
i

Data Compression Techniques

Report submitted in partial fulfillment of the requirement for the

degree of

Bachelor of Technology.

in

Computer Science & Engineering

under the Supervision of

 Prof Dr. S.P. Ghrera

By

 Vikram Thakur

111226

to

Jaypee University of Information and Technology

Waknaghat, Solan – 173234, Himachal Pradesh

ii

Certificate

This is to certify that project report entitled “Data Compression Techniques”, submitted

by Vikram Thakur(111226) in partial fulfillment for the award of degree of Bachelor of

Technology in Computer Science & Engineering to Jaypee University of Information

Technology, Waknaghat, Solan has been carried out under my supervision.

This work has not been submitted partially or fully to any other University or Institute for

the award of this or any other degree or diploma.

Date: Prof Dr. S.P. Ghrera

 Designation: Professor

iii

Acknowledgement

I am highly indebted to Jaypee University of Information Technology for their sources,

guidance and constant supervision as well as for providing necessary information

regarding the project & also for the support in completing the project.

I would like to express my gratitude towards my parents & Project Guide for their kind

co-operation and encouragement which helped me in completion of this project.

I would like to express my special gratitude and thanks to industry persons for giving me

such attention and time.

My thanks and appreciations also go to my colleagues in developing the project and

people who have willingly helped me out with their abilities

Date: Name : Vikram Thakur

iv

Table of Content

S. No. Topic Page No.

1. Abbreviations vi

2. List of Figures vii

3. Abstract viii

4. Chapter 1 – Data Compression 1

 4.1 Introduction to Compression 1

 4.2 Motivation for Compression 2

5. Chapter 2 – Concepts of Compression 4

 5.1 Information theory 4

 5.2 Data Compression Model 6

 5.3 Semantic Dependent Methods 10

6. Chapter 3 – Various Compression Algorithms 14

 6.1 Shannon-Fano Coding 14

 6.2 Static Huffman Coding 16

7. Chapter 4 – Adaptive Huffman Coding 23

 7.1 FGK Algorithm 24

 7.2 Vitter Algorithm 27

 7.3 Execution 30

8. Chapter 5 – Graphs - Background 33

v

 8.1 Introduction 33

 8.2 Kinds of Graphs 35

 8.3 Representing graphs in a computer 40

9. Chapter 6 – Graph Compression 48

 9.1 Introduction 48

 9.2 Simple Weighted Graph Compression 51

 9.3 Merge Algorithm 53

 9.3 Compression Algorithm 54

10. Conclusion and Future Work 57

11. References 58

vi

Abbreviations and Symbols

1. JPEG – Joint Photographic Experts Group

2.GIF – Graphics Interchangeable Format

3. HDTV – High Definition Television

4. MPEG-2 -Motion Pictures experts Group

5. FFT –Fast Fourier Transform

6. UNIX - Uniplexed Information and Computing System

7. ASCII - American Standard Code for Information Interchange

8. EBCDIC - Extended Binary Coded Decimal Interchange Code

9. IBM – International business Machines

10. IMS - Information Management System

11. FORTRAN - Formula Translation

12. COBOL – Common Business Oriented language

13. PL/I - Programming Language One

14. FGK – Faller, Gallager and Knuth

15. V - Vitter

16. BSTW - Bentley, Sleator, Tarjan and Wei

vii

List of Figures

S. No. Title Page No.

1. Fig 1.1 – A block-block code 4

2. Fig 1.2 – A variable code 4

3. Fig 3.1 – A Shannon-Fano Code 15

4. Fig 3.2 - Shannon-Fano EXAMPLE 15

5. Fig 3.3 – Huffman process – The List 16

6. Fig 3.3 Huffman Process – The Tree 17

7. Fig 4.1(a) FGK Tree – After Processing aa bb 24

8. Fig 4.1(b) – tree after encoding third b 25

9. Fig 4.1(c) - Tree after update following first c 26

10. Fig 4.2 – Tree for FGK for EXAMPLE 27

11. Fig 4.5 – Algorithm Vitter processing aabbb c 30

12. Fig 5.1 - Graph Illustration 1 34

13. Fig 5.2 - Graph Illustration 2 35

14. Fig 5.3 - Graph Illustration 3 36

15. Fig 5.4 - Graph Illustration 4 37

16. Fig 5.5 - Graph Illustration 5 38

17. Fig 5.6 - Graph Illustration 6 39

18. Fig 5.7 - Graph Illustration 7 42

19. Fig 5.8 - Graph Illustration 8 44

20. Fig 5.9 - Graph Illustration 9 45

21. Fig 6.1 - Uncompressed Graph 50

22. Fig 6.2 - Compressed Graph 50

viii

Abstract

Adaptive Huffman Coding is one of the many coding techniques used to compress data in

a multitude of real world applications. GZip, 7Zip, Winrar are only a handful of utilities

which make use of such data compression algorithms. Data Compression algorithms can

be divided into 2 categories

1. Lossy Compression Algorithms

2. Lossless Compression Algorithms

Adaptive Huffman, which is derived from Huffman Coding, falls into the latter category

and is extensively used in image formats such as JPEG (Joint Photographic Experts

Group). There are a few shortcomings to the straight Huffman compression. First of all,

you need to send the Huffman tree at the beginning of the compressed file, or the

decompressor will not be able to decode it. This can cause some overhead.

Also, Huffman compression looks at the statistics of the whole file, so that if a part of the

code uses a character more heavily, it will not adjust during that section. Not to mention

the fact that sometimes the whole file is not available to get the counts from (such as in

live information).

The solution to all of these problems is to use an Adaptive method.

It permits building the code as the symbols are being transmitted, having no initial

knowledge of source distribution, that allows one-pass encoding and adaptation to

changing conditions in data.

The benefit of one-pass procedure is that the source can be encoded in real time, though

it becomes more sensitive to transmission errors, since just a single loss ruins the whole

code.

Adaptive Huffman coding was first conceived independently by Faller and Gallager

[Faller 1973; Gallager 1978]. Knuth contributed improvements to the original algorithm

[Knuth 1985] and the resulting algorithm is referred to as algorithm FGK. A more recent

version of adaptive Huffman coding is described by Vitter [Vitter 1987]. All of these

ix

methods are defined-word schemes which determine the mapping from source messages

to codewords based upon a running estimate of the source message probabilities.

 The code is adaptive, changing so as to remain optimal for the current estimates. In this

way, the adaptive Huffman codes respond to locality. In essence, the encoder is

"learning" the characteristics of the source. The decoder must learn along with the

encoder by continually updating the Huffman tree so as to stay in synchronization with

the encoder.

1

CHAPTER 1

DATA COMPRESSION

1. Introduction to Data Compression

Compression is used just about everywhere. All the images you get on the web are

compressed, typically in the JPEG or GIF formats, most modems use compression,

HDTV will be compressed using MPEG-2, and several file systems automatically

compress files when stored, and the rest of us do it by hand. The neat thing about

compression, as with the other topics in this domain, is that the algorithms used in the

real world make heavy use of a wide set of algorithmic tools, including sorting, hash

tables, tries, and FFTs.

Furthermore, algorithms with strong theoretical foundations play a critical role in real-

world applications. In this chapter we will use the generic term message for the objects

we want to compress, which could be either files or messages. The task of compression

consists of two components, an encoding algorithm that takes a message and generates a

“compressed” representation (hopefully with fewer bits), and a decoding algorithm that

reconstructs the original message or some approximation of it from the compressed

representation.

These two components are typically intricately tied together since they both have to

understand the shared compressed representation. We distinguish between lossless

algorithms, which can reconstruct the original message exactly from the compressed

message, and lossy algorithms, which can only reconstruct an approximation

of the original message.

Lossless algorithms are typically used for text, and lossy for images and sound where a

little bit of loss in resolution is often undetectable, or at least acceptable. Lossy is used in

an abstract sense, however, and does not mean random lost pixels, but instead means loss

of a quantity such as a frequency component, or perhaps loss of noise. For example, one

might think that lossy text compression would be unacceptable because they are

imagining missing or switched characters.

Consider instead a system that reworded sentences into a more standard form, or replaced

words with synonyms so that the file can be better compressed. Technically the

2

compression would be lossy since the text has changed, but the “meaning” and clarity of

the message might be fully maintained, or even improved.

2. Motivation behind Compression

Data compression has wide application in terms of information storage, including

representation of the abstract data type string and file compression. Huffman coding is

used for compression in several file archival systems [ARC 1986; PKARC 1987], as is

Lempel-Ziv coding, one of the adaptive schemes. An adaptive Huffman coding technique

is the basis for the compact command of the UNIX operating system, and the

UNIX compress utility employs the Lempel-Ziv approach [UNIX 1984].

In the area of data transmission, Huffman coding has been passed over for years in favor

of block-block codes, notably ASCII. The advantage of Huffman coding is in the average

number of bits per character transmitted, which may be much smaller than the log n bits

per character (where n is the source alphabet size) of a block-block system.

The primary difficulty associated with variable-length codewords is that the rate at which

bits are presented to the transmission channel will fluctuate, depending on the relative

frequencies of the source messages. This requires buffering between the source and the

channel. Advances in technology have both overcome this difficulty and contributed to

the appeal of variable-length codes.

Current data networks allocate communication resources to sources on the basis of need

and provide buffering as part of the system. These systems require significant amounts of

protocol, and fixed-length codes are quite inefficient for applications such as packet

headers. In addition, communication costs are beginning to dominate storage and

processing costs, so that variable-length coding schemes which reduce communication

costs are attractive even if they are more complex. For these reasons, one could expect to

see even greater use of variable-length coding in the future.

It is interesting to note that the Huffman coding algorithm, originally developed for the

efficient transmission of data, also has a wide variety of applications outside the sphere

3

of data compression. These include construction of optimal search trees, list merging and

generating optimal evaluation trees in the compilation of expressions.

Additional applications involve search for jumps in a monotone function of a single

variable, sources of pollution along a river, and leaks in a pipeline. The fact that this

elegant combinatorial algorithm has influenced so many diverse areas underscores its

importance.

4

CHAPTER 2

CONCEPTS OF COMPRESSION

1. Information theory

A code is a mapping of source messages (words from the source alphabet alpha)

into codewords (words of the code alphabet beta). The source messages are the basic

units into which the string to be represented is partitioned. These basic units may be

single symbols from the source alphabet, or they may be strings of symbols. For

string EXAMPLE, alpha = {a, b, c, d, e, f, g, space}. For purpose of explanation,

let beta will be taken to be {0, 1 }. Codes can be categorized as block-block, block-

variable, variable-block or variable-variable, where block-block indicates that the source

messages and codewords are of fixed length and variable-variable codes map variable-

length source messages into variable-length codewords. A block-block code

for EXAMPLE is shown in Figure 1.1 and a variable-variable code is given in Figure 1.2.

If the string EXAMPLE were coded using the Figure 1.1 code, the length of the coded

message would be 120; using Figure 1.2 the length would be 30.

source message codeword source message codeword

a 000 aa 0
b 001 bbb 1
c 010 cccc 10

d 011 ddddd 11
e 100 eeeeee 100

f 101 fffffff 101
g 110 gggggggg 110
space 111 space 111

Figure 1.1: A block-block code Figure 1.2: A variable-variable code.

The oldest and most widely used codes, ASCII and EBCDIC, are examples of block-

block codes, mapping an alphabet of 64 (or 256) single characters onto 6-bit (or 8-bit)

codewords. These are not discussed, as they do not provide compression. The codes

featured in this survey are of the block-variable, variable-variable, and variable-block

types.

5

When source messages of variable length are allowed, the question of how a

message ensemble (sequence of messages) is parsed into individual messages arises.

Many of the algorithms described here are defined-word schemes. That is, the set of

source messages is determined prior to the invocation of the coding scheme. For

example, in text file processing each character may constitute a message, or messages

may be defined to consist of alphanumeric and non-alphanumeric strings. In Pascal

source code, each token may represent a message. All codes involving fixed-length

source messages are, by default, defined-word codes. In free-parse methods, the coding

algorithm itself parses the ensemble into variable-length sequences of symbols. Most of

the known data compression methods are defined-word schemes; the free-parse model

differs in a fundamental way from the classical coding paradigm.

A code is distinct if each codeword is distinguishable from every other (i.e., the mapping

from source messages to codewords is one-to-one). A distinct code is uniquely

decodable if every codeword is identifiable when immersed in a sequence of codewords.

Clearly, each of these features is desirable. The codes of Figure 1.1 and Figure 1.2 are

both distinct, but the code of Figure 1.2 is not uniquely decodable. For example, the

coded message 11 could be decoded as either ddddd or bbbbbb. A uniquely decodable

code is a prefix code (or prefix-free code) if it has the prefix property, which requires that

no codeword is a proper prefix of any other codeword. All uniquely decodable block-

block and variable-block codes are prefix codes. The code with codewords {1, 100000,

00 } is an example of a code which is uniquely decodable but which does not have the

prefix property. Prefix codes are instantaneously decodable; that is, they have the

desirable property that the coded message can be parsed into codewords without the need

for lookahead. In order to decode a message encoded using the codeword set { 1, 100000,

00 }, lookahead is required. For example, the first codeword of the message 1000000001

is 1, but this cannot be determined until the last (tenth) symbol of the message is read (if

the string of zeros had been of odd length, then the first codeword would have been

100000).

A minimal prefix code is a prefix code such that if x is a proper prefix of some codeword,

then x sigma is either a codeword or a proper prefix of a codeword, for each

letter sigma in beta. The set of codewords {00, 01, 10 } is an example of a prefix code

which is not minimal. The fact that 1 is a proper prefix of the codeword 10 requires

6

that 11be either a codeword or a proper prefix of a codeword, and it is neither.

Intuitively, the minimality constraint prevents the use of codewords which are longer

than necessary. In the above example the codeword 10 could be replaced by the

codeword 1, yielding a minimal prefix code with shorter codewords. The codes discussed

in this paper are all minimal prefix codes.

In this section, a code has been defined to be a mapping from a source alphabet to a code

alphabet; we now define related terms. The process of transforming a source ensemble

into a coded message is coding or encoding. The encoded message may be referred to as

an encoding of the source ensemble. The algorithm which constructs the mapping and

uses it to transform the source ensemble is called the encoder. The decoder performs the

inverse operation, restoring the coded message to its original form.

2. A Data Compression Model

In order to discuss the relative merits of data compression techniques, a framework for

comparison must be established. There are two dimensions along which each of the

schemes discussed here may be measured, algorithm complexity and amount of

compression. When data compression is used in a data transmission application, the goal

is speed.

Speed of transmission depends upon the number of bits sent, the time required for the

encoder to generate the coded message, and the time required for the decoder to recover

the original ensemble. In a data storage application, although the degree of compression

is the primary concern, it is nonetheless necessary that the algorithm be efficient in order

for the scheme to be practical. For a static scheme, there are three algorithms to analyze:

the map construction algorithm, the encoding algorithm, and the decoding algorithm. For

a dynamic scheme, there are just two algorithms: the encoding algorithm, and the

decoding algorithm.

Several common measures of compression have been suggested: redundancy [Shannon

and Weaver 1949], average message length [Huffman 1952], and compression ratio

[Rubin 1976; Ruth and Kreutzer 1972]. These measures are defined below.

7

Related to each of these measures are assumptions about the characteristics of the source.

It is generally assumed in information theory that all statistical parameters of a message

source are known with perfect accuracy [Gilbert 1971].

The most common model is that of a discrete memoryless source; a source whose output

is a sequence of letters (or messages), each letter being a selection from some fixed

alphabet a,... The letters are taken to be random, statistically independent selections from

the alphabet, the selection being made according to some fixed probability

assignment p(a),... [Gallager 1968]. To avoid loss of generality, the code alphabet is

assumed to be {0,1} throughout most papers. The modifications necessary for larger code

alphabets are straightforward.

It is assumed that any cost associated with the code letters is uniform. This is a

reasonable assumption, although it omits applications like telegraphy where the code

symbols are of different durations. The assumption is also important, since the problem

of constructing optimal codes over unequal code letter costs is a significantly different

and more difficult problem.

Perl et al. and Varn have developed algorithms for minimum-redundancy prefix coding

in the case of arbitrary symbol cost and equal codeword probability [Perl et al. 1975;

Varn 1971]. The assumption of equal probabilities mitigates the difficulty presented by

the variable symbol cost. For the more general unequal letter costs and unequal

probabilities model, Karp has proposed an integer linear programming approach [Karp

1961]. There have been several approximation algorithms proposed for this more difficult

problem [Krause 1962; Cot 1977; Mehlhorn 1980].

When data is compressed, the goal is to reduce redundancy, leaving only the

informational content. The measure of information of a source message x (in bits) is -

lg p(x) [lg denotes the base 2 logarithm]. This definition has intuitive appeal; in the case

that p(x=1, it is clear that x is not at all informative since it had to occur. Similarly, the

smaller the value of p(x, the more unlikely x is to appear, hence the larger its information

content.

The reader is referred to Abramson for a longer, more elegant discussion of the

legitimacy of this technical definition of the concept of information [Abramson 1963, pp.

6-13]. The average information content over the source alphabet can be computed by

weighting the information content of each source letter by its probability of occurrence,

8

yielding the expression SUM{i=1 to n} [-p(a(i)) lg p(a(i))]. This quantity is referred to as

the entropy of a source letter, or the entropy of the source, and is denoted by H.

Since the length of a codeword for message a(i) must be sufficient to carry the

information content of a(i), entropy imposes a lower bound on the number of bits

required for the coded message. The total number of bits must be at least as large as the

product of H and the length of the source ensemble. Since the value of H is generally not

an integer, variable length codewords must be used if the lower bound is to be achieved.

Given that message EXAMPLE is to be encoded one letter at a time, the entropy of its

source can be calculated using a standard set of probabilities: H = 2.894, so that the

minimum number of bits contained in an encoding of EXAMPLE is 116.

The Huffman code does not quite achieve the theoretical minimum in this case.

Both of these definitions of information content are due to Shannon. A derivation of the

concept of entropy as it relates to information theory is presented by Shannon [Shannon

and Weaver 1949]. A simpler, more intuitive explanation of entropy is offered by Ash

[Ash 1965].

The most common notion of a "good" code is one which is optimal in the sense of having

minimum redundancy. Redundancy can be defined as: SUM p(a(i)) l(i) - SUM [-p(a(i))

lg p(a(i))] where l(i) is the length of the codeword representing message a(i). The

expression SUM p(a(i)) l(i) represents the lengths of the codewords weighted by their

probabilities of occurrence, that is, the average codeword length. The expression SUM [-

p(a(i)) lg p(a(i))] is entropy,H.

Thus, redundancy is a measure of the difference between average codeword length and

average information content. If a code has minimum average codeword length for a given

discrete probability distribution, it is said to be a minimum redundancy code.

We define the term local redundancy to capture the notion of redundancy caused by local

properties of a message ensemble, rather than its global characteristics. While the model

used for analyzing general-purpose coding techniques assumes a random distribution of

the source messages, this may not actually be the case. In particular applications the

tendency for messages to cluster in predictable patterns may be known. The existence of

predictable patterns may be exploited to minimize local redundancy.

9

Huffman uses average message length, SUM p(a(i)) l(i), as a measure of the efficiency of

a code. Clearly the meaning of this term is the average length of a coded message. We

will use the term average codeword length to represent this quantity. Since redundancy is

defined to be average codeword length minus entropy and entropy is constant for a given

probability distribution, minimizing average codeword length minimizes redundancy.

A code is asymptotically optimal if it has the property that for a given probability

distribution, the ratio of average codeword length to entropy approaches 1 as entropy

tends to infinity. That is, asymptotic optimality guarantees that average codeword length

approaches the theoretical minimum (entropy represents information content, which

imposes a lower bound on codeword length).

The amount of compression yielded by a coding scheme can be measured by

a compression ratio. The term compression ratio has been defined in several ways. The

definition C = (average message length)/(average codeword length) captures the common

meaning, which is a comparison of the length of the coded message to the length of the

original ensemble [Cappellini 1985].

If we think of the characters of the ensemble EXAMPLE as 6-bit ASCII characters, then

the average message length is 6 bits. The Huffman code represents EXAMPLE in 117 bits

in a certain representation, or 2.9 bits per character. This yields a compression ratio of

6/2.9, representing compression by a factor of more than 2. Alternatively, we may say

that Huffman encoding produces a file whose size is 49% of the original ASCII file, or

that 49% compression has been achieved.

A somewhat different definition of compression ratio, by Rubin, C= (S - O - OR)/S,

includes the representation of the code itself in the transmission cost [Rubin 1976]. In

this definitionS represents the length of the source ensemble, O the length of the output

(coded message), and OR the size of the "output representation" (e.g., the number of bits

required for the encoder to transmit the code mapping to the decoder). The

quantity OR constitutes a "charge" to an algorithm for transmission of information about

the coding scheme. The intention is to measure the total size of the transmission (or file

to be stored).

10

3. Semantic Dependent Methods

Semantic dependent data compression techniques are designed to respond to specific

types of local redundancy occurring in certain applications. One area in which data

compression is of great importance is image representation and processing. There are two

major reasons for this. The first is that digitized images contain a large amount of local

redundancy. An image is usually captured in the form of an array of pixels whereas

methods which exploit the tendency for pixels of like color or intensity to cluster together

may be more efficient.

The second reason for the abundance of research in this area is volume. Digital images

usually require a very large number of bits, and many uses of digital images involve large

collections of images.

One technique used for compression of image data is run length encoding. In a common

version of run length encoding, the sequence of image elements along a scan line (row) is

mapped into a sequence of pairs (c,l) where crepresents an intensity or color and l the

length of the run (sequence of pixels of equal intensity). For pictures such as weather

maps, run length encoding can save a significant number of bits over the image element

sequence [Gonzalez and Wintz 1977].

Another data compression technique specific to the area of image data is difference

mapping, in which the image is represented as an array of differences in brightness (or

color) between adjacent pixels rather than the brightness values themselves. Difference

mapping was used to encode the pictures of Uranus transmitted byVoyager 2.

The 8 bits per pixel needed to represent 256 brightness levels was reduced to an average

of 3 bits per pixel when difference values were transmitted [Laeser et al. 1986]. In

spacecraft applications, image fidelity is a major concern due to the effect of the distance

from the spacecraft to earth on transmission reliability. Difference mapping was

combined with error-correcting codes to provide both compression and data integrity in

thee Voyager project.

Another method which takes advantage of the tendency for images to contain large areas

of constant intensity is the use of the quadtree data structure [Samet 1984]. Additional

examples of coding techni2ques used in image processing can be found in Wilkins and

Wintz and in Cappellini [Wilkins and Wintz 1971; Cappellini 1985].

11

Data compression is of interest in business data processing, both because of the cost

savings it offers and because of the large volume of data manipulated in many business

applications. The types of local redundancy present in business data files include runs of

zeros in numeric fields, sequences of blanks in alphanumeric fields, and fields which are

present in some records and null in others. Run length encoding can be used to compress

sequences of zeros or blanks. Null suppression may be accomplished through the use of

presence bits [Ruth and Kreutzer 1972].

 Another class of methods exploits cases in which only a limited set of attribute values

exist. Dictionary substitution entails replacing alphanumeric representations of

information such as bank account type, insurance policy type, sex, month, etc. by the few

bits necessary to represent the limited number of possible attribute values [Reghbati

1981].

3.1 IBM’s Information Management System

Cormack describes a data compression system which is designed for use with database

files [Cormack 1985]. The method, which is part of IBM's "Information Management

System" (IMS), compresses individual records and is invoked each time a record is stored

in the database file; expansion is performed each time a record is retrieved.

Since records may be retrieved in any order, context information used by the

compression routine is limited to a single record. In order for the routine to be applicable

to any database, it must be able to adapt to the format of the record. The fact that

database records are usually heterogeneous collections of small fields indicates that the

local properties of the data are more important than its global characteristics.

The compression routine in IMS is a hybrid method which attacks this local redundancy

by using different coding schemes for different types of fields. The identified field types

in IMS are letters of the alphabet, numeric digits, packed decimal digit pairs,

blank, and other.

When compression begins, a default code is used to encode the first character of the

record. For each subsequent character, the type of the previous character determines the

12

code to be used. For example, if the record 01870_ABCD__LMN were encoded with

the letter code as default, the leading zero would be coded using the letter code; the 1, 8,

7, 0 and the first blank (_) would be coded by the numeric code.

The A would be coded by the blank code; B, C, D, and the next blank by the letter code;

the next blank and the L by the blank code; and the M and N by the letter code. Clearly,

each code must define a codeword for every character; the letter code would assign the

shortest codewords to letters, the numeric code would favor the digits, etc. In the system

Cormack describes, the types of the characters are stored in the encode/decode data

structures.

When a character c is received, the decoder checks type(c) to detect which code table will

be used in transmitting the next character. The compression algorithm might be more

efficient if a special bit string were used to alert the receiver to a change in code table.

Particularly if fields were reasonably long, decoding would be more rapid and the extra

bits in the transmission would not be excessive. Cormack reports that the performance of

the IMS compression routines is very good; at least fifty sites are currently using the

system. He cites a case of a database containing student records whose size was reduced

by 42.1%, and as a side effect the number of disk operations required to load the database

was reduced by 32.7% [Cormack 1985].

A variety of approaches to data compression designed with text files in mind include use

of a dictionary either representing all of the words in the file so that the file itself is coded

as a list of pointers to the dictionary [Hahn 1974], or representing common words and

word endings so that the file consists of pointers to the dictionary and encodings of the

less common words [Tropper 1982]. Hand-selection of common phrases [Wagner 1973],

programmed selection of prefixes and suffixes [Fraenkel et al. 1983] and programmed

selection of common character pairs [Snyderman and Hunt 1970; Cortesi 1982] have also

been investigated.

This discussion of semantic dependent data compression techniques represents a limited

sample of a very large body of research. These methods and others of a like nature are

interesting and of great value in their intended domains.

Their obvious drawback lies in their limited utility. It should be noted, however, that

much of the efficiency gained through the use of semantic dependent techniques can be

achieved through more general methods, albeit to a lesser degree. For example, the

dictionary approaches can be implemented through either Huffman coding or Lempel-Ziv

13

codes. Cormack's database scheme is a special case of the codebook approach and run

length encoding is one of the effects of Lempel-Ziv codes.

14

CHAPTER 3

VARIOUS COMPRESSION ALGORITHMS

1. Shannon-Fano Coding

The classic defined-word scheme was developed over 30 years ago in Huffman's well-

known paper on minimum-redundancy coding [Huffman 1952]. Huffman's algorithm

provided the first solution to the problem of constructing minimum-redundancy codes.

Many people believe that Huffman coding cannot be improved upon, that is, that it is

guaranteed to achieve the best possible compression ratio. This is only true, however,

under the constraints that each source message is mapped to a unique codeword and that

the compressed text is the concatenation of the codewords for the source messages. An

earlier algorithm, due independently to Shannon and Fano [Shannon and Weaver 1949;

Fano 1949], is not guaranteed to provide optimal codes, but approaches optimal behavior

as the number of messages approaches infinity. The Huffman algorithm is also of

importance because it has provided a foundation upon which other data compression

techniques have built and a benchmark to which they may be compared. We classify the

codes generated by the Huffman and Shannon-Fano algorithms as variable-variable and

note that they include block-variable codes as a special case, depending upon how the

source messages are defined.

The Shannon-Fano technique has as an advantage its simplicity. The code is constructed

as follows: the source messages a(i) and their probabilities p(a(i)) are listed in order of

nonincreasing probability. This list is then divided in such a way as to form two groups

of as nearly equal total probabilities as possible. Each message in the first group receives

0 as the first digit of its codeword; the messages in the second half have codewords

beginning with 1. Each of these groups is then divided according to the same criterion

and additional code digits are appended. The process is continued until each subset

contains only one message. Clearly the Shannon-Fano algorithm yields a minimal prefix

code.

15

a 1/2 0

b 1/4 10

c 1/8 110

d 1/16 1110

e 1/32 11110

f 1/32 11111

 Figure 3.1 A Shannon-Fano Code

Figure 3.1 shows the application of the method to a particularly simple probability

distribution. The length of each codeword x is equal to -lg p(x). This is true as long as it

is possible to divide the list into subgroups of exactly equal probability. When this is not

possible, some codewords may be of length -lg p(x)+1. The Shannon-Fano algorithm

yields an average codeword length S which satisfies H <= S <= H + 1. In Figure 3.2, the

Shannon-Fano code for ensemble EXAMPLE is given. As is often the case, the average

codeword length is the same as that achieved by the Huffman code. That the Shannon-

Fano algorithm is not guaranteed to produce an optimal code is demonstrated by the

following set of probabilities: { 35, .17, .17, .16, .15 }.

G 8/40 00

f 7/40 010

e 6/40 011

d 5/16 100

space 5/32 101

c 4/32 110

b 3/40 1110

a 2/40 1111

 Figure 3.2A Shannon-Fano Code for EXAMPLE

16

2. Static Huffman Coding

Huffman's algorithm, expressed graphically, takes as input a list of nonnegative weights

{w(1), ... ,w(n) } and constructs a full binary tree [a binary tree is full if every node has

either zero or two children] whose leaves are labeled with the weights. When the

Huffman algorithm is used to construct a code, the weights represent the probabilities

associated with the source letters. Initially there is a set of singleton trees, one for each

weight in the list. At each step in the algorithm the trees corresponding to the two

smallest weights, w(i) and w(j), are merged into a new tree whose weight is w(i)+w(j) and

whose root has two children which are the subtrees represented by w(i) and w(j). The

weights w(i) and w(j) are removed from the list and w(i)+w(j) is inserted into the list.

This process continues until the weight list contains a single value. If, at any time, there

is more than one way to choose a smallest pair of weights, any such pair may be chosen.

In Huffman's paper, the process begins with a non-increasing list of weights. This detail

is not important to the correctness of the algorithm, but it does provide a more efficient

implementation [Huffman 1952]. The Huffman algorithm is demonstrated in Figure 3.3

a1 .25 .25 .25 .33 .42 .58 1.0

a2 .20 .20 .22 .25 .33 .42

a3 .15 .18 .20 .22 .25

a4 .12 .15 .18 .20

a5 .10 .12 .15

a6 .10 .10

a7 .08

 Figure 3.3 Huffman Process – The List

17

 Fig 3.3 Huffman Process – The Tree

The Huffman algorithm determines the lengths of the codewords to be mapped to each of

the source letters a(i). There are many alternatives for specifying the actual digits; it is

necessary only that the code have the prefix property. The usual assignment entails

labeling the edge from each parent to its left child with the digit 0 and the edge to the

right child with 1. The codeword for each source letter is the sequence of labels along the

path from the root to the leaf node representing that letter. The codewords for the source

of Figure 3.3, in order of decreasing probability, are {01,11,001,100,101,000,0001}.

1.0

.58

0.33

.18

.42

.22 .20 .25

.15

.10 .8

.12 .10

18

Clearly, this process yields a minimal prefix code. Further, the algorithm is guaranteed to

produce an optimal (minimum redundancy) code [Huffman 1952].

Gallager has proved an upper bound on the redundancy of a Huffman code of p(n) + lg

[(2 lg e)/e] which is approximately p(n) + 0.086, where p(n) is the probability of the least

likely source message [Gallager 1978]. In a recent paper, Capocelli et al. provide new

bounds which are tighter than those of Gallagher for some probability distributions

[Capocelli et al. 1986]. Figure 3.4 shows a distribution for which the Huffman code is

optimal while the Shannon-Fano code is not.

In addition to the fact that there are many ways of forming codewords of appropriate

lengths, there are cases in which the Huffman algorithm does not uniquely determine

these lengths due to the arbitrary choice among equal minimum weights. As an example,

codes with codeword lengths of {1,2,3,4,4} and of {2,2,2,3,3} both yield the same

average codeword length for a source with probabilities {.4,.2,.2,.1,.1}.

Schwartz defines a variation of the Huffman algorithm which performs "bottom

merging"; that is, orders a new parent node above existing nodes of the same weight and

always merges the last two weights in the list. The code constructed is the Huffman code

with minimum values of maximum codeword length (MAX{ l(i) }) and total codeword

length (SUM{ l(i) }) [Schwartz 1964]. Schwartz and Kallick describe an implementation

of Huffman's algorithm with bottom merging [Schwartz and Kallick 1964].

The Schwartz-Kallick algorithm and a later algorithm by Connell [Connell 1973] use

Huffman's procedure to determine the lengths of the codewords, and actual digits are

assigned so that the code has the numerical sequence property. That is, codewords of

equal length form a consecutive sequence of binary numbers. Shannon-Fano codes also

have the numerical sequence property. This property can be exploited to achieve a

compact representation of the code and rapid encoding and decoding.

19

 S-F Huffman

a(1) .35 00 1

a(2) .17 01 011

a(3) .17 10 010

a(4) .16 110 001

a(5) .15 111 000

 Average Codeword length 2.31 2.30

 Fig 3.4 Comparison of Shannon-Fano and Huffman Codes

Both the Huffman and the Shannon-Fano mappings can be generated in O(n) time,

where n is the number of messages in the source ensemble (assuming that the weights

have been presorted). Each of these algorithms maps a source message a(i) with

probability p to a codeword of length l (-lg p <= l <= - lg p + 1). Encoding and decoding

times depend upon the representation of the mapping. If the mapping is stored as a binary

tree, then decoding the codeword for a(i) involves following a path of length l in the tree.

A table indexed by the source messages could be used for encoding; the code for a(i)

would be stored in position i of the table and encoding time would be O(l). Connell's

algorithm makes use of the index of the Huffman code, a representation of the

distribution of codeword lengths, to encode and decode in O(c) time where c is the

number of different codeword lengths. Tanaka presents an implementation of Huffman

coding based on finite-state machines which can be realized efficiently in either hardware

or software [Tanaka 1987].

As noted earlier, the redundancy bound for Shannon-Fano codes is 1 and the bound for

the Huffman method is p(n) + 0.086 where p(n) is the probability of the least likely

source message (so p(n) is less than or equal to .5, and generally much less). It is

important to note that in defining redundancy to be average codeword length minus

entropy, the cost of transmitting the code mapping computed by these algorithms is

ignored. The overhead cost for any method where the source alphabet has not been

established prior to transmission includes n lg n bits for sending the n source letters. For a

20

Shannon-Fano code, a list of codewords ordered so as to correspond to the source letters

could be transmitted. The additional time required is then SUM l(i), where the l(i) are the

lengths of the codewords. For Huffman coding, an encoding of the shape of the code tree

might be transmitted. Since any full binary tree may be a legal Huffman code tree,

encoding tree shape may require as many as lg 4^n = 2n bits. In most cases the message

ensemble is very large, so that the number of bits of overhead is minute by comparison to

the total length of the encoded transmission. However, it is imprudent to ignore this cost.

If a less-than-optimal code is acceptable, the overhead costs can be avoided through a

prior agreement by sender and receiver as to the code mapping. Rather than using a

Huffman code based upon the characteristics of the current message ensemble, the code

used could be based on statistics for a class of transmissions to which the current

ensemble is assumed to belong. That is, both sender and receiver could have access to

a codebook with k mappings in it; one for Pascal source, one for English text, etc.

The sender would then simply alert the receiver as to which of the common codes he is

using. This requires only lg k bits of overhead. Assuming that classes of transmission

with relatively stable characteristics could be identified, this hybrid approach would

greatly reduce the redundancy due to overhead without significantly increasing expected

codeword length. In addition, the cost of computing the mapping would be amortized

over all files of a given class.

That is, the mapping would be computed once on a statistically significant sample and

then used on a great number of files for which the sample is representative. There is

clearly a substantial risk associated with assumptions about file characteristics and great

care would be necessary in choosing both the sample from which the mapping is to be

derived and the categories into which to partition transmissions. An extreme example of

the risk associated with the codebook approach is provided by author Ernest V. Wright

who wrote a novel Gadsby (1939) containing no occurrences of the letter E. Since E is

the most commonly used letter in the English language, an encoding based upon a sample

from Gadsby would be disastrous if used with "normal" examples of English text.

Similarly, the "normal" encoding would provide poor compression of Gadsby.

McIntyre and Pechura describe an experiment in which the codebook approach is

compared to static Huffman coding [McIntyre and Pechura 1985]. The sample used for

21

comparison is a collection of 530 source programs in four languages. The codebook

contains a Pascal code tree, a FORTRAN code tree, a COBOL code tree, a PL/1 code

tree, and an ALL code tree.

The Pascal code tree is the result of applying the static Huffman algorithm to the

combined character frequencies of all of the Pascal programs in the sample. The ALL

code tree is based upon the combined character frequencies for all of the programs. The

experiment involves encoding each of the programs using the five codes in the codebook

and the static Huffman algorithm. The data reported for each of the 530 programs

consists of the size of the coded program for each of the five predetermined codes, and

the size of the coded program plus the size of the mapping (in table form) for the static

Huffman method.

In every case, the code tree for the language class to which the program belongs

generates the most compact encoding. Although using the Huffman algorithm on the

program itself yields an optimal mapping, the overhead cost is greater than the added

redundancy incurred by the less-than-optimal code. In many cases, the ALL code tree

also generates a more compact encoding than the static Huffman algorithm. In the worst

case, an encoding constructed from the codebook is only 6.6% larger than that

constructed by the Huffman algorithm. These results suggest that, for files of source

code, the codebook approach may be appropriate.

Gilbert discusses the construction of Huffman codes based on inaccurate source

probabilities [Gilbert 1971]. A simple solution to the problem of incomplete knowledge

of the source is to avoid long codewords, thereby minimizing the error of

underestimating badly the probability of a message. The problem becomes one of

constructing the optimal binary tree subject to a height restriction ([Knuth 1971; Hu and

Tan 1972; Garey 1974]). Another approach involves collecting statistics for several

sources and then constructing a code based upon some combined criterion.

This approach could be applied to the problem of designing a single code for use with

English, French, German, etc., sources. To accomplish this, Huffman's algorithm could

be used to minimize either the average codeword length for the combined source

probabilities; or the average codeword length for English, subject to constraints on

average codeword lengths for the other sources.

22

CHAPTER 4

ADAPTIVE HUFFMAN CODING

Adaptive Huffman coding was first conceived independently by Faller and Gallager

[Faller 1973; Gallager 1978]. Knuth contributed improvements to the original algorithm

[Knuth 1985] and the resulting algorithm is referred to as algorithm FGK. A more recent

version of adaptive Huffman coding is described by Vitter [Vitter 1987].

All of these methods are defined-word schemes which determine the mapping from

source messages to codewords based upon a running estimate of the source message

probabilities. The code is adaptive, changing so as to remain optimal for the current

estimates. In this way, the adaptive Huffman codes respond to locality. In essence, the

encoder is "learning" the characteristics of the source. The decoder must learn along with

the encoder by continually updating the Huffman tree so as to stay in synchronization

with the encoder.

Another advantage of these systems is that they require only one pass over the data. Of

course, one-pass methods are not very interesting if the number of bits they transmit is

significantly greater than that of the two-pass scheme. Interestingly, the performance of

these methods, in terms of number of bits transmitted, can be better than that of static

Huffman coding. This does not contradict the optimality of the static method as the static

method is optimal only over all methods which assume a time-invariant mapping.

The performance of the adaptive methods can also be worse than that of the static

method. Upper bounds on the redundancy of these methods are presented in this section.

As discussed in the introduction, the adaptive method of Faller, Gallager and Knuth is the

basis for the UNIX utility compact. The performance of compact is quite good, providing

typical compression factors of 30-40%.

23

1. FGK Algorithm

The basis for algorithm FGK is the Sibling Property, defined by Gallager [Gallager

1978]: A binary code tree has the sibling property if each node (except the root) has a

sibling and if the nodes can be listed in order of non-increasing weight with each node

adjacent to its sibling. Gallager proves that a binary prefix code is a Huffman code if and

only if the code tree has the sibling property. In algorithm FGK, both sender and receiver

maintain dynamically changing Huffman code trees. The leaves of the code tree represent

the source messages and the weights of the leaves represent frequency counts for the

messages. At any point in time, k of the n possible source messages have occurred in the

message ensemble.

Fig 4.1(a) Tree after processing "aa bb"; 11 will be transmitted for the next b.

5

3

1

2

0 1

2

7

9

8

5 5

3
4

b

a

space

24

Fig 4.1(b) After encoding the third b; 101 will be transmitted for the next space; the tree

will not change; 100 will be transmitted for the first c.

5

3

1

3

0 1

2

7

9

8

5 6

3
4

a

b

space

25

 Fig 4.1(c) Tree after update following first c

Initially, the code tree consists of a single leaf node, called the 0-node. The 0-node is a

special node used to represent the n-k unused messages. For each message transmitted,

both parties must increment the corresponding weight and recompute the code tree to

maintain the sibling property. At the point in time when t messages have been

transmitted, k of them distinct, and k < n, the tree is a legal Huffman code tree with k+1

leaves, one for each of the k messages and one for the 0-node. If the (t+1)st message is

one of the k already seen, the algorithm transmits a(t+1)'s current code, increments the

appropriate counter and recomputes the tree. If an unused message occurs, the 0-node is

split to create a pair of leaves, one fora(t+1), and a sibling which is the new 0-node.

Again the tree is recomputed. In this case, the code for the 0-node is sent; in addition, the

receiver must be told which of the n-k unused messages has appeared. At each node a

count of occurrences of the corresponding message is stored. Nodes are numbered

indicating their position in the sibling property ordering. The updating of the tree can be

8

3

1

3

0 1

2

7

9

6

3
4

1
2

a

b

space

2

5

5

8

c

26

done in a single traversal from the a(t+1) node to the root. This traversal must increment

the count for the a(t+1) node and for each of its ancestors. Nodes may be exchanged to

maintain the sibling property, but all of these exchanges involve a node on the path

from a(t+1) to the root. Figure 4.2 shows the final code tree formed by this process on the

ensemble EXAMPLE.

 Fig 4.2 Tree formed by algorithm FGK for ensemble EXAMPLE

Disregarding overhead, the number of bits transmitted by algorithm FGK for

the EXAMPLE is 129. The static Huffman algorithm would transmit 117 bits in

processing the same data. The overhead associated with the adaptive method is actually

less than that of the static algorithm. In the adaptive case the only overhead is

5

2

0

2

3

8

3

4

1

2

d

b

5

10

7

13

a

7

13

e f

9 10

14

10

16

5

9

c
space

5
6

12

17

6

4

11

8

g

40

15

17

27

the n lg n bits needed to represent each of the n different source messages when they

appear for the first time. (This is in fact conservative; rather than transmitting a unique

code for each of the n source messages, the sender could transmit the message's position

in the list of remaining messages and save a few bits in the average case.) In the static

case, the source messages need to be sent as does the shape of the code tree. An efficient

representation of the tree shape requires 2n bits. Algorithm FGK compares well with

static Huffman coding on this ensemble when overhead is taken into account.

2. Vitter Algorithm

Vitter has proved that the total number of bits transmitted by algorithm FGK for a

message ensemble of length t containing n distinct messages is bounded below by

S - n + 1, where S is the performance of the static method, and bounded above by

2S + t - 4n + 2 [Vitter 1987]. So the performance of algorithm FGK is never much worse

than twice optimal. Knuth provides a complete implementation of algorithm FGK and a

proof that the time required for each encoding or decoding operation is O(l), where l is

the current length of the codeword [Knuth 1985]. It should be noted that since the

mapping is defined dynamically, during transmission, the encoding and decoding

algorithms stand alone; there is no additional algorithm to determine the mapping as in

static methods.

The adaptive Huffman algorithm of Vitter (algorithm V) incorporates two improvements

over algorithm FGK. First, the number of interchanges in which a node is moved upward

in the tree during a recomputation is limited to one. This number is bounded in algorithm

FGK only by l/2 where l is the length of the codeword for a(t+1) when the recomputation

begins. Second, Vitter's method minimizes the values of SUM{ l(i) } and MAX{l(i)}

subject to the requirement of minimizing SUM{ w(i) l(i) }. The intuitive explanation of

algorithm V's advantage over algorithm FGK is as follows: as in algorithm FGK, the

code tree constructed by algorithm V is the Huffman code tree for the prefix of the

ensemble seen so far. The adaptive methods do not assume that the relative frequencies

of a prefix represent accurately the symbol probabilities over the entire message.

Therefore, the fact that algorithm V guarantees a tree of minimum height (height =

MAX{ l(i) } and minimum external path length (SUM{ l(i) }) implies that it is better

28

suited for coding the next message of the ensemble, given that any of the leaves of the

tree may represent that next message.

These improvements are accomplished through the use of a new system for numbering

nodes. The numbering, called an implicit numbering, corresponds to a level ordering of

the nodes (from bottom to top and left to right).

The following invariant is maintained in Vitter's algorithm: For each weight w, all leaves

of weight w precede (in the implicit numbering) all internal nodes of weight w. Vitter

proves that this invariant enforces the desired bound on node promotions [Vitter 1987].

The invariant also implements bottom merging, as discussed in Section 3.2, to minimize

SUM{ l(i) } and MAX{ l(i) }. The difference between Vitter's method and algorithm

FGK is in the way the tree is updated between transmissions. In order to understand the

revised update operation, the following definition of a block of nodes is necessary:

Blocks are equivalence classes of nodes defined by u is equivalent

to v iffweight(u) = weight(v) and u and v are either both leaves or both internal nodes.

The leader of a block is the highest-numbered (in the implicit numbering) node in the

block. Blocks are ordered by increasing weight with the convention that a leaf block

always precedes an internal block of the same weight. When an exchange of nodes is

required to maintain the sibling property, algorithm V requires that the node being

promoted be moved to the position currently occupied by the highest-numbered node in

the target block.

In Figure 4.5, the Vitter tree corresponding to Figure 4.1c is shown. This is the first point

in EXAMPLE at which algorithm FGK and algorithm V differ significantly. At this point,

the Vitter tree has height 3 and external path length 12 while the FGK tree has height 4

and external path length 14. Algorithm V transmits codeword 001 for the second c; FGK

transmits 1101. This demonstrates the intuition given earlier that algorithm V is better

suited for coding the next message. The Vitter tree corresponding to Figure 4.2,

representing the final tree produced in processing EXAMPLE, is only different from

Figure 4.2 in that the internal node of weight 5 is to the right of both leaf nodes of weight

5. Algorithm V transmits 124 bits in processing EXAMPLE, as compared with the 129

bits of algorithm FGK and 117 bits of static Huffman coding. It should be noted that

these figures do not include overhead and, as a result, disadvantage the adaptive methods.

http://www.ics.uci.edu/~dan/pubs/DC-Sec3.html#Sec_3.2

29

 Fig 4.5 Algorithm V processing the ensemble "aabbb c"

It should be noted again that the strategy of minimizing external path length and height is

optimal under the assumption that any source letter is equally likely to occur next. Other

reasonable strategies include one which assumes locality. To take advantage of locality,

the ordering of tree nodes with equal weights could be determined on the basis of

recency. Another reasonable assumption about adaptive coding is that the weights in the

current tree correspond closely to the probabilities associated with the source. This

assumption becomes more reasonable as the length of the ensemble increases. Under this

assumption, the expected cost of transmitting the next letter is SUM{ p(i) l(i) } which is

approximately SUM{ w(i) l(i) }, so that neither algorithm FGK nor algorithm V has any

advantage.

Vitter proves that the performance of his algorithm is bounded by S - n + 1 from below

and S + t - 2n + 1 from above [Vitter 1987]. At worst then, Vitter's adaptive method may

transmit one more bit per codeword than the static Huffman method. The improvements

made by Vitter do not change the complexity of the algorithm; algorithm V encodes and

decodes inO(l) time as does algorithm FGK.

1

0
1

4

2

1

space

c

2

3

3

7

3

5

a b

5 6

8

8

9

2

30

3. Execution

Input - A readme file - 6 KB in size

31

Program - Adaptive Huffman.exe

32

Output : A compressed file (composed of special characters)- 2 KB in size

33

CHAPTER 5

GRAPHS - BACKGROUND

1. Introduction

In computer science, a graph is an abstract data type that is meant to implement

the graph and directed graph concepts from mathematics.

A graph data structure consists of a finite (and possibly mutable) set of nodes or vertices,

together with a set of ordered pairs of these nodes (or, in some cases, a set of unordered

pairs). These pairs are known as edges or arcs. As in mathematics, an edge (x,y) is said

to point or go from x to y. The nodes may be part of the graph structure, or may be

external entities represented by integer indices or references.

A graph data structure may also associate to each edge some edge value, such as a

symbolic label or a numeric attribute (cost, capacity, length, etc).

Graphs are mathematical concepts that have found many uses in computer science.

Graphs come in many different flavors, many of which have found uses in computer

programs. Some flavors are:

 Simple graph

 Undirected or directed graphs

 Cyclic or acyclic graphs

 labeled graphs

 Weighted graphs

 Infinite graphs

Most graphs are defined as a slight alteration of the following rules.

 A graph is made up of two sets called Vertices and Edges.

 The Vertices are drawn from some underlying type, and the set may be finite or

infinite.

34

 Each element of the Edge set is a pair consisting of two elements from the

Vertices set.

 Graphs are often depicted visually, by drawing the elements of the Vertices set as

boxes or circles, and drawing the elements of the edge set as lines or arcs between

the boxes or circles. There is an arc between v1 and v2 if (v1,v2) is an element of

the Edge set.

Adjacency : If (u,v) is in the edge set we say u is adjacent to v (which we sometimes

write as u ~ v).

For example the graph drawn below:

 Fig 5.1 Graph Illustration 1

Has the following parts.

 The underlying set for the Vertices set is the integers.

 The Vertices set = {1,2,3,4,5,6}

 The Edge set = {(6,4),(4,5),(4,3),(3,2),(5,2),(2,1),(5,1)}

35

2. Kinds of Graphs

Various flavors of graphs have the following specializations and particulars about how

they are usually drawn.

 Undirected Graphs.

In an undirected graph, the order of the vertices in the pairs in the Edge set doesn't

matter. Thus, if we view the sample graph above we could have written the Edge set as

{(4,6),(4,5),(3,4),(3,2),(2,5)),(1,2)),(1,5)}. Undirected graphs usually are drawn with

straight lines between the vertices.

The adjacency relation is symmetric in an undirected graph, so if u ~ v then it is also the

case that v ~ u.

 Directed Graphs.

In a directed graph the order of the vertices in the pairs in the edge set matters. Thus u is

adjacent to v only if the pair (u,v) is in the Edge set. For directed graphs we usually use

arrows for the arcs between vertices. An arrow from u to v is drawn only if (u,v) is in the

Edge set. The directed graph below

Fig 5.2 Graph Illustration 2

36

Has the following parts.

o The underlying set for the Vertices set is capital letters.

o The Vertices set = {A,B,C,D,E}

o The Edge set = {(A,B),(B,C),(D,C),(B,D),(D,B),(E,D),(B,E)}

Note that both (B,D) and (D,B) are in the Edge set, so the arc between B and D is an

arrow in both directions.

 Vertex labeled Graphs.

o In a labeled graph, each vertex is labeled with some data in addition to the data that

identifies the vertex. Only the indentifying data is present in the pair in the Edge set. This

is similar to the (key,satellite) data distinction for sorting.

Fig 5.3 Graph Illustration 3

o Here we have the following parts.

o The underlying set for the keys of the Vertices set is the integers.

37

o The underlying set for the satellite data is Color.

o The Vertices set = {(2,Blue), (4,Blue), (5,Red), (7,Green), (6,Red), (3,Yellow)}

o The Edge set = {(2,4),(4,5),(5,7),(7,6),(6,2),(4,3),(3,7)}

 Cyclic Graphs.
o A cyclic graph is a directed graph with at least one cycle. A cycle is a path along the

directed edges from a vertex to itself. The vertex labeled graph above as several cycles.

One of them is 2 » 4 » 5 » 7 » 6 » 2

 Edge labeled Graphs.

A Edge labeled graph is a graph where the edges are associated with labels. One can

indicate this be making the Edge set be a set of triples. Thus if (u,v,X) is in the edge set,

then there is an edge from u to v with label X

Edge labeled graphs are usually drawn with the labels drawn adjacent to the arcs

specifying the edges.

Fig 5.4 Graph Illustration 4

38

Here we have the following parts.

o The underlying set for the Vertices set is Color.

o The underlying set for the edge labels is sets of Color.

o The Vertices set = {Red,Green,Blue,White}

o The Edge set = {(red,white,{white,green}) ,(white,red,{blue}) , (white,blue,{green,red})

, (red,blue,{blue}) , (green,red,{red,blue,white}) , (blue,green,{white,green,red})}

 Weighted Graphs.

A weighted graph is an edge labeled graph where the labels can be operated on by the

usual arithmetic operators, including comparisons like using less than and greater than. In

Haskell we'd say the edge labels are i the Num class. Usually they are integers or floats.

The idea is that some edges may be more (or less) expensive, and this cost is represented

by the edge labels or weight. In the graph below, which is an undirected graph, the

weights are drawn adjacent to the edges and appear in dark purple.

Fig 5.5 Graph Illustration 5

Here we have the following parts.

o The underlying set for the Vertices set is Integer.

o The underlying set for the weights is Integer.

39

o The Vertices set = {1,2,3,4,5}

o The Edge set = {(1,4,5) ,(4,5,58) ,(3,5,34) ,(2,4,5) ,(2,5,4) ,(3,2,14) ,(1,2,2)}

 Directed Acyclic Graphs.

o A Dag is a directed graph without cycles. They appear as special cases in CS applications

all the time.

Fig 5.6 Graph Illustration 6

o Here we have the following parts.

o The underlying set for the the Vertices set is Integer.

o The Vertices set = {1,2,3,4,5,6,7,8}

o The Edge set = {(1,7) ,(2,6) ,(3,1),(3,5) ,(4,6) ,(5,4),(5,2) ,(6,8) ,(7,2),(7,8)}

 Disconnected Graphs

o Vertices in a graph do not need to be connected to other vertices. It is legal for a graph to

have disconnected components, and even lone vertices without a single connection.

o Vertices (like 5,7,and 8) with only in-arrows are called sinks. Vertices with only out-

arrows (like 3 and 4) are called sources.

o Here we have the following parts.

40

o The underlying set for the the Vertices set is Integer.

o The Vertices set = {1,2,3,4,5,6,7,8}

o The Edge set = {(1,7) ,(3,1),(3,8) ,(4,6) ,(6,5)}

3. Representing graphs in a computer

Graphs are often used to represent physical entities (a network of roads, the relationship

between people, etc) inside a computer. There are numerous mechanisms used. A good

choice of mechanism depends upon the operations that the computer program needs to

perform on the graph to achieve its needs. Possible operations include.

Compute a list of all vertices

Compute a list of all edges.

For each vertex, u, compute a list of edges (u,v). This is often called the adjacency

function.

If the graph is labeled (either vertex labeled or edge labeled) compute the label for each

vertex (or edge).

Not all programs will need all of these operations, so for some programs, an efficient

representation that can compute only the operations needed (but not the others), will

suffice.

 Graphs as sets.

One way to represent graphs would be to directly store the Vertices set and the Edge set.

This can make it difficult to efficiently compute adjacency information for particular

vertexes quickly, so this representation is not used too often.

 Graphs as adjacency information.

41

Most programs need to compute all the vertices adjacent to a given vertex. This

corresponds to finding a 1-step path in the graph. In fact, for many programs this is the

only operation needed, so data structures that support this operation quickly and

efficiently are often used. Possible choices include arrays, balanced trees, hash tables, etc.

 Graphs as functions.

One useful abstraction is to think of the adjacency information as a function. Under this

abstraction a graph is nothing more than a function.

 type Graph vertex = vertex -> [vertex]

For example the undirected graph below:

Fig 5.7 Graph Illustration 7

can be represented as the function.

 graph1:: Graph Int

 graph1 6 = [4]

42

 graph1 5 = [1,2,4]

 graph1 4 = [3,5,6]

 graph1 3 = [4,2]

 graph1 2 = [1,3,5]

 graph1 1 = [2,5]

 graph1 _ = []

This mechanism can be extended to a wide variety of graphs types by slightly altering or

enhancing the kind of function that represents the graph. Here are a few examples.

 Directed graph.

 type Dgraph vertex = vertex -> [vertex]

The representation is the same as a undirected graph but the interpretation is different. In

an undirected graph, f, with edge (2,3), we would have both

 f 2 ---> [3, ...]

 f 3 ---> [2, ...]

but in a directed graph we would have only the first of the results. Consider the directed

graph below:

43

Fig 5.8 Graph Illustration 8

We could represent this as a Dgraph as follows:

data Node = A | B | C | D | E

graph2:: Dgraph Node

graph2 A = [B]

graph2 B = [C,D,E]

graph2 C = []

graph2 D = [B,C]

graph2 E = [D]

graph2 _ = []

 Vertex labeled graph.

 type VLgraph label vertex = vertex -> ([vertex],label)

Here the function not only returns the adjacency list for a vertex but also the label. For

example:

data Color = Blue | Red | Yellow | Green

graph4:: VLgraph Color Int

graph4 2 = ([4],Blue)

graph4 3 = ([7],Yellow)

graph4 4 = ([3,5],Blue)

graph4 5 = ([7],Red)

graph4 6 = ([2],Red)

graph4 7 = ([6],Green)

44

graph4 _ = ([],undefined)

 Edge labeled graph.

 type ELgraph label vertex = vertex -> [(vertex,label)]

Here, the adjacency list now contains a tuple, the adjacent vertex, and the label

of edge to that vertex

 Fig 5.9 Graph Illustration 9

graph6:: ELgraph Int Int

graph6 1 = [(4,5),(2,2)]

graph6 2 = [(1,2),(4,5),(3,14),(5,4)]

graph6 3 = [(2,14),(5,34)]

graph6 4 = [(1,5),(2,5),(5,58)]

graph6 5 = [(2,4),(3,34),(4,58)]

graph6 _ = []

45

 DAG.

Here we have a simple graph, but the data must meet some invariants ensuring no

 cycles

 Fig 5.10 Graph Illustration 10

graph7:: Graph Int

graph7 1 = [7]

graph7 2 = [6]

graph7 3 = [1,5]

graph7 4 = [6]

graph7 5 = [2,4]

graph7 6 = [8]

graph7 7 = [2,8]

graph7 8 = []

graph7 _ = []

46

 Advantages of representing graphs as functions

1. Simple and easy to understand

2. Adapts easily to different kinds of graphs

 Disadvantages of using graphs as functions

1. Cannot be extended to accommodate queries about the set of Vertices or the set

of Edges.

2. Depending upon the compiler that compiles the functions may not be very

efficient. In fact the worst case time could be proportional to the number of

vertices.

3. The graph must be known statically at compile time.

 Graphs as arrays of adjacent vertexes.

One mechanism that can ameliorate the disadvantages of using functions as a way to

represent graphs is to use arrays instead. Using this mechanism requires that the

underlying domain of Vertices be some type that can be used as indexes into an array.

In the rest of this note we will assume that Vertices are of type Int, and that the Vertices

set is a finite range of the type Int. Thus a graph can be represented as follows:

type ArrGraph = Array [Int]

We can now answer a number queries about graphs quickly and efficiently.

type ArrGraph i = Array [i]

vertices:: ArrGraph i -> IO[Int]

edges:: ArrGraph i -> IO[(Int,i)]

children:: ArrGraph i -> i -> IO[i]

47

vertices g =

 do { (lo,hi) <- boundsArr g

 ; return [lo..hi]}

edges g =

 do { (lo,hi) <- boundsArr g

 ; ees <- toListArr g

 ; return [(i,j) | (i,cs) <- zip [lo..hi] ees, j <- cs] }

children g node = readArr g node

 Advantages of representing graphs as arrays

1. Simple and easy to understand

2. Efficient access

3. Graphs can be constructed at run-time

4. Adapts easly to different kinds of graphs

5. type VLArrGraph label = Array ([Int],label) -- Vertex labeled graphs

6. type ELArrGraph label = Array [(Int,label)] -- Edge labeled graphs

 Disadvantages of representing graphs as arrays

1. Requires that graph access be a Command rather than a computation.

2. The domain of Vertices must be a type that can be used as an index into an array.

48

CHAPTER 6

GRAPH COMPRESSION

1. Introduction

I propose to compress weighted graphs (networks), motivated by the observation that

large networks of social, biological, or other relations can be complex to handle and

visualize. In the process also known as graph simplification, nodes and (unweighted)

edges are grouped to supernodes and superedges, respectively, to obtain a smaller graph.

I propose a model and algorithm for weighted graphs. The interpretation (i.e.

decompression) of a compressed, weighted graph is that a pair of original nodes is

connected by an edge if their supernodes are connected by one, and that the weight of an

edge is approximated to be the weight of the superedge. The compression problem now

consists of choosing supernodes, superedges, and superedge weights so that the

approximation error is minimized while the amount of compression is maximized.

Here, I formulate this task as the 'simple weighted graph compression problem’. I then

propose a much wider class of tasks under the name of 'generalized weighted graph

compression problem’. The generalized task extends the optimization to preserve longer-

range connectivities between nodes, not just individual edge weights. I study the

properties of these problems and propose an algorithm to solve them, with different

balances between complexity and quality of the result. I evaluate the problems and

algorithms experimentally on real and dummy networks. The results indicate that

weighted graphs can be compressed efficiently with little error.

Graphs and networks are used in numerous applications to describe relationships between

entities, such as social relations between persons, links between web pages, flow of

traffic, or interactions between proteins. In many applications, relationships have weights

that are central to any use or analysis of graphs: how frequently do two persons

communicate or how much do they influence each other’s opinions; how much web

traffic flows from one page to another or how many cars drive from one crossing to

another; or how strongly does one protein regulate the other one?

49

Here, I discuss models and methods for the compression of weighted graphs into smaller

graphs that contain approximately the same information. In this process, also known as

graph simplification in the context of unweighted graphs, nodes are grouped to

supernodes, and edges are grouped to superedges between supernodes. A superedge then

represents all possible edges between the pairs of nodes in the adjacent supernodes.

This problem is different from graph clustering or partitioning where the aim is to find

groups of strongly related nodes. In graph compression, nodes are grouped based on the

similarity of their relationships to other nodes, not by their (direct) mutual relations.

As a small example, consider the co-authorship social network in Figure 6.1a. It contains

an excerpt from the DBLP Computer Science Bibliography 1, a subgraph containing

Jiawei Han and Philip S. Yu and a dozen related authors. Nodes in this graph represent

authors and edges represent co-authorships. Edges are weighted by the number of

coauthored articles. Compressing this graph just by about 30% gives a simpler graph that

highlights some of the inherent structure or roles in the original graph (Figure 6.1b).

For instance, Ke Wang and Jianyong Wang have identical sets of co-authors (in this

excerpt from DBLP) and have been grouped together. This is also an example of a group

that would not be found by traditional graph clustering methods, since the two nodes

grouped together are not directly connected. Daxin Jiang and Aidong Zhang have been

grouped, but additionally the self-edge of their supernode indicates that they have also

authored papers together. Groups that could not be obtained by the existing compression

algorithms of can be observed among the six authors that (in this excerpt) only connect to

Jiawei Han and Philip S. Yu.

Instead of being all grouped together as structurally equivalent nodes, we have three

groups that have different weight profiles. Charu C. Aggarwal is a group by himself, very

strongly connected with Philip S. Yu. A second group includes Jiong Yang, Wei Fan, and

Xifeng Yan, who are roughly equally strongly connected to both Jiawei Han and Philip S.

Yu. The third group, Hong Cheng and Xiaoxin Yin, are more strongly connected to

Jiawei Han. Such groups are not found with methods for unweighted graphs.

50

 Fig 6.1 Uncompressed Graph

 Fig 6.1 Compressed Graph

51

In what we define as the simple weighted graph compression problem, the approximation

error of the compressed graph with respect to original edge weights is minimized by

assigning each superedge the mean weight of all edges it represents. For many

applications on weighted graphs it is, however, important to preserve relationships

between faraway nodes, too, not just individual edge weights. Motivated by this, I also

introduce the generalized weighted graph compression problem where the goal is to

produce a compressed graph that maintains connectivities across the graph: the best path

between any two nodes should be approximately equally good in the compressed graph

as it is in the original graph, but the path does not have to be the same.

Compressed weighted graphs can be utilized in a number of ways. Graph algorithms can

run more efficiently on a compressed graph, either by considering just the smaller graph

consisting of supernodes and superedges, or by decompressing parts of it on the fly when

needed. An interesting possibility is to provide an interactive visualization of a graph

where the user can adjust the abstraction level of the graph on the fly.

2. Simple Weighted Graph Compression

Compression ratio does not consider the amount of errors introduced in edges and their

weights. This issue is addressed by a measure of dissimilarity between graphs. We first

present a simple distance measure that leads to the simple weighted graph compression

problem.

Definition : The simple distance between two graphs Ga = (V, Ea, wa) and Gb = (V, Eb,

wb), with an identical set of nodes V, is

52

This distance measure has an interpretation as the Euclidean distance between Ga and Gb

in a space where each pair of nodes {u, v} ∈ V × V has its own dimension. Given the

distance definition, the dissimilarity between a graph G and its compressed representation

S can then be defined simply as dist1(G, dec(S)). The distance can be seen as the cost of

compression, whereas the compression ratio represents the savings. Our goal is to

produce a compressed graph which optimizes the balance between these two. In

particular, we will consider the following form of the problem. Definition Given a

weighted graph G and a compression ratio cr, 0 < cr < 1, the simple weighted graph

compression problem is to produce a compressed representation S of G with cr(S) ≤ cr

such that dist1(G, dec(S)) is minimized.

Other forms can be just as useful. One obvious choice would be to give a maximum

distance as parameter, and then seek for a minimum compression ratio. In either case, the

problem is complex, as the search space consists of all partitions of V. However, the

compression ratio is non-increasing and graph distance non-decreasing when nodes are

merged to supernodes, and this observation can be used to devise heuristic algorithms for

the problem.

Given a compressed graph structure, it is easy to set the weights of superedges to

optimize the simple distance measure dist1(·). Each pair {u,v} ∈ V × V of original nodes

is represented by exactly one pair {u0,v0} ∈ V0 × V0 of supernodes, including the cases u

= v and u0 = v0. In order to minimize Equation 1, given the supernodes V0, we need to

minimize for each pair {u0,v0} of supernodes the sum P{u,v}∈u0× v0 (w({u,v}) −

w0({u0v0})) 2. This sum is minimized when the superedge weight is the mean of the

original edge weights (including “zero-weight edges” for those pairs of nodes that are not

connected by an edge):

53

where |x| is the number of original nodes in supernode x. The compression algorithms

that we propose below work in an incremental, often greedy fashion, merging two

supernodes at a time into a new supernode (following the ideas of references [12, 14]).

The merge operation that these algorithms use is specified in Algorithm 1. It takes a

graph and its two nodes as parameters, and it returns a graph where the given nodes are

merged into one and the edge weights of the new supernode are set according to Equation

3. Line 6 of the merge operation sets the weight of the self-edge for the supernode. When

λ = 1, function W(x,y) returns the sum of weights of all original edges between x and y

using their mean weight Q1({x,y}; S). The weight of the self-edge is then zero and the

edge non-existent if neither u or v has a self-edge and if there is no edge between u and v.

Setting superedge weights optimally is much more complicated for the generalized

distance (Equation 2) when λ > 1: edge weights contribute to best paths and therefore

distances up to λ hops away, so the distance cannot be optimized in general by setting

each superedge weight independently. I use the merge operation of Algorithm 1 as an

efficient, approximate solution also in these cases, and leave more optimal solutions for

future work

3. Merge Algorithm

Algorithm 1 : merge(u,v,S)

Input: Nodes u and v, and a compressed graph S =

(V,E,w) s.t. u,v ∈ V

Output: A compressed graph S0 obtained by merging u

and v in S

1: S0 ← S {i.e., (V0,E0,w0) ← (V,E,w)}

2: z ← {u ∪ v}

3: V0 ← V0 \ {u,v} ∪ {z}

54

4: for all x ∈ V s.t. u 6= x 6= v, and {u,x} or {v,x} ∈ E

do

5: w0({z,x}) = | u| Q λ ({u,x};|Su)+| +||v|| Q λ ({v,x};S)

6: w0({z,z}) = W(u,u)+| z|W(| z(|−v,v1)+/2W(u,v)

7: return S0

8: function W(x,y):

9: if x 6= y then

10: return Qλ({x,y}; S)|x||y|

11: else

12: return Qλ({x,x}; S)|x|(|x| − 1)/2

4. Compression Algorithm

This algorithm has the following input and output:

Input: weighted graph G = (V, E, w), compression ratio cr (0 < cr < 1), path quality

function q, and maximum path length λ ∈ N.

Output: compressed weighted graph S = (V0, E0, w0) with cr(S) ≤ cr, such that dist(G,

dec(S)) is minimized.

Brute-force greedy algorithm. The brute-force greedy method computes the

effects of all possible pairwise mergers (Line 4) and then performs the best merger (Line

5), and repeats this until the requested compression rate is achieved. The algorithm

generalizes the greedy algorithm of Navlakha et al. to distance functions dist λ(·) that

take the maximum path length λ and the path quality function q as parameters.

55

Brute-force greedy search

1: S ← G {i.e., (V0, E0, w0) ← (V, E, w)}

2: while cr(S) > cr do

3: for all pairs {u, v} ∈ V0 × V0 do {(*)}

4: d

{u,v} ← dist(G, dec(merge(u, v, S)))

5: S ← merge(arg min{u,v} d{u,v} , S)

6: return S

(*) 2-hop optimization can be used, see text.

The worst-case time complexity for simple weighted graph compression is O(| V| 4), and

for generalized compression O(| V| 3| E| log | V|). I omit the details for brevity.

2-hop optimization : The brute-force method, as well as all other methods we present

here, can be improved by the 2-hop optimization. Instead of arbitrary pairs of nodes, the

2- hop optimized version only considers u and v for a potential merger if they are exactly

two hops from each other. Since 2-hop neighbors have a shared neighbor that can be

linked to the merged supernode with a single superedge, some compression may result.

The 2-hop optimization is safe in the sense that any merger by Algorithm 1 that

compresses the graph involves 2-hop neighbors. The time saving by 2-hop optimization

can be significant:

for the brute-force method, for instance, there are approximately O(deg |E|) feasible node

pairs with the optimization, where deg is the average degree, instead of the O(|V| 2) pairs

in the unoptimized algorithm. For the randomized methods below, a straight-forward

implementation of 2-hop optimization by random walk has a nice property. Assume that

one node has been chosen, then find a random pair for it by taking two consecutive

56

random hops starting from the first node. Now 2-hop neighbors with many shared

neighbors are more likely to get picked, since there are several 2-hop paths to them. Such

pairs, with many shared neighbors, lead to better compression. A uniform selection

among all 2-hop neighbors does not have this property.

57

Conclusion and Future Work

Data compression is a topic of much importance and many applications. Methods of data

compression have been studied for almost four decades. This report has provided an

overview of data compression methods of general utility. The algorithms have been

evaluated in terms of the amount of compression they provide, algorithm efficiency, and

susceptibility to error. While algorithm efficiency and susceptibility to error are relatively

independent of the characteristics of the source ensemble, the amount of compression

achieved depends upon the characteristics of the source to a great extent.

Semantic dependent data compression techniques, are special-purpose methods designed

to exploit local redundancy or context information. A semantic dependent scheme can

usually be viewed as a special case of one or more general-purpose algorithms. It should

also be noted that algorithm BSTW is a general-purpose technique which exploits

locality of reference, a type of local redundancy.

Susceptibility to error is the main drawback of each of the algorithms presented here.

Although channel errors are more devastating to adaptive algorithms than to static ones,

it is possible for an error to propagate without limit even in the static case. Methods of

limiting the effect of an error on the effectiveness of a data compression algorithm should

be investigated.

Implementation of Adaptive Huffman to compress/encode text files is provided in the CD

along with data set on which the program is used.

Since Graph Compression is a vast area, I intend to pursue learning and implementing

other forms of Graph Compression algorithms.

58

References

[1] Lelewer and Hirschberg, http://www.ics.uci.edu/~dan/pubs/DC-Sec1.html

[2] Dave Marshall, http://www.cs.cf.ac.uk/Dave/Multimedia/node212.html

[3] Abramson, N. 1963. Information Theory and Coding. McGraw-Hill, New York.

[4] Connell, J. B. 1973. A Huffman-Shannon-Fano Code. Proc. IEEE 61, 7 (July), 1046-

1047.

[5] Cortesi, D. 1982. An Effective Text-Compression Algorithm. BYTE 7, 1 (Jan.), 397-

403.

[6] Knuth, D. E. 1971. Optimum Binary Search Trees. Acta Inf. 1, 1 (Jan.), 14-25.

[7] Knuth, D. E. 1985. Dynamic Huffman Coding. J. Algorithms 6, 2 (June), 163-180.

[8] Vitter, J. S. 1987. Design and Analysis of Dynamic Huffman Codes. J. ACM 34, 4

(Oct.), 825-845.

[9] M. Adler and M. Mitzenmacher. Towards compressing web graphs. In Data

Compression Conference, pages 203–212, 2001

[10] P. Boldi and S. Vigna. The webgraph framework I: compression techniques. In

WWW ’04: Proceedings of the 13th international conference on World Wide Web, pages

595–602, New York, NY, USA, 2004. ACM.

[11] S. P. Borgatti and M. G. Everett. Regular blockmodels of multiway, multimode

matrices. Social Networks, 14:91–120, 1992.

[12] C. Chen, C. Lin, M. Fredrikson, M. Christodorescu, X. Yan, and J. Han. Mining

graph patterns efficiently via randomized summaries. In 2009 Int. Conf. on Very Large

Data Bases, pages 742–753, Lyon, France, August 2009. VLDB Endowment.

[13] C. Chen, X. Yan, F. Zhu, J. Han, and P. Yu. Graph OLAP: Towards online

analytical processing on graphs. In ICDM ’08: Proceedings of the 2008 Eighth IEEE

http://www.cs.cf.ac.uk/Dave/Multimedia/node212.html

59

International Conference on Data Mining, pages 103–112, Washington, DC, USA, 2008.

IEEE Computer Society

[14] U. Elsner. Graph partitioning - a survey. Technical Report SFB393/97-27,

Technische Universit¨ at Chemnitz, 1997.

[15] C. Faloutsos, K. S. McCurley, and A. Tomkins. Fast discovery of connection

subgraphs. In KDD ’04: Proceedings of the tenth ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 118–127, New York, NY,

USA, 2004. ACM.

[16] P.-O. Fj¨allstr¨om. Algorithms for graph partitioning: A Survey. In Link¨oping

Electronic Atricles in Computer and Information Science, 3, 1998.

[17] S. Hauguel, C. Zhai, and J. Han. Parallel PathFinder Algorithms for Mining

Structures from Graphs. In 2009 Ninth IEEE International Conference on Data Mining,

pages 812–817. IEEE, 2009.

[18] P. Hintsanen and H. Toivonen. Finding reliable subgraphs from large probabilistic

graphs. Data Mining and Knowledge Discovery, 17:3–23, 2008.

[19] F. Lorrain and H. C. White. Structural equivalence of individuals in social

networks. Journal of Mathematical Sociology, 1:49–80, 1971.

[20] S. Navlakha, R. Rastogi, and N. Shrivastava. Graph summarization with bounded

error. In SIGMOD ’08: Proceedings of the 2008 ACM SIGMOD international conference

on Management of data, pages 419–432, New York, NY, USA, 2008. ACM.

[21] S. Navlakha, M. Schatz, and C. Kingsford. Revealing Biological Modules via

Graph Summarization. Presented at the RECOMB Systems Biology Satellite Conference.

J. Comp. Bio., 16:253–264, 2009.

[22] Y. Tian, R. Hankins, and J. Patel. Efficient aggregation for graph summarization. In

SIGMOD ’08: Proceedings of the 2008 ACM SIGMOD international conference on

Management of data, pages 567–580, New York, NY, USA, 2008. ACM.

60

[23] H. Toivonen, S. Mahler, and F. Zhou. A framework for path-oriented network

simplification. In Advances in Intelligent Data Analysis IX, volume 6065/2010, pages

220–231, Berlin/Heidelberg, May 2010. Springer-Verlag.

[24] G. T. Toussaint. The relative neighbourhood graph of a finite planar set. Pattern

Recognition, 12(4):261–268, 1980.

[25] N. Zhang, Y. Tian, and J. Patel. Discovery-driven graph summarization. In Data

Engineering (ICDE), 2010 IEEE 26th International Conference on, pages 880–891.

IEEE, 2010.

