
1

Cloud Computing Security

Project Report submitted in partial fulfillment of the

requirement for the degree of

Bachelor of Technology

in

Computer Science & Engineering

under the Supervision of

Dr. Yashwant Singh

by

KshitijTegta

Enrollment No.101292

to

Jaypee University of Information and Technology

Waknaghat, Solan – 173234, Himachal Pradesh

2

Certificate

This is to certify that project report entitled “Cloud Computing Security” submitted

by KshitijTegta in partial fulfillment for the award of degree of Bachelor of

Technology in Computer Science & Engineering to Jaypee University of Information

Technology, Waknaghat, Solan has been carried out under my supervision.

This work has not been submitted partially or fully to any other University or Institute

for the award of this or any other degree or diploma.

Date: Supervisor’s Name

 Designation

3

Acknowledgement

I wish to express my profound gratitude and indebtedness to Dr. Yashwant Singh,

for his continuous support, inspiring guidance,constructive criticism and valuable

suggestion throughout the project work. His guidance has helped me at all times of

my research and writing of this report.

I would also like to thank Prof. Dr. Satya Prakash Ghrerafor sharing his vast

expanse of knowledge in guiding me with the correct books and sparing his valuable

time and helped me in striving to move forward to this point. Without their valuable

inputs, I wouldn’t have been able to incrementally work well and go ahead with the

project.

Last but not the least, my sincere thanks to all my friends who have patiently extended

all sorts of help for accomplishing this undertaking.

Date: Name of the Student

4

Table of Contents

Chapter 1 Introduction ... 1

1.1 Purpose ... 2

 1.2 Motivation. ………….……………………………………………………………………………………………………..3

 1.3 Overview……….…….……………………….……………………………………………………………………………..3

1.4 Background ... 6

1.5 Definitions ... 8

1.6 AES vs DES ... 8

1.7 AES vs 3DES ... 10

1.8 AES vs RSA ... 11

1.9 Organization of the report .. 14

Chapter 2 System Requirement Specification 13

 2.1 Hardware Requirements .. 15

 2.2 Software Requirements ... 15

 2.3 Functional Requirements ... 15

 2.3.1 Input Specification .. 15

 2.3.2 Output Specification ... 15

 2.4 Performance Parameters ... 15

 2.4.1 Time Taken .. 16

 2.4.2 Throughput ... 16

 2.5 Conclusion………16

Chapter 3 Literature Review .. 17

3.1 Increasing the Block Size ... 17

3.2 Parallel Execution .. 20

 3.3 Conclusion………20

Chapter 4 Design and Implementation .. 23

4.1 Detailed Description ... 23

 4.1.1 Terminology .. 23

4.2 AES Cipher Functions .. 28

 4.2.1 Add Round Key .. 28

5

 4.2.2 Byte Sub .. 29

 4.2.3 Shift Row ... 30

 4.2.4 Mix Column ... 31

 4.2.5 Mix Column Inverse .. 33

 4.2.6 Key Expansion ... 35

4.3Implementation details .. 41

4.3.1 Encryption ... 44

 4.3.2Decryption…..…………………………………………………………………………………………………47

 4.4 Conclusion………47

Chapter 5 Implementing the Core Components…………………….50

 5.1 Searchable Encryption………………………….……………………………………..51

5.1.1 Symmetric Searchable Encryption…...…..………....……………………….…52

5.1.2 Asymmetric searchable encryption………………….….……………...………53

 5.1.3 Efficient ASE…………………………………………………………………..54

 5.2 Proofs of Storage………………………………………………………...…………….54

Chapter 7 Conclusion and Future Work ... 55

Bibliography…………...……………………………………………………….…...56

Appendix………………………………………………………………………….....59

6

List of Figures

S. No. Title Page No.

Figure 1 AES Structure ... 5

Figure 2 Shift Rows Transformation. ... 18

Figure 3 Polynomial Matrix and Its Inverse for mix column transformation........................... 19

Figure 4 HEX Matrix ... 23

Figure 5 Working of Add Round Key .. 28

Figure 6 SBOX ... 29

Figure 7 Inverse SBOX. ... 30

Figure 8Screen capture of console .. 64

Figure 9 Output of code. .. 64

file:///H:\Report_Cover%20Page,%20Indexes.docx%23_Toc406692126
file:///H:\Report_Cover%20Page,%20Indexes.docx%23_Toc406692127
file:///H:\Report_Cover%20Page,%20Indexes.docx%23_Toc406692128
file:///H:\Report_Cover%20Page,%20Indexes.docx%23_Toc406692129
file:///H:\Report_Cover%20Page,%20Indexes.docx%23_Toc406692130
file:///H:\Report_Cover%20Page,%20Indexes.docx%23_Toc406692131
file:///H:\Report_Cover%20Page,%20Indexes.docx%23_Toc406692127
file:///H:\Report_Cover%20Page,%20Indexes.docx%23_Toc406692128
file:///H:\Report_Cover%20Page,%20Indexes.docx%23_Toc406692127

7

List of Tables

S. No. Title Page No.

Table 1First Round Qualifiers ... 7

Table 2 Comparison between DES, AES and RSA ... 14

Table 3 Research Analysis ... 17

Table 4 Number of rounds for various key sizes ... 25

Table 5 AES Encryption cipher using 16-bit key .. 25

Table 6AES Encryption cipher using 24-bit key ... 26

Table 7 AES Encryption cipher using 32-bit key .. 26

Table 8 AES Decryption cipher using 16-bit key .. 27

Table 9 AES Decryption cipher using 24-bit key .. 27

Table 10 AES Decryption cipher using 32-bit key .. 28

Table 11Key Expansion ... 36

Table 12 16-byte key expansion ... 38

Table 1324-byte key expansion .. 39

Table 14 32-byte key expansion .. 40

file:///H:\Report_Cover%20Page,%20Indexes.docx%23_Toc406691423
file:///H:\Report_Cover%20Page,%20Indexes.docx%23_Toc406691424
file:///H:\Report_Cover%20Page,%20Indexes.docx%23_Toc406691425
file:///H:\Report_Cover%20Page,%20Indexes.docx%23_Toc406691426
file:///H:\Report_Cover%20Page,%20Indexes.docx%23_Toc406691427
file:///H:\Report_Cover%20Page,%20Indexes.docx%23_Toc406691423
file:///H:\Report_Cover%20Page,%20Indexes.docx%23_Toc406691424
file:///H:\Report_Cover%20Page,%20Indexes.docx%23_Toc406691425
file:///H:\Report_Cover%20Page,%20Indexes.docx%23_Toc406691426
file:///H:\Report_Cover%20Page,%20Indexes.docx%23_Toc406691427
file:///H:\Report_Cover%20Page,%20Indexes.docx%23_Toc406691423
file:///H:\Report_Cover%20Page,%20Indexes.docx%23_Toc406691424
file:///H:\Report_Cover%20Page,%20Indexes.docx%23_Toc406691425
file:///H:\Report_Cover%20Page,%20Indexes.docx%23_Toc406691423

8

Abstract

Advances in networking technology and an increase in the need for computing

resources have prompted many organizations to outsource their storage and

computing needs. This new economic and computing model is commonly referred to

as cloud.

While the benefits of using a public cloud infrastructure are clear, it introduces

significant security and privacy risks. In fact, it seems that the biggest hurdle to the

adoption of cloud storage (and cloud computing in general) is concern over the

confidentiality and integrity of data.

To address the concerns outlined above and increase the adoption of cloud storage, we

argue for designing a virtual private storage service based on new cryptographic

techniques.

In this project work, the plain text of 128 bits is given as input to encryption block in

whichencryption of data is made and the cipher text of 128 bits is throughout as

output. The key length of 128bits, 192bits or 256bits is used in process of encryption.

9

The AES algorithm is a block cipher that uses the same binary key for both

encryption and decryption of data blocks. Hence it is called a symmetric key

cryptography. The rounds in decryption are exact inverse of encryption.There are four

rounds in encrypt ions viz. Sub Bytes, ShiftRows, MixColumns and

AddRoundKey.Similarly for Decryption we have InvSubBytes, InvShiffilows,

InvMixColumnsandInvAddRoundKey. Since operations in AES are difficulty, there

exists no attack better than key exhaustion to read an encrypted message. Ultimately,

anyone can use AES encryption methods, and it is free forpublic or private,

commercial or non-commercial use. The simplest version encrypts and decryptseach

128 -bit block individually. It gives better security than DES versions and also

betterthroughput.

A proof of storage is a protocol executed between a client and a server with which the

server can prove to the client that it did not tamper with its data.

10

Chapter 1

Introduction

Advances in networking technology and an increase in the need for computing

resources have prompted many organizations to outsource their storage and

computing needs. This new economic and computing model is commonly referred to

as cloud computing and includes various types of services such as: infrastructure as a

service (IaaS), where a customer makes use of a service provider’s computing, storage

or networking infrastructure; platform as a service (PaaS), where a customer leverages

the provider’s resources to run custom applications; and finally software as a service

(SaaS), where customers use software that is run on the provider’s infrastructure. [9]

Cloud infrastructures can be roughly categorized as either private or public. In a

private cloud, the infrastructure is managed and owned by the customer and located

on-premise (i.e., in the customer’s region of control). In particular, this means that

access to customer data is under its control and is only granted to parties it trusts. In a

public cloud the infrastructure is owned and managed by a cloud service provider and

is located off-premise (i.e., in the cloud service provider’s region of control). This

means that customer data is outside its control and could potentially be granted to

untrusted parties.[9]

Storage services based on public clouds such as Microsoft’s Azure storage service and

Amazon’s S3 provide customers with scalable and dynamic storage. By moving their

data to the cloud customers can avoid the costs of building and maintaining a private

storage infrastructure, opting instead to pay a service provider as a function of its

needs. For most customers, this provides several benefits including availability (i.e.,

being able to access data from anywhere) and reliability (i.e., not having to worry

about backups) at a relatively low cost. [16]

While the benefits of using a public cloud infrastructure are clear, it introduces

significant security and privacy risks. In fact, it seems that the biggest hurdle to the

11

adoption of cloud storage (and cloud computing in general) is concern over the

confidentiality and integrity of data. While, so far, consumers have been willing to

trade privacy for the convenience of software services (e.g., for web-based email,

calendars, pictures etc…), this is not the case for enterprises and government

organizations. This reluctance can be attributed to several factors that range from a

desire to protect mission-critical data to regulatory obligations to preserve the

confidentiality and integrity of data. The latter can occur when the customer is

responsible for keeping personally identifiable information (PII), or medical and

financial records. So while cloud storage has enormous promise, unless the issues of

confidentiality and integrity are addressed many potential customers will be reluctant

to make the move. [14]

To address the concerns outlined above and increase the adoption of cloud storage, we

argue for designing a virtual private storage service based on new cryptographic

techniques. The earlier encryption algorithm is Data Encryption Standard (DES)

which has several loopholes like small key size that makes it prone to brute force

attacks, etc. It fails to provide high level, efficient and exportable security. These

loopholes were overcome by a new algorithm called Advanced Encryption Standard

(AES). [4]

In this project work, the plain text of 128 bits is given as input to encryption block

inwhich encryption of data is made and the cipher text of 128 bits is throughout as

output. The key length of 128bits, 192bits or 256bits is used in process of encryption.

The AES algorithm is a block cipher that uses the same binary key for both

encryption and decryption of data blocks. [3]

1.1. Purpose

Due to the advancements in the Internet technology, huge digital data are

transmitted over the public cloud network. As the public cloud network is open to all,

protection of these data is a vital issue. Thus for protecting these data from the

unauthorized people, Cryptography has come up as a solution which plays a vital role

in information security system against various attacks. Advanced Encryption Standard

is the current standard for symmetric key cryptography and is considered very much

secure due to it. [1]

12

1.2. Motivation

The Advanced Encryption Standard, in the following referenced as AES is

thewinner of the contest, held in 1997 by the US Government, after the Data

EncryptionStandard(DES)was found too weak. Fifteen candidates were accepted in

1998 and based on public comments the pool was reduced to five finalists in 1999. In

October 2000, one of these five algorithms was selected as the forthcoming standard:

a slightlymodified version of the Rijndael.The Rijndael, whose name is based on the

names of its two Belgian inventors Joan Daemenand Vincent Rijmen, is a Block

cipher, which means that it works onfixed -length group of bits, which are called

Blocks. It takes an input block of a certain size usually 128 bits, and produces a

corresponding output block of the same size. Thetransformation requires a second

input, which is the secret key. It is important to knowthat the secret key can be of any

size (depending on the cipher used) and that AES uses three different key sizes: 128,

192 and 256 bits. [2]

1.3. Overview

Advanced Encryption Standard (AES) is a symmetric key cryptography and it

has block cipher with a fixed block size of 128 bit and a variable key length i.e.it may

be 128, 192 or 256 bits. The different transformations operate on theintermediate

results, called state. The state is a rectangular array of bytes and since theblock size is

128 bits, which is 16 bytes, the rectangular array is of dimensions 4x4. (Inthe Rijndael

version with variable block size, the row size is fixed to four and thenumber of

columns varies. The number of columns is the block size divided by 32 anddenoted

Nb). The cipher key is similarly pictured as a rectangular array with four rows.The

number of columns of the cipher key is equal to the key lengthdivided by 32. [4]

AES uses a variable number of rounds, which are fixed: A key of size 128

has10 rounds. A key of size 192 has 12 rounds. A key of size 256 has 14 rounds.

Analgorithm starts with a random number, in which the key and data encrypted with it

arescrambled though four mathematical operation processes. The key that is used

toencrypt the number must also be used to decrypt it. For encryption, each rounds has

four operations SubBytes, ShiftRows, MixColumns and AddRoundKey respectively

and for decryption it use inverse of these function. [4]

13

AES does not use a Feistel structure but processes the entire data block inparallel

during each round using substitutions and permutation.The key that is provided as

input is expanded into an array of forty-four 32 –bitwords. Four distinct words (128

bits) serve as a round key for each round.Four different stages are used, one of

permutation and three of substitution.[4]

- SubstituteBytes: Uses a table, referred to as an S -box, to perform a byte by

byte substitution of the block

- ShiftRows: A simple permutation that is performed row by row

- MixColumns: A substitution that alters each byte in a column as function of

all of the bytes in the column

- AddRoundkey: A simple bitwise XOR of the current block with a portion of

the expanded key

The structure is quite simple. For both encryption and decryption, the cipher begins

with an Add Round Key stage, followed by nine rounds that each includes all four

stages, followed by a tenth round of three stages.

Only the Add Round Key stage makes use of the key. For this reason, the

cipher begins and ends with an Add Round Key stage. Any other stage, applied at the

beginning or end, is reversible without knowledge of the key and so would add no

security.[4]

14

Figure 1: AES Structure [1]

The Add Round Key stage by itself would not be formidable. The other three stages

together scramble the bits, but by themselves, they would provide no security because

they do not use the key. We can view the cipher as alternating operations of XOR

encryption (Add Round Key) of a block, followed by scrambling of the block (the

other three stages), and followed by XOR encryption, and so on. This scheme is both

efficient and highly secure.Each stage is easily reversible. For the Substitute Byte.

Shift Row, and Mix Columns stages, an inverse function is used in the decryption

algorithm. For theAdd Round Key stage, the inverse is achieved by X0Ring the same

round keyto the block, using the result that A (I) B (I) B = A.

As with most block ciphers, the decryption algorithm makes use of the

expanded key in reverse order. However, the decryption algorithm is notidentical to

15

the encryption algorithm. This is a consequence of the particularstructure of

AES.Once it is established that all four stages are reversible, it is easy to verify

thatdecryption does recover the plaintext. [4]

1.4. Background

On January 2, 1997 the National Institute of Standards and Technology (NIST)

held a contest for a new encryption standard. The previous standard, DES, was no

longer adequate for security. It had been the standard since November 23, 1976.

Computing power had increased a lot since then and the algorithm was no longer

considered safe. The earlier ciphers can be broken with ease on modern computation

systems.In 1998 DES was cracked in less than three days by a specially made

computer called the DES cracker. The DES cracker was created by the Electronic

Frontier Foundation for less than $250,000 and won the RSA DES Challenge II-2.It

was also fartoo slow in software as it was developed for mid-1970’s hardware and

does not produceefficient software code. Triple DES on the other hand, has three

times as many roundsas DES and is correspondingly slower. As well as this, the 64 bit

block size of tripleDES and DES is not very efficient and is questionable when it

comes to securityCurrent alternatives to a new encryption standard were Triple DES

(3DES) and International Data Encryption Algorithm (IDEA). The problem was

IDEA and 3DES were too slow and IDEA was not free to implement due to patents.

NIST wanted a free and easy to implement algorithm that would provide good

security. Additionally they wanted the algorithm to be efficient and flexible.[1]

What was required was a brand new encryption algorithm. One that would be resistant

to all known attacks. The National Institute of Standards and Technology

(NIST)wanted to help in the creation of a new standard. However, because of the

controversythat went with the DES algorithm, and the years of some branches of the

U.S. governmenttrying everything they could to hinder deployment of secure

cryptography thiswas likely to raise strong skepticism. The problem was that NIST

did actually wantto help create a new excellent encryption standard but they couldn’t

get involved directly.Unfortunately they were really the only ones with the technical

reputation and resources to the lead the effort.[1]

Table 1: First Round Qualifiers [3]

16

ALGORITHM NAME SUBMITTER

CAST-256 Entrust Technologies, Inc.

CRYPTON Future Systems, Inc.

DEAL Richard Outerbridge, Lars Knudsen

DFC

CNRS - Centre National pour la

RechercheScientifique -

EcoleNormaleSuperieure

E2
NTT - Nippon Telegraph and Telephone

Corporation

FROG TecAproInternacional S.A.

HPC Rich Schroeppel

LOKI97
Lawrie Brown, Josef Pieprzyk, Jennifer

Seberry

MAGENTA Deutsche Telekom AG

MARS IBM

RC 6 RSA Laboratories

Rijndael JoaenDaemen, Vincent Rijmen

SAFER+ Cylink Corporation

Serpent

Ross Anderson, Eli Biham, Lars

Knudsen

Twofish

Bruce Schneier, John Kelsey,

Doug Whiting, David Wagner,

Chris Hall, Niels Ferguson

Instead of designing or helping to design a cipher, what they did instead was to set

upa contest in which anyone in the world could take part. The contest was announced

on the 2
nd

 January 1997 and the idea was to develop a new encryption algorithm

thatwould be used for protecting sensitive, non-classified, U.S. government

information.The ciphers had to meet a lot of requirements and the whole design had to

be fully documented(unlike the DES cipher). Once the candidate algorithms had been

submitted, several years of scrutiny in the form of cryptographic conferences took

place. Inthe first round of the competition 15 algorithms were accepted and this was

narrowedto 5 in the second round. The fifteen algorithms are shown in table below of

which the 5that were selected are shown in bold. The algorithms were tested for

efficiency andsecurity both by some of the world’s best publicly renowned

cryptographers and NISTitself.

After holding the contest for three years, NIST chose an algorithm created by two

Belgian computer scientists, Vincent Rijmen and Joan Daemen. On November 26,

2001 the Federal Information Processing Standards Publication 197 announced a

standardized form of the Rijndael algorithm as the new standard for encryption. This

17

standard was called Advanced Encryption Standard and is currently the standard for

encryption.[1]

1.5. Definitions

Cryptography: Cryptography is the science of secret codes, enabling the

confidentiality of communication through an insecure channel. It protects against

unauthorized parties by preventing unauthorized alteration of use. Generally speaking,

it uses a cryptographic system to transform a plaintext into a cipher text most of the

time using a key. It has different Encryption and Decryption algorithms to do so.

Cipher Text: This is the scrambled message produced as output from Encryption

algorithm. It depends on the plaintext and the secret key. For a given message, two

different keys will produce two different cipher texts.

Encryption: Encryption is the process of converting data, in plain text format into a

meaningless cipher text by means of a suitable algorithm. The algorithm takes

secretkey and plain text as input and produces cipher text.

Decryption: Decryptionis converting the meaningless cipher text into the

originalinformation using decryption algorithms. The decryption algorithm is inverse

ofencryption algorithm. This takes key and cipher text as input and produces original

plain text.

Symmetric key cryptography: Symmetric cryptography uses the same secret

(private) key to encrypt and decrypt its data. It requires that the secret key be known

by the party encrypting thedata and the party decrypting the data.

Asymmetric key cryptography: Asymmetric uses both a public and private key.

This allows for distribution of your public key to anyone with which they can encrypt

the data they want to sendsecurely and then it can only be decoded by the person

having the private key.[2]

1.6. AES vs DES

There is a huge, important difference between these two encryption and

decryption algorithms, Data Encryption Standard (DES) and the Advanced

Encryption Standard (AES): AES is secure while DES is not.The federal government

developed DES encryption algorithms more than 30 years ago to provide

18

cryptographic security for all government communications. The idea was to ensure

government systems all used the same, secure standard to facilitate interconnectivity.

DES served as the cornerstone of government cryptography for more than two

decades, but in 1999 researchers broke the algorithm's 56-bit key using a distributed

computer system.AES data encryption is a more mathematically efficient and elegant

cryptographic algorithm, but its main strength rests in the key length options. The

time required to crack an encryption algorithm is directly related to the length of the

key used to secure the communication. AES allows you to choose a 128-bit, 192-bit

or 256-bit key, making it exponentially stronger than the 56-bit key of DES.

Data Encryption Standard is a rather old way of encrypting data so that the

information could not be read by other people who might be intercepting traffic. DES

is rather quite old and has since been replaced by a newer and better Advanced

Encryption Standard. The replacement was done due to the inherent weaknesses in

DES that allowed the encryption to be broken using certain methods of attack.

Common applications of AES, as of the moment, are still impervious to any type of

cracking techniques, which makes it a good choice even for top secret information.

The inherent weakness in DES is caused by a couple of things that are already

addressed in AES. The first is the very short 56 bit encryption key. The key is like a

password that is necessary in order to decrypt the information. A 56 bit has a

maximum of 256 combinations, which might seem like a lot but is rather easy for a

computer to do a brute force attack on. AES can use a 128, 192, or 256 bit encryption

key with 2^128, 2^192, 2^256 combinations respectively. The longer encryption keys

make it much harder to break given that the system has no other weaknesses.

Another problem is the small block size used by DES, which is set at 64 bits. In

comparison, AES uses a block size that is twice as long at 128 bits. In simple terms,

the block size determines how much information you can send before you start having

identical blocks, which leak information. People can intercept these blocks and use

read the leaked information. For DES with 64 bits, the maximum amount of data that

can be transferred with a single encryption key is 32GB; at this point another key

needs to be used. With AES, it is at 256 exabytes or 256 billion gigabytes. It is

probably safe to say that you can use a single AES encryption key for any application.

In terms of structure, DES uses the Feistel network which divides the block into

two halves before going through the encryption steps. AES on the other hand, uses

19

permutation-substitution, which involves a series of substitution and permutation

steps to create the encrypted block.Summing up we can say that:

- DES is really old while AES is relatively new

- DES is breakable while AES is still unbreakable

- DES uses a much smaller key size compared to AES

- DES uses a smaller block size compared to AES

- DES uses a balanced Feistel structure while AES uses substitution-

permutation [4]

1.7. AES vs 3DES

Advance Encryption Standard (AES) and Triple DES (TDES or 3DES) are

commonly used block ciphers. Whether you choose AES or 3DES depend on your

needs. DES was developed in 1977 and it was carefully designed to work better in

hardware than software. DES performs lots of bit manipulation in substitution and

permutation boxes in each of 16 rounds. Even though it seems large but according to

today’s computing power it is not sufficient and vulnerable to brute force attack.

Therefore, DES could not keep up with advancement in technology and it is no longer

appropriate for security. Because DES was widely used at that time, the quick

solution was to introduce 3DES which is secure enough for most purposes today.

3DES is a construction of applying DES three times in sequence. 3DES with three

different keys (K1, K2 and K3) has effective key length is 168 bits (The use of three

distinct key is recommended of 3DES.). Another variation is called two-key (K1 and

K3 is same) 3DES reduces the effective key size to 112 bits which is less secure.

Two-key 3DES is widely used in electronic payments industry. 3DES takes three

times as much CPU power than compare with its predecessor which is significant

performance hit. AES outperforms 3DES both in software and in hardware.

AES (Advanced Encryption Standard) and 3DES, or also known as Triple DES

(Data Encryption Standard) are two of the current standards in data encryption. While

AES is a totally new encryption that uses the substitution-permutation network, 3DES

is just an adaptation to the older DES encryption that relied on the balanced Feistel

network. Basically, 3DES is just DES applied three times to the information that is

being encrypted.

20

AES uses three common encryption key lengths, 128, 192, and 256 bits. When it

comes to 3DES the encryption key is still limited to 56 bits as dictated by the DES

standard. But since it is applied three times, the implementer can choose to have 3

discrete 56 bit keys, or 2 identical and 1 discrete, or even three identical keys. This

means that 3DES can have encryption key lengths of 168, 112, or 56 bit encryption

key lengths respectively. But due to certain vulnerabilities when reapplying the same

encryption thrice, using 168 bits has a reduced security equivalent to 112 bits and

using 112 bits has a reduced security equivalent to 80 bits.

3DES also uses the same block length of 64 bits, half the size that of AES at 128

bits. Using AES provides additional insurance that it is harder to sniff leaked data

from identical blocks. When using 3DES, the user needs to switch encryption keys

every 32GB of data transfer to minimize the possibility of leaks; identical to when

using the standard DES encryption.

Lastly, repeating the same process three times does take some time. With all

things held constant, AES is much faster compared to 3DES. This line gets blurred

when you include software, hardware, and the complexity of hardware design to the

mix. So if you have 3DES accelerated hardware, migrating to AES implemented by

software alone may result in slower processing times. In this aspect, there is not better

solution than to test each one and measure their speed. But when it comes to security,

AES is the sure winner as it is still considered unbreakable in practical use.Summing

up:

- 3DES uses identical encryption to DES while AES uses a totally different

- 3DES has shorter and weaker encryption keys compared to AES

- 3DES uses repeating encryption keys while AES does not

- 3DES also uses a shorter block length compared to AES

- 3DES encryption takes longer than AES encryption [4]

1.8. AES vs RSA

RSA is one of the most successful, asymmetric encryption systems today.

Originally discovered 1973 by the British intelligence agency GCHQ, it received the

classification “top secret”. Its civil rediscovery is owned to the cryptologists Rivest,

Shamir and Adleman, who discovered it during an attempt to break another

21

cryptographic problem. As opposed to traditional, symmetric encryption systems,

RSA works with two different keys: A “public” key, and a “private” one. Both work

complementary to each other, a message encrypted with one of them can only be

decrypted by its counterpart. Since the private key can’t be calculated from the public

key, the latter is generally made available to the public. Those properties enable

asymmetric cryptosystems to be used in a wide array of functions, such as digital

signatures. In the process of signing a document, a fingerprint, encrypted with RSA, is

appended to the file, and enables the receiver to verify both the sender and the

integrity of the document.

The security of RSA itself is mainly based on the mathematical problem of

integer factorization. A message that is about to be encrypted is treated as one large

number. When encrypting the message, it is raised to the power of the key, and

divided with remainder by a fixed product of two primes. By repeating the process

with the other key, the plaintext can be retrieved back. The best, currently known

method to break the encryption requires factorizing the product used in the division.

Currently, it is not possible to calculate these factors for numbers greater than 768

bits. None the less, modern cryptosystems use a minimum key length of 3072 bits.

As first publicly accessible, from the NSA for the classification "top secret"

approved cipher, the Advanced Encryption Standard (AES) is one of the most

frequently used and most secure encryption algorithms available today. Its story of

success started 1997, when the National Institute of Standards and Technology NIST

announced the search for a successor to the aging encryption standard DES. An

algorithm named "Rijndael", developed by the Belgian cryptographists Daemen and

Rijmen, excelled in security as well as in performance and flexibility. It came out on

top of several competitors, and was officially announced as the new encryption

standard AES in 2001. The algorithm is based on several substitutions, permutations

and linear transformations, each executed on data blocks of 16 byte – therefore the

term blockcipher. Those operations are repeated several times, called “rounds”.

During each round, a unique roundkey is calculated out of the encryption key, and

incorporated in the calculations. Based on this block structure of AES, the change of a

single bit either in the key, or in the plaintext block results in a completely different

ciphertext block – a clear advantage over traditional stream ciphers. The difference

between AES-128, AES-192 and AES-256 finally is the length of the key: 128, 192 or

22

256 bit – all drastic improvements compared to the 56 bit key of DES. By way of

illustration: Cracking a 128 bit AES key with a state-of-the-art supercomputer would

take longer than the presumed age of the universe. And Boxcryptor even uses 256 bit

keys! As of today, no practicable attack against AES exists. Therefore, AES remains

the preferred encryption standard for governments, banks and high security systems

around the world.

They're not really directly comparable. The number commonly bandied about

is 2048-bit RSA is about equivalent to 128-bit AES. But that number shouldn't be

relied on without understanding the caveats. Currently the most effective way of

breaking AES crypto (and any other unbroken symmetric cipher, for that matter) is

brute-force. You simply try every possibility until you reach the correct result. This

means that it is possible, and well within today's technology, to encrypt data that

(assuming no better attack is ever found), can never be broken, ever, by anyone.

Simply use enough bits in your key such that there isn't enough energy in the universe

to try enough candidate keys. The numbers are smaller than you'd think: Indeed, with

AES, 128-bit is secure against modern technology, 256 is secure against any likely

future technology, and 512 is probably secure against even never-imagined

hypothetical alien technology.

Symmetric encryption, if not broken, doesn't leave you with a math problem to

solve. The numbers are truly and literally scrambled, and the system is devised such

the brute-force is by far the most efficient solution. Breaking RSA, on the other hand,

is not so hard. Instead of brute-forcing the keys, you factor the modulus into primes

and derive the keys yourself. This is dramatically simpler to do. It's a math problem,

and we can do math. Specifically, the speed at which primes can be factored is

increasing faster than the speed at which symmetric keys can be brute-forced. And

that's with today's technology. But going forward, assuming quantum computers can

be improved such that qbit operations are a cheap as bit operations (which many

people thinks is fairly close; this century at most, possibly decades), then no matter

how large you make your RSA key, breaking the key is as fast as encrypting.

Summing up one would say that equivalent security of RSA key length versus

AES key length changes over time. Every so often, you have to increase your RSA

key size relative to your AES key size to account for technological advances. And

23

even then, it's an estimate at best. And while a 256-bit symmetric key should be

secure for hundreds, thousands, or perhaps hundreds of thousands of years, no RSA

key of any length should be assumed to be secure more than a few dozen years out,

since RSA is expected to be completely and utterly broken by Shor's algorithm. [3]

Table 2: Comparison between DES, AES and RSA [3]

S.NO. FACTOR DES AES RSA

1 Developed 1977 2000 1978

2 Key Length Value 56 bit
128, 192 and

256 bits
>1024 bits

3 Type of Algorithm Symmetric Symmetric Asymmetric

4 Encryption Ratio Low High High

5 Security Attacks Inadequate
Highly

Secured
Timing attack

6 Simulation Speed Fast Fast Fast

7 Scalability
Scalable

algorithm

No scalability

occurs

No scalability

occurs

8 Power Consumption Low Low High

9
Hardware and Software

Implementations

Better in

hardware than

in software

Faster and

efficient

Not very

efficient

1.9. Organization of the Report

This report document comprises of five chapters. The Chapter 1 gives the overview to

AES algorithm, basic definitions of terms that are used in this report and purpose of

project and also gives the motivation behind implementing this project. Chapter 2

gives the details of requirements for implementing the project.It gives hardware,

software and user requirements and the performance parameters taken into

consideration.Chapter 3gives the research analysis regarding AES algorithm. Chapter

4 gives the details of each modules used in this project and some implementation

details. Chapter 5 give implementation of core components. Chapter 6gives

conclusion, limitations and further enhancement to the project. References section

provide source detail where we get information. Appendix contains snapshots of the

project code execution.

24

Chapter 2

System Requirement Specification

The following are the system requirements:

2.1. Hardware Requirements

- 512MB RAM or above

- X86 or above processor

- 2MB Secondary memory or above

2.2. Software Requirements

- Operating System: LINUX, Windows

- Language used: Java

- Editor: Eclipse IDE

2.3. Functional Requirements

The functional requirements for the implementation are as follows:

2.3.1. Input Specification

- An input file/string type variable should contain some data. That can be used

as plain text for encryption

- Secret key used for encryption should of l28bits, 192bits or 256bits

2.3.2. Output Specification

- The second party should know secret key that used for encryption.

- After providing secret key as input, it displays the original plain text.

2.4. Performance Parameters

The performance of AES algorithm can be measured by considering following

parameters:

25

2.4.1. Time Taken

The time taken for encryption as well as decryption of a given plain text is

calculated by using system clock time:The system clock is recorded twice i.e. before

and afterthe execution of the encryption module and their difference yields the time

taken for encryption. The same procedure is followed to calculate decryption time,

just that decryption module is invoked instead. [5]

2.4.2. Throughput

In computer technology, throughput is the amount of work that a computer can do in a

given time period. Throughput is one of the key factors to measure performance of an

algorithm. In case of AES, throughput depends on size of block as well as time taken

for encryption/decryption given by:

Where,

T - Throughput

t - Time taken to encrypt/decrypt

2.5 Conclusion

System requirement specified.

26

Chapter 3

Literature Review

At present, there are many research achievements in the field of block cipher.

Especially, the Advanced Encryption Standard AES algorithm should be considered

the excellent representative of all the researches. When the data encryption standard

was replaced by the advanced encryption standard, the whole world shifted their

concern on the AES algorithm. Some research showed that the AES algorithm can be

implemented with increased speed by shifting, XOR and looking up tables, etc. The

analysis of some research work on AES algorithm based on increasing its speed and

level of security by altering the parameters that have been described below:

Table 3: Research Analysis [6], [7], [8]

Author Name Year Technique Results

Deguang Le,

Jinyi Chang,

Xingdou Gou,

Ankang

Zhang,

Conglan Lu

Parallel AES

Algorithm

for Fast Data

Encryption

on GPU

2010

Parallel

encryption to

design a fast data

encryption system

based on GPU.

Speedup=GPU_Time/

CPU_Time

(For plaintext sizes:

10KB Speedup=2

1MB Speedup=4

200MB Speedup=7)

Vishal Pachori,

Gunjan Ansari,

Neha

Chaudhary

Improved

Performance

of Advance

Encryption

Standard

using Parallel

Computing

2012

Parallel

Implementation

of AES using

Java Parallel

Programming

Framework

Speed up achieved for

data parallelism and

control parallelism is

up to 2.16

RituPahal,

Vikaskumar

Efficient

Implementati

on of AES

2013

The same

conventional

algorithm is

implemented for

200 bit block as

well as key size.

Encryption time

decreased by 20%

Throughput is :

T=200/t

(conventional being

T=128/t)

3.1.Increasing the Block Size

Symmetric cryptography, such as in the Data Encryption Standard (DES),

3DES, and Advanced Encryption Standard (AES), uses an identical key for the sender

and receiver, both to encrypt the message text and decrypt the cipher text. Symmetric

cryptography is more suitable for the encryption of a large amount of data. The AES

27

algorithm defined by the National Institute of Standards and Technology (NIST) of

the United States has been widely accepted to replace DES as the new symmetric

encryption algorithm. The AES algorithm is a symmetric block cipher that processes

data blocks of 128 bits using a cipher key of length 128, 192, or 256 bits. Each data

block consists of a 4 × 4 array of bytes called the state, on which the basic operations

of the AES algorithm are performed.

The proposed algorithm differs from conventional AES [7] as it has 200 bits

block size and key size both. Number of rounds is constant and equal to ten in this

algorithm. The key expansion and substitution box generation are done in the same

way as in conventional AES block cipher. AES has 10 rounds for 128-bit keys,12

rounds for 192-bit keys, and 14 rounds for 256-bit keys and the same conventional

128 bit conventional AES algorithm is implemented for 200 bit using 5*5 Matrix.

After the implementation, the proposed work is compared with 128 bit, 192 bits &

256 bits AES techniques on two points. These points are encryption and decryption

time and throughput at both encryption and decryption sides.

At the start of encryption, 200 bit input is copied to the State array of 5*5

matrix. The data bytes are filled first in the column then in the rows. Then after the

initial round key addition, ten rounds of encryption are performed. The first nine

rounds are same, with small difference in the final round. Each of the first nine rounds

consists of 4 transformations: SubBytes, ShiftRows, MixColumns and

AddRoundKey. But in final round Mixcolumns transformation is not used.

- SubBytes Transformation - In this transformation, each of the byte in the state

matrix is replaced with another byte as per the S-box. The S-box is generated

by firstly calculating the respective reciprocal of that byte in GF (2^8) and

then affine transform is applied.

- ShiftRows Transformation - In this transformation, the bytes in the first row of

the State do not change. The second, third, fourth and fifth rows shift

cyclically to the left by one byte, two bytes, three bytes and four bytes

respectively.

28

Figure 2: Shift Rows Transformation [7]

- MixColumns Transformation - It is the operation that mixes the bytes in each

column by the multiplication of the state with a fixed polynomial matrix. It

completely changes the scenario of the cipher even if the all bytes look very

similar. The Inverse Polynomial Matrix does exist in order to reverse the mix

column transformation.

- AddRoundKey Transformation - In AddRoundKey transformation, a roundkey

is added to the State by bitwise Exclusive-OR (XOR) operation.

Figure 3: Polynomial Matrix and Its Inverse for mix column transformation [7]

The Decryption structure of proposed algorithm is obtained by inverting the

encryption structure. Corresponding to the transformations in the encryption,

InvSubBytes, InvShiftRows, InvMixColumns, and AddRoundKey are the

transformations used in the decryption. The roundkeys are the same as those in

encryption generated by Key Expansion, but are used in reverse order.

29

From the experimentation results it is deduced that for large block of data AES-200

encryption time per bit is reduced up to 20% and decryption time per bit is increased

up to 25%. The throughput may be defined as number of bits that can be encrypted or

decrypted during one unit of time. As it was mentioned earlier that all AES variant

has equal block size of 128 bits and the proposed algorithm has block size of 200 bits.

Thus, in form of equation the throughput may be defined as:

Where, is representation of throughput for conventional algorithms,

is representation of throughput for proposed algorithm, denotes the time taken

to encrypt the 128 bit block message, represents time taken to encrypt the 200

bit block message of conventional algorithm.

It is observed that the throughput at encryption end of AES-200 is 15% more than

AES-128, 20% more than AES-192 and 30% more than AES-256. The decryption

process of AES-200 is slower than conventional AES, the proposed algorithm is 50%

slower from AES-128, 40% from AES-192, and 25% from AES-256. [7]

3.2. Parallel Execution

To improve the performance of AES algorithm using parallel computing there are two

major approaches Control Parallelism and Data Parallelism [8].

In Data Parallelism the data is divided into more than one part and send different part

to different nodes for execution. Each node is executing the same procedure or

function but on different data. This approach is very effective when there is large data

to process. AES can be implemented in the following manner using DATA

parallelism. Server sends Plaintext with the Key on node 1 and it will compute the

cipher text by running the AES algorithm and finally sends the result back to the

Server. Node 2 follows the same procedure. The number of nodes can be increased

according to our requirement and number of processing units available.

30

In Control Parallelism the operation or function is divided instead of data. The

different operation or function is assigned to different nodes and then finally the

output is send to the server for final processing. Although it is less scalable then data

parallelism but more speed up can be achieved by this approach. In control

parallelism approach, the four main operations in AES algorithm are divided into two

parts and combination of these operations is Operation 1 and Operation 2. Node 1 will

execute only operation 1 and Node 2 will perform only operation 2. Nodes will

communicate the result of each other when needed.

The performance of proposed architecture is measured in terms of execution time.

The performance is measured on 256 bits of data and on two nodes or processing

units.The execution time of converting 256 bits plain text into cipher text on Java

Parallel Programming Framework using two nodes. The time taken by single core to

encrypt 256 bits of data is 14, 15 and 13 seconds in different run. The time taken by

the 1st run is more than the time taken in the subsequent run because in the first run

the Hazelcast Framework is loaded which takes time to load. In the subsequent runs

the time taken by the modified AES algorithm is almost same i.e. execution time gets

stable. Speed up of the modified AES algorithm is shown below:

Speed up for Data parallelism (1st run) = 15/10 = 1.5

Speed up for Data parallelism (2nd run) = 14/7 = 2.0

Speed up for Data parallelism (3rd run) = 13/6 = 2.16

Speed up for Data parallelism (4th run) = 13/7 = 1.85

Speed up for Control parallelism (1st run) = 15/11 = 1.36

Speed up for Control parallelism (2nd run) = 14/7 = 2.0

Speed up for Control parallelism (3rd run) = 13/6 = 2.16

Speed up for Control parallelism (4th run) = 13/6 = 2.16

In order to overcome the issue of low efficiency over thetraditional CPU-based

implementation of AES [6], researchers designed and implementedthe parallel AES

algorithm based on GPU. The implementation achieves up to 7x speedup over

31

theimplementation of AES on a comparable CPU. The implementation can be applied

for the computer forensicswhich requires high speed of data encryption. [8]

3.3 Conclusion

Different advantages of AES learned. We also learned that AES is optimal for Cloud

Computing Security.

32

Chapter 4

Design and Implementation

AES algorithm is the current standard for symmetric key encryption, this section

gives a detailed explanation about the various permutation and substitution steps

followed in order to perform encryption and decryption.

4.1. Detailed Description

The following is the brief overview of various terminologies used in implementation

of the AES algorithm:

4.1.1. Terminology

State: Defines the current condition (state) of the block. That is the block of bytes that

are currently being worked on. The state starts off being equal to the block, however it

changes as each round of the algorithms executes. Plainly said this is the block in

progress. [9]

Figure 4: HEX Matrix [9]

Block: AES is a block cipher. This means that the number of bytes that it encrypts is

fixed. AES can currently encrypt blocks of w 16 bytes at a time; no other block sizes

33

are presently a part of the AES standard. If the bytes being encrypted are larger than

the specified block then AES is executed concurrently. This also means that AES has

to encrypt a minimum of 16 bytes. If the plain text is smaller than 16 bytes then it

must be padded. Simply said the block is a reference to the bytes that are processed by

the algorithm.

HEX: Defines a notation of numbers in base 16. This simply means that; the highest

number that can be represented in a single digit is 15, rather than the usual 9 in the

decimal (base 10) system.

XOR: Refers to the bitwise operator Exclusive Or. XOR operates on the individual

bits in a byte in the following way:

0 XOR 0 = 0

1 XOR 0 = 1

1 XOR 1 = 0

0 XOR 1 = 1

Most programming languages have the XOR operator built in. Another

interesting property of the XOR operator is that it is reversible.

So Hex 2B XOR FF = D4.AES is an iterated symmetric block cipher, which means

that:

- AES works by repeating the same defined steps multiple times.

- AES is a secret key encryption algorithm.

- AES operates on a fixed number of bytes

AES as well as most encryption algorithms is reversible. This means that almost the

same steps are performed tocomplete both encryption and decryption in reverse order.

The AES algorithm operates on bytes, which makes it simpler to implement and

explain.This key is expanded into individual sub keys, a sub keys for each operation

round. This process is called KeyExpansion, which is described at the end of this

document. As mentioned before AES is an iterated block cipher. All that means is that

34

the same operations are performed many timeson a fixed number of bytes. These

operations can easily be broken down to the following functions:

- ADD ROUND KEY

- SUB BYTE

- SHIFT ROW

- MIX COLUMN

An iteration of the above steps is called a round. The amount of rounds of the

algorithm depends on the key size. The only exception being that in the last round the

Mix Column step is not performed to make the algorithm reversible during

decryption.

Table 4: Number of rounds for various key sizes [3]

Key Size

(Bytes)

Block Size

(Bytes)

Rounds

16 16 10

24 16 12

32 16 14

Encryption

The following tables illustrates the number of rounds required for encryption

depending on different key size length:

Table 5: AES Encryption cipher using 16-bit key [3]

Round Function

- Add Round Key(State)

1 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

2 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

3 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

4 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

5 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

6 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

7 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

8 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

9 Add Round Key(Shift Row(Byte Sub(State)))

35

Table 6: AES Encryption cipher using 24-bit key [3]

Round Function

- Add Round Key(State)

1 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

2 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

3 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

4 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

5 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

6 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

7 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

8 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

9 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

10 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

11 Add Round Key(Shift Row(Byte Sub(State)))

Table 7: AES Encryption cipher using 32-bit key [3]

Round Function

- Add Round Key(State)

1 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

2 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

3 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

4 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

5 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

6 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

7 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

8 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

9 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

10 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

11 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

12 Add Round Key(Mix Column(Shift Row(Byte Sub(State))))

13 Add Round Key(Shift Row(Byte Sub(State)))

36

Decryption

The following tables illustrates the number of rounds required for encryption

depending on different key size length:

Table 8: AES Decryption cipher using 16-bit key [3]

Round Function

- Add Round Key(State)

1 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

2 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

3 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

4 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

5 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

6 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

7 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

8 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

9 Add Round Key(Byte Sub(Shift Row(State)))

Table 9: AES Decryption cipher using 24-bit key [3]

Round Function

- Add Round Key(State)

1 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

2 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

3 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

4 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

5 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

6 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

7 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

8 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

9 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

10 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

11 Add Round Key(Byte Sub(Shift Row(State)))

37

Table 10: AES Decryption cipher using 32-bit key [3]

Round Function

- Add Round Key(State)

1 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

2 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

3 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

4 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

5 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

6 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

7 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

8 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

9 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

10 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

11 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

12 Mix Column(Add Round Key(Byte Sub(Shift Row(State))))

13 Add Round Key(Byte Sub(Shift Row(State)))

4.2. AES Cipher Functions

Given below is the detailed description of all the 4 functions and the corresponding

inverse functions that are used in various rounds of encryption as well as decryption

process:

4.2.1. Add Round Key

Each of the 16 bytes of the state is XORed against each of the 16 bytes of a

portion of the expanded key for the current round.

Figure 5: Working of Add Round Key [1]

38

The Expanded Key bytes are never reused. So once the first 16 bytes are XORed

against the first16 bytes of the expanded key then the expanded key bytes 1-16 are

never used again. The next time the AddRound Key function is called bytes 17-32 are

XORed against the state.

4.2.2. Byte Sub

During encryption each value of the state is replaced with the corresponding SBOX

value.

Figure 6: SBOX [1]

For example HEX 19 would get replaced with HEX D4

Whereas during decryption each value in the state is replaced with the corresponding

inverse of the SBOX.

39

Figure 7: Inverse SBOX [1]

For example HEX D4 would get replaced with HEX 19

4.2.3. Shift Row

Arranges the state in a matrix and then performs a circular shift for each row.

This is not a bit wise shift. The circular shift just moves each byte one space over. A

byte that was in the second position may end up in the third position after the shift.

The circular part of it specifies that the byte in the last position shifted one space will

end upin the first position in the same row. [9]

In Detail:

- The state is arranged in a 4x4 matrix (square)

- The confusing part is that the matrix is formed vertically but shifted

horizontally. So the first 4 bytes of the state will form the first bytes in each

row.

So bytes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Will form a matrix:

1 5 9 13

2 6 10 14

3 7 11 15

40

4 8 12 16

Each row is then moved over (shifted) 1, 2 or 3 spaces over to the right, depending on

the row of the state. First row is never shifted

Row1 0

Row2 1

Row3 2

Row4 3

The following is the illustration of how the individual bytes are first arranged in the

table and then moved over (shifted).

Blocks 16 bytes long:

From To

1 5 9 13 1 5 9 13

2 6 10 14 6 10 14 2

3 7 11 15 11 15 3 7

4 8 12 16 16 4 8 12

During decryption the same process is reversed and all rows are shifted to the left:

From To

1 5 9 13 1 5 9 13

2 6 10 14 14 2 6 10

3 7 11 15 11 15 3 7

4 8 12 16 8 12 16 4

4.2.4. Mix Column

This is perhaps the hardest step to both understand and explain. There are two

parts to this step. The first will explainwhich parts of the state are multiplied against

which parts of the matrix. [9]

Matrix Multiplication:

The state is arranged into a 4 row table (as described in the Shift Row function).

The multiplication is performed one column at a time (4 bytes). Each value in the

column is eventually multiplied against every value of the matrix (16 total

multiplications). The results of these multiplications are XORed together to produce

only 4 result bytes for the next state. Therefore 4 bytes input, 16 multiplications 12

41

XORs and 4 bytes output. The multiplication is performed one matrix row at a time

against each value of a state column.

Multiplication Matrix

2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2

16 byte State

b1 b5 b9 b13

b2 b6 b10 b14

b3 b7 b11 b15

b4 b8 b12 b16

The first result byte is calculated by multiplying 4 values of the state column against 4

values of the first row of the matrix. The result of each multiplication is then XORed

to produce 1 byte:

b1 = (b1 * 2) XOR (b2*3) XOR (b3*1) XOR (b4*1)

The second result byte is calculated by multiplying the same 4 values of the state

column against 4 values of the second row of the matrix. The result of each

multiplication is then XORed to produce 1 byte:

b2 = (b1 * 1) XOR (b2*2) XOR (b3*3) XOR (b4*1)

The third result byte is calculated by multiplying the same 4 values of the state

column against 4 values of the third row of the matrix. The result of each

multiplication is then XORed to produce 1 byte:

b3 = (b1 * 1) XOR (b2*1) XOR (b3*2) XOR (b4*3)

The fourth result byte is calculated by multiplying the same 4 values of the state

column against 4 values of the fourth row of the matrix. The result of each

multiplication is then XORed to produce 1 byte:

b4 = (b1 * 3) XOR (b2*1) XOR (b3*1) XOR (b4*2)

42

This procedure is repeated again with the next column of the state, until there are no

more state columns.

Putting it all together:

The first column will include state bytes 1-4 and will be multiplied against the matrix

in the following manner:

b1 = (b1 * 2) XOR (b2*3) XOR (b3*1) XOR (b4*1)

b2 = (b1 * 1) XOR (b2*2) XOR (b3*3) XOR (b4*1)

b3 = (b1 * 1) XOR (b2*1) XOR (b3*2) XOR (b4*3)

b4 = (b1 * 3) XOR (b2*1) XOR (b3*1) XOR (b4*2)

(b1= specifies the first byte of the state)

The second column will be multiplied against the second row of the matrix in the

following manner.

b5 = (b5 * 2) XOR (b6*3) XOR (b7*1) XOR (b8*1)

b6 = (b5 * 1) XOR (b6*2) XOR (b7*3) XOR (b8*1)

b7 = (b5 * 1) XOR (b6*1) XOR (b7*2) XOR (b8*3)

b8 = (b5 * 3) XOR (b6*1) XOR (b7*1) XOR (b8*2)

And so on until all columns of the state are exhausted.

4.2.5. Mix Column Inverse

During decryption the Mix Column the multiplication matrix is changed to:

0E 0B 0D 09

09 0E 0B 0D

0D 09 0E 0B

0B 0D 09 0E

Apart from the change to the matrix table the function performs the same steps as

during encryption. [9]

Mix Column Example

The following examples are denoted in HEX.

- Mix Column Example during Encryption

Input = D4 BF 5D 30

Output(0) = (D4 * 2) XOR (BF*3) XOR (5D*1) XOR (30*1)

43

= E(L(D4) + L(02)) XOR E(L(BF) + L(03)) XOR 5D XOR 30

= E(41 + 19) XOR E(9D + 01) XOR 5D XOR 30

= E(5A) XOR E(9E) XOR 5D XOR 3010

= B3 XOR DA XOR 5D XOR 30

= 04

Output(1) = (D4 * 1) XOR (BF*2) XOR (5D*3) XOR (30*1)

= D4 XOR E(L(BF)+L(02)) XOR E(L(5D)+L(03)) XOR 30

= D4 XOR E(9D+19) XOR E(88+01) XOR 30

= D4 XOR E(B6) XOR E(89) XOR 30

= D4 XOR 65 XOR E7 XOR 30

= 66

Output(2) = (D4 * 1) XOR (BF*1) XOR (5D*2) XOR (30*3)

= D4 XOR BF XOR E(L(5D)+L(02)) XOR E(L(30)+L(03))

= D4 XOR BF XOR E(88+19) XOR E(65+01)

= D4 XOR BF XOR E(A1) XOR E(66)

= D4 XOR BF XOR BA XOR 50

= 81

Output(3) = (D4 * 3) XOR (BF*1) XOR (5D*1) XOR (30*2)

= E(L(D4)+L(3)) XOR BF XOR 5D XOR E(L(30)+L(02))

= E(41+01) XOR BF XOR 5D XOR E(65+19)

= E(42) XOR BF XOR 5D XOR E(7E)

= 67 XOR BF XOR 5D XOR 60

= E5

- Mix Column during Decryption

Input 04 66 81 E5

Output(0) = (04 * 0E) XOR (66*0B) XOR (81*0D) XOR (E5*09)

=E(L(04)+L(0E)) XOR E(L(66)+L(0B)) XOR E(L(81)+L(0D)) XOR E(L(E5)+L(09))

= E(32+DF) XOR E(1E+68) XOR E(58+EE) XOR E(20+C7)

= E(111-FF) XOR E(86) XOR E(146-FF) XOR E(E7)

= E(12) XOR E(86) XOR E(47) XOR E(E7)

44

= 38 XOR B7 XOR D7 XOR 8C

= D4

Output(1) = (04 * 09) XOR (66*0E) XOR (81*0B) XOR (E5*0D)

= E(L(04)+L(09)) XOR E(L(66)+L(0E)) XOR E(L(81)+L(0B)) XOR

E(L(E5)+L(0D))

= E(32+C7) XOR E(1E+DF) XOR E(58+68) XOR E(20+ EE)

= E(F9) XOR E(FD) XOR E(C0) XOR E(10E-FF)

= E(F9) XOR E(FD) XOR E(C0) XOR E(0F)

= 24 XOR 52 XOR FC XOR 35

= BF

Output(2) = (04 * 0D) XOR (66*09) XOR (81*0E) XOR (E5*0B)

=E(L(04)+L(0D)) XOR E(L(66)+L(09) XOR E(L(81)+L(0E)) XOR E(L(E5)+(0B))

= E(32+EE) XOR E(1E+C7) XOR E(58+DF) XOR E(20+68)

= E(120-FF) XOR E(E5) XOR E(137-FF) XOR E(88)

= E(21) XOR E(E5) XOR E(38) XOR E(88)

= 34 XOR 7B XOR 4F XOR 5D

= 5D

Output(3) = (04 * 0B) XOR (66*0D) XOR (81*09) XOR (E5*0E)

= E(L(04)+L(0B)) XOR E(L(66)+L(0D)) XOR E(L(81)+L(09)) XOR

E(L(E5)+L(0E))

= E(32+68) XOR E(1E+EE) XOR E(58+C7) XOR E(20+DF)

= E(9A) XOR E(10C-FF) XOR E(11F-FF) XOR E(FF)

= E(9A) XOR E(0D) XOR E(20) XOR E(FF)

= 2C XOR F8 XOR E5 XOR 01

= 30

4.2.6. Key Expansion

Prior to encryption or decryption the key must be expanded. The expanded

key is used in the Add Round Key function defined above. Each time the Add Round

Key function is called a different part of the expanded key is XORed against the state.

In orderfor this to work the Expanded Key must be large enough so that it can provide

45

key material for every time the AddRoundKey function is executed. The Add Round

Key function gets called for each round as well as one extra time at the beginning of

the algorithm. [9]

Therefore the size of the expanded key will always be equal to:

16 * (number of rounds + 1).

The 16 in the above function is actually the size of the block in bytes. This

provides key material for every byte in the block during every round +1

Since the key size is much smaller than the size of the sub keys, the key is

actually stretched out to provide enough key space for the algorithm. The key

expansion routine executes a maximum of 4 consecutive functions. These functions

are:

ROT WORD

SUB WORD

RCON

EK

K

An iteration of the above steps is called a round. The amount of rounds of the key

expansion algorithm depends on the key size.

Table 11: Key Expansion [3]

The first bytes of the expanded key are always equal to the key. If the key is 16 bytes

long the first 16 bytes of the expanded key will be the same as the original key. If the

key size is 32 bytes then the first 32 bytes of the expanded key will be the same as the

original key.

Each round adds 4 bytes to the Expanded Key. With the exception of the first

rounds each round also takes the previousrounds 4 bytes as input operates and returns

4 bytes.One more important note is that not all of the 4 functions are always called in

each round. The algorithm only calls all 4 of the functions every:

4 Rounds for a 16 byte Key

6 Rounds for a 24 byte Key

46

8 Rounds for a 32 byte Key

The rest of the rounds only a K function result is XORed with the result of the

EK function. There is an exception of this rule where if the key is 32 bytes long an

additional call to the Sub Word function is called every 8 rounds starting on the13th

round.

Key Expansion Functions

The following are the various functions used in expanding the given key:

- Rot Word (4 bytes)

This does a circular shift on 4 bytes similar to the Shift Row Function.

1,2,3,4 to 2,3,4,1

- Sub Word (4 bytes)

This step applies the S-box value substitution as described in Bytes Sub function to

each of the 4 bytes inthe argument.

Rcon((Round/(KeySize/4))-1)

This function returns a 4 byte value based on the following table

Rcon(0) = 01000000

Rcon(1) = 02000000

Rcon(2) = 04000000

Rcon(3) = 08000000

Rcon(4) = 10000000

Rcon(5) = 20000000

Rcon(6) = 40000000

Rcon(7) = 80000000

Rcon(8) = 1B000000

Rcon(9) = 36000000

Rcon(10) = 6C000000

Rcon(11) = D8000000

Rcon(12) = AB000000

Rcon(13) = 4D000000

Rcon(14) = 9A000000

For example for a 16 byte key Rcon is first called in the 4th round

(4/(16/4))-1=0

In this case Rcon will return 01000000

47

For a 24 byte key Rcon is first called in the 6th round

(6/(24/4))-1=0

In this case Rcon will also return 01000000

- EK(Offset)

EK function returns 4 bytes of the Expanded Key after the specified offset. For

example if offset is 0 then EK will return bytes 0,1,2,3 of the Expanded Key

- K(Offset)

K function returns 4 bytes of the Key after the specified offset. For example if

offset is 0 then K will return bytes 0,1,2,3 of the Expanded Key

Since the expansion algorithm changes depending on the length of the key, it is

extremely difficult to explain inwriting. This is why the explanation of the Key

Expansion Algorithm is provided in a table format.

- 16 byte Key Expansion:

Each round (except rounds 0, 1, 2 and 3) will take the result of the previous round and

produce a 4 byte result for the current round. Notice the first 4 rounds simply copy the

total of 16 bytes of the key.

Table 12: 16-byte key expansion [9]

48

- 24 byte Key Expansion

Each round (except rounds 0, 1, 2, 3, 4 and 5) will take the result of the previous

round and produce a 4 byte result for the current round. Notice the first 6 rounds

simply copy the total of 24 bytes of the key.

Table 13: 24-byte key expansion [9]

49

- 32 byte Key Expansion

Each round (except rounds 0, 1, 2, 3, 4, 5, 6 and 7) will take the result of the previous

round and produce a 4 byte result for the current round. Notice the first 8 rounds

simply copy the total of 32 bytes of the key.

Table 14: 32-byte key expansion [9]

50

4.3. Implementation details

The following functions are required by both encryption and decryption modules as

these functions are required for key generation and some computational steps:

generateSubkeys

Input: byte[] key

Returns: byte[]tmp

Pseudo Code:

byte[][] tmp = new byte[Nb * (Nr + 1)][4]

inti = 0

while (i<Nk)

tmp[i][0] = key[i * 4]

tmp[i][1] = key[i * 4 + 1]

tmp[i][2] = key[i * 4 + 2]

tmp[i][3] = key[i * 4 + 3]

i++

i = Nk

while (i<Nb * (Nr + 1))

byte[] temp = new byte[4]

for(int k = 0;k<4;k++)

temp[k] = tmp[i-1][k]

if (i % Nk == 0)

temp = SubWord(rotateWord(temp))

51

temp[0] = (byte) (temp[0] ^ (Rcon[i / Nk] & 0xff))

else if (Nk> 6 &&i % Nk == 4)

temp = SubWord(temp);

tmp[i] = xor_func(tmp[i - Nk], temp)

i++

returntmp

xor_func

Input: byte[] a, byte[] b

Returns: byte[] out

Pseudo Code:

byte[] out = new byte[a.length]

for(inti = 0; i<a.length; i++)

out[i] = (byte) (a[i] ^ b[i])

return out

SubWord

Input: byte[] in

Returns: byte[]tmp

Pseudo code:

byte[] tmp = new byte[in.length]

for (inti = 0; i<tmp.length; i++)

tmp[i] = (byte) (sbox[in[i] & 0x000000ff] & 0xff)

returntmp

52

rotateWord

Input: byte[] input

Returns: byte[] tmp

Pseudo code:

byte[] tmp = new byte[input.length]

tmp[0] = input[1]

tmp[1] = input[2]

tmp[2] = input[3]

tmp[3] = input[0]

returntmp

FFMul

Input: byte a, byte b

Output: byte r

Pseudo Code:

byteaa = a, bb = b, r = 0, t

while (aa != 0)

if ((aa& 1) != 0)

r = (byte) (r ^ bb)

t = (byte) (bb & 0x80)

bb = (byte) (bb << 1)

if (t != 0)

53

bb = (byte) (bb ^ 0x1b)

aa = (byte) ((aa& 0xff) >> 1)

return r

4.3.1. Encryption

The encryption algorithm has the following:

Constants - Nb = 4;Nk = key.length/4; Nr = Nk + 6; intlenght=0;

Inputs - byte[] in, byte[] key

The input text is first checked and is passes through byte padding sequence in order to

make sure it contains sufficient number of bytes for encryption.

encryptBloc

Input: byte[] in

Returns: byte[] tmp

Pseudo code:

byte[] tmp = new byte[in.length]

byte[][] state = new byte[4][Nb]

for (inti = 0; i<in.length; i++)

state[i / 4][i % 4] = in[i%4*4+i/4]

state = AddRoundKey(state, w, 0)

for (int round = 1; round < Nr; round++)

state = SubBytes(state)

state = ShiftRows(state)

state = MixColumns(state)

state= AddRoundKey(state, w, round)

state = SubBytes(state)

54

state = ShiftRows(state)

state = AddRoundKey(state, w, Nr)

for (inti = 0; i<tmp.length; i++)

tmp[i%4*4+i/4] = state[i / 4][i%4]

returntmp

AddRoundKey

Input: byte[][] state, byte[][] w, int round

Output: byte[][] tmp

Pseudo Code:

byte[][] tmp = new byte[state.length][state[0].length]

for (int c = 0; c <Nb; c++)

for (int l = 0; l < 4; l++)

tmp[l][c] = (byte) (state[l][c] ^ w[round * Nb + c][l])

returntmp

SubBytes

Input: byte[][] state

Output: byte[][] tmp

Pseudo Code:

byte[][] tmp = new byte[state.length][state[0].length]

for (int row = 0; row < 4; row++)

for (int col = 0; col <Nb; col++)

tmp[row][col] = (byte) (sbox[(state[row][col] & 0x000000ff)] & 0xff)

55

returntmp

ShiftRows

Input: byte[][] state

Output: byte[][] state

Pseudo Code:

byte[] t = new byte[4]

for (int r = 1; r < 4; r++)

for (int c = 0; c <Nb; c++)

t[c] = state[r][(c + r) % Nb]

for (int c = 0; c <Nb; c++)

state[r][c] = t[c]

return state

MixColumns

Input: byte[][] s

Output: byte[][] tmp

Pseudo Code:

int[] sp = new int[4]

byte b02 = (byte)0x02, b03 = (byte)0x03

for (int c = 0; c < 4; c++)

sp[0] = FFMul(b02, s[0][c]) ^ FFMul(b03, s[1][c]) ^ s[2][c] ^ s[3][c]

sp[1] = s[0][c] ^ FFMul(b02, s[1][c]) ^ FFMul(b03, s[2][c]) ^ s[3][c]

sp[2] = s[0][c] ^ s[1][c] ^ FFMul(b02, s[2][c]) ^ FFMul(b03, s[3][c])

56

sp[3] = FFMul(b03, s[0][c]) ^ s[1][c] ^ s[2][c] ^ FFMul(b02, s[3][c])

for (inti = 0; i< 4; i++)

s[i][c] = (byte)(sp[i])

return s

4.3.2. Decryption

The decryption algorithm has the following:

Constants - Nb = 4; Nk = key.length/4; Nr = Nk + 6; intlenght=0;

Inputs - byte[] in, byte[] key

The input cipher text is first decrypted and is then passes through byte padding

sequence in order to make sure it contains sufficient number of bytes as the input

plain text.

decryptBloc

Input: byte[][] in

Output: byte[]tmp

Pseudo Code:

byte[] tmp = new byte[in.length]

byte[][] state = new byte[4][Nb]

for (inti = 0; i<in.length; i++)

state[i / 4][i % 4] = in[i%4*4+i/4]

state = AddRoundKey(state, w, Nr)

for (int round = Nr-1; round >=1; round--)

state = InvSubBytes(state)

state = InvShiftRows(state)

state = AddRoundKey(state, w, round)

57

state = InvMixColumns(state)

state = InvSubBytes(state)

state = InvShiftRows(state)

state = AddRoundKey(state, w, 0)

for (inti = 0; i<tmp.length; i++)

tmp[i%4*4+i/4] = state[i / 4][i%4]

returntmp

InvSubBytes

Input: byte[][] state

Output: byte[][] state

Pseudo Code:

for (int row = 0; row < 4; row++)

for (int col = 0; col <Nb; col++)

state[row][col] = (byte)(inv_sbox[(state[row][col] & 0x000000ff)]&0xff)

return state

InvShiftRows

Input: byte[][] state

Output: byte[][] state

Pseudo Code:

byte[] t = new byte[4]

for (int r = 1; r < 4; r++)

for (int c = 0; c <Nb; c++)

58

t[(c + r)%Nb] = state[r][c]

for (int c = 0; c <Nb; c++)

state[r][c] = t[c]

return state

InvMixColumns

Input: byte[][] s

Output: byte[][] state

Pseudo Code:

int[] sp = new int[4]

byte b02 = (byte)0x0e, b03 = (byte)0x0b, b04 = (byte)0x0d, b05 = (byte)0x09

for (int c = 0; c < 4; c++)

sp[0] = FFMul(b02, s[0][c]) ^ FFMul(b03, s[1][c]) ^ FFMul(b04,s[2][c]) ^

FFMul(b05,s[3][c])

sp[1] = FFMul(b05, s[0][c]) ^ FFMul(b02, s[1][c]) ^ FFMul(b03,s[2][c]) ^

FFMul(b04,s[3][c])

sp[2] = FFMul(b04, s[0][c]) ^ FFMul(b05, s[1][c]) ^ FFMul(b02,s[2][c]) ^

FFMul(b03,s[3][c])

sp[3] = FFMul(b03, s[0][c]) ^ FFMul(b04, s[1][c]) ^ FFMul(b05,s[2][c])

^FFMul(b02,s[3][c])

for (inti = 0; i< 4; i++)

s[i][c] = (byte)(sp[i])

return s

4.4 Conclusion

We learned about how AES works in an extensive manner.

59

Chapter 5

Implementing the Core Components

The core components of a cryptographic storage service can be implemented using a

variety of techniques, some of which were developed specifically for cloud

computing. When preparing data for storage in the cloud, the data processor begins by

indexing it and encrypting it with a symmetric encryption scheme (e.g., AES) under a

unique key. It then encrypts the index using a searchable encryption scheme and

encrypts the unique key with an attribute-based encryption scheme under an

appropriate policy. Finally, it encodes the encrypted data and index in such a way that

the data verifier can later verify their integrity using a proof of

storage.[12][13][14][15]

In the following we provide high level descriptions of these new cryptographic

primitives. While traditional techniques like encryption and digital signatures could

be used to implement the core components, they would do so at considerable cost in

communication and computation. To see why, consider the example of an

organization that encrypts and signs its data before storing it in the cloud. While this

clearly preserves confidentiality and integrity it has the following limitations. To

enable searching over the data, the customer has to either store an index locally, or

download all the (encrypted) data, decrypt it and search locally. The first approach

obviously negates the benefits of cloud storage (since indexes can grow large) while

the second scales poorly. With respect to integrity, note that the organization would

have to retrieve all the data first in order to verify the signatures. If the data is large,

this verification procedure is obviously undesirable. Various solutions based on

(keyed) hash functions could also be used, but all such approaches only allow a fixed

number of verifications.

60

5.1 Searchable Encryption

A searchable encryption scheme provides a way to encrypt a search index so that its

contents are hidden except to a party that is given appropriate tokens. More precisely,

consider a search index generated over a collection of files (this could be a full-text

index or just a keyword index). Using a searchable encryption scheme, the index is

encrypted in such a way that (1) given a token for a keyword one can retrieve pointers

to the encrypted files that contain the keyword; and (2) without a token the contents of

the index are hidden. In addition, the tokens can only be generated with knowledge of

a secret key and the retrieval procedure reveals nothing about the files or the

keywords except that the files contain a keyword in common. [17][18]

This last point is worth discussing further as it is crucial to understanding the security

guarantee provided by searchable encryption. Notice that over time (i.e., after many

searches) knowing that a certain subset of documents contain a word in common may

leak some useful information. This is because the server could make some

assumptions about the client’s search pattern and use this information to make a guess

about the keywords being searched for. It is important to understand, however, that

while searching does leaks some information to the provider, what is being leaked is

exactly what the provider would learn from the act of returning the appropriate files to

the customer (i.e., that these files contain some keyword in common). In other words,

the information “ leaked” to the cloud provider is not leaked by the cryptographic

primitives, but by the manner in which the service is being used (i.e., to fetch files

based on exact keyword matches). It is important to understand that this leakage is in

some sense inherent to any efficient and reliable cloud storage service and is, at worst,

less information than what is leaked by using a public cloud storage service. The only

known alternative, which involves making the service provider return false positives

and having the client perform some local filtering, is inefficient in terms of

communication and computational complexity.

There are many types of searchable encryption schemes, each one appropriate to

particular application scenarios. For example, the data processors in our consumer and

small enterprise architectures use symmetric searchable encryption (SSE), while the

data processors in our large enterprise architecture uses asymmetric searchable

encryption (ASE). In the following we describe each type of scheme in more detail.

61

5.1.1 Symmetric Searchable Encryption

SSE is appropriate in any setting where the party that searches over the data is also the

one who generates it. Borrowing from storage systems terminology, we refer to such

scenarios as single writer/single reader (SWSR). SSE schemes were introduced in

(Song, Wagner and Perrig 2000) and improved constructions and security definitions

were given in (Goh 2003), (Chang and Mitzenmacher 2005) and (Curtmola, et al.

2006).[19]

The main advantages of SSE are efficiency and security while the main disadvantage

is functionality. SSE schemes are efficient both for the party doing the encryption and

(in some cases) for the party performing the search. Encryption is efficient because

most SSE schemes are based on symmetric primitives like block ciphers and pseudo-

random functions. Search can be efficient because the typical usage scenarios for SSE

(i.e., SWSR) allow the data to be pre-processed and stored in efficient data structures.

The security guarantees provided by SSE are, roughly speaking, the following:

(1) Without any trapdoors the server learns nothing about the data except its

length.

(2) Given a trapdoor for a keyword W, the server learns which (encrypted)

documents contain W without learning W.

While these security guarantees are stronger than the ones provided by both

asymmetric and efficiently searchable encryption (described below), we stress that

they do have their limitations (as described above).

The main disadvantage of SSE is that the known solutions tradeoff efficiency and

functionality. This is easiest to see by looking at two of the main constructions

proposed in the literature. In the scheme proposed by Curtmola et al. (Curtmola, et al.

2006), search time for the server is optimal (i.e., linear in the number of documents

that contain the keyword) but updates to the index are inefficient. On the other hand,

in the scheme proposed by Goh (Goh 2003), updates to the index can be done

efficiently but search time for the server is slow (i.e., linear in the total number of

documents). We also remark that neither scheme handles searches that are composed

of conjunctions or disjunction of terms. The only SSE scheme that handles

conjunctions (Golle, Waters and Staddon 2004) is based on pairings on elliptic curves

62

and is as inefficient as the asymmetric searchable encryption schemes discussed

below.

5.1.2 Asymmetric searchable encryption

ASE schemes are appropriate in any setting where the party searching over the data is

different from the party that generates it. We refer to such scenarios as many

writer/single reader (MWSR). ASE schemes were introduced in (Boneh, Di

Crescenzo, et al. 2004). Improved definitions were proposed in (Abdalla, et al. 2005)

and schemes that handle conjunctions were given in (Park, Kim and Lee 2005) and

(Boneh and Waters, Conjunctive, Subset, and Range Queries on Encrypted Data

2007).[20][4]

The main advantage of ASE is functionality while the main disadvantages are

inefficiency and weaker security. Since the writer and reader can be different, ASE

schemes are usable in a larger number of settings than SSE schemes. The inefficiency

comes from the fact that all known ASE schemes require the evaluation of pairings on

elliptic curves which is a relatively slow operation compared to evaluations of

(cryptographic) hash functions or block ciphers. In addition, in the typical usage

scenarios for ASE (i.e., MWSR) the data cannot be stored in efficient data structures.

The security guarantees provided by ASE are, roughly speaking, the following:

(1) Without any trapdoors the server learns nothing about the data except its

length.

(2) Given a trapdoor for a keyword W, the server learns which (encrypted)

documents contain W

Notice that (2) here is weaker than in the SSE setting. In fact, when using an ASE

scheme, the server can mount a dictionary attack against the token and figure out

which keyword the client is searching for (Byun, et al. 2006). It can then use the token

(for which it now knows the underlying keyword) and do a search to figure out which

documents contain the (known) keyword. Note that this should not necessarily be

interpreted as saying that ASE schemes are insecure, just that one has to be very

63

careful about the particular usage scenario and the types of keywords and data being

considered.

5.1.3 Efficient ASE

ESE schemes are appropriate in any setting where the party that searches over the data

is different from the party that generates it and where the keywords are hard to

guess.[4][21]

5.2 Proofs of Storage

A proof of storage is a protocol executed between a client and a server with which the

server can prove to the client that it did not tamper with its data. The client begins by

encoding the data before storing it in the cloud. From that point on, whenever it wants

to verify the integrity of the data it runs a proof of storage protocol with the server.

The main benefits of a proof of storage are that

(1) They can be executed an arbitrary number of times; and

(2) The amount of information exchanged between the client and the server is

extremely small and independent of the size of the data.

Proofs of storage can be either privately or publicly verifiable. Privately verifiable

proofs of storage only allow the client (i.e., the party that encoded the file) to verify

the integrity of the data. With a publicly verifiable proof of storage, on the other hand,

anyone that possesses the client’s public key can verify the data’s integrity. [27][28]

5.3 Conclusion

We learned how AES is optimal for cloud computing. We also learned how Proof of

Storage can increase the security of data stored in cloud sstorage.

64

Chapter 6

Conclusion and Future Work

The Advanced Encryption Technique was implemented successfully using Java.

Various data messages were encrypted using different keys and varying key sizes.

The original data was properly retrieved via decryption of the ciphertext. The

modifications brought about in the code was tested and proved to beaccurately

encrypting and decrypting the data messages with even higher security andimmunity

against the unauthorized users.

The limitations with this AES algorithm are: the successful attack against AES data

encryption has been side channel attacks, which don't attack the actual AES cipher

text, rather than its implementation.Since it drives on blocks of 128 bits it requires

more processing for large data.

Further enhancement to this project will be to speed up the processing of encryption

and decryption by performing the encryption/decryption process in parallel.

Achieving a better throughput by increasing the block size used by the algorithm and

testing the performance, efficiency and security of the modified algorithm using linear

cryptanalysis.

65

Bibliography

1. William Stallings, “Cryptography and Network Security”, Fifth Edition,

Pearson Education, 2013.

2. Neal R. Wagner, “The Laws of Cryptography with Java Code”, 2003 Edition.

3. Edward Chu, Paul Kim, Frank Liu, Jason Sharma and Jeffrey Yu, “The

selection of Advanced Encryption Standard”, MIT 6, 933J, fall 2000.

4. Douglas Selent, Rivier College, “Advanced Encryption Standard”, Rivier

Academic Journal, Volume 6, No. 2, fall 2010.

5. ShaabanSahmoud, WisamElmasry and ShadiAbudalfa, Islamic University of

Gaza, “Enhancement the Security of AES Against Modern Attacks by Using

Variable Key Block Cipher”, International Arab Journal of e -Technology,

Volume 3, No. 1, January 2013.

6. Deguang Le, Jinyi Chang, Xingdou Gou, Ankang Zhang, Conglan Lu,

Changshu Institute of Technology, “Parallel AES Algorithm for Fast Data

Encryption on GPU”, 978-1-4244-6349-7/10 © 2010 IEEE.

7. RituPahal, Vikaskumar, SGI Samalkha, “Efficient Implementation of AES”,

International Journal of Advanced Research in Computer Science and

Software Engineering ISSN: 2277 128X © 2013 IJARCSSE.

8. Vishal Pachori, Gunjan Ansari, Neha Chaudhary “Improved Performance of

Advance Encryption Standard using Parallel Computing”, International

Journal of Engineering Research and Applications, Volume 2, Issue 1,Jan-Feb

2012

9. Adam Berent, “Advanced Encryption Standard by Example”, documentation

for ABI Software Development.

10. Abdalla, Michel, et al. «Searchable Encryption Revisited: Consistency

Properties, Relation to Anonymous IBE, and Extensions.» Advances in

Cryptology -- CRYPTO '05. Springer, 2005. 205-222.

11. Ateniese, Giuseppe, et al. «Provable data possession at untrusted stores.» ACM

Conference on Computer and Communications Security. ACM Press, 2007.

598-609.

66

12. Ateniese, Giuseppe, Seny Kamara, et Jonathan Katz. «Proofs of Storage from

Homomorphic Identification Protocols.» Advances in Cryptology -- Asiacrypt

'09. Springer, 2009.

13. Bellare, Mihir, Alexandra Boldyreva, et Adam O' Neill. «Deterministic and

Efficiently Searchable Encryption.» Advances in Cryptology - CRYPTO 2007.

Springer, 2007. 535-552.

14. Benaloh, Josh, Melissa Chase, Eric Horvitz, et Kristin Lauter. «Patient

Controlled Encryption: Ensuring Privacy of Electronic Medical Records.» The

ACM Cloud Computing Security Workshop . 2009.

15. Boneh, Dan, et Brent Waters. «Conjunctive, Subset, and Range Queries on

Encrypted Data.» Theory of Cryptography Conference. Springer, 2007. 535-

554.

16. Boneh, Dan, Giovanni Di Crescenzo, Rafail Ostrovsky, et Giuseppe Persiano.

«Public Key Encryption with Keyword Search .» Advances in Cryptology -

EUROCRYPT 2004. Springer, 2004. 506-522.

17. Byun, Jin Wook, Hyun Suk Rhee, Hyun-A Park, et Dong Hoon Lee. «Off-

Line Keyword Guessing Attacks on Recent Keyword Search Schemes over

Encrypted Data.» Secure Data Management . Springer, 2006. 75-83.

18. Chang, Yan-Cheng, et Michael Mitzenmacher. «Privacy Preserving Keyword

Searches on Remote Encrypted Data.» Applied Cryptography and Network

Security. Springer, 2005. 442-455.

19. Chase, Melissa. «Multi-authority Attribute Based Encryption.» Theory of

Cryptography Conference. Springer, 2007. 515-534.

20. Chase, Melissa, et Sherman Chow. «Improving Privacy and Security in Multi-

Authority Attribute-Based Encryption.» ACM Conference on Computer and

Communications Security. 2009.

21. Cloud Security Alliance. «Security Guidance for Critical Areas of Focus in

Cloud Computing.» April 2009.

http://www.cloudsecurityalliance.org/guidance/csaguide.pdf.

22. Curtmola, Reza, Juan Garay, Seny Kamara, et Rafail Ostrovsky. «Searchable

symmetric encryption: improved definitions and efficient constructions.» 13th

ACM Conference on Computer and Communications Security (CCS). ACM

Press., 2006. 79-88.

http://www.cloudsecurityalliance.org/guidance/csaguide.pdf

67

23. Erway, Chris, Alptekin Kupcu, Charalampos Papamanthou, et Roberto

Tamassia. «Dynamic Provable Data Possession.» ACM Conference on

Computer and Communications Security. 2009.

24. Goh, E.-J. Secure Indexes. IACR ePrint, 2003.

25. Golle, Phillipe, Brent Waters, et Jessica Staddon. «Secure Conjunctive

Keyword Search over Encrypted Data.» Applied Cryptography and Network

Security (ACNS '04). 2004. 31-45.

26. Goyal, Vipul, Omkant Pandey, Amit Sahai, et Brent Waters. «Attribute-Based

Encryption for Fine-Grained Access Control of Encrypted Data.» ACM

Conference on Computer and Communications Security. 2006. 89-98.

27. Juels, Ari, et Burt Kaliski. «PORs: proofs of retrievability for large files.»

ACM Conference on Computer and Communications Security. ACM Press,

2007. 584-597.

28. Ostrovsky, Rafail, Amit Sahai, et Brent Waters. «Attribute-based encryption

with non-monotonic access structures.» ACM Conference on Computer and

Communications Security. 2007. 195-203.

29. Park, Dong Jin, Kihyun Kim, et Pil Joong Lee. «Public Key Encryption with

Conjunctive Field Keyword Search.» Information Security Applications.

Springer, 2005. 73-86.

30. Sahai, Amit, et Brent Waters. «Fuzzy Identity-Based Encryption. .» Advances

in Cryptology -- Eurocrypt '05. Springer, 2005. 457-473.

31. Shacham, Hovav, et Brent Waters. «Compact Proofs of Retrievability.»

ASIACRYPT. Springer, 2008. 90-107.

32. Song, Dawn, David Wagner, et Adrian Perrig. «Practical Techniques for

Searches on Encrypted Data.» IEEE Symposium on Security and Privacy.

IEEE Press, 2000. 44-55.

33. Wired. «Company Caught in Texas Data Center Raid Loses Suit Against

FBI.» 8 April 2009. http://www.wired.com/threatlevel/2009/04/company-

caught/.

68

Appendix

Figure 8: Screen capture of Console

Figure 9: Output of code

