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Abstract

Under this Project Report on “Data Compression Algorithms sand Techniques”, the aim 

is to survey of various Data Compression techniques known till date and understanding 

their working and how they actually contribute towards compression of data, since data 

compression is being widely used these days in almost every field related with computer 

science. Either it be data communication ,data storage or the expensive cost associated 

with the consumption of expensive resources like disc space or connection bandwidth 

data with lesser bytes is needed everywhere. Within this project work although thorough 

study has been done on various Data Compression Algorithms but as far as 

implementation is concerned we have limited our work for the Algorithms that provide 

Lossless Data Compression.

Data compression may be viewed as a branch of information theory in which the primary 

objective is to minimize the amount of data to be transmitted. The purpose of this paper is 

to present and analyze a variety of data compression algorithms. A simple 

characterization of data compression is that it involves transforming a string of characters 

in some representation (into any form) into a new string (of bits, for example) which 

contains the same information but whose length is as small as possible. Data compression 

has important application in the areas of data transmission and data storage.

Many data processing applications require storage of large volumes of data, and the 

number of such applications is constantly increasing as the use of computers extends to 

new disciplines. At the same time, the proliferation of computer communication networks 

is resulting in massive transfer of data over communication links. Compressing data to be 

stored or transmitted reduces storage and/or communication costs. When the amount of 

data to be transmitted is reduced, the effect is that of increasing the capacity of the 

communication channel.                                                                                                     8     



Similarly, compressing applicable to half of its original size is equivalent to doubling the

capacity of the storage medium. It may then become feasible to store the data at a higher,

thus faster, level of the storage hierarchy and reduce the load on the input/output channels

of the computer system.                                                        
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Chapter 1: INTRODUCTION TO DATA 

COMPRESSION

1. 1 Lossy and Lossless Data Compression

Compression is used just about everywhere. All the images you get on the web are 

compressed, typically in the JPEG or GIF formats, most modems use compression, 

HDTV will be compressed using MPEG-2, and several file systems automatically 

compress files when stored, and the rest of us do it by hand.

The task of compression consists of two components, an encoding algorithm that takes a 

message and generates a “compressed” representation (hopefully with fewer bits), and a 

decoding algorithm that reconstructs the original message or some approximation of it 

from the compressed representation. These two components are typically intricately tied 

together since they both have to understand the shared compressed representation. We 

distinguish between lossless algorithms, which can reconstruct the original message 

exactly from the compressed message, and lossy Algorithms, which can only reconstruct 

an approximation of the original message. Lossless algorithms are typically used for text, 

and lossy for images and sound where a little bit of loss in resolution is often 

undetectable, or at least acceptable. Lossy is used in an abstract sense, however, and does 

not mean random lost pixels, but instead means loss of a quantity such as a frequency 

component, or perhaps loss of noise. For example, one might think that lossy text 

compression would be unacceptable because they are imagining missing or switched 

characters.

all compression algorithms must assume that there is some bias on the input messages so 

that some inputs are more likely than others, i.e. that there is some unbalanced probability 

distribution over the possible messages. Most compression algorithms base this “bias” on 

the structure of the messages – i.e., an assumption that repeated characters are more 

likely than random characters, or that large white patches occur in “typical” images.

                                                                                                                                            10



Compression is therefore all about probability. When discussing compression algorithms 

The model component somehow captures the probability distribution of the messages by 

knowing or discovering something about the structure of the input. The coder component 

then takes advantage of the probability biases generated in the model to generate codes. It 

does this by effectively lengthening low probability messages and shortening high-

probability messages. A model, for example, might have a generic “understanding” of 

human faces knowing that some “faces” are more likely than others (e.g., a teapot would 

not be a very likely face). The coder would then be able to send shorter messages for 

objects that look like faces. This could work well for compressing teleconference calls. 

The models in most current real-world compression algorithms, however, are not so 

sophisticated, and use more mundane measures such as repeated patterns in text. 

Although there are many different ways to design the model component of compression 

algorithms and a huge range of levels of sophistication, the coder components tend to be 

quite generic—in current algorithms are almost exclusively based on either Huffman or 

arithmetic codes. Lest we try to make to fine of a distinction here, it should be pointed 

out that the line between model and coder components of algorithms is not always well 

defined.

It turns out that information theory is the glue that ties the model and coder components 

together. In particular it gives a very nice theory about how probabilities are related to 

information content and code length. As we will see, this theory matches practice almost 

perfectly, and we can achieve code lengths almost identical to what the theory predicts.

Another question about compression algorithms is how does one judge the quality of one 

versus another. In the case of lossless compression there are several criteria I can think 

of, the time to compress, the time to reconstruct, the size of the compressed messages, 

and the generality—i.e., does it only work on Shakespeare or does it do Byron too. In the 

case of lossy compression the judgment is further complicated since we also have to 

worry about how good the lossy approximation is. There are typically tradeoffs between 

the amount of compression, the runtime, and the quality of the reconstruction. Depending 

on your application one might be more important than another and one would want to 

pick your algorithm appropriately. 
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Perhaps the best attempt to systematically compare lossless compression algorithms is the 

Archive Comparison Test (ACT) by Jeff Gilchrist. 

It reports times and compression ratios for 100s of compression algorithms over many 

databases. It also gives a score based on a weighted average of runtime and the 

compression ratio.

1.2. Data Compression Using Information Theory

Data compression is perhaps the fundamental expression of Information Theory.

Information Theory is a branch of mathematics that had its genesis in the late 1940s with

the work of Claude Shannon at Bell Labs. It concerns itself with various questions about

information, including different ways of storing and communicating messages. Data 

compression enters into the field of Information Theory because of its concern with

redundancy. Redundant information in a message takes extra bit to encode, and if we can

get rid of that extra information, we will have reduced the size of the message.

Information Theory uses the term entropy as a measure of how much information is

encoded in a message. The word entropy was borrowed from thermodynamics, and it has

a similar meaning. The higher the entropy of a message, the more information it contains.

The entropy of a symbol is defined as the negative logarithm of its probability. To

determine the information content of a message in bits, we express the entropy using the

base 2 logarithm:

Number of bits = - Log base 2 (probability)

The entropy of an entire message is simply the sum of the entropy of all individual

symbols. Entropy fits with data compression in its determination of how many bits of 

information are actually present in a message. If the probability of the character ‘e’ 

appearing in this manuscript is 1/16, for example, the information content of the character 

is four bits. So the character string “eeeee” has a total content of 20 bits. If we are using 

standard 8-bit ASCII characters to encode this message, we are actually using 40 bits. 

12



The difference between the 20 bits of entropy and the 40 bits used to encode the message 

is where the potential for data compression arises. One important fact to note about 

entropy is that, unlike the thermodynamic measure of entropy, we can use no absolute 

number for the information content of a given message. The problem is that when we 

calculate entropy, we use a number that gives us the probability of a given symbol.      

1.3 Modeling and Coding

In general, data compression consists of taking a stream of symbols and transforming

them into codes. If the compression is effective, the resulting stream of codes will be

smaller than the original symbols. The decision to output a certain code for a certain

symbol or set of symbols is based on a model. The model is simply a collection of data

and rules used to process input symbols and determine which code(s) to output. A

program uses the model to accurately define the probabilities for each symbol and the

coder to produce an appropriate code based on those probabilities. Modeling and coding 

are two distinctly different things. People frequently use the term coding to refer to the 

entire data-compression process instead of just a single component of that process. You 

will hear the phrases “Huffman coding” or “Run-Length Encoding,” for example, to 

describe a data-compression technique, when in fact they are just coding methods used in 

conjunction with a model to compress data. Using the example of Huffman coding, a 

breakdown of the compression process looks something like this:

Figure 1.1 A Statistical Model with a Huffman Encoder.

13



In the case of Huffman coding, the actual output of the encoder is determined by a set of

probabilities. When using this type of coding, a symbol that has a very high probability of

occurrence generates a code with very few bits. A symbol with a low probability

generates a code with a larger number of bits. We think of the model and the program’s 

coding process as different because of the countless ways to model data, all of which can 

use the same coding process to produce their output. A simple program using Huffman 

coding, for example, would use a model that gave the raw probability of each symbol 

occurring anywhere in the input stream. A more sophisticated program might calculate 

the probability based on the last 10 symbols in the input stream. Even though both

probably be radically different. So when the topic of coding methods comes up at your 

next cocktail party, be alert for statements like “Huffman coding in general doesn’t 

produce very good compression ratios.” This would be your perfect opportunity to 

respond with “That’s like saying Converse sneakers don’t go very fast. I always thought 

the leg power of the runner had a lot to do with it.” If the conversation has already 

dropped to the point where you are discussing data compression, this might even go over 

as a real demonstration of wit

One important fact to note about entropy is that, unlike the thermodynamic measure of

entropy, we can use no absolute number for the information content of a given message.

The problem is that when we calculate entropy, we use a number that gives us the

probability of a given symbol. The probability figure we use is actually the probability

for a given model, not an absolute number. If we change the model, the probability will

change with it. How probabilities change can be seen clearly when using different orders 

with a statistical model. A statistical model tracks the probability of a symbol based on 

what symbols appeared previously in the input stream. The order of the model determines 

how many previous symbols are taken into account. An order-0 model, for example, 

won’t look at previous characters. An order-1 model looks at the one previous character, 

and so on. The different order models can yield drastically different probabilities for a 

character. The letter ‘u’ under an order-0 model, for example, may have only a 1 percent 

probability of occurrence. 
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But under an order-1 model, if the previous character was ‘q,’ the ‘u’ may have a 95 

percent probability.                                                                        

In order to compress data well, we need to select models that predict symbols with high

probabilities. A symbol that has a high probability has a low information content and will

need fewer bits to encode. Once the model is producing high probabilities, the next step

is to encode the symbols using an appropriate number of bits.
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Chapter 2: LOSSLESS DATA COMPRESSION

2.1 Statistical Modeling for Data Compression

Lossless data compression is generally implemented using one of two different types of

modeling: statistical or dictionary-based. Statistical modeling reads in and encodes a

single symbol at a time using the probability of that character’s appearance. 

Dictionarybased modeling uses a single code to replace strings of symbols. In dictionary-

based modeling, the coding problem is reduced in significance, leaving the model 

supremely important.

2.1.1  

The simplest forms of statistical modeling use a static table of probabilities. In the earliest

days of information theory, the CPU cost of analyzing data and building a Huffman tree

was considered significant, so it wasn’t frequently performed. Instead, representative

blocks of data were analyzed once, giving a table of character-frequency counts. Huffman

encoding/decoding trees were then built and stored. Compression programs had access to

this static model and would compress data using it. But using a universal static model has 

limitations. If an input stream doesn’t match well with the previously accumulated 

statistics, the compression ratio will be degraded— possibly to the point where the output 

stream becomes larger than the input stream. The next obvious enhancement is to build a 

statistics table for every unique input stream.

Building a static Huffman table for each file to be compressed has its advantages. The

table is uniquely adapted to that particular file, so it should give better compression than a

universal table. But there is additional overhead since the table (or the statistics used to

build the table) has to be passed to the decoder ahead of the compressed code stream. For 

an order-0 compression table, the actual statistics used to create the table may take up as 

little as 256 bytes—not a very large amount of overhead. But trying to achieve better
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compression through use of a higher order table will make the statistics that need to be

passed to the decoder grow at an alarming rate. Just moving to an order 1 model can

boost the statistics table from 256 to 65,536 bytes.

Though compression ratios will undoubtedly improve when moving to order-1, the 

overhead of passing the statistics table will probably wipe out any gains. For this reason, 

compression research in the last 10 years has concentrated on adaptive models. When 

using an adaptive model, data does not have to be scanned once before coding in order to 

generate statistics. Instead, the statistics are continually modified as new characters are 

read in and coded.

Fig 2.1 General Adaptive Compression

Fig 2.3 General Adaptive Decompression

The important point in making this system work is that the box labeled “Update Model”

has to work exactly the same way for both the compression and decompression programs.

After each character (or group of characters) is read in, it is encoded or decoded. Only

after the encoding or decoding is complete can the model be updated to take into account

the most recent symbol or group of symbols.                                                                   17



One problem with adaptive models is that they start knowing essentially nothing about

the data. So when the program first starts, it doesn’t do a very good job of compression.

Most adaptive algorithms tend to adjust quickly to the data stream and will begin turning

in respectable compression ratios after only a few thousand bytes. Likewise, it doesn’t

take long for the compression-ratio curve to flatten out so that reading in more data

doesn’t improve the compression ratio.

One advantage that adaptive models have over static models is the ability to adapt to

local conditions. When compressing executable files, for example, the character of the

input data may change drastically as the program file changes from binary program code

to binary data. A well-written adaptive program will weight the most recent data higher

than old data, so it will modify its statistics to better suit changed data.

2.2 Dictionary Schemes

Statistical models generally encode a single symbol at a time— reading it in, calculating

a probability, then outputting a single code. A dictionary-based compression scheme uses

a different concept. It reads in input data and looks for groups of symbols that appear in a

dictionary. If a string match is found, a pointer or index into the dictionary can be output

instead of the code for the symbol. The longer the match, the better the compression ratio.

This method of encoding changes the focus of dictionary compression. Simple coding

methods are generally used, and the focus of the program is on the modeling. In LZW

compression, for example, simple codes of uniform width are used for all substitutions.  

A static dictionary is used like the list of references in an academic paper. The dictionary 

is static because it is built up and transmitted with the text of work—the reader does not

have to build it on the fly. The first time I see a number in the text like this—[2]—I know

it points to the static dictionary.

The problem with a static dictionary is identical to the problem the user of a statistical

model faces: The dictionary needs to be transmitted along with the text, resulting in a

18



certain amount of overhead added to the compressed text. An adaptive dictionary scheme

helps avoid this problem. Mentally, we are used to a type of adaptive dictionary when 

performing acronym replacements in technical literature. The standard way to use this 

adaptive dictionary is to spell out the acronym, then put its abbreviated substitution in 

parentheses. So the first time I mention the Massachusetts Institute of Technology (MIT), 

I define both the dictionary string and its substitution. From then on, referring to MIT in 

the text should automatically invoke a mental substitution.

2.3 Ziv and Lempel

Until 1980, most general-compression schemes used statistical modeling. But in 1977

and 1978, Jacob Ziv and Abraham Lempel described a pair of compression methods

using an adaptive dictionary. These two algorithms sparked a flood of new techniques

that used dictionary-based methods to achieve impressive new compression ratios.

3.1 LZ77

The first compression algorithm described by Ziv and Lempel is commonly referred to as

LZ77. It is relatively simple. The dictionary consists of all the strings in a window into

the previously read input stream. A file-compression program, for example, could use a

4K-byte window as a dictionary. While new groups of symbols are being read in, the

algorithm looks for matches with strings found in the previous 4K bytes of data already

read in. Any matches are encoded as pointers sent to the output stream. LZ77 and its 

variants make attractive compression algorithms. Maintaining the model is simple; 

encoding the output is simple; and programs that work very quickly can be written using 

LZ77. Popular programs such as PKZIP and LHarc use variants of the LZ77 algorithm, 

and they have proven very popular.
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LZ78

The LZ78 program takes a different approach to building and maintaining the dictionary.

Instead of having a limited-size window into the preceding text, LZ78 builds its

dictionary out of all of the previously seen symbols in the input text. But instead of

having carte blanche access to all the symbol strings in the preceding text, a dictionary of

strings is built a single character at a time. The first time the string “Mark” is seen, for

example, the string “Ma” is added to the dictionary. The next time, “Mar” is added. If

“Mark” is seen again, it is added to the dictionary.

This incremental procedure works very well at isolating frequently used strings and

adding them to the table. Unlike LZ77 methods, strings in LZ78 can be extremely long,

which allows for high-compression ratios. LZ78 was the first of the two Ziv-Lempel

algorithms to achieve popular success, due to the LZW adaptation by Terry Welch, which

2.4 Other Lossless Compression

2.4.1 Burrows Wheeler

The Burrows Wheeler algorithm is a relatively recent algorithm. An implementation of 

the algorithm called bzip, is currently one of the best overall compression algorithms 

for text. It gets compression ratios that are within 10% of the best algorithms such as 

PPM, but runs significantly faster.

Rather than describing the algorithm immediately, lets try to go through a thought 

process that

1. leads to the algorithm. Recall that the basic idea of PPM was to try to find as long 

a context as

20



Fig 2.4

possible that matched the current context and use that to effectively predict the next 

character. A problem with PPM is in selecting k. If we set k too large we will usually not 

find matches and end up sending too many escape characters. On the other hand if we set 

it too low, we would not be taking advantage of enough context. We could have the 

system automatically select k based on which does the best encoding, but this is 

expensive. Also within a single text there might be some very long contexts that could 

help predict, while most helpful contexts are short. Using a fixed k we would probably 

end up ignoring the long contexts. Lets see if we can come up with a way to take 

advantage of the context that somehow automatically adapts. Ideally we would like the 

method also to be a bit faster. Consider taking the string we want to compress and 

looking at the full context for each character—i.e., all previous characters from the start 

of the string up to the character. In fact, to make the contexts the same length, which will 

be convenient later, we add to the head of each context the part of the string following the

character making each context n − 1 characters. Examples of the context for each 

character of the string accbaccacba are given in Figure 6.1. Now lets sort these contexts 

based on reverse lexical order, such that the last character of the context is the most 

significant (see Figure).

Note that now characters with the similar contexts (preceeding characters) are near each 
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other. In fact, the longer the match (the more preceeding characters that match 

identically) the closer they will be to each other. This is similar to PPM in that it prefers 

longer matches when “grouping”, but will group things with shorter matches when the 

longer match does not exist. The difference is that there is no fixed limit k on the length 

of a match—a match of length 100 has priority over a match of 99.

\In practice the sorting based on the context is executed in blocks, rather than for the full 

message sequence. This is because the full message sequence and additional data 

structures required for sorting it, might not fit in memory. The process of sorting the 

characters by their context 38 is often refered to as a block-sorting transform. In the 

dicussion below we will refer to the sequence of characters generated by a block-sorting 

transform as the context-sorted sequence (e.g.,\ c1a1c3c5a4a2c2c4b2b1a3 in Figure 6.1). 

Given the correlation between nearyby characters in a context-sorted sequence, we 

should be able to code them quite efficiently by using, for example, a move-to-front 

coder . For long strings with somewhat larger character sets this technique should 

compress the string significantly since the same character is likely to appear in similar

contexts. Experimentally, in fact, the technique compresses about as well as PPM even 

though it has no magic number k or magic way to select the escape probabilities.

The problem remains, however, of how to reconstruct the original sequence from 

contextsorted sequence. The way to do this is the ingenious contribution made by 

Burrows and Wheeler.

You might try to recreate it before reading on. The order of the most-significant 

characters in the sorted contexts plays an important role in decoding. In the example of in 

Figure , these are a1a4a2a3b2b1c1c3c5c2c4. The characters are sorted, but equal valued 

characters do not necessarily appear in the same order as in the input sequence. The 

following lemma is critical in the algorithm for efficiently reconstruct the sequence.
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Chapter 3: DATA ENCODING TECHNIQUES

3.1 Probability Coding

As mentioned in the introduction, coding is the job of taking probabilities for messages 

and generating bit strings based on these probabilities. How the probabilities are 

generated is part of the model component of the algorithm.

In practice we typically use probabilities for parts of a larger message rather than for the 

complete message, e.g., each character or word in a text. We will consider each of these 

components a message on its own, and we will use the term message sequence for the 

larger message made up of these components. In general each little message can be of a 

different type and come from its own probability distribution. For example, when sending 

an image we might send a message specifying a color followed by messages specifying a 

frequency component of that color. Even the messages specifying the color might come 

from different probability distributions since the probability of particular colors might

depend on the context.

We distinguish between algorithms that assign a unique code (bit-string) for each 

message, and ones that “blend” the codes together from more than one message in a row. 

In the first class we will consider Huffman codes, which are a type of prefix code. In the 

later category we consider arithmetic codes. The arithmetic codes can achieve better 

compression, but can require the encoder to delay sending messages since the messages 

need to be combined before they can be sent.

3.1.1 Prefix Codes

Once Information Theory had advanced to where the number of bits of information in a 

symbol could be determined, the next step was to develop new methods for encoding 

information. To compress data, we need to encode symbols with exactly the number of 
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bits of information the symbol contains. If the character ‘e’ only gives us four bits of 

information, then it should be coded with exactly four bits. If ‘x’ contains twelve bits, it 

should be coded with twelve bits. By encoding characters using EBCDIC or ASCII, we 

clearly aren’t going to be very close to an optimum method. Since every character is 

encoded using the same number of bits, we introduce lots of error in both directions, with 

most of the codes in a message being too long and some being too short. Solving this 

coding problem in a reasonable manner was one of the first problems tackled by 

practitioners of Information Theory. Two approaches that worked well were Shannon-

Fano coding and Huffman coding—two different ways of generating variable-length 

codes when given a probability table for a given set of symbols. Huffman coding, named 

for its inventor D.A. Huffman, achieves the minimum amount of redundancy possible in 

a fixed set of variable-length codes. This doesn’t mean that Huffman coding is an optimal 

coding method. It means that it provides the best approximation for coding symbols when 

using fixed-width codes. The problem with Huffman or Shannon-Fano coding is that they 

use an integral number of bits in each code. If the entropy of a given character is 2.5 bits, 

the Huffman code for that character must be either 2 or 3 bits, not 2.5. Because of this, 

Huffman coding can’t be considered an optimal coding method, but it is the best 

approximation that uses fixed codes with an integral number of bits. Here is a sample of 

Huffman codes

                                          24



Symbol          Huffman Code

E 100

T 101

A 1100

I 11010

-

-

-

-

X 01101111

Q 01101110001

Z 01101110000

Table 1

Though Huffman coding is inefficient due to using an integral number of bits per code, it

is relatively easy to implement and very economical for both coding and decoding.

Huffman first published his paper on coding in 1952, and it instantly became the most

cited paper in Information Theory. It probably still is. Huffman’s original work spawned

numerous minor variations, and it dominated the coding world till the early 1980s. As the 

cost of CPU cycles went down, new possibilities for more efficient coding techniques 

emerged. One in particular, arithmetic coding, is a viable successor to Huffman coding.

Arithmetic coding is somewhat more complicated in both concept and implementation

than standard variable-width codes. It does not produce a single code for each symbol.

Instead, it produces a code for an entire message. Each symbol added to the message

incrementally modifies the output code. This is an improvement because the net effect of

each input symbol on the output code can be a fractional number of bits instead of an

integral number. So if the entropy for character ‘e’ is 2.5 bits, it is possible to add exactly

2.5 bits to the output code. An example of why this can be more effective is shown in the 

following table, the analysis of an imaginary message. In it, Huffman coding would yield 

a total message length of 89 bits, but arithmetic coding would approach the true 
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information content of the message, or 83.56 bits. The difference in the two messages 

works out to approximately 6 percent.

Here are some sample message probabilities:

Symbol No of 

Occurences

Information 

Content

Huffman 

Code Count

Total Bits 

Huffman 

Coding

Total Bits 

Arithmetic 

Coding

E 20 1.26 1 20 25.2

A 20 1.26 2 40 25.2

X 3 4.00 3 9 12.0

Y 3 4.00 4 12 12.0

Z 2 4.58 4 8 9.16

Table 2

The problem with Huffman coding in the above message is that it can’t create codes with

the exact information content required. In most cases it is a little above or a little below,

leading to deviations from the optimum. But arithmetic coding gets to within a fraction of

a percent of the actual information content, resulting in more accurate coding. Arithmetic 

coding requires more CPU power than was available until recently. Even now it will 

generally suffer from a significant speed disadvantage when compared to older coding 

methods. But the gains from switching to this method are significant enough to ensure 

that arithmetic coding will be the coding method of choice when the cost of storing or 

sending information is high enough.

3.1.2 Arithmetic Coding

Arithmetic coding is a technique for coding that allows the information from the 

messages in a message sequence to be combined to share the same bits. The technique 

allows the total number of bits sent to asymptotically approach the sum of the self 

information of the individual messages (recall that the self information of a message is 

defined as log2 pi ).
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To see the significance of this, consider sending a thousand messages each having 

probability .999. Using a Huffman code, each message has to take at least 1 bit, requiring 

1000 bits to be sent. On the other hand the self information of each message is log21pi= 

.00144 bits, so the sum of this self-information over 1000 messages is only 1.4 bits. It 

turns out that arithmetic coding will send all the messages using only 3 bits, a factor of 

hundreds fewer than a Huffman coder. Of course this is an extreme case, and when all the 

probabilities are small, the gain will be less significant.

Arithmetic coders are therefore most useful when there are large probabilities in the 

probability distribution The main idea of arithmetic coding is to represent each possible 

sequence of n messages by a separate interval on the number line between 0 and 1, e.g. 

the interval from .2 to .5. For a sequence of messages with probabilities p1, . . . , pn, the 

algorithm will assign the sequence to an interval of size Qn i=1 pi, by starting with an 

interval of size 1 (from 0 to 1) and narrowing the interval by a factor of pi on each 

message i. We can bound the number of bits required to uniquely identify an interval of 

size s, and use this to relate the length of the representation to the self information of the 

messages. In the following discussion we assume the decoder knows when a message 

sequence is complete either by knowing the length of the message sequence or by 

including a special end-of-file message. This was also implicitly assumed when sending a 

sequence of messages with Huffman codes since the decoder still needs to know when a 

message sequence is over.

3.2 Applications of Probability Coding

3.2.1 Run Length Encoding

Probably the simplest coding scheme that takes advantage of the context is run-length 

coding. Although there are many variants, the basic idea is to identify strings of adjacent 

messages of equal value and replace them with a single occurrence along with a count. 
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For example, the message sequence acccbbaaabb could be transformed to (a,1), (c,3), 

(b,2), (a,3), (b,2). Once transformed, a probability coder (e.g., Huffman coder) can be 

used to code both the message values and the counts. It is typically important to 

probability code the run-lengths since short lengths (e.g., 1 and 2) are likely to be much 

more common than long lengths (e.g., 1356). An example of a real-world use of run-

length coding is for the ITU-T T4 (Group 3) standard for Facsimile (fax) machines1. At 

the time of writing (1999), this was the standard for all home and business fax machines 

used over regular phone lines. 

Fax machines transmit black-and-white images. Each pixel is called a pel and the 

horizontal resolution is fixed at 8.05 pels/mm. The vertical resolution varies depending 

on the mode. The T4 standard uses run-length encoding to code each sequence of black 

and white pixels. Since there are only two message values black and white, only the run-

lengths need to be transmitted. The T4 standard specifies the start color by placing a 

dummy white pixel at the front of each row so that the first run is always assumed to be a 

white run. For example, the sequence bbbbwwbbbbb would be transmitted as 1,4,2,5. The

Fig. 3.1 Group 3 Run Length Huffman Codes
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T4 standard uses static Huffman codes to encode the run-lengths, and uses a separate 

codes for the black and white pixels. To account for runs of more than 64, it has separate 

codes to specify multiples of 64. For example, a length of 150, would consist of the code 

for 128 followed by the code for 22. These Huffman codes are based on the probability of 

each run-length measured over a large number of documents. The full T4 standard also 

allows for coding based on the previous line.

3.2.2 Context Coding

Another simple coding scheme that takes advantage of the context is move-to-front 

coding. This is used as a sub-step in several other algorithms including the Burrows-

Wheeler algorithm discussed later. The idea of move-to-front coding is to preprocess the 

message sequence by converting it into a sequence of integers, which hopefully is biased 

toward integers with low values. The algorithm then uses some form of probability 

coding to code these values. In practice the conversion and coding are interleaved, but we 

will describe them as separate passes. The algorithm assumes that each message comes 

from the same alphabet, and starts with a total order on the alphabet (e.g., [a, b, c, d, . ..]). 

For each message, the first pass of the algorithm outputs the position of the character in 

the current order of the alphabet, and then updates the order so that the character is at the 

head. For example, coding the character c with an order [a, b, c, d, . . .] would output a 3 

and change the order to [c, a, b, d, . . .]. This is repeated for the full message sequence. 

The second pass converts the sequence of integers into a bit sequence using Huffman or 

Arithmetic coding.

The hope is that equal characters often appear close to each other in the message 

sequence so that the integers will be biased to have low values. This will give a skewed 

probability distribution and good compression.
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3.2.3 Context Coding PPM

The main idea of PPM (Prediction by Partial Matching) is to take advantage of the 

previous K characters to generate a conditional probability of the current character. The 

simplest way to do this would be to keep a dictionary for every possible string s of k 

characters, and for each string have counts for every character x that follows s. The 

conditional probability of x in the context s is then C(x|s)/C(s), where C(x|s) is the 

number of times x follows s and C(s) is the number of times s appears. The probability 

distributions can then be used by a Huffman or Arithmetic coder to generate a bit 

sequence. For example, we might have a dictionary with qu appearing 100 times and e 

appearing 45 times after qu. The conditional probability of the e is then .45 and the coder 

should use about 1 bit to encode it. Note that the probability distribution will change from

character to character since each context has its own distribution. In terms of decoding, as 

long as the context precedes the character being coded, the decoder will know the context 

and therefore know which probability distribution to use. Because the probabilities tend 

to be high, arithmetic codes work much better than Huffman codes for this approach.

Figure 3.2 
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The PPM algorithm has a clever way to deal with the case when a context has not been 

seen before, and is based on the idea of partial matching. The algorithm builds the 

dictionary on the fly starting with an empty dictionary, and every time the algorithm 

comes across a string it has not seen before it tries to match a string of one shorter length. 

This is repeated for shorter and shorter lengths until a match is found. For each length 0, 

1, . . . , k the algorithm keeps statistics of patterns it has seen before and counts of the 

following characters. In practice this can all be implemented in a single trie. In the case of 

the length-0 contexts the counts are just counts of each character seen assuming no 

context.

An example table is given in Figure 10 for a string accbaccacba. Now consider following 

this string with a c. Since the algorithm has the context ba followed by c in its dictionary,

it can output the c based on its probability in this context. Although we might think the 

probability should be 1, since c is the only character that has ever followed ba, we need to 

give some probability of no match, which we will call the “escape” probability. We will 

get back to how this probability is set shortly. If instead of c the next character to code is 

an a, then the algorithm does not find a match for a length 2 context so it looks for a 

match of length 1, in this case the context is the previous a. Since a has never followed by 

another a, the algorithm still does not find a match, and looks for a match with a zero 

length context. In this case it finds the a and uses the appropriate probability for a (4/11). 

What if the algorithm needs to code a d? In this case the algorithm does not even find the 

character in the zero-length context, so it assigns the character a probability assuming all
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Fig .3.3

Shanon Fano coding

The Shannon-Fano technique has as an advantage its simplicity. The code is constructed

as follows: the source messages a I and their probabilities p(a I ) are listed in order of 

non- increasing probability. This list is then divided in such a way as to form two groups 

of as nearly equal total probabilities as possible. Each message in the _rst group receives 

0 as the _rst digit of its codeword; the messages in the second half have codewords 

beginning with. Each of these groups is then divided according to the same criterion and 

additional code digits are appended. The process is continued until each subset contains 

only one message. Clearly the Shannon-Fano algorithm yields a minimal pre_x code. a
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Fig .3.4 Shannon Fano Code

shows the application of the method to a particularly simple probability distribution. The 

length of each codeword is equal to lg p(ai). This is true as long as it is possible to divide 

the list into subgroups of exactly equal probability. When this is not possible, some 

codewords may be of length lg p(ai)+ 1. The Shannon-Fano algorithm yields an average 

codeword length S which satis_es H _ S _ H + 1. In Figure 3.2, the Shannon-Fano code 

for ensemble EXAMPLE is given. As is often the case, the average codeword length is 

the same as that achieved by the Hu_man code (see Figure 1.3). That the Shannon-Fano 

algorithm is not guaranteed to produce an optimal code is demonstrated by the following 

set of probabilities: f:35; :17; :17; :16; :15; g.

The Shannon-Fano Algorithm

A Shannon-Fano tree is built according to a specification designed to define an effective

code table. The actual algorithm is simple:

1. For a given list of symbols, develop a corresponding list of probabilities or frequency 

counts so that each symbol’s relative frequency of occurrence is known.

2. Sort the lists of symbols according to frequency, with the most frequently occuring 

symbols at the top and the least common at the bottom.                                              33



3. Divide the list into two parts, with the total frequency counts of the upper half being as 

close to the total of the bottom half as possible.

4. The upper half of the list is assigned the binary digit 0, and the lower half is assigned 

the digit 1. This means that the codes for the symbols in the first half will all start with 0, 

and the codes in the second half will all start with 1.

5. Recursively apply the steps 3 and 4 to each of the two halves, subdividing groups and 

adding bits to the codes until each symbol has become a corresponding code leaf on the 

tree

34



CHAPTER 4: HUFFMAN AND ARITHMETIC 

CODING

4.1 Huffman Algorithm

Huffman coding shares most characteristics of Shannon-Fano coding. It creates variable

length codes that are an integral number of bits. Symbols with higher probabilities get

shorter codes. Huffman codes have the unique prefix attribute, which means they can be

correctly decoded despite being variable length. Decoding a stream of Huffman codes is

generally done by following a binary decoder tree.

Building the Huffman decoding tree is done using a completely different algorithm from

that of the Shannon-Fano method. The Shannon-Fano tree is built from the top down,

starting by assigning the most significant bits to each code and working down the tree

until finished. Huffman codes are built from the bottom up, starting with the leaves of the

tree and working progressively closer to the root.

The procedure for building the tree is simple and elegant. The individual symbols are laid

out as a string of leaf nodes that are going to be connected by a binary tree. Each node

has a weight, which is simply the frequency or probability of the symbol’s appearance.

The tree is then built with the following steps:

• The two free nodes with the lowest weights are located.

• A parent node for these two nodes is created. It is assigned a weight equal to the sum of 

the two child nodes.

• The parent node is added to the list of free nodes, and the two child nodes are removed 

from the list.

• One of the child nodes is designated as the path taken from the parent node when 

decoding a 0 bit. The other is arbitrarily set to the 1 bit.
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• The previous steps are repeated until only one free node is left. This free node is

designated the root of the tree.

This algorithm can be applied to the symbols used in the previous example. The five

symbols in our message are laid out, along with their frequencies, as shown:

These five nodes are going to end up as the leaves of the decoding tree. When the process 

first starts, they make up the entire list of free nodes.

The first pass through the tree identifies the two free nodes with the lowest weights: D 

and E, with weights of 6 and 5. (The tie between C and D was broken arbitrarily. While 

the way that ties are broken affects the final value of the codes, it will not affect the 

compression ratio achieved.) These two nodes are joined to a parent node, which is 

assigned a weight of 11. Nodes D and E are then removed from the free list.

Once this step is complete, we know what the least significant bits in the codes for D and

E are going to be. D is assigned to the 0 branch of the parent node, and E is assigned to 

the 1 branch. These two bits will be the LSBs of the resulting codes.

On the next pass through the list of free nodes, the B and C nodes are picked as the two 

with the lowest weight. These are then attached to a new parent node. The parent node is 

assigned a weight of 13, and B and C are removed from the free node list. At this point, 

the tree looks like that shown in Figure.

Fig 4.1 The Huffman Tree After Two Passes
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On the next pass :

Fig 4.2

To determine the code for a given symbol, we have to walk from the leaf node to the root 

of the Huffman tree, accumulating new bits as we pass through each parent node. 

Unfortunately, the bits are returned to us in the reverse order that we want them, which 

means we have to push the bits onto a stack, then pop them off to generate the code. This 

strategy gives our message the code structure shown in the following table.

Fig .4.3

Since no code is a prefix to another code, Huffman codes can be unambiguously decoded 

as they arrive in a stream. The symbol with the highest probability, A, has been assigned 

the fewest bits, and the symbol with the lowest probability, E, has been assigned the most 

bits.
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4.2 Arithmetic Coding For Data Compression

Arithmetic encoding is the most powerful compression techniques. This converts the 

entire input data into a single floating point number. A floating point number is similar to 

a number with a decimal point, like 4.5 instead of 41/2. However, in arithmetic coding 

we are not dealing with decimal number so we call it a floating point instead of decimal 

point [4].

The idea behind arithmetic coding is to have a probability line, 0-1, and assign to every 

symbol a range in this line based on its probability, the higher the probability, the higher 

range which assigns to it. Once we have defined the ranges and the probability line, start 

to encode symbols, every symbol defines where the output floating point number lands.

Let say input string is

“Baca”

 Low = 0

 High = 1

 Loop. For all the symbols.

o Range = high - low

o High = low + range *high_range of the symbol being coded

o Low = low + range *low_range of the symbol being coded
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Symbol Probability Range

A 2 [0.0 , 0.5)

B 1 [0.5 , 0.75)

C 1 [0.7.5 , 1.0)



Where:

 Range, keeps track of where the next range should be.

 High and low, specify the output number.

Symbol Range Low value High value

0 1

B 1 0.5 0.75

A 0.25 0.5 0.625

C 0.125 0.59375 0.625

A 0.03125 0.59375 0.609375

The output number will be 0.59375. The way of decoding is first to see where the number 

lands, output the corresponding symbol, and then extract the range of this symbol from 

the floating point number. The algorithm for extracting the ranges is:

 Loop. For all the symbols.

o Range = high_range of the symbol - low_range of the symbol

o Number = number - low_range of the symbol

o Number = number / range

Given this encoding scheme, it is relatively easy to see how the decoding process

operates. Find the first symbol in the message by seeing which symbol owns the space

our encoded message falls in. Since .2572167752(assuming this to be encoded form of 
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considered data) falls between .2 and .3, the first character must be B. Then remove B 

from the encoded number. Since we know the low and high ranges of B, remove their 

effects by reversing the process that put them in. First, subtract the low value of B, giving 

.0572167752. Then divide by the width of the range of B, or .1. This gives a value of 

.572167752. Then calculate where that lands, which is in the range of the next letter, I. 

The algorithm for decoding the incoming number is shown

next:

number = input_code();

for ( ; ; ) {

symbol = find_symbol_straddling_this_range( number );

putc( symbol );

range = high_range( symbol ) - low_range( symbol );

number = number - low_range( symbol );

number = number / range;
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Measuring Compression Performance

Performance measure is use to find which technique is good according to some criteria. 

Depending on the nature of application there are various criteria to measure the 

performance of compression algorithm. When measuring the performance the main thing 

to be considered is space efficiency [5]. and the time efficiency is another factor. Since 

the compression behavior depends on the redundancy of symbols in the source file, it is 

difficult to measure performance of compression algorithm in general. The performance 

of data compression depends on the type of data and structure of input source. The

compression behavior depends on the category of the compression algorithm: lossy or 

lossless. Following are some measurements use to calculate the performances of lossless 

algorithms.

Compression ratio: compression ratio is the ratio between size of compressed file and 

the size of source file.

Compression factor: compression factor is the inverse of compression ratio. That is the 

ratio between the size of source file and the size of the compressed file.

Saving Percentage:
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5. Context Based Modeling for Data Compression

5.1 Basics of Context based Modeling

Adaptive context modeling has emerged as one of the most promising new approaches to 

compressing text. A finite-context model is a probabilistic model that uses the context in 

which input symbols occur (generally a few preceding characters) to determine the 

number of bits used to code these symbols. We provide an introduction to context 

modeling and recent research results that incorporate the concept of context modeling 

into practical data compression algorithms.

5.1.1

A finite-context model uses the context provided by characters already seen to determine 

the encoding of the current character. The idea of a context consisting of a few previous 

characters is very reasonable when the data being compressed is natural language. We all 

know that the character following q in an English text is all but guaranteed to be u and 

that given the context now is the time for all good men to come to the aid of, the phrase 

their country is bound to follow. One would expect that using knowledge of this type 

would result in more accurate modeling of the information source. Although the 

technique of context modeling was developed and is clearly appropriate for compressing

natural language, context models provide very good compression over a wide range of 

_le types.

We say that a context model predicts successive characters taking into account the 

context provided by characters already seen. What is meant by predict here is that the 

frequency values used in encoding the current character are determined by its context. 

The frequency distribution used to encode a character determines the number of bits it 

contributes to the compressed representation. 
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When character x occurs in context c and the model for context c does not include a 

frequency for x we say that context c fa predict x. A context model may use a mixed 

number of previous characters in its predictions or may be a blended model, 

incorporating predictions based on contexts of several lengths. A model that always uses i 

previous characters to predict the current character is a pure order-i context model. When 

i = 0, no context is used and the text is simply coded one character at a time. When i = 1, 

the previous character is used in encoding the current character; when i = 2, the previous 

two characters are used, and so on. A blended model may use the previous three 

characters, the previous two characters when the three- character context fails to predict, 

and one predecessor if both the order-3 and order-2 contexts fail. A blended model is 

composed of two or more sub models. An order-i context model consists of a frequency 

distribution for each i-character 3

sequence occurring in the input stream. In the order-1 case, this means that the frequency 

distribution for context q will give a very high value to u and very little weight to any 

other letter, while the distribution for context t will have high frequencies for a, e , i, o, u, 

and h among others and very little weight for letters like q, n and g.

A blended model is fully blended if it contains sub models for the maximum-length 

context and all lower-order contexts. That is, a fully-blended order-3 context model bases 

its predictions on models of orders 3, 2, 1, 0, and �1 (the model of order �1 consists of a 

frequency distribution that weights all characters equally). A partially-blended model 

uses some, but not all, of the lower-order contexts.

5.1.2

A context model is generally combined with arithmetic coding to form a data 

compression system. The model provides a frequency distribution for each context (each 

character in the order-1 case and each pair of characters in the order-2 case). Each 

frequency distribution forms the basis of an arithmetic code and these are used to map 

events into code bits. Hu_man coding is not appropriate for use with adaptive context 

models for the reasons given above.
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5.2 Methods Of Blending

Blending is desirable and essentially unavoidable in an adaptive setting where the model 

is built from scratch as encoding proceeds. When the first character of a _le is read, the 

model has no history on which to base predictions. Larger contexts become more 

meaningful as compression proceeds. The general mechanism of blending, weighted 

blending, assigns a probability to a character by weighting probabilities (or, more 

accurately, frequencies) provided by the various sub models and computing the weighted 

sum of these probabilities.

This method of blending is too slow to be practical and has the additional disadvantage 

that there is no theoretical basis for assigning weights to the models of various orders. In 

a simpler and more practical blended order-I model, the number of bits used to code 

character c is dictated by the preceding i characters if c has occurred in this particular 

context before. In this case, only the order-i frequency distribution is used. Otherwise, 

models of lower orders are consulted until one of them supplies a prediction. When the 

context of order I fails to predict the current character, the encoder emits an escape code, 

a signal to the decoder that the model of lower order is being consulted. Some lowest-

order model must be guaranteed to supply a prediction for every character in the input 

alphabet.

The frequencies used by the arithmetic coder may be computed in a number of ways. One 

of the more straightforward methods is to assign to character x in context c the frequency 

f where f is the number of times that context c has been used to predict character x. 

Alternatively, f may represent the number of times that x has occurred in context c. An 

implementation may also require x to occur in context c some minimal number of times 

before it allocates frequency to the event.
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5.2.2 Escape Strategy

In order for the encoder to transmit the escape code, each frequency distribution in the 

blended model must have some frequency allocated to escape.                                         

A simple strategy is to treat the escape event as if it were an additional symbol in the 

input alphabet. Like any other character, the frequency of the escape event is the number 

of times it occurs. Other strategies involve relating the frequency of the escape code to 

the total frequency of the context and the number of different characters occurring in the 

context. On one hand, as the number of different characters increases, the probability of 

prediction increases and the use of the escape code becomes less likely. On the other 

hand, if a context has occurred frequently and predicted the same character (or small

number of characters) every time, the appearance of a new character (and the need to 

escape) would seem unlikely. There is no theoretical basis for selecting one of these 

escape strategies over another. Fortunately, empirical experiments indicate that 

compression performance is largely insensitive to the selection of escape strategy.

5.2.3 Exclusion Principle

The blending strategy described above has the effect of excluding lower-order predictions 

when a character occurs in a higher-order model. However, it does not exclude as much 

lower-order information as it might. For example, when character x occurs in context abc 

for the first time the order-2context bc is consulted. If character y has occurred in context 

abc it can be excluded from the order-2 prediction. That is, the fact that we escape from

the order-3 context abc informs the decoder that the character being encoded is not y. 

Thus the bc model need not assign any frequency to y in making this prediction. By 

excluding y from the order-2 prediction x may be predicted more accurately. Excluding 

characters predicted by higher-order models can double execution time. The gain in 

compression performance is on the order of 5%, which hardly justifies the increased 

execution time [BCW90]. Another type of exclusion that is much simpler and has the 

effect of decreasing execution time is update exclusion.
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Update exclusion means updating only those models that contribute to the current 

prediction. Thus if, in the above example, context bc 6 predicts x, only the order-3 model 

for abc and the order-2 model for bc will be updated. The models of lower order remain 

unchanged.

5.2.4 Memory Limitations

We call an order-i context model complete if for every character x occur- ring in context 

c, the model includes a frequency distribution for c that contains a count for x. That is, 

the model retains all that it has learned. Complete context models of even order 3 are rare 

since the space required to store all of the context information gleaned from a large _le is 

prohibitive. There are two obvious ways to impose a memory limit on a finite context 

model. The first is to monitor its size and freeze the model when the size reaches some 

maximum.

When the model is frozen, it can no longer represent characters occurring in novel 

contexts, but we can continue to update the frequency values already stored in the model. 

The second approach is to rebuild the model rather than freeze it. The model can be 

rebuilt from scratch or from a buffer representing recent history. The use of the buffer 

may lessen the degradation in compression performance due to rebuilding. On the other 

hand, the memory set aside for the buffer causes rebuilding to occur earlier. A third 

approach, which is not strictly a solution to the problem of limited memory, is to monitor 

compression performance as well as the size of the data structure. Rebuilding when

compression begins to degrade may be more opportune than waiting until it becomes 

necessary. We will say more about the data structures used to represent context models in 

later sections. The representation of the model clearly impacts the amount of information 

it can contain and the ease with which it can be consulted and updated.
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5.3 Context Modeling with order 2

The algorithm we describe in this section employs a blended order-2 context model. It 

can be implemented so as to provide compression performance that is better than that 

provided by compress and much better than other existing algorithms, using far less space 

than either of these systems (10 percent as much memory as compress). In Section 5.3 we 

describe the method of blending we employ. In Section 5.5 we describe the frequency 

distributions maintained by our algorithm, and Section 5.6 presents our escape strategy. 

Consider the use of dynamic memory to improve the memory requirement. Later on we 

show that hashing is a much more effective means to this end. We present some 

experimental data on the performance of our order-2-and-0 methods.

5.3.1 Blending Strategy

One of the ways in which we conserve on both memory and execution time is by 

blending only models of orders 2 and 0, rather than orders 2, 1, 0, and 1. Thus we refer to 

our model as an order-2-and-0 context model. We have experimented with order-2-and-1 

and order-2-1-and-0 models. The order-2-and-1 model did not provide satisfactory 

compression performance and the order-2-1-and-0 model produces compression results 

that are very close to those of our order-2-and-0 algorithm. The order-2-and-0 model 

allows faster encoding and decoding since it consults at most two contexts per character. 

We provide more details on the models of orders 2 and 0

5.3.2 Self Organizing List

In our order-2-and-0 model, we maintain a self-organizing list of size s for each two-

character context (s is a parameter of the algorithm). We encode z when it occurs in 

context xy by event k if z is in position k of list xy. When z does not appear on list xy we 

encode z itself using the order-0 model. Encoding entails mapping the event (k or z) to a 

frequency and employing an arithmetic coder. To complete the description of the 

algorithm, we need to specify a list organizing strategy and the method of maintaining 

frequencies. The frequency count list organizing strategy is inappropriate because        
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large number of counts required. We employ the transpose strategy because it provides 

faster update than move-to-front

When character z occurs in context xy and z appears on the context list for xy, the list is 

updated using the transpose strategy. If z does not appear on the xy list, it is added. If the 

size of list xy is less than s (size < s), the item currently in position size moves into 

position size + 1 and z is stored in position size. If the list is full when z is to be added, z 

will replace the last item. An obvious disadvantage to xing the size of the order-2 context 

lists is that the lists are likely to be too short for some contexts and too long for others. 

When an order-2 list (say, list xy) contains s items and a new character z occurs in 

context xy, we delete the bottom item (call it t) from the list and add z. Context xy no 

longer predicts t. This does not affects the correctness of our algorithm. When t occurs 

again in context xy it will be predicted by the order- 0 model. The fact that encoder and 

decoder maintain identical models ensures correctness. . In addition, the rationale behind 

the use of self-organizing lists is that we expect to have the s most common successors on 

the list at any point in time. As characteristics of the le change, successors that become 

common replace those that fall into disuse.

5.3.3 Frequency Distribution

In order to conserve memory we do not use a frequency distribution for each context. 

Instead, we maintain a frequency value for each feasible event. Since there are s + 1 

values of k (the s list positions and the escape code) and n+ 1 values for z (the n 

characters of the alphabet and an end-of- le character), the number of feasible events is 

s+n+ 2. We can maintain the frequency values either as a single distribution or as two 

distributions, an order-2 distribution to which list positions are mapped and an order-0 

distribution to which characters are mapped. Our experiments indicate that the two-

distribution model is slightly superior. When z occurs in context xy we use the two 

frequency distributions in the following way: if list xy exists and z occupies position k, 

we encode k using the order-2 distribution. If list xy exists but does not contain z, we 

encode an escape code (using the order-2 distribution) as a signal to the decoder that an 

order-0 prediction (and the order-0 frequency distribution) is to be used, and then encode 
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When list xy has not been created yet, the decoder knows this and no escape code is 

necessary; we simply encode z using the order-0 distribution. Our limited use of 

frequency distributions is similar to that of algorithm ADSM.

5.3.4 Escape Strategy

We adopt the strategy of treating the escape event as if it were an additional list position. 

Given this decision, there are two reasonable choices for the value of escape. One choice 

is to use the value s + 1, as it will never represent a list position. The second choice is to 

use the value size + 1, where size is the current size of list xy (and ranges from 1 to s). In 

the rst case, the escape code is the same for every context and all of the counts for escape 

accrue to a single frequency value while in the second case, the value of escape depends 

on the context and generates counts that accrue to multiple frequency values. The two 

escape strategies produce similar compression results. The algorithm we describe here 

uses the rst alternative.

We apply update exclusion in dealing with both lists and frequency distributions. That is, 

a list or frequency distribution is updated when it is used. Thus, when list xy exists, both 

the list and the frequency distribution are updated after being used to encode either a list 

position or an escape. The order-0 distribution is used and updated each time context xy 

fails to predict.
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5.4 Coding the Model

The models of order 3, 1, and 0 are used to form a prediction of the current character in 

much the same way as we used them in the order-2-and-0 algorithm. We encode 

character z occurring in context wxy by event k if z occurs in position k of the list for 

context wxy. If z does not appear on wxy's list, we code an escape and consult the list for 

the order-1 context y. An order- 3 frequency distribution is used to code either k or 

escape. When the order-1 model is consulted, an order-1 frequency distribution is used to 

code either j (if z occurs in position j of list y) or escape. When neither context wxy nor 

context y predicts z we follow the two escape codes with an order-0 prediction (i.e., we 

code the character itself ). If the list for context wxy (likewise context y) is empty, the 

corresponding escape code is not necessary

The escape codes are represented as list positions s3 + 1 and s1 + 1, respectively. As in 

our order-2-and-0 algorithm we apply update exclusion so that lists and frequency 

distributions are updated only when they contribute to the prediction of the current 

character, z. If list wxy exists, we update it using the transpose heuristic. If no wxy list 

exists one will be created. If context wxy does not predict z, then the y list is updated 

using the transpose method. If list y is not used in the prediction, it is not updated. When 

list wxy exists, the wxy frequency distribution is updated after it is used to encode either 

a list position or an escape. When context wxy does not predict and list y exists, the y 

frequency distribution is updated. The order-0 frequency distribution is updated 

whenever the character itself is coded.
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6. Prediction by Partial Matching

6.1 Introduction

The “Prediction by Partial Match” method, originally developed by Cleary and Witten, 

with extension and an implementation by A. Moffat, is capable of very good compression 

on a wide variety of source data. The adaptive nature of the scheme and the flexibility 

afforded by arithmetic coding mean that an effective compression model will be built for 

any input file that is reasonably homogeneous.

The method is based on an encoder that maintains a statistical model of the text. The 

encoder inputs the next symbol S, assigns it a probability P, and sends S to an arithmetic 

encoder, to be encoded with probability P. The statistical model counts the number of 

times each symbol has occurred in the past and assigns the symbol a probability based on 

that. In a context based statistical model, the idea is to assign a probability to symbol S 

depending not just on the frequency of the symbol but on the contexts in which it has 

occurred so far. A static context based modeler always uses the same probabilities and 

offers the advantage of being simple and producing good result on average. However it 

may lead to considerable expansion in the case when certain input stream is statistically 

very different from the data originally used to prepare the table and when it encounters 

zero probabilities. The arithmetic encoder requires all symbols to have non-zero 

probabilities. Another reason why a symbol must have non-zero probability is that its 

entropy depends on log2 P, which is undefined for P= 0.

An adaptive context-based modeler updates its probability table all the time as more data 

is being input, which adapts the probabilities to the particular data being compressed. 

Such a model is slower and more complex but produces better compression. An order N 

adaptive context based modeler reads the next symbol S from the input stream and 

considers the N symbols preceding S the current order N context C of S. The model then 

estimates the probability P that S appears in the input data following the particular 

context C. Theoretically, the larger the N, the better the probability estimate. However, a 

larger context is difficult to manage.
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A very long context retains information about the nature of old data. Experience shows 

that large data files contain different distributions of symbols in different parts. Better 

compression can therefore be achieved if the model assigns less importance to 

information collected from old data and more weight to fresh, recent data. Such an effect 

is achieved by a short context.

The central idea of PPM is to use this knowledge. It uses an adaptive model based on a 

variable length context. At each coding step the longest previously encountered context is 

used to predict the next character. If the symbol is novel to the context, an escape code is 

transmitted and the context shortened by dropping one symbol. The Process continues 

until the symbol is successfully transmitted. If the current symbol is novel even to the 

zero order context then a final escape is transmitted, and the symbol will be transmitted 

as an 8 bit code. The adaptive model then adds the current symbol to all applicable 

contexts.

Based on the different methods of assigning probabilities to escape symbol following

variants of PPM are presented.

• PPMA

• PPMB

• PPMC

In PPMA, a group of symbols has total frequencies n (excluding escape symbol).

The escape symbol is assigned a probability = 1/(n+1). This is equivalent to always

assigning it a count of 1. Other members are still assigned their original probabilities

(x/n).

In PPMB, a symbol S following context C is assigned a probability only after S has been

seen twice in context C. This is done by subtracting 1 from the frequency counts. The 

subtracted 1’s are added to the count of the Escape Symbol.

The way Escape probabilities are assigned in the three methods is based on intuition and 

experience, not on any underlying theory. Experience with the three variants of PPM 

shows that none is preferable. They produce compression ratios that normally differ by 

just a few percent. This shows that the basic PPM algorithm is robust, and does not 

depend on the precise way of assigning escape probabilities.
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6.2 Prediction with Partial Matching Algorithm for Data Compression

The PPM data compression scheme has set the performance standard in lossless

compression of text throughout the past decade. The original algorithm was first

published in 1984 by Cleary and Witten, and a series of improvements was de- scribed by 

Moffat, culminating in a careful implementation, called PPMC, which has become the 

benchmark version. This still achieves results superior to virtually all other compression 

methods, despite many attempts to better it. Other methods

such as those based on Ziv-Lempel coding are more commonly used in practice, but their 

attractiveness lies in their relative speed rather than any superiority in compression 

indeed, their compression performance generally falls distinctly below that of PPM in 

practical benchmark tests.

Prediction by partial matching, or PPM, is a finite-context statistical modeling technique 

that can be viewed as blending together several mixed-order context models to predict the 

next character in the input sequence. Prediction probabilities for each context in the 

model are calculated from frequency counts which are updated adaptively; and the 

symbol that actually occurs is encoded relative to its predicted distribution using 

arithmetic coding. The maximum context length is a mixed constant, and it has been 

found that increasing it beyond about six or so does not generally improve compression.

The present paper describes a new algorithm, PPM*, which exploits contexts of 

unbounded length. It reliably achieves compression superior to PPMC, although our 

current implementation which we have not yet attempted to optimize uses considerably 

greater computational resources (both time and space). The next section describes the 

basic PPM compression scheme. Following that we motivate the use of contexts of 

unbounded length, introduce the new method, and show how it can be implemented using 

a trie data structure.
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6.2.1 PPMC

The basic idea of PPM is to use the last few characters in the input stream to predict the 

upcoming one. Models that condition their predictions on a few immediately preceding 

symbols are called finite-context" models of order k, where k is the number of preceding 

symbols used. PPM employs a suite of mixed-order context models with different values 

of k, from 0 up to some pre-determined maximum, to predict upcoming characters.

For each model, a note is kept of all characters that have followed every length-k

subsequence observed so far in the input, and the number of times that each has occurred. 

Prediction probabilities are calculated from these counts. The probabilities associated 

with each character that has followed the last k characters in the past are used to predict 

the upcoming character. Thus from each model, a separate predicted probability 

distribution is obtained.

These distributions are effectively combined into a single one, and arithmetic coding is 

used to encode the character that actually occurs, relative to that distribution.

The combination is achieved through the use of escape probabilities. Recall that each 

model has a different value of k. The model with the largest k is, by default, the one used 

for coding. However, if a novel character is encountered in this context, which means that 

the context cannot be used for encoding it, an \escape" symbol is transmitted to signal the 

decoder to switch to the model with the next smaller value of k. The process continues 

until a model is reached in which the character is not novel, at which point it is encoded 

with respect to the distribution predicted by that model. To ensure that the process 

terminates, a model is assumed to be present below the lowest level, containing all 

characters in the coding alphabet. This mechanism effectively blends the different order 

models together in a proportion that depends on the values actually used for escape 

probabilities.
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Table 6.1 Table showing processing of string abracadabra up to order 2

As an illustration of the operation of PPM, Table shows the state of the four models with 

k = 2, 1, 0, and-1 after the input string abracadabra has been processed. For each model, 

all previously-occurring contexts are shown with their associated predictions, along with 

occurrence counts c and the probabilities p that are calculated from them. By convention, 

k = -1 designates the bottom-level model that predicts all characters equally; it gives them 

each probability jAj where A is the alphabet used.

Some policy must be adopted for choosing the probabilities to be associated with the 

escape events. There is no sound theoretical basis for any particular choice in the absence 

of some a priori assumption on the nature of the symbol source; some                            
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Alternatives are evaluated in. The method used in the example, commonly called Method 

C gives a count to the escape event equal to the number of different symbols that have 

been 

seen in the context so far [6]; thus, for example, in the order- 0 column of Table 1 the esc

symbol receives a count of 5 because five different symbols have been seen in that 

context.

Table 6.2 Encoding for three sample characters using the data from table 6.1

Sample encodings using these models are shown in Table 6.2. As noted above, prediction 

proceeds from the highest-order model (k = 2). If the context successfully predicts the 

next character in the input sequence, the associated probability p is used to encode it. For 

example, if c followed the string abracadabra, the prediction ra->c would be used to 

encode it with a probability of 1/2, that is, in one bit.

Suppose instead that the character following abracadabra were d. This is not predicted 

from the current k = 2 context ra. Consequently, an escape event occurs in context ra, 

which is coded with a probability of 1/2, and then the k = 1 context a is used. This does 

predict the desired symbol through the prediction a->d, with probability 1/7. In fact, a 

more accurate estimate of the prediction probability in this context is obtained by noting 

that the character c cannot possibly occur, since if it did

It would have been encoded at the k = 2 level. This mechanism, called exclusion corrects 

the probability to 1/6 as shown in the third column of Table 6.2. Finally, the total number 

of bits needed to encode the d can be calculated to be 3.6.

If the next character were one that had never been encountered before, say t, escaping 

would take place repeatedly right down to the base level k = -1. 
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Once this level is reached, all symbols are equi probable except that, through the 

exclusion device, there is no need to reserve probability space for symbols that already 

appear at higher levels. Assuming a 256-character alphabet, the t is coded with 

probability 1/251 at the base level, leading to a total requirement of 11.2 bits including 

those needed to specify the three escapes.

6.2.2 Performance Of PPMC

It may seem that PPM's performance should always improve when the maximum context 

length is increased, because the predictions are more specific. Figure 6.1 shows how the 

compression ratio varies when different maximum context lengths are used. The graph 

shows that the best compression is achieved when a maximum context length of five is 

chosen and that it deteriorates slightly when the context is increased beyond this.

This general behavior is quite typical. The reason is that while longer contexts do provide 

more specific predictions, they also stand a much greater chance of not giving rise to any 

prediction at all. This causes the escape mechanism to be used more frequently to reduce 

the context length down to the point where predictions start to appear. And each escape 

operation carries a small penalty in coding efficiency.

Fig 6.1 Figure Showing PPM compression ratio varies with the length of context.
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6.3 Longer Contexts

An alternative to PPM's policy of imposing a universal _xed maximum upper bound on 

context length is to allow the context length to vary depending on the coding situation. It 

is possible to store the model in a way that gives rapid access to predictions based on any 

context, eliminating the need for an arbitrary bound to be imposed.

We call this approach, in which there is no a priori bound on context length, PPM*.

It bestows the freedom to choose any policy for determining the context to be used for 

prediction, subject only to the constraint that the decoder must be able to make the same 

choice despite the fact that it does not know the upcoming character.

How to choose which context is the best for prediction is an area of intense research. One 

attractive-sounding possibility is to keep a record, for each context, of how well it 

compressed in the past. The same record could be maintained independently by both 

encoder and decoder, and they could use the context with the best average compression. 

Curiously, this policy does not perform well in practice. This can be explained by 

considering its behavior under random input. Then some contexts will perform better 

than others purely by chance, and the best-performing ones will be selected for 

prediction. Of course, with random input good performance in the past is no guarantee of 

good performance in the future. The best policy is to use a zero-length context, and the 

worst thing one can do is to use a relatively \extreme" context, even if its historical 

performance does lie markedly above that of its competitors.

A simple but effective strategy is as follows. A context is defined to be deterministic

when it gives only one prediction. We have found in experiments that for such contexts 

the observed frequency of the novel characters is much lower than expected based on a 

uniform prior distribution. This can be exploited by using such contexts for prediction. 

The strategy that we recommend is to choose the shortest deterministic context currently 

in the context list. If there is no deterministic context, then the longest context is chosen 
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The main problem associated with the use of unbounded contexts is the amount of 

memory necessary to store them. It has often been noted that it is impractical to extend 

PPM to models with a substantially higher order because of the exponential growth of the 

memory that is required as k increases. For PPM*, the problem is even more daunting, as 

it demands the ability to access all possible contexts right back to the very first character.

6.3.1 Context Tries

A key insight in solving this problem is that the trie structure used to store PPM models 

can operate in conjunction with pointers back into the input string. In particular, a leaf 

node can point into the input string whenever a context is unique. Then, if the context 

needs to be extended, it is only necessary to move the input pointer forward by one 

position. To update the trie, a linked list of pointers to the currently active contexts can be 

maintained, with the longest context at the top. We call the resulting data structure a 

context trie.

Figure 6.2 illustrates the context trie for the string abracadabra. The root node of the trie 

(the null string \_") is at the top. Contexts that have occurred before in the input string 

extend downward until they become unique, at which point a pointer, shown by a dashed 

line in the diagram, is stored back into the input string. For example, looking to the very 

left of the tree, none of a, ab, abr, abra are unique|

they all appear two or more times in the input string, whereas abrac is unique.

Consequently it is at this level that a pointer into the input string is substituted for

further refinement of the trie structure.

The context list is shown at the lower right. It relates to the current position

in the input string, and contains pointers to the contexts that are currently active.

These are labeled 0 to 4 in the boxes on the left, and the corresponding nodes are marked 

with numbered arrows. The longest active context abra is placed at the top of the list, and 

each context below it is missing one further character. The number of elements in the 
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context list is the length of the longest context, plus one for the root

5 node. The list always contains at least one node the root.

As each character is processed, the context trie is updated by updating each node pointed 

at by the context list. There are four possibilities when updating a node, depending on the 

new symbol in the input string and the state of the node.

Fig 6.2 Context Trie for string abracadabra
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Results

With the implementation Arithmetic coding algorithm for various strings, we found that 

for some of the strings after generating a floating point no the Decompression is giving 

valid output, but for few inputs there is an error of 1-2 characters/data.

For example for giving the input “BILL GATES”

The encode form that generated by the algorithm was 0.2572167752

And the decompressed string was comes out as “BILL GATEE”

While for few string like “JAYPEE”

the encoded form gave back the valid string

the discrepancy is due to the no of bits that are considered, for long floating point decimal 

values the MSB and the LSB has to be considered as well.
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A new method of text compression, PPM*, has been described that outperforms all others 

on test _les such as the Calgary corpus. The method revolves around the use of ever-

growing contexts, and a data structure has been detailed that permits arbitrarily long 

contexts to be represented efficiently.

Also described is another, seemingly quite different, method of compression that has 

been introduced very recently. Surprisingly, this also appears to gain its power from its 

ability to utilize unbounded contexts.

Although there are a number of obvious areas in which further investigation will

probably result in improvements to PPM*, it already provides a 5.6% performance

increase over its predecessor, PPM. While this is not a large practical gain, we are clearly 

in an area where diminishing returns are to be expected. The most important contribution 

of PPM* is in pointing the way towards a general treatment of unbounded contexts.
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