

1

 Automatic Summarization Tool For Text Documents

Project Report submitted in partial fulfillment of the requirement

for the degree of

Bachelor of Technology.

in

Computer Science & Engineering

under the Supervision of

 Dr. Pardeep Kumar

By

 Kamal Kumar(111260)

to

 Jaypee University of Information and Technology

Waknaghat, Solan – 173234, Himachal Pradesh

2

Certificate

This is to certify that project report entitled ―Automatic Summarization Tool For Text

Documents‖, submitted by Kamal Kumar in partial fulfillment for the award of degree of

Bachelor of Technology in Computer Science & Engineering to Jaypee University of

Information Technology, Waknaghat, Solan has been carried out under my supervision.

This work has not been submitted partially or fully to any other University or Institute for

the award of this or any other degree or diploma.

Date: Dr. Pardeep Kumar

 Assistant Professor

3

Acknowledgement

There are many people who are associated with this project directly or indirectly whose

help and timely suggestions are highly appreciable for completion of this project. First of

all, I would like to thank Prof. Dr. RMK Sinha, Dean, Department of Computer Science

Engineering and Prof. Dr. SP Ghrera, Head, Department of Computer Science

Engineering for his kind support and constant encouragements, valuable discussions

which is highly commendable.

I would like to express my sincere gratitude to my supervisor Dr. Pardeep Kumar, for his

super vision, encouragement, and support which has been instrumental for the success of

this project. It was an invaluable experience for me to be one of his students. Because of

him, I have gained a careful research attitude.

Thanks to those who are also the part of this project whose names could have not been

mentioned here.

Lastly, I would also like to thank my parents for their love and affection and especially

their courage which inspired me and made me to believe in myself.

Date: KAMAL KUMAR

 Roll No. 111260

4

 Abstract

The increasing availability of online information has necessitated intensive research in

the area of automatic text summarization within the Natural Language Processing (NLP)

community. Automatic text summarization is technique of compressing the

original text into shorter form which will provide same meaning and information

as provided by original text. The brief summary produced by summarization system

allows readers to quickly and easily understand the content of original documents

without having to read each individual document. The overall motive of text

summarization is to convey the meaning of text by using less number of words

and sentences. Summaries are of two types: Abstractive summaries and Extractive

summaries. Extractive summaries involve extracting relevant sentences from the

source text in proper order. The relevant sentences are extracted by applying

statistical and language dependent features to the input text. On the other hand,

abstractive text summaries are made by applying natural language understanding.

Human beings usually make summaries in abstractive way. Moreover abstractive

summaries can also involve the words or sentences which are not present in the input

text. Automatic generation of abstractive summary is more difficult as compared to

producing extractive text summary. This has some applications like summarizing the

search-engine results, providing briefs of big documents that do not have an abstract

etc..In this project, an auto-summarization tool is developed using statistical techniques.

The designed algorithm works in three steps. In the first step the document which is

required to be summarized is processed by eliminating the stop word and by applying the

stemmers. In the second step term-frequent data is calculated from the document and

frequent terms are selected, for these selected words the semantic equivalent terms are

also generated. Finally in the third step all the sentences in the document, which are

containing the frequent and semantic equivalent terms, are filtered for summarization.

The designed algorithm is implemented using open source technology JAVA. It operates

on a single document (but can be made to work on multiple documents by choosing

proper algorithms for integration) and provides a summary of the document.

5

 Table of Contents

S. No. Topic Page No.

 1. Introduction 1

 1.1 Types of Summaries 1

 1.2 How do summarization system work 3

 1.3 Where does summarization help 4

 2. A survey on text summarisation 7

 2.1 Features for Extractive Text Summarisation 9

 2.2 Extractive summarization methods 12

 3. A review of Text Summarisation 27

 4. Design and Implementation 32

 4.1 Document Preprocessing 33

 4.2 Features used 38

 5. Ranking Algorithm 40

 5.1 TextRank 40

 5.2 Why TextRank works 46

 6. Development 48

 6.1 User Interface 48

 6.2 Sentence Extraction 49

 6.3 Unique word Identification 50

 6.4 Weight of a particular word 50

 6.5 Ranking of sentences 51

 7. Experiments 52

 7.1 Syntactic Filtering 52

 7.2 Maximum occurring words 54

 7.3 Using 2 weight classes 55

 7.4 Using 3 weight classes 55

 8. Challenging issues of automatic summarization 56

6

 9. Application 64

 10. Conclusion and Future work 65

 11. References 66

7

List of Figures

S.No. Title Page No.

1. Keyword extraction method 9

2. Graph theoretic approach 14

3. Neural network after prunning 19

4. Neural network after feature fusion 20

 5. Multi Document summarisation 25

6. Text Comparator 28

7. Open Text Summariser 30

8. Text Summarisation System Architecture 31

9. User Interface 46

10. Sentence Extraction 47

11. Unique word identification 48

12. Weight of a particular word 49

13. Ranking 50

8

List of Tables

S.No. Title Page No.

1. Baseline result 53

2. Syntactic Filter 53

3. Cosine similarity 54

4. Maximum occurring word 54

5. Using 2 weight classes 55

6. Using 3 weight classes 55

7. Consolidated result for text rank 55

9

 CHAPTER 1

 INTRODUCTION

Today‘s world is all about information, most of it online. The World Wide Web contains

billions of documents and is growing at an exponential pace. Tools that provide timely

access to, and digest of, various sources are necessary in order to alleviate the information

overload people are facing. These concerns have sparked interest in the development of

automatic summarization systems. Such systems are designed to take a single article, a

cluster of news articles, a broadcast news show, or an email thread as input, and produce a

concise and fluent summary of the most important information. Recent years have seen

the development of numerous summarization applications for news, email threads, lay

and professional medical information, scientific articles, spontaneous dialogues,

voicemail, broadcast news and video, and meeting recordings. These systems, imperfect

as they are, have already been shown to help users and to enhance other automatic

applications and interfaces.

1.1 Types of Summaries

There are several distinctions typically made in summarization and here we define

terminology that is often mentioned in the summarization literature.

Extractive summaries (extracts) are produced by concatenating several sentences taken

exactly as they appear in the materials being summarized. Abstractive summaries

(abstracts), are written to convey the main information in the input and may reuse phrases

or clauses from it, but the summaries are overall expressed in the words of the summary

author.

 Early work in summarization dealt with single document summarization where systems

produced a summary of one document, whether a news story, scientific article, broadcast

show, or lecture. As research progressed, a new type of summarization task emerged:

multi-document summarization. Multi-document summarization was motivated by use

10

cases on the web. Given the large amount of redundancy on the web, summarization was

often more useful if it could provide a brief digest of many documents on the same topic

or the same event. In the first deployed online systems, multi-document summarization

was applied to clusters of news articles on the same event and used to produce online

browsing pages of current events. A short one- paragraph summary is produced for each

cluster of documents pertaining to a given news event, and links in the summary allow the

user to directly inspect the original document where a given piece of information

appeared. Other links provide access to all articles in the cluster, facilitating the browsing

of news. User-driven clusters were also produced by collecting search engine results

returned for a query or by finding articles similar to an example document the user has

flagged as being of interest .

Summaries have also been distinguished by their content. A summary that enables the

reader to determine has often been called an indicative summary, while one that can be

read in place of the document has been called an informative summary . An indicative

summary may provide characteristics such as length, writing style, etc., while an

informative summary will include facts that are reported in the input document(s).

Much of the work to date has been in the context of generic summarization. Generic

summarization makes few assumptions about the audience or the goal for generating the

summary. Typically, it is assumed that the audience is a general one: anyone may end up

reading the summary. Furthermore, no assumptions are made about the genre or domain

of the materials that need to be summarized. In this setting, importance of information is

determined only with respect to the content of the input alone. It is further assumed that

the summary will help the reader quickly determine what the document is about, possibly

avoiding reading the document itself.

In contrast, in query focused summarization, the goal is to summarize only the

information in the input document(s) that is relevant to a specific user query. For example,

in the context of information retrieval, given a query issued by the user and a set of

relevant documents retrieved by the search engine, a summary of each document could

make it easier for the user to determine which document is relevant. To generate a useful

summary in this context, an automatic summarizer needs to take the query into account as

11

well as the document. The summarizer tries to find information within the document that

is relevant to the query or in some cases, may indicate how much information in the

document relates to the query. Producing snippets for search engines is a particularly

useful query focused application. Researchers have also considered cases where the query

is an open-ended question, with many different facts possibly being relevant as a

response. A request for a biography is one example of an open-ended question as there are

many different facts about a person that could be included, but are not necessarily

required.

Update summarization addresses another goal that users may have. It is multi-document

summarization that is sensitive to time; a summary must convey the important

development of an event beyond what the user has already seen.

The contrast between generic, query-focused, and update summarization is suggestive of

other issues raised by Sparck Jones in her 1998 call to arms . Sparck Jones argued that

summarization should not be done in a vacuum, but rather should be viewed as part of a

larger context where, at the least, considerations such as the purpose of summarization (or

task which it is part of), the reader for which it is intended, and the genre which is being

summarized, are taken into account. She argued that generic summarization was

unnecessary and in fact, wrong-headed. Of course, if we look at both sides of the

question, we see that those who write newspaper articles do so in much the same spirit in

which generic summaries are produced: the audience is a general one and the task is

always the same. Nonetheless, her arguments are good ones as they force the system

developer to think about other constraints on the summarization process and they raise the

possibility of a range of tasks other than to simply condense content.

1.2 How do Summarization Systems Work?

Summarization systems take one or more documents as input and attempt to produce a

concise and fluent summary of the most important information in the input. Finding the

most important information presupposes the ability to understand the semantics of written

or spo- ken documents. Writing a concise and fluent summary requires the capability to

12

reorganize, modify and merge information expressed in different sentences in the input.

Full interpretation of documents and generation of abstracts is often difficult for

people,and is certainly beyond the state of the art for automatic summarization.

 How then do current automatic summarizers get around this conundrum? Most current

systems avoid full interpretation of the input and generation of fluent output. The current

state of the art in the vast majority of the cases relies on sentence extraction. The

extractive approach to summarization focuses research on one key question: how can a

system determine which sentences are important? Over the years, the field has seen

advances in the sophistication of language processing and machine learning techniques

that determine importance.

 At the same time, there have been recent advances in the field which move toward

semantic interpretation and generation of summary language. Semantic interpretation

tends to be done for specialized summarization. For example, systems that produce

biographical summaries or summaries of medical documents tend to use extraction of

information rather than extraction of sentences. Research on generation for sum-

marization uses a new form of generation, text-to-text generation and focuses on editing

input text to better fit the needs of the summary.

1.3 Where Does Summarization Help?

While evaluation forums such as DUC and TAC enable experimental setups through

comparison to a gold standard, the ultimate goal in development of a summarization

system is to help the end user perform a task better. Numerous task-based evaluations

have been performed to establish that summarization systems are indeed effective in a

variety of tasks. In the TIPSTER Text Summarization Evaluation (SUMMAC), single-

document summarization systems were evaluated in a task-based scenario developed

around the tasks of real intelligence analysts. This large-scale study compared the

performance of a human in judging if a particular document is relevant to a topic of

interest, by reading either the full document or a summary thereof. It established that

automatic text summarization is very effective in relevance assessment tasks on news

13

articles. Summaries as short as 17% of the full text length sped up decision-making by

almost a factor of two, with no statistically significant degradation in accuracy. Query-

focused summaries are also very helpful in making relevance judgments about retrieved

documents. They enable users to find more relevant documents more accurately, with less

need to consult the full text of the document.

Multi-document summarization is key for organizing and presenting search results in

order to reduce search time, especially when the goal of the user is to find as much

information as possible about a given query .In McKeown et al. paper, users were given a

task of writing reports on specified topics, with an interface containing news articles,

some relevant to the topic and some not. When articles were clustered and summaries for

the related articles were provided, people tended to write better reports, but moreover,

they reported higher satisfaction when using the information access interface augmented

with summaries; they felt they had more time to complete the task. Similarly, in the work

of Mana-L´opez et al. paper, users had to find as many aspects as possible about a given

topic. Clustering similar articles returned from a search engine together proved to be more

advantageous than traditional ranked list presentation, and consider- ably improved user

accuracy in finding relevant information. Providing a summary of the articles in each

cluster that conveys the similarities between them, and single-document summaries

highlighting the information specific to each document, also helped users in finding

information, but in addition considerably reduced time as users read fewer full

documents.

In summarization of scientific articles, the user goal is not only to find articles relevant to

their interest, but also to understand in what respect a scientific paper relates to the

previous work it describes and cites. In a study to test the utility of scientific paper

summarization for determining which of the approaches mentioned in the paper are

criticized and which approaches are supported and extended, automatic summaries were

found to be almost as helpful as human-written ones, and significantly more useful than

the original article abstract.

Voicemail summaries are helpful for recognizing the priority of the message, the call-

back number, or the caller ; summaries of threads in help forums are useful in deciding if

14

the thread is relevant, and summaries of meetings are a necessary part of interfaces for

meeting browsing and search.

Numerous studies have also been performed to investigate and confirm the usefulness of

single document summaries for improvement of other automated tasks. For example,

Sakai and Sparck Jones present the most recent and extensive study (others include and

several studies conducted in Japan and published in Japanese) on the usefulness of

generic summaries for indexing in information retrieval. They show that, indeed, indexing

for retrieval based on automatic summaries rather than full document text helps in certain

scenarios for precision-oriented search. Similarly, query expansion in information

retrieval is much more effective when potential expansion terms are selected from a

summary of relevant documents instead of the full document.

Another unexpectedly successful application of summarization for improvement of an

automatic task has been reported by . They examined the impact of summarization on the

automatic topic classification module that is part of a system for automatic scoring of

student GMAT essays. Their results show that summarization of the student essay

significantly improves the performance of the topical analysis component. The

conjectured reason for the improvement is that the students write these essays under time

constraints and do not have sufficient time for revision and thus their writing contains

some digressions and repetitions, which are removed by the summarization module,

allowing for better assessment of the overall topic of the essay.

The potential uses and applications of summarization are incredibly diverse as we have

seen in this section.

15

 CHAPTER 2

 A SURVEY ON TEXT SUMMARIZATION

Interest in automatic text summarization, arose as early as the fifties. An important paper

of these days is the one in 1958, suggested to weight the sentences of a document as a

function of high frequency words, disregarding the very high frequency common

words.

Automatic text summarization system in 1969, which, in addition to the standard

keyword method (i.e., frequency depending weights), also used the following three

methods for determining the sentence weights:

1. Cue Method: This is based on the hypothesis that the relevance of a sentence is

computed by the presence or absence of certain cue words in the cue dictionary.

2. Title Method: Here, the sentence weight is computed as a sum of all the

content words appearing in the title and (sub-) headings of a text.

3. Location Method: This method is based on the assumption that sentences

occurring in initial position of both text and individual paragraphs have a higher

probability of being relevant. the results showed, that the best correlation between the

automatic and human-made extracts was achieved using a combination of these three

latter methods.

The Trainable Document Summarizer in 1995 performs sentence extracting task, based

on a number of weighting heuristics. Following features were used and evaluated:

1. Sentence Length Cut-O Feature: sentences containing less than a pre-specified

number of words are not included in the abstract

2. Fixed-Phrase Feature: sentences containing certain cue words and phrases are

included.

3. Paragraph Feature: this is basically equivalent to Location Method feature in

[8].

4. Thematic Word Feature: the most frequent words are defined as thematic words.

Sentence scores are functions of the thematic words‘ frequencies

16

5. Uppercase Word Feature: upper-case words (with certain obvious exceptions) are

treated as thematic words, as well.

A Corpus was used in this method, which contained 188 document/summary pairs from

21 publications in a scientific/technical domain. The summaries were produced by

professional experts and the sentences occurring in the summaries were aligned to

the original document texts, indicating also the degree of similarity as mentioned earlier,

the vast majority (about 80%) of the summary sentences could be classified as direct

sentence matches.

 The ANES text extraction system in 1995 is a system that performs automatic,

domain-independent condensation of news data. The process of summary generation

has four major constituents:

1. Corpus analysis: this is mainly a calculation of the tf*idf -weights for all terms

2. Statistical selection: of signature words: terms with a high tf*idf-weight plus

headline-words

3. Sentence weighting: summing over all signature word weights, modifying the

weights by some other factors, such as relative location

4. Sentence selection: Selecting high scored sentences. Hidden Markov Models (HMMs)

: As prove to be a mathematically sound frame-work for document retrieval. If one

approaches the task of text abstracting from such a probabilistic modeling

perspective, it might well be possible that HMMs could be employed for this purpose,

as well.

Clustering: Building links and/or clusters between index terms, phrases and/or other

subparts of the documents has been employed by standard information retrieval.

Although this is not an issue in any of the above mentioned abstracting systems, it

seems to be worth of consideration when building such systems.

17

2.1 FEATURES FOR EXTRACTIVE TEXT

SUMMARIZATION

Some features [5][4] to be considered for including a sentence in final summary are:

2.1.1 Content word (Keyword) feature: Content words or Keywords are

usually nouns and determined using tf × idf measure. Sentences having keywords

are of greater chances to be included in summary. Another keyword extraction

method is given below, having three modules:

 1) Morphological Analysis

 2) Noun Phrase (NP) Extraction and Scoring

 3) Noun Phrase (NP) Clustering and Scoring

 Figure1 shows a pictorial representation of the keyword extraction method.

 Document

 Morphological Analysis

 NP Extraction && Scoring

 Keywords

 NP Clustering && Scoring

18

 Figure 1. Keyword extraction method

2.1.2 Title word feature:
 Sentences containing words that appear in the title are also indicative of the theme of

the document. These sentences are having greater chances for including in

summary.

2.1.3 Sentence location feature:
Usually first and last sentence of first and last paragraph of a text document are

more important and are having greater chances to be included in summary.

2.1.4 Sentence Length feature:
 Very large and very short sentences are usually not included in summary.

2.1.5 Proper Noun feature:
Proper noun is name of a person, place and concept etc. Sentences containing proper

nouns are having greater chances for including in summary.

F. Upper-case word feature: Sentences containing acronyms or proper names are

included.

2.1.6 Cue-Phrase Feature:
Sentences containing any cue phrase (e.g. ―in conclusion‖, ―this letter‖, ―this

report‖, ―summary‖, ―argue‖, ―purpose‖, ―develop‖, ―attempt‖ etc.) are most likely to

be in summaries.

2.1.7 Biased Word Feature:
If a word appearing in a sentence is from biased word list, then that sentence is

important. Biased word list is previously defined and may contain domain specific

words.

2.1.8 Font based feature:
Sentences containing words appearing in upper case, bold, italics or Underlined

fonts are usually more important.

2.1.9 Pronouns:
Pronouns such as ―she, they, it‖ cannot be included in summary unless they are

expanded into corresponding nouns.

19

2.1.10 Sentence-to-Sentence Cohesion:
For each sentence compute the similarity between s and each other sentence s‘ of the

document, then add up those similarity values, obtaining the raw value of this feature

for s. The process is repeated for all sentences.

2.1.11 Sentence-to-Centroid Cohesion:
For each sentence as compute the vector representing the centroid of the document,

which is the arithmetic average over the corresponding coordinate values of all the

sentences of the document; then compute the similarity between the centroid and each

sentence, obtaining the raw value of this feature for each sentence.

2.1.12 Occurrence of non-essential information:
Some words are indicators of non-essential information. These words are speech

markers such as ―because‖, ―furthermore‖, and ―additionally‖, and typically occur in

the beginning of a sentence. This is also a binary feature, taking on the value

―true‖ if the sentence contains at least one of these discourse markers, and ―false‖

otherwise.

2.1.13 Discourse analysis:
Discourse level information , in a text is one of good feature for text summarization.

In order to produce a coherent, fluent summary, and to determine the flow of the author's

argument, it is necessary to determine the overall discourse structure of the text and

then removing sentences peripheral to the main message of the text.

These features are important as, a number of methods of text summarization are using

them. These features are covering statistical and linguistic characterize features are

covering statistical and linguistic characteristics of a language.

20

2.2. EXTRACTIVE SUMMARIZATION METHODS

Extractive summarizers aims at picking out the most relevant sentences in the

document while also maintaining a low redundancy in the summary.

2.2.1 Term Frequency-Inverse Document Frequency (TF- IDF) method:
Bag-of-words model is built at sentence level, with the usual weighted term-frequency

and inverse sentence- frequency paradigm , where sentence-frequency is the number

of sentences in the document that contain that term. These sentence vectors are then

scored by similarity to the query and the highest scoring sentences are picked to be part of

the summary. This is a direct adaptation of Information Retrieval paradigm to

summarization. Summarization is query-specific, but can be adapted to be generic as

described below.

 To generate a generic summary, non stop-words that occur most frequently in the

document(s) may be taken as the query words. Since these words represent the theme

of the document, they generate generic summaries. Term- frequency is usually 0 or 1 for

sentences since normally the same content-word does not appear many times in a

given sentence. If users create query words the way they create for information

retrieval, then the query based summary generation would become generic

summarization.

2.2.2 Cluster based method:
Documents are usually written such that they address different topics one after the

other in an organized manner. They are normally broken up explicitly or implicitly

into sections. This organization applies even to summaries of documents. It is intuitive

to think that summaries should address different ―themes‖ appearing in the

documents. Some summarizers incorporate this aspect through clustering. If the

document collection for which summary is being produced is of totally different

topics, document clustering becomes almost essential to generate a meaningful

summary.

21

 Documents are represented using term frequency- inverse document frequency (TF-

IDF)of scores of words. Term frequency used in this context is the average number of

occurrences (per document) over the cluster. IDF value is computed based on the

entire corpus. The summarizer takes already clustered documents as input. Each

cluster is considered a theme. The theme is represented by words with top ranking

term frequency, inverse document frequency (TF-IDF) scores in that cluster.

Sentence selection is based on similarity of the sentences to the theme of the

cluster(Ci) .The next factor that is considered for sentence selection is the location of the

sentence in the document (Li). In the context of newswire articles, the closer to the

beginning a sentence appears, the higher its weight age for inclusion in summary.

The last factor that increases the score of a sentence is its similarity to the first

sentence in the document to which it belongs (Fi).

 The overall score (Si) of a sentence i is a weighted sum of the above three factors:

Si =W1 *Ci + W2 *Fi+ W3 *Li ………………………..(2)

where Si is the score of sentence Ci,, Fi are the scores of the sentence i based on the

similarity to theme of cluster and first sentence of the document it belongs to,

respectively. Li is the score of the sentence based on its location in the document.

w1, w2 andw3 are the weights for linear combination of the three scores. Note

the similarity between the sentence score in equations (1) and (2). The role of F in (2) is

similar to that of T in (1). The difference however, is that Si, in (2) is further re-

scored using a redundancy factor. Once the documents are clustered, sentence

selection from within the cluster to form its summary is local to the documents in the

cluster. The IDF value based on the corpus statistics seems counter-intuitive. A

better choice may be to take the Average-TF alone to determine the theme of the

cluster, and then rely on the ―anti redundancy‖ factor to cover the important ‗themes‘

within the cluster.

2.2.3 Graph theoretic approach:

As seen in the previous methods, the first step involved in the process of

summarizing one or more documents is identifying the issues or topics addressed in the

22

document. Graph theoretic representation of passages provides a method of

identification of these themes. After the common preprocessing steps, namely, stop

word removal and stemming, sentences in the documents are represented as nodes

in an undirected graph. There is a node for every sentence. Two sentences are connected

with an edge if the two sentences share some common words, or in other words, their

(cosine, or such) similarity is above some threshold. This representation yields two

results: The partitions contained in the graph

 (that is those sub-graphs that are unconnected to the other sub graphs), form distinct

topics covered in the documents. This allows a choice of coverage in the summary.

For query-specific summaries, sentences may be selected only from the pertinent

sub graph, while for generic summaries, representative sentences may be chosen

from each of the sub-

graphs.

 Figure 2: Graph Theoretic approach

The second result yielded by the graph-theoretic method is the identification of the

important sentences in the document. The nodes with high cardinality (number of

edges connected to that node), are the important sentences in the partition, and

hence carry higher preference to be included in the summary. Figure2 shows an

23

example graph for a document. It can be seen that there are about 3-4 topics in the

chapter; the nodes that are encircled can be seen to be informative sentences in the

chapter, since they share information with many other sentences in the chapter.

The graph theoretic method may also be adapted easily for visualization of inter-

and intra-document similarity.

2.2.4 Machine Learning approach

In the 1990s, with the advent of machine learning techniques in NLP, a series of semi- nal

publications appeared that employed statistical techniques to produce document extracts.

While initially most systems assumed feature independence and relied on naive-Bayes

methods, others have focused on the choice of appropriate features and on learning

algorithms that make no independence assumptions. Other significant approaches

involved hidden Markov models and log-linear models to improve extractive

summarization. A very recent paper, in contrast, used neural networks and third party

features (like common words in search engine queries) to improve purely extractive single

document summarization. We next describe all these approaches in more detail.

2.2.4.1 Naive-Bayes Methods

Kupiec et al. (1995) describe a method derived from Edmundson (1969) that is able to

learn from data. The classification function categorizes each sentence as worthy of

extraction or not, using a naive-Bayes classifier. Let s be a particular sentence,

S the set of sentences that make up the summary, and F1, . . . , Fk the features. Assuming

independence of the features:

P (s∈<S | F1, F2, ..., FN) = P (F1, F2, ..., FN | s∈S) *P (s∈S) / P (F1, F2,..., FN)

The features were compliant to (Edmundson, 1969), but additionally included the

sentence length and the presence of uppercase words. Each sentence was given a score

according to (1), and only the n top sentences were extracted. To evaluate the system, a

corpus of technical documents with manual abstracts was used in the following way: for

each sentence in the manual abstract, the authors manually analyzed its match with the

actual document sentences and created a mapping (e.g. exact match with a sentence,

24

matching a join of two sentences, not matchable, etc.). The auto-extracts were then

evaluated against this mapping. Feature analysis revealed that a system using only the

position and the cue features, along with the sentence length sentence feature, performed

best.

Aone et al. (1999) also incorporated a naive-Bayes classifier, but with richer features.

They describe a system called DimSum that made use of features like term frequency (tf)

and inverse document frequency (idf) to derive signature words.4

The idf was computed from a large corpus of the same domain as the concerned

documents. Statistically derived two-noun word collocations were used as units for

counting, along with single words. A named-entity tagger was used and each entity was

considered as a single token. They also employed some shallow discourse analysis like

reference to same entities in the text, maintaining cohesion. The references were resolved

at a very shallow level by linking name aliases within a document like ―U.S.‖ to ―United

States‖, or ―IBM‖ for ―International Business Machines‖. Synonyms and morphological

variants were also merged while considering lexical terms, the former being identified by

using Wordnet (Miller, 1995). The corpora used in the experiments were from newswire,

some of which belonged to the TREC evaluations.

2.2.4.2 Rich Features and Decision Trees

Lin and Hovy (1997) studied the importance of a single feature, sentence position. Just

weighing a sentence by its position in text, which the authors term as the

―position method‖, arises from the idea that texts generally follow a predictable discourse

structure, and that the sentences of greater topic centrality tend to occur in certain

specifiable locations (e.g. title, abstracts, etc). However, since the discourse structure

significantly varies over domains, the position method cannot be defined as naively as in

(Baxendale, 1958). The paper makes an important contribution by investigating

techniques of tailoring the position method towards optimality over a genre and how it

can be evaluated for effectiveness. A newswire corpus was used, the collection of Ziff-

Davis texts produced from the TIPSTER5 program; it consists of text about computer and

related hardware, accompanied by a set of key topic words and a small abstract of six

25

sentences. For each document in the corpus, the authors measured the yield of each

sentence position against the topic keywords. They then ranked the sentence positions by

their average yield to produce the Optimal Position Policy (OPP) for topic positions for

the genre. Two kinds of evaluation were performed. Previously unseen text was used for

testing whether the same procedure would work in a different domain. The first evaluation

showed contours exactly like the training documents. In the second evaluation, word

overlap of manual abstracts with the extracted sentences was measured. Windows in

abstracts were compared with windows on the selected sentences and corresponding

precision and recall values were measured. A high degree of coverage indicated the

effectiveness of the position method.

In later work, Lin (1999) broke away from the assumption that features are independent

of each other and tried to model the problem of sentence extraction using decision trees,

instead of a naive-Bayes classifier. He examined a lot of features and their effect on

sentence extraction. The data used in this work is a publicly available collection of texts.

2.2.5 LSA Method
Singular Value Decomposition (SVD) is a very powerful mathematical tool that

can find principal orthogonal dimensions of multidimensional data. It has

applications in many areas and is known by different names: Karhunen-Loeve

Transform in image processing, Principal Component Analysis (PCA) in signal processes

and Latent Semantic Analysis (LSA) in text processing. It gets this name LSA

because SVD applied to document- word matrices, groups documents that are

semantically related to each other, even when they do not share common words.

Words that usually occur in related contexts are also related in the same singular

space. This method can be applied to extract the topic-words and content-sentences

from documents. The advantage of using LSA vectors for summarization rather than the

word vectors is that conceptual (or semantic) relations as represented in human

brain are automatically captured in the LSA, while using word vectors without the

LSA transformation requires design of explicit methods to derive conceptual

relations. Since SVD finds principal and mutually orthogonal dimensions of the

sentence vectors, picking out a representative sentence from each of the dimensions

26

ensures relevance to the document, and orthogonality ensures non-redundancy. It is

to be noted that this property applies only to data that has principal dimensions

inherently—however, LSA would probably work since most of the text data has

such principal dimensions owing to the variety of topics it addresses.

2.2.6 An approach to concept-obtained text summarization
The idea of this approach is to obtain concepts of words based on HowNet and

use concept as feature, instead of word. This approach uses conceptual vector space

model to form a rough summarization, and then calculate degree of semantic

similarity of sentence for reducing its redundancy. A good summary system should

extract the diverse topics of the document while keeping redundancy to a minimum.

This method consists of the following three main stages:

Stage 1: Using Hownet as tool to obtain concept of text, and establishing conceptual

vector space model.

Stage 2: Calculate importance of concept based on conceptual vector space model.

Stage 3: Generate the final summary by calculating importance of sentence and

reducing the redundancy of summarization.

2.2.7 Text summarization with neural networks
This method involves training the neural networks to learn the types of sentences that

should be included in the summary. This is accomplished by training the network

with sentences in several test paragraphs where each sentence is identified as to

whether it should be included in the summary or not. This is done by a human reader. The

neural network learns the patterns inherent in sentences that should be included in

the summary and those that should not be included. It uses three-layered Feed

forward neural network, which has been proven to be a universal function approximator.

The first phase of the process involves training the neural networks to learn the

types of sentences that should be included in the summary. This is accomplished by

training the network with sentences in several test paragraphs where each sentence

is identified as to whether it should be included in the summary or not. This is

done by a human reader. The neural network learns the patterns inherent in

27

sentences that should be included in the summary and those that should not be

included. The Neural Network after Training is shown in figure3.

28

Once the network has learned the features that must exist in summary sentences, we need

to discover the trends and relationships among the features that are inherent in the

majority of sentences. This is accomplished by the feature fusion phase, which

consists of two steps: 1) eliminating uncommon features; and 2) collapsing the

effects of common features. The connections having very small weights after training

can be pruned without affecting the performance of the network. As a result, any input

or hidden layer neuron having no emanating connections can be safely removed from

the network. In addition, any hidden layer neuron having no abutting connections

can be removed. This corresponds to eliminating uncommon features from the

network [4] as shown in figure4.

The hidden layer activation values for each hidden layer neuron are clustered utilizing

an adaptive clustering technique. Each cluster is identified by its centroid and

frequency. The activation value of each hidden layer neuron is replaced by the

centroid of the cluster, which the activation value belongs to. This corresponds to

collapsing the effects of common features. The combination of these two steps

corresponds to generalizing the effects of features, as a whole, and providing

control parameters for sentence ranking. The Neural Network [4] after feature

fusion is shown in figure5.

29

2.2.8 Query based extractive text summarization

In query based text summarization system, the sentences in a given document are

scored based on the frequency counts of terms (words or phrases). The sentences

containing the query phrases are given higher scores than the ones containing

single query words. Then, the sentences with highest scores are incorporated into the

output summary together with their structural context. Portions of text may be

extracted from different sections or subsections. The resulting summary is the union

of such extracts. The number of extracted sentences and the extent to which their

context is displayed depends on the summary frame size which is fixed to the size

of the screen that can be seen without scrolling. In the sentence extraction algorithm,

whenever a sentence is selected for the inclusion in the summary, some of the

headings in that context are also selected. The query based sentence extraction

algorithm is as follows:

Algorithm:

 1: Rank all the sentences according to their score.

 2: Add the main title of the document to the summary.

 3: Add the first level-1 heading to the summary.

 4: While (summary size limit not exceeded)

 5: Add the next highest scored sentence.

30

 6: Add the structural context of the sentence:(if any and not already included in the

summary)

 7: Add the highest level heading above the extracted text (call this heading h).

 8: Add the heading before h in the same level.

 9: Add the heading after h in the same level.

 10: Repeat steps 7, 8 and 9 for the next highest level headings.

 11: End while

An another query-specific summarization [4] method views a document as a set of

interconnected text fragments (passages) and focuses on keyword queries,since

keyword search is the most popular information discovery method on documents,

because of its power and ease of use. Firstly, at the preprocessing stage, it adds structure

to every document, which can then be viewed as a labeled, weighted graph, called the

document graph. Then, at query time, given a set of keywords, it performs keyword

proximity search on the document graphs to discover how the keywords are

associated in the document graphs. For each document its summary is the minimum

spanning tree on the corresponding document graph that contains all the keywords. In

query-specific opinion summarization system (QOS), When input an opinion

question, the system returns a summary with relevance to the opinion and target

described by the question. The system has several modules to be able to do this: a

question analysis and query reformulation module, a latent semantic indexing based

sentence scoring module, a sentence polarity detection module, and a redundancy

removal module. Bayesian summarization (BAYESUM) is a model for sentence

extraction in query-focused summarization. BAYESUM leverages the common case

in which multiple documents are relevant to a single query. Using these documents as

reinforcement for query terms, BAYESUM is not afflicted by the paucity of information

in short queries. For a collection of D documents and Q queries, assume a D × Q binary

matrix r, where rdq = 1 if an only if document d is relevant to query q. In multi

document summarization, rdq will be 1 exactly when d is in the document set

corresponding to query q.

31

2.2.9 Multilingual Extractive Text summarization
Multilingual text summarization is to summarize the source text in different language to

the target language final summary. SimFinderML identifies similar pieces of text by

computing similarity over multiple features. There are two types of features, composite

features, and unary features. All features are computed over primitives, syntactic,

linguistic, or knowledge-based information units extracted from the sentences. Both

composite and unary features are constructed over the primitives. The primitives used and

features computed can be set at run-time, allowing for easy experimentation with different

settings, and making it easy to add new features and primitives. Support for new

languages is added to the system by developing modules conforming to interfaces for text

pre-processing and primitive extraction for the language, and using existing dictionary-

based translation methods, or adding other language-specific translation methods.

MINDS integrates multi-lingual summarization and multi document summarization

capabilities using a multiengine, core summarization system and provides fast, interactive

document access through hypertext summaries. Core summarization problem of MINDS

is taking a single text and producing a shorter text in the same language that contains all

the main points in the input text. It is using a robust, graded approach for building the

core engine by incorporating statistical, syntactic and documents structure analyses

among other techniques. This approach is less expensive and more robust than a

summarization technique based entirely on a single method. The core engine is being

designed in such a way that as additional resources, such as lexical and other knowledge

bases or text processing and MT engines, become available from other ongoing research

efforts they can be incorporated into the overall multiengine MINDS system. Ideally the

core engine itself will remain language independent. A prototype core engine has been

built for English, Spanish, Russian, and Japanese documents.

MEAD is the multi-lingual summarization and evaluation method. MEAD‘s architecture

consists of four stages. First, documents in a cluster are converted to MEAD‘s internal

(XML-based) format. Second, given a configuration file or command-line options, a

number of features are extracted for each sentence of the cluster. Third, these features are

combined into a composite score for each sentence. Fourth, these scores can be further

refined after considering possible cross-sentence dependencies (e.g., repeated sentences,

32

chronological ordering, source preferences, etc.) In addition to a number of command-line

utilities, MEAD provides a Perl API which lets external programs access its internal

libraries.

2.2.10 Multi-document extractive summarization

Multi document extractive summarization deals with extraction of summarized informati-

on from multiple texts written about the same topic. Resulting summary report allows

individual users, so as professional information consumers, to quickly familiarize

themselves with information contained in a large cluster of documents. Multi-document

summarization creates information reports that are both concise and comprehensive. With

different opinions being put together & outlined, every topic is described from multiple

perspectives within a single document.

NeATS is a multi-document summarization system that attempts to extract relevant or

interesting portions from a set of documents about some topic and present them in

coherent order. It is an extraction-based multi-document summarization system. Given an

input of a collection of sets of newspaper articles, NeATS generates summaries in three

stages: content selection, filtering, and presentation.

The goal of content selection is to identify important concepts mentioned in a document

collection. In a key step for locating important sentences, NeATS computes the likelihood

ratio to identify key concepts in unigrams, bigrams, and trigrams, using the on- topic

document collection as the relevant set and the off-topic document collection as the

irrelevant set. With the individual key concepts available, these concepts are clustered in

order to identify major subtopics within the main topic. Clusters are formed through strict

lexical connection. Each sentence in the document set is then ranked, using the key

concept structures.

NeATS uses three different filters: sentence position, stigma words, and maximum

marginal relevancy. Sentence position is a good content filter, that only retains the leading

10 sentences. Some sentences start with stigma words like:

• Conjunctions (e.g., but, although, however)

• The verb say and its derivatives

33

• Quotation marks

• Pronouns such as he, she, and they

usually cause discontinuity in summaries. The scores of these sentences are reduced to

avoid including them in short summaries. Redundancy issue is addressed in maximum

marginal relevancy filter. A sentence is added to the summary if and only if its content

has less than X percent overlap with the summary. The overlap ratio is computed using

simple stemmed word overlap and the threshold X is set empirically.

Hub/Authority framework is multi document summarization system which, firstly detect

the sub-topics in multi-documents by sentence clustering and extract the feature words (or

phrase) of different sub-topics. Secondly, all feature words and the cue phrases are used

as the vertex of Hub and all sentences are regarded as the vertex of Authority. If the

sentence contains the words in Hub, there is an edge between the Hub word and the

Authority sentence. The initial weight of each vertex considers both the content and the

cues such as cue phrase and first sentence. Through the mutual reinforcement mechanism

of the Hub-Authority algorithm, we can rank the importance of the sentences within the

multi-documents. The assumption behind this cue-based Hub/Authority approach is that a

good Hub word (or phrase) is the content that points to many good authorities sentences

and a good authority sentence is a vertex that is pointed to by many good hub words.

Thirdly, It has used the Markov Model to order the subtopics that the final summarization

should contain and output the text summarization according to the sentence ranking score

of all sentences within one sub-topic as user' requirement.

Generic relation extraction (GRE) is a novel multi document text summarization

approach, which aims to build systems for relation identification and characterization that

can be transferred across domains and tasks without modification of model param.

34

Single-document
summarization

Single-document
summarization

Single-document
summarization

Single-document
summarization

Document1 Document2 Document3

Multi Document Summarization

Summary Document1

Summary Document2

…………………..

Summary Document3

Meta-document

Figure 5. Multi Document Summarisation

35

 CHAPTER 3

 A REVIEW OF TEXT SUMMARIZATION
An automatic summarization process can be divided into three steps: (1) in the

preprocessing step a structured representation of the original text is obtained; (2) in the

processing step an algorithm must transform the text structure into a summary

structure; and (3) in the generation step the final summary is obtained from the

summary structure.

The methods of summarization can be classified, in terms of the level in the linguistic

space, in two broad groups: (a) shallow approaches, which are restricted to the syntactic

level of representation and try to extract salient parts of the text in a convenient way;

and (b) deeper approaches, which assume a semantics level of representation of the

original text and involve linguistic processing at some level.

In the first approach the aim of the preprocessing step is to reduce the dimensionality of

the representation space, and it normally includes: (i) stop-word elimination - common

words with no semantics and which do not aggregate relevant information to the task

(e.g., “the”, “a”) are eliminated; (ii) case folding: consists of converting all the characters

to the same kind of letter case - either upper case or lower case; (iii) stemming:

syntactically-similar words, such as plurals, verbal variations, etc. are considered similar;

the purpose of this procedure is to obtain the stem or radix of each word, which

emphasize its semantics.

A frequently employed text model is the vectorial model . After the preprocessing step

each text element - a sentence in the case of text summarization - is considered as a A-

dimensional vector. So it is possible to use some metric in this space to measure similarity

between text elements. The most employed metric is the cosine measure, defined as cos d

= (<x.y>) / (Ixl . lyl) for vectors x and y, where (<,>) indicates the scalar product, and Ixl

indicates the module of x. Therefore maximum similarity corresponds to cos d = 1,

whereas cos d = 0 indicates total discrepancy between the text elements.

The evaluation of the quality of a generated summary is a key point in summarization

research. A detailed evaluation of summarizers was made at the TIPSTER Text

36

Summarization Evaluation Conference (SUMMAC), as part of an effort to standardize

summarization test procedures. In this case a reference summary collection was provided

by human judges, allowing a direct comparison of the performance of the systems that

participated in the conference. The human effort to elaborate such summaries, however, is

huge. Another reported problem is that even in the case of human judges, there is low

concordance: only 46 % according to Mitra; and more importantly: the summaries

produced by the same human judge in different dates have an agreement of only 55 % .

The idea of a ―reference summary‖ is important, because if we consider its existence we

can objectively evaluate the performance of automatic summary generation procedures

using the classical Information Retrieval (IR) precision and recall measures. In this case a

sentence will be called correct if it belongs to the reference summary. As usual, precision

is the ratio of the number of selected correct sentences over the total number of selected

sentences, and recall is the ratio of the number of selected correct sentences over the total

number of correct sentences. In the case of fixed-length summaries the two measures are

identical, since the sizes of the reference and the automatically obtained extractive

summaries are identical.

Mani and Bloedorn proposed an automatic procedure to generate reference summaries: if

each original text contains an author-provided summary, the corresponding size-K

reference extractive summary consists of the K most similar sentences to the author-

provided summary, according to the cosine measure. Using this approach it is easy to

obtain reference summaries, even for big document collections.

A Machine Learning (ML) approach can be envisaged if we have a collection of

documents and their corresponding reference extractive summaries. A trainable

summarizer can be obtained by the application of a classical (trainable) machine learning

algorithm in the collection of documents and its summaries. In this case the sentences of

each document are modeled as vectors of features extracted from the text. The

summarization task can be seen as a two-class classification problem, where a sentence is

labeled as ―correct‖ if it belongs to the extractive reference summary, or as ―incorrect‖

otherwise. The trainable summarizer is expected to ―learn‖ the patterns which lead to the

summaries, by identifying relevant feature values which are most correlated with the

classes ―correct‖ or ―incorrect‖. When a new document is given to the system, the

37

―learned‖ patterns are used to classify each sentence of that document into either a

―correct‖ or ―incorrect‖ sentence, producing an extractive summary. A crucial issue in

this framework is how to obtain the relevant set of features; the next section treats this

point in more detail.

To understand how a summarizer works various tools were studied and experimented

with. The tools studied were as follows:

1. Text compactor: Text compactor is an Online summarizer for English

language. It involves three steps. In step1 the user Types or pastes text into the

box. In step2 the user Drags the slider, or enters a number in the box, to set the

percentage of text to keep in the summary. In step3 the user is presented with

the summarized text. The tool does not support any other language besides

English.

 Fig.6 Text Comparator

38

2. Online Tool Summarizer: The tool generates the summary based on the

threshold set by the user. The user can also set the Minimum sentence length.

In the output along with the summary the user is also presented with the best

words found in the text entered along with the frequency of occurrence of the

best word. Also the system does not support Hindi.

3. Open Text Summarizer: Open Text Summarizer is an open source tool

for summarizing texts. The program reads a text and decides which sentences

are important and which are not. In this approach, keywords are identified by

means of word occurrence, and sentences are given a score based on the

keywords they contain It ships with Ubuntu, Fedora and other linux distros.

OTS supports many (25+) languages which are configured .Several academic

publications have benchmarked it and praised it. OTS is both a library and a

command line tool. Word processors such as AbiWord and KWord can link to

the library and summarize documents while the command line tool lets you

summarize text on the console. The program can either print the summarized

text as text or HTML. If HTML, the important sentences are highlighted. The

program is multi lingual. The Open Text Summarizer summarizes texts in

English, German, Spanish, Russian, Hebrew, Esperanto and other languages.

39

Fig.7 Open text summariser

40

 CHAPTER 4

 DESIGN AND IMPLEMENTATION

I have made automatic summarization with the machine learning approach with the

following way:

 Figure8. Text Summarization System Architecture

Document

Sentence Spiltter

Stemming

Stop Word Removal

Apply Cosine Similarty methd to Measure Similarity Of Setences
and Remove Redundancy

Graph Construction

Apply Text Rank Algorithm To Measure The Importance Of Each
Sentence

Summary Of Document

41

4.1 Document Preprocessing

The original document will contain many words, which will not be important in the

sentence. It would be obvious to remove the stop words such as ―A‖, ―the‖ etc. from the

sentence.

There are many more sophisticated methods to process the documents, such as retrieving

only nouns or nouns and adverbs etc.

This report has two main points: (1) the set of employed features; and (2) the framework

defined for the trainable summarizer, including the employed classifiers.

A large variety of features can be found in the text-summarization literature. In my

proposal we employ the following set of features:

4.1.1 Mean-TF-IDF: Since the seminal work of Luhn, text processing tasks

frequently use features based on IR measures . In the context of IR, some very important

measures are term frequency (TF) and term frequency x inverse document frequency (TF-

IDF) . In text summarization we can employ the same idea: in this case we have a single

document d, and we have to select a set of relevant sentences to be included in the

extractive summary out of all sentences in d. Hence, the notion of a collection of

documents in IR can be replaced by the notion of a single document in text

summarization. Analogously the notion of document - an element of a collection of

documents - in IR, corresponds to the notion of sentence - an element of a document - in

summarization. This new measure will be called term frequency x inverse sentence

frequency, and denoted TF-ISF(w,s).The final used feature is calculated as the mean

value of the TF-ISF measure for all the words of each sentence.

(a) Sentence Length. This feature is employed to penalize sentences that are too short,

since these sentences are not expected to belong to the summary. We use the normalized

length of the sentence, which is the ratio of the number of words occurring in the sentence

over the number of words occurring in the longest sentence of the document.

42

(b) Sentence Position. This feature can involve several items, such as the position of a

sentence in the document as a whole, its the position in a section, in a paragraph, etc., and

has presented good results in several research projects We use here the percentile of the

sentence position in the document, the final value is normalized to take on values between

0 and 1.

(c) Similarity to Title. According to the vectorial model, this feature is obtained by using

the title of the document as a ―query‖ against all the sentences of the document; then the

similarity of the document‘s title and each sentence is computed by the cosine similarity

measure .

(d) Similarity to Keywords. This feature is obtained analogously to the previous one,

considering the similarity between the set of keywords of the document and each sentence

which compose the document, according to the cosine similarity.

For the next two features we employ the concept of text cohesion. Its basic principle is

that sentences with higher degree of cohesion are more relevant and should be selected to

be included in the summary.

(e) Sentence-to-Sentence Cohesion. This feature is obtained as follows: for each

sentence s we first compute the similarity between s and each other sentence s‘ of the

document; then we add up those similarity values, obtaining the raw value of this feature

for s; the process is repeated for all sentences. The normalized value (in the range [0, 1])

of this feature for a sentence s is obtained by computing the ratio of the raw feature value

for s over the largest raw feature value among all sentences in the document. Values

closer to 1.0 indicate sentences with larger cohesion.

(f) Sentence-to-Centroid Cohesion. This feature is obtained for a sentence s as follows:

first, we compute the vector representing the centroid of the document, which is the

arithmetic average over the corresponding coordinate values of all the sentences of the

43

document; then we compute the similarity between the centroid and each sentence,

obtaining the raw value of this feature for each sentence. The normalized value in the

range [0, 1] for s is obtained by computing the ratio of the raw feature value over the

largest raw feature value among all sentences in the document. Sentences with feature

values closer to 1.0 have a larger degree of cohesion with respect to the centroid of the

document, and so are supposed to better represent the basic ideas of the document.

For the next features an approximate argumentative structure of the text is employed. It is

a consensus that the generation and analysis of the complete rethorical structure of a text

would be impossible at the current state of the art in text processing. In spite of this, some

methods based on a surface structure of the text have been used to obtain good-quality

summaries. To obtain this approximate structure we first apply to the text an

agglomerative clustering algorithm. The basic idea of this procedure is that similar

sentences must be grouped together, in a bottom-up fashion, based on their lexical

similarity. As result a hierarchical tree is produced, whose root represents the entire

document. This tree is binary, since at each step two clusters are grouped. Five features

are extracted from this tree, as follows:

(g) Depth in the tree. This feature for a sentence s is the depth of s in the tree.

(h) Referring position in a given level of the tree (positions 1, 2, 3, and 4). We first

identify the path form the root of the tree to the node containing s, for the first four depth

levels. For each depth level, a feature is assigned, according to the direction to be taken in

order to follow the path from the root to s; since the argumentative tree is binary, the

possible values for each position are: left, right and none, the latter indicates that s is in a

tree node having a depth lower than four.

(i) Indicator of main concepts. This is a binary feature, indicating whether or not a

sentence captures the main concepts of the document. These main concepts are obtained

by assuming that most of relevant words are nouns. Hence, for each sentence, we identify

its nouns using a part-of-speech software . For each noun we then compute the number of

sentences in which it occurs. The fifteen nouns with largest occurrence are selected as

44

being the main concepts of the text. Finally, for each sentence the value of this feature is

considered ―true‖ if the sentence contains at least one of those nouns, and ―false‖

otherwise.

(j) Occurrence of proper names. The motivation for this feature is that the occurrence

of proper names, referring to people and places, are clues that a sentence is relevant for

the summary. This is considered here as a binary feature, indicating whether a sentence s

contains (value ―true‖) at least one proper name or not (value ―false‖). Proper names were

detected by a part-of-speech tagger.

(k) Occurrence of anaphors. We consider that anaphors indicate the presence of non-

essential information in a text: if a sentence contains an anaphor, its information content

is covered by the related sentence. The detection of anaphors was performed in a way

similar to the one proposed by Strzalkowski we determine whether or not certain words,

which characterize an anaphor, occur in the first six words of a sentence. This is also a

binary feature, taking on the value ―true‖ if the sentence contains at least one anaphor,

and ―false‖ otherwise.

(l) Occurrence of non-essential information. We consider that some words are

indicators of non-essential information. These words are speech markers such as

―because‖, ―furthermore‖, and ―additionally‖, and typically occur in the beginning of a

sentence. This is also a binary feature, taking on the value ―true‖ if the sentence contains

at least one of these discourse markers, and ―false‖ otherwise.

The ML-based trainable summarization framework consists of the following steps:

1. We apply some standard preprocessing information retrieval methods to each

document, namely stop-word removal, case folding and stemming. We have employed the

stemming algorithm proposed by Porter .

2. All the sentences are converted to its vectorial representation .

3. We compute the set of features described in the previous subsection. Continuous

features are discretized: we adopt a simple ―class-blind‖ method, which consists of

separating the original values into equal-width intervals. We did some experiments with

45

different discretization methods, but surprisingly the selected method, although simple,

has produced better results in our experiments.

4. A ML trainable algorithm is employed; we employ two classical algorithms, namely

Text Rank Algorithm and Hits Algorithm. As usual in the ML literature, we employ

these algorithms trained on a training set and evaluated on a separate test set.

The framework assumes, of course, that each document in the collection has a reference

extractive summary. The ―correct‖ sentences belonging to the automatically produced

extractive summary are labeled as ―positive‖ in classification/data mining terminology,

whereas the remaining sentences are labeled as ―negative‖.

4.1.2 Graph Construction

• We then construct a graph from the words that we have filtered from each sentence.

• We assign each sentence a node and calculate the edge weight between each

sentence by various similarity functions.

• There are two methods to calculate similarity between sentences.

o One is to calculate sentence similarity with the words in sentences.

o The other is to calculate sentence similarity with stemmed words in

sentences.

• We have chosen the original words in the sentences, because the stemmed words

would miss the tense and voice information of the sentence.

• Moreover, there are many different Similarity functions, which can be used, with

each having its own benefits and drawbacks.

4.1.3 Ranking Algorithms
Once we have obtained a graph with edges, we can apply various techniques, such as

HITS or TextRank, to obtain weight for each node. Using these ranking algorithms, we

can obtain a weight or importance for each node.

4.1.4 Summarization
Once we have each sentence and a measure of its importance, we can sort the node

in the order of their weights and display the sentences with most similarity.

46

4.2 Features used

 TO evaluate how to improve the summaries , I will be using the following features,

• Nouns and verbs

• Nouns, adjectives and Verbs

• Nouns and adjectives

I will be using the following similarity function
[6]

 to generate different summaries:

4.2.1Jaccard Similarity
a.)It is a statistic used for comparing the similarity and diversity of sample

sets.It uses overlap of words between sentences to calculate similarity.

b.)It uses overlap of words between sentences to calculate similarity.

4.2.2 Cosine Similarity

4.2.2.1 Vector Space Model:

1.Sentences are also treated as a ―bag‖ of words or terms.

2.Each sentence is represented as a vector.

3.However, the term weights are no longer 0 or 1. Each term weight is computed based

on some variations of TF or TF-IDF scheme.

4.Term Frequency (TF) Scheme: The weight of a term ti in document dj is the

number of times that ti appears in dj, denoted by fij. Normalization may also be applied.

similarity = cos θ =
A . B

 A B
=

 Ai ∗ Bi
n
i=1

 Ai
2n

i=1 ∗ Bi
2n

i=1

4.2.2.2 TF-IDF term weighting scheme:

TF: still term frequency,IDF: inverse document frequency.

47

The most well known weighting scheme

𝑡𝑓𝑖𝑗 =
𝑓𝑖𝑗

max⁡{𝑓1𝑗 , 𝑓2𝑗 , ………………… . . , 𝑓 𝑉 𝑗 }

𝒊𝒅𝒇𝒊 = 𝒍𝒐𝒈
𝑵

𝒅𝒇𝒊

N: total number of docs

dfi: the number of docs that ti appears.

 The final TF-IDF term weight is:

wij = tfij ∗ idfi

Retrieval in vector space model:

Query q is represented in the same way or slightly differently.

Relevance of di to q: Compare the similarity of query q and document di.

Cosine similarity (the cosine of the angle between the two vectors)

48

 CHAPTER 5

 RANKING ALGORITHMS

We will be using the 3 features along with the 3 syntactic filtering mentioned above to

obtain different graphs, on which we various ranking algorithms can be applied to obtain

the sentence weights (importance).

5.1 TextRank
Graph-based ranking algorithms are essentially a way of deciding the importance of a

vertex within a graph, based on information drawn from the graph structure. The

basic idea implemented by a graph-based ranking model is that of ―voting‖ or

―recommendation‖. When one vertex links to another one, it is basically casting a vote for

that other vertex. The higher the number of votes that are cast for a vertex, the higher the

importance of the vertex. The score associated with a vertex is determined based on the

votes that are cast for it, and the score of the vertices casting these votes.To enable the

application of graph-based ranking algorithms to natural language texts, we have to build

a graph that represents the text, and interconnects words or other text entities with

meaningful relations. Depending on the application at hand, text units of various sizes

and characteristics can be added as vertices in the graph, e.g. words, collocations, entire

sentences, or others. Similarly, it is the application that dictates the type of relations that

are used to draw connections between any two such vertices, e.g. lexical or

semantic relations, contextual overlap, etc.

Regardless of the type and characteristics of the elements added to the graph, the

application of graph-based ranking algorithms to natural language texts consists of the

following main steps:

1.Identify text units that best define the task at hand, and add them as vertices in the

graph.

2. Identify relations that connect such text units, and use these relations to draw edges

49

between vertices in the graph. Edges can be directed or undirected, weighted or

unweighted.

3.Iterate the graph-based ranking algorithm until convergence.

4. Sort vertices based on their final score. Use the values attached to each vertex

for ranking/selection decisions

TextRank does not require deep linguistic knowledge, nor domain or language

specific annotated corpora, which makes it highly portable to other domains, genres, or

languages.

Graph-based ranking algorithms like Kleinberg‘s HITS algorithm (Kleinberg, 1999) or

Google‘s PageRank (Brin and Page, 1998) have been success- fully used in citation

analysis, social networks, and the analysis of the link-structure of the World Wide Web.

Arguably, these algorithms can be singled out as key elements of the paradigm-shift

triggered in the field of Web search technology, by providing a Web page ranking

mechanism that relies on the collective knowledge of Web architects rather than in-

dividual content analysis of Web pages. In short, a graph-based ranking algorithm is a

way of deciding on the importance of a vertex within a graph, by taking into account

global information recursively computed from the entire graph, rather than relying only

on local vertex-specific information.

Applying a similar line of thinking to lexical or semantic graphs extracted from natural

language documents, results in a graph-based ranking model that can be applied to a

variety of natural language processing applications, where knowledge drawn from an

entire text is used in making local ranking/selection decisions. Such text oriented ranking

methods can be applied to tasks ranging from auto- mated extraction of keyphrases, to

extractive summarization and word sense disambiguation (Mihalcea et al., 2004).

In this paper, we introduce the TextRank graph- based ranking model for graphs extracted

from natural language texts. We investigate and evaluate the application of TextRank to

two language processing tasks consisting of unsupervised keyword and sentence

50

extraction, and show that the results obtained with TextRank are competitive with state-

of-the-art systems developed in these areas.

5.1.1 The TextRank Model
Graph-based ranking algorithms are essentially a way of deciding the importance of a

vertex within a graph, based on global information recursively drawn from the entire

graph. The basic idea implemented by a graph-based ranking model is that of ―voting‖ or

―recommendation‖. When one vertex links to another one, it is basically casting a vote for

that other vertex. The higher the number of votes that are cast for a vertex, the higher the

importance of the vertex. Moreover, the importance of the vertex casting the vote

determines how important the vote itself is, and this information is also taken into account

by the ranking model. Hence, the score associated with a vertex is determined based on

the votes that are cast for it, and the score of the vertices casting these votes.

Formally, let G = (V, E) be a directed graph with the set of vertices U and set of edges !?,

where I? is a subset o f U x U . For a given vertex U, let In(U) be the set of vertices that

point to it (predecessors), and let Out (Vi) be the set of vertices that vertex V* points to

(successors). The score of a vertex V) is defined as follows (Brin and Page, 1998):

𝑊𝑆 𝑉𝑖 = 1 − 𝑑 + 𝑑 ∗
wji

 wjkvk εout (v j)
∗ WS(Vj)

V jε ln (v i)

where d is a damping factor that can be set between 0 and 1, which has the role of

integrating into the model the probability of jumping from a given vertex to another

random vertex in the graph. In the context of Web surfing, this graph-based ranking

algorithm implements the ―random surfer model‖, where a user clicks on links at random

with a probability d, and jumps to a completely new page with probability 1 — d. The

factor d is usually set to 0.85 (Brin and Page, 1998), and this is the value we are also

using in our implementation.

Starting from arbitrary values assigned to each node in the graph, the computation iterates

until convergence below a given threshold is achieved
1
. After running the algorithm, a

51

score is associated with each vertex, which represents the ―importance‖ of the vertex

within the graph. Notice that the final values obtained after TextRank runs to completion

are not affected by the choice of the initial value, only the number of iterations to

convergence may be different.

It is important to notice that although the TextRank applications described in this paper

rely on an algorithm derived from Google‘s PageRank (Brin and Page, 1998), other

graph-based ranking algorithms such as e.g. HITS (Kleinberg, 1999) or Positional

Function (Herings et al., 2001) can be easily integrated into the TextRank model

(Mihalcea, 2004).

5.1.1.1 Undirected Graphs

Although traditionally applied on directed graphs, a recursive graph-based ranking

algorithm can be also applied to undirected graphs, in which case the out- degree of a

vertex is equal to the in-degree of the vertex. For loosely connected graphs, with the

number of edges proportional with the number of vertices, undirected graphs tend to have

more gradual convergence curves.

5.1.1.2 Weighted Graphs

In the context of Web surfing, it is unusual for a page to include multiple or partial links

to another page, and hence the original PageRank definition for graph-based ranking is

assuming unweighted graphs.

However, in our model the graphs are build from natural language texts, and may include

multiple or partial links between the units (vertices) that are extracted from text. It may be

therefore useful to indicate and incorporate into the model the ―strength‖ of the

connection between two vertices V) and V) as a weight W ij added to the corresponding

edge that connects the two vertices.

5.1.1.3 Text as a Graph

To enable the application of graph-based ranking algorithms to natural language texts, we

have to build a graph that represents the text, and interconnects words

52

or other text entities with meaningful relations. Depending on the application at hand, text

units of various sizes and characteristics can be added as vertices in the graph, e.g. words,

collocations, entire sentences, or others. Similarly, it is the application that dictates the

type of relations that are used to draw connections between any two such vertices, e.g.

lexical or semantic relations, contextual overlap, etc.

Regardless of the type and characteristics of the elements added to the graph, the

application of graph- based ranking algorithms to natural language texts consists of the

following main steps:

1. Identify text units that best define the task at hand, and add them as vertices in the

graph.

2. Identify relations that connect such text units, and use these relations to draw

edges between vertices in the graph. Edges can be directed or undirected, weighted

or unweighted.

3. Iterate the graph-based ranking algorithm until convergence.

4. Sort vertices based on their final score. Use the values attached to each vertexfor

ranking/selection decisions.

5.1.1.4 TEXT RANK FOR KEYWORD EXTRACTION

The expected end result for this application is a set of words or phrases that are

representative for a give natural language text. The units to be ranked are therefore

sequences of one or more lexical units extracted from text, and these represent the

vertices that are added to the text graph. Any relation that can be defined between two

lexical units is a potentially useful connection (edge) that can be added between two such

vertices. We are using a co-occurrence relation, controlled by the distance between word

occurrences: two vertices are connected if their corresponding lexical units co-occur

within a window of maximum words, where can be set anywhere from 2 to 10 words. Co-

occurrence links express relations between syntactic elements, and similar to the semantic

links found useful for the task of word sense disambiguation, they represent cohesion

indicators for a given text. The vertices added to the graph can be restricted with syntactic

53

filters, which select only lexical units of a certain part of speech. One can for instance

consider only nouns and verbs for addition to the graph, and consequently draw potential

edges based only on relations that can be established between nouns and verbs. We

experimented with various syntactic filters, including: all open class words, nouns and

verbs only, etc., with best results observed for nouns and adjectives only.

The TextRank keyword extraction algorithm is fully unsupervised, and proceeds as

follows. First,the number of keywords based on the size of the text. For the data used in

our experiments, which consists of relatively short abstracts, is set to a third of the

number of vertices in the graph. During post-processing, all lexical units selected as

potential keywords by the TextRank algorithm are marked in the text, and sequences of

adjacent keywords are collapsed into a multi-word keyword.

5.1.1.5 TEXT RANK FOR SENTENCE EXTRACTION

The other TextRank application that we investigate consists of sentence extraction for

automatic summarization. In a way, the problem of sentence extraction can be regarded as

similar to keyword extraction, since both applications aim at identifying sequences

that are more ―representative‖ for the given text. In keyword extraction, the candidate text

units consist of words or phrases, whereas in sentence extraction, we deal with entire

sentences. TextRank turns out to be well suited for this type of applications, since it

allows for a ranking over text units that is recursively computed based on information

drawn from the entire text.

To apply TextRank, we first need to build a graph associated with the text, where the

graph vertices are representative for the units to be ranked. For the task of sentence

extraction, the goal is to rank entire sentences, and therefore a vertex is added to the graph

for each sentence in the text. The co-occurrence relation used for keyword extraction

cannot be applied here, since the text units in consideration are significantly larger than

one or few words, and ―co-occurrence‖ is not a meaningful relation for such large

contexts. Instead, we are defining a different relation, which determines a connection

between two sentences if there is a ―similarity‖ relation between them, where ―similarity‖

is measured as a function of their content overlap. Such a relation between two sentences

can be seen as a process of ―recommendation‖: a sentence that addresses certain concepts

54

in a text, gives the reader a ―recommendation‖ to refer to other sentences in the text that

address the same concepts, and therefore a link can be drawn between any two such

sentences that share common content. The overlap of two sentences can be determined

simply as the number of common tokens between the lexical representations of the two

sentences, or it can be run through syntactic filters, which only count words of a certain

syntactic category, e.g. all open class words, nouns and verbs, etc. Moreover, to avoid

promoting long sentences, we are using a normalization factor, and divide the content

overlap of two sentences with the length of each sentence.

5.2 WHY TEXTRANK WORKS?

Intuitively, TextRank works well because it does not only rely on the local context of a

text unit (vertex), but rather it takes into account information recursively drawn from the

entire text (graph).Through the graphs it builds on texts, TextRank identifies connections

between various entities in a text, and implements the concept of recommendation. A text

unit recommends other related text units, and the strength of the recommendation is

recursively computed based on the importance of the units making the recommendation.

For instance, in the keyphrase extraction application, co-occurring words recommend

each other as important, and it is the common context that enables the identification of

connections between words in text. In the process of identifying important sentences in a

text, a sentence recommends another sentence that addresses similar concepts as being

useful for the overall understanding of the text. The sentences that are highly

recommended by other sentences in the text are likely to be more informative for the

given text, and will be therefore given a higher score. An important aspect of TextRank is

that it does not require deep linguistic knowledge, nor domain or language specific

annotated corpora, which makes it highly portable to other domains, genres, or languages.

55

 CHAPTER 6

 DEVELOPMENT

To make User Interface of My Tool, I have used swings in advanced java and then

perform some methods and algorithm as I mentioned above to produce a summarization

of the text document. Below are the snapshots of my project after applying methods:

6.1 User Interface:

 Figure.9 User Interface

56

6.2 Sentence Extraction:

 Figure. 10 Sentence Extraction

57

6.3 Unique Words Indentification:

 Figure.11 Unique word Identification

58

 6.4 Weight of Particular Word By tf-idf Method:

 Figure 12. Weight of a particular word

59

6.5 Ranking of sentences:

 Figure 13. Ranking

60

 CHAPTER 7

 EXPERIMENTS

We have done the following experiments to summarize the documents

Baseline

1. Selecting all words

2. Cosine Similarity

3. TextRank

Relevant
Documents Retrieved

Documents

X= intersection of both sets

Precision evaluates the ability of the IR system to retrieve top-ranked documents that are

most relevant and is defined as the percentage of the retrieved documents that are truly

relevant to user‘s query.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑋

𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠

Precision evaluates the ability of the IR system to find all the relevant items in the

database and is defined as the percentage of the retrieved documents that are truly

relevant to user‘s query.

61

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑋

𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠

The results for this baseline were the following

Machine Generated Summaries Human Summaries

N Precision Recall FMeasure Precision Recall FMeasure

1 70.58 44.87 50.67 24.98 50.47 30.87

2 59.21 34.73 40.49 9.79 18.21 11.65

3 56.32 32.26 37.96 6.14 10.67 7.10
 Table 1. Baseline result

EXPERIMENT 7.1

For this experiment, we compared the results of syntactic filtering and

compared which one gives the best results. We have used the average of

various similarity measures to compute the value for each syntactic filter.

Nouns + Adjective

Nouns + Adjective +
Verbs

Nouns + Verbs

N 1 2 3 1 2 3 1 2 3

Precision 74.40% 57.50% 51.85% 74.10% 56.60% 51.00% 72.00% 56.00% 52.70%

Recall 54.40% 36.80% 31.90% 54.30% 35.80% 30.90% 48.50% 37.40% 34.10%

FMeasure 57.20% 41.20% 36.50% 57.00% 40.30% 35.70% 52.70% 41.30% 38.25%

 Table 2. Syntactic filter

Inferences

 The Nouns and adjectives outperform the other two features for N = 1.

 However, for N = 3, Nouns and verbs perform much better.

Table 3. Cosine Similarity

 Machine Generated Summaries Human Summaries

N Precision Recall FMeasure Precision Recall FMeasure

62

1 71.53 56.35 57.29 23.31 58.16 30.63

2 62.98 47.09 48.85 10.50 24.98 13.49

3 60.45 44.51 46.43 6.69 15.11 8.41

Inference

 The FMeasure is significantly lower than the FMeasure obtained from

the comparison with Manual Summaries.

 However a decrease in FMeasure does not mean that our summaries

are not good. The evaluation method used by us compares the ngrams

in each document. However, if the user generates summary using

other words and changing the order of sentences, then any computer-

generated summary will score low on FMeasure. Hence, we should

not compare the FMeasure values obtained with human summaries

and computer summaries.

EXPERIMENT 7.2

 Using maximum occurring words without stop words as the keywords

 Intellexer DUC

N Precision Recall FMeasure Precision Recall FMeasure

1 69.39 68.70 67.42 27.06 53.79 35.57

2 59.04 58.28 57.24 11.76 23.07 15.36

3 56.35 55.55 54.58 7.55 14.69 9.82

 Table 4. Maximum occurring words

EXPERIMENT 7.3

Using 2 weight classes for sentences with Top occurring words as

Keywords with stop words

 Intellexer DUC

N Precision Recall FMeasure Precision Recall FMeasure

63

1 67.96 71.63 68.19 25.24 54.68 34.16

2 57.92 60.58 57.84 10.70 22.65 14.34

3 55.30 57.75 55.17 6.76 14.09 9.00

Table 5. Using 2 weight classes

EXPERIMENT7.4

Using 3 weight classes for sentences with Top occurring words as

Keywords with stop words

 Intellexer DUC

N Precision Recall FMeasure Precision Recall FMeasure

1 68.00 71.65 68.23 25.23 54.63 34.13

2 57.98 60.63 57.90 10.68 22.61 14.32

3 55.37 57.79 55.23 6.74 14.04 8.98

 Table 6. Using 3 weight classes

Inferences

 We see that Bipartite HITS seems to give better results than the

other conventional methods

 Moreover, both TextRank and maximum occurring words as

keywords perform well, with the latter performing slightly better.

 Table 7. CONSOLIDATED RESULT FOR TEXT RANK

Experiment Algorithm
Intellexer DUC

FMEASURE FMEASURE

N = 1 N = 2 N = 3 N = 1 N = 2 N = 3

Baseline All Words + Cosine Similarity + TextRank 50.67 40.49 37.96 30.87 11.65 7.10

Experiment 1 TextRank with Jaccard Similarity 54.93 45.65 43.12 31.26 13.72 8.59

Experiment 2 TextRank with Cosine Similarity 57.29 48.85 46.43 30.63 13.49 8.41

64

 CHAPTER 8

 Challenging Issues of Automatic Summarization

Relevance Detection and Quality-based Evaluation

This chapter is about the Automatic Summarization task within two different points

of view, focusing on two main goals. On the one hand, a study of the suitability for

―The Code Quantity Principle‖ in the Text Summarization task is described. This

linguistic principle is implemented to select those sentences from a text, which

carry the most important information. Moreover, this method has been run over the

DUC 2002 data, obtaining encouraging results in the automatic evaluation with the

ROUGE tool. On the other hand, the second topic discussed in this chapter deals

with the evaluation of summaries, suggesting new challenges for this task. The

main methods to perform the evaluation of summaries automatically have been

described, as well as the current problems existing with regard to this difficult task.

With the aim of solving some of these problems, a novel type of evaluation is

outlined to be developed in the future, taking into account a number of quality

criteria in order to evaluate the summary in a qualitative way.

8.1 Introduction

The high amount of electronic information available on the Internet increases the

difficulty of dealing with it in recent years. Automatic Summarization (AS) task helps

users condense all this information and present it in a brief way, in order to make it easier

to process the vast amount of documents related to the same topic that exist these days.

Moreover, AS can be very useful for neighbouring Natural Language Processing (NLP)

tasks, such as Information Retrieval, Question Answering or Text Comprehension, be-

cause these tasks can take advantadge of the summaries to save time and resources.

A summary can be defined as a reductive transformation of source text through content

condensation by selection and/or generalisation of what is important in the source . This

65

process involves three stages: topic identification, interpretation and summary generation.

To identify the topic in a document what systems usually do is to assign a score to each

unit of input (word, sentence, passage) by means of statistical or machine learning

methods. The stage of interpretation is what distinguishes extract- type summarization

systems from abstract-type systems. During interpretation, the topics identified as

important are fused, represented in new terms, and expressed using a new formulation,

using concepts or words not found in the original text. Finally, when the summary content

has been created through abstracting and/or information extraction, it requires techniques

of Natural Language Generation to build the summary sentences. When an extractive

approach is taken, there is no generation stage involved.

Another essential part of the Text Summarization (TS) task is how to perform the

evaluation of a summary. Methods for evaluating TS can be classified into two categories.

The first, intrinsic evaluations, test the summary on itself. The second, extrinsic

evaluations, test how the summary is good enough to accomplish some other task, for

example, an Information Retrieval task. However, to determine whether an automatic, or

even a human-made summary, is appropriate or not, is a subjective task which depends

greatly on a lot of factors, for instance, what the summary is intended for, or to whom the

summary is addressed. We focus on single-document Text Summarization from an

extractive point of view, and we set out two goals for this research. On the one hand, the

first goal is to present a method to detect relevant sentences within a document, and

therefore, select them to make up the final summary. On the other hand, the second aim of

this piece of work is to discuss the current problems the automatic evaluation of

summaries in a quantitative way have, so that we can outline a novel approach to measure

the quality of a summary to be developed in further research.

8.2 Determining sentence’s relevance in text

summarization

Although there has been increased attention to different criteria such as well-formedness,

cohesion or coherence when dealing with summarization most work in this NLP task is

still concerned with detecting relevant elements of text and presenting them together to

66

produce a final summary. As it has been previously mentioned, the first step in the

process of summarization consists of identifying the topic of a document. To achieve this,

the most common things systems do is to split the text into input units, usually sentences,

and give them a relevance score to decide on which ones are the most important. Criteria

such as sentence position within texts and cue phrase indicators , word and phrase

frequency, query and title overlap ,cohesive or lexical connectedness or discourse

structure are examples of how to account for the relevance of a sentence. Furthermore,

the use of a graph to obtain a representation of the text has proven effective, especially in

multi-document summarization .

In contrast to all this work, this paper suggests a novel approach for determining the

relevance of a sentence based on “The Code Quantity Principle" . This principle tries to

explain the relationship between syntax and information within a text. The first goal of

this chapter is to study whether this principle can be suitable or not as a criterion to select

relevant sentences to produce a summary. This idea will be explained in detail in the next

Section.

8.3 The code quantity principle within the text

summarization task

“The Code Quantity Principle" is a linguistic theory which states that: (1) a larger chunk

of information will be given a larger chunk of code; (2) less predictable information will

be given more coding material; and (3) more important information will be given more

coding material. In other words, the most important information within a text will contain

more lexical elements, and therefore it will be expressed by a high number of units (for

instance, syllables, words or phrases). Moreover, “The Code Quantity, Attention and

Memory Principle" states that the more salient and different coding information used

within a text, the more reader‘s attention will be caught. As a result, readers will retain,

keep and retrieve this kind of information more efficiently. There exists, then, a

proportional relation between the relevance of information and the amount of quantity

through it is coded. On the basis of this, a coding element can range from characters to

phrases. A noun-phrase is the syntactic structure which allows more flexibility in the

67

number of elements it can contain (pronouns, adjectives, or even relative clauses), and is

able to carry more or less information (words) according to the user‘s needs. Furthermore,

the longer a noun-phrase is, the more information it carries for its nucleus. For example, if

a text contained two distinct noun-phrases referring to the same entity (―the Academy of

Motion Pictures Arts and Sciences‖ and ―the Academy‖), the second one would lead to

ambiguities. Therefore, if a summary selected this noun-phrase without having previ-

ously given more specific information about the concept, the real meaning could be

misunderstood. Starting from these principles, the approach we suggest here is to study

how ―The Code Quantity Principle‖ can be applied in the summarization task, to decide

on which sentences of a document may contain more relevant in- formation through its

coding, and select these sentences to make up a summary. In this particular case, the lex-

ical units considered as encoding elements are words in- side a noun-phrase, without

taking into account stopwords. The hypothesis is that sentences containing longer noun-

phrases will be given a higher score so, at the end, the highest ranked sentences will be

chosen to appear in the final summary. To identify noun-phrases within a sentence the

BaseNP Chunker2, which was developed at the University of Pennsylvania, was used.

One important thing to take into consideration is that the use of a chunker (as well as any

other NLP tool) can introduce some error rate. This tool achieves recall and precision

rates of roughly 93% for base noun-phrase chunks, and 88% for more complex for base

noun-phrase chunks, and 88% for more complex chunks . For the experiments performed,

the score for a sentence was increased by one unit, each time a word belonged to a

sentence‘s noun-phrase.

8.4 Evaluating automatic summarization

Evaluating summaries, either manually or automatically, is a hard task. The main

difficulty in evaluation comes from the impossibility of building a fair gold-standard

against which the results of the systems can be compared . Furthermore, it is also very

hard to determine what a correct summary is, because there is always the possibility of a

system to generate a good summary that is quite different from any human summary used

as an approximation to the correct output. In Section 1, we mentioned the two approaches

that can be adopted to evaluate an automatic summary: instrinsic or extrinsic evaluation.

68

Instrinsic evaluation assesses mainly coherence and summary‘s information content,

whereas extrinsic methods focus on determining the effect of summarization on some

other task, for instance Question Answering.

8.5 The code quantity principle evaluation environment

For the approach we have suggested taking into consideration “The Code Quantity

Principle”, we have chosen an intrinsic evaluation because we are interested in measuring

the performance of the automatic summary by itself. To do this, we used the state-of-the-

art measure to evaluate summarization systems automatically, ROUGE . This metric

measures content overlap between two summaries (normally between a gold-standard and

an automatic summary), which means that the distance between two summaries can be

established as a function of their vocabulary (unigrams) and how this vocabulary is used

(n-grams).

In order to assess the performance of our novel approach based on “The Code Quantity

Principle” and show that it is suitable for Text Summarization, we evaluated the sum-

maries generated from the DUC 2002 data, consisting of 567 newswire documents. As a

preprocessing step, we converted the HTML files into plain text, and we kept only the

body of the news. In the DUC 2002 workshop
2
, there was a task whose aim was to

generate 100-word length sum maries. A set of human-made summaries written by

experts was also provided. We evaluated our summaries against the reference ones, and

we compared our results with the ones obtained by the systems in the real competition.

Moreover, the organisation developed a simple baseline which consisted of taking the

first 100 words of a document. In , the participating systems in DUC 2002 were evaluated

automatically with the ROUGE tool, and we set up the same settings
5
 for it, so that we

could make a proper comparison among all the systems.

69

8.6 Current difficulties in evaluating summaries

automatically

The most common way to evaluate the informativeness of automatic summaries is to

compare them with human- made model summaries. However, as content selection is not

a deterministic problem, different people would chose different sentences, and even, the

same person may chose different sentences at different times, showing evidence of low

agreement among humans as to which sentences are good summary sentences. Besides

the human variability, the semantic equivalence is another problem, because two distinct

sentences can express the same meaning but not using the same words. This phenomenon

is known as paraphrase. we can find an approach to automatically evaluating summaries

using paraphrases (ParaEval). Moreover, most summarization systems perform an

extractive approach, selecting and copying important sentences from the source

documents. Although humans can also cut and paste relevant information of a text, most

of the times they rephrase sentences when necessary, or they join dif- ferent related

information into one sentence .

 For years, the summarization community research has been actively seeking an automatic

evaluation methodology. Several methods have been proposed, and thanks to the

conferences carried out annually until 2007 within the DUC context6, some of these

methodologies, for instance, ROUGE or the Pyramid Method have been well adopted by

the researchers to evaluate summaries automatically. Although ROUGE is a recall-

oriented metric, the lat- est version (ROUGE-1.5.5) can compute precision and F-

measure, too. It is based on content overlap and the idea be- hind it is to assess the

number of common n-grams between two texts, with respect to different kinds of n-

grams, like unigrams, bigrams or the longest common subsequence. In order to address

some of the shortcomings of the comparison of fixed words n-grams, an evaluation

framework in which very small units of content were used, called Basic Elements (BE)

was developed .

70

The idea underlying the Pryamid method is to identify information with the same

meaning across different human-authored summaries, which are tagged as Summary

Content Units (SCU) in order to derive a gold-standard for the evaluation. Each SCU will

have a weight depending on the number of summarizers who expressed the same infor-

mation, and these weights will follow a specific distribution, allowing important content

to be differentiated from less important one. The main disadvantages of this method are

(1) the need to have several human-made summaries, and the labourious task to annotate

all the SCU. An at- tempt to automate the annotation of the SCUs in the pyramids can be

found in. In the former, Relative Utility (RU) is proposed as a metric to evaluate

summaries, where multiple judges rank each sentence in the input with a score, giving

them a value which ranged from 0 to 10, with respect to its suitability for inclusion in a

summary. Highly ranked sentences would be very suitable for a summary, whereas low

ranked ones should not be incuded. Like the commonly used information retrieval metric

of precision and recall, it compares sentence selection between automatic and reference

summaries. The latter have developed an evaluation framework, called QARLA, which

provides three types of measures for the evaluation under the assumption that the best

similarity metric should be the one that best discriminates between manual and

automatically generated summaries. These measures are: (1) a measure to evaluate the

quality of any set of similarity metrics, (2) a measure to evaluate the quality of a summary

using an optimal set of similarity metrics, and (3) a measure to evaluate whether the set of

baseline summaries is reliable or may produce biased results.

Despite the fact that many approaches have been developed, some important aspects of

summaries, such as legibility, grammaticality, responsiveness or well-formedness are still

evaluated manually by experts. For instance, DUC assessors had a list of linguistic

qualitity questions7, and they manually assigned a mark to automatic summaries de-

pending on what extent they accomplished each of these criteria.

71

8.7 Evaluating summaries qualitatively

The main drawback of the evaluation systems existing so far is that we need at least one

reference summary, and for some methods more than one, to be able to compare

automatic summaries with models. This is a hard and expensive task. Much effort has to

be done in order to have corpus of texts and their corresponding summaries. Fur-

thermore, for some methods presented in the previous Secion, not only do we need to

have human-made summaries available for comparison, but also manual annotation has to

be performed in some of them (e.g. SCU in the Pyramid Method). In any case, what the

evaluation methods need as an input, is a set of summaries to serve as gold-standards and

a set of automatic summaries. Moreover, they all perform a quantitative evaluation with

regard to different similarity metrics. To overcome these problems, we think that the

quantitative evaluation might not be the only way to evaluate summaries, and a qualitative

automatic evaluation would be also important. Therefore, the second aim of this paper is

to suggest a novel proposal for evaluating automatically the quality of a summary in a

qualitative manner rather than in a quantitative one. Our evaluation approach is a

preliminary approach which has to be studied more deeply, and developed in the future.

Its main underlying idea is to define several quality criteria and check how a generated

summary tackles each of these, in such a way that a reference model would not be

necessary anymore, taking only into consideration the automatic summary and the

original source. Once performed, it could be used together with any other automatic

methodology to measure summary‘s informativeness.

72

 APPLICATIONS

Other than presenting information in summarized form there can be various applications

in which this system can be used. The applications of a multi document summarizer are:

a) It can be used as a news portal and can help to present articles from different sources.

b) Corporate emails or emails in general can be organized by subjects with relevant and

most important information.

c) It can help to obtain precise information which is represented as charts or graphs along

with related text.

d) It can be used to generate medical reports for patients.

 e) Aggregating social media data.

73

 CONCLUSION AND FUTURE WORK

This report is concentrating on extractive summarization methods. An extractive

summary is selection of important sentences from the original text. The importance of

sentences is decided based on statistical and linguistic features of sentences.

Many variations of the extractive approach have been tried in the last ten years. However,

it is hard to say how much greater interpretive sophistication, at sentence or text level,

contributes to performance. Without the use of NLP, the generated summary may suffer

from lack of cohesion and semantics. If texts containing multiple topics, the generated

summary might not be balanced. Deciding proper weights of individual features is very

important as quality of final summary is depending on it. We should devote more time in

deciding feature weights.

The biggest challenge for text summarization is to summarize content from a number of

textual and semi structured sources, including databases and web pages, in the right way

(language, format, size, time) for a specific user. The text summarization software should

produce the effective summary in less time and with least redundancy. Summaries can be

evaluated using intrinsic or extrinsic measures. While intrinsic methods attempt to

measure summary quality using human evaluation and extrinsic methods measure the

same through a task based performance measure such the information retrieval- oriented

task.

74

 REFERENCES

1. A. Turpin, Y. Tsegay, D. Hawking, and H. E. Williams, ―Fast generation of Advances

in Automatic Text Summarization, pp. 1–12, MIT Press, 1998.

2. Ani Nenkova and Kathleen McKeown, ―Automatic Summarization‖,in Information

,Vol. 5, Nos. 2,103–233,2011

3. Fang Chen, Kesong Han and Guilin Chen, ―An Approach to sentence selection based

text summarization" Proceedings of IEEE TENCON02, 489-493, 2002.

4. H. P. Luhn, ―The Automatic Creation of Literature Abstracts‖, Presented at IRE

National Convention, New York, 159-165, 1958.

5. http://en.wikipedia.org/wiki/Automatic_summarization

6. J. Kupiec, J. Pedersen, and F. Chen, ―A trainable document summarizer‖, In

Proceedings of the 18th ACM- SIGIR Conference, pages 68-73, 1995

7. Joel Larocca Neto, Alex A. Freitas and Celso A. A. Kaestner,‖ Automatic Text

Summarization using a Machine Learning Approach‖

8. K. Sparck Jones, ―Automatic summarizing: factors and directions,‖ in Knowledge

Management, 2006.

9. Mani, I.; Bloedorn, E. Machine Learning of Generic and User-Focused Summarization.

In Proceedings of the Fifteenth National Conference on AI (AAAI-98) (1998) 821-826

10. Nevill-Manning, C. G. ; Witten, I. H. Paynter, G. W. et al. KEA: Practical

Automatic Keyphrase Extraction. ACM DL 1999 (1999) 254-255

11. R. Varadarajan and V. Hristidis, ―A system for query-specific document result

snippets in web search,‖ in Proceedings of the Annual International

12. Ronald Brandow, Karl Mitze, and Lisa F. Rau. ,―Automatic condensation of

electronic publications by sentence selection. Information Processing and

Management‖, 31(5):675-685,1995.summarization,‖ in Proceedings of the ACM

Conference on Information

13. Rada Mihalcea and Paul Tarau ,― TextRank : Bringing Order into Texts ‖,Presented

at Conference on Empirical Methods in Natural Language Processing,2011

14. Vishal Gupta and Gurpreet Singh Lehal ,―A Survey of Text Summarization

Extractive Techniques‖,Presented at Journal Of Emerging Technologies In Web

Intelligence,Vol. 2,No. 3,August 2010

http://en.wikipedia.org/wiki/Automatic_summarization

75

76

77

	bookmark6
	bookmark7
	bookmark8
	bookmark9
	bookmark10
	bookmark11
	bookmark12
	bookmark4
	Exp611
	Exp633
	Exp634
	Exp635
	bookmark1
	bookmark2
	bookmark3
	bookmark5

