

Detecting Wikipedia Vandalism

Project Report submitted in partial fulfillment of the requirement for the degree

of

Bachelor of Technology.

in

Information Technology

under the Supervision of

 Ms Reema Aswani

By

 Disha Sharma

 Roll No- 111427

to

Jaypee University of Information and Technology

2

Certificate

This is to certify that project report entitled “Detecting Wikipedia Vandalism”, submitted by Disha

Sharma in partial fulfillment for the award of degree of Bachelor of Technology in Computer Science &

Engineering to Jaypee University of Information Technology, Waknaghat, Solan has been carried out under

my supervision.

This work has not been submitted partially or fully to any other University or Institute for the award of this

or any other degree or diploma.

Supervisor’s signature:

Supervisor’s Name: Ms Reema Aswani

Designation: Assistant Professor

Date:

3

Acknowledgement

I would like to express my deepest appreciation to all those who provided me the possibility to complete this

report. It not have been possible without the kind support and help of many individuals and organizations. I

would like to extend my sincere thanks to all of them.

 A special gratitude I give to our final year project supervisor , Ms. Reema Aswani , whose

contribution in stimulating suggestions and encouragement, helped me to coordinate my project, for the

guidance and constant supervision as well as for providing necessary information regarding the project .

 Furthermore, I have to appreciate the guidance given by other supervisor as well as the panels

especially in my project presentation that has improved my presentation skills thanks to their comment and

advices. My thanks and appreciations also to the people who have willingly helped me out with their

abilities.

Name of the student : Disha Sharma

Date:

4

Table of Content

S.No Topic Page No

1 Introduction

1.1 What is Wikipedia 8

1.2 What is Vandalism 8

1.3 Why does Vandalism matter 8

2 Wikipedia Vandalism

2.1 Kinds of Vandalism 9

2.2 Vandalism Statistics and Impact 10

2.3 Vandalism Impact:An Anecdote 11

3 Wikipedia Vandalism Detection

3.1 Practical Tools Against vandalism

3.1.1 Anti-vandalism Patrolling 11

3.1.2 Patrolling Assistance 11

3.1.3 Automatic systems,bots and edit 12

3.2 Why consider context? 12

3.3 Problem Definition and Notation

3.3.1 Immediate and Historic Detection 13

3.4 Corpora

3.4.1 Webis-WVC-07 14

3.4.2 Chin 2010 14

3.4.3 West 2010 14

3.4.4 PAN-WVC-10 14

3.4.5 PAN-WVC-11 15

3.4.6 ClueBot-NG dataset 15

3.4.7 Wikipedia dumps 15

3.4.8 Wikipedia User Contribution dataset 16

4 Literature Review

4.1 Research Papers 16

4.2 Integrated Literature review 18

5 Developing a Wikipedia Vandalism

Detection System

5.1 Features 20

5

5.2 Combining Natural Language, Metadata,

and Reputation

5.2.1 Textual and Language features 22

5.2.2 Reputation 23

5.2.3 Metadata 23

5.3 Proposed Approach

5.3.1 Weka 24

5.3.2 Word Co-occurrence Probability Matrix 26

5.4 Implementation Details

5.4.1 Weka steps 28

5.4.2 Algorithm 30

5.4.3 Results 31

5.4.4 Screenshots 31

6 Conclusion 36

7

8

Appendix

References

37

45

6

List of Tables

S.No. Title Page No.

1. Summary of types of vandalism 9

2. Summary of algorithms 19

3. Summary of features 21

7

Abstract

Collaborative online social media (CSM) applications such as Wikipedia have not only revolutionized the

World Wide Web, but they also have had a hugely positive effect on modern free societies. Unfortunately,

Wikipedia has also become target to a wide-variety of vandalism attacks. Most existing vandalism detection

techniques rely upon simple textual features such as existence of abusive language or spammy words. These

techniques are ineffective against sophisticated vandal edits, which often do not contain the tell-tale markers

associated with vandalism.

 A plethora of methods have been developed within the Wikipedia and the scientific community

to tackle this problem.This project has participated in this effort and proposes a content context-aware

vandalism detection framework. The main idea is to quantify how well the words contained in the edit fit

into the topic and the existing content of theWikipedia article.

.

8

Chapter 1

 Introduction

1.1 What is Wikipedia

Wikipedia is an online encyclopedia that is free, collaborative, multilingual and global-scale. Free because

anyone is free to use, copy, redistribute and modify Wikipedia content, even with commercial purposes, as

long as the result is also shared with the same license. Collaborative because Wikipedia contents are created

by the collaboration of thousands of individuals. Anyone can edit Wikipedia, even without being registered,

and participate in the discussions about content and policies. Multilingual because there are editions of

Wikipedia in 240 languages and growing. Global-scale because in its 10 years of life, Wikipedia has had an

enormous growth. Today, it is the most popular source of encyclopaedic knowledge and one of the most

visited websites on the Internet, with 365 million estimated readers. Only the English edition contains more

than 3 million articles,over 13 million registered users and 130 thousand active users.

 In short, the success of Wikipedia is also a key factor for the development of a wide range of

academic, social and commercial projects beyond Wikipedia.

1.2 What is Vandalism

The fact that anyone can edit Wikipedia at any time with very little practical restrictions is at the core of its

success and, at the same time, it is one of its main sources of trouble. By guaranteeing any person freedom to

edit its contents, Wikipedia has become a target for pranksters and, with its increasing popularity, for

spammers, lobbyists and other people interested in self-promotion, manipulation and propaganda. This has a

wide-ranging negative impact in Wikipedia itself and all applications that use Wikipedia as a knowledge

source. The phenomenon of vandalism can be defined as, any addition, removal, or change of content made

in a deliberate attempt to compromise the integrity of Wikipedia. Common types of vandalism are the

addition of obscenities or crude humour, page blanking, and the insertion of nonsense into articles. Any

good-faith effort to improve the encyclopaedia, even if misguided or ill-considered, is not vandalism. Even

harmful edits that are not explicitly made in bad faith are not vandalism.

1.3 Why does Vandalism matter

Considering the increasingly important role that Wikipedia is playing in the modern world, it is important to

ensure the trustworthiness of the information that gets shared on it. Unfortunately, the very foundational

9

features of Wikipedia namely end-user anonymity and low information sharing barrier have made it

susceptible to a variety of vandalism attacks.

 Studies show that around 5% of Wikipedia edits involve vandalism. Some of these edits were

not rectified for several hours (in some, albeit in frequent, cases even days). In addition to exposing false

information to Wikipedia users, vandalism has the potential to inflict wider damage. It can cause progressive

degradation of quality of information which can lead to frustration among honest contributors, some of

whom may loose interest in contributing content and participating in Wikipedia activities.

 More importantly, vandalism can create social tensions and may even lead to violence in certain regions of

the world. Thus, it is important to develop effective techniques for detecting vandalism in Wikipedia as well

as other CSM applications.

Chapter 2

Wikipedia Vandalism

2.1 Kinds of Vandalism

Vandalism is a highly subjective and wide concept. There have been attempts to give a concise definition by

creating taxonomies of vandalism. There are many kinds of vandalism,as shown in Table 2.1.

Tightly attached to the concept of vandalism are good and bad faith, which are terms regularly used in the

Wikipedia community. However, from a computational point of view, we are actually studying vandalism as

damage to the encyclopedia, regardless of intentions and leaving

Judgemental issues to human experts.

 Tightly attached to the concept of vandalism are good and bad faith, which are terms

regularly used in the Wikipedia community. However, from a computational point of view, we are actually

studying vandalism as damage to the encyclopedia, regardless of intentions and leaving judgamental issues

to human experts.

Table 2.1: Summary of types of vandalism

Type Description

Blanking Removing all or significant parts of a page’s content without any

reason.

Edit summary vandalism Making offensive edit summaries in an attempt to leave a mark that

cannot be easily expunged from the record.

Hidden vandalism Any form of vandalism not visible in the final article

but visible during editing.

10

Image vandalism Uploading shock images, inappropriately placing explicit images on

pages, or simply using any image in a way that is disruptive.

Link vandalism Adding or changing internal or external links on a

page to disruptive, irrelevant, or inappropriate targets.

Illegitimate page creation Creating new pages with the sole intent of malicious behaviour.

Page lengthening Adding very large amounts of content to a page so as to make the

page’s load time abnormally long.

Page-move vandalism Changing the names of pages to disruptive, irrelevant and

inappropriate names.

Silly vandalism Adding profanity, graffiti or patent nonsense to pages.

Sneaky vandalism Vandalism that is harder to spot, or that otherwise circumvents

detection, including adding plausible misinformation and hiding

vandalism through multiple edits.

Spam external linking Adding links to irrelevant sites after having been warned.

Template vandalism Modifying the wiki language or text of a template in a harmful or

disruptive manner.

2.2 Vandalism Statistics and Impact

The Wikipedia community conducts its own quantitative and qualitative studie on vandalism. Study 1

consisted of manually checking 100 random articles with a total of 668. Observed vandalism constituted a

4.6%. The observed time period comprised 2004, 2005 and 2006 and vandalism percentage appeared to be

stable, oscillating between 3% and 6% of total edits. The most common vandalism type was obvious

vandalism (83.87%) followed by deletion vandalism (9.68%). Currently, the most accurate estimation of

vandalism in the English edition of Wikipedia is around 7% of all edits (Potthast 2010). If we consider that

there were 10 million edits between August 20 and October 10 2010, which makes almost 200 thousand

edits per day on average2, we can assume the order of magnitude of vandalism edits per day is 104.

 According to Wikipedia’s Study 1, 96.77% of all vandalism edits were performed by

unregistered users. In 74.19% of cases, vandalism was reverted by a registered user.Another important

statistic is how much time vandalism remains in Wikipedia and how many people view it. It is estimated that

mass deletions remain 7.7 days on average with a median time of 2.8 minutes,while mass deletions involving

obscenities remain 1.8 days on average with a median time of 1.7 minutes.

 Another important statistic is how much time vandalism remains inWikipedia and how many

people view it. Viégas, Wattenberg, and Dave (2004) estimated that mass deletions remain 7.7 days on

average with a median time of 2.8 minutes, while mass deletions involving obscenities remain 1.8 days on

average with a median time of 1.7 minutes. Priedhorsky et al. (2007) further studied the problem with results

consistent with those by Viégas, Wattenberg, and Dave (2004), and estimated that the probability that a view

11

of Wikipedia between 2003 and 2006 included damaged content was of 0.0037. This probabily can be

translated to 188 million views of vandalism during the studied perior.

2.3 Vandalism Impact: An Anecdote

To further illustrate the impact of vandalism, we expose an anecdote. On March 14th 2010, a prankster

edited the Wikipedia article of a small belgian town:Kaster. After this edit, Kaster’s article introduction was

the following: Kaster is a village in Belgium, part of the municipality of Anzegem.Recently, the town made

headlines when a serial rapist dressed as a Blastoise Pokemon raped and killed 65 men.

 Most of the time, this would have been corrected quickly and nobody would have noticed.

However, the edit was not reverted until April 9th 20105. During that month, Google’s spider fetched the

article and indexed it its database and as a result, typing define:kaster in Google’s search engine would show

up the above prank as the definition for Kaster.

 What started as a small prank by two brothers ended up being an embarrassing thing

forWikipedia and Google. Leaving aside the fun that this provided to many people, Wikipedia needs to put

measures in place to fight vandalism and prevent damages on the credibility of the project.

Chapter 3

Wikipedia Vandalism Detection

3.1 Practical Tools Against Vandalism

3.1.1 Anti-vandalism Patrolling

The main force against vandalism is people who manually checks latest changes made to Wikipedia and

review them to find vandalism and revert it. This activity is known as patrolling.

 The classic method of patrolling is opening a browser tab with the list of recent changes and

skim through the list, then open in other tabs suspicious edits, check them and revert them if necessary.

3.1.2 Patrolling Assistance

12

A wide variety of tools have been developed to assist patrollers in their work. These range from tools aimed

at browsing and editing Wikipedia in a faster and more convenient way, such as Twinkle or Huggle, to

automatic detection systems that work with human supervision, such as STiki.

3.1.3 Automatic Systems, Bots and Edit Filters

Automatic detection systems are designed to work with very limited human intervention or no intervention

at all. In practice, there are two ways of implement them: as bots or edit filters.

On one hand, bots operate autonomously as agents external toWikipedia, and as such, they detect and revert

vandalism some time after it is performed.

 On the other hand, edit filters are a recent addition to the MediaWiki, deployed since 2009.

They look for common patterns of vandalism at the edit time.If the edit matches one of these patterns,

MediaWiki will reject it. The advantage of this approach is that when a vandalism edit is detected, it is

rejected before it takes effect.

3.2 Why consider context?

One of the central limitations of traditional vandalism detection techniques is that most of them treat edits as

independent and isolated pieces of texts. Because of this, most of them just focus on the text that appears in

the edit. However, edits in Wikipedia are not isolated pieces of text. They occur in certain context, and

hence the contextual attributes are an integral part of an edit’s characteristics. For instance, an edit occurs on

a certain version of an article. Thus, the edit cannot be completely characterized without including the

content of the article at the time the edit occurred. In fact, the edit may become meaningless if it were to be

performed on a different article or a different version of the same article.

 In addition to article and version, an edit carries with it several other powerful contextual

attributes. These include the identity (or lack thereof) of the user performing the edit, the previous history of

edits performed by the user, the geographical location from where the edit originated, and the time at which

the edit was performed. Many of these contextual attributes can be very powerful features in identifying

vandalism. The importance of context is evident by the fact that even humans (implicitly) rely upon context

when identifying vandalism. For example, most humans will immediately identify an edit containing the

word “Nazi” as vandalism if the edit is on, say, President Obama’s Wikipedia page, whereas they will not

classify the same edit as vandalism if it is on Goebbels’ page. The human is implicitly relying on whether

the edit fits into the overall context of the article to determine whether it is vandalism.

 There are many challenges to utilizing context for vandalism detection. First, we need to

identify contextual attributes that have strong distinguishing capabilities. Second, context is often an abstract

13

concept, and for machines to understand and process it, context has to be made quantifiable. This means that

we have to not only invent meaningful metrics for various contextual attributes, but also devise measurement

mechanisms. Third, we need to design efficient and scalable vandalism detection techniques that utilize

these quantifiable contextual attributes.

3.3 Problem Definition and Notation

A revision r is the state of an article in a given point of its history. We use r- and r+ to denote a past or future

revision with respect to r, respectively.Using subindices ri, ri+1 or ri_1 to denote specific past or future

revisions. An edit e is the transition between two consecutive revisions. The Wikipedia vandalism detection

task consists in decide whether a given edit e is vandalism or not. From the point of view of machine

learning, given the set of E of all edits,

 A corpus Ec E of labeled edits.

 An edit model α: E E that maps each edit e onto a feature set e quantifying characteristics of e that

are useful for discriminating between vandalism and non-vandalism edits.

 A classifier c : E[0,1] . The result of this classifier is the confidence of a given edit e being

vandalism.

 A threshold Ƭ is defined so that any c(e) ≥ Ƭ indicates vandalism and c(e) ≤ Ƭ indicates otherwise,

 we check whether it is vandalism or not by

 For any unseen edit e that belongs to E Ec ,check whether it is vandalism or not by computing

c(α(e)) >Ƭ .

3.3.1 Immediate and Historic Detection

Vandalism detection includes two different tasks: immediate8 and historic detection. Immediate detection is

the most extended: detecting vandalism right after it happens. The historic variant is detecting vandalism at

any point in the past.The technical difference between them is that, in the case of historic detection,

information about everything that happened after the vandalism act is available to the system. Immediate

detection is the most applied and useful to maintain Wikipedia clean of vandalism. The interest in historic

detection is that much higher performance can be achieved, making it useful for building corpora to train

immediate detection systems and also creating clean snapshots of Wikipedia, by selecting revisions of each

articles that are guaranteed to be vandalism-free.

3.4 Corpora

For the best of our knowledge, there are sixWikipedia vandalism corpora. All our work used the PAN-

WVC-10 corpus, although we will present all the six corpus for reference.

14

3.4.1 Webis-WVC-07

 The Webis Wikipedia vandalism corpus11, or Webis-WVC-07, is the first public Wikipedia vandalism

corpus reported in the literature. It consists of 940 edits annotated by humans, 301 of them annotated as

vandalism. (Potthast and Gerling 2007; Potthast, Stein, and Gerling 2008).

3.4.2 Chin 2010

This corpus was built and used for (Chin et al. 2010). It was built based on the Wikipedia revision history up

to February 24th, 2009 and it consists of the full history of two of the most vandalized pages12: Abraham

Lincoln (8,816 revisions) and Microsoft (8,220 revisions).Annotation was performed in an active learning

fashion. A first classification model was built using the Webis-WVC-07 corpus, and that model was used to

get a rank of the top 50 candidates to be vandalism. An annotator revised these candidates and annotated

them. The annotated edits were added to the training corpus and the process was repeated iteratively.

This annotation method makes (Chin et al. 2010) an interesting approach to solve the problem of annotating

a corpus big enough to be used for supervised classification.

3.4.3 West 2010

West, Kannan, and Lee 2010 use a unique approach to annotate their corpus13. In Wikipedia, some

privileged users have the right to revert an edit using a singleclick feature called rollback, used to undo

blatantly unproductive edits.

 The authors define an offending edit as one that was reverted using the rollback

function.Although this is only a small portion of vandalism edits, this approach results in a very high

confidence for positive annotations. The corpus contains 5,713,762 edits labeled as blatantly unproductive

using the described automaitc method; it also contains 5,291 vandalism edits that were manually annotated.

This makes West 2010 the largest Wikipedia vandalism corpus reported until now.

3.4.4 PAN-WVC-10

The PAN Wikipedia Vandalism Corpus 201014, or PAN-WVC-10, is the successor of Webis-WVC-07

(Potthast 2010). It consists of 32,439 edits, of which 2,394 are annotated as vandalism. Amazon Mechanical

Turk was used to distribute the task amongst hundreds of human annotators. Each edit was annotated by 3

people. If they did not agree, the edit was annotated by 3 more people. This process was repeated until every

edit had an annotation with more than 2/3 of inter-annotator agreement. After 8 iterations, there were 70 tie

edits that were reviewed by the corpus authors.

15

 Due to its use in the 1st International Competition on Wikipedia Vandalism Detection

(Potthast, Stein, and Holfeld 2010) it is one of the most widely used corpus in the scientific literature.

In this project, I will use a modified version of PAN-WVC-10 where 157 edits were removed. This was

because of these edits were deleted from the Wikipedia History at the time of writing (Adler et al. 2011).

Statistics for our corpus version are: 32,282 total edits, with 2,395 vandalism edits.

3.4.5 PAN-WVC-11

The PAN Wikipedia Vandalism Corpus 2011, or PAN-WVC-11, is a supplement to PAN-WVC-10. It is the

first multilingual corpus, including sections for English, German and Spanish.The English section consists of

new 9985 annotated edits of the same time period as those compiled for PAN-WVC-10. 1144 of them are

annotated as vandalism.The German section consists of 9990 edits, 589 of them annotated as vandalism. The

Spanish section consists of 9974 edits, 1081 of them annotated as vandalism.

3.4.6 ClueBot-NG dataset

ClueBot-NG dataset is an ever evolving one. Through its online review interface a multitude of Wikipedia

users annotate edits as vandalism, constructive or skipped. The final classification is decided as follows:

 A minimum of 2 annotators agreeing is required for the edit to be considered as annotated.

 If more than a half of annotators skipped the edit, it is annotated as skipped.

 If, at least, constructive annotations are thrice the vandalism annotations,the edit is annotated as

constructive.

 If, at least, vandalism annotations are thrice the constructive annotations, the edit is annotated as

vandalism.

 If none of the previous criteria is met, the edit is not considered as annotated and therefore it is not

added to the final dataset.

The strong point of this corpus is that it is annotated by experts. Therefore, we can expect a high

quality in annotation and compliance with Wikipedia standards. This is an advantage over PAN-

WVC-10, whose annotations might be less reliable; and over West 2010, which has a high amount of

false negatives. However, its size is one order of magnitude below PAN-WVC-10 and four below

West 2010.

3.4.7 Wikipedia dumps

Wikimedia offers XML and SQL dumps of the entire database for all its projects. These dumps include the

full revision history of every article, along with other information. This is a resource commonly used to build

Wikipedia vandalism corpora and detection systems.

16

3.4.8 Wikipedia User Contribution Dataset

Javanmardi, Lopes, and Baldi (2010) created a dataset24 of content insertions and deletions per user. This

dataset comprehends all Wikipedia insertions and deletions since its creation to January 30th, 2010. This is a

valuable approach for user reputation methods.

CHAPTER 4

Literature Review

4.1 Research Papers

Paper 1

Name Wikipedia Vandalism Detection: Combining Natural Language, Metadata,

and Reputation Features

Description Integrated three approaches to detect vandalism. They are - spatio- temporal

analysis of metadata (STiki), a reputation-based system (Wiki-Trust), and

natural language processing features.The resulting joint system improved the

state-of-the-art from all previous methods and establishes a new baseline for

Wikipedia vandalism detection.

Authors B. Thomas Adler, Luca de Alfaro, Santiago M. Mola-Velasco, Paolo Rosso,

Andrew G. West

Approaches Spatio-temporal analysis of metadata, Reputation-based system, Natural

language processing features.

Algorithm Random forest

Paper 2

Name Automatic Wikipedia Vandalism Detection

Description Discussed the characteristics of vandalism as humans recognize it and

develop features to render vandalism detection as a machine learning task.

Compiled a large number of vandalism edits in a corpus, which allowed for

the comparison of existing and new detection approaches.

Authors Martin Potthast, Benno Stein, and Robert Gerling

Approaches Logitboost

Algorithm Logistic regression

17

Paper 3

Name Automatic Vandalism Detection in Wikipedia: Towards a Machine Learning

Approach

Description Investigated the possibility of using machine learning techniques to build an

autonomous system capable to distinguish vandalism from legitimate edits.

Highlighted the results of a small but important step in this direction by

applying commonly known machine learning algorithms using a

straightforward feature representation.

Authors Koen Smets,Bart Goethals and Brigitte Verdonk

Approaches Applied two machine learning algorithm

Algorithm Naïve Baye’s Classifier, Probablistic sequence modelling

Paper 4

Name Detecting Wikipedia Vandalism via Spatio-Temporal Analysis of Revision

Metadata

Description Leveraged the spatio-temporal properties of revision metadata to detect

vandalism. An administrative form of reversion called rollback was used

which enablesd the tagging of malicious edits, which were contrasted with

non-offending edits in numerous dimensions.

Authors Andrew G West, Sampath Kannan and Insup Lee

Approaches Spatio-temoral features

Algorithm SVM

Paper 5

Name A Content-Context-Centric Approach for Detecting Vandalism in Wikipedia

Description Proposed a content context-aware vandalism detection framework. The main

idea was to quantify how well the words contained in the edit fit into the

topic and the existing content of theWikipedia article.

Authors 9th ieee international conference

Approaches WWW co-occurrence probability,top-ranked co-occurrence probability

Algorithm AdaBoost ,Naïve Bayes ,Decision Tree

18

4.2 Integrated Literature review

Various research have been proposed with the same aim i.e. creation of an antivandalism bot for the

detection of Wikipedia. The basic idea was the same with tuning some features and introducing others ,

explored features based on word lists, expanding them beyond vulgarisms and improving results by creating

new categories. Different well known machine learning classifiers were discussed ,varied the parameters to

observe changes in performance. Mostly a 10 fold cross validation on the training data and measured

precision (P), recall (R), F-score, area under precision-recall curve (AUC-PR) and area under receiver

operating characteristic curve (AUC-ROC).

 The papers analyzed the different categories of features like Text,language and metadata.

Drawbacks of the existing bots like ClueBot and VoABot II were addressed. It was observed that these tools

were built around the same primitives that was included in Vandal Fighter. They use lists of regular

expressions and consulted databases with blocked users or IP addresses to keep legitimate edits apart from

vandalism. The major drawback of these approaches was the fact that these bots utilize static lists of

obscenities and ‘grammar’ rules which are hard to maintain and easy to deceive. As statistics show that they

only detected 30% of the committed vandalism. So there was certainly a need for improvement.

 It was observed that improvement were achieved by applying machine learning and natural

language processing (NLP) techniques. Not in the very least because machine learning algorithms have

already proven their usefulness for related tasks such as intrusion detection and spam filtering for email as

well as for weblogs. Also most existing works in this area focused on utilizing simple textual features for

identifying vandalism. They worked by considering whether an edit contains features that have statistically

high likelihood of being associated with vandalism. Examples of such features include abusive/obscene

words, spammy words/phrases and certain URLs. These simple approaches, however, have had limited

success in combating sophisticated vandal edits often referred to as elusive vandalism . These type of vandal

attacks are not likely to contain the tell-tale textual features associated with vandalism, and hence they evade

common vandalism filters.

 A better method was devised to deal with this problem. One paper argued for a context-aware

approach for detecting vandalism in Wikipedia. The main motivation for considering context was the

important observation that the edits in Wikipedia and other CSM applications are not isolated pieces of text.

Rather, they happen in a specific context. This is in fact a key feature of Wikipedia, and hence it can be

highly effective in detecting vandalism. The context of a Wikipedia edit can have multiple distinct aspects

such as the relationship of the edit to the article, whether the edit was performed by a registered or an

unregistered user, the identity (or the IP address) of the user performing the edit, and the geographical

19

location from where the edit was performed. The challenge however lied in designing vandalism detection

techniques that can effectively harness these various contextual attributes.

 Based on these papers a comparative analysis was performed as shown in Table 4.2 below. The

table is a summary of the different algorithms that was used in various research papers and jots the

advantages and disadvantages of each algorithm.

Table 4.2 Summary of the algorithms

Name Advantages Disadvantages

Bayesian Learning Handles small data limit.

Very flexible

Interpolates to engineering

Information theoretically problematic.

Computationally difficult problems

Decision tree Well automated.

Quite fast

Lack of available memory, when dealing with

large databases.

 Learning problems which can not be solved by

decision trees

Neural Network Able to tolerate noisy data.

Successful on several real world

application.

Involves long learning time.

Require number of parameters that are to be

determined empirically.

Support Vector

machine

Most robust and accurate

methods.

Has a sound theoretical

foundation.

Computationally expensive.

Extremely slow in learning, requiring large

amount of training time

Random forest Not sensitive to noise in the data

set.

Not subject to over fitting

Observed to over fit for some dataset.

Sometimes the variable importance scores are not

reliable

Logistic regression Easily to update model to take in

new data .

No worries about features being

correlated

Requires large sample size to achieve stable

results.

20

Chapter 5

Developing a Wikipedia Vandalism Detection System

5.1 Features

All the features are calculated using metadata and the text of single edits. They can be divided in three

groups: Metadata, Text, and Language. Metadata based features are the following:

Anonymous : Whether the editor is anonymous or not.Vandals are likely to be anonymous. This feature is

used in a way or another in most antivandalism working bots such as ClueBot and AVBOT. In the PAN-

WVC-10 training set (Potthast 2010) anonymous edits represent 29% of the regular edits and 87% of

vandalism edits.

Comment length: Length in characters of the edit summary.Long comments might indicate regular editing

and short or blank ones might suggest vandalism. However, this feature is quite weak, since leaving an

empty comment in regular editing is a common practice.

Size increment: Absolute increment of size, i.e., |new| - |old|.The value of this feature is already well-

established since first-generation systems. For example, ClueBot uses various thresholds of size increment

for its heuristics, e.g. a big size decrement is considered an indicator of blanking.

Size ratio: Size of the new revision relative to the old revision, i.e., |1+new|/|1+old|. Complements size

increment.

Text-based features are the following:

Upper to lower ratio: Uppercase to lowercase letters ratio, i.e., 1+|upper|/1+jlowerj .Vandals often do not

follow capitalization rules, writing everything in lowercase or in uppercase.

Upper to all ratio: Uppercase letters to all letters to ratio, i.e., 1+|upper|/1+|lowe|+|upper| .

Digit ratio: Digit to all characters ratio, i.e., 1+|digit|/1+|all| .

This feature helps to spot minor edits that only change numbers. This might help to find some cases of subtle

vandalism where the vandal changes arbitrarily a date or a number to introduce misinformation.

Non-alphanumeric ratio: Non-alphanumeric to all characters ratio, i.e., 1+|nonalphanumeric|/1+|all|. An

excess of non-alphanumeric characters in short texts might indicate use of emoticons, excessive use of

exclamation marks or gibberish.

Character diversity: Measure of different characters compared to the length of

inserted text, given by the expression length1/different char . This feature helps to spot random keyboard hits and

other non-sense.

Character distribution: Kullback-Leibler divergence of the character distribution of the inserted text with

respect the expectation. Useful to detect nonsense.

21

Compressibility: Compression rate of inserted text using the LZW algorithm.Useful to detect non-sense,

repetitions of the same character or words, etc.

Good tokens: Number of tokens rarely used by vandals, mainly wiki-syntax elements

(e.g. __TOC__, <ref>).

Average term frequency: Average relative frequency of inserted words in the new revision.

In long and well-established articles too many words that do not appear in the rest of the article indicates that

the edit might be including non-sense or non-related content.

Longest word:Length of the longest inserted word. Its value is 0 if there are no inserted words.

Useful to detect non-sense.

Longest character sequence: Longest sequence of the same character in the inserted Text.

The language-dependent features are based in counters of words in certain categories. For each word

category, two features are calculated: frequency and impact. Frequency is the frequency of these words

relative to the total words inserted during the edit. Impact is the percentage by which the edit increases the

amount of these words. Word categories are :

Vulgarisms: Vulgar and offensive words (eg.shit).

Pronouns: First and second person pronouns, including slang spellings (e.g. I,you, ya).

Bad : Hodgepodge category for colloquial contractions and some typos associated with bad (e.g. wanna,

gotcha) and some typos associated with bad writing skills (e.g. dosent).

All: A meta-category containing words from all the previous ones.

Table 5.1: Summary of features

Feature Description (Metadata)

Anonymous Whether the editor is anonymous or not.

Comment length Length in characters of the edit summary.

Size increment Absolute increment of size.

Size ratio Size of the new revision relative to the old revision.

Feature Description (Text)

Upper to lower ratio Uppercase to lowercase letters ratio.

Upper to all ratio Uppercase letters to all letters to ratio.

Digit ratio Digit to all characters ratio.

Nonalphanumeric Non-alphanumeric to all characters ratio.

22

ratio

Character distribution KLd between the character distribution of the inserted text and the

expectation

Compressibility Compression rate of inserted text using LZW.

Good tokens Number of tokens rarely used by vandals, mainly wiki-syntax elements.

Average term

frequency

Average relative frequency of inserted words in the new revision.

Longest word Length of the longest inserted word.

Longest character

Sequence.

Longest sequence of the same character in the inserted text.

Feature Description (Language)

Vulgarisms Vulgar and offensive words.

Pronouns First and second person pronouns, including slang spellings.

Bad Hodgepodge category for colloquial contractions and some typos

associated with bad and typos associated with bad writing skills.

All A meta-category containing words from all the previous ones.

5.2 Combining Natural Language, Metadata, and Reputation

5.2.1 Textual and Language features

Text (T): Language-independent features derived from analysis of the edit content. Very long articles may

require a significant amount of processing. As the content of the edit is the true guide to its usefulness, there

are several ideas for how to measure that property:

Uppercase ratio and digit ratio: Vandals sometimes will add text consisting primarily of capital letters to

attract attention; others will change only numerical content. These ratios (and similar ones create features

which capture behaviors observed in vandals.

Average and minimum edit quality: Comparing the content of an edit against a future version of the article

provides a way to measure the Wikipedia community’s approval of the edit .To address the issue of edit

warring, the comparison is done against several future revisions. This feature uses edit distance (rather than

the blunt detection of reverts) to produce an implicit quality judgement by later edits.

Language

Similar to text features, Language (L) features must inspect edit content. A distinction is made because these

features require expert knowledge about the (natural) language. Thus, these features require effort to be re-

implemented for each different language. Some of the features included in our analysis are:

23

Pronoun frequency and pronoun impact : The use of first and second-person pronouns, including slang

spellings, is indicative of a biased style of writing discouraged on Wikipedia (non-neutral point-of-view).

Frequency considers the ratio of first and second-person pronouns relative to the size of the edit. Impact is

the percentage increase in first and second-person pronouns that the edit contributes to the overall article.

Biased and bad words : Certain words indicate a bias by the author (e.g. superlatives: “coolest”, “huge”),

which is captured by a list of regular expressions. Similarly, a list of bad words captures edits which appear

inappropriate for an encyclopedia (e.g. “wanna”, “gotcha”) and typos (e.g. “seperate”). Both these lists have

corresponding frequency and impact features that indicate how much they dominate the edit and increase the

presence of biased or bad words in the overall article.

5.2.2 Reputation

We consider a feature in the Reputation (R) category if it necessitates extensive historical processing of

Wikipedia to produce a feature value. The high cost of this computational complexity is sometimes

mitigated by the ability to build on earlier computations, using incremental calculations.

User reputation : User reputation as computed by WikiTrust . The intuition is that users who have a history

of good contributions, and therefore high reputation, are unlikely to commit vandalism.

Country reputation : For anonymous/IP edits, it is useful to consider the geographic region from which an

edit originates. This feature represents the likelihood that an editor from a particular country is a vandal, by

aggregating behavior histories from that same region.Location is determined by geo-locating the IP address

of the editor.

Previous and current text trust histogram : When high-reputation users revise an article and leave text

intact, that text accrues reputation, called “trust”. Features are-

 (1) the histogram of word trust in the edit, and

 (2) the difference between the histogram before and after the edit.

5.2.3 Metadata

Metadata (M) refers to properties of a revision that are immediately available, such as the identity of the

editor, or the timestamp of the edit. This is an important class of features because it has minimal

computational complexity. Beyond the properties of each revision found directly in the database (e.g.

whether the editor is anonymous, used by nearly every previous work), there are some examples that we feel

expose the unexpected similarities in vandal behaviour.

Time since article last edited : Highly edited articles are frequent targets of vandalism. Similarly, quick

fluctuations in content may be indicative of edit wars or other controversy.

24

Local time-of-day and day-of-week: Using IP geolocation, it is possible to determine the local time when

an edit was made. Evidence shows vandalism is most prominent during weekday “school/office hours.”

Revision comment length : Vandals decline to follow community convention by leaving either very short

revision comments or very long ones.

5.3 Proposed Approach

The main idea is to check how well the words contained in the edit fit into the topic and the existing content

of the Wikipedia article. For this, two unique content-based metrics is used to quantifying how compatible

an edit is with the context of a Wikipedia article. The first metric, called WWW co-occurrence probability

(WCoP) quantifies how often the words in the edit and words in the document appear together (i.e., in the

same document) in the corpus of World Wide Web (WWW) documents. The second metric, called top-

ranked co-occurrence probability (TCop) is based upon a similar theme, but the corpus is limited to top-

ranked (hence, presumably high-quality)WWW documents. The Approach would be as follows-:

 For each incoming edit, extract the keywords of the incoming edit and the keywords from the

existing version to construct W(E) and W(D) respectively. Using a popular search engine to compute the

WCoP and TCop values. These values are fed into machine learning-based classifiers that have been trained

on known vandal and nonvandal edit instances. The machine learning-based classifiers determine whether

the edit is vandalism. In addition to WCoP/TCop, the machine language-based classifiers utilize more

features like Text, Metadata, Language, etc.

5.3.1 Weka

Weka is a popular suite of machine learning software written in Java, developed at the University of

Waikato, New Zealand. Weka is free software available under the GNU General Public License.

 Weka is a workbench that contains a collection of visualization tools and algorithms for

data analysis and predictive modeling, together with graphical user interfaces for easy access to this

functionality. The original non-Java version of Weka was a TCL/TK front-end to (mostly third-party)

modeling algorithms implemented in other programming languages, plus data preprocessing utilities in C,

and a Makefile-based system for running machine learning experiments. This original version was primarily

designed as a tool for analyzing data from agricultural domains,but the more recent fully Java-based version

(Weka 3), for which development started in 1997, is now used in many different application areas, in

particular for educational purposes and research. Advantages of Weka include: free availability under the

GNU General Public License portability, since it is fully implemented in the Java programming language

25

and thus runs on almost any modern computing platform a comprehensive collection of data preprocessing

and modeling techniques

ease of use due to its graphical user interfaces.

 Weka supports several standard data mining tasks, more specifically, data preprocessing,

clustering, classification, regression, visualization, and feature selection. All of Weka's techniques are

predicated on the assumption that the data is available as a single flat file or relation, where each data point

is described by a fixed number of attributes (normally, numeric or nominal attributes, but some other

attribute types are also supported). Weka provides access to SQL databases using Java Database

Connectivity and can process the result returned by a database query. It is not capable of multi-relational

data mining, but there is separate software for converting a collection of linked database tables into a single

table that is suitable for processing using Weka. Another important area that is currently not covered by the

algorithms included in the Weka distribution is sequence modeling.

User interfaces -: Weka's main user interface is the Explorer, but essentially the same functionality can be

accessed through the component-based Knowledge Flow interface and from the command line. There is also

the Experimenter, which allows the systematic comparison of the predictive performance of Weka's

machine learning algorithms on a collection of datasets.

 The Explorer interface features several panels providing access to the main components of the

workbench: The Preprocess panel has facilities for importing data from a database, a CSV file, etc., and for

preprocessing this data using a so-called filtering algorithm. These filters can be used to transform the data

(e.g., turning numeric attributes into discrete ones) and make it possible to delete instances and attributes

according to specific criteria.

The Classify panel enables the user to apply classification and regression algorithms (indiscriminately called

classifiers in Weka) to the resulting dataset, to estimate the accuracy of the resulting predictive model, and to

visualize erroneous predictions, ROC curves, etc., or the model itself (if the model is amenable to

visualization like, e.g., a decision tree).

The Associate panel provides access to association rule learners that attempt to identify all important

interrelationships between attributes in the data.

The Cluster panel gives access to the clustering techniques in Weka, e.g., the simple k-means algorithm.

There is also an implementation of the expectation maximization algorithm for learning a mixture of normal

distributions.

The Select attributes panel provides algorithms for identifying the most predictive attributes in a dataset.

The Visualize panel shows a scatter plot matrix, where individual scatter plots can be selected and enlarged,

and analyzed further using various selection operators.

26

5.3.2 Word Co-occurrence Probability Matrix

Co-occurrence is a linguistics term that can either mean concurrence / coincidence or, in a more specific

sense, the above-chance frequent occurrence of two terms from a text corpus alongside each other in a

certain order. Co-occurrence in this linguistic sense can be interpreted as an indicator of semantic proximity

or an idiomatic expression. In contrast to collocation, co-occurrence assumes interdependency of the two

terms. A co-occurrence restriction is identified when linguistic elements never occur together. Analysis of

these restrictions can lead to discoveries about the structure and development of a language.

 The overall idea here is to measure the likelihood of the keywords of an incoming edit and

the keywords of the existing version of the document occurring together (in the same document) in the

World Wide Web (WWW) corpus of documents.

The rationale is that if an incoming edit (represented as E) fits well into the context of the existing version of

the Wikipedia page (represented as D), then the keywords of E and D should occur together in a non-

negligible fraction of WWW documents.

 Let W(D) = {wd1, wd2, . . . , wdn} be the set of keywords in the current (non-vandalized)

version of the document. (i.e., W(D) is the current context of the document D) and W(E) ={we1, we2, . . .,

wen} denote the set of words that the edit E is seeking to introduce in the next version of the document

(i.e.,W(E) is the edit’s context). The co-occurrence probability of the arbitrary keyword pair (wei, wdj) is

defined as the ratio of the probability that both wei and wdj occur in an arbitrary WWW document to the

ratio that at least one of them occurs in a WWW document. Mathematically,

 In the above equation, DC denotes an arbitrary WWW document. The denominator in

Equation 1 is a normalization term that has been introduced to account for the popularity variations among

keywords. The WWW co-occurrence probability is defined as the minimum of the CoPs over all the edit-

document keyword pairs.

27

The reason we use argmin in Equation 2 is that an edit can have only a single vandal word/phrase (i.e., all

other words of the edit may be completely legitimate). Thus, we are interested in the contextual fitness

(measured by CoP) of the least contextually appropriate word among all the keywords of the edit.

Efficient Estimation Technique:

We need an efficient mechanism for computing the WWW co-occurrence probability metric. The central

issue here is to estimate the CoP between various wei-wdj keyword pairs. Our technique for estimating the

CoP values works as follows.

 A search engine for estimating the CoP values (“Bing” for example). Suppose we want to

estimate CoP(wei, wdj). We first issue a search query for documents containing both wei and wej (i.e, the

search query will be wei + wdj). Most search engines indicate an estimate on the number of search results

(the number of web documents containing both terms). Let the number of search results containing both wei

and wdj be represented as Nb. We also issue queries for documents that exclusively contain each one of the

search terms.

 In other words, we search for (wei – wdj) and (wdj – wei). Let Nei and Nbj be the

estimates on the number of search results for these two queries respectively. Now CoP(wei, wdj) is

estimated as,

 An associated problem in computing the WWW cooccurrence probability metric is that

the keyword set corresponding to the current version of the document (W(D)) is typically quite large. While

edits usually contain a few keywords and phrases, document versions can be quite large. Thus computing

CoP values for each edit-document keyword pair becomes prohibitively expensive. This overhead can be

alleviated by limiting W(D) to the keywords in the title of the article and its introductory paragraphs. In our

experiments , we limit W(D) to the keywords in the document’s title.

 For example, for text classification where an input document is fed to the model and it

should output its class (from a list of classes). The model is trained on many documents with their

corresponding classes and when the new document is tested under that model, it will use the features

(information) which was extracted from those documents to classify the new document. You will define a

vector with fixed length (the number of unique words in your corpus) for each unique word in your corpus.

The context vector for each word tells us how many times other words have co-occurred with the current

word in the defined window, e.g. in a window of words, you see what are the other words occurred with the

current word and increment their corresponding element in the context vector. A simple example is show

below :

28

Corpus: A D C E A D F E B A C E D

Window size: 2 (the 2 words of the either side)

Context vectors:

Using these context vectors you can get co-occurrences very easy. For example co-occurrence of D and E is

D[E] = 4.

5.4 Implementation Details

For experimental study, Bing search engine will be used (www.bing.com) for calculating the WWW co-

occurrence probability and the top-ranked co-occurrence probability. The standard dataset which is used for

the project is PAN-WVC-10 corpus. The corpus contains 32452 human-annotated edits on 28468 Wikipedia

articles.

 Weka 3.7 machine learning toolkit is used for classification and for loading the dataset. The

heap size had to be increased in order for this to work. Classifiers which will be used are Naive Bayes, with

10-fold cross validation. Standard language which is used is Java (Eclipse).

5.4.1 Weka steps

These steps show how to use Weka (build feature vector, train a classifier, test a classifier, use a

classifier) directly from Java code. It is not intended to replace the Explorer/Experimenter GUI that offer the

visualization and engineering tools required to set up and debug machine learning experiments. Weka’s

automation is useful to embed a classifier in a larger program and to create a training/testing loop that can be

seen as a regression test for machine learning capabilities. For example,

Step 1: Express the problem with features

This step corresponds to the engineering task needed to write an .arff file.

Put all the features in a weka.core.FastVector.

Each feature is contained in a weka.core.Attribute object.

29

Here, we have two numeric features, one nominal feature (blue, gray, black) and a nominal class (positive,

negative).

Step 2: Train a Classifier

Training requires 1) having a training set of instances and 2) choosing a classifier.

Let’s first create an empty training set (weka.core.Instances).

We named the relation “Rel”.

The attribute prototype is declared using the vector from step 1.

We give an initial set capacity of 10.

We also declare that the class attribute is the fourth one in the vector (see step 1).

Now, let’s fill the training set with one instance (weka.core.Instance):

Finally, Choose a classifier (weka.classifiers.Classifier) and create the model. Let’s, for example, create a

naive Bayes classifier (weka.classifiers.bayes.NaiveBayes).

30

Step 3: Test the classifier

Now that we create and trained a classifier, let’s test it. To do so, we need an evaluation module

(weka.classifiers.Evaluation) to which we feed a testing set (see section 2, since the testing set is built like

the training set).

The evaluation module can output a bunch of statistics.

Step 4: use the classifier

For real world applications, the actual use of the classifier is the ultimate goal. Here’s the simplest way to

achieve that. Let’s say we’ve built an instance (named iUse) as explained in step 2:

5.4.2 Algorithm

The following steps shows how vandalism was detected using a training and a test set by using the

supervised version of the filter :-

1) Create data structure and parse it.

2) Set up filter.

3) Set up tokenizer.

4) Use filter.

5) Select attributes.

6) Create classifier to train the model.

7) Create data structure and parse raw data.

8) Set up filter.

9) Set up tokenizer.

10) Prepare test data to labelling.

11) Label test data.

31

The training set consists of raw data that needs to be parsed and tokenized. Weka selected 35 attributes

from the training set to filter data and classify it. Weka used it’s own inbuilt classifier- Bayesnet(); for

this purpose. A classifier is created to train the model. Again for the test set , data structure is created and

raw data is parsed. In the test test , if any id or attribute has something unusual then label it as vandalism.

If not then label as normal i.e. corresponding to each user id the user will be labelled as a regular user or

a vandalist.

5.4.3 Results

The results consists of console output in which the steps involved are shown. A separate file is generated

which has the user id of every user present in the dataset and it labels the user as vandalists or regular user.

Weka toolkit was used to improve the efficiency and computation speed which was necessary when a large

dataset like the PAN corpus was used.

5.4.4 Screenshots

1) Data Set

Training Set

32

Test Set

2) Weka Output

Training arff file

33

Selected attributes

34

Extended file

3) The console output

35

4) File generated

36

Conclusion

Vandalism is a growing problem for Wikipedia and other collaborative social media applications. Vandalism

detection techniques that are based upon simple textual features have not been very effective in combating

sophisticated vandal attacks.

 The success of a machine learning algorithm depends critically on the selection of features that

are inputs to the algorithm. Although the previous works on the problem of Wikipedia vandalism detection

utilize features from multiple categories, each work has individually focused predominantly on a single

category.

 In this report, the features of two previous works have been combined.A content-context-centric

approach for vandalism detection in Wikipedia is proposed which includes an extended feature set. The main

idea is to measure the compatibility of the incoming edit’s content with the context of the existing article.

Two metrics, namely, WWW co-occurrence probability, has been presented to measure the compatibility of

the edit’s keywords with the keywords of the existing article.

 These features are used in machine learning based classifiers. All the experiments will be performed on

Wikipedia vandalism PAN corpus demonstrating that the content-context features significantly improve

vandalism detection accuracy when compared with simple textual features.

37

Appendix

A1 Classifier class

 The classifier is built for training an test data. Instances for test data are also labelled.

import java.util.Iterator;

import java.util.Random;

import weka.classifiers.Evaluation;

import weka.classifiers.bayes.BayesNet;

import weka.core.Attribute;

import weka.core.FastVector;

import weka.core.Instance;

import weka.core.Instances;

public class Classifier {

 private BayesNet model;

 private Instances data;

 public Classifier() {

 System.out.println("Create classifier ...");

 }

 public void setData(Instances data) {

 this.data = data;

 }

 public Instances getData() {

 return this.data;

 }

 public void train() throws Exception {

 System.out.println("Train model");

 this.model = new BayesNet();

38

 this.model.buildClassifier(this.data);

 }

 public void test() throws Exception {

 System.out.println("Validate model ...");

 Evaluation eval;

 eval = new Evaluation(this.data);

 eval.crossValidateModel(this.model, this.data, 10, new Random(1));

 System.out.println("F-measure:");

 System.out.println(" - regular: " + eval.fMeasure(0));

 System.out.println(" - vandalism: " + eval.fMeasure(1));

 }

 private Instance selectAttr(Instance data, Instances model) {

 int numAttributes = model.numAttributes();

 double[] newInst = new double[numAttributes];

 Instance newInstance = new Instance(1.0, newInst);

 for (int i = 0; i < model.numAttributes(); i++) {

 Attribute modelAttr = model.attribute(i);

 for (int j = 0; j < data.numAttributes(); j++) {

 Attribute dataAttr = data.attribute(j);

 if(modelAttr.equals(dataAttr)) {

 newInstance.setValue(i, data.value(j));

 }

 }

 }

 return newInstance;

 }

 public Instances labeling(Instances unlabeled) throws Exception {

39

 FastVector attributes = new FastVector();;

 for (int i = 0; i < this.data.numAttributes(); i++) {

 attributes.addElement(this.data.attribute(i));

 }

 Instances prepUnlabeled = new Instances("Wikipedia unlabeled", attributes, 0);

 prepUnlabeled.setClassIndex(prepUnlabeled.numAttributes() - 1);

 Instances modelData = new Instances(this.data);

 modelData.delete();

 System.out.println("Prepare test data to labeling ...");

 for (int i = 0; i < unlabeled.numInstances(); i++) {

 Instance element = unlabeled.instance(i);

 Instance prepared = this.selectAttr(element, modelData);

 prepUnlabeled.add(prepared);

 }

 System.out.println("Labeling test data ...");

 for (int i = 0; i < prepUnlabeled.numInstances(); i++) {

 Instance inst = prepUnlabeled.instance(i);

 double clsLabel = this.model.classifyInstance(inst);

 prepUnlabeled.instance(i).setClassValue(clsLabel);

 }

 return prepUnlabeled;

 }

}

A2 Parsing data

Here each line of data is read one by one. A data structure is created . Fast vector is used for

userLabels,classLabels,Commentlabels,identifiedlabels and attr.

40

import java.util.Iterator;

import java.util.Random;

import weka.classifiers.Evaluation;

import weka.classifiers.bayes.BayesNet;

import weka.core.Attribute;

import weka.core.FastVector;

import weka.core.Instance;

import weka.core.Instances;

public class Classifier {

 private BayesNet model;

 private Instances data;

 public Classifier() {

 System.out.println("Create classifier ...");

 }

 public void setData(Instances data) {

 this.data = data;

 }

 public Instances getData() {

 return this.data;

 }

 public void train() throws Exception {

 System.out.println("Train model");

 this.model = new BayesNet();

 this.model.buildClassifier(this.data);

 }

 public void test() throws Exception {

 System.out.println("Validate model ...");

 Evaluation eval;

41

 eval = new Evaluation(this.data);

 eval.crossValidateModel(this.model, this.data, 10, new Random(1));

 System.out.println("F-measure:");

 System.out.println(" - regular: " + eval.fMeasure(0));

 System.out.println(" - vandalism: " + eval.fMeasure(1));

 }

 private Instance selectAttr(Instance data, Instances model) {

 int numAttributes = model.numAttributes();

 double[] newInst = new double[numAttributes];

 Instance newInstance = new Instance(1.0, newInst);

 for (int i = 0; i < model.numAttributes(); i++) {

 Attribute modelAttr = model.attribute(i);

 for (int j = 0; j < data.numAttributes(); j++) {

 Attribute dataAttr = data.attribute(j);

 if(modelAttr.equals(dataAttr)) {

 newInstance.setValue(i, data.value(j));

 }

 }

 }

 return newInstance;

 }

 public Instances labeling(Instances unlabeled) throws Exception {

 FastVector attributes = new FastVector();;

 for (int i = 0; i < this.data.numAttributes(); i++) {

 attributes.addElement(this.data.attribute(i));

 }

 Instances prepUnlabeled = new Instances("Wikipedia unlabeled", attributes, 0);

42

 prepUnlabeled.setClassIndex(prepUnlabeled.numAttributes() - 1);

 Instances modelData = new Instances(this.data);

 modelData.delete();

 System.out.println("Prepare test data to labeling ...");

 for (int i = 0; i < unlabeled.numInstances(); i++) {

 Instance element = unlabeled.instance(i);

 Instance prepared = this.selectAttr(element, modelData);

 prepUnlabeled.add(prepared);

 }

 System.out.println("Labeling test data ...");

 for (int i = 0; i < prepUnlabeled.numInstances(); i++) {

 Instance inst = prepUnlabeled.instance(i);

 double clsLabel = this.model.classifyInstance(inst);

 prepUnlabeled.instance(i).setClassValue(clsLabel);

 }

 return prepUnlabeled;

 }

}

A3 Creating and selecting attributes

This is done by weka. Word tokenizer and a filter is set here.

public class CreateAndSelectAttributes {

 private Instances data;

 private Instances filteredData;

 private Instances selectedAttrData;

 private WordTokenizer tokenizer;

 private StringToWordVector filter;

 public CreateAndSelectAttributes() {

43

 }

 public void setData(Instances data) {

 this.data = data;

 }

 private void setupTokenizer() {

 System.out.println("Setup tokenizer ...");

 this.tokenizer = new WordTokenizer();

// Use default delimiters

// this.tokenizer.setDelimiters(" \\r\\n\\t.,;:'\"()?!");

 }

 private void setupFilter() throws Exception {

 System.out.println("Setup filter ...");

 this.setupTokenizer();

 this.filter = new StringToWordVector();

//

 this.filter.setOptions(Utils.splitOptions("weka.filters.unsupervised.attribute.StringToWordVector -R

first-last -W 1000 -prune-rate -1.0 -N 0 -stemmer weka.core.stemmers.NullStemmer -M 1 -tokenizer

\"weka.core.tokenizers.WordTokenizer -delimiters \\\" \\\\r\\\\n\\\\t.,;:\\\\\\\'\\\\\\\"()?!\\\"\""));

 this.filter.setAttributeIndices("last");

 this.filter.setMinTermFreq(2);

 this.filter.setTokenizer(this.tokenizer);

 this.filter.setStemmer(new NullStemmer());

 this.filter.setInputFormat(this.data);

 }

A4 Main class

44

Objects of other classes are created andthe functions are called. It feteches instances from other classes. A

file is generated for the results.

 ParseText train = new ParseText("train");

 Instances data = train.getInstances();

 CreateAndSelectAttributes CSA = new CreateAndSelectAttributes();

 CSA.setData(data);

 CSA.useFilter();

 CSA.selectAttributes(35);

 data = CSA.getSelectedAttrData();

 Classifier classifier = new Classifier();

 classifier.setData(data);

public static void saveResult(String result) throws IOException {

 String timeStamp = new

SimpleDateFormat("MMdd_HHmmss").format(Calendar.getInstance().getTime());

 Writer out = new BufferedWriter(new OutputStreamWriter(new

FileOutputStream("result_"+timeStamp+".txt"), "UTF-8"));

 out.write(result);

 out.close();

 System.out.println("File generated: data" + File.separator +"train_"+timeStamp+".arff");

 }

 public static void saveInstances(Instances data) throws IOException {

 String timeStamp = new

SimpleDateFormat("MMdd_HHmmss").format(Calendar.getInstance().getTime());

 Writer out = new BufferedWriter(new OutputStreamWriter(new FileOutputStream("data" +

File.separator +"train_"+timeStamp+".arff"), "UTF-8"));

 out.write(data.toString());

45

 out.close();

 System.out.println("File generated: data" + File.separator +"train_"+timeStamp+".arff");

 }

}

46

References

1. Lakshmish Ramaswamy, Raga Sowmya , Tummalapenta, Kang Li, Calton Pu, “A Content-Context-

Centric Approach for Detecting Vandalism in Wikipedia”, in 9th IEEE International Conference on

Collaborative Computing: Networking, Applications and Worksharing, 2013.

2. Q. Wu, D. Irani, C. Pu, and L. Ramaswamy, “Elusive vandalism detection in wikipedia: a text

stability-based approach,” in CIKM, 2010.

3. Mola-Velasco, S.M.: Wikipedia Vandalism Detection Through Machine Learning:Feature Review

and New Proposals. In Braschler, M., Harman, D., eds.: Notebook Papers of CLEF 2010 LABs

andWorkshops, 22-23 September, Padua, Italy. (2010).

4. Adler, B., de Alfaro, L., Pye, I.: Detecting Wikipedia Vandalism using WikiTrust. In Braschler, M.,

Harman, D., eds.: Notebook Papers of CLEF 2010 LABs and Workshops, 22-23 September, Padua,

Italy. (2010).

5. West, A.G., Kannan, S., Lee, I.: Detecting Wikipedia Vandalism via Spatio-Temporal Analysis of

Revision Metadata. In: EUROSEC'10: Proceedings of the Third European Workshop on System

Security. (2010).

6. Potthast, M., Stein, B., Gerling, R.: Automatic Vandalism Detection in Wikipedia.In: ECIR'08:

Proceedings of the 30th European Conference on IR Research. Volume 4956 of LNCS., Springer-

Verlag (2008).

7. Smets, K., Goethals, B., Verdonk, B.: Automatic Vandalism Detection in Wikipedia: Towards a

Machine Learning Approach. In: WikiAI'08: Proceedings of the Workshop on Wikipedia and

Arti_cial Intelligence: An Evolving Synergy,AAAI Press (2008).

8. Cristian-Alexandru Drăgușanu, Marina Cufliuc, Adrian Iftene, “Detecting Wikipedia Vandalism

using Machine Learning”: Notebook for PAN at CLEF 2011.

9. B. T. Adler, L. de Alfaro, S. M. Mola-Velasco, P. Rosso, and A. G. West. Wikipedia Vandalism

Detection: Combining Natural Language, Metadata, and Reputation Features. In A. Gelbukh,

editor,CICLing 2011, volume 6609 of LNCS, Tokyo, Japan,February 2011. Springer.

10. M. Potthast. Crowdsourcing a Wikipedia Vandalism Corpus. In Proc. of the 33rd Intl. ACM SIGIR

Conf.(SIGIR 2010). ACM Press, Jul 2010.

11. University of Waikato, “Weka”.

