Detecting Wikipedia Vandalism

Project Report submitted in partial fulfillment of the requirement for the degree
of

Bachelor of Technology.
in
Information Technology
under the Supervision of

Ms Reema Aswani
By
Disha Sharma
Roll No- 111427

to

Jaypee University of Information and Technology

Certificate

This is to certify that project report entitled “Detecting Wikipedia Vandalism”, submitted by Disha
Sharma in partial fulfillment for the award of degree of Bachelor of Technology in Computer Science &
Engineering to Jaypee University of Information Technology, Waknaghat, Solan has been carried out under

my supervision.

This work has not been submitted partially or fully to any other University or Institute for the award of this

or any other degree or diploma.

Supervisor’s signature:

Supervisor’s Name: Ms Reema Aswani
Designation: Assistant Professor
Date:

Acknowledgement

I would like to express my deepest appreciation to all those who provided me the possibility to complete this
report. It not have been possible without the kind support and help of many individuals and organizations. |
would like to extend my sincere thanks to all of them.

A special gratitude | give to our final year project supervisor , Ms. Reema Aswani , whose
contribution in stimulating suggestions and encouragement, helped me to coordinate my project, for the
guidance and constant supervision as well as for providing necessary information regarding the project .

Furthermore, | have to appreciate the guidance given by other supervisor as well as the panels
especially in my project presentation that has improved my presentation skills thanks to their comment and
advices. My thanks and appreciations also to the people who have willingly helped me out with their
abilities.

Name of the student : Disha Sharma

Date:

S.No

1.1
1.2
1.3

2.1
2.2
2.3

3.1

3.11
3.12
3.1.3
3.2

3.3

3.3.1
3.4

34.1
3.4.2
3.4.3
344
345
3.4.6
3.4.7
3.4.8

4.1
4.2

5.1

Table of Content

Topic

Introduction

What is Wikipedia

What is Vandalism

Why does Vandalism matter
Wikipedia Vandalism

Kinds of Vandalism

Vandalism Statistics and Impact
Vandalism Impact:An Anecdote
Wikipedia Vandalism Detection
Practical Tools Against vandalism
Anti-vandalism Patrolling
Patrolling Assistance

Automatic systems,bots and edit
Why consider context?

Problem Definition and Notation
Immediate and Historic Detection
Corpora

Webis-WVC-07

Chin 2010

West 2010

PAN-WVC-10

PAN-WVC-11

ClueBot-NG dataset

Wikipedia dumps

Wikipedia User Contribution dataset

Literature Review
Research Papers

Integrated Literature review

Developing a Wikipedia Vandalism

Detection System

Features

Page No

10
11

11
11
12
12

13

14
14
14
14
15
15
15
16

16
18

20

5.2

5.21
5.2.2
5.2.3
5.3

5.3.1
5.3.2
5.4

54.1
5.4.2
543
5.4.4

Combining Natural Language, Metadata,
and Reputation

Textual and Language features
Reputation

Metadata

Proposed Approach

Weka

Word Co-occurrence Probability Matrix
Implementation Details

Weka steps

Algorithm

Results

Screenshots

Conclusion

Appendix

References

22
23
23

24
26

28
30
31
31
36
37
45

S.No.

List of Tables

Title Page No.
Summary of types of vandalism 9
Summary of algorithms 19

Summary of features 21

Abstract

Collaborative online social media (CSM) applications such as Wikipedia have not only revolutionized the
World Wide Web, but they also have had a hugely positive effect on modern free societies. Unfortunately,
Wikipedia has also become target to a wide-variety of vandalism attacks. Most existing vandalism detection
techniques rely upon simple textual features such as existence of abusive language or spammy words. These
techniques are ineffective against sophisticated vandal edits, which often do not contain the tell-tale markers
associated with vandalism.

A plethora of methods have been developed within the Wikipedia and the scientific community
to tackle this problem.This project has participated in this effort and proposes a content context-aware
vandalism detection framework. The main idea is to quantify how well the words contained in the edit fit

into the topic and the existing content of theWikipedia article.

Chapter 1

Introduction

1.1 What is Wikipedia

Wikipedia is an online encyclopedia that is free, collaborative, multilingual and global-scale. Free because
anyone is free to use, copy, redistribute and modify Wikipedia content, even with commercial purposes, as
long as the result is also shared with the same license. Collaborative because Wikipedia contents are created
by the collaboration of thousands of individuals. Anyone can edit Wikipedia, even without being registered,
and participate in the discussions about content and policies. Multilingual because there are editions of
Wikipedia in 240 languages and growing. Global-scale because in its 10 years of life, Wikipedia has had an
enormous growth. Today, it is the most popular source of encyclopaedic knowledge and one of the most
visited websites on the Internet, with 365 million estimated readers. Only the English edition contains more
than 3 million articles,over 13 million registered users and 130 thousand active users.

In short, the success of Wikipedia is also a key factor for the development of a wide range of

academic, social and commercial projects beyond Wikipedia.

1.2 What is Vandalism

The fact that anyone can edit Wikipedia at any time with very little practical restrictions is at the core of its
success and, at the same time, it is one of its main sources of trouble. By guaranteeing any person freedom to
edit its contents, Wikipedia has become a target for pranksters and, with its increasing popularity, for
spammers, lobbyists and other people interested in self-promotion, manipulation and propaganda. This has a
wide-ranging negative impact in Wikipedia itself and all applications that use Wikipedia as a knowledge
source. The phenomenon of vandalism can be defined as, any addition, removal, or change of content made
in a deliberate attempt to compromise the integrity of Wikipedia. Common types of vandalism are the
addition of obscenities or crude humour, page blanking, and the insertion of nonsense into articles. Any
good-faith effort to improve the encyclopaedia, even if misguided or ill-considered, is not vandalism. Even

harmful edits that are not explicitly made in bad faith are not vandalism.

1.3 Why does Vandalism matter

Considering the increasingly important role that Wikipedia is playing in the modern world, it is important to

ensure the trustworthiness of the information that gets shared on it. Unfortunately, the very foundational

features of Wikipedia namely end-user anonymity and low information sharing barrier have made it
susceptible to a variety of vandalism attacks.

Studies show that around 5% of Wikipedia edits involve vandalism. Some of these edits were
not rectified for several hours (in some, albeit in frequent, cases even days). In addition to exposing false
information to Wikipedia users, vandalism has the potential to inflict wider damage. It can cause progressive
degradation of quality of information which can lead to frustration among honest contributors, some of
whom may loose interest in contributing content and participating in Wikipedia activities.

More importantly, vandalism can create social tensions and may even lead to violence in certain regions of
the world. Thus, it is important to develop effective techniques for detecting vandalism in Wikipedia as well

as other CSM applications.

Chapter 2
Wikipedia Vandalism

2.1 Kinds of VVandalism

Vandalism is a highly subjective and wide concept. There have been attempts to give a concise definition by
creating taxonomies of vandalism. There are many kinds of vandalism,as shown in Table 2.1.

Tightly attached to the concept of vandalism are good and bad faith, which are terms regularly used in the
Wikipedia community. However, from a computational point of view, we are actually studying vandalism as
damage to the encyclopedia, regardless of intentions and leaving

Judgemental issues to human experts.

Tightly attached to the concept of vandalism are good and bad faith, which are terms
regularly used in the Wikipedia community. However, from a computational point of view, we are actually
studying vandalism as damage to the encyclopedia, regardless of intentions and leaving judgamental issues

to human experts.

Table 2.1: Summary of types of vandalism

Type Description

Blanking Removing all or significant parts of a page’s content without any
reason.

Edit summary vandalism Making offensive edit summaries in an attempt to leave a mark that
cannot be easily expunged from the record.

Hidden vandalism Any form of vandalism not visible in the final article
but visible during editing.

Image vandalism Uploading shock images, inappropriately placing explicit images on
pages, or simply using any image in a way that is disruptive.

Link vandalism Adding or changing internal or external links on a
page to disruptive, irrelevant, or inappropriate targets.

Illegitimate page creation Creating new pages with the sole intent of malicious behaviour.

Page lengthening Adding very large amounts of content to a page so as to make the
page’s load time abnormally long.

Page-move vandalism Changing the names of pages to disruptive, irrelevant and
inappropriate names.

Silly vandalism Adding profanity, graffiti or patent nonsense to pages.

Sneaky vandalism Vandalism that is harder to spot, or that otherwise circumvents

detection, including adding plausible misinformation and hiding
vandalism through multiple edits.

Spam external linking Adding links to irrelevant sites after having been warned.

Template vandalism Modifying the wiki language or text of a template in a harmful or
disruptive manner.

2.2 Vandalism Statistics and Impact

The Wikipedia community conducts its own quantitative and qualitative studie on vandalism. Study 1
consisted of manually checking 100 random articles with a total of 668. Observed vandalism constituted a
4.6%. The observed time period comprised 2004, 2005 and 2006 and vandalism percentage appeared to be
stable, oscillating between 3% and 6% of total edits. The most common vandalism type was obvious
vandalism (83.87%) followed by deletion vandalism (9.68%). Currently, the most accurate estimation of
vandalism in the English edition of Wikipedia is around 7% of all edits (Potthast 2010). If we consider that
there were 10 million edits between August 20 and October 10 2010, which makes almost 200 thousand

edits per day on average2, we can assume the order of magnitude of vandalism edits per day is 10,

According to Wikipedia’s Study 1, 96.77% of all vandalism edits were performed by
unregistered users. In 74.19% of cases, vandalism was reverted by a registered user.Another important
statistic is how much time vandalism remains in Wikipedia and how many people view it. It is estimated that
mass deletions remain 7.7 days on average with a median time of 2.8 minutes,while mass deletions involving

obscenities remain 1.8 days on average with a median time of 1.7 minutes.

Another important statistic is how much time vandalism remains inWikipedia and how many
people view it. Viégas, Wattenberg, and Dave (2004) estimated that mass deletions remain 7.7 days on
average with a median time of 2.8 minutes, while mass deletions involving obscenities remain 1.8 days on
average with a median time of 1.7 minutes. Priedhorsky et al. (2007) further studied the problem with results

consistent with those by Viégas, Wattenberg, and Dave (2004), and estimated that the probability that a view

10

of Wikipedia between 2003 and 2006 included damaged content was of 0.0037. This probabily can be

translated to 188 million views of vandalism during the studied perior.

2.3 Vandalism Impact: An Anecdote

To further illustrate the impact of vandalism, we expose an anecdote. On March 14th 2010, a prankster
edited the Wikipedia article of a small belgian town:Kaster. After this edit, Kaster’s article introduction was
the following: Kaster is a village in Belgium, part of the municipality of Anzegem.Recently, the town made

headlines when a serial rapist dressed as a Blastoise Pokemon raped and killed 65 men.

Most of the time, this would have been corrected quickly and nobody would have noticed.
However, the edit was not reverted until April 9th 20105. During that month, Google’s spider fetched the
article and indexed it its database and as a result, typing define:kaster in Google’s search engine would show

up the above prank as the definition for Kaster.

What started as a small prank by two brothers ended up being an embarrassing thing
forWikipedia and Google. Leaving aside the fun that this provided to many people, Wikipedia needs to put

measures in place to fight vandalism and prevent damages on the credibility of the project.

Chapter 3

Wikipedia Vandalism Detection

3.1 Practical Tools Against Vandalism

3.1.1 Anti-vandalism Patrolling

The main force against vandalism is people who manually checks latest changes made to Wikipedia and

review them to find vandalism and revert it. This activity is known as patrolling.

The classic method of patrolling is opening a browser tab with the list of recent changes and

skim through the list, then open in other tabs suspicious edits, check them and revert them if necessary.

3.1.2 Patrolling Assistance

11

A wide variety of tools have been developed to assist patrollers in their work. These range from tools aimed
at browsing and editing Wikipedia in a faster and more convenient way, such as Twinkle or Huggle, to
automatic detection systems that work with human supervision, such as STiki.

3.1.3 Automatic Systems, Bots and Edit Filters
Automatic detection systems are designed to work with very limited human intervention or no intervention
at all. In practice, there are two ways of implement them: as bots or edit filters.
On one hand, bots operate autonomously as agents external toWikipedia, and as such, they detect and revert
vandalism some time after it is performed.

On the other hand, edit filters are a recent addition to the MediaWiki, deployed since 2009.
They look for common patterns of vandalism at the edit time.If the edit matches one of these patterns,
MediaWiki will reject it. The advantage of this approach is that when a vandalism edit is detected, it is

rejected before it takes effect.

3.2 Why consider context?

One of the central limitations of traditional vandalism detection techniques is that most of them treat edits as
independent and isolated pieces of texts. Because of this, most of them just focus on the text that appears in
the edit. However, edits in Wikipedia are not isolated pieces of text. They occur in certain context, and
hence the contextual attributes are an integral part of an edit’s characteristics. For instance, an edit occurs on
a certain version of an article. Thus, the edit cannot be completely characterized without including the
content of the article at the time the edit occurred. In fact, the edit may become meaningless if it were to be
performed on a different article or a different version of the same article.

In addition to article and version, an edit carries with it several other powerful contextual
attributes. These include the identity (or lack thereof) of the user performing the edit, the previous history of
edits performed by the user, the geographical location from where the edit originated, and the time at which
the edit was performed. Many of these contextual attributes can be very powerful features in identifying
vandalism. The importance of context is evident by the fact that even humans (implicitly) rely upon context
when identifying vandalism. For example, most humans will immediately identify an edit containing the
word “Nazi” as vandalism if the edit is on, say, President Obama’s Wikipedia page, whereas they will not
classify the same edit as vandalism if it is on Goebbels’ page. The human is implicitly relying on whether

the edit fits into the overall context of the article to determine whether it is vandalism.

There are many challenges to utilizing context for vandalism detection. First, we need to

identify contextual attributes that have strong distinguishing capabilities. Second, context is often an abstract

12

concept, and for machines to understand and process it, context has to be made quantifiable. This means that
we have to not only invent meaningful metrics for various contextual attributes, but also devise measurement
mechanisms. Third, we need to design efficient and scalable vandalism detection techniques that utilize

these quantifiable contextual attributes.

3.3 Problem Definition and Notation

A revision r is the state of an article in a given point of its history. We use r" and r* to denote a past or future
revision with respect to r, respectively.Using subindices ri, ri+1 or ri 1 to denote specific past or future
revisions. An edit e is the transition between two consecutive revisions. The Wikipedia vandalism detection
task consists in decide whether a given edit e is vandalism or not. From the point of view of machine

learning, given the set of E of all edits,

e Acorpus Ec =E of labeled edits.

e An edit model a: E = E that maps each edit e onto a feature set e quantifying characteristics of e that
are useful for discriminating between vandalism and non-vandalism edits.

e A classifier ¢ : E—[0,1] . The result of this classifier is the confidence of a given edit e being
vandalism.

e A threshold T is defined so that any c(e) > T indicates vandalism and c(e) < T indicates otherwise,
we check whether it is vandalism or not by

e For any unseen edit e that belongs to E E¢ ,check whether it is vandalism or not by computing
c(a(e)) >T.

3.3.1 Immediate and Historic Detection

Vandalism detection includes two different tasks: immediate8 and historic detection. Immediate detection is
the most extended: detecting vandalism right after it happens. The historic variant is detecting vandalism at
any point in the past.The technical difference between them is that, in the case of historic detection,
information about everything that happened after the vandalism act is available to the system. Immediate
detection is the most applied and useful to maintain Wikipedia clean of vandalism. The interest in historic
detection is that much higher performance can be achieved, making it useful for building corpora to train
immediate detection systems and also creating clean snapshots of Wikipedia, by selecting revisions of each
articles that are guaranteed to be vandalism-free.

3.4 Corpora

For the best of our knowledge, there are sixWikipedia vandalism corpora. All our work used the PAN-

WV C-10 corpus, although we will present all the six corpus for reference.

13

3.4.1 Webis-WVC-07

The Webis Wikipedia vandalism corpusll, or Webis-WVC-07, is the first public Wikipedia vandalism
corpus reported in the literature. It consists of 940 edits annotated by humans, 301 of them annotated as
vandalism. (Potthast and Gerling 2007; Potthast, Stein, and Gerling 2008).

3.4.2 Chin 2010

This corpus was built and used for (Chin et al. 2010). It was built based on the Wikipedia revision history up
to February 24th, 2009 and it consists of the full history of two of the most vandalized pages12: Abraham
Lincoln (8,816 revisions) and Microsoft (8,220 revisions).Annotation was performed in an active learning
fashion. A first classification model was built using the Webis-WVC-07 corpus, and that model was used to
get a rank of the top 50 candidates to be vandalism. An annotator revised these candidates and annotated
them. The annotated edits were added to the training corpus and the process was repeated iteratively.

This annotation method makes (Chin et al. 2010) an interesting approach to solve the problem of annotating

a corpus big enough to be used for supervised classification.

3.4.3 West 2010

West, Kannan, and Lee 2010 use a unique approach to annotate their corpusl3. In Wikipedia, some
privileged users have the right to revert an edit using a singleclick feature called rollback, used to undo

blatantly unproductive edits.

The authors define an offending edit as one that was reverted using the rollback
function.Although this is only a small portion of vandalism edits, this approach results in a very high
confidence for positive annotations. The corpus contains 5,713,762 edits labeled as blatantly unproductive
using the described automaitc method; it also contains 5,291 vandalism edits that were manually annotated.
This makes West 2010 the largest Wikipedia vandalism corpus reported until now.

3.44 PAN-WVC-10

The PAN Wikipedia Vandalism Corpus 201014, or PAN-WVC-10, is the successor of Webis-WVC-07
(Potthast 2010). It consists of 32,439 edits, of which 2,394 are annotated as vandalism. Amazon Mechanical
Turk was used to distribute the task amongst hundreds of human annotators. Each edit was annotated by 3
people. If they did not agree, the edit was annotated by 3 more people. This process was repeated until every
edit had an annotation with more than 2/3 of inter-annotator agreement. After 8 iterations, there were 70 tie

edits that were reviewed by the corpus authors.

14

Due to its use in the 1st International Competition on Wikipedia Vandalism Detection
(Potthast, Stein, and Holfeld 2010) it is one of the most widely used corpus in the scientific literature.
In this project, 1 will use a modified version of PAN-WVC-10 where 157 edits were removed. This was
because of these edits were deleted from the Wikipedia History at the time of writing (Adler et al. 2011).

Statistics for our corpus version are: 32,282 total edits, with 2,395 vandalism edits.

3.45 PAN-WVC-11

The PAN Wikipedia Vandalism Corpus 2011, or PAN-WVC-11, is a supplement to PAN-WVC-10. It is the
first multilingual corpus, including sections for English, German and Spanish.The English section consists of
new 9985 annotated edits of the same time period as those compiled for PAN-WVC-10. 1144 of them are
annotated as vandalism.The German section consists of 9990 edits, 589 of them annotated as vandalism. The

Spanish section consists of 9974 edits, 1081 of them annotated as vandalism.

3.4.6 ClueBot-NG dataset

ClueBot-NG dataset is an ever evolving one. Through its online review interface a multitude of Wikipedia

users annotate edits as vandalism, constructive or skipped. The final classification is decided as follows:

e A minimum of 2 annotators agreeing is required for the edit to be considered as annotated.

¢ If more than a half of annotators skipped the edit, it is annotated as skipped.

e If, at least, constructive annotations are thrice the vandalism annotations,the edit is annotated as
constructive.

e If, at least, vandalism annotations are thrice the constructive annotations, the edit is annotated as
vandalism.

e If none of the previous criteria is met, the edit is not considered as annotated and therefore it is not
added to the final dataset.
The strong point of this corpus is that it is annotated by experts. Therefore, we can expect a high
quality in annotation and compliance with Wikipedia standards. This is an advantage over PAN-
WV C-10, whose annotations might be less reliable; and over West 2010, which has a high amount of
false negatives. However, its size is one order of magnitude below PAN-WVC-10 and four below
West 2010.

3.4.7 Wikipedia dumps

Wikimedia offers XML and SQL dumps of the entire database for all its projects. These dumps include the
full revision history of every article, along with other information. This is a resource commonly used to build

Wikipedia vandalism corpora and detection systems.

15

3.4.8 Wikipedia User Contribution Dataset

Javanmardi, Lopes, and Baldi (2010) created a dataset24 of content insertions and deletions per user. This

dataset comprehends all Wikipedia insertions and deletions since its creation to January 30th, 2010. This is a

valuable approach for user reputation methods.

CHAPTER 4

Literature Review

4.1 Research Papers

Paper 1

Name Wikipedia Vandalism Detection: Combining Natural Language, Metadata,
and Reputation Features

Description Integrated three approaches to detect vandalism. They are - spatio- temporal
analysis of metadata (STiki), a reputation-based system (Wiki-Trust), and
natural language processing features.The resulting joint system improved the
state-of-the-art from all previous methods and establishes a new baseline for
Wikipedia vandalism detection.

Authors B. Thomas Adler, Luca de Alfaro, Santiago M. Mola-Velasco, Paolo Rosso,
Andrew G. West

Approaches | Spatio-temporal analysis of metadata, Reputation-based system, Natural
language processing features.

Algorithm Random forest

Paper 2

Name Automatic Wikipedia Vandalism Detection

Description Discussed the characteristics of vandalism as humans recognize it and
develop features to render vandalism detection as a machine learning task.
Compiled a large number of vandalism edits in a corpus, which allowed for
the comparison of existing and new detection approaches.

Authors Martin Potthast, Benno Stein, and Robert Gerling

Approaches | Logitboost

Algorithm Logistic regression

16

Paper 3

Name Automatic Vandalism Detection in Wikipedia: Towards a Machine Learning
Approach

Description | Investigated the possibility of using machine learning techniques to build an
autonomous system capable to distinguish vandalism from legitimate edits.
Highlighted the results of a small but important step in this direction by
applying commonly known machine learning algorithms using a
straightforward feature representation.

Authors Koen Smets,Bart Goethals and Brigitte Verdonk

Approaches | Applied two machine learning algorithm

Algorithm Naive Baye’s Classifier, Probablistic sequence modelling

Paper 4

Name Detecting Wikipedia Vandalism via Spatio-Temporal Analysis of Revision
Metadata

Description | Leveraged the spatio-temporal properties of revision metadata to detect
vandalism. An administrative form of reversion called rollback was used
which enablesd the tagging of malicious edits, which were contrasted with
non-offending edits in numerous dimensions.

Authors Andrew G West, Sampath Kannan and Insup Lee

Approaches | Spatio-temoral features

Algorithm SVM

Paper 5

Name A Content-Context-Centric Approach for Detecting Vandalism in Wikipedia

Description | Proposed a content context-aware vandalism detection framework. The main
idea was to quantify how well the words contained in the edit fit into the
topic and the existing content of theWikipedia article.

Authors 9" jeee international conference

Approaches | WWW co-occurrence probability,top-ranked co-occurrence probability

Algorithm AdaBoost ,Naive Bayes ,Decision Tree

17

4.2 Integrated Literature review

Various research have been proposed with the same aim i.e. creation of an antivandalism bot for the
detection of Wikipedia. The basic idea was the same with tuning some features and introducing others ,
explored features based on word lists, expanding them beyond vulgarisms and improving results by creating
new categories. Different well known machine learning classifiers were discussed ,varied the parameters to
observe changes in performance. Mostly a 10 fold cross validation on the training data and measured
precision (P), recall (R), F-score, area under precision-recall curve (AUC-PR) and area under receiver
operating characteristic curve (AUC-ROC).
The papers analyzed the different categories of features like Text,language and metadata.

Drawbacks of the existing bots like ClueBot and VVoABot Il were addressed. It was observed that these tools
were built around the same primitives that was included in Vandal Fighter. They use lists of regular
expressions and consulted databases with blocked users or IP addresses to keep legitimate edits apart from
vandalism. The major drawback of these approaches was the fact that these bots utilize static lists of
obscenities and ‘grammar’ rules which are hard to maintain and easy to deceive. As statistics show that they

only detected 30% of the committed vandalism. So there was certainly a need for improvement.

It was observed that improvement were achieved by applying machine learning and natural
language processing (NLP) techniques. Not in the very least because machine learning algorithms have
already proven their usefulness for related tasks such as intrusion detection and spam filtering for email as
well as for weblogs. Also most existing works in this area focused on utilizing simple textual features for
identifying vandalism. They worked by considering whether an edit contains features that have statistically
high likelihood of being associated with vandalism. Examples of such features include abusive/obscene
words, spammy words/phrases and certain URLs. These simple approaches, however, have had limited
success in combating sophisticated vandal edits often referred to as elusive vandalism . These type of vandal
attacks are not likely to contain the tell-tale textual features associated with vandalism, and hence they evade

common vandalism filters.

A better method was devised to deal with this problem. One paper argued for a context-aware
approach for detecting vandalism in Wikipedia. The main motivation for considering context was the
important observation that the edits in Wikipedia and other CSM applications are not isolated pieces of text.
Rather, they happen in a specific context. This is in fact a key feature of Wikipedia, and hence it can be
highly effective in detecting vandalism. The context of a Wikipedia edit can have multiple distinct aspects
such as the relationship of the edit to the article, whether the edit was performed by a registered or an

unregistered user, the identity (or the IP address) of the user performing the edit, and the geographical

18

location from where the edit was performed. The challenge however lied in designing vandalism detection

techniques that can effectively harness these various contextual attributes.

Based on these papers a comparative analysis was performed as shown in Table 4.2 below. The

table is a summary of the different algorithms that was used in various research papers and jots the

advantages and disadvantages of each algorithm.

Table 4.2 Summary of the algorithms

Name

Advantages

Disadvantages

Bayesian Learning

Handles small data limit.
Very flexible

Interpolates to engineering

Information theoretically problematic.

Computationally difficult problems

Decision tree

Well automated.
Quite fast

Lack of available memory, when dealing with
large databases.

Learning problems which can not be solved by
decision trees

Neural Network

Able to tolerate noisy data.

Successful on several real world

Involves long learning time.

Require number of parameters that are to be

application. determined empirically.

Support Vector | Most robust and accurate | Computationally expensive.

machine methods. Extremely slow in learning, requiring large
Has a sound theoretical | amount of training time
foundation.

Random forest

Not sensitive to noise in the data
set.

Not subject to over fitting

Observed to over fit for some dataset.
Sometimes the variable importance scores are not

reliable

Logistic regression

Easily to update model to take in
new data .
No worries about features being

correlated

Requires large sample size to achieve stable

results.

19

Chapter 5
Developing a Wikipedia Vandalism Detection System

5.1 Features

All the features are calculated using metadata and the text of single edits. They can be divided in three

groups: Metadata, Text, and Language. Metadata based features are the following:

Anonymous : Whether the editor is anonymous or not.VVandals are likely to be anonymous. This feature is
used in a way or another in most antivandalism working bots such as ClueBot and AVBOT. In the PAN-
WVC-10 training set (Potthast 2010) anonymous edits represent 29% of the regular edits and 87% of
vandalism edits.

Comment length: Length in characters of the edit summary.Long comments might indicate regular editing
and short or blank ones might suggest vandalism. However, this feature is quite weak, since leaving an
empty comment in regular editing is a common practice.

Size increment: Absolute increment of size, i.e., [new| - |old|.The value of this feature is already well-
established since first-generation systems. For example, ClueBot uses various thresholds of size increment
for its heuristics, e.g. a big size decrement is considered an indicator of blanking.

Size ratio: Size of the new revision relative to the old revision, i.e., |L+new|/|1+old|. Complements size
increment.

Text-based features are the following:

Upper to lower ratio: Uppercase to lowercase letters ratio, i.e., 1+|upper|/1+jlowerj .Vandals often do not
follow capitalization rules, writing everything in lowercase or in uppercase.

Upper to all ratio: Uppercase letters to all letters to ratio, i.e., 1+|upper|/1+|lowe|+|upper]| .

Digit ratio: Digit to all characters ratio, i.e., 1+|digit|/1+|all| .

This feature helps to spot minor edits that only change numbers. This might help to find some cases of subtle
vandalism where the vandal changes arbitrarily a date or a number to introduce misinformation.
Non-alphanumeric ratio: Non-alphanumeric to all characters ratio, i.e., 1+|nonalphanumeric|/1+|all|. An
excess of non-alphanumeric characters in short texts might indicate use of emoticons, excessive use of
exclamation marks or gibberish.

Character diversity: Measure of different characters compared to the length of

inserted text, given by the expression lengtht/differentchar - Thjs feature helps to spot random keyboard hits and
other non-sense.

Character distribution: Kullback-Leibler divergence of the character distribution of the inserted text with
respect the expectation. Useful to detect nonsense.

20

Compressibility: Compression rate of inserted text using the LZW algorithm.Useful to detect non-sense,
repetitions of the same character or words, etc.

Good tokens: Number of tokens rarely used by vandals, mainly wiki-syntax elements
(e.g. _TOC__, <ref>).

Average term frequency: Average relative frequency of inserted words in the new revision.
In long and well-established articles too many words that do not appear in the rest of the article indicates that

the edit might be including non-sense or non-related content.

Longest word:Length of the longest inserted word. Its value is O if there are no inserted words.

Useful to detect non-sense.

Longest character sequence: Longest sequence of the same character in the inserted Text.

The language-dependent features are based in counters of words in certain categories. For each word
category, two features are calculated: frequency and impact. Frequency is the frequency of these words
relative to the total words inserted during the edit. Impact is the percentage by which the edit increases the

amount of these words. Word categories are :
Vulgarisms: Vulgar and offensive words (eg.shit).

Pronouns: First and second person pronouns, including slang spellings (e.g. I,you, ya).

Bad : Hodgepodge category for colloquial contractions and some typos associated with bad (e.g. wanna,
gotcha) and some typos associated with bad writing skills (e.g. dosent).

All: A meta-category containing words from all the previous ones.

Table 5.1: Summary of features

Feature Description (Metadata)

Anonymous Whether the editor is anonymous or not.

Comment length Length in characters of the edit summary.

Size increment Absolute increment of size.

Size ratio Size of the new revision relative to the old revision.
Feature Description (Text)

Upper to lower ratio Uppercase to lowercase letters ratio.

Upper to all ratio Uppercase letters to all letters to ratio.
Digit ratio Digit to all characters ratio.
Nonalphanumeric Non-alphanumeric to all characters ratio.

21

ratio

Character distribution | KLd between the character distribution of the inserted text and the
expectation

Compressibility Compression rate of inserted text using LZW.

Good tokens Number of tokens rarely used by vandals, mainly wiki-syntax elements.

Average term | Average relative frequency of inserted words in the new revision.

frequency

Longest word Length of the longest inserted word.

Longest character Longest sequence of the same character in the inserted text.

Sequence.

Feature Description (Language)

Vulgarisms Vulgar and offensive words.

Pronouns First and second person pronouns, including slang spellings.

Bad Hodgepodge category for colloquial contractions and some typos
associated with bad and typos associated with bad writing skills.

All A meta-category containing words from all the previous ones.

5.2 Combining Natural Language, Metadata, and Reputation

5.2.1 Textual and Language features

Text (T): Language-independent features derived from analysis of the edit content. Very long articles may
require a significant amount of processing. As the content of the edit is the true guide to its usefulness, there
are several ideas for how to measure that property:

Uppercase ratio and digit ratio: Vandals sometimes will add text consisting primarily of capital letters to
attract attention; others will change only numerical content. These ratios (and similar ones create features
which capture behaviors observed in vandals.

Average and minimum edit quality: Comparing the content of an edit against a future version of the article
provides a way to measure the Wikipedia community’s approval of the edit .To address the issue of edit
warring, the comparison is done against several future revisions. This feature uses edit distance (rather than

the blunt detection of reverts) to produce an implicit quality judgement by later edits.

Language
Similar to text features, Language (L) features must inspect edit content. A distinction is made because these
features require expert knowledge about the (natural) language. Thus, these features require effort to be re-

implemented for each different language. Some of the features included in our analysis are:

22

Pronoun frequency and pronoun impact : The use of first and second-person pronouns, including slang
spellings, is indicative of a biased style of writing discouraged on Wikipedia (non-neutral point-of-view).

Frequency considers the ratio of first and second-person pronouns relative to the size of the edit. Impact is
the percentage increase in first and second-person pronouns that the edit contributes to the overall article.

Biased and bad words : Certain words indicate a bias by the author (e.g. superlatives: “coolest”, “huge”),
which is captured by a list of regular expressions. Similarly, a list of bad words captures edits which appear
inappropriate for an encyclopedia (e.g. “wanna”, “gotcha’) and typos (e.g. “seperate”). Both these lists have

corresponding frequency and impact features that indicate how much they dominate the edit and increase the

presence of biased or bad words in the overall article.

5.2.2 Reputation
We consider a feature in the Reputation (R) category if it necessitates extensive historical processing of
Wikipedia to produce a feature value. The high cost of this computational complexity is sometimes

mitigated by the ability to build on earlier computations, using incremental calculations.

User reputation : User reputation as computed by WikiTrust . The intuition is that users who have a history
of good contributions, and therefore high reputation, are unlikely to commit vandalism.

Country reputation : For anonymous/IP edits, it is useful to consider the geographic region from which an
edit originates. This feature represents the likelihood that an editor from a particular country is a vandal, by
aggregating behavior histories from that same region.Location is determined by geo-locating the IP address
of the editor.

Previous and current text trust histogram : When high-reputation users revise an article and leave text
intact, that text accrues reputation, called “trust”. Features are-

(1) the histogram of word trust in the edit, and

(2) the difference between the histogram before and after the edit.

5.2.3 Metadata

Metadata (M) refers to properties of a revision that are immediately available, such as the identity of the
editor, or the timestamp of the edit. This is an important class of features because it has minimal
computational complexity. Beyond the properties of each revision found directly in the database (e.g.
whether the editor is anonymous, used by nearly every previous work), there are some examples that we feel
expose the unexpected similarities in vandal behaviour.

Time since article last edited : Highly edited articles are frequent targets of vandalism. Similarly, quick

fluctuations in content may be indicative of edit wars or other controversy.

23

Local time-of-day and day-of-week: Using IP geolocation, it is possible to determine the local time when

an edit was made. Evidence shows vandalism is most prominent during weekday ““school/office hours.”

Revision comment length : Vandals decline to follow community convention by leaving either very short

revision comments or very long ones.

5.3 Proposed Approach

The main idea is to check how well the words contained in the edit fit into the topic and the existing content
of the Wikipedia article. For this, two unique content-based metrics is used to quantifying how compatible
an edit is with the context of a Wikipedia article. The first metric, called WWW co-occurrence probability
(WCoP) quantifies how often the words in the edit and words in the document appear together (i.e., in the
same document) in the corpus of World Wide Web (WWW) documents. The second metric, called top-
ranked co-occurrence probability (TCop) is based upon a similar theme, but the corpus is limited to top-
ranked (hence, presumably high-quality) WWW documents. The Approach would be as follows-:

For each incoming edit, extract the keywords of the incoming edit and the keywords from the
existing version to construct W(E) and W(D) respectively. Using a popular search engine to compute the
WCoP and TCop values. These values are fed into machine learning-based classifiers that have been trained
on known vandal and nonvandal edit instances. The machine learning-based classifiers determine whether
the edit is vandalism. In addition to WCoP/TCop, the machine language-based classifiers utilize more

features like Text, Metadata, Language, etc.

5.3.1 Weka
Weka is a popular suite of machine learning software written in Java, developed at the University of

Waikato, New Zealand. Weka is free software available under the GNU General Public License.

Weka is a workbench that contains a collection of visualization tools and algorithms for
data analysis and predictive modeling, together with graphical user interfaces for easy access to this
functionality. The original non-Java version of Weka was a TCL/TK front-end to (mostly third-party)
modeling algorithms implemented in other programming languages, plus data preprocessing utilities in C,
and a Makefile-based system for running machine learning experiments. This original version was primarily
designed as a tool for analyzing data from agricultural domains,but the more recent fully Java-based version
(Weka 3), for which development started in 1997, is now used in many different application areas, in
particular for educational purposes and research. Advantages of Weka include: free availability under the
GNU General Public License portability, since it is fully implemented in the Java programming language

24

and thus runs on almost any modern computing platform a comprehensive collection of data preprocessing
and modeling techniques
ease of use due to its graphical user interfaces.

Weka supports several standard data mining tasks, more specifically, data preprocessing,
clustering, classification, regression, visualization, and feature selection. All of Weka's techniques are
predicated on the assumption that the data is available as a single flat file or relation, where each data point
is described by a fixed number of attributes (normally, numeric or nominal attributes, but some other
attribute types are also supported). Weka provides access to SQL databases using Java Database
Connectivity and can process the result returned by a database query. It is not capable of multi-relational
data mining, but there is separate software for converting a collection of linked database tables into a single
table that is suitable for processing using Weka. Another important area that is currently not covered by the

algorithms included in the Weka distribution is sequence modeling.

User interfaces -: Weka's main user interface is the Explorer, but essentially the same functionality can be
accessed through the component-based Knowledge Flow interface and from the command line. There is also
the Experimenter, which allows the systematic comparison of the predictive performance of Weka's

machine learning algorithms on a collection of datasets.

The Explorer interface features several panels providing access to the main components of the
workbench: The Preprocess panel has facilities for importing data from a database, a CSV file, etc., and for
preprocessing this data using a so-called filtering algorithm. These filters can be used to transform the data
(e.g., turning numeric attributes into discrete ones) and make it possible to delete instances and attributes
according to specific criteria.

The Classify panel enables the user to apply classification and regression algorithms (indiscriminately called
classifiers in Weka) to the resulting dataset, to estimate the accuracy of the resulting predictive model, and to
visualize erroneous predictions, ROC curves, etc., or the model itself (if the model is amenable to
visualization like, e.g., a decision tree).

The Associate panel provides access to association rule learners that attempt to identify all important
interrelationships between attributes in the data.

The Cluster panel gives access to the clustering techniques in Weka, e.g., the simple k-means algorithm.
There is also an implementation of the expectation maximization algorithm for learning a mixture of normal
distributions.

The Select attributes panel provides algorithms for identifying the most predictive attributes in a dataset.

The Visualize panel shows a scatter plot matrix, where individual scatter plots can be selected and enlarged,

and analyzed further using various selection operators.

25

5.3.2 Word Co-occurrence Probability Matrix

Co-occurrence is a linguistics term that can either mean concurrence / coincidence or, in a more specific
sense, the above-chance frequent occurrence of two terms from a text corpus alongside each other in a
certain order. Co-occurrence in this linguistic sense can be interpreted as an indicator of semantic proximity
or an idiomatic expression. In contrast to collocation, co-occurrence assumes interdependency of the two
terms. A co-occurrence restriction is identified when linguistic elements never occur together. Analysis of

these restrictions can lead to discoveries about the structure and development of a language.

The overall idea here is to measure the likelihood of the keywords of an incoming edit and
the keywords of the existing version of the document occurring together (in the same document) in the
World Wide Web (WWW) corpus of documents.

The rationale is that if an incoming edit (represented as E) fits well into the context of the existing version of
the Wikipedia page (represented as D), then the keywords of E and D should occur together in a non-
negligible fraction of WWW documents.

Let W(D) = {wd1, wd2, . . ., wdn} be the set of keywords in the current (non-vandalized)
version of the document. (i.e., W(D) is the current context of the document D) and W(E) ={wel, we2, . . .,
wen} denote the set of words that the edit E is seeking to introduce in the next version of the document
(i.e.,W(E) is the edit’s context). The co-occurrence probability of the arbitrary keyword pair (wei, wdj) is
defined as the ratio of the probability that both wei and wdj occur in an arbitrary WWW document to the
ratio that at least one of them occurs in a WWW document. Mathematically,

_ P(we; € DC Awdjy € DC)

CoP(we;, wd;) = P(we; € DC Vv wd; € DC)

In the above equation, DC denotes an arbitrary WWW document. The denominator in
Equation 1 is a normalization term that has been introduced to account for the popularity variations among
keywords. The WWW co-occurrence probability is defined as the minimum of the CoPs over all the edit-

document keyword pairs.

WCoP(E,D) = argmin (CoP(we;,wd;)) (2)

) we,eW(E),wd;eW (D)

26

The reason we use argmin in Equation 2 is that an edit can have only a single vandal word/phrase (i.e., all
other words of the edit may be completely legitimate). Thus, we are interested in the contextual fitness
(measured by CoP) of the least contextually appropriate word among all the keywords of the edit.

Efficient Estimation Technique:

We need an efficient mechanism for computing the WWW co-occurrence probability metric. The central
issue here is to estimate the CoP between various wei-wdj keyword pairs. Our technique for estimating the
CoP values works as follows.

A search engine for estimating the CoP values (“Bing” for example). Suppose we want to
estimate CoP(wei, wdj). We first issue a search query for documents containing both wei and wej (i.e, the
search query will be wei + wdj). Most search engines indicate an estimate on the number of search results
(the number of web documents containing both terms). Let the number of search results containing both wei
and wdj be represented as Nb. We also issue queries for documents that exclusively contain each one of the
search terms.

In other words, we search for (wei — wdj) and (wdj — wei). Let Nei and Nbj be the
estimates on the number of search results for these two queries respectively. Now CoP(wei, wdj) is
estimated as,

" Nb
(Ne:+Ne,+NB) -

An associated problem in computing the WWW cooccurrence probability metric is that
the keyword set corresponding to the current version of the document (W(D)) is typically quite large. While
edits usually contain a few keywords and phrases, document versions can be quite large. Thus computing
CoP values for each edit-document keyword pair becomes prohibitively expensive. This overhead can be
alleviated by limiting W(D) to the keywords in the title of the article and its introductory paragraphs. In our

experiments , we limit W(D) to the keywords in the document’s title.

For example, for text classification where an input document is fed to the model and it
should output its class (from a list of classes). The model is trained on many documents with their
corresponding classes and when the new document is tested under that model, it will use the features
(information) which was extracted from those documents to classify the new document. You will define a
vector with fixed length (the number of unique words in your corpus) for each unique word in your corpus.
The context vector for each word tells us how many times other words have co-occurred with the current
word in the defined window, e.g. in a window of words, you see what are the other words occurred with the
current word and increment their corresponding element in the context vector. A simple example is show

below :

27

Corpus: ADCEADFEBACED
Window size: 2 (the 2 words of the either side)

Context vectors:

ABCDE

Br1e3 253
10101
3711022
20204
3124090

m O M o >

Using these context vectors you can get co-occurrences very easy. For example co-occurrence of D and E is
DI[E] = 4.

5.4 Implementation Details
For experimental study, Bing search engine will be used (www.bing.com) for calculating the WWW co-
occurrence probability and the top-ranked co-occurrence probability. The standard dataset which is used for
the project is PAN-WVC-10 corpus. The corpus contains 32452 human-annotated edits on 28468 Wikipedia
articles.

Weka 3.7 machine learning toolkit is used for classification and for loading the dataset. The
heap size had to be increased in order for this to work. Classifiers which will be used are Naive Bayes, with

10-fold cross validation. Standard language which is used is Java (Eclipse).

5.4.1 Weka steps

These steps show how to use Weka (build feature vector, train a classifier, test a classifier, use a
classifier) directly from Java code. It is not intended to replace the Explorer/Experimenter GUI that offer the
visualization and engineering tools required to set up and debug machine learning experiments. Weka’s
automation is useful to embed a classifier in a larger program and to create a training/testing loop that can be

seen as a regression test for machine learning capabilities. For example,

Step 1: Express the problem with features

This step corresponds to the engineering task needed to write an .arff file.
Put all the features in a weka.core.FastVector.

Each feature is contained in a weka.core.Attribute object.

28

Here, we have two numeric features, one nominal feature (blue, gray, black) and a nominal class (positive,

negative).

// Declare two numeric attributes
Attribute Attributel = nmew Attribute("firsthumeric”);
Attribute Attribute2 = mew Attribute(“secondNumeric”);

// Declare a nominal attribute along with its values
FastVector fvNominalVal = new FastVector(3);
fvNominalVal.addElement (“blue*);

fvNominalval.addElement (“gray*);

fvNominalval.addElement (“black™);

Attribute Attribute3 = new Attribute("aNominal”, fwNominalVal);

/f Declare the class attribute along with its values

FastVector fvClassval = new FastVector(2);

fvClassVal.addElement (“positive™);

fvClassVal. addElement (“negative™);

Attribute ClassAttribute = new Attribute("theClass”, fvClassVal);

/f Declare the feature vector

FastVector fuvilekaAttributes = new FastVector(4);:
fvhekaAttributes.addElement (Attributel);
fvhekaAttributes.addElement (Attribute2);
fvkiekaAttributes.addElement (Attribute3);
fvkiekadttributes.addElement(ClassAttribute);

Step 2: Train a Classifier

Training requires 1) having a training set of instances and 2) choosing a classifier.
Let’s first create an empty training set (weka.core.Instances).

We named the relation “Rel”.

The attribute prototype is declared using the vector from step 1.

We give an initial set capacity of 10.

We also declare that the class attribute is the fourth one in the vector (see step 1).

// Create an empty training set
Instances isTrainingSet = new Instances(“"Rel™, fvhekaAttributes, 18);
/ Set class index

isTrainingSet.setClassIndex(3);

Now, let’s fill the training set with one instance (weka.core.Instance):

'/ Create the instance

Instance iExample = new DenseInstance(4);

iExample.setValue((Attribute)fviWekaAttributes.elementAt(®), 1.8);
iExample.setValue((Attribute)fvWekaAttributes.elementAt(1l), @.5);
iExample.setValue((Attribute)fvWekadttributes.elementAt(2), "gray");
iExample.setValue((Attribute)fvWekaAttributes.elementAt(3), "positive”);

'/ add the instance

isTrainingSet.add(iExample);

Finally, Choose a classifier (weka.classifiers.Classifier) and create the model. Let’s, for example, create a

naive Bayes classifier (weka.classifiers.bayes.NaiveBayes).

// Create a naive bayes classifier
Classifier cModel = (Classifier)new NaiveBayes();

cModel.buildClassifier(isTrainingSet);

29

Step 3: Test the classifier

Now that we create and trained a classifier, let’s test it. To do so, we need an evaluation module
(weka.classifiers.Evaluation) to which we feed a testing set (see section 2, since the testing set is built like

the training set).

'/ Test the model
Evaluation eTest = new Evaluation(isTrainingSet);
eTest.evaluateModel(cModel, isTestingSet):

The evaluation module can output a bunch of statistics.

// Print the result & La Weka explorer:
String strSummary = eTest.toSummaryString();

System.out. println(strSummary);

// Get the confusion matrix

double[][] cmMatrix = eTest.confusionMatrix();

Step 4: use the classifier
For real world applications, the actual use of the classifier is the ultimate goal. Here’s the simplest way to

achieve that. Let’s say we’ve built an instance (named 1Use) as explained in step 2:

// Specify that the instance belong to the training set
// in order to inherit from the set description

iUse.setDataset(isTrainingSet);

// Get the Likelihood of each classes

ution[@] is the probability of being “positive®™

// fDistribution[1] is the probability of being “negative”

double[] fDistribution = cMedel.distributionForInstance(iUse);

5.4.2 Algorithm
The following steps shows how vandalism was detected using a training and a test set by using the
supervised version of the filter :-
1) Create data structure and parse it.
2) Set up filter.
3) Set up tokenizer.
4) Use filter.
5) Select attributes.
6) Create classifier to train the model.
7) Create data structure and parse raw data.
8) Set up filter.
9) Set up tokenizer.
10) Prepare test data to labelling.
11) Label test data.

30

The training set consists of raw data that needs to be parsed and tokenized. Weka selected 35 attributes
from the training set to filter data and classify it. Weka used it’s own inbuilt classifier- Bayesnet(); for
this purpose. A classifier is created to train the model. Again for the test set , data structure is created and
raw data is parsed. In the test test, if any id or attribute has something unusual then label it as vandalism.
If not then label as normal i.e. corresponding to each user id the user will be labelled as a regular user or

a vandalist.

5.4.3 Results

The results consists of console output in which the steps involved are shown. A separate file is generated
which has the user id of every user present in the dataset and it labels the user as vandalists or regular user.
Weka toolkit was used to improve the efficiency and computation speed which was necessary when a large

dataset like the PAN corpus was used.

5.4.4 Screenshots

1) Data Set

Training Set

= Debug - detectDisha/train - Eclipse = 53|
File Edit Mavigate Search Project Run Window Help

I - AW T P R SRR R 5 AP R M= IR L = - Quick Access gg\%yjm

[J] Main java [J] Classifierjava [E] extended 100 ParseTextjava CreateAndSelectAttributes java [E train 52 | 5] test = O 5= Outline 2 = O

regular Plasticspork 2009-11-21T23:12:247 Clean infobox + general fixes using [[Project:AutoWikiBrowser|AWB]] Psusennes IT - -
Pharach

pharach

|

name = " Kitchen , p. 423 "

name = " Payraudeau , BIFAO 188 , p. 294 "

An outline is not available.

recordsae *
records --
linea€ "
line --
name = "

>

<
ref

name = " Kitchen , p. 298 "
name = "

>

<
ref.

14&€ " 15
14-15
lae "

I--

insteadd€

instead --

stelaage ™

stela --

named€ v

name --

name = " Krauss , DE 62 , pp. 43-48 "
name = "

>

PURNEFE U0 WEWRNESWDNOWEWRE®W0ES 00 R W
AIOHHOHOHOHOHOHOOHOHHDODOHOHOHOHHHOHD &

& Censole 2 ~ -]

Mo consoles to display at this time.

Writable Insert 1:1

Bl- 2 @ & e[=]S] coan

31

Test Set

£ Debug - detectDisha/test - Eclipse = —]

File Edit Mavigate Search Project Run Window Help

e N[PODEXZE 2 RR 0GB FiENC S Quick Access | % | &Y Java [Debug

1] Main java [J] Classifier.java [£] extended 100 [J] ParseTextjava [J] CreateAndSelectAttributes.java [5] train [5] test 52 = O | 55 Outline 32 = 8
135236 ? 82.110.220.173 2009-11-23T12:36:52Z /* References */ Jack Harrison o e
21 2908

Al it it lable.
3D Year of death missing n outline is not available.

41 Chelsea F . ¢
5D Port vale F.C.

35239 ? 67.243.188.21@ 2089-11-30T83:35:46Z /* We Are Born */ Sia Furler
I Ssheena Beasont
D Arjankrites

I 18

D 20

I sheenabeaston.com
D

D

I

D

arjanwrites.com

srjanwrites /
sia-yeuve-changed-new-version-to-appear
free-mp3-download-sia-youve-changed

1835248 ? 124.168.32.289 20809-11-24T21:19:337 Fixes typo Information retrieval
91 higher
oD higherthe

235241 ? 86.173.222.114 2009-11-23T@@:11:857 [[WP:AES|&td]]Redirected page to [[Republican sinn fein]] Sinn FABin

I #REDIRECT [[republican sinn fein 11

535243 ? XuTimberlakexx 20@9-11-25T15:45:20Z7 [[WP:AES|&t@]]Redirected page to [[Buzz!#Buzz! Junior series]] Buzz! Junior
6T #Buzz | Junior series

O I I VI gt

535244 ? 289.38.82.98 2889-11-24T15:45:17Z null Rotten.com
91 [[editorial]] / commentary archive . Most of the articles were written by cartoonist [[Tristan A. Farnon | Tristan Farnon]] under the alias * ¢
21 In mid-2004 , Rotten launched ' ' ' [[MNDE]] ' ' ', a so-called intelligence aggregater . This is a growing website that 1i5ts information (birth
235245 ? Ingdale 2689-11-21T@0:21:08Z null Give Us Our Skeletons
3D and colonial resisters
< [u 1L = L3
) Console 57 cEe=n

No consales to display at this time.

- ==

Writable Insert algal

M%‘ | = B a0 ||

2) Weka Output

Training arff file

&3 Weka Explorer = 2
{Preprocess|| Classify | Cluster | Assodate | Select atributes | visualize |
[Open fie...] [Open URL...] [QOpen DE...] [Generate...] [Edit...] [Save...]
Filter

Current relation Selected attribute
Relation: Wikipedia Attributes: 7 Name: CLASS Type: Nominal
Instances: 10000 Sum of weights: 10000 Missing: 0 (0%:) Distinct: 2 Unique: 0 (0%)
Attributes No. Label Count Weight
[Al Il None Il Tt I Patiem] L regur |o155 |o155.0
2| vandalism [845 |B45.0
No. Name
2[FJuserR
3| JHASCOMMENT
4|[|IDENTIFIED
5|[|DLENGTH
6|[JILENGTH
7|[C]CHANGES

[Class: CHANGES (Str) - [Visualize Al

185

Remo

32

€ Weka Explorer

= | o

Preprocess | Classify | Cluster | Associate | Select attributes |} Visual

Plot Matrix CLASS USER HASCOMMENT IDENTIFIED DLEHGTH ILEHGTH TWORDCOUNT DWORDCOUNT CHANGES
| } ! | [b b L S
| 1 \ | ‘ i
CHANGES i | i ‘ i
| I i
! i ‘ i
| |
DWORDCOUHT
\ . \ . - © w -
TWORDCOUNT
i i : i i « - - i
ILENGTH
PlotSize: [100] u [] Fast scrolling (uses more memary)
pointsze: [1]]
|
Colour: CHANGES (Str) - SubSample % : 5.0
Class Colour
[" Iname I= I" D> I" D< Dref I14i;% I" I15 D14-15 IIiz® I" DI-- IinsteadijH I" Dinstead D-- Istelai;® I" Dstela D-- Inamei;¥ I" Dname D-- Iname I= I" IKrauss I, IDE I&Z I, Ipp. I43-48 I" Inam
TU TATEL TV TI Trhinamn Tardinals Trnas
Status
oK
2. P
@ e @ EML‘”—.I{%|° = Bt (D)
2 Weka Explorer =
Preprocess!] lassify | Cluster | Assocate | Select attributes | visudlize|
[Open fle...] [Open URL...] [Open DB...] [Generate... Undo Edit...] [Save...]
Filter
Current relation Selected attribute
Relation: Wikipedia-weka.filters.unsupervised attribute. Remove-R4-5-weka. fiters.unsupervised.attrib. .. Attributes: 1001 Name: USER Type: Nominal
Instances: 10000 Sum of weights: 10000 Missing: 0 (0%) Distinct: 2 Unique: 0 (0%)
Attributes MNa. Label Count Weight
[Al] [—] [—] [E—] 1|username | 8560 |6580.0
2[ip [3440 |3440.0

Class: CLASS (Nom)

2|[is =
3|CJoate

4 ligay
5([iref

6| [iyou
7[awhich
8|Jdan

9| Jicte
10([[dduring
11| Jihomosexual
12| idate
13[Ticategory
14| |dlarge
15| |dincluding
16 Jihe
17|[T]dor

18| |dsuch
19| Jipublisher
20 dthese
21| |ddays
22| il
LT e

Remave

Status

w | Visualize Al

B== ¢ & o E[e]0

= (O

33

) Weka Explorer (=1 u

Preprocess | Classify | Cluster | Assodate | Select attributes |{Visualize |
Plot Matrix USER iis DATE igay iref iyou dwhich dan icite: dduring ihomosexual
=
CLASS
icanada
idevelopment
ijanuary =
‘d . . ‘ v
| X: igay ¥: fjanuary (click to enlarge) |
PlotSize: [100] ﬂ Fast scrolling (uses more memory)
PointSize: [1] D Update
Jitter: I Select Attributes.
[colour: cLass (vom) -] [subsample % :]
Class Colour
regqular vandalism
Status
oK

-’

cmel=elo) T

Extended file

& Debug - detectDisha/data/extended_100 - Eclipse = g
File Edit Mavigate Search Project Run Window Help

b e B R R S Y R

Wiz f = e Quick Access | ¢

SEHB-0-Q-®@c 5 [| & Java (5 Debug)
A1) Main.java [J] Classifier java extended 100 57 | [J] ParseTextjava [1] CreateAndSelectAttributes.java = B8 | 5= Outline 32 = 0
l@relation 'Wikipedia-weka.filters.unsupervised.attribute.StringTolordVector-R7-W1@00-prune-rate-1.8-N@-stemmerweka.core.stemmers.NullStemmer-M3-tokenizerw -

e -
g@aﬂribute USER (usernane. ip) [| An outline is not available.
4@attribute DLENGTH numeric
S @attribute I| numeric
G @attribute ILENGTH numeric
7 @attribute I] numeric
g@attribute I[numeric
S@attribute 'I{' numeric

12 @attribute "I} numeric

1l @attribute Iis numeric

12 @attribute I= numeric

13 @attribute Igay numeric

14 @attribute I> numeric

15 @attribute I< numeric

16 @attribute Iref numeric

17 @attribute I/ numeric

18 @attribute Dwhich numeric

19 @attribute Iyou numeric

26 @attribute IIS numeric

21 @attribute Dan numeric

2z @attribute Ii numeric

23 [@attribute Dthese numeric

24 [@attribute Icite numeric

25 [@attribute Idate numeric

26 @attribute ICategory numeric

27 @attribute Ia numeric

28 @attribute Dca numeric

29 @attribute Dsuch numeric

3@ @attribute Dincluding numeric

31@attribute Ipublisher numeric

32 @attribute Dor numeric

33 @attribute DWorld numeric

34@5"ttribute Ititle numeric S2

< m 3

B Console 51) Tasks #E-S-= 8

Mo consoles to display at this time.

Writable Insert 95:27 H

@ @ @ 1=]e]

3) The console output

34

£ Debug - detectDisha/src/Classifier,java - Eclipse

=

G S

File Edit Source Refactor Mavigate Search Project Run Window Help

LG o mE e
-

1] Main java

29
40

43

4

}

S| [E2i%-0-Q-i®o v~ ¢0@

1) Classifierjava 2 | [2] extended_100 [J) ParseText java [J] CreateAndSelecthttributes.java
e e e oo cmmmmmmy mmmmm ey meg e mem—am 1
System.out.println("F-measure:");

System.out.println(” - regular: " + eval.fMeasure(@));
System.out.println(” - vandalism: " + eval.fMeasure(l));

private Instance selectAttr(Instance data, Instances model) {

int numAttributes = model.numAttributes();
double[] newInst = new double[numattributes];
Instance newInstance = new Instance(l.@, newInst);

for (int 1 = @; i < model.numAttributes(); i++) {
attrihnte madeldttr = madel attrihotefdi)-

Al

Sleg e

Quick Access
= 0O | 5= Outline 32 & B 128w e w
- 4 © Classifier
a model: BayeshMet
a data: Instances
@ Classifier)

m

@ setDatafInstances) : void

@ getData() : Instances
@ train(: void
@ testQ: void
B selectAttr(Instance, Instances) : Instance

@ labeling(Instances) : Instances

| 2| &

- =7

B Console 32 *-*l %'Il“‘ -O-=8
<terminated> Main (2) [Java Application] C:\Program Files\Java\jreT\bin\javaw.exe (05-May-2015 9:27:39 am)
Create data structure ... -
Parse raw data ...
Setup filter ...
Setup tokenizer ...
Use filter ...
Select 35 attributes with InfoGainAttributeEval ...
Create classifier ...
Train model
Warning: discretizing data set
Create data structure ...
Parse raw data ...
Setup filter ...
Setup tokenizer ...
Use filter ...
Prepare test data to labeling ...
Labeling test data ...
File generated: data\train_e5e5_e92527.arff
Writable Smart Insert 65:69

o= & ¢ & @ 54| S] LB i

4) File generated
| result_0505_092827 - Notepad = T
File Edit Format View Help
B5236 regular35239 regular35240 regular35241 regular35243 regular35244 regular35245 regular35251 regular35252 o
regular35253 regular35255 regular35256 vandalism35257 regular35263 regular35264 regular35265 regular35267
vandalism35268 regular35269 regular35275 regular35276 regular35277 regular35279 regular35280 vandalism35281
regular35287 regular35288 regular35289 regular35291 regular35292 regular35293 regular35295 regular35296
regular35299 regular35301 regular35302 regular35303 regular35305 regular35306 regular35311 regular35313
regular35315 regular35316 regular35318 regular35323 regular35324 regular35326 regular35327 regular35328
regular35330 regular35336 regular35337 regular35339 regular35340 regular35341 regular35347 regular35348
regular35348 regular35351 regular35352 regular35353 regular35359 regular35360 regular35361 regular35363
regular35364 regular35365 regular35371 regular35372 regular35373 regular35376 vandalism35377 regular35378
regular35384 regular35385 regular35386 regular35388 regular35389 regular35390 regular35396 regular35397
regular35398 regular35400 vandalism35401 regular35402 regular35408 regular35409 regular35410 regular35412
regular35413 regular35414 regular35420 regular35421 regular35422 reqular35424 regular35426 regular35431
regular35433 regular35434 vandalism35435 vandalism35437 regular35438 regular35443 regular35445 regular35446
regular35447 regular35449 regular35450 regular35455 regular35457 regular35458 vandalism35459 regular35461
vandalism35462 regular35467 regular35469 vandalism35470 regular35471 regular35473 regular35474 regular35479
regular3s481 regular35482 regular35483 regular35485 regular35486 regular35487 regular35489 regular35480
regular35491 regular35493 regular35494 regular35495 vandalism35497 regular35498 regular35503 regular35505
regular35507 regular35508 regular35510 vandalism35515 regular35516 regular35518 regular35519 regular35520
regular3s522 regular35527 regular35528 regular35530 regular35531 regular35532 regular35534 regular35539
regular35540 regular35542 regular35543 regular35544 regular35546 regular35551 regular35552 regular35554
regular35555 regular35556 regular35558 regular35559 regular35560 regular35562 regular35563 regular35564
regular35566 regular35567 regular35568 regular35570 regular35575 regular35576 regular35578 regular35579
regular35580 regular35582 regular35583 regular35587 regular35589 regular35590 regular35591 regular35583
regular35594 regular35599 regular35601 regular35602 regular35603 vandalism35605 regular35606 regular35611
regular35613 regular35614 regular35615 regular35617 regular35618 regular35623 regular35625 vandalism35626
regular35627 regular35629 regular35630 regular35631 regular35636 vandalism35637 regular35638 regular35640
regular35641 regular35642 regular35648 vandalism35649 regular35650 regular35652 regular35653 regular35654 il

Bl 2 ¢ & e[=E]a]e]

= [) ap)

35

Conclusion

Vandalism is a growing problem for Wikipedia and other collaborative social media applications. VVandalism
detection techniques that are based upon simple textual features have not been very effective in combating
sophisticated vandal attacks.

The success of a machine learning algorithm depends critically on the selection of features that
are inputs to the algorithm. Although the previous works on the problem of Wikipedia vandalism detection
utilize features from multiple categories, each work has individually focused predominantly on a single
category.

In this report, the features of two previous works have been combined.A content-context-centric
approach for vandalism detection in Wikipedia is proposed which includes an extended feature set. The main
idea is to measure the compatibility of the incoming edit’s content with the context of the existing article.
Two metrics, namely, WWW co-occurrence probability, has been presented to measure the compatibility of
the edit’s keywords with the keywords of the existing article.

These features are used in machine learning based classifiers. All the experiments will be performed on
Wikipedia vandalism PAN corpus demonstrating that the content-context features significantly improve

vandalism detection accuracy when compared with simple textual features.

36

Appendix

Al Classifier class

The classifier is built for training an test data. Instances for test data are also labelled.

import java.util.lterator;

import java.util.Random;

import weka.classifiers.Evaluation;
import weka.classifiers.bayes.BayesNet;
import weka.core.Attribute;

import weka.core.FastVector;

import weka.core.Instance;

import weka.core.Instances;

public class Classifier {
private BayesNet model,
private Instances data;

public Classifier() {
System.out.printin("Create classifier ...");

public void setData(Instances data) {
this.data = data;

public Instances getData() {
return this.data,

public void train() throws Exception {
System.out.printin(*Train model");
this.model = new BayesNet();

37

this.model.buildClassifier(this.data);

public void test() throws Exception {

System.out.printIin("Validate model ...");

Evaluation eval;

eval = new Evaluation(this.data);

eval.crossValidateModel(this.model, this.data, 10, new Random(1));

System.out.printin("F-measure:");
System.out.printin(" - regular: " + eval.fMeasure(0));

System.out.printin(" - vandalism: " + eval.fMeasure(1));

private Instance selectAttr(Instance data, Instances model) {
int numAttributes = model.numAttributes();
double[] newlnst = new double[numAttributes];

Instance newlnstance = new Instance(1.0, newInst);

for (int i = 0; i < model.numAttributes(); i++) {
Attribute model Attr = model.attribute(i);
for (int j = 0; j < data.numAittributes(); j++) {
Attribute dataAttr = data.attribute(j);
if(model Attr.equals(dataAttr)) {
newlInstance.setValue(i, data.value(j));

return newlnstance;

public Instances labeling(Instances unlabeled) throws Exception {

38

}

FastVector attributes = new FastVector();;

for (int i = 0; i < this.data.numAttributes(); i++) {
attributes.addElement(this.data.attribute(i));

Instances prepUnlabeled = new Instances("Wikipedia unlabeled", attributes, 0);

prepUnlabeled.setClassindex(prepUnlabeled.numAttributes() - 1);

Instances modelData = new Instances(this.data);
modelData.delete();

System.out.printin("Prepare test data to labeling ...");
for (int i = 0; i < unlabeled.numIinstances(); i++) {
Instance element = unlabeled.instance(i);
Instance prepared = this.selectAttr(element, modelData);

prepUnlabeled.add(prepared);

System.out.printin("Labeling test data ...");

for (inti = 0; i < prepUnlabeled.numinstances(); i++) {

Instance inst = prepUnlabeled.instance(i);

double clsLabel = this.model.classifyInstance(inst);

prepUnlabeled.instance(i).setClassValue(clsLabel);

return prepUnlabeled;

A2 Parsing data

Here each line of data is read one by one. A data structure is created .

userLabels,classLabels,Commentlabels,identifiedlabels and attr.

Fast vector is used

for

39

import java.util.lterator;

import java.util.Random;

import weka.classifiers.Evaluation;
import weka.classifiers.bayes.BayesNet;
import weka.core.Attribute;

import weka.core.FastVector,

import weka.core.Instance;

import weka.core.Instances;

public class Classifier {
private BayesNet model;

private Instances data;

public Classifier() {

System.out.printin("Create classifier ...");

public void setData(Instances data) {
this.data = data;

public Instances getData() {
return this.data;

public void train() throws Exception {
System.out.printin(*Train model");
this.model = new BayesNet();
this.model.buildClassifier(this.data);

public void test() throws Exception {

System.out.printin(*'VValidate model ...");

Evaluation eval;

40

eval = new Evaluation(this.data);

eval.crossValidateModel(this.model, this.data, 10, new Random(1));

System.out.printIn("F-measure:");
System.out.printin(" - regular: " + eval.fMeasure(0));

System.out.printin(" - vandalism: " + eval.fMeasure(1));

private Instance selectAttr(Instance data, Instances model) {
int numAttributes = model.numAttributes();
double[] newlnst = new double[numAttributes];

Instance newlnstance = new Instance(1.0, newInst);

for (int i = 0; i < model.numAttributes(); i++) {
Attribute model Attr = model.attribute(i);
for (int j = 0; j < data.numAittributes(); j++) {
Attribute dataAttr = data.attribute(j);
if(model Attr.equals(dataAttr)) {
newlInstance.setValue(i, data.value(j));

return newlnstance;

public Instances labeling(Instances unlabeled) throws Exception {

FastVector attributes = new FastVector();;

for (int i = 0; i < this.data.numAttributes(); i++) {
attributes.addElement(this.data.attribute(i));

Instances prepUnlabeled = new Instances("Wikipedia unlabeled", attributes, 0);

41

prepUnlabeled.setClassindex(prepUnlabeled.numAttributes() - 1);

Instances modelData = new Instances(this.data);
modelData.delete();

System.out.printin("Prepare test data to labeling ...");

for (int i = 0; i < unlabeled.numinstances(); i++) {
Instance element = unlabeled.instance(i);
Instance prepared = this.selectAttr(element, modelData);
prepUnlabeled.add(prepared);

System.out.printin("Labeling test data ...");

for (inti = 0; i < prepUnlabeled.numinstances(); i++) {
Instance inst = prepUnlabeled.instance(i);
double clsLabel = this.model.classifyInstance(inst);
prepUnlabeled.instance(i).setClassValue(clsLabel);

return prepUnlabeled;

}

A3 Creating and selecting attributes
This is done by weka. Word tokenizer and a filter is set here.
public class CreateAndSelectAttributes {

private Instances data;

private Instances filteredData;

private Instances selectedAttrData;

private WordTokenizer tokenizer;

private StringToWordVector filter;

public CreateAndSelectAttributes() {

42

public void setData(Instances data) {
this.data = data;

private void setupTokenizer() {
System.out.printin("Setup tokenizer ...");
this.tokenizer = new WordTokenizer();
Il Use default delimiters
Il this.tokenizer.setDelimiters(" \r\\n\\t.,;:'\"()?1");

private void setupFilter() throws Exception {
System.out.printIn("Setup filter ...");
this.setupTokenizer();

this.filter = new StringToWordVector();
1
this.filter.setOptions(Utils.splitOptions(“weka.filters.unsupervised.attribute.StringToWordVector -R
first-last -W 1000 -prune-rate -1.0 -N O -stemmer weka.core.stemmers.NullStemmer -M 1 -tokenizer
\"weka.core.tokenizers.WordTokenizer -delimiters \W" \\rAWnWE ;AW () 21N ™);
this.filter.setAttributelndices("last");
this.filter.setMinTermFreq(2);
this.filter.setTokenizer(this.tokenizer);

this.filter.setStemmer(new NullStemmer());

this.filter.setinputFormat(this.data);

A4 Main class

43

Obijects of other classes are created andthe functions are called. It feteches instances from other classes. A

file is generated for the results.

ParseText train = new ParseText("train");

Instances data = train.getinstances();

CreateAndSelectAttributes CSA = new CreateAndSelectAttributes();
CSA.setData(data);

CSA.useFilter();

CSA .selectAttributes(35);

data = CSA.getSelectedAttrData();

Classifier classifier = new Classifier();
classifier.setData(data);

public static void saveResult(String result) throws IOException {
String timeStamp = new

SimpleDateFormat("MMdd_HHmmss").format(Calendar.getinstance().getTime());

Writer out = new BufferedWriter(new OutputStreamWriter(new
FileOutputStream("result_"+timeStamp+".txt"), "UTF-8"));
out.write(result);

out.close();

System.out.printin("File generated: data" + File.separator +"train_"+timeStamp+".arff");

public static void savelnstances(Instances data) throws IOException {
String timeStamp = new

SimpleDateFormat("MMdd_HHmmss").format(Calendar.getinstance().getTime());

Writer out = new BufferedWriter(new OutputStreamWriter(new FileOutputStream(*'data” +
File.separator +"train_"+timeStamp+".arff"), "UTF-8"));

out.write(data.toString());

44

out.close();

System.out.printin("File generated: data" + File.separator +"train_"+timeStamp+".arff");

45

10.

11.

References

Lakshmish Ramaswamy, Raga Sowmya , Tummalapenta, Kang Li, Calton Pu, “A Content-Context-
Centric Approach for Detecting Vandalism in Wikipedia”, in 9" IEEE International Conference on
Collaborative Computing: Networking, Applications and Worksharing, 2013.

Q. Wu, D. Irani, C. Pu, and L. Ramaswamy, “Elusive vandalism detection in wikipedia: a text
stability-based approach,” in CIKM, 2010.

Mola-Velasco, S.M.: Wikipedia Vandalism Detection Through Machine Learning:Feature Review
and New Proposals. In Braschler, M., Harman, D., eds.: Notebook Papers of CLEF 2010 LABs
andWorkshops, 22-23 September, Padua, Italy. (2010).

Adler, B., de Alfaro, L., Pye, I.: Detecting Wikipedia Vandalism using WikiTrust. In Braschler, M.,
Harman, D., eds.: Notebook Papers of CLEF 2010 LABs and Workshops, 22-23 September, Padua,
Italy. (2010).

West, A.G., Kannan, S., Lee, |.: Detecting Wikipedia Vandalism via Spatio-Temporal Analysis of
Revision Metadata. In: EUROSEC'10: Proceedings of the Third European Workshop on System
Security. (2010).

Potthast, M., Stein, B., Gerling, R.: Automatic Vandalism Detection in Wikipedia.In: ECIR'08:
Proceedings of the 30th European Conference on IR Research. Volume 4956 of LNCS., Springer-
Verlag (2008).

Smets, K., Goethals, B., Verdonk, B.: Automatic Vandalism Detection in Wikipedia: Towards a
Machine Learning Approach. In: WikiAl'08: Proceedings of the Workshop on Wikipedia and
Arti_cial Intelligence: An Evolving Synergy,AAAI Press (2008).

Cristian-Alexandru Dragusanu, Marina Cufliuc, Adrian Iftene, “Detecting Wikipedia Vandalism
using Machine Learning”: Notebook for PAN at CLEF 2011.

B. T. Adler, L. de Alfaro, S. M. Mola-Velasco, P. Rosso, and A. G. West. Wikipedia Vandalism
Detection: Combining Natural Language, Metadata, and Reputation Features. In A. Gelbukh,
editor,CICLing 2011, volume 6609 of LNCS, Tokyo, Japan,February 2011. Springer.

M. Potthast. Crowdsourcing a Wikipedia VVandalism Corpus. In Proc. of the 33rd Intl. ACM SIGIR
Conf.(SIGIR 2010). ACM Press, Jul 2010.

University of Waikato, “Weka”.

46

