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Abstract— Breast cancer is the most common cancer in 

women. It arises due to the uncontrolled growth of cells in the 
breast. The area suffering from damage is known as lesion and is 
classified into two categories i.e. Benign and Malignant. This 
paper classifies the breast lesions using a ratio texture feature 
obtained from the texture features calculated inside the lesion 
(IAI) and the texture feature calculated from the upper side of the 
lesion (UAI). Statistical texture features like EDGE, SFM, 
NGTDM, FOS, GLCM, GLRLM and GLDS were calculated. 
SVM classifier is used to classify the lesions on the basis of  ratio 
texture feature. The texture features calculated from IAI gains an 
overall accuracy of 62.2 % with NGTDM texture feature where as 
an overall accuracy of 82.2 % is achieved in UAI using the GLCM 
texture feature. However an overall accuracy of 86.6% is yielded 
with the FOS ratio texture vector having individual accuracies of 
82% and 92.2% for benign and malignant class respectively.  

Keywords — Breast cancer, Breast Lesion classification, Ratio 
Texture Vector, Statistical Texture Features, Benign, Malignant, 
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I. INTRODUCTION 
A million number of cells combines together to make a 

tissue or organ . These cells are changed or reconstructed at a 
regular interval. Whenever there is uncontrolled growth of cells 
starts in body, it leads to the beginning of the disease of cancer. 
Breast cancer is a form of cancer that originates in the breast 
tissues. It starts in the lobules or in the duct of breast that 
carries the milk [1]. Early diagnosis is having the privilege to 
save the patient from unwanted result of the disease. A variety 
of breast screening and detection techniques are available these 
days, any change in breast size, lump or any deformity in breast 
can be detected with the mammography, breast ultrasound and 
breast MRI. These techniques don’t only help in early detection 
of disease but also dimin ishes the chances of unwanted 
biopsies. There are two types of biopsies available i.e . Needle 
biopsy and Surgical biopsy. [2].So in order to reduce the 
chances of biopsies, these screening methods are used as 
second opinion to doctor in making the decision. The imaging 
systems i.e. X-Ray, Ultrasound and MRI provide the internal 
view of the breast. In X- ray, a radiation is passed through the 
body and when it strikes to the photographic plate, an image is 
produced. In Ultrasound, a high frequency sound wave is 
passed to the internal organs, the echo that returns back creates 
an image where as in MRI, a strong magnet and radio waves 
pulses are used to create an image. In  young patients, where the 

tissues of breast are very dense, X- ray has very low sensitivity 
and it doesn’t disclose the soft tissues, where as MRI is very 
expensive and does require more time for the perfect scan . 
Therefore ultrasound imaging is preferred due to its better 
penetration, real time display and low cost [3]. BIRADS 
system is used to standardize the reporting of breast cancer and 
used as a quality assurance tool for ultrasound images [2]. 
Ultrasonography distinguishes between the non invasive 
(Ben ign) and invasive (Malignant) form of cancer .It also helps 
to distinguish between the cyst and the solid mass present. The 
most commonly occurring benign case is Fibroadenoma, it  
occurs in 95% cases of non invasive cancer and the mast 
commonly occurring malignant cancer is Carcinoma. Different 
CAD tools have been designed earlier to distinguish the breast 
lesions. It has been investigated earlier that an overall accuracy 
of 84% is achieved using the morphological features to 
distinguish the lesions [4] and an overall accuracy of 85% [5] is 
obtained using the difference of statistical feature vector 
between inner ROI and the outer ROI of lesion.In this paper, 
the breast lesions are characterized in to benign and malignant 
lesions using the computation of texture ratio feature vector. 
The texture rat io feature vector is created using the ratio of 
texture feature present inside the lesion (IAI) and the texture 
features present outside the lesion i.e. on the upper side of the 
lesion (UAI).   

II. METHODOLOGY 
CAD system designed for classification of malignant and 
benign lesion follows a sequence as shown in Figure 1 

A. Input Ultrasound Database  Images 
A standard set of ultrasound images data is taken online 

from [6] for the benign and malignant cases. The dataset 
contains a total of 117 cases having 45 cases of benign class 
and 72 cases of malignant class. The sample of benign and 
malignant is displayed in Fig 2. The data set is divided into 
further two subcategories i.e. Training dataset and Testing 
Dataset. (Note : cases of lesions during biopsy implementation 
are discarded.)  

B. ROI (Region of Interest) Extraction Module  
The irregularity in the ultrasound is marked with help of an 
experienced radiologist. The infected area in image is marked  
and segmented with help of software Image J [7]. A variable 
size rectangular reg ion of interest is taken from inside the 
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lesion (IAI) and a rectangular region of size 32 × 32 is taken 
from upper side of the lesion (UAI) .i.e. from outside the lesion. 
The major concern of taking IAI and UAI is because of  taking 
the ratio of texture features present in the damaged area and 
texture features of area surrounding that damaged area. The 
samples of IAI and UAI are represented in Fig 3 and Fig 4.  
 

 
                         

Fig. 1. Overview of system 

 

 

  
Fig 2.1: Ultrasound of   Benign 

Case 
Fig 2.2: Ultrasound of Malignant 

Case 
 

                     

    
 
 

            

Fig. 3.1                                              Fig. 3.2 
Figure 3.1 : IAI marked Ultrasound 
Figure 3.2 : Extraction of IAI from ultrasound 

 

                     

    
 
 

            

Fig.3.1                                            Fig. 3.2 
Figure 3.1 : UAI marked Ultrasound 
Figure 3.2 : Extraction of UAI from ultrasound 

 

C. . Feature extraction Module 
    The area suffering from d isease is known as lesion. Breast 
lesions can be characterized by analyzing the shape, geometry,  
spiculations and micro lobulation [8], but in most of the cases 
there is not enough informat ion present, therefore feature  
extraction techniques are used to characterize the breast lesions 
. Feature ext raction module offers different methods to extract  
the features of the lesion. It includes texture feature extraction  
techniques and the morphological feature extraction  
techniques. The morphological feature extract ion techniques 
uses the shape of lesion to characterize where as the texture 
feature ext raction module ext racts features using the properties 
of surface. Texture features (TF) can be ext racted with   
 1) Signal Processing Methods 2) Statistical Methods and 3) 
Transform Domain Methods. This paper includes the 
characterizat ion of lesions using the Statistical Texture Feature 
extraction techniques. Statistical features are computed from 
IAI and UAI. A ratio vector of these texture features is created 
to characterize the lesion [9].  
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1) Statistical Methods 
An ultrasound image has pixels of various gray intensities. 

Based on these gray level intensities, the statistical features are 
computed using different order statistical methods.  

First order statistical methods computes average gray level, 
entropy, roughness and uniformity using the histogram 
moments to describe the texture[10]. 

Second order statistical method uses Gray Level Co-
occurrence Matrix (GLCM) to compute the texture features. It 
uses the frequent combinations of gray level intensities of same 
gray intensity levels present in different directions say θ = 0°, 
45°, 90°, 135°. A set of 13 GLCM TF were computed [11-12]. 

Higher order statistical features use Gray Level Run Length 
Matrix (GLRLM) to compute the TF. It uses the persistent 
combinations of gray level intensities present at a relative 
distance at each other. The consecutive set of gray level pixels 
constitute gray level run and no of times run occurs constitute 
run length. A set of 11 GLRLM are computed [13-14]. 

Other statistical features compute Gray Level d ifference 
statistics (GLDS), Statistical Feature Matrix (SFM), 
Neighborhood Gray Tone Difference Matrix (NGTDM) and 
Edge Features. GLDS calculates energy, entropy, contrast, 
mean and homogeneity depending upon the pixel pairs of 
different gray level present at different distances from each 
other. SFM calculates coarseness, contrast, periodicity and 
roughness of pixels at different distances within an ultrasound 
image. NGTDM consider the distance present in between the 
pixels and used to calculate the contrast, coarseness,  
complexity and  busyness where as EDGE features extracts 
informat ion present at the edge of the images. These values can 
be computed using the gradient value. The value of gradient 
will be high if  more in formation is present else it will            be 
low if no information is present[15-16].   

D.  Classification Module 
The process of grouping the testing class samples into the 
different classes is known as classification process. If a set of 
class is already defined for the training set then the 
classification is supervised classification and if the training set 
is not available then it is unsupervised classification. The SVM 
classifier is a form of supervised classifier used for the 
classification. It is working on basis of statistical theory and 
used for the linear and non linear classificat ion. It creates a 
hyper plane with the help of training set available and good 
separation is achieved instinctively. In non linear classification 
problems, the input data is mapped in to the kernel functions in 
which the data is mapped from input space to the higher 
dimensional feature space. For the classification task, Gaussian 
radial basis function kernel’s are used. LibSVM library has 
been used for the implementation of SVM classifier [17-45]. 

III. RESULTS AND DISCUSSION 
In this paper, a total of 117 cases are considered for 

classification purpose. These cases have 45 cases of benign 
class and 72 cases malignant class. The ratio vector is created 
for both the regions taken between IAI and UAI .Different 

experiments have been performed in this paper are tabulated in 
Table 1 where as the results are shown in Table 2 to Table 4. 

TABLE I.      LIST OF EXPERIMENTS PERFORMED TO CLASSIFY THE     
BREAST LESIONS 

Exp  1  To obtain classification performance of texture 
features obtained from IAI 

Exp  2 To obtain classification performance of texture 
features obtained from UAI 

Exp  3 To obtain classification performance of texture 
features obtained from rat io of statistical features   
between IAI and UAI 

 
The performance of various feature vectors (FVS) obtained 
from IAI using SVM classifier is tabulated in Table 2  

TABLE II.  CLASSIFICATION PERFORMANCE OF VARIOUS FVS OBTAINED 
FROM IAI      

TABLE III.   

 
FVS 

CM 
 

 ICA OCA 
  
  

B 
 

M   
 

EDGE 
 

B 12 
 

8 60.0 % 62.2% 
 M 9 

 
16 64.0 % 

 
FOS 

 
 
 

 

B 9 
 

11 45 .0% 
53.3% M 10 

 
15 60.0% 

 
GLCM 

 

B 4 
 

16   20.0% 
46.6% M 8 

 
17 68.0 % 

 
GLDS 

 

B 8 
 

12 40.0 % 
55.7% M 8 

 
17 68.0 % 

 
GLRLM 

 

B 0 
 

20 0.0 % 
44.4% M 5 

 
20 80.0 % 

 
NGTDM 

 

B 13 
 

7 65.0 % 
62.2% M 10 

 
17 68.0 % 

 
SFM 

 

B 10 
 

10 50 % 
55.7 M 10 

 
15 60 % 

 

Note: FVS: Feature Vectors, CM :Confusion matrix , OCA : 
Over all classification accuracy , B: benign class , M: 
Malignant Class , ICA: Indiv idual class accuracy , FOS : First 
order statistics , GLCM : Gray length co-occurrence matrix , 
GLRLM : Gray level run length matrix , GLDS: Gray level 
difference statistics , NGTDM : Neighborhood gray tone 
difference matrix., SFM : Statistical feature matrix. The feature 
vector having best OCA has been shaded with gray 
background.  

From Table 2 it is noticed that the NGTDM feature has 
highest overall accuracy of 62.2 % in IAI with indiv idual 
accuracies of 65.0 % and 68.0 % for benign and malignant 
classes respectively. 
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TABLE IV.  CLASSIFICATION PERFORMANCE OF VARIOUS FVS OBTAINED 
FROM UAI   

 
FVS 

CM 
 

ICA OCA 
 
 

B 
 

M   
 

EDGE 
 

B 15 
 

5 75.0 % 62.2% 
 M 5 

 
20 80.0 % 

 
FOS 

 

B 15 
 

5 75.0 % 
75.5% M 6 

 
19 76.0 % 

 
GLCM 

 

B 15 
 

5 75.0 % 
82.2% M 3 

 
22 88.0 % 

 
GLDS 

 

B 9 
 

11 45.0 % 
66.6% M 4 

 
21 84.0 % 

 
GLRLM 

 

B 0 
 

20 0.0 % 
55.5% M 0 

 
25 100 % 

 
NGTDM 

 

B 13 
 

7 65.0 % 
71.7% M 6 

 
19 76.0 % 

 
SFM 

 

B 15 
 

5 75.0 % 
62.2% M 12 

 
13 52.0 % 

Note : The feature vector having best OCA has been shaded with 
gray background 
 
From Table 3 it is  noticed that in  UAI,  GLCM feature is 
providing the highest overall accuracy of 82.2 % in with the 
highest  individual accuracies of 75 % and 88 % for benign 
and malignant classes respectively. 
 
 

TABLE V.  CLASSIFICATION PERFORMANCE OF VARIOUS FVS 
OBTAINED WITH RATIO VECTOR OF  IAI AND UAI        

 
FVS 

CM 
 

ICA OCA 
 
 

B 
 

M   
 

EDGE 
 

B 4 
 

16 20.0 % 46.6% 
 M 8 

 
17 68.0 % 

 
FOS 

 

B 16 
 

4 80.0 % 
86.6% M 2 

 
23 92.2 % 

 
GLCM 

 

B 9 
 

11 45.0 % 
64.4% M 5 

 
20 80.0 % 

 
GLDS 

 

B 12 
 

8 60.0 % 
55.5% M 12 

 
13 52.2 % 

 
GLRLM 

 

B 0 
 

20 0.0 % 
44.4% M 5 

 
20 75.0% 

 
NGTDM 

 

B 3 
 

17 15.2 % 
35.5% M 12 

 
13 52.2 % 

 
SFM 

 

B 4 
 

16 20.0 % 
40% M 11 

 
14 56.0 % 

Note: The feature vector having best OCA has been shaded 
with gray background.  
 
 

From Table 4, It has been noticed that in classification with the 
ratio vector of IAI and UAI, FOS has achieved the highest 
accuracy of 86.6 % with indiv idual accuracies of 80 % and 
92.2 % for benign and malignant classes respectively. 

IV. CONCLUSION  
 

This paper proposes a CAD system to help the radiologist as 
second opinion in classification of breast lesions. The 
experiments carried out in this paper present that the FOS 
texture feature rat io vector of UAI and IAI gains the maximum 
overall accuracy of 86.6 % in classificat ion of the lesions and 
gains the individual accuracy of 80 % for benign class and 
individual accuracy of 92.2 %for the malignant class. 
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