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Abstract 

 
Advances in networking technology and an increase in the need for computing 

resources have prompted many organizations to outsource their storage and 

computing needs. This new economic and computing model is commonly referred to 

as cloud. 

 

While the benefits of using a public cloud infrastructure are clear, it introduces 

significant security and privacy risks. In fact, it seems that the biggest hurdle to the 

adoption of cloud storage (and cloud computing in general) is concern over the 

confidentiality and integrity of data.  

 
To address the concerns outlined above and increase the adoption of cloud storage, we 

argue for designing a virtual private storage service based on new cryptographic 

techniques. 

In this project work, the plain text of 128 bits is given as input to encryption block in 

whichencryption of data is made and the cipher text of 128 bits is throughout as 

output. The key length of 128bits, 192bits or 256bits is used in process of encryption. 
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The AES algorithm is a block cipher that uses the same binary key for both 

encryption and decryption of data blocks. Hence it is called a symmetric key 

cryptography. The rounds in decryption are exact inverse of encryption.There are four 

rounds in encrypt ions viz. Sub Bytes, ShiftRows, MixColumns and 

AddRoundKey.Similarly for Decryption we have InvSubBytes, InvShiffilows, 

InvMixColumnsandInvAddRoundKey. Since operations in AES are difficulty, there 

exists no attack better than key exhaustion to read an encrypted message. Ultimately, 

anyone can use AES encryption methods, and it is free forpublic or private, 

commercial or non-commercial use. The simplest version encrypts and decryptseach 

128 -bit block individually. It gives better security than DES versions and also 

betterthroughput. 

A proof of storage is a protocol executed between a client and a server with which the 

server can prove to the client that it did not tamper with its data.  
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Chapter 1 

Introduction 

 

 
Advances in networking technology and an increase in the need for computing 

resources have prompted many organizations to outsource their storage and 

computing needs. This new economic and computing model is commonly referred to 

as cloud computing and includes various types of services such as: infrastructure as a 

service (IaaS), where a customer makes use of a service provider’s computing, storage 

or networking infrastructure; platform as a service (PaaS), where a customer leverages 

the provider’s resources to run custom applications; and finally software as a service 

(SaaS), where customers use software that is run on the provider’s infrastructure. [9] 

 
Cloud infrastructures can be roughly categorized as either private or public. In a 

private cloud, the infrastructure is managed and owned by the customer and located 

on-premise (i.e., in the customer’s region of control). In particular, this means that 

access to customer data is under its control and is only granted to parties it trusts. In a 

public cloud the infrastructure is owned and managed by a cloud service provider and 

is located off-premise (i.e., in the cloud service provider’s region of control). This 

means that customer data is outside its control and could potentially be granted to 

untrusted parties.[9] 

 
Storage services based on public clouds such as Microsoft’s Azure storage service and 

Amazon’s S3 provide customers with scalable and dynamic storage. By moving their 

data to the cloud customers can avoid the costs of building and maintaining a private 

storage infrastructure, opting instead to pay a service provider as a function of its 

needs. For most customers, this provides several benefits including availability (i.e., 

being able to access data from anywhere) and reliability (i.e., not having to worry 

about backups) at a relatively low cost. [16] 

 
While the benefits of using a public cloud infrastructure are clear, it introduces 

significant security and privacy risks. In fact, it seems that the biggest hurdle to the 
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adoption of cloud storage (and cloud computing in general) is concern over the 

confidentiality and integrity of data. While, so far, consumers have been willing to 

trade privacy for the convenience of software services (e.g., for web-based email, 

calendars, pictures etc…), this is not the case for enterprises and government 

organizations. This reluctance can be attributed to several factors that range from a 

desire to protect mission-critical data to regulatory obligations to preserve the 

confidentiality and integrity of data. The latter can occur when the customer is 

responsible for keeping personally identifiable information (PII), or medical and 

financial records. So while cloud storage has enormous promise, unless the issues of 

confidentiality and integrity are addressed many potential customers will be reluctant 

to make the move. [14] 

 
To address the concerns outlined above and increase the adoption of cloud storage, we 

argue for designing a virtual private storage service based on new cryptographic 

techniques. The earlier encryption algorithm is Data Encryption Standard (DES) 

which has several loopholes like small key size that makes it prone to brute force 

attacks, etc. It fails to provide high level, efficient and exportable security. These 

loopholes were overcome by a new algorithm called Advanced Encryption Standard 

(AES). [4] 

In this project work, the plain text of 128 bits is given as input to encryption block 

inwhich encryption of data is made and the cipher text of 128 bits is throughout as 

output. The key length of 128bits, 192bits or 256bits is used in process of encryption. 

The AES algorithm is a block cipher that uses the same binary key for both 

encryption and decryption of data blocks. [3] 

1.1. Purpose 

Due to the advancements in the Internet technology, huge digital data are 

transmitted over the public cloud network. As the public cloud network is open to all, 

protection of these data is a vital issue. Thus for protecting these data from the 

unauthorized people, Cryptography has come up as a solution which plays a vital role 

in information security system against various attacks. Advanced Encryption Standard 

is the current standard for symmetric key cryptography and is considered very much 

secure due to it. [1] 



12 
 

1.2. Motivation 

The Advanced Encryption Standard, in the following referenced as AES is 

thewinner of the contest, held in 1997 by the US Government, after the Data 

EncryptionStandard(DES)was found too weak. Fifteen candidates were accepted in 

1998 and based on public comments the pool was reduced to five finalists in 1999. In 

October 2000, one of these five algorithms was selected as the forthcoming standard: 

a slightlymodified version of the Rijndael.The Rijndael, whose name is based on the 

names of its two Belgian inventors Joan Daemenand Vincent Rijmen, is a Block 

cipher, which means that it works onfixed -length group of bits, which are called 

Blocks. It takes an input block of a certain size usually 128 bits, and produces a 

corresponding output block of the same size. Thetransformation requires a second 

input, which is the secret key. It is important to knowthat the secret key can be of any 

size (depending on the cipher used) and that AES uses three different key sizes: 128, 

192 and 256 bits. [2] 

1.3. Overview 

Advanced Encryption Standard (AES) is a symmetric key cryptography and it 

has block cipher with a fixed block size of 128 bit and a variable key length i.e.it may 

be 128, 192 or 256 bits. The different transformations operate on theintermediate 

results, called state. The state is a rectangular array of bytes and since theblock size is 

128 bits, which is 16 bytes, the rectangular array is of dimensions 4x4. (Inthe Rijndael 

version with variable block size, the row size is fixed to four and thenumber of 

columns varies. The number of columns is the block size divided by 32 anddenoted 

Nb). The cipher key is similarly pictured as a rectangular array with four rows.The 

number of columns of the cipher key is equal to the key lengthdivided by 32. [4] 

AES uses a variable number of rounds, which are fixed: A key of size 128 

has10 rounds. A key of size 192 has 12 rounds. A key of size 256 has 14 rounds. 

Analgorithm starts with a random number, in which the key and data encrypted with it 

arescrambled though four mathematical operation processes. The key that is used 

toencrypt the number must also be used to decrypt it. For encryption, each rounds has 

four operations SubBytes, ShiftRows, MixColumns and AddRoundKey respectively 

and for decryption it use inverse of these function. [4] 
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AES does not use a Feistel structure but processes the entire data block inparallel 

during each round using substitutions and permutation.The key that is provided as 

input is expanded into an array of forty-four 32 –bitwords. Four distinct words (128 

bits) serve as a round key for each round.Four different stages are used, one of 

permutation and three of substitution.[4] 

- SubstituteBytes: Uses a table, referred to as an S -box, to perform a byte by 

byte substitution of the block 

- ShiftRows: A simple permutation that is performed row by row 

- MixColumns: A substitution that alters each byte in a column as function of 

all of the bytes in the column 

- AddRoundkey: A simple bitwise XOR of the current block with a portion of 

the expanded key 

The structure is quite simple. For both encryption and decryption, the cipher begins 

with an Add Round Key stage, followed by nine rounds that each includes all four 

stages, followed by a tenth round of three stages. 

Only the Add Round Key stage makes use of the key. For this reason, the 

cipher begins and ends with an Add Round Key stage. Any other stage, applied at the 

beginning or end, is reversible without knowledge of the key and so would add no 

security.[4] 
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Figure 1: AES Structure [1] 

 

The Add Round Key stage by itself would not be formidable. The other three stages 

together scramble the bits, but by themselves, they would provide no security because 

they do not use the key. We can view the cipher as alternating operations of XOR 

encryption (Add Round Key) of a block, followed by scrambling of the block (the 

other three stages), and followed by XOR encryption, and so on. This scheme is both 

efficient and highly secure.Each stage is easily reversible. For the Substitute Byte. 

Shift Row, and Mix Columns stages, an inverse function is used in the decryption 

algorithm. For theAdd Round Key stage, the inverse is achieved by X0Ring the same 

round keyto the block, using the result that A (I) B (I) B = A. 

As with most block ciphers, the decryption algorithm makes use of the 

expanded key in reverse order. However, the decryption algorithm is notidentical to 
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the encryption algorithm. This is a consequence of the particularstructure of 

AES.Once it is established that all four stages are reversible, it is easy to verify 

thatdecryption does recover the plaintext. [4] 

1.4. Background 

On January 2, 1997 the National Institute of Standards and Technology (NIST) 

held a contest for a new encryption standard. The previous standard, DES, was no 

longer adequate for security. It had been the standard since November 23, 1976. 

Computing power had increased a lot since then and the algorithm was no longer 

considered safe. The earlier ciphers can be broken with ease on modern computation 

systems.In 1998 DES was cracked in less than three days by a specially made 

computer called the DES cracker. The DES cracker was created by the Electronic 

Frontier Foundation for less than $250,000 and won the RSA DES Challenge II-2.It 

was also fartoo slow in software as it was developed for mid-1970’s hardware and 

does not produceefficient software code. Triple DES on the other hand, has three 

times as many roundsas DES and is correspondingly slower. As well as this, the 64 bit 

block size of tripleDES and DES is not very efficient and is questionable when it 

comes to securityCurrent alternatives to a new encryption standard were Triple DES 

(3DES) and International Data Encryption Algorithm (IDEA). The problem was 

IDEA and 3DES were too slow and IDEA was not free to implement due to patents. 

NIST wanted a free and easy to implement algorithm that would provide good 

security. Additionally they wanted the algorithm to be efficient and flexible.[1] 

What was required was a brand new encryption algorithm. One that would be resistant 

to all known attacks. The National Institute of Standards and Technology 

(NIST)wanted to help in the creation of a new standard. However, because of the 

controversythat went with the DES algorithm, and the years of some branches of the 

U.S. governmenttrying everything they could to hinder deployment of secure 

cryptography thiswas likely to raise strong skepticism. The problem was that NIST 

did actually wantto help create a new excellent encryption standard but they couldn’t 

get involved directly.Unfortunately they were really the only ones with the technical 

reputation and resources to the lead the effort.[1] 

Table 1: First Round Qualifiers [3] 
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ALGORITHM NAME SUBMITTER 

CAST-256 Entrust Technologies, Inc. 

CRYPTON Future Systems, Inc. 

DEAL Richard Outerbridge, Lars Knudsen 

DFC 

CNRS - Centre National pour la 

RechercheScientifique - 

EcoleNormaleSuperieure 

E2  
NTT - Nippon Telegraph and Telephone 

Corporation 

FROG TecAproInternacional S.A. 

HPC  Rich Schroeppel 

LOKI97  
Lawrie Brown, Josef Pieprzyk, Jennifer 

Seberry 

MAGENTA  Deutsche Telekom AG 

MARS IBM 

RC 6  RSA Laboratories 

Rijndael JoaenDaemen, Vincent Rijmen 

SAFER+ Cylink Corporation 

Serpent  

Ross Anderson, Eli Biham, Lars 

Knudsen 

 

Twofish 

Bruce Schneier, John Kelsey, 

Doug Whiting, David Wagner, 

Chris Hall, Niels Ferguson 

Instead of designing or helping to design a cipher, what they did instead was to set 

upa contest in which anyone in the world could take part. The contest was announced 

on the 2
nd

 January 1997 and the idea was to develop a new encryption algorithm 

thatwould be used for protecting sensitive, non-classified, U.S. government 

information.The ciphers had to meet a lot of requirements and the whole design had to 

be fully documented(unlike the DES cipher). Once the candidate algorithms had been 

submitted, several years of scrutiny in the form of cryptographic conferences took 

place. Inthe first round of the competition 15 algorithms were accepted and this was 

narrowedto 5 in the second round. The fifteen algorithms are shown in table below of 

which the 5that were selected are shown in bold. The algorithms were tested for 

efficiency andsecurity both by some of the world’s best publicly renowned 

cryptographers and NISTitself. 

After holding the contest for three years, NIST chose an algorithm created by two 

Belgian computer scientists, Vincent Rijmen and Joan Daemen. On November 26, 

2001 the Federal Information Processing Standards Publication 197 announced a 

standardized form of the Rijndael algorithm as the new standard for encryption. This 
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standard was called Advanced Encryption Standard and is currently the standard for 

encryption.[1] 

1.5. Definitions 

Cryptography: Cryptography is the science of secret codes, enabling the 

confidentiality of communication through an insecure channel. It protects against 

unauthorized parties by preventing unauthorized alteration of use. Generally speaking, 

it uses a cryptographic system to transform a plaintext into a cipher text most of the 

time using a key. It has different Encryption and Decryption algorithms to do so. 

Cipher Text: This is the scrambled message produced as output from Encryption 

algorithm. It depends on the plaintext and the secret key. For a given message, two 

different keys will produce two different cipher texts. 

Encryption: Encryption is the process of converting data, in plain text format into a 

meaningless cipher text by means of a suitable algorithm. The algorithm takes 

secretkey and plain text as input and produces cipher text. 

Decryption: Decryptionis converting the meaningless cipher text into the 

originalinformation using decryption algorithms. The decryption algorithm is inverse 

ofencryption algorithm. This takes key and cipher text as input and produces original 

plain text. 

Symmetric key cryptography: Symmetric cryptography uses the same secret 

(private) key to encrypt and decrypt its data. It requires that the secret key be known 

by the party encrypting thedata and the party decrypting the data. 

Asymmetric key cryptography: Asymmetric uses both a public and private key. 

This allows for distribution of your public key to anyone with which they can encrypt 

the data they want to sendsecurely and then it can only be decoded by the person 

having the private key.[2] 

1.6. AES vs DES 

There is a huge, important difference between these two encryption and 

decryption algorithms, Data Encryption Standard (DES) and the Advanced 

Encryption Standard (AES): AES is secure while DES is not.The federal government 

developed DES encryption algorithms more than 30 years ago to provide 
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cryptographic security for all government communications. The idea was to ensure 

government systems all used the same, secure standard to facilitate interconnectivity. 

DES served as the cornerstone of government cryptography for more than two 

decades, but in 1999 researchers broke the algorithm's 56-bit key using a distributed 

computer system.AES data encryption is a more mathematically efficient and elegant 

cryptographic algorithm, but its main strength rests in the key length options. The 

time required to crack an encryption algorithm is directly related to the length of the 

key used to secure the communication. AES allows you to choose a 128-bit, 192-bit 

or 256-bit key, making it exponentially stronger than the 56-bit key of DES. 

Data Encryption Standard is a rather old way of encrypting data so that the 

information could not be read by other people who might be intercepting traffic. DES 

is rather quite old and has since been replaced by a newer and better Advanced 

Encryption Standard. The replacement was done due to the inherent weaknesses in 

DES that allowed the encryption to be broken using certain methods of attack. 

Common applications of AES, as of the moment, are still impervious to any type of 

cracking techniques, which makes it a good choice even for top secret information. 

The inherent weakness in DES is caused by a couple of things that are already 

addressed in AES. The first is the very short 56 bit encryption key. The key is like a 

password that is necessary in order to decrypt the information. A 56 bit has a 

maximum of 256 combinations, which might seem like a lot but is rather easy for a 

computer to do a brute force attack on. AES can use a 128, 192, or 256 bit encryption 

key with 2^128, 2^192, 2^256 combinations respectively. The longer encryption keys 

make it much harder to break given that the system has no other weaknesses. 

Another problem is the small block size used by DES, which is set at 64 bits. In 

comparison, AES uses a block size that is twice as long at 128 bits. In simple terms, 

the block size determines how much information you can send before you start having 

identical blocks, which leak information. People can intercept these blocks and use 

read the leaked information. For DES with 64 bits, the maximum amount of data that 

can be transferred with a single encryption key is 32GB; at this point another key 

needs to be used. With AES, it is at 256 exabytes or 256 billion gigabytes. It is 

probably safe to say that you can use a single AES encryption key for any application. 

In terms of structure, DES uses the Feistel network which divides the block into 

two halves before going through the encryption steps. AES on the other hand, uses 



19 
 

permutation-substitution, which involves a series of substitution and permutation 

steps to create the encrypted block.Summing up we can say that: 

- DES is really old while AES is relatively new 

- DES is breakable while AES is still unbreakable 

- DES uses a much smaller key size compared to AES 

- DES uses a smaller block size compared to AES 

- DES uses a balanced Feistel structure while AES uses substitution-

permutation [4] 

 

1.7. AES vs 3DES 

Advance Encryption Standard (AES) and Triple DES (TDES or 3DES) are 

commonly used block ciphers.  Whether you choose AES or 3DES depend on your 

needs. DES was developed in 1977 and it was carefully designed to work better in 

hardware than software.  DES performs lots of bit manipulation in substitution and 

permutation boxes in each of 16 rounds. Even though it seems large but according to 

today’s computing power it is not sufficient and vulnerable to brute force attack.  

Therefore, DES could not keep up with advancement in technology and it is no longer 

appropriate for security. Because DES was widely used at that time, the quick 

solution was to introduce 3DES which is secure enough for most purposes today.  

3DES is a construction of applying DES three times in sequence.  3DES with three 

different keys (K1, K2 and K3) has effective key length is 168 bits (The use of three 

distinct key is recommended of 3DES.).   Another variation is called two-key (K1 and 

K3 is same) 3DES reduces the effective key size to 112 bits which is less secure. 

Two-key 3DES is widely used in electronic payments industry.  3DES takes three 

times as much CPU power than compare with its predecessor which is significant 

performance hit.  AES outperforms 3DES both in software and in hardware. 

AES (Advanced Encryption Standard) and 3DES, or also known as Triple DES 

(Data Encryption Standard) are two of the current standards in data encryption. While 

AES is a totally new encryption that uses the substitution-permutation network, 3DES 

is just an adaptation to the older DES encryption that relied on the balanced Feistel 

network. Basically, 3DES is just DES applied three times to the information that is 

being encrypted. 
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AES uses three common encryption key lengths, 128, 192, and 256 bits. When it 

comes to 3DES the encryption key is still limited to 56 bits as dictated by the DES 

standard. But since it is applied three times, the implementer can choose to have 3 

discrete 56 bit keys, or 2 identical and 1 discrete, or even three identical keys. This 

means that 3DES can have encryption key lengths of 168, 112, or 56 bit encryption 

key lengths respectively. But due to certain vulnerabilities when reapplying the same 

encryption thrice, using 168 bits has a reduced security equivalent to 112 bits and 

using 112 bits has a reduced security equivalent to 80 bits. 

3DES also uses the same block length of 64 bits, half the size that of AES at 128 

bits. Using AES provides additional insurance that it is harder to sniff leaked data 

from identical blocks. When using 3DES, the user needs to switch encryption keys 

every 32GB of data transfer to minimize the possibility of leaks; identical to when 

using the standard DES encryption. 

Lastly, repeating the same process three times does take some time. With all 

things held constant, AES is much faster compared to 3DES. This line gets blurred 

when you include software, hardware, and the complexity of hardware design to the 

mix. So if you have 3DES accelerated hardware, migrating to AES implemented by 

software alone may result in slower processing times. In this aspect, there is not better 

solution than to test each one and measure their speed. But when it comes to security, 

AES is the sure winner as it is still considered unbreakable in practical use.Summing 

up: 

- 3DES uses identical encryption to DES while AES uses a totally different 

- 3DES has shorter and weaker encryption keys compared to AES 

- 3DES uses repeating encryption keys while AES does not 

- 3DES also uses a shorter block length compared to AES 

- 3DES encryption takes longer than AES encryption [4] 

 

1.8. AES vs RSA 

RSA is one of the most successful, asymmetric encryption systems today. 

Originally discovered 1973 by the British intelligence agency GCHQ, it received the 

classification “top secret”. Its civil rediscovery is owned to the cryptologists Rivest, 

Shamir and Adleman, who discovered it during an attempt to break another 
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cryptographic problem. As opposed to traditional, symmetric encryption systems, 

RSA works with two different keys: A “public” key, and a “private” one. Both work 

complementary to each other, a message encrypted with one of them can only be 

decrypted by its counterpart. Since the private key can’t be calculated from the public 

key, the latter is generally made available to the public. Those properties enable 

asymmetric cryptosystems to be used in a wide array of functions, such as digital 

signatures. In the process of signing a document, a fingerprint, encrypted with RSA, is 

appended to the file, and enables the receiver to verify both the sender and the 

integrity of the document.  

The security of RSA itself is mainly based on the mathematical problem of 

integer factorization. A message that is about to be encrypted is treated as one large 

number. When encrypting the message, it is raised to the power of the key, and 

divided with remainder by a fixed product of two primes. By repeating the process 

with the other key, the plaintext can be retrieved back. The best, currently known 

method to break the encryption requires factorizing the product used in the division. 

Currently, it is not possible to calculate these factors for numbers greater than 768 

bits. None the less, modern cryptosystems use a minimum key length of 3072 bits. 

As first publicly accessible, from the NSA for the classification "top secret" 

approved cipher, the Advanced Encryption Standard (AES) is one of the most 

frequently used and most secure encryption algorithms available today. Its story of 

success started 1997, when the National Institute of Standards and Technology NIST 

announced the search for a successor to the aging encryption standard DES. An 

algorithm named "Rijndael", developed by the Belgian cryptographists Daemen and 

Rijmen, excelled in security as well as in performance and flexibility. It came out on 

top of several competitors, and was officially announced as the new encryption 

standard AES in 2001. The algorithm is based on several substitutions, permutations 

and linear transformations, each executed on data blocks of 16 byte – therefore the 

term blockcipher. Those operations are repeated several times, called “rounds”. 

During each round, a unique roundkey is calculated out of the encryption key, and 

incorporated in the calculations. Based on this block structure of AES, the change of a 

single bit either in the key, or in the plaintext block results in a completely different 

ciphertext block – a clear advantage over traditional stream ciphers. The difference 

between AES-128, AES-192 and AES-256 finally is the length of the key: 128, 192 or 
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256 bit – all drastic improvements compared to the 56 bit key of DES. By way of 

illustration: Cracking a 128 bit AES key with a state-of-the-art supercomputer would 

take longer than the presumed age of the universe. And Boxcryptor even uses 256 bit 

keys! As of today, no practicable attack against AES exists. Therefore, AES remains 

the preferred encryption standard for governments, banks and high security systems 

around the world. 

They're not really directly comparable. The number commonly bandied about 

is 2048-bit RSA is about equivalent to 128-bit AES. But that number shouldn't be 

relied on without understanding the caveats. Currently the most effective way of 

breaking AES crypto (and any other unbroken symmetric cipher, for that matter) is 

brute-force. You simply try every possibility until you reach the correct result. This 

means that it is possible, and well within today's technology, to encrypt data that 

(assuming no better attack is ever found), can never be broken, ever, by anyone. 

Simply use enough bits in your key such that there isn't enough energy in the universe 

to try enough candidate keys. The numbers are smaller than you'd think: Indeed, with 

AES, 128-bit is secure against modern technology, 256 is secure against any likely 

future technology, and 512 is probably secure against even never-imagined 

hypothetical alien technology.  

Symmetric encryption, if not broken, doesn't leave you with a math problem to 

solve. The numbers are truly and literally scrambled, and the system is devised such 

the brute-force is by far the most efficient solution. Breaking RSA, on the other hand, 

is not so hard. Instead of brute-forcing the keys, you factor the modulus into primes 

and derive the keys yourself. This is dramatically simpler to do. It's a math problem, 

and we can do math. Specifically, the speed at which primes can be factored is 

increasing faster than the speed at which symmetric keys can be brute-forced. And 

that's with today's technology. But going forward, assuming quantum computers can 

be improved such that qbit operations are a cheap as bit operations (which many 

people thinks is fairly close; this century at most, possibly decades), then no matter 

how large you make your RSA key, breaking the key is as fast as encrypting. 

Summing up one would say that equivalent security of RSA key length versus 

AES key length changes over time. Every so often, you have to increase your RSA 

key size relative to your AES key size to account for technological advances. And 
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even then, it's an estimate at best. And while a 256-bit symmetric key should be 

secure for hundreds, thousands, or perhaps hundreds of thousands of years, no RSA 

key of any length should be assumed to be secure more than a few dozen years out, 

since RSA is expected to be completely and utterly broken by Shor's algorithm. [3] 

Table 2: Comparison between DES, AES and RSA [3] 

S.NO. FACTOR DES AES RSA 

1 Developed 1977 2000 1978 

2 Key Length Value 56 bit 
128, 192 and 

256 bits 
>1024 bits 

3 Type of Algorithm Symmetric Symmetric Asymmetric 

4 Encryption Ratio Low High High 

5 Security Attacks Inadequate 
Highly 

Secured 
Timing attack 

6 Simulation Speed Fast Fast Fast 

7 Scalability 
Scalable 

algorithm 

No scalability 

occurs  

No scalability 

occurs 

8 Power Consumption Low Low High 

9 
Hardware and Software 

Implementations 

Better in 

hardware than 

in software 

Faster and 

efficient 

Not very 

efficient 

1.9. Organization of the Report 

This report document comprises of five chapters. The Chapter 1 gives the overview to 

AES algorithm, basic definitions of terms that are used in this report and purpose of 

project and also gives the motivation behind implementing this project. Chapter 2 

gives the details of requirements for implementing the project.It gives hardware, 

software and user requirements and the performance parameters taken into 

consideration.Chapter 3gives the research analysis regarding AES algorithm. Chapter 

4 gives the details of each modules used in this project and some implementation 

details. Chapter 5 give implementation of core components. Chapter 6gives 

conclusion, limitations and further enhancement to the project. References section 

provide source detail where we get information. Appendix contains snapshots of the 

project code execution. 
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Chapter 2 

System Requirement Specification 

The following are the system requirements: 

2.1. Hardware Requirements 

- 512MB RAM or above 

- X86 or above processor 

- 2MB Secondary memory or above 

 

2.2. Software Requirements 

- Operating System: LINUX, Windows 

- Language used: Java 

- Editor: Eclipse IDE 

 

2.3. Functional Requirements 

The functional requirements for the implementation are as follows: 

2.3.1. Input Specification 

- An input file/string type variable should contain some data. That can be used 

as plain text for encryption 

- Secret key used for encryption should of l28bits, 192bits or 256bits 

2.3.2. Output Specification 

- The second party should know secret key that used for encryption. 

- After providing secret key as input, it displays the original plain text. 

 

2.4. Performance Parameters 

The performance of AES algorithm can be measured by considering following 

parameters: 
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2.4.1. Time Taken 

The time taken for encryption as well as decryption of a given plain text is 

calculated by using system clock time:The system clock is recorded twice i.e. before 

and afterthe execution of the encryption module and their difference yields the time 

taken for encryption. The same procedure is followed to calculate decryption time, 

just that decryption module is invoked instead. [5] 

2.4.2. Throughput 

In computer technology, throughput is the amount of work that a computer can do in a 

given time period. Throughput is one of the key factors to measure performance of an 

algorithm. In case of AES, throughput depends on size of block as well as time taken 

for encryption/decryption given by:  

 

Where, 

T - Throughput  

t - Time taken to encrypt/decrypt 

 

2.5 Conclusion 

System requirement specified. 
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Chapter 3 

Literature Review 

At present, there are many research achievements in the field of block cipher. 

Especially, the Advanced Encryption Standard AES algorithm should be considered 

the excellent representative of all the researches. When the data encryption standard 

was replaced by the advanced encryption standard, the whole world shifted their 

concern on the AES algorithm. Some research showed that the AES algorithm can be 

implemented with increased speed by shifting, XOR and looking up tables, etc. The 

analysis of some research work on AES algorithm based on increasing its speed and 

level of security by altering the parameters that have been described below: 

Table 3: Research Analysis [6], [7], [8] 

Author Name Year Technique Results 

Deguang Le, 

Jinyi Chang, 

Xingdou Gou, 

Ankang 

Zhang, 

Conglan Lu  

Parallel AES 

Algorithm 

for Fast Data 

Encryption 

on GPU 

2010 

Parallel 

encryption to 

design a fast data 

encryption system 

based on GPU. 

Speedup=GPU_Time/

CPU_Time 

(For plaintext sizes: 

10KB     Speedup=2 

1MB       Speedup=4 

200MB    Speedup=7) 

Vishal Pachori, 

Gunjan Ansari, 

Neha 

Chaudhary 

Improved 

Performance 

of Advance 

Encryption 

Standard 

using Parallel 

Computing 

2012 

Parallel 

Implementation 

of AES using 

Java Parallel 

Programming 

Framework  

Speed up achieved for 

data parallelism and 

control parallelism is 

up to 2.16 

RituPahal, 

Vikaskumar 

Efficient 

Implementati

on of AES 

2013 

The same 

conventional 

algorithm is 

implemented for 

200 bit block as 

well as key size. 

Encryption time 

decreased by 20% 

Throughput is   : 

T=200/t 

(conventional being 

T=128/t) 

 

3.1.Increasing the Block Size 

Symmetric cryptography, such as in the Data Encryption Standard (DES), 

3DES, and Advanced Encryption Standard (AES), uses an identical key for the sender 

and receiver, both to encrypt the message text and decrypt the cipher text. Symmetric 

cryptography is more suitable for the encryption of a large amount of data. The AES 
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algorithm defined by the National Institute of Standards and Technology (NIST) of 

the United States has been widely accepted to replace DES as the new symmetric 

encryption algorithm. The AES algorithm is a symmetric block cipher that processes 

data blocks of 128 bits using a cipher key of length 128, 192, or 256 bits. Each data 

block consists of a 4 × 4 array of bytes called the state, on which the basic operations 

of the AES algorithm are performed. 

The proposed algorithm differs from conventional AES [7] as it has 200 bits 

block size and key size both. Number of rounds is constant and equal to ten in this 

algorithm. The key expansion and substitution box generation are done in the same 

way as in conventional AES block cipher. AES has 10 rounds for 128-bit keys,12 

rounds for 192-bit keys, and 14 rounds for 256-bit keys and the same conventional 

128 bit conventional AES algorithm is implemented for 200 bit using 5*5 Matrix. 

After the implementation, the proposed work is compared with 128 bit, 192 bits & 

256 bits AES techniques on two points. These points are encryption and decryption 

time and throughput at both encryption and decryption sides. 

At the start of encryption, 200 bit input is copied to the State array of 5*5 

matrix. The data bytes are filled first in the column then in the rows. Then after the 

initial round key addition, ten rounds of encryption are performed. The first nine 

rounds are same, with small difference in the final round. Each of the first nine rounds 

consists of 4 transformations: SubBytes, ShiftRows, MixColumns and 

AddRoundKey. But in final round Mixcolumns transformation is not used. 

- SubBytes Transformation - In this transformation, each of the byte in the state 

matrix is replaced with another byte as per the S-box. The S-box is generated 

by firstly calculating the respective reciprocal of that byte in GF (2^8) and 

then affine transform is applied. 

- ShiftRows Transformation - In this transformation, the bytes in the first row of 

the State do not change. The second, third, fourth and fifth rows shift 

cyclically to the left by one byte, two bytes, three bytes and four bytes 

respectively. 
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Figure 2: Shift Rows Transformation [7] 

- MixColumns Transformation - It is the operation that mixes the bytes in each 

column by the multiplication of the state with a fixed polynomial matrix. It 

completely changes the scenario of the cipher even if the all bytes look very 

similar. The Inverse Polynomial Matrix does exist in order to reverse the mix 

column transformation. 

- AddRoundKey Transformation - In AddRoundKey transformation, a roundkey 

is added to the State by bitwise Exclusive-OR (XOR) operation. 

 

 

Figure 3: Polynomial Matrix and Its Inverse for mix column transformation [7] 

The Decryption structure of proposed algorithm is obtained by inverting the 

encryption structure. Corresponding to the transformations in the encryption, 

InvSubBytes, InvShiftRows, InvMixColumns, and AddRoundKey are the 

transformations used in the decryption. The roundkeys are the same as those in 

encryption generated by Key Expansion, but are used in reverse order. 
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From the experimentation results it is deduced that for large block of data AES-200 

encryption time per bit is reduced up to 20% and decryption time per bit is increased 

up to 25%. The throughput may be defined as number of bits that can be encrypted or 

decrypted during one unit of time. As it was mentioned earlier that all AES variant 

has equal block size of 128 bits and the proposed algorithm has block size of 200 bits. 

Thus, in form of equation the throughput may be defined as: 

 

 

Where,  is representation of throughput for conventional algorithms,  

is representation of throughput for proposed algorithm, denotes the time taken 

to encrypt the 128 bit block message,  represents time taken to encrypt the 200 

bit block message of conventional algorithm. 

It is observed that the throughput at encryption end of AES-200 is 15% more than 

AES-128, 20% more than AES-192 and 30% more than AES-256. The decryption 

process of AES-200 is slower than conventional AES, the proposed algorithm is 50% 

slower from AES-128, 40% from AES-192, and 25% from AES-256. [7] 

 

3.2. Parallel Execution 

To improve the performance of AES algorithm using parallel computing there are two 

major approaches Control Parallelism and Data Parallelism [8]. 

In Data Parallelism the data is divided into more than one part and send different part 

to different nodes for execution. Each node is executing the same procedure or 

function but on different data. This approach is very effective when there is large data 

to process. AES can be implemented in the following manner using DATA 

parallelism. Server sends Plaintext with the Key on node 1 and it will compute the 

cipher text by running the AES algorithm and finally sends the result back to the 

Server. Node 2 follows the same procedure. The number of nodes can be increased 

according to our requirement and number of processing units available. 
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In Control Parallelism the operation or function is divided instead of data. The 

different operation or function is assigned to different nodes and then finally the 

output is send to the server for final processing. Although it is less scalable then data 

parallelism but more speed up can be achieved by this approach. In control 

parallelism approach, the four main operations in AES algorithm are divided into two 

parts and combination of these operations is Operation 1 and Operation 2. Node 1 will 

execute only operation 1 and Node 2 will perform only operation 2. Nodes will 

communicate the result of each other when needed.  

The performance of proposed architecture is measured in terms of execution time. 

The performance is measured on 256 bits of data and on two nodes or processing 

units.The execution time of converting 256 bits plain text into cipher text on Java 

Parallel Programming Framework using two nodes. The time taken by single core to 

encrypt 256 bits of data is 14, 15 and 13 seconds in different run. The time taken by 

the 1st run is more than the time taken in the subsequent run because in the first run 

the Hazelcast Framework is loaded which takes time to load. In the subsequent runs 

the time taken by the modified AES algorithm is almost same i.e. execution time gets 

stable. Speed up of the modified AES algorithm is shown below: 

 

Speed up for Data parallelism (1st run) = 15/10 = 1.5  

Speed up for Data parallelism (2nd run) = 14/7 = 2.0  

Speed up for Data parallelism (3rd run) = 13/6 = 2.16  

Speed up for Data parallelism (4th run) = 13/7 = 1.85  

Speed up for Control parallelism (1st run) = 15/11 = 1.36  

Speed up for Control parallelism (2nd run) = 14/7 = 2.0  

Speed up for Control parallelism (3rd run) = 13/6 = 2.16  

Speed up for Control parallelism (4th run) = 13/6 = 2.16 

In order to overcome the issue of low efficiency over thetraditional CPU-based 

implementation of AES [6], researchers designed and implementedthe parallel AES 

algorithm based on GPU. The implementation achieves up to 7x speedup over 
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theimplementation of AES on a comparable CPU. The implementation can be applied 

for the computer forensicswhich requires high speed of data encryption. [8] 

3.3 Conclusion 

Different advantages of AES learned. We also learned that AES is optimal for Cloud 

Computing Security. 
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Chapter 4 

Design and Implementation 

AES algorithm is the current standard for symmetric key encryption, this section 

gives a detailed explanation about the various permutation and substitution steps 

followed in order to perform encryption and decryption.   

4.1.  Detailed Description 

The following is the brief overview of various terminologies used in implementation 

of the AES algorithm: 

4.1.1. Terminology 

State: Defines the current condition (state) of the block. That is the block of bytes that 

are currently being worked on. The state starts off being equal to the block, however it 

changes as each round of the algorithms executes. Plainly said this is the block in 

progress. [9] 

 

Figure 4: HEX Matrix [9] 

Block: AES is a block cipher. This means that the number of bytes that it encrypts is 

fixed. AES can currently encrypt blocks of w 16 bytes at a time; no other block sizes 
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are presently a part of the AES standard. If the bytes being encrypted are larger than 

the specified block then AES is executed concurrently. This also means that AES has 

to encrypt a minimum of 16 bytes. If the plain text is smaller than 16 bytes then it 

must be padded. Simply said the block is a reference to the bytes that are processed by 

the algorithm. 

 

HEX: Defines a notation of numbers in base 16. This simply means that; the highest 

number that can be represented in a single digit is 15, rather than the usual 9 in the 

decimal (base 10) system.  

XOR: Refers to the bitwise operator Exclusive Or. XOR operates on the individual 

bits in a byte in the following way: 

0 XOR 0 = 0 

1 XOR 0 = 1 

1 XOR 1 = 0 

0 XOR 1 = 1 

Most programming languages have the XOR operator built in. Another 

interesting property of the XOR operator is that it is reversible.  

So Hex 2B XOR FF = D4.AES is an iterated symmetric block cipher, which means 

that: 

- AES works by repeating the same defined steps multiple times. 

- AES is a secret key encryption algorithm. 

- AES operates on a fixed number of bytes 

AES as well as most encryption algorithms is reversible. This means that almost the 

same steps are performed tocomplete both encryption and decryption in reverse order. 

The AES algorithm operates on bytes, which makes it simpler to implement and 

explain.This key is expanded into individual sub keys, a sub keys for each operation 

round. This process is called KeyExpansion, which is described at the end of this 

document. As mentioned before AES is an iterated block cipher. All that means is that 
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the same operations are performed many timeson a fixed number of bytes. These 

operations can easily be broken down to the following functions: 

- ADD ROUND KEY 

- SUB BYTE 

- SHIFT ROW 

- MIX COLUMN 

An iteration of the above steps is called a round. The amount of rounds of the 

algorithm depends on the key size. The only exception being that in the last round the 

Mix Column step is not performed to make the algorithm reversible during 

decryption. 

Table 4: Number of rounds for various key sizes [3] 

Key Size  

(Bytes) 

Block Size  

(Bytes) 

Rounds 

16 16 10 

24 16 12 

32 16 14 

 

Encryption 

The following tables illustrates the number of rounds required for encryption 

depending on different key size length: 

Table 5: AES Encryption cipher using 16-bit key [3] 

Round Function 

- Add Round Key(State) 

1 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

2 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

3 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

4 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

5 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

6 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

7 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

8 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

9 Add Round Key(Shift Row(Byte Sub(State))) 
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Table 6: AES Encryption cipher using 24-bit key [3] 

Round Function 

- Add Round Key(State) 

1 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

2 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

3 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

4 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

5 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

6 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

7 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

8 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

9 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

10 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

11 Add Round Key(Shift Row(Byte Sub(State))) 

 

Table 7: AES Encryption cipher using 32-bit key [3] 

Round Function 

- Add Round Key(State) 

1 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

2 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

3 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

4 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

5 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

6 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

7 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

8 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

9 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

10 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

11 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

12 Add Round Key(Mix Column(Shift Row(Byte Sub(State)))) 

13 Add Round Key(Shift Row(Byte Sub(State))) 
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Decryption 

The following tables illustrates the number of rounds required for encryption 

depending on different key size length: 

Table 8: AES Decryption cipher using 16-bit key [3] 

Round Function 

- Add Round Key(State) 

1 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

2 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

3 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

4 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

5 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

6 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

7 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

8 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

9 Add Round Key(Byte Sub(Shift Row(State))) 

 

Table 9: AES Decryption cipher using 24-bit key [3] 

Round Function 

- Add Round Key(State) 

1 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

2 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

3 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

4 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

5 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

6 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

7 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

8 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

9 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

10 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

11 Add Round Key(Byte Sub(Shift Row(State))) 
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Table 10: AES Decryption cipher using 32-bit key [3] 

Round Function 

- Add Round Key(State) 

1 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

2 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

3 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

4 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

5 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

6 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

7 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

8 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

9 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

10 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

11 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

12 Mix Column(Add Round Key(Byte Sub(Shift Row(State)))) 

13 Add Round Key(Byte Sub(Shift Row(State))) 

 

4.2. AES Cipher Functions 

Given below is the detailed description of all the 4 functions and the corresponding 

inverse functions that are used in various rounds of encryption as well as decryption 

process: 

4.2.1. Add Round Key 

Each of the 16 bytes of the state is XORed against each of the 16 bytes of a 

portion of the expanded key for the current round.  

 
Figure 5: Working of Add Round Key [1] 
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The Expanded Key bytes are never reused. So once the first 16 bytes are XORed 

against the first16 bytes of the expanded key then the expanded key bytes 1-16 are 

never used again. The next time the AddRound Key function is called bytes 17-32 are 

XORed against the state.  

 

4.2.2. Byte Sub 

During encryption each value of the state is replaced with the corresponding SBOX 

value. 

 

 

Figure 6: SBOX [1] 

 

For example HEX 19 would get replaced with HEX D4 

  

Whereas during decryption each value in the state is replaced with the corresponding 

inverse of the SBOX. 
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Figure 7: Inverse SBOX [1] 

 

For example HEX D4 would get replaced with HEX 19 

 

4.2.3. Shift Row 

Arranges the state in a matrix and then performs a circular shift for each row. 

This is not a bit wise shift. The circular shift just moves each byte one space over. A 

byte that was in the second position may end up in the third position after the shift. 

The circular part of it specifies that the byte in the last position shifted one space will 

end upin the first position in the same row. [9] 

In Detail: 

- The state is arranged in a 4x4 matrix (square) 

- The confusing part is that the matrix is formed vertically but shifted 

horizontally. So the first 4 bytes of the state will form the first bytes in each 

row. 

So bytes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Will form a matrix: 

1 5 9 13 

2 6 10 14 

3 7 11 15 
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4 8 12 16 

Each row is then moved over (shifted) 1, 2 or 3 spaces over to the right, depending on 

the row of the state. First row is never shifted 

Row1 0 

Row2 1 

Row3 2 

Row4 3 

The following is the illustration of how the individual bytes are first arranged in the 

table and then moved over (shifted). 

Blocks 16 bytes long: 

From   To 

1 5 9 13  1 5 9 13 

2 6 10 14  6 10 14 2 

3 7 11 15  11 15 3 7 

4 8 12 16  16 4 8 12 

 

During decryption the same process is reversed and all rows are shifted to the left: 

From   To 

1 5 9 13 1 5 9 13 

2 6 10 14  14 2 6 10 

3 7 11 15  11 15 3 7 

4 8 12 16 8 12 16 4 

 

4.2.4. Mix Column 

This is perhaps the hardest step to both understand and explain. There are two 

parts to this step. The first will explainwhich parts of the state are multiplied against 

which parts of the matrix. [9] 

Matrix Multiplication: 

The state is arranged into a 4 row table (as described in the Shift Row function). 

The multiplication is performed one column at a time (4 bytes). Each value in the 

column is eventually multiplied against every value of the matrix (16 total 

multiplications). The results of these multiplications are XORed together to produce 

only 4 result bytes for the next state. Therefore 4 bytes input, 16 multiplications 12 
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XORs and 4 bytes output. The multiplication is performed one matrix row at a time 

against each value of a state column. 

 

Multiplication Matrix 

2 3 1 1 

1 2 3 1 

1 1 2 3 

3 1 1 2 

 

16 byte State 

b1 b5 b9 b13 

b2 b6 b10 b14 

b3 b7 b11 b15 

b4 b8 b12 b16 

 

The first result byte is calculated by multiplying 4 values of the state column against 4 

values of the first row of the matrix. The result of each multiplication is then XORed 

to produce 1 byte: 

b1 = (b1 * 2) XOR (b2*3) XOR (b3*1) XOR (b4*1) 

 

The second result byte is calculated by multiplying the same 4 values of the state 

column against 4 values of the second row of the matrix. The result of each 

multiplication is then XORed to produce 1 byte: 

b2 = (b1 * 1) XOR (b2*2) XOR (b3*3) XOR (b4*1) 

 

The third result byte is calculated by multiplying the same 4 values of the state 

column against 4 values of the third row of the matrix. The result of each 

multiplication is then XORed to produce 1 byte: 

b3 = (b1 * 1) XOR (b2*1) XOR (b3*2) XOR (b4*3) 

 

The fourth result byte is calculated by multiplying the same 4 values of the state 

column against 4 values of the fourth row of the matrix. The result of each 

multiplication is then XORed to produce 1 byte: 

b4 = (b1 * 3) XOR (b2*1) XOR (b3*1) XOR (b4*2) 



42 
 

 

This procedure is repeated again with the next column of the state, until there are no 

more state columns.  

Putting it all together: 

The first column will include state bytes 1-4 and will be multiplied against the matrix 

in the following manner: 

 

b1 = (b1 * 2) XOR (b2*3) XOR (b3*1) XOR (b4*1) 

b2 = (b1 * 1) XOR (b2*2) XOR (b3*3) XOR (b4*1) 

b3 = (b1 * 1) XOR (b2*1) XOR (b3*2) XOR (b4*3) 

b4 = (b1 * 3) XOR (b2*1) XOR (b3*1) XOR (b4*2) 

(b1= specifies the first byte of the state) 

 

The second column will be multiplied against the second row of the matrix in the 

following manner. 

b5 = (b5 * 2) XOR (b6*3) XOR (b7*1) XOR (b8*1) 

b6 = (b5 * 1) XOR (b6*2) XOR (b7*3) XOR (b8*1) 

b7 = (b5 * 1) XOR (b6*1) XOR (b7*2) XOR (b8*3) 

b8 = (b5 * 3) XOR (b6*1) XOR (b7*1) XOR (b8*2) 

And so on until all columns of the state are exhausted. 

 

4.2.5. Mix Column Inverse 

During decryption the Mix Column the multiplication matrix is changed to: 

0E 0B 0D 09 

09 0E 0B 0D 

0D 09 0E 0B 

0B 0D 09 0E 

Apart from the change to the matrix table the function performs the same steps as 

during encryption. [9] 

Mix Column Example 

The following examples are denoted in HEX. 

- Mix Column Example during Encryption 

Input = D4 BF 5D 30 

Output(0) = (D4 * 2) XOR (BF*3) XOR (5D*1) XOR (30*1) 
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= E(L(D4) + L(02)) XOR E(L(BF) + L(03)) XOR 5D XOR 30 

= E(41 + 19) XOR E(9D + 01) XOR 5D XOR 30 

= E(5A) XOR E(9E) XOR 5D XOR 3010 

= B3 XOR DA XOR 5D XOR 30 

= 04 

 

Output(1) = (D4 * 1) XOR (BF*2) XOR (5D*3) XOR (30*1) 

= D4 XOR E(L(BF)+L(02)) XOR E(L(5D)+L(03)) XOR 30 

= D4 XOR E(9D+19) XOR E(88+01) XOR 30 

= D4 XOR E(B6) XOR E(89) XOR 30 

= D4 XOR 65 XOR E7 XOR 30 

= 66 

 

Output(2) = (D4 * 1) XOR (BF*1) XOR (5D*2) XOR (30*3) 

= D4 XOR BF XOR E(L(5D)+L(02)) XOR E(L(30)+L(03)) 

= D4 XOR BF XOR E(88+19) XOR E(65+01) 

= D4 XOR BF XOR E(A1) XOR E(66) 

= D4 XOR BF XOR BA XOR 50 

= 81 

 

Output(3) = (D4 * 3) XOR (BF*1) XOR (5D*1) XOR (30*2) 

= E(L(D4)+L(3)) XOR BF XOR 5D XOR E(L(30)+L(02)) 

= E(41+01) XOR BF XOR 5D XOR E(65+19) 

= E(42) XOR BF XOR 5D XOR E(7E) 

= 67 XOR BF XOR 5D XOR 60 

= E5 

 

- Mix Column during Decryption 

Input 04 66 81 E5 

Output(0) = (04 * 0E) XOR (66*0B) XOR (81*0D) XOR (E5*09) 

=E(L(04)+L(0E)) XOR E(L(66)+L(0B)) XOR E(L(81)+L(0D)) XOR E(L(E5)+L(09)) 

= E(32+DF) XOR E(1E+68) XOR E(58+EE) XOR E(20+C7) 

= E(111-FF) XOR E(86) XOR E(146-FF) XOR E(E7) 

= E(12) XOR E(86) XOR E(47) XOR E(E7) 
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= 38 XOR B7 XOR D7 XOR 8C 

= D4 

 

Output(1) = (04 * 09) XOR (66*0E) XOR (81*0B) XOR (E5*0D) 

= E(L(04)+L(09)) XOR E(L(66)+L(0E)) XOR E(L(81)+L(0B)) XOR 

E(L(E5)+L(0D)) 

= E(32+C7) XOR E(1E+DF) XOR E(58+68) XOR E(20+ EE) 

= E(F9) XOR E(FD) XOR E(C0) XOR E(10E-FF) 

= E(F9) XOR E(FD) XOR E(C0) XOR E(0F) 

= 24 XOR 52 XOR FC XOR 35 

= BF 

 

Output(2) = (04 * 0D) XOR (66*09) XOR (81*0E) XOR (E5*0B) 

=E(L(04)+L(0D)) XOR E(L(66)+L(09) XOR E(L(81)+L(0E)) XOR E(L(E5)+(0B)) 

= E(32+EE) XOR E(1E+C7) XOR E(58+DF) XOR E(20+68) 

= E(120-FF) XOR E(E5) XOR E(137-FF) XOR E(88) 

= E(21) XOR E(E5) XOR E(38) XOR E(88) 

= 34 XOR 7B XOR 4F XOR 5D 

= 5D 

 

Output(3) = (04 * 0B) XOR (66*0D) XOR (81*09) XOR (E5*0E) 

= E(L(04)+L(0B)) XOR E(L(66)+L(0D)) XOR E(L(81)+L(09)) XOR 

E(L(E5)+L(0E)) 

= E(32+68) XOR E(1E+EE) XOR E(58+C7) XOR E(20+DF) 

= E(9A) XOR E(10C-FF) XOR E(11F-FF) XOR E(FF) 

= E(9A) XOR E(0D) XOR E(20) XOR E(FF) 

= 2C XOR F8 XOR E5 XOR 01 

= 30 

 

4.2.6. Key Expansion  

Prior to encryption or decryption the key must be expanded. The expanded 

key is used in the Add Round Key function defined above. Each time the Add Round 

Key function is called a different part of the expanded key is XORed against the state. 

In orderfor this to work the Expanded Key must be large enough so that it can provide 
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key material for every time the AddRoundKey function is executed. The Add Round 

Key function gets called for each round as well as one extra time at the beginning of 

the algorithm. [9] 

Therefore the size of the expanded key will always be equal to: 

16 * (number of rounds + 1). 

The 16 in the above function is actually the size of the block in bytes. This 

provides key material for every byte in the block during every round +1 

Since the key size is much smaller than the size of the sub keys, the key is 

actually stretched out to provide enough key space for the algorithm. The key 

expansion routine executes a maximum of 4 consecutive functions. These functions 

are: 

ROT WORD 

SUB WORD  

RCON 

EK 

K 

An iteration of the above steps is called a round. The amount of rounds of the key 

expansion algorithm depends on the key size. 

Table 11: Key Expansion [3] 

 

 

The first bytes of the expanded key are always equal to the key. If the key is 16 bytes 

long the first 16 bytes of the expanded key will be the same as the original key. If the 

key size is 32 bytes then the first 32 bytes of the expanded key will be the same as the 

original key. 

Each round adds 4 bytes to the Expanded Key. With the exception of the first 

rounds each round also takes the previousrounds 4 bytes as input operates and returns 

4 bytes.One more important note is that not all of the 4 functions are always called in 

each round. The algorithm only calls all 4 of the functions every: 

4 Rounds for a 16 byte Key 

6 Rounds for a 24 byte Key 
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8 Rounds for a 32 byte Key 

The rest of the rounds only a K function result is XORed with the result of the 

EK function. There is an exception of this rule where if the key is 32 bytes long an 

additional call to the Sub Word function is called every 8 rounds starting on the13th 

round. 

 

Key Expansion Functions 

The following are the various functions used in expanding the given key: 

- Rot Word (4 bytes) 

This does a circular shift on 4 bytes similar to the Shift Row Function. 

1,2,3,4 to 2,3,4,1 

- Sub Word (4 bytes) 

This step applies the S-box value substitution as described in Bytes Sub function to 

each of the 4 bytes inthe argument. 

Rcon((Round/(KeySize/4))-1) 

This function returns a 4 byte value based on the following table 

Rcon(0) = 01000000 

Rcon(1) = 02000000 

Rcon(2) = 04000000 

Rcon(3) = 08000000 

Rcon(4) = 10000000 

Rcon(5) = 20000000 

Rcon(6) = 40000000 

Rcon(7) = 80000000 

Rcon(8) = 1B000000 

Rcon(9) = 36000000 

Rcon(10) = 6C000000 

Rcon(11) = D8000000 

Rcon(12) = AB000000 

Rcon(13) = 4D000000 

Rcon(14) = 9A000000 

For example for a 16 byte key Rcon is first called in the 4th round  

(4/(16/4))-1=0 

In this case Rcon will return 01000000  
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For a 24 byte key Rcon is first called in the 6th round 

(6/(24/4))-1=0 

In this case Rcon will also return 01000000 

- EK(Offset) 

EK function returns 4 bytes of the Expanded Key after the specified offset. For 

example if offset is 0 then EK will return bytes 0,1,2,3 of the Expanded Key 

- K(Offset) 

K function returns 4 bytes of the Key after the specified offset. For example if 

offset is 0 then K will return bytes 0,1,2,3 of the Expanded Key 

Since the expansion algorithm changes depending on the length of the key, it is 

extremely difficult to explain inwriting. This is why the explanation of the Key 

Expansion Algorithm is provided in a table format. 

- 16 byte Key Expansion:  

Each round (except rounds 0, 1, 2 and 3) will take the result of the previous round and 

produce a 4 byte result for the current round. Notice the first 4 rounds simply copy the 

total of 16 bytes of the key. 

Table 12: 16-byte key expansion [9] 
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- 24 byte Key Expansion 

Each round (except rounds 0, 1, 2, 3, 4 and 5) will take the result of the previous 

round and produce a 4 byte result for the current round. Notice the first 6 rounds 

simply copy the total of 24 bytes of the key. 

 

Table 13: 24-byte key expansion [9] 
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- 32 byte Key Expansion 

Each round (except rounds 0, 1, 2, 3, 4, 5, 6 and 7) will take the result of the previous 

round and produce a 4 byte result for the current round. Notice the first 8 rounds 

simply copy the total of 32 bytes of the key. 

 

Table 14: 32-byte key expansion [9] 
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4.3. Implementation details 

The following functions are required by both encryption and decryption modules as 

these functions are required for key generation and some computational steps: 

generateSubkeys 

Input: byte[] key 

Returns: byte[]tmp 

Pseudo Code: 

byte[][] tmp = new byte[Nb * (Nr + 1)][4] 

inti = 0 

while (i<Nk)  

tmp[i][0] = key[i * 4] 

tmp[i][1] = key[i * 4 + 1] 

tmp[i][2] = key[i * 4 + 2] 

tmp[i][3] = key[i * 4 + 3] 

i++ 

i = Nk 

while (i<Nb * (Nr + 1))  

byte[] temp = new byte[4] 

for(int k = 0;k<4;k++) 

temp[k] = tmp[i-1][k] 

if (i % Nk == 0)  

temp = SubWord(rotateWord(temp)) 
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temp[0] = (byte) (temp[0] ^ (Rcon[i / Nk] & 0xff)) 

else if (Nk> 6 &&i % Nk == 4)  

temp = SubWord(temp); 

tmp[i] = xor_func(tmp[i - Nk], temp) 

i++ 

returntmp 

 

xor_func 

Input: byte[] a, byte[] b 

Returns: byte[] out 

Pseudo Code: 

byte[] out = new byte[a.length] 

for(inti = 0; i<a.length; i++)  

out[i] = (byte) (a[i] ^ b[i]) 

return out 

 

SubWord 

Input: byte[] in 

Returns: byte[]tmp 

Pseudo code: 

byte[] tmp = new byte[in.length]  

for (inti = 0; i<tmp.length; i++) 

tmp[i] = (byte) (sbox[in[i] & 0x000000ff] & 0xff) 

returntmp 
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rotateWord 

Input: byte[] input  

Returns: byte[] tmp 

Pseudo code:       

byte[] tmp = new byte[input.length] 

tmp[0] = input[1] 

tmp[1] = input[2] 

tmp[2] = input[3] 

tmp[3] = input[0] 

returntmp 

 

FFMul 

Input: byte a, byte b 

Output: byte r 

Pseudo Code: 

byteaa = a, bb = b, r = 0, t 

while (aa != 0)  

if ((aa& 1) != 0) 

r = (byte) (r ^ bb) 

t = (byte) (bb & 0x80) 

bb = (byte) (bb << 1) 

if (t != 0) 
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bb = (byte) (bb ^ 0x1b) 

aa = (byte) ((aa& 0xff) >> 1) 

return r 

 

4.3.1. Encryption 

The encryption algorithm has the following: 

Constants - Nb = 4;Nk = key.length/4; Nr = Nk + 6; intlenght=0; 

Inputs - byte[] in, byte[] key 

The input text is first checked and is passes through byte padding sequence in order to 

make sure it contains sufficient number of bytes for encryption. 

encryptBloc 

Input: byte[] in  

Returns: byte[] tmp 

Pseudo code:       

byte[] tmp = new byte[in.length] 

byte[][] state = new byte[4][Nb] 

for (inti = 0; i<in.length; i++) 

state[i / 4][i % 4] = in[i%4*4+i/4] 

state = AddRoundKey(state, w, 0) 

for (int round = 1; round < Nr; round++)  

state = SubBytes(state) 

state = ShiftRows(state) 

state = MixColumns(state) 

state= AddRoundKey(state, w, round) 

state = SubBytes(state) 
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state = ShiftRows(state) 

state = AddRoundKey(state, w, Nr) 

for (inti = 0; i<tmp.length; i++) 

tmp[i%4*4+i/4] = state[i / 4][i%4] 

returntmp 

 

AddRoundKey 

Input: byte[][] state, byte[][] w, int round 

Output: byte[][] tmp 

Pseudo Code: 

byte[][] tmp = new byte[state.length][state[0].length] 

for (int c = 0; c <Nb; c++) 

for (int l = 0; l < 4; l++) 

tmp[l][c] = (byte) (state[l][c] ^ w[round * Nb + c][l]) 

returntmp 

 

SubBytes 

Input: byte[][] state 

Output: byte[][] tmp 

Pseudo Code: 

byte[][] tmp = new byte[state.length][state[0].length] 

for (int row = 0; row < 4; row++) 

for (int col = 0; col <Nb; col++) 

tmp[row][col] = (byte) (sbox[(state[row][col] & 0x000000ff)] & 0xff) 
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returntmp 

 

ShiftRows 

Input: byte[][] state 

Output: byte[][] state 

Pseudo Code: 

byte[] t = new byte[4] 

for (int r = 1; r < 4; r++) 

for (int c = 0; c <Nb; c++) 

t[c] = state[r][(c + r) % Nb] 

for (int c = 0; c <Nb; c++) 

state[r][c] = t[c] 

return state 

 

MixColumns 

Input: byte[][] s 

Output: byte[][] tmp 

Pseudo Code: 

int[] sp = new int[4] 

byte b02 = (byte)0x02, b03 = (byte)0x03 

for (int c = 0; c < 4; c++)  

sp[0] = FFMul(b02, s[0][c]) ^ FFMul(b03, s[1][c]) ^ s[2][c]  ^ s[3][c] 

sp[1] = s[0][c]  ^ FFMul(b02, s[1][c]) ^ FFMul(b03, s[2][c]) ^ s[3][c] 

sp[2] = s[0][c]  ^ s[1][c]  ^ FFMul(b02, s[2][c]) ^ FFMul(b03, s[3][c]) 
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sp[3] = FFMul(b03, s[0][c]) ^ s[1][c]  ^ s[2][c]  ^ FFMul(b02, s[3][c]) 

for (inti = 0; i< 4; i++)  

s[i][c] = (byte)(sp[i]) 

return s 

 

4.3.2. Decryption 

The decryption algorithm has the following: 

Constants - Nb = 4; Nk = key.length/4; Nr = Nk + 6; intlenght=0; 

Inputs - byte[] in, byte[] key 

The input cipher text is first decrypted and is then passes through byte padding 

sequence in order to make sure it contains sufficient number of bytes as the input 

plain text. 

decryptBloc 

Input: byte[][] in 

Output: byte[]tmp 

Pseudo Code: 

byte[] tmp = new byte[in.length] 

byte[][] state = new byte[4][Nb] 

for (inti = 0; i<in.length; i++) 

state[i / 4][i % 4] = in[i%4*4+i/4] 

state = AddRoundKey(state, w, Nr) 

for (int round = Nr-1; round >=1; round--)  

state = InvSubBytes(state) 

state = InvShiftRows(state) 

state = AddRoundKey(state, w, round) 
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state = InvMixColumns(state)  

state = InvSubBytes(state) 

state = InvShiftRows(state) 

state = AddRoundKey(state, w, 0) 

for (inti = 0; i<tmp.length; i++) 

tmp[i%4*4+i/4] = state[i / 4][i%4] 

returntmp 

 

InvSubBytes 

Input: byte[][] state 

Output: byte[][] state 

Pseudo Code: 

for (int row = 0; row < 4; row++) 

for (int col = 0; col <Nb; col++) 

state[row][col] = (byte)(inv_sbox[(state[row][col] & 0x000000ff)]&0xff) 

return state 

 

InvShiftRows 

Input: byte[][] state 

Output: byte[][] state 

Pseudo Code: 

byte[] t = new byte[4] 

for (int r = 1; r < 4; r++)  

for (int c = 0; c <Nb; c++)  
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t[(c + r)%Nb] = state[r][c] 

for (int c = 0; c <Nb; c++)  

state[r][c] = t[c] 

return state 

 

InvMixColumns 

Input: byte[][] s 

Output: byte[][] state 

Pseudo Code: 

int[] sp = new int[4] 

byte b02 = (byte)0x0e, b03 = (byte)0x0b, b04 = (byte)0x0d, b05 = (byte)0x09  

for (int c = 0; c < 4; c++) 

sp[0] = FFMul(b02, s[0][c]) ^ FFMul(b03, s[1][c]) ^ FFMul(b04,s[2][c])  ^ 

FFMul(b05,s[3][c]) 

sp[1] = FFMul(b05, s[0][c]) ^ FFMul(b02, s[1][c]) ^ FFMul(b03,s[2][c])  ^ 

FFMul(b04,s[3][c]) 

sp[2] = FFMul(b04, s[0][c]) ^ FFMul(b05, s[1][c]) ^ FFMul(b02,s[2][c])  ^ 

FFMul(b03,s[3][c]) 

sp[3] = FFMul(b03, s[0][c]) ^ FFMul(b04, s[1][c]) ^ FFMul(b05,s[2][c])  

^FFMul(b02,s[3][c]) 

for (inti = 0; i< 4; i++)  

s[i][c] = (byte)(sp[i])  

return s 

4.4 Conclusion 

We learned about how AES works in an extensive manner. 
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Chapter 5 

Implementing the Core Components 

The core components of a cryptographic storage service can be implemented using a 

variety of techniques, some of which were developed specifically for cloud 

computing. When preparing data for storage in the cloud, the data processor begins by 

indexing it and encrypting it with a symmetric encryption scheme (e.g., AES) under a 

unique key. It then encrypts the index using a searchable encryption scheme and 

encrypts the unique key with an attribute-based encryption scheme under an 

appropriate policy. Finally, it encodes the encrypted data and index in such a way that 

the data verifier can later verify their integrity using a proof of 

storage.[12][13][14][15] 

In the following we provide high level descriptions of these new cryptographic 

primitives. While traditional techniques like encryption and digital signatures could 

be used to implement the core components, they would do so at considerable cost in 

communication and computation. To see why, consider the example of an 

organization that encrypts and signs its data before storing it in the cloud. While this 

clearly preserves confidentiality and integrity it has the following limitations. To 

enable searching over the data, the customer has to either store an index locally, or 

download all the (encrypted) data, decrypt it and search locally. The first approach 

obviously negates the benefits of cloud storage (since indexes can grow large) while 

the second scales poorly. With respect to integrity, note that the organization would 

have to retrieve all the data first in order to verify the signatures. If the data is large, 

this verification procedure is obviously undesirable. Various solutions based on 

(keyed) hash functions could also be used, but all such approaches only allow a fixed 

number of verifications. 
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5.1 Searchable Encryption 

A searchable encryption scheme provides a way to encrypt a search index so that its 

contents are hidden except to a party that is given appropriate tokens. More precisely, 

consider a search index generated over a collection of files (this could be a full-text 

index or just a keyword index). Using a searchable encryption scheme, the index is 

encrypted in such a way that (1) given a token for a keyword one can retrieve pointers 

to the encrypted files that contain the keyword; and (2) without a token the contents of 

the index are hidden. In addition, the tokens can only be generated with knowledge of 

a secret key and the retrieval procedure reveals nothing about the files or the 

keywords except that the files contain a keyword in common. [17][18] 

This last point is worth discussing further as it is crucial to understanding the security 

guarantee provided by searchable encryption. Notice that over time (i.e., after many 

searches) knowing that a certain subset of documents contain a word in common may 

leak some useful information. This is because the server could make some 

assumptions about the client’s search pattern and use this information to make a guess 

about the keywords being searched for. It is important to understand, however, that 

while searching does leaks some information to the provider, what is being leaked is 

exactly what the provider would learn from the act of returning the appropriate files to 

the customer (i.e., that these files contain some keyword in common). In other words, 

the information “ leaked” to the cloud provider is not leaked by the cryptographic 

primitives, but by the manner in which the service is being used (i.e., to fetch files 

based on exact keyword matches). It is important to understand that this leakage is in 

some sense inherent to any efficient and reliable cloud storage service and is, at worst, 

less information than what is leaked by using a public cloud storage service. The only 

known alternative, which involves making the service provider return false positives 

and having the client perform some local filtering, is inefficient in terms of 

communication and computational complexity. 

There are many types of searchable encryption schemes, each one appropriate to 

particular application scenarios. For example, the data processors in our consumer and 

small enterprise architectures use symmetric searchable encryption (SSE), while the 

data processors in our large enterprise architecture uses asymmetric searchable 

encryption (ASE). In the following we describe each type of scheme in more detail. 
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5.1.1 Symmetric Searchable Encryption 

SSE is appropriate in any setting where the party that searches over the data is also the 

one who generates it. Borrowing from storage systems terminology, we refer to such 

scenarios as single writer/single reader (SWSR). SSE schemes were introduced in 

(Song, Wagner and Perrig 2000) and improved constructions and security definitions 

were given in (Goh 2003), (Chang and Mitzenmacher 2005) and (Curtmola, et al. 

2006).[19] 

The main advantages of SSE are efficiency and security while the main disadvantage 

is functionality. SSE schemes are efficient both for the party doing the encryption and 

(in some cases) for the party performing the search. Encryption is efficient because 

most SSE schemes are based on symmetric primitives like block ciphers and pseudo-

random functions. Search can be efficient because the typical usage scenarios for SSE 

(i.e., SWSR) allow the data to be pre-processed and stored in efficient data structures. 

The security guarantees provided by SSE are, roughly speaking, the following: 

(1) Without any trapdoors the server learns nothing about the data except its 

length. 

(2) Given a trapdoor for a keyword W, the server learns which (encrypted)          

documents contain W without learning W. 

While these security guarantees are stronger than the ones provided by both 

asymmetric and efficiently searchable encryption (described below), we stress that 

they do have their limitations (as described above). 

The main disadvantage of SSE is that the known solutions tradeoff efficiency and 

functionality. This is easiest to see by looking at two of the main constructions 

proposed in the literature. In the scheme proposed by Curtmola et al. (Curtmola, et al. 

2006), search time for the server is optimal (i.e., linear in the number of documents 

that contain the keyword) but updates to the index are inefficient. On the other hand, 

in the scheme proposed by Goh (Goh 2003), updates to the index can be done 

efficiently but search time for the server is slow (i.e., linear in the total number of 

documents). We also remark that neither scheme handles searches that are composed 

of conjunctions or disjunction of terms. The only SSE scheme that handles 

conjunctions (Golle, Waters and Staddon 2004) is based on pairings on elliptic curves 
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and is as inefficient as the asymmetric searchable encryption schemes discussed 

below. 

 

5.1.2 Asymmetric searchable encryption 

ASE schemes are appropriate in any setting where the party searching over the data is 

different from the party that generates it. We refer to such scenarios as many 

writer/single reader (MWSR). ASE schemes were introduced in (Boneh, Di 

Crescenzo, et al. 2004). Improved definitions were proposed in (Abdalla, et al. 2005) 

and schemes that handle conjunctions were given in (Park, Kim and Lee 2005) and 

(Boneh and Waters, Conjunctive, Subset, and Range Queries on Encrypted Data 

2007).[20][4] 

The main advantage of ASE is functionality while the main disadvantages are 

inefficiency and weaker security. Since the writer and reader can be different, ASE 

schemes are usable in a larger number of settings than SSE schemes. The inefficiency 

comes from the fact that all known ASE schemes require the evaluation of pairings on 

elliptic curves which is a relatively slow operation compared to evaluations of 

(cryptographic) hash functions or block ciphers. In addition, in the typical usage 

scenarios for ASE (i.e., MWSR) the data cannot be stored in efficient data structures. 

The security guarantees provided by ASE are, roughly speaking, the following: 

(1) Without any trapdoors the server learns nothing about the data except its 

length. 

(2) Given a trapdoor for a keyword W, the server learns which (encrypted) 

documents contain W 

 

Notice that (2) here is weaker than in the SSE setting. In fact, when using an ASE 

scheme, the server can mount a dictionary attack against the token and figure out 

which keyword the client is searching for (Byun, et al. 2006). It can then use the token 

(for which it now knows the underlying keyword) and do a search to figure out which 

documents contain the (known) keyword. Note that this should not necessarily be 

interpreted as saying that ASE schemes are insecure, just that one has to be very 
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careful about the particular usage scenario and the types of keywords and data being 

considered. 

5.1.3 Efficient ASE 

ESE schemes are appropriate in any setting where the party that searches over the data 

is different from the party that generates it and where the keywords are hard to 

guess.[4][21] 

 

5.2 Proofs of Storage 

A proof of storage is a protocol executed between a client and a server with which the 

server can prove to the client that it did not tamper with its data. The client begins by 

encoding the data before storing it in the cloud. From that point on, whenever it wants 

to verify the integrity of the data it runs a proof of storage protocol with the server. 

The main benefits of a proof of storage are that 

(1) They can be executed an arbitrary number of times; and 

(2) The amount of information exchanged between the client and the server is 

extremely small and independent of the size of the data. 

Proofs of storage can be either privately or publicly verifiable. Privately verifiable 

proofs of storage only allow the client (i.e., the party that encoded the file) to verify 

the integrity of the data. With a publicly verifiable proof of storage, on the other hand, 

anyone that possesses the client’s public key can verify the data’s integrity. [27][28] 

 

5.3 Conclusion 

We learned how AES is optimal for cloud computing. We also learned how Proof of 

Storage can increase the security of data stored in cloud sstorage. 
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Chapter 6 

Conclusion and Future Work 

The Advanced Encryption Technique was implemented successfully using Java. 

Various data messages were encrypted using different keys and varying key sizes. 

The original data was properly retrieved via decryption of the ciphertext. The 

modifications brought about in the code was tested and proved to beaccurately 

encrypting and decrypting the data messages with even higher security andimmunity 

against the unauthorized users. 

The limitations with this AES algorithm are: the successful attack against AES data 

encryption has been side channel attacks, which don't attack the actual AES cipher 

text, rather than its implementation.Since it drives on blocks of 128 bits it requires 

more processing for large data. 

Further enhancement to this project will be to speed up the processing of encryption 

and decryption by performing the encryption/decryption process in parallel. 

Achieving a better throughput by increasing the block size used by the algorithm and 

testing the performance, efficiency and security of the modified algorithm using linear 

cryptanalysis.  
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Appendix 

 

 

Figure 8: Screen capture of Console 

 

 

 

Figure 9: Output of code 


