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ABSTRACT 
 

Big Data at its core is simply a way of describing problems which are not solvable 

using traditional tools. Big Data is defined by its three Vs i.e. Volume, Velocity and 

Variety. This Big Data coming from wide variety of source can help make 

transnational decisions, and to be able to make these decisions on data of any scale it 

is important to access the right kind of tools. Apache Hadoop is such a framework 

designed to store, process and manage such a form of data accross cluster of 

computers. It is 100% open source, and pioneered a fundamentally new way of 

storing and processing data. Instead of relying on expensive, proprietary hardware and 

different systems to store and process data, Hadoop enables distributed parallel 

processing of huge amounts of data across inexpensive, industry-standard servers that 

both store and process the data, and can scale without limits. With Hadoop, no data is 

too big. At its core, Apache Hadoop is a framework for storing data on large clusters 

of commodity hardware— everyday computer hardware that is affordable and easily 

available— and running applications against that data. A cluster is a group of 

interconnected computers (known as nodes) that can work together on the same 

problem. Using networks of affordable compute resources to acquire business insight 

is the key value proposition of Hadoop. But of course, the business model is generally 

spilt across various dimensions, and each dimension may have their own Hadoop 

Clusrer, which means deploying different storage for each of the different cluster of 

which some data can be same in different cluster also if there is a need of merging of 

two dimensions for some analysis it is required to load the combined data into a new 

cluster which is again a time consuming and expensive task. This is where OpenStack 

Swift container comes into picture, Swift provides a Object storage which allows to 

store files or objects. Swift architectures is build in such a way that can be used 

directly with Hadoop clusters, which allows it provides a 'centralized' storage, which 

can be accessed by any cluster directly and any cluster can use it to store the data, also 

projects like pig, hive that are used with Hadoop can also access the Swift storage 

directly so as to process the data, hence removing the need of storing redundant data 

and help encouraging innovations because of its low cost and low complexity. Both 

Apache Hadoop and OpenStack Swift represent open source projects, Swift servers as 
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an excellent storage use-case for Hadoop, which can be remarkably used to process 

Big Data in a more efficient scalable way.  

 

KEYWORDS: 

Big Data, Apache Hadoop, Cluster, Nodes, Jobs, Trackers, OpenStack Swift 

Container,Objects.
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WHY DO WE NEED THIS ? 
 

The most commonly used storage systems in the enterprise data center today are 

filesystem storage and block level storage. Filesystem storage is typically deployed as 

Network Attached Storage (NAS) systems and used for storing and sharing files over 

a network. Block storage is typically deployed as Storage Area Network (SAN) 

systems and appears to an operating system like locally attached drives, which is 

required for running things like databases. For the applications your developers are 

writing today, this storage model has several drawbacks which, according to the 

industry analyst firm Gartner, includes: 

 It doesn’t efficiently scale to support new workloads 

 It's bogged down by operational overhead 

 It's difficult to match storage to application requirements 

 It's time-consuming to adjust to workload changes and migrations 

 It's manually managed, or at best semi-automated 

These drawbacks become increasingly important as the rapid growth of unstructured 

data that many, if not most, enterprises are experiencing today continues. Nearly 

every industry is storing and serving more data at higher fidelity to an increasing 

number applications and users. 

Hence today’s view of the ‘future’ of computing revolves around data storage and 

elastic, distributed platforms. Cloud computing has good manageability and resource 

utilization. This makes tend to move services to clouds: use public or build private 

ones. There are some platforms for building private clouds: Cloudstack, Openstack, 

Eucalyptus, VMware. Despite private clouds benefit there are problems with 

compatibility with existing systems. This imposes restrictions is use. The main idea 

was to make compatibility with Openstack Swift and most popular distributed 

computation framework - Hadoop. 

 

Hadoop 

Hadoop supports main storages such as Amazon S3, Kosmos, Hadoop Archive 

Filesystem. Hadoop can run MapReduce programs over that storages, integration is 

fully compatible. But there are variety of other storages that Hadoop doesn't support. 
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Developers can write a driver to support custom FS, but some features, for instance 

Hadoop data locality, will be missing. This causes network, CPU or memory 

overhead. 

Swift 

Swift is cloud storage developing by Openstack community. Swift is Amazon S3 

analogue: both systems have accounts, accounts contain buckets (containers in Swift), 

buckets (containers) contain objects. Objects are real files of any kind. For data 

processing in S3 Amazon offers Elastic MapReduce service, Swift doesn't have such 

compatibility, and it servers as an excellent use-case for centralizing the data storage 

and reduces the network, CPU or memory overheads. Hence, merging two technology 

gives an edge answering the needs of 'future' computing. 
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1. INTODUCTION & OBJECTIVES OF 

PROJECT 

 

1.1 Introduction to System 

 This Hadoop tool will help anyone to setup Hadoop cluster and use it. 

 It uses an open source Hadoop framework which allows user to tailor it as per 

its needs and requirements. 

 Tool has one interface to control and manage the entire network of nodes and 

perform all the functions. 

 

1.2 Scope of System 

Cost: 

The cost required in making the tool is not very high. It includes costs of one 

system having quad core processor, 8GB RAM and Linux operating system.  

 

Effort: 

Most of the effort is involved in coding and designing part which included coding 

the servers and cluster and MapReduce coding and attaching the HDFS to Swift 

container of OpenStack Cloud. 

 

Time: 

The required in making this tool was around 4 months and most of the time will 

be consumed in testing the tool based on the bandwidth of Local Area Network. 

 

1.3 Objectives 

The main objective of the tool is to automate the process of cluster setup and 

management. We aim to create a tool that will ask for client preferences and then will 
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setup up Hadoop Distributed File System consisting of namenode and datanodes, 

which will use Swift Container of OpenStack Cloud for storage purpose. The tool will 

also setup Map Reduce framework consisting of jobtrackers and tasktrackers, that will 

again use space from Swift Container. The client can store data into Hadoop Cluster 

using the tool itself and can also carry out Hadoop jobs using the tool.  
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2. Tools / Platform / Language 

 

Selection of right tools obviously improves the process of system development & 

quality of results. The central benefit of using proper tools is the ability to organize 

system information. Tools provide an efficient environment for creation, storage, 

manipulation, management & documentation of system. 

 

2.1 Hardware Requirements 

Client: 

 RAM :- 1 GB 

 PROCESSOR :- At least two 2 GHz and above processors 

 STORAGE :- 3 GB 

Cluster: 

 Systems:- min 4 systems 

 RAM:- 4GB on each system 

 STORAGE:- 1TB on each system 

 

2.2 Software Requirements 

 Operating system: 

RedHat Enterprise Linux Server Edition or Ubuntu system 

 

 Platform: 

 Front end : Graphical User Interface using shell scripting or Web Based 

user interface using Python CGI. 

 Back end : Python scripting, SQL. 
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3. Design and Implementation 

Apache Hadoop is an industry standard and widely adopted MapReduce implementat-

ion. As aim of the project is to enable users to easily provision and manage Hadoop 

clusters on OpenStack. It is worth mentioning that Amazon provides Hadoop for 

several years as Amazon Elastic MapReduce ( EMR) service, which serves as the 

inspiration of this project. 

Hadoop helps in storing data over a distributed network where data files of huge size 

is divided into large number of blocks and these bocks are stored on swift container. 

Hadoop MapReduce is used to process these blocks of data in parallel. Python 

scripting is language which has been used to make this tool along with HTML & CSS 

and makes use of this graphical user interface to interact with user. The workflow and 

design of the tool goes like this : 

 

Scanning of the network: 

The user selects the Setup  option from the drop down menu form the menu bar, script 

then scans the entire network to check for the available alive system in the network 

that can be either established as a namenode or a datanode. After completely scanning 

the entire network the script returns a list ip address of the available system in the 

network on which the namenode or datanode can be established, this list of ip 

User logs in and 

select setup 

option from the 

menu bar to 

setup Hadoop v1 

cluster 

The script 

return a list 

of available 

systems. 

The script 

scans the 

network. 
 

Figure - 1 Scanning of the network 

 

Figure -  1 Scanning of the network 
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addresss is saved as a text file and also rendered on the browser's screen of the user's 

system. 

 

Checking system for memory, RAM and core processor: 

 

After rendering the list of ip on the screen, the user selects some ip from the list to get 

a full detail of the system. For each ip selected, the script login to the system via 

secure shell (ssh) to get detail about hard-disk, memory  and core-processor of the 

system and present it to the user via rendering it on the bowser's screen of the user's 

system. This information of the system selected by user, helps the user to decide on 

which system he/she should establish a node as either namenode or datanode on, this 

basically gives the overview of the selected system which user can use to select best 

possible system for establishing namenode or datanode from the network as per 

his/her requirements. 

 

Establishing node as namenode: 

The information about memory, RAM & cpu cores of selected system that is rendered 

on the screen is first used to establish a node as namenode. 

From the list user 

selects ip address  

to check for 

memory, RAM  

& core processor. 

Checking 

selected system 

for memory, 

RAM and core 

processor 

Script returns 

the 

output for the 

requested 

query. 

Figure - 2 Checking selected system for its system detail Figure -  2 Checking selected system for its system detail 



8 

 

The suitable system from the network is selected that user wants to act as namenode 

in his/her's Hadoop cluster. The user usually select one node from the network to act 

as namenode in the Hadoop cluster, as the cluster requires only one namenode for 

maintaining the metadata but user can select more than one if they want. Moreover, a 

node can be used to act as a substitute namenode which holds the same data as that of 

original namenode, if in case the original namenode gets corrupted by any reasons the 

data will not be lost completely, as then the substitute node will replace the original 

corrupted namenode, this basically ensures the integrity of the data.  

Selected nodes ip addresses are saved in a namenode list, which is used by script to 

install packages and configure Hadoop cluster. This list will contain the list of ip 

addresses of the namenode in the Hadoop cluster. Following are the steps to configure 

a node from the network to act as namenode. 

 

 

Figure -  3 Establishing node as namenode. 

 

 

i) Installing necessary packages on the selected system: 

 

The first step to establish a node as namenode is to install Hadoop and jdk ( Java 

Development Toolkit version 1.7.0_51) packages on that node. A Hadoop package is 

required as it is essential element in deploying the Hadoop cluster, it contains 

necessary modules and jdk required as it provides necessary environment for 

deploying Hadoop cluster, as Hadoop is written in java and it requires jdk7 and later 

version of jdk6. The namenode list that contains the ip addresses of the namenode are 

Establishing 

namenode 

Selects the 

suitable node 

to act as 

namenode. 

Namenode 

established 
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used by the python script in accessing the system via ssh and installing the packages 

on the listed systems.  

The storage requirements of the Hadoop Cluster can be fullfilled by either assigning a 

local partition of Hard Disk of the HDFS nodes (namenode and datanode) to the 

Cluster or by using the Swift Object storage of the OpenStack.  

 

ii) 

 Partioning for allocating space: 

Hadoop cluster have a distributive file system and the file system require space in 

order to store and process Big data. The storage location can be either a part of the 

local system where the user is establishing the node or we can use Swift container as 

storage location  for HDFS and for running the jobs. 

 

Similarly, a node can be established as datanode through same series of steps using 

python script, user can select one or more nodes to act as a datanode in the cluster as 

per his/her requirements. Like a namenode list, a datanode list is created by the scrip 

that contains the ip addresses of all the datanodes, which is further used by script in 

installing packages, allocating storage and configuring clusters. 

 

Swift for allocating space: 

To use OpenStack Swift Containter it is important that the OpenStack Swift is either 

installed on the namenode or on all the HDFS nodes (namenode or datanode) or it can 

be implemented on different set of network and used in HDFS through a  web API. 

A number of ways can be used to install the OpenStack swift, the one used to support 

the project is via packstack: 

1. Installing openstack kernel for the system which will be used as the host for the 

installation. Appropriate package can be downloaded into the system and installed via 

yum. 

[root@serverX ~]# yum install kernel*openstack* 

 

2. Installing openstack-packstack, which is a utility tool to quickly deploy Red Hat 

OpenStack either interactively or non-interactively by creating and using an answer 
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file that can be tuned. (Before installing it is important to check the kernel is 

openstack kernel, this is done by using command uname -r). 

 

[root@serverX ~]# yum install -y openstack-packstack  

 

3. After installing the packstack utility tool, generate the answer file and modify it to 

install only the necessary modules. For the project, Swift holds a prime importance, 

the parameters relating to the Swift can tuned via answer file. 

 

[root@serverX ~]# packstack --gen-answer-file=a.txt  

 

This a.txt file is used for installing OpenStack on to a system or systems via puppet 

module. 

 

Figure -  4  Answer file generated by packstack to install OpenStack packages. 

 

The user can install different packages as per the requirement by just mentioning 'y' in 

front of the specific variable. 
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For the project Swift prameters like config_proxy_server, config_storage_server, 

config_replication, etc can be tuned by providing, the ip addresses of the system on 

which the proxy server and storage server will be deployed against the specific 

parameter in the answer file. 

 

4. After tuning the all the necessary parameters, the answer file is used to install the 

various packages on the system whose ip addresses are included in the answer file. 

 

[root@serverX ~]# packstack --answer-file=a.txt  

  

 

 

Figure -  5 Installing OpenStack packages via puppet module. 

 

The installation will take few minutes, after which Swift can be accessed via a Web 

API  (through a dashboard), or via command line python swift-client. 

To use this with Hadoop, following code is added to core-site.xml : 

<property> 

<name>fs.swift.impl</name> 

<value>org.apache.hadoop.fs.swift.snative.SwiftNativeFileSystem</valu

e> 

</property> 
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Configuring the cluster:  

 

After completing the task of establishing nodes as  namenode and datanode on the 

network and for the Hadoop cluster, the script configures the cluster so as to make 

each node aware of the namenode of the cluster, this is done by configuring the core-

site.xml configuration file on every node on the network that are established as 

namenode and datanode. 

 

        Python script 

Server system                                       

 

 

The script locally generates the configuration files using the namenode list and then 

copy it to the other nodes, as the core-site.xml file will contain the same content i.e. it 

defines the namenode of the cluster which is same for every node.  

 

Copying the 

configuration 

files through 

python script via 

ssh 

Copying the 

configuration 

files through 

python script via 

ssh 

cluster nodes 

 

 

Figure -  6 Copying configuration files from server system to nodes to 

configure the Hadoop cluster 
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Figure -  7 Configuration file : core-site.xml 

 

This configuration file 'core-site.xml' defines the file system's default namenode, 

which other datanodes will communicate in order to get instructions and to send 

heartbeats ( signal the namenode that the respected datanode who sent the signal is 

alive ). The script copy this file to each and every node via secure copy (scp) after 

generating it locally. 

 

Other important file for configurating cluster is hdfs-site.xml which defines the 

storage location for every node and it is different for every node as every node 

advertise different storage location which is either local to it or it uses a swift 

container. 

The scripts generated this file locally as well for each and every node and copy it via 

secure copy (scp) to every node. 
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Figure -  8 Configuration file : hdfs-site.xml, for local storage location on namenode. 

 

 

 

Figure -  9 Configuration file : hdfs-site.xml, for local storage location on datanode. 
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These file defines the distributive file system's name and data nodes directory or 

storage location. Apart from these two file one more file needs to be edited in every 

node is .bashrc  or .bash_profile, which defines the java home and path for specific 

user environments necessary to run daemons on the node. 

 

 

 

Figure -  10 .bash_profile : define the path and java home. 

 

This file is again generated locally by the script and the script copies it to other nodes 

via secure copy (scp)  

 

After completing these tasks the cluster is completely configured to store huge files or 

the Big data through namenode. 

 

Establishing and configuring MapReduce Framework: 

In a similar fashion the Job Tracker and Task Tracker are established in the cluster for 

processing purposes, the script first scans the network returns the available nodes that 

user can establish as Job Tracker and Task Tracker, it then checks the selected nodes 

and returns the list of nodes with their RAM, Hard disk, CPU processors, the user 

makes a selection from the list. 
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After this the configuration file i.e. mapred-site.xml is transferred to each of the node 

for the configuration of Job Tracker and Task Tracker. 

 

 

 

Figure -  11 Configuration file : mapred-site.xml, to define the job tracker. 

 

After the configuration process, the script can be used to start task trackers and job 

trackers, and can be used to run job on the data present on the local disk of the nodes 

or in the OpenStack Swift Container.  

Projects like Hive and Pig can be used with Hadoop to run the job and to process the 

variety and volumes of data. 
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4. Detailed Description of Technology used 

4.1 Apache Hadoop 

 

Apache Hadoop is a registered trademark of the Apache Software Foundation. 

The Apache™ Hadoop® project develops open-source software for reliable, scalable, 

distributed computing. 

The Apache Hadoop software library is a framework that allows for the distributed 

processing of large data sets across clusters of computers using simple programming 

models. It is designed to scale up from single servers to thousands of machines, each 

offering local computation and storage. Rather than rely on hardware to deliver high-

availability, the library itself is designed to detect and handle failures at the 

application layer, so delivering a highly-available service on top of a cluster of 

computers, each of which may be prone to failures. 

The project includes these modules: 

 Hadoop Common: The common utilities that support the other Hadoop modules. 

 Hadoop Distributed File System (HDFS™): A distributed file system that provides 

high-throughput access to application data. 

 Hadoop YARN: A framework for job scheduling and cluster resource management. 

 Hadoop MapReduce: A YARN-based system for parallel processing of large data 

sets. 

 

Figure -  12 

http://en.wikipedia.org/wiki/Apache_Software_Foundation
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Out of these components two of them are main components, which are: a distributed 

processing framework named MapReduce (which is now supported by a component 

called YARN (Yet Another Resource Negotiator), which we describe a little later) and 

a distributed file system known as the Hadoop Distributed File System, or HDFS. An 

application that is running on Hadoop gets its work divided among the nodes 

(machines) in the cluster, and HDFS stores the data that will be processed. A Hadoop 

cluster can span thousands of machines, where HDFS stores data, and MapReduce 

jobs do their processing near the data, which keeps I/O costs low. 

YARN stands for "Yet Another Resource Negotiator" and was added later as part of 

Hadoop 2.0. YARN takes the resource management capabilities that were in 

MapReduce and packages them so they can be used by new engines. This also 

streamlines MapReduce to do what it does best, process data. With YARN, you can 

now run multiple applications in Hadoop, all sharing a common resource 

management. As of September, 2014, YARN manages only CPU (number of cores) 

and memory, but management of other resources such as disk, network and GPU is 

planned for the future.  

For the end-users, though MapReduce Java code is common, any programming 

language can be used with "Hadoop Streaming" to implement the "map" and "reduce" 

parts of the user's program. The Hadoop framework itself is mostly written in 

the Java programming language, with some native code in C and command line 

utilities written as shell-scripts. 

MapReduce is extremely flexible, and enables the development of a wide variety of 

applications. Apache Pig, Apache Hive, Apache Spark among other related projects 

expose higher level user interfaces like Pig Latin and a SQL variant respectively, 

which can be used in accordance with MapReduce and HDFS in order to get useful 

information from structured Big Data by running a job through MapReduce over this 

data which is stored in HDFS. The result of a job run in Hadoop may be used by an 

external system, may require further processing in a legacy system, or the processing 

requirements might not fit the MapReduce paradigm. Any one of these situations will 

require data to be exported from HDFS. One of the simplest ways to download data 

from HDFS is to use the Hadoop shell.  

http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Multi-core_processor
http://en.wikipedia.org/wiki/Random-access_memory
http://en.wikipedia.org/wiki/Hard_disk_drive
http://en.wikipedia.org/wiki/Computer_network
http://en.wikipedia.org/wiki/Graphics_processing_unit
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/Pig_(programming_tool)
http://en.wikipedia.org/wiki/Apache_Hive
http://en.wikipedia.org/wiki/Apache_Spark
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Sqoop is an Apache project that is part of the broader Hadoop ecosphere. In many 

ways Sqoop is similar to distcp (Moving data efficiently between clusters using 

Distributed Copy recipe). Both are built on top of MapReduce and take advantage of 

its parallelism and fault tolerance. Instead of moving data between clusters, Sqoop 

was designed to move data from and into relational databases using a JDBC driver to 

connect. Hadoop is a platform that provides both distributed storage and 

computational capabilities. Hadoop was first conceived to fix a scalability issue that 

existed in Nutch, an open source crawler and search engine. At the time Google had 

published papers that described its novel distributed file system, the Google File 

System (GFS), and Map-Reduce, a computational framework for parallel processing. 

The successful implementation of these papers’ concepts in Nutch resulted in its split 

into two separate projects, the second of which became Hadoop, a first-class Apache 

project. 

Looking at Hadoop from an architectural perspective, as shown in Figure 1.2, it is a 

distributed master-slave architectures, the master node consists of the namenode, 

secondary namenode, and jobtracker daemons (the so-called master daemons). In 

addition, this is the node from which you manage the cluster for the purposes of this 

demonstration (using the Hadoop utility and browser). The slave nodes consist of the 

tasktracker and the datanode (the slave daemons). The distinction of this setup is that 

the master node contains those daemons that provide management and coordination of 

the Hadoop cluster, where the slave node contains the daemons that implement the 

storage functions for the Hadoop file system (HDFS) and MapReduce functionality 

(the data processing function). 

 

Figure -  13 Hadoop master and slave node decomposition. 
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Looking at Hadoop Version 2 ecosystem , as shown in figure 14, it that consists of the 

Hadoop Distributed File System (HDFS) for storage and Map-Reduce for 

computational capabilities that forms the base of the Hadoop architecture. 

 

 
Figure -  14 Apache Hadoop 2.0 Ecosystem. 

 

 

Traits intrinsic to Hadoop are data partitioning and parallel computation of large 

datasets. Its storage and computational capabilities scale with the addition of hosts to 

a Hadoop cluster, and can reach volume sizes in the petabytes on clusters with 

thousands of hosts. 
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4.2 HDFS 

The Hadoop Distributed File System (HDFS) is a distributed file system designed to 

run on commodity hardware. It has many similarities with existing distributed file 

systems. However, the differences from other distributed file systems are significant. 

HDFS is highly fault-tolerant and is designed to be deployed on low-cost hardware. 

HDFS provides high throughput access to application data and is suitable for 

applications that have large data sets in other words HDFS was built to support high 

throughput, streaming reads and writes of extremely large files.. 

Traditional large storage area networks (SANs) and network attached storage (NAS) 

offer centralized, low-latency access to either a block device or a filesystem on the 

order of terabytes in size. These systems are fantastic as the backing store for 

relational databases, content delivery systems, and similar types of data storage needs 

because they can support full-featured POSIX semantics, scale to meet the size 

requirements of these systems, and offer low-latency access to data. 

Imagine for a second, though, hundreds or thousands of machines all waking up at the 

same time and pulling hundreds of terabytes of data from a centralized storage system 

at once. This is where traditional storage doesn’t necessarily scale. By creating a 

system composed of independent machines, each with its own I/O subsystem, disks, 

RAM, network interfaces, and CPUs, and relaxing (and sometimes removing) some of 

the POSIX requirements, it is possible to build a system optimized, in both 

performance and cost, for the specific type of workload we’re interested in. 

There are a number of specific goals for HDFS: 

• Store millions of large files, each greater than tens of gigabytes, and filesystem sizes 

reaching tens of petabytes. 

• Use a scale-out model based on inexpensive commodity servers with internal JBOD 

(“Just a bunch of disks”) rather than RAID to achieve large-scale storage. Accomplish 

availability and high throughput through application-level replication of data. 

• Optimize for large, streaming reads and writes rather than low-latency access to 

many small files. Batch performance is more important than interactive response 

times. 

• Gracefully deal with component failures of machines and disks. 

• Support the functionality and scale requirements of MapReduce processing. 
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While it is true that HDFS can be used independently of MapReduce to store large 

datasets, it truly shines when they’re used together. MapReduce, for instance, takes 

advantage of how the data in HDFS is split on ingestion into blocks and pushes 

computation to the machine where blocks can be read locally. 

 

Design 

 

HDFS, in many ways, follows traditional filesystem design. Files are stored as opaque 

blocks and metadata exists that keeps track of the filename to block mapping, 

directory tree structure, permissions, and so forth. This is similar to common Linux 

filesystems such as ext3. So what makes HDFS different? 

 

Traditional filesystems are implemented as kernel modules (in Linux, at least) and 

together with userland tools, can be mounted and made available to end users. HDFS 

is what’s called a userspace filesystem. This is a fancy way of saying that the 

filesystem code runs outside the kernel as OS processes and by extension, is not 

registered with or exposed via the Linux VFS layer. While this is much simpler, more 

flexible, and arguably safer to implement, it means that you don't mount HDFS as you 

would ext3, for instance, and that it requires applications to be explicitly built for it. In 

addition to being a userspace filesystem, HDFS is a distributed filesystem. Distributed 

filesystems are used to overcome the limits of what an individual disk or machine is 

capable of supporting. Each machine in a cluster stores a subset of the data that makes 

up the complete filesystem with the idea being that, as we need to store more block 

data, we simply add more machines, each with multiple disks. Filesystem metadata is 

stored on a centralized server, acting as a directory of block data and providing a 

global picture of the filesystem’s state. Another major difference between HDFS and 

other filesystems is its block size. It is common that general purpose filesystems use a 

4 KB or 8 KB block size for data. Hadoop, on the other hand, uses the significantly 

larger block size of 64 MB by default. In fact, cluster administrators usually raise this 

to 128 MB, 256 MB, or even as high as 1 GB. Increasing the block size means data 

will be written in larger contiguous chunks on disk, which in turn means data can be 

written and read in larger sequential operations. This minimizes drive seek 
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operations—one of the slowest operations a mechanical disk can perform—and 

results in better performance when doing large streaming I/O operations. 

Rather than rely on specialized storage subsystem data protection, HDFS replicates 

each block to multiple machines in the cluster. By default, each block in a file is 

replicated three times. Because files in HDFS are write once, once a replica is written, 

it is not possible for it to change. This obviates the need for complex reasoning about 

the consistency between replicas and as a result, applications can read any of the 

available replicas when accessing a file. Having multiple replicas means multiple 

machine failures are easily tolerated, but there are also more opportunities to read data 

from a machine closest to an application on the network. HDFS actively tracks and 

manages the number of available replicas of a block as well. Should the number of 

copies of a block drop below the configured replication factor, the filesystem 

automatically makes a new copy from one of the remaining replicas. Throughout this 

book, we’ll frequently use the term replica to mean a copy of an HDFS block. 

Applications, of course, don’t want to worry about blocks, metadata, disks, sectors, 

and other low-level details. Instead, developers want to perform I/O operations using 

higher level abstractions such as files and streams. HDFS presents the filesystem to 

developers as a high-level, POSIX-like API with familiar operations and concepts. 

 

HDFS Contains: 

 

 HDFS has master/slave architecture. An HDFS cluster consists of a single 

NameNode, a master server that manages the file system namespace and regulates 

access to files by clients. 

 In addition, there are a number of DataNodes, usually one per node in the cluster, 

which manage storage attached to the nodes that they run on.  

 HDFS exposes a file system namespace and allows user data to be stored in files. 

Internally, a file is split into one or more blocks and these blocks are stored in a 

set of DataNodes. 

 The NameNode executes file system namespace operations like opening, closing, 

and renaming files and directories. It also determines the mapping of blocks to 

DataNodes. 
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 The DataNodes are responsible for serving read and write requests from the file 

system’s clients. The DataNodes also perform block creation, deletion, and 

replication upon instruction from the NameNode. [1,2] 

 

 
 

Figure -  15 HDFS Architecture. 
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4.3 MAPREDUCE 

 

MapReduce refers to two distinct things: the programming model (covered here) and 

the specific implementation of the framework. Designed to simplify the development 

of large-scale, distributed, fault-tolerant data processing applications, MapReduce is 

foremost a way of writing applications. In MapReduce, developers write jobs that 

consist primarily of a map function and a reduce function, and the framework handles 

the gory details of parallelizing the work, scheduling parts of the job on worker 

machines, monitoring for and recovering from failures, and so forth. Developers are 

shielded from having to implement complex and repetitious code and instead, focus 

on algorithms and business logic. User-provided code is invoked by the framework 

rather than the other way around. This is much like Java application servers that 

invoke servlets upon receiving an HTTP request; the container is responsible for setup 

and teardown as well as providing a runtime environment for user-supplied code. 

Similarly, as servlet authors need not implement the low-level details of socket I/O, 

event handling loops, and complex thread coordination, MapReduce developers 

program to a well-defined, simple interface and the “container” does the heavy lifting. 

The idea of MapReduce was defined in a paper written by two Google engineers in 

2004, titled "MapReduce: Simplified Data Processing on Large Clusters" (J. Dean, S. 

Ghemawat). The paper describes both the programming model and (parts of) 

Google’s specific implementation of the framework. Hadoop MapReduce is an open 

source implementation of the model described in this paper and tracks the 

implementation closely. Specifically developed to deal with large-scale workloads, 

MapReduce provides the following features: 

 

Simplicity of development  

MapReduce is dead simple for developers: no socket programming, no threading or 

fancy synchronization logic, no management of retries, no special techniques to deal 

with enormous amounts of data. Developers use functional programming concepts to 

build data processing applications that operate on one record at a time. Map functions 

operate on these records and produce intermediate key-value pairs. The reduce 

function then operates on the intermediate key-value pairs, processing all values that 
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have the same key together and outputting the result. These primitives can be used to 

implement filtering, projection, grouping, aggregation, and other common data 

processing functions. 

 

Scale 

Since tasks do not communicate with one another explicitly and do not share state, 

they can execute in parallel and on separate machines. Additional machines can be 

added to the cluster and applications immediately take advantage of the additional  

hardware with no change at all. MapReduce is designed to be a share nothing system. 

 

Automatic parallelization and distribution of work 

 

Developers focus on the map and reduce functions that process individual records 

(where “record” is an abstract concept—it could be a line of a file or a row from a 

relational database) in a dataset. The storage of the dataset is not prescribed by 

MapReduce, although it is extremely common, as we’ll see later, that files on a 

distributed filesystem are an excellent pairing. The framework is responsible for 

splitting a MapReduce job into tasks. Tasks are then executed on worker nodes or 

(less pleasantly) slaves. 

 

Fault tolerance  

Failure is not an exception; it’s the norm. MapReduce treats failure as a first-class 

citizen and supports reexecution of failed tasks on healthy worker nodes in the cluster. 

Should a worker node fail, all tasks are assumed to be lost, in which case they are 

simply rescheduled elsewhere. The unit of work is always the task, and it either 

completes successfully or it fails completely. In MapReduce, users write a client 

application that submits one or more jobs that contain user-supplied map and reduce 

code and a job configuration file to a cluster of machines. The job contains a map 

function and a reduce function, along with job configuration information that controls 

various aspects of its execution. The framework handles breaking the job into tasks, 

scheduling tasks to run on machines, monitoring each task’s health, and performing 

any necessary retries of failed tasks. A job processes an input dataset specified by the 

user and usually outputs one as well. Commonly, the input and output datasets are one 
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or more files on a distributed filesystem. This is one of the ways in which Hadoop 

MapReduce and HDFS work together, but we’ll get into that later. 

The Stages of MapReduce 

A MapReduce job is made up of four distinct stages, executed in order: client job 

submission, map task execution, shuffle and sort, and reduce task execution.  

 

 "Map" step: Each worker node applies the "map()" function to the local data, and 

writes the output to a temporary storage. A master node orchestrates that for 

redundant copies of input data, only one is processed. 

 "Shuffle" step: Worker nodes redistribute data based on the output keys 

(produced by the   map ( ) function), such that all data belonging to one key is 

located on the same worker node. 

 "Reduce" step: Worker nodes now process each group of output data, per key, in 

parallel. 

 

Client applications can really be any type of application the developer desires, from 

commandline tools to services. The MapReduce framework provides a set of APIs for 

submitting jobs and interacting with the cluster. The job itself is made up of code 

written by a developer against the MapReduce APIs and the configuration which 

specifies things such as the input and output datasets. As described earlier, the client 

application submits a job to the cluster using the framework APIs. A master process, 

called the jobtracker in Hadoop MapReduce, is responsible for accepting these 

submissions (more on the role of the jobtracker later). Job submission  occurs over the 

network, so clients may be running on one of the cluster nodes or not; it doesn’t 

matter. The framework gets to decide how to split the input dataset into chunks, or 

input splits, of data that can be processed in parallel. In Hadoop MapReduce, the 

component that does this is called an input format, and Hadoop comes with a small 

library of them for common file formats. The following steps implements the stages 

of executing a job. 

1. Prepare the Map() input – the "MapReduce system" designates Map processors, 

assigns the input key value K1 that each processor would work on, and provides 

that processor with all the input data associated with that key value. 
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2. Run the user-provided Map() code – Map() is run exactly once for each K1 key 

value, generating output organized by key values K2. 

 

 

 

Figure -  16 Classic Framework for job execution. 

 

3. "Shuffle" the Map output to the Reduce processors – the MapReduce system 

designates Reduce processors, assigns the K2 key value each processor should 

work on, and provides that processor with all the Map-generated data associated 

with that key value. 

4. Run the user-provided Reduce() code – Reduce() is run exactly once for 

each K2 key value produced by the Map step. 

5. Produce the final output – the MapReduce system collects all the Reduce output, 

and sorts it by K2 to produce the final outcome  [1,2] 
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4.4 OpenStack 

 

 
 

Figure -  17 Core components of OpenStack architecture. 

OpenStack began in 2010 as a joint project of Rackspace Hosting and NASA. 

Currently, it is managed by the OpenStack Foundation, a non-profit corporate entity 

established in September 2012 to promote OpenStack software and its community. 

More than 200 companies have joined the project, including Arista Networks, 

Avaya, Canonical, Cisco, Dell, EMC, Ericsson, GoDaddy, Huawei, IBM, Intel, Mella

nox, Mirantis and many more. 

 

Figure -  18 
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The long-term vision for OpenStack is to produce a ubiquitous open source cloud 

computing platform that meets the needs of public and private cloud providers 

regardless of size. OpenStack services control large pools of compute, storage, 

and networking resources throughout a data center. 

The technology behind OpenStack consists of a series of interrelated projects 

delivering various components for a cloud infrastructure solution that control pools of 

processing, storage, and networking resources throughout a data center. Each service 

provides an open API so that all of these resources can be managed through a 

dashboard that gives administrators control while empowering users to provision 

resources through a web interface, a command-line client, or software development 

kits that support the API. Many OpenStack APIs are extensible, meaning you can 

keep compatibility with a core set of calls while providing access to more resources 

and innovating through API extensions. The OpenStack project is a global 

collaboration of developers and cloud computing technologists. The project produces 

an open standard cloud computing platform for both public and private clouds. By 

focusing on ease of implementation, massive scalability, a variety of rich features, and 

tremendous extensibility, the project aims to deliver a practical and reliable cloud 

solution for all types of organizations. 

Architecture: 

 

Figure -  19 OpenStack Architecture 
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i) Horizon : web browser user interface for creating and managing instances. 

ii) Keystone : authentication and authorization framework. 

iii) OpenStack networking : network connectivity as a service. 

iv) Cinder : persistent block storage for runtime instances. 

v) Nova : scheduler for networks of virtual machine running on the nodes. 

vi) Glance : registry for virtual machine images. 

vii) Swift : file storage and retrieval. 

viii) Ceilometer : metering engine for collecting billable meters. 

ix) Heat : orchestration service for template-based virtual machine deployments. 

SWIFT: 

Swift (object) is a service providing the service of Object storage which allows user to 

store and retrieve files. Swift architecture is distributive architecture to allow 

horizontal scaling and to provide redundancy as failure-proofing. Data replication is 

managed by software, allowing greater scalability and redundancy than dedicated 

hardware. Swift implements its own REST based APIs. Beside this it also implements 

a middleware which has support for Amazon S3 like APIs.  

Swift Characteristics 

 Swift is an object storage system that is part of the OpenStack project 

 Swift is open-source and freely available 

 Swift currently powers the largest object storage clouds, including Rackspace 

Cloud Files, the HP Cloud, IBM Softlayer Cloud and countless private object 

storage clusters 

 Swift can be used as a stand-alone storage system or as part of a cloud compute 

environment. 
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 Swift runs on standard Linux distributions and on standard x86 server hardware 

 Swift—like Amazon S3—has an eventual consistency architecture, which make 

it ideal for building massive, highly distributed infrastructures with lots of 

unstructured data serving global sites. 

 All objects (data) stored in Swift have a URL 

 Applications store and retrieve data in Swift via an industry-standard RESTful 

HTTP API 

 Objects can have extensive metadata, which can be indexed and searched 

 All objects are stored with multiple copies and are replicated in as-unique-as-

possible availability zones and/or regions 

 Swift is scaled by adding additional nodes, which allows for a cost-effective 

linear storage expansion 

 When adding or replacing hardware, data does not have to be migrated to a new 

storage system, i.e. there are no fork-lift upgrades 

 Failed nodes and drives can be swapped out while the cluster is running with no 

downtime. New nodes and drives can be added the same way. 

Swift is a highly available, distributed, eventually consistent object/blob store. 

Organizations can use Swift to store lots of data efficiently, safely, and cheaply. 

Swift can be accessed with HTTP requests directly to the API or by using one of the 

many Swift client libraries such as Java, Python, Ruby, or JavaScript. This makes it 

ideal as a primary storage system for data that needs to be stored and accessed via 

web based clients, devices and applications. 

Swift is commonly used with other cloud computing frameworks and as a stand-alone 

storage system. Swift’s open design also enables it to be integrated with enterprise 

authentication system and IT management tools. Swift’s increasing adoption is 

reflected by how many of the most popular backup and content management 

applications now support Swift’s HTTP API. 
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SWIFT ARCHITECTURAL OVERVIEW 

 

A Swift cluster is the distributed storage system used for object storage. It is a 

collection of machines that are running Swift’s server processes and consistency 

services. Each machine running one or more Swift’s processes and services is called a 

node. 

 

 
 

Figure -  20 Swift Architecture 

Fig. 20  summarizes the architecture of SWIFT. The Proxy Node acts as a gateway and 

services request of each user. Auth Node acts as a Authentication Verifier and authenticity of 

each user is checked. Storage Nodes are the data stores. Swift has the concept of Containers, 

similar to Buckets in S3. A container is a storage compartment for your data and provides a 

way for you to organize your data. An object is the basic storage entity and any optional 

metadata that represents the files you store in the OpenStack Object Storage system. The 

currently supported API binding for OpenStack Object Storage are: PHP, Python, Java, 

C#/.NET and Ruby. 

The four Swift server processes are proxy, account, container and object. When a 

node has only the proxy server process running it is called a proxy node. Nodes 

running one or more of the other server processes (account, container, or object) will 

often be called a storage node. Storage nodes contain the data that incoming requests 

wish to affect, e.g. A PUT request for an object would go to the appropriate nodes 
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running the object server processes. Storage nodes will also have a number of other 

services running on them to maintain data consistency. 

 

When talking about the same server processes running on the nodes in a cluster we 

call it the server process layer. e.g., proxy layer, account layer, container layer or 

object layer. 

Let’s look a little more closely at the server process layers. 

 

Server Process Layers 

Proxy Layer 

 

The Proxy Server is responsible for tying together the rest of the Swift architecture, as 

they are the only ones that communicate with external clients due to which they are 

the first and last to handle an API request. All requests to and responses from the 

proxy use standard HTTP verbs and response codes. 

For each request, it will look up the location of the account, container, or object in the 

ring and route the request accordingly. For Erasure Code type policies, the Proxy 

Figure -  21 Swift Storage node 
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Server is also responsible for encoding and decoding object data. The public API is 

also exposed through the Proxy Server. 

Proxy servers use a shared-nothing architecture and can be scaled as needed based on 

projected workloads. A minimum of two proxy servers should be deployed for 

redundancy. Should one proxy server fail, the others will take over. 

A large number of failures are also handled in the Proxy Server. For example, if a 

valid request is sent to Swift then the proxy server will verify the request, determine 

the correct storage nodes responsible for the data (based on a hash of the object name) 

and send the request to those servers concurrently. If one of the primary storage nodes 

is unavailable, the proxy will choose an appropriate hand-off node to send the request 

to. The nodes will return a response and the proxy will in turn return the first response 

(and data if it was requested) to the requester. 

The proxy server process looks up multiple locations while retrieving data or 

responding a request because Swift provides data durability by writing multiple–

typically three complete copies of the data and storing them in the system.(Number of 

replication can be controlled) 

 

Account Layer 

The account server process handles requests regarding metadata for the individual 

accounts or the list of the containers within each account. This information is stored 

by the account server process in SQLite databases on disk. 

Container Layer 

 

The Container Server’s primary job is to handle listings of objects. It doesn’t know 

where those object’s are, just what objects are in a specific container. The listings are 

stored as SQLite database files, and replicated across the cluster similar to how 

objects are. Also the Container server process handles requests regarding container 

metadata or the list of objects within each container.  

Object Layer 

The object server process is responsible for the actual storage of objects on the drives 

of its node, it is basically a very simple blob storage server that can store, retrieve and 

delete objects stored on local devices. Objects are stored as binary files on the 

filesystem with metadata stored in the file’s extended attributes (xattrs), which means 
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the data and metadata are stored together and copied as a single unit. This requires 

that the underlying filesystem choice for object servers support xattrs on files. Some 

filesystems, like ext3, have xattrs turned off by default. 

Each object is stored using a path derived from the object name’s hash and the 

operation’s timestamp. The timestamp is important as it allows the object server to 

store multiple versions of an object. Last write always wins, and ensures that the latest 

object version will be served. A deletion is also treated as a version of the file (a 0 

byte file ending with ”.ts”, which stands for tombstone). This ensures that deleted files 

are replicated correctly and older versions don’t magically reappear due to failure 

scenarios. 

 

Figure -  22 

Consistency Services 

A key aspect of Swift is that it acknowledges that failures happen and is built to work 

around them. When account, container or object server processes are running on node, 

it means that data is being stored there. That means consistency services will also be 

running on those nodes to ensure the integrity and availability of the data. 
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The two main consistency services are auditors and replicators. There are also a 

number of specialized services that run in support of individual server process, e.g., 

the account reaper that runs where account server processes are running. 

 

Auditors 

Auditors run in the background on every storage node in a Swift cluster and 

continually scan the disks to ensure that the data stored on disk has not suffered any 

bit-rot or file system corruption, and the integrity of the objects, containers, and 

accounts remains. There are account auditors, container auditors and object auditors 

which run to support their corresponding server process.If an error is found, the file is 

quarantined, that is the auditor moves the corrupted object to a quarantine area and 

replication will replace the bad file from another replica. If other errors are found they 

are logged (for example, an object’s listing can’t be found on any container server it 

should be). 

 

Replicators 

Replication is designed to keep the system in a consistent state in the face of 

temporary error conditions like network outages or drive failures. 

Account, container, and object replicator processes run in the background on all nodes 

that are running the corresponding services. The replication processes ensure they all 

contain the latest version by examine its local node and compare the accounts, 

containers, or objects against the copies on other nodes in the cluster. If one of other 

nodes has an old or missing copy, then the replicator will send a copy of its local data 

out to that node. 

Object replication uses a hash list to quickly compare subsections of each partition, 

and container and account replication use a combination of hashes and shared high 

water marks. 

Replication updates are push based ,they only push their local data out to other nodes; 

they do not pull in remote copies in if their local data is missing or out of date. 

For object replication, updating is just a matter of re-syncing files to the peer. Account 

and container replication push missing records over HTTP or re-sync whole database 

files. 
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The replicator also handles object and container deletions. Object deletion starts by 

creating a zero-byte tombstone file that is the latest version of the object. This version 

is then replicated to the other nodes and the object is removed from the entire system. 

Container deletion can only happen with an empty container. It will be marked as 

deleted and the replicators push this version out. 

 

Updater 

There are times when container or account data cannot be immediately updated. This 

usually occurs during failure scenarios or periods of high load. If an update fails, the 

updater then takes over and will process the failed updates. This is where an eventual 

consistency window will most likely come in to play. For example, suppose a 

container server is under load and a new object is put in to the system. The object will 

be immediately available for reads as soon as the proxy server responds to the client 

with success. However, the container server did not update the object listing, and so 

the update would be queued for a later update. Container listings, therefore, may not 

immediately contain the object. 

Swift have two updaters Container and Object Updaters : 

The container updater service runs to support accounts, it will update the container 

listings in the accounts and account metadata which contains object count, container 

count and bytes used. 

The object updater runs to support containers, but as a redundant service. The object 

server process is the primary updater. Only if it fails with an update attempt will the 

object updater take over and then update the object listing in the containers and 

container metadata i.e. the object count and bytes used. 

 

Account Reaper 

The Account Reaper removes data from deleted accounts in the background. When an 

the service makes its rounds on a node and finds an account marked as deleted, it 

starts stripping out all objects and containers associated with the account. With each 

pass it will continue to dismantle the account until it is emptied and removed. The 

reaper has a delay value that can be configured so the reaper will wait before it starts 

deleting data—this is used to guard against erroneous deletions. 
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Cluster Architecture 

 

Nodes 

A node is a machine that is running one or Swift processes. When there are multiple 

nodes running that provide all the processes needed for Swift to act as a distributed 

storage system they are considered to be a cluster. 

Within a cluster the nodes will also belong to two logical groups: regions and nodes. 

Regions and nodes are user-defined and identify unique characteristics about a 

collection of nodes-- usually geography location and points of failure, such as all the 

power running to one rack of nodes. These ensure Swift can place data across 

different parts of the cluster to reduce risk. 

 

Regions 

Regions are user-defined and usually indicate when parts of the cluster are physically 

separate --usually a geographical boundary. A cluster has a minimum of one region 

and there are many single region clusters as a result. A cluster that is using two or 

more regions is a multi-region cluster. 

When a read request is made, the proxy layer favors nearby copies of the data as 

measured by latency. When a write request is made the proxy layer, by default, writes 

to all the locations simultaneously. There is an option called write affinity that when 

enabled allows the cluster to write all copies locally and then transfer them 

asynchronously to the other regions. 

 

Zones 

Within regions, Swift allows allows availability zones to be configured to isolate 

failure boundaries. An availability zone should be defined by a distinct set of physical 

hardware whose failure would be isolated from other zones. In a large deployment, 

availability zones may be defined as unique facilities in a large data center campus. In 

a single datacenter deployment, the availability zones may be different racks. While 

there does need to be at least one zone in a cluster, it is far more common for a cluster 

to have many zones. 
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Figure -  23 Storage zones can be deployed across geographic regions. 

 

Rings 

Swift supports Distributed Hashed Table(DHTs) called Rings which represents a 

mapping between the names of entities stored on disk and their physical location. 

There are separate rings for accounts, containers, and one object ring per storage 

policy. When other components need to perform any operation on an object, 

container, or account, they need to interact with the appropriate ring to determine its 

location in the cluster.  

The Ring is used by the Proxy server and several background processes (like 

replication). It maintains this mapping using zones, devices, partitions (a partition is 

just a directory sitting on a disk with a corresponding hash table of what it contains) 

and replicas. Each partition in the ring is replicated, by default, 3 times across the 

cluster, and the locations for a partition are stored in the mapping maintained by the 

ring. The ring is also responsible for determining which devices are used for handoff 

in failure scenarios. The replicas of each partition will be isolated onto as many 

distinct regions, zones, servers and devices as the capacity of these failure domains 

allow.  

 



41 

 

Data is evenly distributed across the capacity available in the cluster as described by 

the devices weight. Weights can be used to balance the distribution of partitions on 

drives across the cluster. This can be useful, for example, when different sized drives 

are used in a cluster. Device weights can also be used when adding or removing 

capacity or failure domains to control how many partitions are reassigned during a 

rebalance to be moved as soon as replication bandwidth allows. 

When partitions need to be moved around (for example if a device is added to the 

cluster), the ring ensures that a minimum number of partitions are moved at a time, 

and only one replica of a partition is moved at a time. 
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5. User Tasks 

 
1. Login and Signup: To use this system login and sign-up is very essential. A 

user can log in and then generate a password for future use. 

2. Setup Cluster: Here the user needs to setup the cluster based on his/her 

policies including RAM, Storage, nodes and security. 

3. User Jobs: Here according to the selection of data by the user he/she will be 

guided through the type of queering the client wants to carry out. 

1. Sorting plans 

2. Word counts 
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CONCLUSION 

 

This Tool helps the users to manage Hadoop with the help of web interface. 

Connecting with other enthusiasts and exchanging suggestions with them help 

everyone to access the latest techniques and trends being followed. With the help of 

this tool the aim is to look forward to build up a world through the boon of Big Data 

Analytics using Hadoop and  OpenStack Swift. 
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APPENDIX  
 

 

PROJECT CODE 

 

i)Web GUI 

 
<html> 

 

<head> 

 <title>Hadoop Home</title> 

 <link rel="stylesheet" type="text/css" href="style.css" /> 

</head> 

 

<body > 

 

 <div class="wrapper"> 

 <img src="logo.jpg"> 

  

 <ul> 

 <li><a href="">Hadoop Home</a> 

 <div> 

  

<ul> 

 <li> <a href="">Configure Policy!</a></li> 

 <li> <a href="">Scan for customer</a></li> 

 <li> <a href="">Enter customer</a></li> 

  

</ul> 

 </div> 

 </li> 

  <li><a href="">Setup Hadoop version 1</a></li> 

  <li><a href="">Setup Hadoop version 2</a></li> 

  <li><a href="">MRv1</a></li> 

  <li><a href="">MRv2</a></li> 

 </ul>  

 </div> 

 

</body></html> 
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ii)Python script 

 

Scanning the system. 

 

#!/usr/bin/python2 

 

import commands 

 

print "content-type:text/html; charset=utf-8\r\n" 

 

print "<html>" 

print "<head>" 

print "<title>Scan output</title>" 

l=commands.getoutput('nmap  -v 192.168.20.0-255 -p 22 | grep open | 

grep Dis | cut -f6 -d" " ') 

 

 

#print commands.getoutput('chown -R apache:apache /var/www/cgi-

bin/files') 

#print commands.getoutput('chmod u+w /var/www/cgi-bin/files -R') 

 

f=open("/var/www/cgi-bin/files/iplist.txt", "w") 

f.write(l) 

f.close() 

 

 

fi=open("/var/www/cgi-bin/files/iplist.txt", "r") 

 

print "<h4>Select node</h4>" 

 

print "<form action='check.py' method='get'>" 

 

for i in fi: 

 print i+"\t <input type='checkbox' name='ip' value='%s' />" %i, 

 print "<br>" 

 

print "<input type='submit' value='Check' />" 

print "</form>" 

 



47 

 

fi.close() 

 

 

print "</body>" 

print "</html>" 

 

 

Checking the system 

 

#!/usr/bin/python2 

 

 

import commands 

import cgi, sys, time 

print "content-type:text/html\r\n" 

 

print "<html>" 

print "<head>" 

print "<title>Checking</title>" 

print "</head>" 

print "<body>" 

 

 

print "<h2>Summary</h2>" 

 

ip=cgi.FormContent()['ip'] 

 

 

print"<h4>Select a name node</h4>" 

 

print "<form action='nnode.py' method='get' >" 

for i in ip: 

 i=i.strip() 

 print "<input type='checkbox' name='node' value='%s' />" %i 

 print i 

 print "<br>" 

 print "Free RAM:"  
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 m=commands.getoutput("sudo sshpass -p redhat ssh -o 

StrictHostKeyChecking=no root@%s free -m | head -2 | grep Mem | awk 

'{print $4}'  " %i) 

 print m,"MB" 

 print  

 print "<br>" 

 

 print "Free HD:"  

 r=commands.getoutput("sudo sshpass -p redhat ssh -o 

StrictHostKeyChecking=no root@%s  df -hT | head -2 | grep / | awk 

'{print $5}'" %i) 

 t=commands.getoutput("sudo sshpass -p redhat ssh -o 

StrictHostKeyChecking=no root@%s df -hT | grep tmpfs | awk '{print 

$4}' " %i) 

  

 #r=int(r) 

 #t=int(t) 

 #r=r-(t/(1024*1024)) 

 print r 

 print "<br>" 

 

 print "CPU cores: " 

 c = commands.getoutput("sudo sshpass -p redhat ssh -o 

StrictHostKeyChecking=no root@%s cat /proc/cpuinfo | grep 'cpu core' 

| head -1 | awk '{print $4}'" %i) 

 print c 

 print "<br>" 

 

print "<input type='submit' value='Establish node' />" 

 

print "</body>" 

print "</html>" 
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Establishing the hdfs  nodes 

 

#!/usr/bin/python2 

 

import commands 

import cgi, sys, time 

print "content-type:text/html\r\n" 

 

print "<html>" 

print "<head>" 

print "<title>Establishing Namenode</title>" 

print "</head>" 

print "<body>" 

f=open("/var/www/cgi-bin/files/nnode.txt", "w") 

nn=cgi.FormContent()['node'] 

for i in nn: 

 i=i.strip() 

 

 ins=commands.getoutput("sudo sshpass -p redhat ssh -o 

StrictHostKeyChecking=no root@%s yum install hadoop -y " %i) 

  

 jdk=commands.getoutput("sudo sshpass -p redhat ssh -o 

StrictHostKeyChecking=no root@%s yum install jdk -y " %i) 

  

 print "<p>Hadoop and jdk is installed for name node </p>" 

 f.write(i + "\n") 

  

f.close() 

 

print "<form action='scan1.py' method='post'>" 

print "<input type='submit' value='Continue' />" 

 

print "</body>" 

print "</html>" 
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#!/usr/bin/python2 

 

import commands 

import cgi 

 

print "content-type:text/html; charset=utf-8\r\n" 

 

print "<html>" 

print "<head>" 

print "<title>Installing</title>" 

 

print"</head>" 

print "<body>" 

 

x=cgi.FormContent()['h'][0] 

 

dn=cgi.FormContent()['dn1'] 

 

fi=open("/var/www/cgi-bin/files/dnode.txt", "w") 

 

for ip in dn: 

 fi.write(ip+"\n") 

 

fi.close() 

 

fi=open("/var/www/cgi-bin/files/dnode.txt", "r") 

 

for i in fi: 

 i=i.strip() 

 print "<p>Installing hadoop</p>" 

 ins=commands.getoutput("sudo sshpass -p redhat ssh -o 

StrictHostKeyChecking=no root@%s yum install hadoop -y " %i) 

  

 print "<p>Hadoop is installed for "+i+" </p>"  

 jdk=commands.getoutput("sudo sshpass -p redhat ssh -o 

StrictHostKeyChecking=no root@%s yum install jdk -y " %i) 

 

 print "<p>JDK is installed for "+i+" </p>" 

 

fi.close 
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print "<form action='scpfile.py' method='post' >" 

print"<p>Click to continue with the Configuration process.</p>" 

print "<input type='submit' value='Continue' />" 

print "</form>" 

 

print "</body>" 

print "</html>" 

 

 

Partitioning the local disk for HDFS 

 

#!/usr/bin/python2 

 

 

import commands 

print "content-type:text/html\r\n" 

 

print "<html>" 

print "<head>" 

print "<title>Checking</title>" 

print "</head>" 

print "<body>" 

 

f=open("/var/www/cgi-bin/files/nnode.txt", "r") 

 

for i in f: 

 i=i.strip() 

 chk=0 

 m=commands.getoutput("sudo sshpass -p redhat ssh -o 

StrictHostKeyChecking=no root@%s parted /dev/sda print free | grep 

'Free Space' | grep GB " %i) 

 m=m.split() 

 s=m[0].split('G') 

 S=s[0] 

 S=int(S) 

 E=S+1 

 if E<m[1]: 

  S=str(S) 

  E=str(E) 
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  p=commands.getoutput("sudo sshpass -p redhat ssh -o 

StrictHostKeyChecking=no root@%s parted /dev/sda mkpartfs logical 

ext2 %sGB %sGB " %(i, S, E)) 

  commands.getoutput("sudo sshpass -p redhat ssh -o 

StrictHostKeyChecking=no root@%s partx -a /dev/sda" %i) 

  commands.getoutput("sudo sshpass -p redhat ssh -o 

StrictHostKeyChecking=no root@%s partx -a /dev/sda" %i) 

  commands.getoutput("sudo sshpass -p redhat ssh -o 

StrictHostKeyChecking=no root@%s partx -a /dev/sda" %i) 

  d=commands.getoutput("sudo sshpass -p redhat ssh -o 

StrictHostKeyChecking=no root@%s fdisk -cul /dev/sda | tail -1 | awk 

'{print $1}'" %i) 

  commands.getoutput("sudo sshpass -p redhat ssh -o 

StrictHostKeyChecking=no root@%s mkdir /media/name" %i) 

  commands.getoutput("sudo sshpass -p redhat ssh -o 

StrictHostKeyChecking=no root@%s mount %s /media/name" %(i,d)) 

  chk=1 

 

 if chk==1: 

  print "Partition created successfully" 

  print "<br>" 

 else: 

  print "Error" 

   

 

f.close() 

 

f=open("/var/www/cgi-bin/files/dnode.txt", "r") 

 

for i in f: 

 i=i.strip() 

 chk=0 

 print i 

 print "<input type='checkbox' name='node' value='%s' />" %i 

 l=commands.getoutput("sudo sshpass -p redhat ssh -o 

StrictHostKeyChecking=no root@%s parted /dev/sdb print free | grep 

'Free Space' | grep MB " %i) 

 l=l.split() 

 st=l[0].split('k') 

 St=st[0] 
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 St=int(St) 

 Ed=St+1782579 

 print Ed 

 if Ed<l[1]: 

  St=str(St) 

  Ed=str(Ed) 

  p=commands.getoutput("sudo sshpass -p redhat ssh -o 

StrictHostKeyChecking=no root@%s parted /dev/sdb mkpartfs logical 

ext2 %skB %skB Ignore " %(i,St,Ed)) 

  commands.getoutput("sudo sshpass -p redhat ssh -o 

StrictHostKeyChecking=no root@%s partx -a /dev/sdb" %i) 

  commands.getoutput("sudo sshpass -p redhat ssh -o 

StrictHostKeyChecking=no root@%s partx -a /dev/sdb" %i) 

  commands.getoutput("sudo sshpass -p redhat ssh -o 

StrictHostKeyChecking=no root@%s partx -a /dev/sdb" %i) 

  d=commands.getoutput("sudo sshpass -p redhat ssh -o 

StrictHostKeyChecking=no root@%s fdisk -cul /dev/sdb | tail -1 | awk 

'{print $1}'" %i) 

  commands.getoutput("sudo sshpass -p redhat ssh -o 

StrictHostKeyChecking=no root@%s mkdir /media/data" %i) 

  commands.getoutput("sudo sshpass -p redhat ssh -o 

StrictHostKeyChecking=no root@%s mount %s /media/data" %(i,d)) 

  chk=1 

 

 if chk==1: 

  print "Partition created successfully" 

  print "<br>" 

 else: 

  print "Error" 

f.close() 

 

print "<form action='hadoopinstall.py' method='post' >" 

print "<input type='submit' value='Continue' />" 

 

print "</body>" 

print "</html>" 
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Configuring the HDFS nodes 

 

#!/usr/bin/python2 

 

import commands 

import cgi, sys, time 

print "content-type:text/html\r\n" 

 

print "<html>" 

print "<head>" 

print "<title>Tranferring files</title>" 

print "</head>" 

print "<body>" 

 

f=open("/var/www/cgi-bin/files/nnode.txt", "r") 

 

for i in f: 

 i=i.strip() 

 print i 

f.close() 

 

f=open("/var/www/cgi-bin/files/core-site.xml", "a") 

f.write("<configuration>\n") 

f.write("<property>\n") 

f.write("<name>fs.default.name</name>\n") 

f.write("<value>hdfs://"+i+":10001</value>\n") 

f.write("</property>\n") 

f.write("</configuration>\n") 

f.close() 

 

f=open("/var/www/cgi-bin/files/nnode.txt", "r") 

 

for i in f: 

 i=i.strip() 

 commands.getstatusoutput("sudo sshpass -p redhat scp 

/var/www/cgi-bin/files/core-site.xml root@%s:/etc/hadoop/ " %i) 

 commands.getstatusoutput("sudo sshpass -p redhat scp 

/var/www/cgi-bin/files/hadoop-env.sh root@%s:/etc/hadoop/ " %i) 
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 commands.getstatusoutput("sudo sshpass -p redhat scp 

/var/www/cgi-bin/files/n/hdfs-site.xml root@%s:/etc/hadoop/ " %i) 

 commands.getstatusoutput("sudo sshpass -p redhat scp 

/root/.bash_profile root@%s:/root/ " %i) 

 commands.getstatusoutput("sudo sshpass -p redhat ssh -o 

StrictHostKeyChecking=no root@%s . /root/.bash_profile " %i) 

f.close() 

 

fi=open("/var/www/cgi-bin/files/dnode.txt", "r") 

for i in fi: 

 i=i.strip() 

 commands.getstatusoutput("sudo sshpass -p redhat scp 

/var/www/cgi-bin/files/core-site.xml root@%s:/etc/hadoop/ " %i) 

 commands.getstatusoutput("sudo sshpass -p redhat scp 

/var/www/cgi-bin/files/hadoop-env.sh root@%s:/etc/hadoop/ " %i) 

 commands.getstatusoutput("sudo sshpass -p redhat scp 

/var/www/cgi-bin/files/hdfs-site.xml root@%s:/etc/hadoop/ " %i) 

 commands.getstatusoutput("sudo sshpass -p redhat scp 

/root/.bash_profile root@%s:/root/ " %i) 

 commands.getstatusoutput("sudo sshpass -p redhat ssh -o 

StrictHostKeyChecking=no root@%s source /root/.bash_profile " %i) 

fi.close() 

 

print "Congratulation Hadoop has configured for your cluster" 

print " Now you may proceed to start services " 

 

print "<form method='post' action='uploaddata.py' >" 

print "<input type='submit' value='Start Service' />" 

print "</form>" 

print "</body>" 

print "</html>" 

 

 

Starting namenodes and datanodes 

#!/usr/bin/python2 

 

import commands 

print "content-type:text/html\r\n" 
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print "<html>" 

print "<head>" 

print "<title>Uploading data</title>" 

print "</head>" 

print "<body>" 

 

f=open("/var/www/cgi-bin/files/nnode.txt", "r") 

 

print "sakdgjhsad" 

for i in f: 

 i=i.strip() 

 #commands.getstatusoutput("sudo sshpass -p redhat ssh -o 

StrictHostKeyChecking=no " %i) 

 commands.getstatusoutput("sudo sshpass -p redhat ssh -o 

StrictHostKeyChecking=no root@%s hadoop-daemon.sh start namenode " 

%i) 

  

f.close() 

 

print "KASDGJGSDJHGD" 

fi=open("/var/www/cgi-bin/files/dnode.txt", "r") 

for i in fi: 

 i=i.strip() 

 commands.getstatusoutput("sudo sshpass -p redhat ssh -o 

StrictHostKeyChecking=no root@%s hadoop-daemon.sh start datanode " 

%i) 

fi.close() 

 

 

f=open("/var/www/cgi-bin/files/nnode.txt", "r") 

 

print "sakdgjhsad" 

for i in f: 

 i=i.strip() 

 commands.getstatusoutput("sudo sshpass -p redhat ssh -o 

StrictHostKeyChecking=no root@%s hadoop fs -mkdir /input" %i) 

 commands.getstatusoutput("sudo sshpass -p redhat ssh -o 

StrictHostKeyChecking=no root@%s hadoop fs -chown apache:apache 

/input" %i) 
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 commands.getstatusoutput("sudo sshpass -p redhat ssh -o 

StrictHostKeyChecking=no root@%s hadoop fs -chmod 777 /input" %i) 

 print "<p>Directory is made in the hdfs</p>" 

 #commands.getstatusoutput("sudo sshpass -p redhat ssh -o 

StrictHostKeyChecking=no root@%s hadoop fs -put /root/Desktop/b.txt 

/input/" %i) 

 print "Dahdj" 

  

f.close() 

 

 

#print "<form enctype='multipart/form-data' action='upload.py' 

method='post'> 

#print "Select a File to upload: <input type='file' name='f'/>" 

#print "<input type='submit' value='Upload' />" 

##print "</from>" 

 

print "<p>Services are started please upload data" 

print "<form method='post' action='/html/upload.html' >" 

print "<input type='submit' value='Home' />" 

print "</form>" 

print "</body>" 

print "</html>" 

 

  

Establishing MapReduce Node 

 

#!/usr/bin/python2 

 

import commands 

import cgi, sys, time 

print "content-type:text/html\r\n" 

 

print "<html>" 

print "<head>" 

print "<title>Establishing JobTracker</title>" 

print "</head>" 

print "<body>" 

f=open("/var/www/cgi-bin/files/jt.txt", "w") 
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nn=cgi.FormContent()['node'] 

for i in nn: 

 i=i.strip() 

 print "<p>Configuring Mapred framework</p>" 

 f.write(i + "\n") 

  

f.close() 

 

 

f=open("/var/www/cgi-bin/files/jt.txt", "r") 

 

for i in f: 

 i=i.strip() 

 ins1=commands.getoutput("sudo sshpass -p redhat ssh -o 

StrictHostKeyChecking=no root@%s yum install hadoop -y " %i) 

  

 print "shas" 

 jdk1=commands.getoutput("sudo sshpass -p redhat ssh -o 

StrictHostKeyChecking=no root@%s yum install jdk -y " %i) 

 

 print "jdk installed" 

  

f.close() 

 

print "<p>Continue to establish tasktrackers</p>" 

print "<form action='mapred1.py' method='post'>" 

print "<input type='submit' value='Continue' />" 

 

print "</body>" 

print "</html>" 

 

  

Configuring the MapReduce framework nodes: 

 

#!/usr/bin/python2 

 

import commands 

import cgi, sys, time 

print "content-type:text/html\r\n" 
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print "<html>" 

print "<head>" 

print "<title>Uploading data</title>" 

print "</head>" 

print "<body>" 

 

fi=open("/var/www/cgi-bin/files/jt.txt", "r") 

 

for i in fi: 

 i=i.strip() 

 f=open("/var/www/cgi-bin/files/mapred-site.xml", "a") 

 f.write("<configuration>\n") 

 f.write("<property>\n") 

 f.write("<name>mapred.job.tracker</name>\n") 

 f.write("<value>"+i+":9001</value>\n") 

 f.write("</property>\n") 

 f.write("</configuration>\n") 

 f.close() 

 

fi.close() 

 

fi=open("/var/www/cgi-bin/files/jt.txt", "r") 

 

 

print "sakdgjhsad" 

for i in fi: 

 i=i.strip() 

 

 commands.getoutput("sudo sshpass -p redhat scp /var/www/cgi-

bin/files/mapred-site.xml root@%s:/etc/hadoop/ " %i) 

 commands.getoutput("sudo sshpass -p redhat scp /var/www/cgi-

bin/files/core-site.xml root@%s:/etc/hadoop/ " %i) 

 commands.getoutput("sudo sshpass -p redhat scp 

/root/.bash_profile root@%s:/root/ " %i) 

 commands.getoutput("sudo sshpass -p redhat ssh -o 

StrictHostKeyChecking=no root@%s source /root/.bash_profile " %i) 

 #commands.getstatusoutput("sudo sshpass -p redhat ssh -o 

StrictHostKeyChecking=no root@%s hadoop-daemon.sh start jobtracker" 

%i) 
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fi.close() 

 

fi=open("/var/www/cgi-bin/files/tt.txt", "r") 

for i in fi: 

 i=i.strip() 

 

 commands.getstatusoutput("sudo sshpass -p redhat scp 

/var/www/cgi-bin/files/mapred-site.xml root@%s:/etc/hadoop/ " %i) 

  

 commands.getstatusoutput("sudo sshpass -p redhat scp 

/var/www/cgi-bin/files/core-site.xml root@%s:/etc/hadoop/ " %i) 

 

 commands.getstatusoutput("sudo sshpass -p redhat scp 

/root/.bash_profile root@%s:/root/ " %i) 

 commands.getstatusoutput("sudo sshpass -p redhat ssh -o 

StrictHostKeyChecking=no root@%s source /root/.bash_profile " %i) 

 #commands.getstatusoutput("sudo sshpass -p redhat ssh -o 

StrictHostKeyChecking=no root@%s hadoop-daemon.sh start tasktracker" 

%i) 

fi.close() 

 

print "everything done" 

 

print "<p>Continue to start services</p>" 

print "<form action='start.py' method='post'>" 

print "<input type='submit' value='Continue' />" 

print "</form>" 

print "</body>" 

print "</html>" 

 

Starting JobTracker and TaskTrackers 

#!/usr/bin/python2 

 

import commands 

import cgi, sys, time 

print "content-type:text/html\r\n" 

 

print "<html>" 

print "<head>" 
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print "<title>Uploading data</title>" 

print "</head>" 

print "<body>" 

 

fi=open("/var/www/cgi-bin/files/jt.txt", "r") 

print "sakdgjhsad" 

for i in fi: 

 i=i.strip() 

 commands.getoutput("sudo sshpass -p redhat ssh -o 

StrictHostKeyChecking=no root@%s hadoop-daemon.sh start jobtracker" 

%i) 

  

fi.close() 

 

print "KASDGJGSDJHGD" 

f=open("/var/www/cgi-bin/files/tt.txt", "r") 

for i in f: 

 i=i.strip() 

 commands.getoutput("sudo sshpass -p redhat ssh -o 

StrictHostKeyChecking=no root@%s hadoop-daemon.sh start tasktracker" 

%i) 

f.close() 

 

n=open("/var/www/cgi-bin/files/nnode.txt", "r") 

for i in n: 

 i=i.strip() 

 #commands.getoutput("sudo sshpass -p redhat ssh -o 

StrictHostKeyChecking=no root@%s hadoop fs -put /root/Desktop/b.txt 

/input" %i) 

n.close() 

 

print "everything done" 

 

print "<p>Continue to start</p>" 

print "<form action='start.py' method='post'>" 

print "<input type='submit' value='Continue' />" 

print "</form>" 

print "</body>" 

print "</html> 
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Uploading Data and Running Job 

<html> 

<body> 

<form enctype="multipart/form-data" action="upload.py" method="post"> 

<p>File: <input type="file" name="f"></p> 

<p><input type="submit" value="Upload"></p> 

</form> 

</body> 

</html> 

 

#!/usr/bin/python2 

 

import commands 

import cgi, sys, time 

print "content-type:text/html\r\n" 

 

print "<html>" 

print "<head>" 

print "<title>Uploading data</title>" 

print "</head>" 

print "<body>" 

form = cgi.FieldStorage() 

fn=form['f'].filename 

print fn 

data=form['f'].file.read() 

ff=open("/var/www/cgi-bin/files/"+fn, "w") 

ff.write(data) 

ff.close() 

 

fi=open("/var/www/cgi-bin/files/nnode.txt", "r") 

print "sakdgjhsad" 

for i in fi: 

 i=i.strip() 

 commands.getoutput("sudo sshpass -p redhat scp /var/www/cgi-

bin/files/%s root@%s:/root/Desktop/" %(fn,i)) 

 commands.getoutput("sudo sshpass -p redhat ssh -o 

StrictHostKeyChecking=no root@%s hadoop fs -put /root/Desktop/%s 

/input/%s" %(i,fn,fn)) 

fi.close() 
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print "file is uploaded in hdfs" 

 

print "<form action='index.py' method='post'>" 

print "<input type='submit' value='Home' />" 

print "</form>" 

 

print "<form action='job.py' method='post'>" 

print "<input type='submit' value='Run job' />" 

print "</form>" 

print "</body>" 

print "</html>" 

 

  

 

 

 

 

 

  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


