preprocessing 

and modeling techniques 

ease of use due to its graphical user interfaces. 

 

                           Weka supports several standard data mining tasks, more specifically, data preprocessing, 

clustering, classification, regression, visualization, and feature selection. All of Weka's techniques are 

predicated on the assumption that the data is available as a single flat file or relation, where each data point 

is described by a fixed number of attributes (normally, numeric or nominal attributes, but some other 

attribute types are also supported). Weka provides access to SQL databases using Java Database 

Connectivity and can process the result returned by a database query. It is not capable of multi-relational 

data mining, but there is separate software for converting a collection of linked database tables into a single 

table that is suitable for processing using Weka. Another important area that is currently not covered by the 

algorithms included in the Weka distribution is sequence modeling. 

 

User interfaces -: Weka's main user interface is the Explorer, but essentially the same functionality can be 

accessed through the component-based Knowledge Flow interface and from the command line. There is also 

the Experimenter, which allows the systematic comparison of the predictive performance of  Weka's 

machine learning algorithms on a collection of datasets. 

 

                    The Explorer interface features several panels providing access to the main components of the 

workbench: The Preprocess panel has facilities for importing data from a database, a CSV file, etc., and for 

preprocessing this data using a so-called filtering algorithm. These filters can be used to transform the data 

(e.g., turning numeric attributes into discrete ones) and make it possible to delete instances and attributes 

according to specific criteria. 

The Classify panel enables the user to apply classification and regression algorithms (indiscriminately called 

classifiers in Weka) to the resulting dataset, to estimate the accuracy of the resulting predictive model, and to 

visualize erroneous predictions, ROC curves, etc., or the model itself (if the model is amenable to 

visualization like, e.g., a decision tree). 

The Associate panel provides access to association rule learners that attempt to identify all important 

interrelationships between attributes in the data. 

The Cluster panel gives access to the clustering techniques in Weka, e.g., the simple k-means algorithm. 

There is also an implementation of the expectation maximization algorithm for learning a mixture of normal 

distributions. 

The Select attributes panel provides algorithms for identifying the most predictive attributes in a dataset. 

The Visualize panel shows a scatter plot matrix, where individual scatter plots can be selected and enlarged, 

and analyzed further using various selection operators. 
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5.3.2 Word Co-occurrence Probability Matrix 

 

Co-occurrence is a linguistics term that can either mean concurrence / coincidence or, in a more specific 

sense, the above-chance frequent occurrence of two terms from a text corpus alongside each other in a 

certain order. Co-occurrence in this linguistic sense can be interpreted as an indicator of semantic proximity 

or an idiomatic expression. In contrast to collocation, co-occurrence assumes interdependency of the two 

terms. A co-occurrence restriction is identified when linguistic elements never occur together. Analysis of 

these restrictions can lead to discoveries about the structure and development of a language. 

 

                          The overall idea here is to measure the likelihood of the keywords of an incoming edit and 

the keywords of the existing version of the document occurring together (in the same document) in the 

World Wide Web (WWW) corpus of documents. 

The rationale is that if an incoming edit (represented as E) fits well into the context of the existing version of 

the Wikipedia page (represented as D), then the keywords of E and D should occur together in a non-

negligible fraction of WWW documents. 

 

                          Let W(D) = {wd1, wd2, . . . , wdn} be the set of keywords in the current (non-vandalized) 

version of the document. (i.e., W(D) is the current context of the document D) and W(E) ={we1, we2, . . ., 

wen} denote the set of words that the edit E is seeking to introduce in the next version of the document 

(i.e.,W(E) is the edit’s context). The co-occurrence probability of the arbitrary keyword pair (wei, wdj ) is 

defined as the ratio of the probability that both wei and wdj occur in an arbitrary WWW document to the 

ratio that at least one of them occurs in a WWW document. Mathematically, 

 

                                  

                                 In the above equation, DC denotes an arbitrary WWW document. The denominator in 

Equation 1 is a normalization term that has been introduced to account for the popularity variations among 

keywords. The WWW co-occurrence probability is defined as the minimum of the CoPs over all the edit-

document keyword pairs. 
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The reason we use argmin in Equation 2 is that an edit can have only a single vandal word/phrase (i.e., all 

other words of the edit may be completely legitimate). Thus, we are interested in the contextual fitness 

(measured by CoP) of the least contextually appropriate word among all the keywords of the edit. 

 

Efficient Estimation Technique: 

 

We need an efficient mechanism for computing the WWW co-occurrence probability metric. The central 

issue here is to estimate the CoP between various wei-wdj keyword pairs. Our technique for estimating the 

CoP values works as follows. 

 

                             A search engine for estimating the CoP values (“Bing” for example). Suppose we want to 

estimate CoP(wei, wdj ). We first issue a search query for documents containing both wei and wej (i.e, the 

search query will be wei + wdj ). Most search engines indicate an estimate on the number of search results 

(the number of web documents containing both terms). Let the number of search results containing both wei 

and wdj be represented as Nb. We also issue queries for documents that exclusively contain each one of the 

search terms. 

                               In other words, we search for (wei – wdj) and (wdj – wei). Let Nei and Nbj be the 

estimates on the number of search results for these two queries respectively. Now CoP(wei, wdj ) is 

estimated as, 

                                                                       
 

                              An associated problem in computing the WWW cooccurrence probability metric is that 

the keyword set corresponding to the current version of the document (W(D)) is typically quite large. While 

edits usually contain a few keywords and phrases, document versions can be quite large. Thus computing 

CoP values for each edit-document keyword pair becomes prohibitively expensive. This overhead can be 

alleviated by limiting W(D) to the keywords in the title of the article and its introductory paragraphs. In our 

experiments  , we limit W(D) to the keywords in the document’s title. 

 

                             For example, for text classification where an input document is fed to the model and it 

should output its class (from a list of classes). The model is trained on many documents with their 

corresponding classes and when the new document is tested under that model, it will use the features 

(information) which was extracted from those documents to classify the new document. You will define a 

vector with fixed length (the number of unique words in your corpus) for each unique word in your corpus. 

The context vector for each word tells us how many times other words have co-occurred with the current 

word in the defined window, e.g. in a window of words, you see what are the other words occurred with the 

current word and increment their corresponding element in the context vector. A simple example is show 

below : 
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Corpus: A D C E A D F E B A C E D 

Window size: 2 (the 2 words of the either side) 

Context vectors: 

 

 

Using these context vectors you can get co-occurrences very easy. For example co-occurrence of D and E is 

D[E] = 4. 

 

5.4      Implementation Details  

For experimental study, Bing search engine will be used (www.bing.com) for calculating the WWW co-

occurrence probability and the top-ranked co-occurrence probability. The standard dataset which is used for 

the project is PAN-WVC-10 corpus. The corpus contains 32452 human-annotated edits on 28468 Wikipedia 

articles. 

                     Weka 3.7 machine learning toolkit is used for classification  and for loading the dataset. The 

heap size had to be increased in order for this to work. Classifiers which will be used are Naive Bayes, with  

10-fold cross validation. Standard language which is used is Java ( Eclipse).  

 

 

5.4.1 Weka steps 

These steps show  how to use Weka (build feature vector, train a classifier, test a classifier, use a 

classifier) directly from Java code. It is not intended to replace the Explorer/Experimenter GUI that offer the 

visualization and engineering tools required to set up and debug machine learning experiments. Weka’s 

automation is useful to embed a classifier in a larger program and to create a training/testing loop that can be 

seen as a regression test for machine learning capabilities. For example, 

 

Step 1: Express the problem with features 

 

This step corresponds to the engineering task needed to write an .arff file. 

Put all the features in a weka.core.FastVector. 

Each feature is contained in a weka.core.Attribute object. 
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Here, we have two numeric features, one nominal feature (blue, gray, black) and a nominal class (positive, 

negative). 

 

Step 2: Train a Classifier 

 

Training requires 1) having a training set of instances and 2) choosing a classifier. 

Let’s first create an empty training set (weka.core.Instances). 

We named the relation “Rel”. 

The attribute prototype is declared using the vector from step 1. 

We give an initial set capacity of 10. 

We also declare that the class attribute is the fourth one in the vector (see step 1). 

 

 

Now, let’s fill the training set with one instance (weka.core.Instance): 

 

 

Finally, Choose a classifier (weka.classifiers.Classifier) and create the model. Let’s, for example, create a 

naive Bayes classifier  (weka.classifiers.bayes.NaiveBayes). 
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Step 3: Test the classifier 

 

Now that we create and trained a classifier, let’s test it. To do so, we need an evaluation module 

(weka.classifiers.Evaluation) to which we feed a testing set (see section 2, since the testing set is built like  

the training set). 

 

 

The evaluation module can output a bunch of statistics. 

 

Step 4: use the classifier 

For real world applications, the actual use of the classifier is the ultimate goal. Here’s the simplest way to 

achieve that. Let’s say we’ve built an instance (named iUse) as explained in step 2: 

 

  

5.4.2   Algorithm 

The following steps  shows how vandalism was detected using a training and a test set by using the 

supervised version of the filter :- 

1) Create data structure and parse it. 

2) Set up filter. 

3) Set up tokenizer. 

4) Use filter. 

5) Select attributes. 

6) Create classifier to train the model. 

7) Create data structure and parse raw data. 

8) Set up filter. 

9) Set up tokenizer. 

10)  Prepare test data to labelling. 

11)  Label test data. 
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The training set consists of raw data that needs to be parsed and tokenized. Weka selected 35 attributes 

from the training set to filter data and classify it. Weka used it’s own inbuilt classifier- Bayesnet(); for 

this purpose. A classifier is created to train the model. Again for the test set , data structure is created and 

raw data is parsed. In the test test , if any id or attribute has something unusual then label it as vandalism. 

If not then label as normal i.e. corresponding to each user id the user will be labelled as a regular user or 

a vandalist. 

   

5.4.3   Results 

 

The results consists of console output in which the steps involved are shown. A separate file is generated 

which has the user id of every user present in the dataset and it labels the user as vandalists or regular user. 

Weka toolkit was used to improve the efficiency and computation speed which was necessary when a large 

dataset like the PAN corpus was used. 

 

5.4.4   Screenshots 

  

1) Data Set 

 

Training Set 
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Test Set 

 

 

2) Weka Output 

 

Training arff file  
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Selected attributes 
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Extended file 

 

 

 

 

 

3) The console output 
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4) File generated 
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Conclusion 

 

Vandalism is a growing problem for Wikipedia and other collaborative social media applications. Vandalism 

detection techniques that are based upon simple textual features have not been very effective in combating 

sophisticated vandal attacks. 

                   The success of a machine learning algorithm depends critically on the selection of features that 

are inputs to the algorithm. Although the previous works on the problem of Wikipedia vandalism detection 

utilize features from multiple categories, each work has individually focused predominantly on a single 

category. 

                   In this report, the features of two previous works have been combined.A content-context-centric 

approach for vandalism detection in Wikipedia is proposed which includes an extended feature set. The main 

idea is to measure the compatibility of the incoming edit’s content with the context of the existing article. 

Two metrics, namely, WWW co-occurrence probability, has been presented to measure the compatibility of 

the edit’s keywords with the keywords of the existing article. 

 These features are used in machine learning based classifiers. All the experiments will be performed  on 

Wikipedia vandalism PAN corpus demonstrating that the content-context features significantly improve 

vandalism detection accuracy when compared with simple textual features. 
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Appendix 

 

A1  Classifier class 

 The classifier is built for training an test data. Instances for test data are also labelled. 

 

import java.util.Iterator;  

import java.util.Random; 

 

import weka.classifiers.Evaluation; 

import weka.classifiers.bayes.BayesNet; 

import weka.core.Attribute; 

import weka.core.FastVector; 

import weka.core.Instance; 

import weka.core.Instances; 

 

public class Classifier { 

 private BayesNet model; 

 private Instances data; 

 

 public Classifier() { 

  System.out.println("Create classifier ..."); 

 } 

 

 public void setData(Instances data) { 

  this.data = data; 

 } 

 

 public Instances getData() { 

  return this.data; 

 } 

 

 public void train() throws Exception { 

  System.out.println("Train model"); 

  this.model = new BayesNet(); 
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  this.model.buildClassifier(this.data); 

 } 

 

 public void test() throws Exception { 

  System.out.println("Validate model ..."); 

 

  Evaluation eval; 

  eval = new Evaluation(this.data); 

  eval.crossValidateModel(this.model, this.data, 10, new Random(1)); 

 

  System.out.println("F-measure:"); 

  System.out.println("    - regular: " + eval.fMeasure(0)); 

  System.out.println("    - vandalism: " + eval.fMeasure(1)); 

 

 } 

  

 private Instance selectAttr(Instance data, Instances model) { 

  int numAttributes = model.numAttributes(); 

  double[] newInst = new double[numAttributes]; 

  Instance newInstance = new Instance(1.0, newInst); 

   

  for (int i = 0; i < model.numAttributes(); i++) { 

   Attribute modelAttr = model.attribute(i); 

   for (int j = 0; j < data.numAttributes(); j++) { 

    Attribute dataAttr = data.attribute(j); 

    if(modelAttr.equals(dataAttr)) { 

     newInstance.setValue(i, data.value(j)); 

    } 

     

   } 

  } 

   

  return newInstance; 

 } 

 

 public Instances labeling(Instances unlabeled) throws Exception {  
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  FastVector attributes = new FastVector();; 

   

  for (int i = 0; i < this.data.numAttributes(); i++) { 

   attributes.addElement(this.data.attribute(i)); 

  } 

   

  Instances prepUnlabeled = new Instances("Wikipedia unlabeled", attributes, 0); 

  prepUnlabeled.setClassIndex(prepUnlabeled.numAttributes() - 1); 

   

   

  Instances modelData = new Instances(this.data); 

  modelData.delete(); 

    

   System.out.println("Prepare test data to labeling ..."); 

   for (int i = 0; i < unlabeled.numInstances(); i++) { 

    Instance element = unlabeled.instance(i); 

    Instance prepared = this.selectAttr(element, modelData); 

    prepUnlabeled.add(prepared);      

   }       

   

  System.out.println("Labeling test data ...");   

   

  for (int i = 0; i < prepUnlabeled.numInstances(); i++) { 

   Instance inst = prepUnlabeled.instance(i); 

   double clsLabel = this.model.classifyInstance(inst); 

   prepUnlabeled.instance(i).setClassValue(clsLabel); 

  } 

   

  return prepUnlabeled; 

 } 

 

} 

A2 Parsing data 

Here each line of data is read one by one. A data structure is created . Fast vector is used for 

userLabels,classLabels,Commentlabels,identifiedlabels and attr. 
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import java.util.Iterator;  

import java.util.Random; 

 

import weka.classifiers.Evaluation; 

import weka.classifiers.bayes.BayesNet; 

import weka.core.Attribute; 

import weka.core.FastVector; 

import weka.core.Instance; 

import weka.core.Instances; 

 

public class Classifier { 

 private BayesNet model; 

 private Instances data; 

 

 public Classifier() { 

  System.out.println("Create classifier ..."); 

 } 

 

 public void setData(Instances data) { 

  this.data = data; 

 } 

 

 public Instances getData() { 

  return this.data; 

 } 

 

 public void train() throws Exception { 

  System.out.println("Train model"); 

  this.model = new BayesNet(); 

  this.model.buildClassifier(this.data); 

 } 

 

 public void test() throws Exception { 

  System.out.println("Validate model ..."); 

 

  Evaluation eval; 
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  eval = new Evaluation(this.data); 

  eval.crossValidateModel(this.model, this.data, 10, new Random(1)); 

 

  System.out.println("F-measure:"); 

  System.out.println("    - regular: " + eval.fMeasure(0)); 

  System.out.println("    - vandalism: " + eval.fMeasure(1)); 

 

 } 

  

 private Instance selectAttr(Instance data, Instances model) { 

  int numAttributes = model.numAttributes(); 

  double[] newInst = new double[numAttributes]; 

  Instance newInstance = new Instance(1.0, newInst); 

   

  for (int i = 0; i < model.numAttributes(); i++) { 

   Attribute modelAttr = model.attribute(i); 

   for (int j = 0; j < data.numAttributes(); j++) { 

    Attribute dataAttr = data.attribute(j); 

    if(modelAttr.equals(dataAttr)) { 

     newInstance.setValue(i, data.value(j)); 

    } 

     

   } 

  } 

   

  return newInstance; 

 } 

 

 public Instances labeling(Instances unlabeled) throws Exception {  

  FastVector attributes = new FastVector();; 

   

  for (int i = 0; i < this.data.numAttributes(); i++) { 

   attributes.addElement(this.data.attribute(i)); 

  } 

   

  Instances prepUnlabeled = new Instances("Wikipedia unlabeled", attributes, 0); 
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  prepUnlabeled.setClassIndex(prepUnlabeled.numAttributes() - 1); 

   

   

  Instances modelData = new Instances(this.data); 

  modelData.delete(); 

    

   System.out.println("Prepare test data to labeling ..."); 

   for (int i = 0; i < unlabeled.numInstances(); i++) { 

    Instance element = unlabeled.instance(i); 

    Instance prepared = this.selectAttr(element, modelData); 

    prepUnlabeled.add(prepared);      

   }       

   

  System.out.println("Labeling test data ...");   

   

  for (int i = 0; i < prepUnlabeled.numInstances(); i++) { 

   Instance inst = prepUnlabeled.instance(i); 

   double clsLabel = this.model.classifyInstance(inst); 

   prepUnlabeled.instance(i).setClassValue(clsLabel); 

  } 

   

  return prepUnlabeled; 

 } 

 

}  

A3 Creating and selecting attributes 

This is done by weka. Word tokenizer and a filter is set here. 

public class CreateAndSelectAttributes { 

 private Instances data; 

 private Instances filteredData; 

 private Instances selectedAttrData; 

 private WordTokenizer tokenizer; 

 private StringToWordVector filter; 

  

  

 public CreateAndSelectAttributes() { 
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 } 

  

  

 public void setData(Instances data) { 

  this.data = data; 

 } 

  

  

 private void setupTokenizer() { 

  System.out.println("Setup tokenizer ..."); 

  this.tokenizer = new WordTokenizer(); 

//  Use default delimiters 

//  this.tokenizer.setDelimiters(" \\r\\n\\t.,;:'\"()?!"); 

 } 

  

  

 private void setupFilter() throws Exception { 

  System.out.println("Setup filter ..."); 

  this.setupTokenizer(); 

   

  this.filter = new StringToWordVector(); 

// 

 this.filter.setOptions(Utils.splitOptions("weka.filters.unsupervised.attribute.StringToWordVector -R 

first-last -W 1000 -prune-rate -1.0 -N 0 -stemmer weka.core.stemmers.NullStemmer -M 1 -tokenizer 

\"weka.core.tokenizers.WordTokenizer -delimiters \\\" \\\\r\\\\n\\\\t.,;:\\\\\\\'\\\\\\\"()?!\\\"\"")); 

  this.filter.setAttributeIndices("last"); 

  this.filter.setMinTermFreq(2); 

  this.filter.setTokenizer(this.tokenizer); 

  this.filter.setStemmer(new NullStemmer()); 

   

  this.filter.setInputFormat(this.data); 

   
 } 

   

A4  Main class 
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Objects of other classes are created andthe functions are called. It feteches instances from other classes. A 

file is generated for the results. 

  

 ParseText train = new ParseText("train"); 

  Instances data = train.getInstances(); 

   

  CreateAndSelectAttributes CSA = new CreateAndSelectAttributes(); 

  CSA.setData(data); 

  CSA.useFilter(); 

  CSA.selectAttributes(35); 

   

  data = CSA.getSelectedAttrData(); 

   

  Classifier classifier = new Classifier();  

  classifier.setData(data); 

   

public static void saveResult(String result) throws IOException { 

  String timeStamp = new 

SimpleDateFormat("MMdd_HHmmss").format(Calendar.getInstance().getTime()); 

 

  Writer out = new BufferedWriter(new OutputStreamWriter(new 

FileOutputStream("result_"+timeStamp+".txt"), "UTF-8")); 

  out.write(result); 

  out.close(); 

   

  System.out.println("File generated: data" + File.separator +"train_"+timeStamp+".arff"); 

 }  

  

  

 public static void saveInstances(Instances data) throws IOException { 

  String timeStamp = new 

SimpleDateFormat("MMdd_HHmmss").format(Calendar.getInstance().getTime()); 

 

  Writer out = new BufferedWriter(new OutputStreamWriter(new FileOutputStream("data" + 

File.separator +"train_"+timeStamp+".arff"), "UTF-8")); 

  out.write(data.toString()); 



45 

 

  out.close(); 

   

  System.out.println("File generated: data" + File.separator +"train_"+timeStamp+".arff"); 

 } 

 

} 
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