
“3D Game Development”

Project Report submitted in partial fulfillment of the requirement

for the degree of

Bachelor of Technology.

In

Computer Science & Engineering

under the Supervision of

Ms. Ramanpreet Kaur

By

Ushpinder Singh

Enrollment No.:111337

To

Jaypee University of Information and Technology

Waknaghat, Solan – 173234, Himachal Pradesh

ii

CERTIFICATE

This is to certify that the work titled “3D Game Development” submitted by Ushpinder

Singh in the partial fulfillment for the award of degree of Bachelor of Technology in

Computer Science & Engineering from Jaypee University of Information Technology;

Waknaghat has been carried out under my supervision. This work has not been submitted

partially or wholly to any other University or Institute for the award of this or any other

degree or diploma.

Signature of Supervisor:

Name of Supervisor : Ms. Ramanpreet Kaur

Designation : Assistant Professor

Date : 15-05-2015

iii

ACKNOWLEDGEMENT

I take this opportunity to express my profound gratitude and deep regards to Prof.

Dr.RMK Sinha Dean of CSE, JUIT for providing me the opportunity to do this project

as a part of my final year project.

I also take this opportunity to express my profound gratitude and deep regards to Prof.

Dr. Satya Prakash Ghrera, Brig. (Rtd.) and HOD of CSE, JUIT for providing me

the opportunity to do this project as a part of my final year project.

I also take this opportunity to express a deep sense of gratitude to Ms.Ramanpreet

Kaur, Associate Professor, Computer Science & Engineering Department, JUIT,

for his cordial support, valuable information and guidance, which helped me in

completing this task through various stages.

Date: 15-05-2015 Ushpinder Singh

iv

TABLE OF CONTENT

S.no. Topic Page No.

1 Introduction

1 Introduction to 3D Game Development 1

2 Game Development Platforms 2

3 Choosing A Game Development Platform 5

2 Literature Survey

1 Evaluation of object-oriented design patterns in game

8

2 On frame rate and player performance in FPS game

10

3 Research On Intelligent 3D Path Finding In Game Development

12

3 Algorithm Description

1 The BSP Algorithm 15

2 The Rendering Algorithm 18

3 Discretized Space Algorithm 20

4 Design And Implementation 23

5 Conclusion 35

6 Future Work 36

7 References 37

8 Appendix: Code 38

v

LIST OF FIGURES

S.no. Title Page No.

1 Game Architecture 9

2 A convex (left) and a conclave (right) polygon

15

3 Shows the creation of a BSP tree for a simple game map

16

4 Demonstration of how the BSP algorithm works

17

5 Showing the Discretized Space Algorithm 21

6 Showing Path to move between obstacles 22

7 Game Development Pipeline 23

8 Flow Chart Showing flow of work 24

9 Game Development Cycle

26

10 Game Design

29

11 Front Launcher of game 31

12 Player Inside The Game Map 32

13 3d Game Map with Entities

33

vi

ABSTRACT

With the wide application of 3D games and the improvement of Computer Graphics

and Hardware performance, the competition of 3D game products is becoming

increasingly furious. So, how to develop a 3D game that can match the Performance of

PC platform 3D game with other games has become a hot-topic in the field of 3D

game development application.

My project for 3D game development is to develop a 3D game using java programming

which consists of multiple levels. The Java 3D API is an application programming

interface used for writing three-dimensional graphics applications and applets. It gives

developers high-level constructs for creating and manipulating 3D geometry and for

constructing the structures used in rendering that geometry. Application developers can

describe very large virtual worlds using these constructs, which provide Java with

enough information to render these worlds efficiently. This report discusses the design

and plan affection of the implementation of the 3D game for a joint Interactive Media

and Game Development and Professional Writing Major Qualifying Project. This report

will detail the game„s vision, the artistic and technical designs, the game play features of

the project, and research on effective strategies for providing in-game help. Theme of

the game is to develop a 3d clue based game that consists of different clues for both

online as well as offline using java.

First Level: First Level takes place in the 3d game map which consists of different

entities(clues) that will be rendered on the floor and also there will be main character

who will have to pick the clues with the help of instructions provided by computer i.e.

AI part for up gradation to the next level within a given time. Once the all clues will be

picked then player will be upgraded to next level and that level will consist of more

clues. At the end the scores will be displayed on the screen

1

CHAPTER 1: INTRODUCTION TO 3D GAME

DEVELOPMENT

1. Introduction

Recently, games have become one of the most profitable factors in the software industry.

More specifically, during the last few years the game industry has been considered to

produce revenue greater than the movie industry and its development rate has been one

of the fastest growing

in the United States economy .Furthermore, game design and the methods used for easier

and more efficient development constitute a very interesting open research field . It goes

without saying that computer games play a very important role in modern lifestyle.

Therefore, it is no longer necessary to explain what a computer game is .On the other

hand; it is not so obvious Why game research is an extremely interesting field and

simultaneously why game development is a very complicated task to accomplish.

A game could be described as a closed interactive system where the user tries to execute

specific combinations of instructions in order to achieve completion of defined tasks to

progress to an end goal, there are several more descriptions (Salen & Zimmerman 2004)

and attempts to give a definitive description but this one is adequate for this paper. This

concept has not changed since the beginning of games.

Creating games requires some sort of method/tool where every entity in the system could

be given a set of attributes and how they interact with each other, entity to entity but even

attribute to attribute. Some of the attributes even have to be able to change depending on

specific circumstances, keeping track of all the variables and producing a consistent and

rigid model of game mechanics is very complex.

Today this is done with tools and methods developed for games that was fairly simple,

the technology to do so back then was, in comparison with today‗s technologies, simple

but adequate. The games have evolved; the methods and tools have not seen a parallel

evolution in capabilities.

2

The answer to the first question has many levels. As mentioned above, even though game

development is a very strong industry, the research on this field is in its infancy. This fact

leads game programming professionals to demand better developing methodologies and

software engineering techniques .Furthermore, games are the first and sometimes the only

market for advanced graphics techniques to demonstrate the quality of graphics they

produce It has been acknowledged that game industry draws on research from academia,

corporate R&D labs and in-house work by game developers. The distinction between

games and other forms of software is that, in games, the development groups consist of

people with Different fields of expertise. First of all, a script writer is required; this person

will write the game script and fill in a document usually called ‗‗concept paper.

The lead Game designer will convert information from the concept paper into another

called ‗‗design document ‗which will be the guide throughout the development process.

Apart From that, the company employs a group of programmers with several skills and

expertise, such as engine and graphics programmers, artificial intelligence programmers,

sound programmers and tool programmers.

2. Game Development Platforms

Take brief look at the most popular technologies used in game development. These vary

from low-level graphics and input/output routines to more simplified libraries which handle

most of the complicated work for the programmer.

2.1 OpenGL

One of the most popular graphics libraries, OpenGL was developed as an open standard,

meaning that any external contributor could take part in the development process. OpenGL

provides the user with a large set of functions that allow the programmer to render triangles

and more complex polygon structures in a fairly straightforward way. It also supplies the

user with some basic mathematical transformation functions for vectors and matrices which

is essential when performing movement or rotation on the screen. OpenGL is known to be

a highly portable graphics rendering platform and is available for nearly all system

architectures, varying from Windows and Linux to MacOS. This graphics library is said to

be one of the best documented, mainly due to abundance of contributors throughout the

3

world. On the other hand it also makes some parts of documentation inconsistent for the

same reason. Nevertheless a computer graphics adept will feel quite comfortable while

learning and applying OpenGL in his/her software.

2.2 DirectX

With the growing popularity of OpenGL, Microsoft decided to make a move of their

own. In 1995 the company presented their break-through operating system called

Windows 95 and along with it the first edition of their own graphics/audio/input/output

programming library called DirectX. The audience was very excited, not only because of

the fact that Microsoft is releasing an operating system which would support game

development. The key reason behind it was the first game ported to DirectX: Doom by Id

Software - the same game that in 1993 caused mass hysteria among the computer gamers

all over the world. Even though the first releases of DirectX were far from successful

(due to high amount of programming bugs and arguably low functionality in comparison

to OpenGL), the library itself evolved through years, becoming a very tough opponent for

OpenGL. DirectX not only was written natively for the Windows platform, it also had its

own extensions for handling mouse and keyboard events (DirectInput) and sound (Direct

Audio). Even though DirectX is designed only for Windows (there are no known ports of

DirectX for other systems due to legal issues) it is widely used today both for PC

development and console games (for example Xbox 360).

2.3 Selection of the programming language

Let‗s now take a deeper look at the technology we will use to develop the game engine:

the programming language. This is a very important step in the design process which

determines the future code structure as well as the flexibility of the framework. Another

key issue is the desired performance of software using the engine which in this particular

situation is crucial, such as handling of the drawing routines, most data processing and

complex calculations. In order for our application to be efficient, we have to ensure that

all tasks will be performed in the fastest way possible which (apart from code

optimizations) is highly dependent on the structure of generated binary code. So how do

we choose the best programming language for the job?

4

Programming languages in this area are: Java, C, C++, Python and Flash/Action Script

along wit Macromedia Director. We will focus on development for the PC platform only,

disregarding the console market. High popularity of these languages is a result of on

different historical and marketing events: C++ has been a language used for most top-

performance application development since 1980s. Java is known for its simple syntax

and extensive amount of additional libraries, making it a fairly powerful language.

Python gained popularity through almost the same reasons, as well as the built in force-

mechanism to write clear code using indentations. Finally, Flash and Director have been

long known in development of rich online content. Let‗s now learn something more about

them and try to decide which one will best suit our needs.

2.4 Java

Java was a secret project at first, the goal of which was to develop a high-performance

language for internal use at Sun Microsystems. After a course of time the project evolved and

turned into Java, which became a general-purpose programming language available for

everyone to be used for free. Java very soon found recognition among developers,

especially because of its syntax being close to the one used in C++. This made the

learning curve somewhat gentler for programmers. Java featured automated memory

management and a built in garbage collection (automatically taking care of unused data

in memory), something that made the language popular among beginner coders or those

who found the concept of memory management too difficult in C++. The major plus side

of Java is the amount of additional packages and libraries that come with the standard

edition of the language. This means that Java developers can start taking advantage of

advanced language features right away, unlike the C++ programmers which have to get

hold of any additional libraries themselves. Java also uses a concept of virtual machine,

which makes it possible to run the exact same code on any operating system that has a

Java VM installed on it This means no need to make code modifications in order to make

it portable: something that was not always possible in C++. On the other hand, Java is

considered a slow language: mainly because the programmer lacks the possibility to

arrange data in memory by hand and slight delays introduced by using the virtual

machine instead of direct code execution. Nevertheless, there are advanced graphical

libraries available for Java, making it a potent platform for game developers.

5

3 Choosing A Game Development Platform

Java 3D is an application programming interface (API) developed at Sun Microsystems

for rendering interactive 3D graphics using the Java programming language. Java 3D is a

client−side

Java API. Other examples of Sun client−side APIs include the Abstract Windows Toolkit

(AWT) and Java Foundation Classes (JFC/Swing), which are both Java class libraries for

building applications with a Graphical User Interface (GUI). The client−side Java APIs

are in contrast to Sun‗s server−side APIs such as Enterprise Java−Beans (EJB) and the

other components of Java 2 Enterprise Edition (J2EE). Making 3D graphics interactive is

a long−standing problem, as evidenced by its long history of algorithms, APIs, and

vendors. Sun is not a major player in the 3D graphics domain, although its hardware has

long supported interactive 3D rendering. The dominant industry standard for interactive

3D graphics is OpenGL, created by Silicon

Graphics (SGI). OpenGL was designed as a cross−platform rendering architecture and is

supported by a variety of operating systems, graphics card vendors, and applications.

TheOpenGL API is written in the C programming language, and hence not directly

callable from Java. A number of open source and independent programming efforts have

provided simple Java wrappers over the OpenGL API that allow Java programmers to

call OpenGL functions, which are then executed in native code that interacts with the

rendering hardware. One of the most popular is GL4Java, which you can find at

However; there are few advantages to using a Java wrapper over OpenGL, as opposed to

coding in C and calling OpenGL directly. Although programmers can use the more

friendly Java APIs, they must incur the Overhead of repeated calls through the Java

Native Interface (JNI) to call the native OpenGL libraries. Java 3D relies on OpenGL or

DirectX to perform native rendering, while the 3D scene description, application logic,

and scene interactions reside in Java code. When Sun set out to design Java 3D, although

they did not have the resources or industry backing to replace OpenGL, they wanted to

leverage more of Java‗s strengths as an object−oriented programming (OOP) language

instead of merely delegating to a procedural language such as C. Whereas OpenGL‗s

level of description for a 3D scene consists of lists of points, lines, and triangles, Java 3D

6

can describe a scene as collections of objects. By raising the level of description and

abstraction, Sun not only applied OOP principles to the graphics domain, but also

introduced scene optimizations that can compensate for the overhead of calling through

JNI.

The foremost strength of Java 3D for Java developers is that it allows them to program

in 100 percent Java. In any sizeable 3D application, the rendering code will compose

only a fraction of the total application. It is therefore very attractive to have all the

application code, persistence, and user interface (UI) code in an easily portable

language, such as Java. Although Sun‗s promise of Write−Once−Run−Anywhere is

arguably more of a marketing dream than a reality, especially for client−side

programming, Java has made important inroads toward enabling application developers

to write applications that can be easily moved between platforms. The platforms of most

interest today are Microsoft Windows 98/NT/2000, Sun Solaris, LINUX, and Macintosh

OS X. Java has arguably become the language of networked computing and the

Internet. High−level support for remote method invocation (RMI), object serialization,

platform independent data types, UNICODE string encoding, and the security model all

provide persuasive arguments for adopting the Java language for applications that are

increasingly gravitating away from a desktop−centric worldview. Many of the

state−of−the−art 3D graphics applications being built with Java 3D today are leveraging

the strengths of Java

as a language for the Internet. The Java 3D API itself has much to offer the application

developer. By allowing the programmer to describe the 3D scene using coarser−grained

graphical objects, as well as by defining objects for elements such as appearances,

transforms, materials, lights, and so forth, code is more readable, maintainable, reusable,

and easier to write. Java 3D uses a higher level scene description model, the scene

graph, which allows scenes to be easily described, transformed, and reused.

Java 3D includes a view model designed for use with head−mounted displays (HMDs)

and screen projectors. By insulating the programmer from much of the complex

trigonometry required for such devices, Java 3D eases the transition from a

screen−centric rendering model to a projected model, where rendering in stereo allows

for greater realism.

7

Java 3D also includes built−in support for sampling 3D input devices and rendering 3D

spatial sound. By combining all of the above elements into a unified API, Java 3D

benefits from a uniformity of design that few other APIs can match. Java 3D‗s higher

level of abstraction from the mechanics of rendering the scene have also opened the field

of interactive 3D graphics to a new class of audience, people who would typically have

been considered 3D content creators.

3.1 Benefits of Choosing Java

Java was designed with several goals in mind. Chief among them is high performance.

Several design decisions were made so that Java 3D implementations can deliver the

highest level of performance to application users.

 Other important Java goals are to:

 Provide a rich set of features for creating interesting 3D worlds, tempered by the

need to avoid nonessential or obscure features(Rendering).

 Provide a high-level object-oriented programming paradigm that enables

developers to deploy sophisticated applications and applets rapidly.

 Provide support for runtime loaders. This allows Java to accommodate a wide

variety of file formats and allow to run on multiple platforms.

8

CHAPTER 2: LITERATURE SURVEY

1. Evaluation of Object Oriented Design Patterns in game

1.1 Summary

This paper aimed at evaluating the use of object-oriented design patterns in game

development. In order to achieve this goal we examined two open-source games. The

results extracted by the two games were almost identical and indicate that patterns can

be beneficial with respect to maintainability. The game version that includes the patter

under study has reduced complexity and coupling compared to a prior version without

the pattern. Additionally, the application of patterns tends to increase the cohesion of

the software. In contrast to that, the size of the projects has increased in the pattern

version. Consequently, due to the evolving nature of games we believe that the

appropriate employment of design patterns should be encouraged in game

programming.

1.2 Game Architecture

One of the most interesting aspects of game research is the architecture that the

developer will use. In recent papers, there are a few references to the modules that the

programs are being decomposed to, however, without extensive discussion of

maintainability and code reusability issues. Such issues have been examined in detail in

classical object-oriented programming, but those ideas are extremely immature in game

programming. Designing and programming large-scale software is a very complicated

job that requires many human work hours. Consequently, software is usually divided,

logically, into subprograms that are autonomously designed, programmed and tested by

separate programmers groups.

9

These subprograms are called modules. Decomposing software into modules is an

important decision that plays a main role in the architecture and further design of the

program.

In this section, the modules proposed for games are examined and briefly discussed. In,

Bishop et al. described a general game‗s architecture as shown in Fig. 1. This schema

presents an interactive game‗s vital modules.

Figure 1: Game Architecture

The items with solid outlines are essential to every game while the dashed outlines

refer to modules that are found in more complicated and demanding games. The game

logic is the part that holds the game‗s story. The audio and graphics are the modules that

help the writers narrate the story to the player. The event-handler and the input modules,

supply the game logic with the player‗s next action. The level data module is a storage

module for details about static behavior and the dynamics module configures dynamic

behavior of game‗s characters.

10

1.3 Object-oriented design patterns in game logic

Although until now there is not much work found on object-oriented design patterns‗ use

in games, we believe that such a use can be proven very useful in this domain.

This fact can be examined by investigating the source code of games for the existence of

design patterns. As a first approach, we will provide examples of how object-oriented

design patterns could be used in simple games. In addition to that, in Section 4 we will

present real games that could use these object-oriented design patterns and improve their

design. The strategy pattern, defines a family of algorithms, encapsulates each one, and

makes them interchangeable.

2. On frame rate and player performance in first person

shooter games

2.1 Summary

The rate at which frames are rendered in a computer game directly impacts player

performance, influencing both the game playability and enjoy ability. However, despite

the importance of frame rate and the wide-spread popularity of computer games, to the

best of our knowledge, there is little quantitative understanding of the effects of frame

rate on player performance in computer games. This paper provides a unique

classification of actions in First Person Shooter (FPS) games based on interaction

requirements that allow qualitative assessment of the impact of frame rates on player

performance. This qualitative assessment is supported by quantitative analysis from two

large user studies that measure the effects of frame rate on the fundamental player actions

in a FPS game. Nearly 100 users participated in the two user study experiments,

providing performance and perception data over a range of frame rates commonly studied

for video streaming and inclusive of frame rates found in many computer game

platforms. In general, the analysis shows that actions that require precise, rapid response,

such as shooting, are greatly impacted by degradations in frame rates, while actions with

lower precision and response requirements, such as moving, are more tolerant of low

frame rates. These insights into the effects of frame rates on player performance can

guide players in their choice for game settings

11

and new hardware purchases, and inform system designers in their

development of new hardware.

2.2 Collision detection:

Collision detection is an important part of the interaction function of 3D games.

According to the result of the collision detection, by triggering different interaction

effect, game system gives timely feedback, which can make the players get more vivid

and real game experience. While in the game physics engine is used to calculate

collisions between objects, if the calculation is relatively complex, which leads to

increased responding time and the overall system may slowdown.AI enemies in this

game, for example, the enemy will automatically detect the location of the protagonist

and approach. When collision detection occurs, the enemy will attack. At the beginning

of the original game, it will appear automatically every 5 seconds one enemy. But when

the enemy number is up to 20, the game can not run almost. It really shows that complex

physics calculation has a greater influence on the performance of the game. If set the

maximum number of enemy for six, when the enemy dies automatically appear new

enemies, the performance of ascension is inevitable. Most of the earlier work in collision

detection has focused on algorithms for convex polytopes. A number of algorithms with

good asymptotic performance have been proposed in the computational geometry

literature. Using hierarchical representations, an O(log
2
n) algorithm is given in [DK90]

for polytope-polytope overlap problem, where n is the number of vertices. This elegant

approach has not been robustly implemented in 3D, however.

Good theoretical and practical approaches based on linear complexity of the linear

programming problem are known . Minkowski difference and convex optimization

techniques are used in to compute the distance between convex polytopes by finding the

closest points.

In applications involving rigid motion, geometric coherence has been exploited to design

algorithms for convex polyhedra based on local features These algorithms exploit the

spatial and temporal coherence between successive queries and work well in practice.

A number of hierarchies have been used for collision detection between general

polygonal models. Typical examples of bounding volumes include axis-aligned boxes

12

(cubes are a special case) and spheres, and they are chosen for their fast overlap tests.

Other structures include cone trees, k-d trees and octrees sphere trees trees based on S-

bounds etc. Binary space partitions and

extensions to multi-space partitions , and spatial partitionings based on space-time

bounds or four-dimensional testing have been used. All of these hierarchical methods do

very well in performing ``rejection tests'' whenever two objects are far apart. However,

when the two objects are in close proximity and can have multiple contacts, these

algorithms either use subdivision techniques or check very large number of bounding

volume pairs for potential contacts. In such cases, their performance slows down

considerably.

3. Research On Intelligent 3D Path Finding In Game

Development

3.1 Summary

For the path-finding problem of movement attitude changes with flight direction (or the

swimming direction) of the object or role in the three-dimensional games, this article

proposed the off-surface path finding algorithm in three dimensional game, through

improve and optimize the A *algorithm in two-dimensional path finding, and this way

can meet the requirements of calculation in three-dimensional.

Experiments show that the optimized algorithm meet the optimization of three-

dimensional grid nodes ,set of obstacles in the three-dimensional scene, modify and

optimization of the valuation function , computing of node coordinates, maintenance of

OPEN table and CLOSED table. It has application and extending value to the study of

path finding in the three-dimensional scene aimed at the cling surface object motion

simulation.

13

3.2 Comparison of Path finding algorithms

There are many mature path finding algorithms in game development, and most of

them belong to the category of state space search. State is a mathematical description of

the progress of a problem in some time, state space search is process to go through all

the nodes in the state space, to find out a path from the start node to target node, can be

divided into two broad categories of blind search and heuristic search. There are many

mature path finding algorithms in game development, and most of them belong to the

category of state space search. State is a mathematical description of the progress of a

problem in some time, state space search is process to go through all the nodes in the

state space, to find out a path from the start node to target node, can be divided into two

broad categories of blind search and heuristic search.

3.3 The main idea of A * algorithm

In variety of heuristic search algorithms, A * algorithm is one of the more mature

algorithms. The idea is that when state space search, assess each node searched by

evaluation function to guide the search forward direction, until find the target node.

General form of evaluation function is: f (n) = g (n) + h (n), where, f (n) is the evaluation

function, g (n) is currently known shortest path moving from the starting point S to the

node n along the path generated, h (n) is estimated moving cost moving from node n to

the end point D. Evaluation function definition has no certain model, in A * algorithm, h

(n) have been restricted, so for all nodes x are h (x) ≤ h * (x), where h * (x) is minimum

cost from the node X to the target node, namely actually the shortest distance. This

evaluation function designed like this can find out the shortest path, is called

admissibility of path finding, and A * algorithm is an adopted path finding algorithm. In

the A * algorithm two chained lists will be used, OPEN lists and CLOSED lists, were

used to save the node to be examined and nodes do not need to be examined again

differently. The specific path searching process is as follows:

In the A * algorithm two chained lists will be used, OPEN lists and CLOSED lists, were

used to save the node to be examined and nodes do not need to be examined again

differently.

14

The specific path searching process is as follows:

1) Starting from the starting point S and put it into the OPEN list as the first

node to be processed, this time, S is also called the current node.

2) detection 8 adjacent nodes around the current node, to find out the node x which can

be reached or through, if x is in the OPEN list (or the CLOSED list), check that whether

g (x) value with the new path to the x, is less than the original g (x) value of x. If so, set

the current node as the parent node of node x, and recalculate g (n) and f (n) value of x

node. Otherwise, do not make any modifications with the node x. If x is not in OPEN list

(or the CLOSED list), add them to OPEN list, calculate g (n) and h (n) value of x , and

set the current node as the parent node of node x. 3) Remove the current node from the

OPEN list, add it to the CLOSED list. 4) In order to continue to search, select a node

which has the minimum evaluation function f(n) value from the OPEN list as a new

current node, if the OPEN list is empty, said the path does not exist from the beginning

to the end. If the new current node is the destination D, then the search end, and

backdate from the starting point to end point according to the father-son relationship, get

the request path from S to D. Otherwise, return (2) to continue the search. Three-

dimensional gaming industry has developed rapidly, industry prospects, research of

game-related technology is more in-depth, in particular put forward higher requirements

to solve three-dimensional scene path finding namely three-dimensional path search. For

the three-dimensional path finding technology need in three-dimensional game , the

author proposed the off-surface path finding algorithm in three-dimensional game,

through improve and optimize the A *algorithm in two-dimensional path finding. The

Improvement and optimization of the algorithm include optimization of three-

dimensional grid nodes , set of obstacles in the three-dimensional scene, modify and

optimization of the valuation function , computing of node coordinates, maintenance of

OPEN table and CLOSED table. Solve the path finding problem of movement attitude

changes with flight direction (or the swimming direction) of the object or role in the

three-dimensional games.

15

 Chapter 3: Algorithms Description

1. The BSP Algorithm

At the dawn of computer game development there were many problems to be solved.

Possibly the greatest mischief was rendering on home computers, which at the time

did not posses too much computation power. This was the reason why different

techniques of scene management had to be developed: one of them was a method

that involved the Binary Space Partitioning algorithm (BSP) invented in early 1970s

at the University of Texas at Dallas. At first its purpose was to create representations

of 3D objects at various research facilities, but it was soon discovered that it could

be used to render complex 3D environments in real-time even on computers that did

not have any additional hardware support for graphics processing, such as the home

computers. What developers didn't know at that time, however, was that BSP would

revolutionize the computer entertainment .

Before further explanation of the BSP algorithm some basic terminology must be

explained. In geometry there are 2 types of polygons that are especially important in 3D

graphics: the convex polygons, and conclave polygons. Convex polygons words are

a type of primitives that do not have any dents. This means that the inner angles of

convex polygon are never greater than 180 degrees. A polygon that doesn't meet

these demands is classified as a conclave polygon.

Figure 2: A convex (left) and a conclave (right) polygon

16

These terms can be easily translated into 3D space. If we were to be locked in a convex

room, we would be able to see its every corner, no matter where we would stand (we

disregard the fact that we would have to move our heads in order to see what's right

behind us). Analogically, in a conclave room there would be certain areas, which could

be only seen when standing in certain positions (it would be possible to hide from the

viewer, hence some areas would be occluded). The same rules also apply to groups of

convex or conclave polygons. This means that a group of convex polygons never occlude

each other – a key property, that BSP algorithm employs.

The idea behind the BSP algorithm is very straightforward. Its objective is to split the

game geometry into convex partitions using arbitrary partitioning planes. Each split

results in two distinct groups: Geometry behind the splitting plane (called the backlist)

and geometry in front of the splitting plane (called the front list). Each resulting set is

then again partitioned using new partitioning plane. We perform these steps as long as the

result of a split can produce a backlist and a front list – should the result contain only one

of them, there is no further way of splitting the geometry.

Figure 3 Shows the creation of a BSP tree for a simple game map.

Rendering is the process of generating an image from a 2D or 3D model (or models in

what collectively could be called a scene file), by means of computer programs. Also, the

results of such a model can be called a rendering.

17

Figure 4: Demonstration of how the BSP algorithm works .

The idea of ―front‖ and ―back‖ for a given plane is usually solved by calculating a

normal vector for the plane. By definition, these vectors always point outwards the

surface and are aligned at the angle of 90 degrees to the surface, therefore they are very

often used in graphics rendering for determination whether we are facing the front or the

back of the surface. This is especially important during the rendering process when we

want to skip the surfaces that the viewer cannot see. While the BSP algorithm is easy to

perform, there are more problems than meets the eye at first. In real life application it is

important to choose the best splitting plane in order to get the BSP tree in the shortest

time possible. Also, it is always good to get a balanced BSP tree, which would keep the

search time at pretty much the same level for every rendered part of geometry.

The BSP tree is created by inserting each segment in numbered order into the tree. In

order to allow the user to more easily understand the demo, no attempt is made to select

the BSP tree that produces the minimum splitting of segments. This is normally done

because it minimizes the size of the tree and makes it more efficient. In addition, no

attempt is made to produce a balanced (or nearly balanced) tree, which would also

normally be desirable since it prevents degenerate cases such as those where the depth of

the tree is approximately equivalent to the number of partitions.

18

Because each partition must be classified with respect to O(lg(n)) other partitions, the

expected running time for constructing this BSP tree is O(n*lg(n)).

 BSP Algorithm is used to render complex 3D environments in real-time even on

computers that did not have any additional hardware support for graphics processing,

such as the home computers.

 Start with a set of polygons and an empty tree

 Select one of them and make it the root of the tree

 Use its plane to divide the rest of the polygons in 3 sets: front, back,

coplanar. Any polygon crossing the plane is split

 Repeat the process recursively with the front and back sets, creating the

front and back sub trees respectively

2. The Rendering Algorithm

The pseudo-3D scene is rendered by classifying the eye point with respect to the root

segment, then recursively drawing all segments on the same side of that segment. If the

eye point intersects a segment, we‗re seeing it edge-on, so it isn‗t drawn. Because each

segment is visited exactly once while drawing the scene, the scene can be rendered in

O(n) time. Here is pseudo code for a method on a BSP tree node class that implements

this algorithm:

draw3DScene()

if location(eye. point) =front

Side back.draw3DScene()

draw Polygon()

front.draw3DScene()

else if location(eye. point) ==

backside front.draw3DScene()

draw Polygon()

back.draw3DSc

ene()

else

front.draw3DScene()

back.draw3DScene()

19

When we‗re ready to draw the scene, the eye point and look vector are used to

determine the coordinate system for the camera space. Then each polygon is drawn

by using the following algorithm:

 Draw Polygon() transform segment endpoints to camera space clip segment to

view frustum
 convert segment to polygon:

 set the width to the x values scaled down by the y values

 set the height to a constant value scaled down by the y values

20

3. Discretized Space Algorithm

In collision detection algorithm for computing all the contacts between multiple moving

objects in a large environment. It uses the visibility pruning algorithm . The overall

algorithm is general and applicable to all environments. We also highlight many

optimizations and the visibility queries used to accelerate the performance of our

algorithm.

1. Algorithm: DISCRETIZE SPACE

• Assume the Configuration Space has some fixed size in all its dimensions.

Discretized each dimension so that it has a fixed number of cells. For each cell

whose center is inside an obstacle in the Configuration Space, mark it

Impassable.

• Likewise, for each cell whose center is outside an obstacle, mark it Passable.

• Each Passable cell is now a Node.

• Each Node connects to all its ―adjacent‖ Passable neighbors in the graph.

3.1 Potentially Colliding Set (PCS)

We compute a PCS of objects that are either overlapping or are in close proximity. If an

object does not belong to the PCS, it implies that does not collide with any object in the

PCS. Based

on this property, we can prune the number of object pairs that need to be checked for

exact collision.

This is similar to the concept of computing the potentially visible set (PVS) of primitives

from a viewpoint for occlusion culling 4. We perform visibility computations between

the objects in image space to check whether they are potentially colliding or not. Given

a set S of objects, we test the relative visibility of an object O with respect to S using an

image space

21

Figure 5:Showing the Discretized Space Algorithm

3.2 Sub-Object level pruning

We perform multiple level pruning to identify the potentially intersecting triangles

among the objects in the PCS. We group adjacent local triangles (say k triangles) to

form a sub-object used in multi-level pruning and prune the potential regions

considerably. This improves the performance of the overall algorithm because

performing a fully-visible query for each single triangle in the PCS of objects can be

expensive. At the next level, we consider the PCS of sub objects and perform pruning

using each triangle as a sub object. The multiple-level sub-object pruning is performed

across each axis.

3.3 Intersection Tests

We perform exact collision detection between the objects involved in the potentially

colliding pairs by testing their potentially intersecting triangles

22

Figure 6:Showing Path to move between obstacles

23

CHAPTER 4: DESIGN AND IMPLEMENTATION

1. Game Development Pipeline

Game development pipeline is the process of being developed, provided, or completed; in

the works; under way. Following sequence of operations required to move art assets from

concept to the finished product.

 Experience design—UI, game play, narrative

 Cinematic

 Artwork—3D modeling, surfacing, lighting, environment, animations, sound

 Programming—graphics, UI, physics, AI, networking, game tools

 Level design

 Sound engineering

 Testing

 Maintenance (bug fixing, adding levels and features)



Figure 7:Game Development Pipeline

24

2. Flow Chart

2.1 Flow Chart showing flow of work

Figure 8:Flow Chart Showing flow of work

25

3. Game Design Models

3.1 Definition

3D game design models represent a 3D object using a collection of points in 3D space,

connected by various geometric entities such as triangles, lines, curved surfaces, etc.

Being a collection of data (point and other information), 3D models can be created by

hand, algorithmically (procedural modeling), or scanned.

3D models are widely used anywhere in 3D graphics. Actually, their use predates the

widespread use of 3D graphics on personal computers. Many computer games used pre-

rendered images of 3D models as sprites before computers could render them in real-

time.

Today, 3D models are used in a wide variety of fields. The medical industry uses detailed

models of organs; these may be created with multiple 2-D image slices from an MRI or

CT scan. The movie industry uses them as characters and objects for animated and real-

life motion pictures. The video game industry uses them as assets for computer and video

games. The science sector uses them as highly detailed models of chemical compounds.

The architecture industry uses them to demonstrate proposed buildings and landscapes

through Software Architectural Models. The engineering community uses them as

designs of new devices, vehicles and structures as well as a host of other uses. In recent

decades the earth science community has started to construct 3D geological models as a

standard practice. 3D models can also be the basis for physical devices that are built with

3D printers or CNC machines

26

3.2 Game Development Cycle

Figure 9:Game Development Cycle

3.2.1 STEP ONE: INITIAL PLANNING

The Genesis Gaming Design and Marketing teams will meet with the client to determine

the key concepts driving the development of a strategic game portfolio. This will address

issues such as analysis of an existing portfolio, current demographics, additional player

acquisition and retention, emerging trends and profiles.

We will further discuss a range of themes, volatility levels, features, bonus games and

any other aspect required for bespoke development of a strategic portfolio. It is also

important that there is an overall marketing discussion to determine how the games can

be used to further extend the client‗s brand.

27

3.2.2 STEP TWO: INITIAL THEMES & CONCEPT ART

In this phase, submit themes, names, concept art and descriptions for consideration and

approval or modification. We will then work with the client to determine portfolio

development priorities. This allows the ability to set expectations as to game delivery.

The client can then implement a schedule for marketing and release.

3.2.3 STEP THREE: FEATURES AND MATHEMATICS

In this, unique math models that best represent the client‗s objectives as stated through

the analytical process and the client‗s objectives. Math will be verified and all required

percentages will be provided.

3.2.4 STEP FOUR : ART AND CREATIVE DESIGN

In this, static art and design elements for approval. Subsequently, our Animation and

Music Composition teams will finalize the game. This will require the client to provide

appropriate documentation such as templates and other substantive game specifications

for consistency. Upon completion, our Demo team will provide a playable version of the

game for additional review.

3.2.5 STEP FIVE: INTEGRATION

In this, integrate the game to the appropriate provider platform. This requires the

necessary documentation, such as an API, from the client along with server support,

assuming it is not an

asset only‖ delivery. We place a significant emphasis on product assurance and quality

control so the game will be very client provider friendly.

3.2.6 STEP SIX: DELIVERY

All game assets, in the requested file formats, including all release documentation will be

provided according to contractually specified delivery requirements. Genesis Gaming is

also happy to provide any material that may be requested for the client‗s marketing

campaign.

28

Since success is our mutual objective, it is our goal to make certain that the client has all

tools possible to promote the best exclusive content in the industry.

4. Game Structure and Design

Game will consist of three levels and before levels, there will be a menu layer that will

consist of game options, sound options and video options, then there will be a loading

screen. Main game frame will consists of introduction, game play and pause options.

After main game ,there will be game over and victory screen if player will pass through

all three levels within a given time.

4.1 Game Structure:
 Start up 



 Menu Layer 


 Front End 


 Game Options 



 Sound Options 



 Video Options 



 Loading Screen 


 Main Game 


 Introduction 



 Game play 



 Pause Options 



 Game Over 


 Victory Screen 


 Shut down 

In this game, user can choose the menu options consisting of game options, sound options

.

29

In the main game part, first of all introduction about the game will be there, then user can

control the entity in the first level that is in 3-d maze to find the clues with the help of

keyboard options .

4.2 Game Flow Chart:

Figure 10: Game Design

30

4.3 Implementation Steps

 First Step is to draw the pixels on the screen by using the simple geometry methods

by using functions of math‗s and by using buffered strategy techniques.

 Second step is to apply the BSP tree algorithm and draw the 3d world that is the

requirement of the first level .

 Third step is to apply the rendering the 3d walls and floor to give the 3d effects

 And also applying rendering algorithm using FPS counter and by using the java

inbuilt functions.

 Fourth step is to apply the rotation on the given 3d maze .

 Fifth step is to give the input to user to walk across the maze by using the keyboard

options by implementing the mouse listener classes.

 Next step is to draw the entity and setting the camera position on its head.

 Next step is to set the victory screen and to declare the winner according to the game

logic.

 For the Future, implementation of the AI algorithm will be there.

31

4.4 Snapshots of the first level of the 3d game

4.4.1 Snapshot-1: Showing the front launcher of the game

Figure 11:Front Launcher of game

32

4.4.2 Snapshot-3: Showing the 3d maze with clues of first level

Figure 12:Player Inside The Game Map

33

4.4.3 Snapshot-2: Showing entities of 3d maze first level

Figure: 13:3d maze with entities

34

Till now, I have completed the level-1 of my game successfully and the control is given

to user as follows:

W-forward

A-Left

S-Backward

D-Right

Up-arrow-left

forward Down

arrow-right

forward.

35

CONCLUSION

My work presents a in-depth background study of that how to develop a 3d game .It

includes understanding the rendering, rotation and also how to use the FPS Technologies.

It also includes study of how to develop a game using Java 3d API by using the Applet,

Swing, Graphics functions.Also,this study further purposes how to include the AI part in

the game.

36

FUTURE WORK

 Future work includes implementing the Discretized Space algorithm proposed

 The completion of next 2 levels of the 3d game.

 Further implementing the prototype developed in a real life scenario

 Measuring the efficiency of the algorithm proposed.

37

 REFERENCES

[1] Apostolic Ampatzoglou, Alexander Chatzigeorgiou ―Evaluation of object-oriented

design patterns in game development‖. Department of Applied Informatics, University of

Macedonia, Thessaloniki, Greece, 2006,10.

[2] Krzysztof Kondrak― Design and implementation of application independent easy-to-

use game engine‖. Department of Computer and Information Science, 2009,41.

[3] Miao Wang, Hanyu Lu,‖Research On Algorithm Of Intelligent 3D Path Finding In

GameDevelopment‖.InternationalConferenceonIndustrialControlandElectronics

Engineeing,2012,5.

 [4]Daniel Selman, Textbook of ―Java 3D Programming‖, 2011,352.

 [5] Staffan Björk, Jussi Holopainen, “Describing Games -An Interaction-Centric

 Structural Framework‖. Nokia Research Center,Finland,2010,13.

 [6] Kyle Ingols, Aileen Tang, Lawrence Wang,‖ Adventure Game: Navigating The

 Jungles Of MIT‖.6.001,2014,12.

38

APPENDIX

Code:

Display.java

package com.mine.minegame;

import java.awt.*;

import java.awt.image.BufferStrategy;

import java.awt.image.BufferedImage;

import java.awt.image.DataBufferInt;

import java.io.File;

import java.io.IOException;

import javax.imageio.ImageIO;

import com.mine.minegame.graphics.show;

import com.mine.minegame.input.InputHandler;

public class Display extends Canvas implements Runnable {

 private static final long serialVersionUID = 1L;

 public static final int WIDTH = 900;

 public static final int HEIGHT = 700;

 public static final String title = "My First game";

 private Thread t;

 private show sh;

 private G1 game;

39

 private BufferedImage img,img1,img2,img3,img4,img5;

 private boolean running = false;

 private int[] pixels;

 private InputHandler input;

 public Display()

 {

 sh=new show(WIDTH,HEIGHT);

 game =new G1();

 img=new

BufferedImage(WIDTH,HEIGHT,BufferedImage.TYPE_INT_RGB);

 try {

 img1 = ImageIO.read(new File("res/Play1.gif"));

 img2 = ImageIO.read(new File("res/1.jpeg"));

 img3 = ImageIO.read(new File("res/2.jpeg"));

 img4 = ImageIO.read(new File("res/3.jpeg"));

 img5 = ImageIO.read(new File("res/4.jpeg"));

 } catch (IOException e) {

 e.printStackTrace();

 }

 pixels=((DataBufferInt)img.getRaster().getDataBuffer()).getData();

 input =new InputHandler();

 addKeyListener(input);

 addMouseListener(input);

 addFocusListener(input);

40

 }

 public synchronized void start() {

 if (running)

 return;

 running = true;

 t = new Thread(this);

 t.start();

 }

 public synchronized void stop()

 {

 if(!running)

 return;

 running=false;

 try

 {

 t.join();

 }

 catch(Exception e)

 {

 e.printStackTrace();

 System.exit(0);

 }

 }

public static void main(String[] args) {

41

 new Launch();

 }

 public void run() {

 int frame =0;

 double ups=0;

 long pt=System.nanoTime();

 double spt=1/40.0;

 int tc=0;

 boolean ticked=false;

 while(running)

 {

 long ct=System.nanoTime();

 long pat=ct-pt;

 pt=ct;

 ups+=pat/1000000000.0;

 while(ups>spt)

 {

 tick();

 ups-=spt;

 ticked=true;

 tc++;

 if(tc%60==0)

 {

 System.out.println(frame+"fps");

 frame=0;

 }

42

 }

 if(ticked)

 {

 render();

 frame++;

 }

 }

 }

 private void render() {

 BufferStrategy br=this.getBufferStrategy();

 if(br==null)

 {

 createBufferStrategy(3);

 return;

 }

 sh.render(game);

 for(int i=0;i<WIDTH*HEIGHT;i++)

 {

 pixels[i]=sh.pixels[i];

 }

 Graphics g=br.getDrawGraphics();

 g.drawImage(img, 0, 0, WIDTH, HEIGHT, null);

43

 g.drawImage(img1, 0, 400, 200,200, null);

 g.drawImage(img2, 0, 0, 100,100, null);

 g.drawImage(img3, 100, 0, 100,100, null);

 g.drawImage(img4, 200, 0, 100,100, null);

 g.drawImage(img5, 300, 0, 100,100, null);

 g.dispose();

 br.show();

 private void tick() {

 game.tick(input.key);

 }

Render3d.java

package com.mine.minegame.graphics;

import com.mine.minegame.input.Controller;

import com.mine.minegame.level.Block;

import com.mine.minegame.level.Level;

import java.util.Random;

import com.mine.minegame.G1;

public class Render3d extends Render{

 public double[] zBuffer;

 Random random=new Random(100);

44

 private double renderdistance=5000.0;

 private double forward,right,cosine,sine;

 public Render3d(int width, int height) {

 super(width, height);

 zBuffer =new double[width*height];

 }

 public void renderWall(double xLeft, double xRight, double zDistanceLeft,double

zDistanceRight, double yHeight) {

 G1 game=new G1();

 double up=game.controls.y;

 double xcLeft = ((xLeft) - right) * 2;

 double zcLeft = ((zDistanceLeft) - forward) * 2;

 double rotLeftSideX = xcLeft * cosine - zcLeft * sine;

 double yCornerTL = ((-yHeight) - up) * 2;

 double yCornerBL = ((+0.5 - yHeight) - up) * 2;

 double rotLeftSideZ = zcLeft * cosine + xcLeft * sine;

 double xcRight = ((xRight) - right) * 2;

 double zcRight = ((zDistanceRight) - forward) * 2;

 double rotRightSideX = xcRight * cosine - zcRight * sine;

 double yCornerTR = ((-yHeight) - up) * 2;

 double yCornerBR = ((+0.5 - yHeight) - up) * 2;

 double rotRightSideZ = zcRight * cosine + xcRight * sine;

 double xPixelLeft = (rotLeftSideX / rotLeftSideZ * height + width / 2);

 double xPixelRight = (rotRightSideX / rotRightSideZ * height + width /

2);

45

 if (xPixelLeft >= xPixelRight) {

 return;

 }

 int xPixelLeftInt = (int) (xPixelLeft);

 int xPixelRightInt = (int) (xPixelRight);

 if (xPixelLeftInt < 0) {

 xPixelLeftInt = 0;

 }

 if (xPixelRightInt > width) {

 xPixelRightInt = width;

 }

 double yPixelLeftTop = (int) (yCornerTL / rotLeftSideZ * height + height

/ 2);

 double yPixelLeftBottom = (int) (yCornerBL / rotLeftSideZ * height +

height / 2);

 double yPixelRightTop = (int) (yCornerTR / rotRightSideZ * height +

height / 2);

 double yPixelRightBottom = (int) (yCornerBR / rotRightSideZ * height +

height / 2);

 for (int x = xPixelLeftInt; x < xPixelRightInt; x++) {

 double pixelRotation = (x - xPixelLeft) / (xPixelRight -

xPixelLeft);

 double yPixelTop = yPixelLeftTop + (yPixelRightTop -

yPixelLeftTop) * pixelRotation;

 double yPixelBottom = yPixelLeftBottom + (yPixelRightBottom -

46

yPixelLeftBottom) * pixelRotation;

 int yPixelTopInt = (int) (yPixelTop);

 int yPixelBottomInt = (int) (yPixelBottom);

 if (yPixelTopInt < 0) {

 yPixelTopInt = 0;

 }

 if (yPixelBottomInt > height) {

 yPixelBottomInt = height;

 }

 for (int y = yPixelTopInt; y < yPixelBottomInt; y++) {

 pixels[x + y * width] =0x43C6DB;

 zBuffer[x + y * width] = 0;

 }

 }

 }

 public void floor(G1 game) {

 double fp = 8;

 double cp = 8;

 forward = game.controls.z;

47

 right = game.controls.x;

 double up = game.controls.y;

 double walking = Math.sin(game.time / 6.0) * 0.5;

 double rotation =game.controls.rotation;

 cosine = Math.cos(rotation);

 sine = Math.sin(rotation);

 for (int y = 0; y < height; y++) {

 double ceiling = (y + -height / 2.0) / height;

 double z = (fp + up) / ceiling;

 if (Controller.walk) {

 z = (fp + up + walking) / ceiling;

 }

 if (ceiling < 0) {

 z = (cp - up) / -ceiling;

 if (Controller.walk) {

 z = (cp - up - walking) / -ceiling;

 }

 }

 For (int x = 0; x < width; x++) {

 double depth = (x - width / 2.0) / height;

 depth *= z;

 double xx = depth * cosine + z * sine;

 double yy = z * cosine - depth * sine;

 int xPix = (int) (xx + right);

 int yPix = (int) (yy + forward);

 zBuffer[x + y * width] = z;

48

 pixels[x+y*width]=((xPix& 15)*16)|((yPix& 15)*16)<< 8;

 if (z > 500) {

 pixels[x + y * width] = 0;

 }

 }

 }

 Level level = game.level;

 int size = 50;

 for(int xB = -size; xB <= size; xB++){

 for (int zB = -size; zB <= size; zB++){

 Block block = level.create(xB, zB);

 Block east = level.create(xB + 1, zB);

 Block south = level.create(xB, zB +1);

 if(block.solid){

 if(!east.solid){

 renderWall(xB + 1, xB + 1, zB, zB +1, 0);

 }

 if(!south.solid){

 renderWall(xB + 1, xB, zB + 1, zB +1, 0);

 }

 } else {

 if(east.solid){

 renderWall(xB + 1, xB + 1, zB + 1, zB, 0);

 }

49

 if(south.solid){

 renderWall(xB, xB + 1, zB + 1, zB +1, 0);

 }

 }

 }

 }

 for(int xB = -size; xB <= size; xB++){

 for (int zB = -size; zB <= size; zB++){

 Block block = level.create(xB, zB);

 Block east = level.create(xB + 1, zB);

 Block south = level.create(xB, zB +1);

 if(block.solid){

 if(!east.solid){

 renderWall(xB + 1, xB + 1, zB, zB +1, 0.5);

 }

 if(!south.solid){

 renderWall(xB + 1, xB, zB + 1, zB +1, 0.5);

 }

 } else {

 if(east.solid){

 renderWall(xB + 1, xB + 1, zB + 1, zB, 0.5);

 }

50

 if(south.solid){

 renderWall(xB, xB + 1, zB + 1, zB +1, 0.5);

 }

 }

 }

 }}

 public void rdl()

 {

 for(int i=0;i<width*height;i++)

 {

 int colour=pixels[i];

 int brightness=(int)(renderdistance/(zBuffer[i]));

 if(brightness<0)

 {

 brightness=0;

 }

 if(brightness>255)

 {

 brightness=255;

 }

 int r=(colour>>16)&0xff;

 int g=(colour>>8)&0xff;

 int b=(colour)&0xff;

 r=r*brightness/255;

 g=g*brightness/255;

 b=b*brightness/255;

 pixels[i]=r<<16|g<<8|b;

 }

	page1
	page13

