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Abstract 

 

 

Adaptive Huffman Coding is one of the many coding techniques used to compress data in 

a multitude of real world applications. GZip, 7Zip, Winrar are only a handful of utilities 

which make use of such data compression algorithms. Data Compression algorithms can 

be divided into 2 categories 

1. Lossy Compression Algorithms 

2. Lossless Compression Algorithms 

Adaptive Huffman, which is derived from Huffman Coding, falls into the latter category 

and is extensively used in image formats such as JPEG (Joint Photographic Experts 

Group). There are a few shortcomings to the straight Huffman compression. First of all, 

you need to send the Huffman tree at the beginning of the compressed file, or the 

decompressor will not be able to decode it. This can cause some overhead. 

 

Also, Huffman compression looks at the statistics of the whole file, so that if a part of the 

code uses a character more heavily, it will not adjust during that section. Not to mention 

the fact that sometimes the whole file is not available to get the counts from (such as in 

live information). 

 

The solution to all of these problems is to use an Adaptive method. 

It permits building the code as the symbols are being transmitted, having no initial 

knowledge of source distribution, that allows one-pass encoding and adaptation to 

changing conditions in data. 

The benefit of one-pass procedure is that the source can be encoded in real time, though 

it becomes more sensitive to transmission errors, since just a single loss ruins the whole 

code. 

 

Adaptive Huffman coding was first conceived independently by Faller and Gallager 

[Faller 1973; Gallager 1978]. Knuth contributed improvements to the original algorithm 

[Knuth 1985] and the resulting algorithm is referred to as algorithm FGK. A more recent 

version of adaptive Huffman coding is described by Vitter [Vitter 1987]. All of these 
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methods are defined-word schemes which determine the mapping from source messages 

to codewords based upon a running estimate of the source message probabilities. 

 

 The code is adaptive, changing so as to remain optimal for the current estimates. In this 

way, the adaptive Huffman codes respond to locality. In essence, the encoder is 

"learning" the characteristics of the source. The decoder must learn along with the 

encoder by continually updating the Huffman tree so as to stay in synchronization with 

the encoder. 
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CHAPTER 1 

 

DATA COMPRESSION 
 
 

1. Introduction to Data Compression 
 

Compression is used just about everywhere. All the images you get on the web are 

compressed, typically in the JPEG or GIF formats, most modems use compression, 

HDTV will be compressed using MPEG-2, and several file systems automatically 

compress files when stored, and the rest of us do it by hand. The neat thing about 

compression, as with the other topics in this domain, is that the algorithms used in the 

real world make heavy use of a wide set of algorithmic tools, including sorting, hash 

tables, tries, and FFTs.  

Furthermore, algorithms with strong theoretical foundations play a critical role in real-

world applications. In this chapter we will use the generic term message for the objects 

we want to compress, which could be either files or messages. The task of compression 

consists of two components, an encoding algorithm that takes a message and generates a 

“compressed” representation (hopefully with fewer bits), and a decoding algorithm that 

reconstructs the original message or some approximation of it from the compressed 

representation.  

These two components are typically intricately tied together since they both have to 

understand the shared compressed representation. We distinguish between lossless 

algorithms, which can reconstruct the original message exactly from the compressed 

message, and lossy algorithms, which can only reconstruct an approximation 

of the original message.  

Lossless algorithms are typically used for text, and lossy for images and sound where a 

little bit of loss in resolution is often undetectable, or at least acceptable.  Lossy is used in 

an abstract sense, however, and does not mean random lost pixels, but instead means loss 

of a quantity such as a frequency component, or perhaps loss of noise. For example, one 

might think that lossy text compression would be unacceptable because they are 

imagining missing or switched characters.  

Consider instead a system that reworded sentences into a more standard form, or replaced 

words with synonyms so that the file can be better compressed. Technically the 
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compression would be lossy since the text has changed, but the “meaning” and clarity of 

the message might be fully maintained, or even improved. 

 

 

2. Motivation behind Compression 

 

Data compression has wide application in terms of information storage, including 

representation of the abstract data type string and file compression. Huffman coding is 

used for compression in several file archival systems [ARC 1986; PKARC 1987], as is 

Lempel-Ziv coding, one of the adaptive schemes. An adaptive Huffman coding technique 

is the basis for the compact command of the UNIX operating system, and the 

UNIX compress utility employs the Lempel-Ziv approach [UNIX 1984]. 

In the area of data transmission, Huffman coding has been passed over for years in favor 

of block-block codes, notably ASCII. The advantage of Huffman coding is in the average 

number of bits per character transmitted, which may be much smaller than the log n bits 

per character (where n is the source alphabet size) of a block-block system.  

The primary difficulty associated with variable-length codewords is that the rate at which 

bits are presented to the transmission channel will fluctuate, depending on the relative 

frequencies of the source messages. This requires buffering between the source and the 

channel. Advances in technology have both overcome this difficulty and contributed to 

the appeal of variable-length codes.  

Current data networks allocate communication resources to sources on the basis of need 

and provide buffering as part of the system. These systems require significant amounts of 

protocol, and fixed-length codes are quite inefficient for applications such as packet 

headers. In addition, communication costs are beginning to dominate storage and 

processing costs, so that variable-length coding schemes which reduce communication 

costs are attractive even if they are more complex. For these reasons, one could expect to 

see even greater use of variable-length coding in the future. 

It is interesting to note that the Huffman coding algorithm, originally developed for the 

efficient transmission of data, also has a wide variety of applications outside the sphere 
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of data compression. These include construction of optimal search trees, list merging and 

generating optimal evaluation trees in the compilation of expressions.  

Additional applications involve search for jumps in a monotone function of a single 

variable, sources of pollution along a river, and leaks in a pipeline. The fact that this 

elegant combinatorial algorithm has influenced so many diverse areas underscores its 

importance. 
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CHAPTER 2 

CONCEPTS OF COMPRESSION 

1. Information theory 

A code is a mapping of source messages (words from the source alphabet alpha) 

into codewords (words of the code alphabet beta). The source messages are the basic 

units into which the string to be represented is partitioned. These basic units may be 

single symbols from the source alphabet, or they may be strings of symbols. For 

string EXAMPLE, alpha = {a, b, c, d, e, f, g, space}. For purpose of explanation, 

let beta will be taken to be {0, 1 }. Codes can be categorized as block-block, block-

variable, variable-block or variable-variable, where block-block indicates that the source 

messages and codewords are of fixed length and variable-variable codes map variable-

length source messages into variable-length codewords. A block-block code 

for EXAMPLE is shown in Figure 1.1 and a variable-variable code is given in Figure 1.2. 

If the string EXAMPLE were coded using the Figure 1.1 code, the length of the coded 

message would be 120; using Figure 1.2 the length would be 30. 

source message   codeword             source message   codeword 

 

a   000                     aa                 0 
b             001                       bbb                1 
c             010                     cccc               10 

d             011                    ddddd             11 
e             100                   eeeeee            100 

f              101                   fffffff               101 
g             110                     gggggggg       110 
space       111                     space             111 

 
 

Figure 1.1: A block-block code    Figure 1.2: A variable-variable code. 
 

The oldest and most widely used codes, ASCII and EBCDIC, are examples of block-

block codes, mapping an alphabet of 64 (or 256) single characters onto 6-bit (or 8-bit) 

codewords. These are not discussed, as they do not provide compression. The codes 

featured in this survey are of the block-variable, variable-variable, and variable-block 

types. 
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When source messages of variable length are allowed, the question of how a 

message ensemble (sequence of messages) is parsed into individual messages arises. 

Many of the algorithms described here are defined-word schemes. That is, the set of 

source messages is determined prior to the invocation of the coding scheme. For 

example, in text file processing each character may constitute a message, or messages 

may be defined to consist of alphanumeric and non-alphanumeric strings. In Pascal 

source code, each token may represent a message. All codes involving fixed-length 

source messages are, by default, defined-word codes. In free-parse methods, the coding 

algorithm itself parses the ensemble into variable-length sequences of symbols. Most of 

the known data compression methods are defined-word schemes; the free-parse model 

differs in a fundamental way from the classical coding paradigm. 

A code is distinct if each codeword is distinguishable from every other (i.e., the mapping 

from source messages to codewords is one-to-one). A distinct code is uniquely 

decodable if every codeword is identifiable when immersed in a sequence of codewords. 

Clearly, each of these features is desirable. The codes of Figure 1.1 and Figure 1.2 are 

both distinct, but the code of Figure 1.2 is not uniquely decodable. For example, the 

coded message 11 could be decoded as either ddddd or bbbbbb. A uniquely decodable 

code is a prefix code (or prefix-free code) if it has the prefix property, which requires that 

no codeword is a proper prefix of any other codeword. All uniquely decodable block-

block and variable-block codes are prefix codes. The code with codewords {1, 100000, 

00 } is an example of a code which is uniquely decodable but which does not have the 

prefix property. Prefix codes are instantaneously decodable; that is, they have the 

desirable property that the coded message can be parsed into codewords without the need 

for lookahead. In order to decode a message encoded using the codeword set { 1, 100000, 

00 }, lookahead is required. For example, the first codeword of the message 1000000001 

is 1, but this cannot be determined until the last (tenth) symbol of the message is read (if 

the string of zeros had been of odd length, then the first codeword would have been 

100000). 

A minimal prefix code is a prefix code such that if x is a proper prefix of some codeword, 

then x sigma is either a codeword or a proper prefix of a codeword, for each 

letter sigma in beta. The set of codewords {00, 01, 10 } is an example of a prefix code 

which is not minimal. The fact that 1 is a proper prefix of the codeword 10 requires 
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that 11be either a codeword or a proper prefix of a codeword, and it is neither. 

Intuitively, the minimality constraint prevents the use of codewords which are longer 

than necessary. In the above example the codeword 10 could be replaced by the 

codeword 1, yielding a minimal prefix code with shorter codewords. The codes discussed 

in this paper are all minimal prefix codes. 

In this section, a code has been defined to be a mapping from a source alphabet to a code 

alphabet; we now define related terms. The process of transforming a source ensemble 

into a coded message is coding or encoding. The encoded message may be referred to as 

an encoding of the source ensemble. The algorithm which constructs the mapping and 

uses it to transform the source ensemble is called the encoder. The decoder performs the 

inverse operation, restoring the coded message to its original form. 

 

2. A Data Compression Model 

In order to discuss the relative merits of data compression techniques, a framework for 

comparison must be established. There are two dimensions along which each of the 

schemes discussed here may be measured, algorithm complexity and amount of 

compression. When data compression is used in a data transmission application, the goal 

is speed.  

Speed of transmission depends upon the number of bits sent, the time required for the 

encoder to generate the coded message, and the time required for the decoder to recover 

the original ensemble. In a data storage application, although the degree of compression 

is the primary concern, it is nonetheless necessary that the algorithm be efficient in order 

for the scheme to be practical. For a static scheme, there are three algorithms to analyze: 

the map construction algorithm, the encoding algorithm, and the decoding algorithm. For 

a dynamic scheme, there are just two algorithms: the encoding algorithm, and the 

decoding algorithm. 

Several common measures of compression have been suggested: redundancy [Shannon 

and Weaver 1949], average message length [Huffman 1952], and compression ratio 

[Rubin 1976; Ruth and Kreutzer 1972]. These measures are defined below.  
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Related to each of these measures are assumptions about the characteristics of the source. 

It is generally assumed in information theory that all statistical parameters of a message 

source are known with perfect accuracy [Gilbert 1971].  

The most common model is that of a discrete memoryless source; a source whose output 

is a sequence of letters (or messages), each letter being a selection from some fixed 

alphabet a,... The letters are taken to be random, statistically independent selections from 

the alphabet, the selection being made according to some fixed probability 

assignment p(a),... [Gallager 1968]. To avoid loss of generality, the code alphabet is 

assumed to be {0,1} throughout most papers. The modifications necessary for larger code 

alphabets are straightforward. 

It is assumed that any cost associated with the code letters is uniform. This is a 

reasonable assumption, although it omits applications like telegraphy where the code 

symbols are of different durations. The assumption is also important, since the problem 

of constructing optimal codes over unequal code letter costs is a significantly different 

and more difficult problem.  

Perl et al. and Varn have developed algorithms for minimum-redundancy prefix coding 

in the case of arbitrary symbol cost and equal codeword probability [Perl et al. 1975; 

Varn 1971]. The assumption of equal probabilities mitigates the difficulty presented by 

the variable symbol cost. For the more general unequal letter costs and unequal 

probabilities model, Karp has proposed an integer linear programming approach [Karp 

1961]. There have been several approximation algorithms proposed for this more difficult 

problem [Krause 1962; Cot 1977; Mehlhorn 1980]. 

 

When data is compressed, the goal is to reduce redundancy, leaving only the 

informational content. The measure of information of a source message x (in bits) is -

lg p(x) [lg denotes the base 2 logarithm]. This definition has intuitive appeal; in the case 

that p(x=1, it is clear that x is not at all informative since it had to occur. Similarly, the 

smaller the value of p(x, the more unlikely x is to appear, hence the larger its information 

content.  

The reader is referred to Abramson for a longer, more elegant discussion of the 

legitimacy of this technical definition of the concept of information [Abramson 1963, pp. 

6-13]. The average information content over the source alphabet can be computed by 

weighting the information content of each source letter by its probability of occurrence, 
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yielding the expression SUM{i=1 to n} [-p(a(i)) lg p(a(i))]. This quantity is referred to as 

the entropy of a source letter, or the entropy of the source, and is denoted by H.  

 

Since the length of a codeword for message a(i) must be sufficient to carry the 

information content of a(i), entropy imposes a lower bound on the number of bits 

required for the coded message. The total number of bits must be at least as large as the 

product of H and the length of the source ensemble. Since the value of H is generally not 

an integer, variable length codewords must be used if the lower bound is to be achieved. 

Given that message EXAMPLE is to be encoded one letter at a time, the entropy of its 

source can be calculated using a standard set of probabilities: H = 2.894, so that the 

minimum number of bits contained in an encoding of EXAMPLE is 116.  

 

The Huffman code does not quite achieve the theoretical minimum in this case. 

Both of these definitions of information content are due to Shannon. A derivation of the 

concept of entropy as it relates to information theory is presented by Shannon [Shannon 

and Weaver 1949]. A simpler, more intuitive explanation of entropy is offered by Ash 

[Ash 1965]. 

The most common notion of a "good" code is one which is optimal in the sense of having 

minimum redundancy. Redundancy can be defined as: SUM p(a(i)) l(i) - SUM [-p(a(i)) 

lg p(a(i))] where l(i) is the length of the codeword representing message a(i). The 

expression SUM p(a(i)) l(i) represents the lengths of the codewords weighted by their 

probabilities of occurrence, that is, the average codeword length. The expression SUM [-

p(a(i)) lg p(a(i))] is entropy,H.  

 

Thus, redundancy is a measure of the difference between average codeword length and 

average information content. If a code has minimum average codeword length for a given 

discrete probability distribution, it is said to be a minimum redundancy code. 

 

We define the term local redundancy to capture the notion of redundancy caused by local 

properties of a message ensemble, rather than its global characteristics. While the model 

used for analyzing general-purpose coding techniques assumes a random distribution of 

the source messages, this may not actually be the case. In particular applications the 

tendency for messages to cluster in predictable patterns may be known. The existence of 

predictable patterns may be exploited to minimize local redundancy.  
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Huffman uses average message length, SUM p(a(i)) l(i), as a measure of the efficiency of 

a code. Clearly the meaning of this term is the average length of a coded message. We 

will use the term average codeword length to represent this quantity. Since redundancy is 

defined to be average codeword length minus entropy and entropy is constant for a given 

probability distribution, minimizing average codeword length minimizes redundancy. 

 

A code is asymptotically optimal if it has the property that for a given probability 

distribution, the ratio of average codeword length to entropy approaches 1 as entropy 

tends to infinity. That is, asymptotic optimality guarantees that average codeword length 

approaches the theoretical minimum (entropy represents information content, which 

imposes a lower bound on codeword length). 

The amount of compression yielded by a coding scheme can be measured by 

a compression ratio. The term compression ratio has been defined in several ways. The 

definition C = (average message length)/(average codeword length) captures the common 

meaning, which is a comparison of the length of the coded message to the length of the 

original ensemble [Cappellini 1985].  

If we think of the characters of the ensemble EXAMPLE as 6-bit ASCII characters, then 

the average message length is 6 bits. The Huffman code represents EXAMPLE in 117 bits 

in a certain representation, or 2.9 bits per character. This yields a compression ratio of 

6/2.9, representing compression by a factor of more than 2. Alternatively, we may say 

that Huffman encoding produces a file whose size is 49% of the original ASCII file, or 

that 49% compression has been achieved.  

 

A somewhat different definition of compression ratio, by Rubin, C= (S - O - OR)/S, 

includes the representation of the code itself in the transmission cost [Rubin 1976]. In 

this definitionS represents the length of the source ensemble, O the length of the output 

(coded message), and OR the size of the "output representation" (e.g., the number of bits 

required for the encoder to transmit the code mapping to the decoder). The 

quantity OR constitutes a "charge" to an algorithm for transmission of information about 

the coding scheme. The intention is to measure the total size of the transmission (or file 

to be stored). 
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3. Semantic Dependent Methods 

 

Semantic dependent data compression techniques are designed to respond to specific 

types of local redundancy occurring in certain applications. One area in which data 

compression is of great importance is image representation and processing. There are two 

major reasons for this. The first is that digitized images contain a large amount of local 

redundancy. An image is usually captured in the form of an array of pixels whereas 

methods which exploit the tendency for pixels of like color or intensity to cluster together 

may be more efficient.  

The second reason for the abundance of research in this area is volume. Digital images 

usually require a very large number of bits, and many uses of digital images involve large 

collections of images. 

One technique used for compression of image data is run length encoding. In a common 

version of run length encoding, the sequence of image elements along a scan line (row) is 

mapped into a sequence of pairs (c,l) where crepresents an intensity or color and l the 

length of the run (sequence of pixels of equal intensity). For pictures such as weather 

maps, run length encoding can save a significant number of bits over the image element 

sequence [Gonzalez and Wintz 1977].  

Another data compression technique specific to the area of image data is difference 

mapping, in which the image is represented as an array of differences in brightness (or 

color) between adjacent pixels rather than the brightness values themselves. Difference 

mapping was used to encode the pictures of Uranus transmitted byVoyager 2.  

The 8 bits per pixel needed to represent 256 brightness levels was reduced to an average 

of 3 bits per pixel when difference values were transmitted [Laeser et al. 1986]. In 

spacecraft applications, image fidelity is a major concern due to the effect of the distance 

from the spacecraft to earth on transmission reliability. Difference mapping was 

combined with error-correcting codes to provide both compression and data integrity in 

thee Voyager project.  

Another method which takes advantage of the tendency for images to contain large areas 

of constant intensity is the use of the quadtree data structure [Samet 1984]. Additional 

examples of coding techni2ques used in image processing can be found in Wilkins and 

Wintz and in Cappellini [Wilkins and Wintz 1971; Cappellini 1985]. 
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Data compression is of interest in business data processing, both because of the cost 

savings it offers and because of the large volume of data manipulated in many business 

applications. The types of local redundancy present in business data files include runs of 

zeros in numeric fields, sequences of blanks in alphanumeric fields, and fields which are 

present in some records and null in others. Run length encoding can be used to compress 

sequences of zeros or blanks. Null suppression may be accomplished through the use of 

presence bits [Ruth and Kreutzer 1972]. 

 Another class of methods exploits cases in which only a limited set of attribute values 

exist. Dictionary substitution entails replacing alphanumeric representations of 

information such as bank account type, insurance policy type, sex, month, etc. by the few 

bits necessary to represent the limited number of possible attribute values [Reghbati 

1981]. 

 

 

 

3.1 IBM’s Information Management System 

 

Cormack describes a data compression system which is designed for use with database 

files [Cormack 1985]. The method, which is part of IBM's "Information Management 

System" (IMS), compresses individual records and is invoked each time a record is stored 

in the database file; expansion is performed each time a record is retrieved.  

 

Since records may be retrieved in any order, context information used by the 

compression routine is limited to a single record. In order for the routine to be applicable 

to any database, it must be able to adapt to the format of the record. The fact that 

database records are usually heterogeneous collections of small fields indicates that the 

local properties of the data are more important than its global characteristics.  

The compression routine in IMS is a hybrid method which attacks this local redundancy 

by using different coding schemes for different types of fields. The identified field types 

in IMS are letters of the alphabet, numeric digits, packed decimal digit pairs, 

blank, and other.  

When compression begins, a default code is used to encode the first character of the 

record. For each subsequent character, the type of the previous character determines the 
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code to be used. For example, if the record 01870_ABCD__LMN were encoded with 

the letter code as default, the leading zero would be coded using the letter code; the 1, 8, 

7, 0 and the first blank (_) would be coded by the numeric code.  

The A would be coded by the blank code; B, C, D, and the next blank by the letter code; 

the next blank and the L by the blank code; and the M and N by the letter code. Clearly, 

each code must define a codeword for every character; the letter code would assign the 

shortest codewords to letters, the numeric code would favor the digits, etc. In the system 

Cormack describes, the types of the characters are stored in the encode/decode data 

structures.  

When a character c is received, the decoder checks type(c) to detect which code table will 

be used in transmitting the next character. The compression algorithm might be more 

efficient if a special bit string were used to alert the receiver to a change in code table. 

Particularly if fields were reasonably long, decoding would be more rapid and the extra 

bits in the transmission would not be excessive. Cormack reports that the performance of 

the IMS compression routines is very good; at least fifty sites are currently using the 

system. He cites a case of a database containing student records whose size was reduced 

by 42.1%, and as a side effect the number of disk operations required to load the database 

was reduced by 32.7% [Cormack 1985]. 

A variety of approaches to data compression designed with text files in mind include use 

of a dictionary either representing all of the words in the file so that the file itself is coded 

as a list of pointers to the dictionary [Hahn 1974], or representing common words and 

word endings so that the file consists of pointers to the dictionary and encodings of the 

less common words [Tropper 1982]. Hand-selection of common phrases [Wagner 1973], 

programmed selection of prefixes and suffixes [Fraenkel et al. 1983] and programmed 

selection of common character pairs [Snyderman and Hunt 1970; Cortesi 1982] have also 

been investigated. 

This discussion of semantic dependent data compression techniques represents a limited 

sample of a very large body of research. These methods and others of a like nature are 

interesting and of great value in their intended domains.  

Their obvious drawback lies in their limited utility. It should be noted, however, that 

much of the efficiency gained through the use of semantic dependent techniques can be 

achieved through more general methods, albeit to a lesser degree. For example, the 

dictionary approaches can be implemented through either Huffman coding or Lempel-Ziv 



13 

 

codes. Cormack's database scheme is a special case of the codebook approach and run 

length encoding is one of the effects of Lempel-Ziv codes. 
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CHAPTER 3 

 

VARIOUS COMPRESSION ALGORITHMS 

 

1. Shannon-Fano Coding 

 
The classic defined-word scheme was developed over 30 years ago in Huffman's well-

known paper on minimum-redundancy coding [Huffman 1952]. Huffman's algorithm 

provided the first solution to the problem of constructing minimum-redundancy codes. 

Many people believe that Huffman coding cannot be improved upon, that is, that it is 

guaranteed to achieve the best possible compression ratio. This is only true, however, 

under the constraints that each source message is mapped to a unique codeword and that 

the compressed text is the concatenation of the codewords for the source messages. An 

earlier algorithm, due independently to Shannon and Fano [Shannon and Weaver 1949; 

Fano 1949], is not guaranteed to provide optimal codes, but approaches optimal behavior 

as the number of messages approaches infinity. The Huffman algorithm is also of 

importance because it has provided a foundation upon which other data compression 

techniques have built and a benchmark to which they may be compared. We classify the 

codes generated by the Huffman and Shannon-Fano algorithms as variable-variable and 

note that they include block-variable codes as a special case, depending upon how the 

source messages are defined. 

The Shannon-Fano technique has as an advantage its simplicity. The code is constructed 

as follows: the source messages a(i) and their probabilities p( a(i) ) are listed in order of 

nonincreasing probability. This list is then divided in such a way as to form two groups 

of as nearly equal total probabilities as possible. Each message in the first group receives 

0 as the first digit of its codeword; the messages in the second half have codewords 

beginning with 1. Each of these groups is then divided according to the same criterion 

and additional code digits are appended. The process is continued until each subset 

contains only one message. Clearly the Shannon-Fano algorithm yields a minimal prefix 

code. 
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a 1/2 0 

b 1/4 10 

c 1/8 110 

d 1/16 1110 

e 1/32 11110 

f 1/32 11111 

 

       Figure 3.1 A Shannon-Fano Code 

 

Figure 3.1 shows the application of the method to a particularly simple probability 

distribution. The length of each codeword x is equal to -lg p(x). This is true as long as it 

is possible to divide the list into subgroups of exactly equal probability. When this is not 

possible, some codewords may be of length -lg p(x)+1. The Shannon-Fano algorithm 

yields an average codeword length S which satisfies H <= S <= H + 1. In Figure 3.2, the 

Shannon-Fano code for ensemble EXAMPLE is given. As is often the case, the average 

codeword length is the same as that achieved by the Huffman code. That the Shannon-

Fano algorithm is not guaranteed to produce an optimal code is demonstrated by the 

following set of probabilities: { 35, .17, .17, .16, .15 }. 

 

 

G 8/40 00 

f 7/40 010 

e 6/40 011 

d 5/16 100 

space 5/32 101 

c 4/32 110 

b 3/40 1110 

a 2/40 1111 

 

    Figure 3.2A Shannon-Fano Code for EXAMPLE 
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2. Static Huffman Coding 

 

Huffman's algorithm, expressed graphically, takes as input a list of nonnegative weights 

{w(1), ... ,w(n) } and constructs a full binary tree [a binary tree is full if every node has 

either zero or two children] whose leaves are labeled with the weights. When the 

Huffman algorithm is used to construct a code, the weights represent the probabilities 

associated with the source letters. Initially there is a set of singleton trees, one for each 

weight in the list. At each step in the algorithm the trees corresponding to the two 

smallest weights, w(i) and w(j), are merged into a new tree whose weight is w(i)+w(j) and 

whose root has two children which are the subtrees represented by w(i) and w(j). The 

weights w(i) and w(j) are removed from the list and w(i)+w(j) is inserted into the list. 

This process continues until the weight list contains a single value. If, at any time, there 

is more than one way to choose a smallest pair of weights, any such pair may be chosen. 

In Huffman's paper, the process begins with a non-increasing list of weights. This detail 

is not important to the correctness of the algorithm, but it does provide a more efficient 

implementation [Huffman 1952]. The Huffman algorithm is demonstrated in Figure 3.3 

 

 

a1 .25 .25 .25 .33 .42 .58 1.0 

a2 .20 .20 .22 .25 .33 .42  

a3 .15 .18 .20 .22 .25   

a4 .12 .15 .18 .20    

a5 .10 .12 .15     

a6 .10 .10      

a7 .08       

 

 

 

 

 

 

  Figure 3.3 Huffman Process – The List 
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   Fig 3.3 Huffman Process – The Tree 

 

 

The Huffman algorithm determines the lengths of the codewords to be mapped to each of 

the source letters a(i). There are many alternatives for specifying the actual digits; it is 

necessary only that the code have the prefix property. The usual assignment entails 

labeling the edge from each parent to its left child with the digit 0 and the edge to the 

right child with 1. The codeword for each source letter is the sequence of labels along the 

path from the root to the leaf node representing that letter. The codewords for the source 

of Figure 3.3, in order of decreasing probability, are {01,11,001,100,101,000,0001}. 

1.0 

.58 

0.33 

.18 

.42 

.22 .20 .25 

.15 

.10 .8 

.12 .10 
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Clearly, this process yields a minimal prefix code. Further, the algorithm is guaranteed to 

produce an optimal (minimum redundancy) code [Huffman 1952].  

Gallager has proved an upper bound on the redundancy of a Huffman code of p(n) + lg 

[(2 lg e)/e] which is approximately p(n) + 0.086, where p(n) is the probability of the least 

likely source message [Gallager 1978]. In a recent paper, Capocelli et al. provide new 

bounds which are tighter than those of Gallagher for some probability distributions 

[Capocelli et al. 1986]. Figure 3.4 shows a distribution for which the Huffman code is 

optimal while the Shannon-Fano code is not. 

In addition to the fact that there are many ways of forming codewords of appropriate 

lengths, there are cases in which the Huffman algorithm does not uniquely determine 

these lengths due to the arbitrary choice among equal minimum weights. As an example, 

codes with codeword lengths of {1,2,3,4,4} and of {2,2,2,3,3} both yield the same 

average codeword length for a source with probabilities {.4,.2,.2,.1,.1}.  

Schwartz defines a variation of the Huffman algorithm which performs "bottom 

merging"; that is, orders a new parent node above existing nodes of the same weight and 

always merges the last two weights in the list. The code constructed is the Huffman code 

with minimum values of maximum codeword length (MAX{ l(i) }) and total codeword 

length (SUM{ l(i) }) [Schwartz 1964]. Schwartz and Kallick describe an implementation 

of Huffman's algorithm with bottom merging [Schwartz and Kallick 1964].  

The Schwartz-Kallick algorithm and a later algorithm by Connell [Connell 1973] use 

Huffman's procedure to determine the lengths of the codewords, and actual digits are 

assigned so that the code has the numerical sequence property. That is, codewords of 

equal length form a consecutive sequence of binary numbers. Shannon-Fano codes also 

have the numerical sequence property. This property can be exploited to achieve a 

compact representation of the code and rapid encoding and decoding. 

 

 

 



19 

 

  S-F Huffman 

a(1) .35 00 1 

a(2) .17 01 011 

a(3) .17 10 010 

a(4) .16 110 001 

a(5) .15 111 000 

 Average Codeword length          2.31               2.30 

 Fig 3.4 Comparison of Shannon-Fano and Huffman Codes 

 

Both the Huffman and the Shannon-Fano mappings can be generated in O(n) time, 

where n is the number of messages in the source ensemble (assuming that the weights 

have been presorted). Each of these algorithms maps a source message a(i) with 

probability p to a codeword of length l (-lg p <= l <= - lg p + 1). Encoding and decoding 

times depend upon the representation of the mapping. If the mapping is stored as a binary 

tree, then decoding the codeword for a(i) involves following a path of length l in the tree.  

A table indexed by the source messages could be used for encoding; the code for a(i) 

would be stored in position i of the table and encoding time would be O(l). Connell's 

algorithm makes use of the index of the Huffman code, a representation of the 

distribution of codeword lengths, to encode and decode in O(c) time where c is the 

number of different codeword lengths. Tanaka presents an implementation of Huffman 

coding based on finite-state machines which can be realized efficiently in either hardware 

or software [Tanaka 1987]. 

As noted earlier, the redundancy bound for Shannon-Fano codes is 1 and the bound for 

the Huffman method is p(n) + 0.086 where p(n) is the probability of the least likely 

source message (so p(n) is less than or equal to .5, and generally much less). It is 

important to note that in defining redundancy to be average codeword length minus 

entropy, the cost of transmitting the code mapping computed by these algorithms is 

ignored. The overhead cost for any method where the source alphabet has not been 

established prior to transmission includes n lg n bits for sending the n source letters. For a 
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Shannon-Fano code, a list of codewords ordered so as to correspond to the source letters 

could be transmitted. The additional time required is then SUM l(i), where the l(i) are the 

lengths of the codewords. For Huffman coding, an encoding of the shape of the code tree 

might be transmitted. Since any full binary tree may be a legal Huffman code tree, 

encoding tree shape may require as many as lg 4^n = 2n bits. In most cases the message 

ensemble is very large, so that the number of bits of overhead is minute by comparison to 

the total length of the encoded transmission. However, it is imprudent to ignore this cost. 

If a less-than-optimal code is acceptable, the overhead costs can be avoided through a 

prior agreement by sender and receiver as to the code mapping. Rather than using a 

Huffman code based upon the characteristics of the current message ensemble, the code 

used could be based on statistics for a class of transmissions to which the current 

ensemble is assumed to belong. That is, both sender and receiver could have access to 

a codebook with k mappings in it; one for Pascal source, one for English text, etc.  

The sender would then simply alert the receiver as to which of the common codes he is 

using. This requires only lg k bits of overhead. Assuming that classes of transmission 

with relatively stable characteristics could be identified, this hybrid approach would 

greatly reduce the redundancy due to overhead without significantly increasing expected 

codeword length. In addition, the cost of computing the mapping would be amortized 

over all files of a given class.  

That is, the mapping would be computed once on a statistically significant sample and 

then used on a great number of files for which the sample is representative. There is 

clearly a substantial risk associated with assumptions about file characteristics and great 

care would be necessary in choosing both the sample from which the mapping is to be 

derived and the categories into which to partition transmissions. An extreme example of 

the risk associated with the codebook approach is provided by author Ernest V. Wright 

who wrote a novel Gadsby (1939) containing no occurrences of the letter E. Since E is 

the most commonly used letter in the English language, an encoding based upon a sample 

from Gadsby would be disastrous if used with "normal" examples of English text. 

Similarly, the "normal" encoding would provide poor compression of Gadsby. 

McIntyre and Pechura describe an experiment in which the codebook approach is 

compared to static Huffman coding [McIntyre and Pechura 1985]. The sample used for 
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comparison is a collection of 530 source programs in four languages. The codebook 

contains a Pascal code tree, a FORTRAN code tree, a COBOL code tree, a PL/1 code 

tree, and an ALL code tree.  

The Pascal code tree is the result of applying the static Huffman algorithm to the 

combined character frequencies of all of the Pascal programs in the sample. The ALL 

code tree is based upon the combined character frequencies for all of the programs. The 

experiment involves encoding each of the programs using the five codes in the codebook 

and the static Huffman algorithm. The data reported for each of the 530 programs 

consists of the size of the coded program for each of the five predetermined codes, and 

the size of the coded program plus the size of the mapping (in table form) for the static 

Huffman method.  

In every case, the code tree for the language class to which the program belongs 

generates the most compact encoding. Although using the Huffman algorithm on the 

program itself yields an optimal mapping, the overhead cost is greater than the added 

redundancy incurred by the less-than-optimal code. In many cases, the ALL code tree 

also generates a more compact encoding than the static Huffman algorithm. In the worst 

case, an encoding constructed from the codebook is only 6.6% larger than that 

constructed by the Huffman algorithm. These results suggest that, for files of source 

code, the codebook approach may be appropriate. 

Gilbert discusses the construction of Huffman codes based on inaccurate source 

probabilities [Gilbert 1971]. A simple solution to the problem of incomplete knowledge 

of the source is to avoid long codewords, thereby minimizing the error of 

underestimating badly the probability of a message. The problem becomes one of 

constructing the optimal binary tree subject to a height restriction ([Knuth 1971; Hu and 

Tan 1972; Garey 1974]). Another approach involves collecting statistics for several 

sources and then constructing a code based upon some combined criterion.  

This approach could be applied to the problem of designing a single code for use with 

English, French, German, etc., sources. To accomplish this, Huffman's algorithm could 

be used to minimize either the average codeword length for the combined source 

probabilities; or the average codeword length for English, subject to constraints on 

average codeword lengths for the other sources. 
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CHAPTER 4 

ADAPTIVE HUFFMAN CODING 

Adaptive Huffman coding was first conceived independently by Faller and Gallager 

[Faller 1973; Gallager 1978]. Knuth contributed improvements to the original algorithm 

[Knuth 1985] and the resulting algorithm is referred to as algorithm FGK. A more recent 

version of adaptive Huffman coding is described by Vitter [Vitter 1987].  

All of these methods are defined-word schemes which determine the mapping from 

source messages to codewords based upon a running estimate of the source message 

probabilities. The code is adaptive, changing so as to remain optimal for the current 

estimates. In this way, the adaptive Huffman codes respond to locality. In essence, the 

encoder is "learning" the characteristics of the source. The decoder must learn along with 

the encoder by continually updating the Huffman tree so as to stay in synchronization 

with the encoder. 

Another advantage of these systems is that they require only one pass over the data. Of 

course, one-pass methods are not very interesting if the number of bits they transmit is 

significantly greater than that of the two-pass scheme. Interestingly, the performance of 

these methods, in terms of number of bits transmitted, can be better than that of static 

Huffman coding. This does not contradict the optimality of the static method as the static 

method is optimal only over all methods which assume a time-invariant mapping.  

The performance of the adaptive methods can also be worse than that of the static 

method. Upper bounds on the redundancy of these methods are presented in this section. 

As discussed in the introduction, the adaptive method of Faller, Gallager and Knuth is the 

basis for the UNIX utility compact. The performance of compact is quite good, providing 

typical compression factors of 30-40%. 
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1. FGK Algorithm 

The basis for algorithm FGK is the Sibling Property, defined by Gallager [Gallager 

1978]: A binary code tree has the sibling property if each node (except the root) has a 

sibling and if the nodes can be listed in order of non-increasing weight with each node 

adjacent to its sibling. Gallager proves that a binary prefix code is a Huffman code if and 

only if the code tree has the sibling property. In algorithm FGK, both sender and receiver 

maintain dynamically changing Huffman code trees. The leaves of the code tree represent 

the source messages and the weights of the leaves represent frequency counts for the 

messages. At any point in time, k of the n possible source messages have occurred in the 

message ensemble. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.1(a) Tree after processing "aa bb"; 11 will be transmitted for the next b. 
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Fig 4.1(b) After encoding the third b; 101 will be transmitted for the next space; the tree 

will not change; 100 will be transmitted for the first c.  
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   Fig 4.1( c ) Tree after update following first c 
 

Initially, the code tree consists of a single leaf node, called the 0-node. The 0-node is a 

special node used to represent the n-k unused messages. For each message transmitted, 

both parties must increment the corresponding weight and recompute the code tree to 

maintain the sibling property. At the point in time when t messages have been 

transmitted, k of them distinct, and k < n, the tree is a legal Huffman code tree with k+1 

leaves, one for each of the k messages and one for the 0-node. If the (t+1)st message is 

one of the k already seen, the algorithm transmits a(t+1)'s current code, increments the 

appropriate counter and recomputes the tree. If an unused message occurs, the 0-node is 

split to create a pair of leaves, one fora(t+1), and a sibling which is the new 0-node. 

Again the tree is recomputed. In this case, the code for the 0-node is sent; in addition, the 

receiver must be told which of the n-k unused messages has appeared. At each node a 

count of occurrences of the corresponding message is stored. Nodes are numbered 

indicating their position in the sibling property ordering. The updating of the tree can be 
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done in a single traversal from the a(t+1) node to the root. This traversal must increment 

the count for the a(t+1) node and for each of its ancestors. Nodes may be exchanged to 

maintain the sibling property, but all of these exchanges involve a node on the path 

from a(t+1) to the root. Figure 4.2 shows the final code tree formed by this process on the 

ensemble EXAMPLE. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 Fig 4.2 Tree formed by algorithm FGK for ensemble EXAMPLE 

 

Disregarding overhead, the number of bits transmitted by algorithm FGK for 

the EXAMPLE is 129. The static Huffman algorithm would transmit 117 bits in 

processing the same data. The overhead associated with the adaptive method is actually 

less than that of the static algorithm. In the adaptive case the only overhead is 
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the n lg n bits needed to represent each of the n different source messages when they 

appear for the first time. (This is in fact conservative; rather than transmitting a unique 

code for each of the n source messages, the sender could transmit the message's position 

in the list of remaining messages and save a few bits in the average case.) In the static 

case, the source messages need to be sent as does the shape of the code tree. An efficient 

representation of the tree shape requires 2n bits. Algorithm FGK compares well with 

static Huffman coding on this ensemble when overhead is taken into account. 

 

2. Vitter Algorithm 

 
Vitter has proved that the total number of bits transmitted by algorithm FGK for a 

message ensemble of length t containing n distinct messages is bounded below by  

S - n + 1, where S is the performance of the static method, and bounded above by  

2S + t - 4n + 2 [Vitter 1987]. So the performance of algorithm FGK is never much worse 

than twice optimal. Knuth provides a complete implementation of algorithm FGK and a 

proof that the time required for each encoding or decoding operation is O(l), where l is 

the current length of the codeword [Knuth 1985]. It should be noted that since the 

mapping is defined dynamically, during transmission, the encoding and decoding 

algorithms stand alone; there is no additional algorithm to determine the mapping as in 

static methods. 

The adaptive Huffman algorithm of Vitter (algorithm V) incorporates two improvements 

over algorithm FGK. First, the number of interchanges in which a node is moved upward 

in the tree during a recomputation is limited to one. This number is bounded in algorithm 

FGK only by l/2 where l is the length of the codeword for a(t+1) when the recomputation 

begins. Second, Vitter's method minimizes the values of SUM{ l(i) } and MAX{l(i)} 

subject to the requirement of minimizing SUM{ w(i) l(i) }. The intuitive explanation of 

algorithm V's advantage over algorithm FGK is as follows: as in algorithm FGK, the 

code tree constructed by algorithm V is the Huffman code tree for the prefix of the 

ensemble seen so far. The adaptive methods do not assume that the relative frequencies 

of a prefix represent accurately the symbol probabilities over the entire message. 

Therefore, the fact that algorithm V guarantees a tree of minimum height (height = 

MAX{ l(i) } and minimum external path length (SUM{ l(i) }) implies that it is better 
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suited for coding the next message of the ensemble, given that any of the leaves of the 

tree may represent that next message. 

These improvements are accomplished through the use of a new system for numbering 

nodes. The numbering, called an implicit numbering, corresponds to a level ordering of 

the nodes (from bottom to top and left to right). 

The following invariant is maintained in Vitter's algorithm: For each weight w, all leaves 

of weight w precede (in the implicit numbering) all internal nodes of weight w. Vitter 

proves that this invariant enforces the desired bound on node promotions [Vitter 1987]. 

The invariant also implements bottom merging, as discussed in Section 3.2, to minimize 

SUM{ l(i) } and MAX{ l(i) }. The difference between Vitter's method and algorithm 

FGK is in the way the tree is updated between transmissions. In order to understand the 

revised update operation, the following definition of a block of nodes is necessary: 

Blocks are equivalence classes of nodes defined by u is equivalent 

to v iffweight(u) = weight(v) and u and v are either both leaves or both internal nodes. 

The leader of a block is the highest-numbered (in the implicit numbering) node in the 

block. Blocks are ordered by increasing weight with the convention that a leaf block 

always precedes an internal block of the same weight. When an exchange of nodes is 

required to maintain the sibling property, algorithm V requires that the node being 

promoted be moved to the position currently occupied by the highest-numbered node in 

the target block. 

In Figure 4.5, the Vitter tree corresponding to Figure 4.1c is shown. This is the first point 

in EXAMPLE at which algorithm FGK and algorithm V differ significantly. At this point, 

the Vitter tree has height 3 and external path length 12 while the FGK tree has height 4 

and external path length 14. Algorithm V transmits codeword 001 for the second c; FGK 

transmits 1101. This demonstrates the intuition given earlier that algorithm V is better 

suited for coding the next message. The Vitter tree corresponding to Figure 4.2, 

representing the final tree produced in processing EXAMPLE, is only different from 

Figure 4.2 in that the internal node of weight 5 is to the right of both leaf nodes of weight 

5. Algorithm V transmits 124 bits in processing EXAMPLE, as compared with the 129 

bits of algorithm FGK and 117 bits of static Huffman coding. It should be noted that 

these figures do not include overhead and, as a result, disadvantage the adaptive methods. 

http://www.ics.uci.edu/~dan/pubs/DC-Sec3.html#Sec_3.2
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  Fig 4.5 Algorithm V processing the ensemble "aabbb c" 

It should be noted again that the strategy of minimizing external path length and height is 

optimal under the assumption that any source letter is equally likely to occur next. Other 

reasonable strategies include one which assumes locality. To take advantage of locality, 

the ordering of tree nodes with equal weights could be determined on the basis of 

recency. Another reasonable assumption about adaptive coding is that the weights in the 

current tree correspond closely to the probabilities associated with the source. This 

assumption becomes more reasonable as the length of the ensemble increases. Under this 

assumption, the expected cost of transmitting the next letter is SUM{ p(i) l(i) } which is 

approximately SUM{ w(i) l(i) }, so that neither algorithm FGK nor algorithm V has any 

advantage. 

Vitter proves that the performance of his algorithm is bounded by S - n + 1 from below 

and S + t - 2n + 1 from above [Vitter 1987]. At worst then, Vitter's adaptive method may 

transmit one more bit per codeword than the static Huffman method. The improvements 

made by Vitter do not change the complexity of the algorithm; algorithm V encodes and 

decodes inO(l) time as does algorithm FGK. 
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3. Execution 

Input - A readme file - 6 KB in size 
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Program - Adaptive Huffman.exe 
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Output : A compressed file (composed of special characters)- 2 KB in size 
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CHAPTER 5 

GRAPHS - BACKGROUND 

1. Introduction 

In computer science, a graph is an abstract data type that is meant to implement 

the graph and directed graph concepts from mathematics. 

A graph data structure consists of a finite (and possibly mutable) set of nodes or vertices, 

together with a set of ordered pairs of these nodes (or, in some cases, a set of unordered 

pairs). These pairs are known as edges or arcs. As in mathematics, an edge (x,y) is said 

to point or go from x to y. The nodes may be part of the graph structure, or may be 

external entities represented by integer indices or references. 

A graph data structure may also associate to each edge some edge value, such as a 

symbolic label or a numeric attribute (cost, capacity, length, etc). 

Graphs are mathematical concepts that have found many uses in computer science. 

Graphs come in many different flavors, many of which have found uses in computer 

programs. Some flavors are: 

 Simple graph 

 Undirected or directed graphs 

 Cyclic or acyclic graphs 

 labeled graphs 

 Weighted graphs 

 Infinite graphs 

Most graphs are defined as a slight alteration of the following rules. 

 A graph is made up of two sets called Vertices and Edges. 

 The Vertices are drawn from some underlying type, and the set may be finite or 

infinite. 
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 Each element of the Edge set is a pair consisting of two elements from the 

Vertices set. 

 Graphs are often depicted visually, by drawing the elements of the Vertices set as 

boxes or circles, and drawing the elements of the edge set as lines or arcs between 

the boxes or circles. There is an arc between v1 and v2 if (v1,v2) is an element of 

the Edge set. 

Adjacency : If (u,v) is in the edge set we say u is adjacent to v (which we sometimes 

write as u ~ v). 

For example the graph drawn below: 

 

 

 

 

 

   Fig 5.1  Graph Illustration 1 

Has the following parts. 

 The underlying set for the Vertices set is the integers. 

 The Vertices set = {1,2,3,4,5,6} 

 The Edge set = {(6,4),(4,5),(4,3),(3,2),(5,2),(2,1),(5,1)} 
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2. Kinds of Graphs 

Various flavors of graphs have the following specializations and particulars about how 

they are usually drawn. 

 

 Undirected Graphs. 

In an undirected graph, the order of the vertices in the pairs in the Edge set doesn't 

matter. Thus, if we view the sample graph above we could have written the Edge set as 

{(4,6),(4,5),(3,4),(3,2),(2,5)),(1,2)),(1,5)}. Undirected graphs usually are drawn with 

straight lines between the vertices. 

The adjacency relation is symmetric in an undirected graph, so if u ~ v then it is also the 

case that v ~ u. 

 Directed Graphs. 

In a directed graph the order of the vertices in the pairs in the edge set matters. Thus u is 

adjacent to v only if the pair (u,v) is in the Edge set. For directed graphs we usually use 

arrows for the arcs between vertices. An arrow from u to v is drawn only if (u,v) is in the 

Edge set. The directed graph below 

 

 

Fig 5.2 Graph Illustration 2 
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Has the following parts. 

o The underlying set for the Vertices set is capital letters. 

o The Vertices set = {A,B,C,D,E} 

o The Edge set = {(A,B),(B,C),(D,C),(B,D),(D,B),(E,D),(B,E)} 

Note that both (B,D) and (D,B) are in the Edge set, so the arc between B and D is an 

arrow in both directions. 

 Vertex labeled Graphs. 

 

o In a labeled graph, each vertex is labeled with some data in addition to the data that 

identifies the vertex. Only the indentifying data is present in the pair in the Edge set. This 

is similar to the (key,satellite) data distinction for sorting. 

 

Fig 5.3 Graph Illustration 3 

o Here we have the following parts. 

o The underlying set for the keys of the Vertices set is the integers. 
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o The underlying set for the satellite data is Color. 

o The Vertices set = {(2,Blue), (4,Blue), (5,Red), (7,Green), (6,Red), (3,Yellow)} 

o The Edge set = {(2,4),(4,5),(5,7),(7,6),(6,2),(4,3),(3,7)} 

 

 Cyclic Graphs. 
o A cyclic graph is a directed graph with at least one cycle. A cycle is a path along the 

directed edges from a vertex to itself. The vertex labeled graph above as several cycles. 

One of them is 2 » 4 » 5 » 7 » 6 » 2 

 

 Edge labeled Graphs. 

A Edge labeled graph is a graph where the edges are associated with labels. One can 

indicate this be making the Edge set be a set of triples. Thus if (u,v,X) is in the edge set, 

then there is an edge from u to v with label X 

Edge labeled graphs are usually drawn with the labels drawn adjacent to the arcs 

specifying the edges. 

 

 

Fig 5.4 Graph Illustration 4 
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Here we have the following parts. 

o The underlying set for the Vertices set is Color. 

o The underlying set for the edge labels is sets of Color. 

o The Vertices set = {Red,Green,Blue,White} 

o The Edge set = {(red,white,{white,green}) ,(white,red,{blue}) , (white,blue,{green,red}) 

, (red,blue,{blue}) , (green,red,{red,blue,white}) , (blue,green,{white,green,red})} 

 

 Weighted Graphs. 

A weighted graph is an edge labeled graph where the labels can be operated on by the 

usual arithmetic operators, including comparisons like using less than and greater than. In 

Haskell we'd say the edge labels are i the Num class. Usually they are integers or floats. 

The idea is that some edges may be more (or less) expensive, and this cost is represented 

by the edge labels or weight. In the graph below, which is an undirected graph, the 

weights are drawn adjacent to the edges and appear in dark purple. 

 

Fig 5.5 Graph Illustration 5 

Here we have the following parts. 

o The underlying set for the Vertices set is Integer. 

o The underlying set for the weights is Integer. 
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o The Vertices set = {1,2,3,4,5} 

o The Edge set = {(1,4,5) ,(4,5,58) ,(3,5,34) ,(2,4,5) ,(2,5,4) ,(3,2,14) ,(1,2,2)} 

 

 Directed Acyclic Graphs. 

 

o A Dag is a directed graph without cycles. They appear as special cases in CS applications 

all the time. 

 

Fig 5.6 Graph Illustration 6 

o Here we have the following parts. 

o The underlying set for the the Vertices set is Integer. 

o The Vertices set = {1,2,3,4,5,6,7,8} 

o The Edge set = {(1,7) ,(2,6) ,(3,1),(3,5) ,(4,6) ,(5,4),(5,2) ,(6,8) ,(7,2),(7,8)} 

 

 Disconnected Graphs 

 

o Vertices in a graph do not need to be connected to other vertices. It is legal for a graph to 

have disconnected components, and even lone vertices without a single connection. 

o Vertices (like 5,7,and 8) with only in-arrows are called sinks. Vertices with only out-

arrows (like 3 and 4) are called sources. 

o Here we have the following parts. 
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o The underlying set for the the Vertices set is Integer. 

o The Vertices set = {1,2,3,4,5,6,7,8} 

o The Edge set = {(1,7) ,(3,1),(3,8) ,(4,6) ,(6,5)} 

 

 

3. Representing graphs in a computer 

Graphs are often used to represent physical entities (a network of roads, the relationship 

between people, etc) inside a computer. There are numerous mechanisms used. A good 

choice of mechanism depends upon the operations that the computer program needs to 

perform on the graph to achieve its needs. Possible operations include. 

Compute a list of all vertices 

Compute a list of all edges. 

For each vertex, u, compute a list of edges (u,v). This is often called the adjacency 

function. 

If the graph is labeled (either vertex labeled or edge labeled) compute the label for each 

vertex (or edge). 

Not all programs will need all of these operations, so for some programs, an efficient 

representation that can compute only the operations needed (but not the others), will 

suffice. 

 Graphs as sets. 

One way to represent graphs would be to directly store the Vertices set and the Edge set. 

This can make it difficult to efficiently compute adjacency information for particular 

vertexes quickly, so this representation is not used too often. 

 Graphs as adjacency information. 
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Most programs need to compute all the vertices adjacent to a given vertex. This 

corresponds to finding a 1-step path in the graph. In fact, for many programs this is the 

only operation needed, so data structures that support this operation quickly and 

efficiently are often used. Possible choices include arrays, balanced trees, hash tables, etc. 

 

 

 

  Graphs as functions. 

One useful abstraction is to think of the adjacency information as a function. Under this 

abstraction a graph is nothing more than a function. 

  type Graph vertex = vertex -> [vertex] 

   

For example the undirected graph below: 

 

 

Fig 5.7 Graph Illustration 7 

can be represented as the function. 

  graph1::  Graph Int 

  graph1 6 = [4] 
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  graph1 5 = [1,2,4] 

  graph1 4 = [3,5,6] 

  graph1 3 = [4,2] 

  graph1 2 = [1,3,5] 

  graph1 1 = [2,5] 

  graph1 _ = [ ] 

   

This mechanism can be extended to a wide variety of graphs types by slightly altering or 

enhancing the kind of function that represents the graph. Here are a few examples. 

 Directed graph. 

  type Dgraph vertex = vertex -> [vertex] 

The representation is the same as a undirected graph but the interpretation is different. In  

an undirected graph, f, with edge (2,3), we would have both 

 

    f 2  --->  [3, ... ] 

    f 3  --->  [2, ... ] 

but in a directed graph we would have only the first of the results. Consider the directed 

graph below: 
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Fig 5.8 Graph Illustration 8 

We could represent this as a Dgraph as follows: 

data Node = A | B | C | D | E 

 

graph2:: Dgraph Node 

graph2 A = [B] 

graph2 B = [C,D,E] 

graph2 C = [] 

graph2 D = [B,C] 

graph2 E = [D] 

graph2 _ = [] 

 

 Vertex labeled graph. 

  type VLgraph label vertex = vertex -> ([vertex],label) 

Here the function not only returns the adjacency list for a vertex but also the label. For 

example: 

data Color = Blue | Red | Yellow | Green 

graph4:: VLgraph Color Int 

graph4 2 = ([4],Blue) 

graph4 3 = ([7],Yellow) 

graph4 4 = ([3,5],Blue) 

graph4 5 = ([7],Red) 

graph4 6 = ([2],Red) 

graph4 7 = ([6],Green) 
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graph4 _ = ([],undefined) 

 

 Edge labeled graph. 

  type ELgraph label vertex = vertex -> [(vertex,label)] 

Here, the adjacency list now contains a tuple, the adjacent vertex, and the label 

of  edge to that vertex 

 

 

 

 

    

 

    Fig 5.9 Graph Illustration 9 

graph6:: ELgraph Int Int 

graph6 1 = [(4,5),(2,2)] 

graph6 2 = [(1,2),(4,5),(3,14),(5,4)] 

graph6 3 = [(2,14),(5,34)] 

graph6 4 = [(1,5),(2,5),(5,58)] 

graph6 5 = [(2,4),(3,34),(4,58)] 

graph6 _ = [] 
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 DAG. 

Here we have a simple graph, but the data must meet some invariants ensuring no 

 cycles 

 

 

 

 

    

   Fig 5.10 Graph Illustration 10 

graph7:: Graph Int 

graph7 1 = [7] 

graph7 2 = [6] 

graph7 3 = [1,5] 

graph7 4 = [6] 

graph7 5 = [2,4] 

graph7 6 = [8] 

graph7 7 = [2,8] 

graph7 8 = [] 

graph7 _ = [] 
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 Advantages of representing graphs as functions  

1. Simple and easy to understand 

2. Adapts easily to different kinds of graphs 

 Disadvantages of using graphs as functions 

1. Cannot be extended to accommodate queries about the set of Vertices or the set 

of Edges. 

2. Depending upon the compiler that compiles the functions may not be very 

efficient. In fact the worst case time could be proportional to the number of 

vertices. 

3. The graph must be known statically at compile time. 

 Graphs as arrays of adjacent vertexes. 

One mechanism that can ameliorate the disadvantages of using functions as a way to 

represent graphs is to use arrays instead. Using this mechanism requires that the 

underlying domain of Vertices be some type that can be used as indexes into an array. 

In the rest of this note we will assume that Vertices are of type Int, and that the Vertices 

set is a finite range of the type Int. Thus a graph can be represented as follows: 

type ArrGraph = Array [Int] 

We can now answer a number queries about graphs quickly and efficiently. 

type ArrGraph i = Array [i] 

 

vertices:: ArrGraph i -> IO[Int] 

edges:: ArrGraph i -> IO[(Int,i)] 

children:: ArrGraph i -> i -> IO[i] 
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vertices g = 

  do { (lo,hi) <- boundsArr g 

     ; return [lo..hi]} 

 

edges g = 

  do { (lo,hi) <- boundsArr g 

     ; ees <- toListArr g 

     ; return [ (i,j) | (i,cs) <- zip [lo..hi] ees, j <- cs ] } 

children g node = readArr g node 

 Advantages of representing graphs as arrays 

1. Simple and easy to understand 

2. Efficient access 

3. Graphs can be constructed at run-time 

4. Adapts easly to different kinds of graphs 

5. type VLArrGraph label = Array ([Int],label)  -- Vertex labeled graphs 

6. type ELArrGraph label = Array [(Int,label)]  -- Edge labeled graphs 

 Disadvantages of representing graphs as arrays 

1. Requires that graph access be a Command rather than a computation. 

2. The domain of Vertices must be a type that can be used as an index into an array.  
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CHAPTER 6 

GRAPH COMPRESSION 

1. Introduction 

I  propose to compress weighted graphs (networks), motivated by the observation that 

large networks of social, biological, or other relations can be complex to handle and 

visualize. In the process also known as graph simplification, nodes and (unweighted) 

edges are grouped to supernodes and superedges, respectively, to obtain a smaller graph. 

I propose a model and algorithm for weighted graphs. The interpretation (i.e. 

decompression) of a compressed, weighted graph is that a pair of original nodes is 

connected by an edge if their supernodes are connected by one, and that the weight of an 

edge is approximated to be the weight of the superedge. The compression problem now 

consists of choosing supernodes, superedges, and superedge weights so that the 

approximation error is minimized while the amount of compression is maximized. 

Here, I formulate this task as the 'simple weighted graph compression problem’. I then 

propose a much wider class of tasks under the name of 'generalized weighted graph 

compression problem’. The generalized task extends the optimization to preserve longer-

range connectivities between nodes, not just individual edge weights. I study the 

properties of these problems and propose an algorithm to solve them, with different 

balances between complexity and quality of the result. I evaluate the problems and 

algorithms experimentally on real and dummy networks. The results indicate that 

weighted graphs can be compressed efficiently with little error. 

Graphs and networks are used in numerous applications to describe relationships between 

entities, such as social relations between persons, links between web pages, flow of 

traffic, or interactions between proteins. In many applications, relationships have weights 

that are central to any use or analysis of graphs: how frequently do two persons 

communicate or how much do they influence each other’s opinions; how much web 

traffic flows from one page to another or how many cars drive from one crossing to 

another; or how strongly does one protein regulate the other one? 
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Here, I discuss models and methods for the compression of weighted graphs into smaller 

graphs that contain approximately the same information. In this process, also known as 

graph simplification in the context of unweighted graphs, nodes are grouped to 

supernodes, and edges are grouped to superedges between supernodes. A superedge then 

represents all possible edges between the pairs of nodes in the adjacent supernodes. 

This problem is different from graph clustering or partitioning where the aim is to find 

groups of strongly related nodes. In graph compression, nodes are grouped based on the 

similarity of their relationships to other nodes, not by their (direct) mutual relations. 

As a small example, consider the co-authorship social network in Figure 6.1a. It contains 

an excerpt from the DBLP Computer Science Bibliography 1, a subgraph containing 

Jiawei Han and Philip S. Yu and a dozen related authors. Nodes in this graph represent 

authors and edges represent co-authorships. Edges are weighted by the number of 

coauthored articles. Compressing this graph just by about 30% gives a simpler graph that 

highlights some of the inherent structure or roles in the original graph (Figure 6.1b).  

For instance, Ke Wang and Jianyong Wang have identical sets of co-authors (in this 

excerpt from DBLP) and have been grouped together. This is also an example of a group 

that would not be found by traditional graph clustering methods, since the two nodes 

grouped together are not directly connected. Daxin Jiang and Aidong Zhang have been 

grouped, but additionally the self-edge of their supernode indicates that they have also 

authored papers together. Groups that could not be obtained by the existing compression 

algorithms of can be observed among the six authors that (in this excerpt) only connect to 

Jiawei Han and Philip S. Yu.  

Instead of being all grouped together as structurally equivalent nodes, we have three 

groups that have different weight profiles. Charu C. Aggarwal is a group by himself, very 

strongly connected with Philip S. Yu. A second group includes Jiong Yang, Wei Fan, and 

Xifeng Yan, who are roughly equally strongly connected to both Jiawei Han and Philip S. 

Yu. The third group, Hong Cheng and Xiaoxin Yin, are more strongly connected to 

Jiawei Han. Such groups are not found with methods for unweighted graphs. 
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    Fig 6.1 Uncompressed Graph 

 

 

 

   Fig 6.1 Compressed Graph 
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In what we define as the simple weighted graph compression problem, the approximation 

error of the compressed graph with respect to original edge weights is minimized by 

assigning each superedge the mean weight of all edges it represents. For many 

applications on weighted graphs it is, however, important to preserve relationships 

between faraway nodes, too, not just individual edge weights. Motivated by this, I also 

introduce the generalized weighted graph compression problem where the goal is to 

produce a compressed graph that maintains connectivities across the graph: the best path 

between any two nodes should be approximately equally good in the compressed graph 

as it is in the original graph, but the path does not have to be the same.  

Compressed weighted graphs can be utilized in a number of ways. Graph algorithms can 

run more efficiently on a compressed graph, either by considering just the smaller graph 

consisting of supernodes and superedges, or by decompressing parts of it on the fly when 

needed. An interesting possibility is to provide an interactive visualization of a graph 

where the user can adjust the abstraction level of the graph on the fly. 

 

2. Simple Weighted Graph Compression 

Compression ratio does not consider the amount of errors introduced in edges and their 

weights. This issue is addressed by a measure of dissimilarity between graphs. We first 

present a simple distance measure that leads to the simple weighted graph compression 

problem. 

 

Definition : The simple distance between two graphs Ga = (V, Ea, wa) and Gb = (V, Eb, 

wb), with an identical set of nodes V, is 
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This distance measure has an interpretation as the Euclidean distance between Ga and Gb 

in a space where each pair of nodes {u, v} ∈ V × V has its own dimension. Given the 

distance definition, the dissimilarity between a graph G and its compressed representation 

S can then be defined simply as dist1(G, dec(S)). The distance can be seen as the cost of 

compression, whereas the compression ratio represents the savings. Our goal is to 

produce a compressed graph which optimizes the balance between these two. In 

particular, we will consider the following form of the problem. Definition Given a 

weighted graph G and a compression ratio cr, 0 < cr < 1, the simple weighted graph 

compression problem is to produce a compressed representation S of G with cr(S) ≤ cr 

such that dist1(G, dec(S)) is minimized. 

Other forms can be just as useful. One obvious choice would be to give a maximum 

distance as parameter, and then seek for a minimum compression ratio. In either case, the 

problem is complex, as the search space consists of all partitions of V. However, the 

compression ratio is non-increasing and graph distance non-decreasing when nodes are 

merged to supernodes, and this observation can be used to devise heuristic algorithms for 

the problem. 

Given a compressed graph structure, it is easy to set the weights of superedges to 

optimize the simple distance measure dist1(·). Each pair {u,v} ∈ V × V of original nodes 

is represented by exactly one pair {u0,v0} ∈ V0 × V0 of supernodes, including the cases u 

= v and u0 = v0. In order to minimize Equation 1, given the supernodes V0, we need to 

minimize for each pair {u0,v0} of supernodes the sum P{u,v}∈u0× v0 (w({u,v}) − 

w0({u0v0})) 2. This sum is minimized when the superedge weight is the mean of the 

original edge weights (including “zero-weight edges” for those pairs of nodes that are not 

connected by an edge):  
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where |x| is the number of original nodes in supernode x. The compression algorithms 

that we propose below work in an incremental, often greedy fashion, merging two 

supernodes at a time into a new supernode (following the ideas of references [12, 14]). 

The merge operation that these algorithms use is specified in Algorithm 1. It takes a 

graph and its two nodes as parameters, and it returns a graph where the given nodes are 

merged into one and the edge weights of the new supernode are set according to Equation 

3. Line 6 of the merge operation sets the weight of the self-edge for the supernode. When 

λ = 1, function W(x,y) returns the sum of weights of all original edges between x and y 

using their mean weight Q1({x,y}; S). The weight of the self-edge is then zero and the 

edge non-existent if neither u or v has a self-edge and if there is no edge between u and v.  

Setting superedge weights optimally is much more complicated for the generalized 

distance (Equation 2) when λ > 1: edge weights contribute to best paths and therefore 

distances up to λ hops away, so the distance cannot be optimized in general by setting 

each superedge weight independently. I use the merge operation of Algorithm 1 as an 

efficient, approximate solution also in these cases, and leave more optimal solutions for 

future work 

 

3. Merge Algorithm 

Algorithm 1 : merge(u,v,S) 

Input: Nodes u and v, and a compressed graph S = 

(V,E,w) s.t. u,v ∈ V 

Output: A compressed graph S0 obtained by merging u 

and v in S 

1:  S0 ← S {i.e., (V0,E0,w0) ← (V,E,w)} 

2:  z ← {u ∪ v} 

3:  V0 ← V0 \ {u,v} ∪ {z} 
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4:  for all x ∈ V s.t. u 6= x 6= v, and {u,x} or {v,x} ∈ E 

do 

5:  w0({z,x}) = | u| Q λ ({u,x};|Su)+| +||v|| Q λ ({v,x};S) 

6:  w0({z,z}) = W(u,u)+| z|W(| z(|−v,v1)+/2W(u,v) 

7:  return S0 

8:  function W(x,y): 

9:  if x 6= y then 

10:  return Qλ({x,y}; S)|x||y| 

11:  else 

12:  return Qλ({x,x}; S)|x|(|x| − 1)/2 

 

4. Compression Algorithm 

This algorithm has the following input and output:  

Input: weighted graph G = (V, E, w), compression ratio cr (0 < cr < 1), path quality 

function q, and maximum path length λ ∈ N. 

Output: compressed weighted graph S = (V0, E0, w0) with cr(S) ≤ cr, such that dist(G, 

dec(S)) is minimized. 

Brute-force greedy algorithm. The brute-force greedy method computes the 

effects of all possible pairwise mergers (Line 4) and then performs the best merger (Line 

5), and repeats this until the requested compression rate is achieved. The algorithm 

generalizes the greedy algorithm of  Navlakha et al. to distance functions dist λ(·) that 

take the maximum path length λ and the path quality function q as parameters. 
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Brute-force greedy search 

1:  S ← G {i.e., (V0, E0, w0) ← (V, E, w)} 

2:  while cr(S) > cr do 

3:  for all pairs {u, v} ∈ V0 × V0 do {(*)} 

4:  d 

{u,v} ← dist(G, dec(merge(u, v, S))) 

5:  S ← merge(arg min{u,v} d{u,v} , S) 

6:  return S 

(*) 2-hop optimization can be used, see text. 

 

The worst-case time complexity for simple weighted graph compression is O(| V| 4), and 

for generalized compression O(| V| 3| E| log | V|). I omit the details for brevity.  

2-hop optimization :  The brute-force method, as well as all other methods we present 

here, can be improved by the 2-hop optimization. Instead of arbitrary pairs of nodes, the 

2- hop optimized version only considers u and v for a potential merger if they are exactly 

two hops from each other. Since 2-hop neighbors have a shared neighbor that can be 

linked to the merged supernode with a single superedge, some compression may result. 

The 2-hop optimization is safe in the sense that any merger by Algorithm 1 that  

compresses the graph involves 2-hop neighbors. The time saving by 2-hop optimization 

can be significant: 

for the brute-force method, for instance, there are approximately O(deg |E|) feasible node 

pairs with the optimization, where deg is the average degree, instead of the O(|V| 2) pairs 

in the unoptimized algorithm. For the randomized methods below, a straight-forward 

implementation of 2-hop optimization by random walk has a nice property. Assume that 

one node has been chosen, then find a random pair for it by taking two consecutive 



56 

 

random hops starting from the first node. Now 2-hop neighbors with many shared 

neighbors are more likely to get picked, since there are several 2-hop paths to them. Such 

pairs, with many shared neighbors, lead to better compression. A uniform selection 

among all 2-hop neighbors does not have this property. 
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Conclusion and Future Work 

Data compression is a topic of much importance and many applications. Methods of data 

compression have been studied for almost four decades. This report has provided an 

overview of data compression methods of general utility. The algorithms have been 

evaluated in terms of the amount of compression they provide, algorithm efficiency, and 

susceptibility to error. While algorithm efficiency and susceptibility to error are relatively 

independent of the characteristics of the source ensemble, the amount of compression 

achieved depends upon the characteristics of the source to a great extent. 

Semantic dependent data compression techniques, are special-purpose methods designed 

to exploit local redundancy or context information. A semantic dependent scheme can 

usually be viewed as a special case of one or more general-purpose algorithms. It should 

also be noted that algorithm BSTW is a general-purpose technique which exploits 

locality of reference, a type of local redundancy. 

Susceptibility to error is the main drawback of each of the algorithms presented here. 

Although channel errors are more devastating to adaptive algorithms than to static ones, 

it is possible for an error to propagate without limit even in the static case. Methods of 

limiting the effect of an error on the effectiveness of a data compression algorithm should 

be investigated. 

Implementation of Adaptive Huffman to compress/encode text files is provided in the CD 

along with data set on which the program is used. 

Since Graph Compression is a vast area, I intend to pursue learning and implementing 

other forms of Graph Compression algorithms. 
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