
Signal processing is a ubiquitous part of modern technology. Its mathematical
basis and many areas of application are the subject of this book, based on a
series of graduate-level lectures held at the Mathematical Sciences Research
Institute. Emphasis is on current challenges, new techniques adapted to new
technologies, and certain recent advances in algorithms and theory. The book
covers two main areas: computational harmonic analysis, envisioned as a tech-
nology for efficiently analyzing real data using inherent symmetries; and the
challenges inherent in the acquisition, processing and analysis of images and
sensing data in general — ranging from sonar on a submarine to a neurosci-
entist’s fMRI study.
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Hyperbolic Geometry, Nehari’s Theorem,
Electric Circuits, and Analog Signal Processing

JEFFERY C. ALLEN AND DENNIS M. HEALY, JR.

Abstract. Underlying many of the current mathematical opportunities in
digital signal processing are unsolved analog signal processing problems.
For instance, digital signals for communication or sensing must map into
an analog format for transmission through a physical layer. In this layer
we meet a canonical example of analog signal processing: the electrical
engineer’s impedance matching problem. Impedance matching is the de-
sign of analog signal processing circuits to minimize loss and distortion as
the signal moves from its source into the propagation medium. This pa-
per works the matching problem from theory to sampled data, exploiting
links between H∞ theory, hyperbolic geometry, and matching circuits. We
apply J. W. Helton’s significant extensions of operator theory, convex anal-
ysis, and optimization theory to demonstrate new approaches and research
opportunities in this fundamental problem.
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2 JEFFERY C. ALLEN AND DENNIS M. HEALY, JR.

1. The Impedance Matching Problem

Figure 1 shows a twin-whip HF (high-frequency) antenna mounted on a su-
perstructure representative of a shipboard environment. If a signal generator is
connected directly to this antenna, not all the power delivered to the antenna can
be radiated by the antenna. If an impedance mismatch exists between the signal
generator and the antenna, some of the signal power is reflected from the antenna
back to the generator. To effectively use this antenna,

nn

nn

nn

Courtesy of Antenna Products

Figure 1

a matching circuit must be inserted between the signal
generator and antenna to minimize this wasted power.

Figure 2 shows the matching circuit connecting the
generator to the antenna. Port 1 is the input from the
generator. Port 2 is the output that feeds the antenna.

The matching circuit is called a 2-port. Because the
2-port must not waste power, the circuit designer only
considers lossless 2-ports. The mathematician knows
the lossless 2-ports as the 2 × 2 inner functions. The
matching problem is to find a lossless 2-port that trans-
fers as much power as possible from the generator to
the antenna.

The mathematical reader can see antennas every-
where: on cars, on rooftops, sticking out of cell phones.
A realistic model of an antenna is extremely complex
because the antenna is embedded in its environment.
Fortunately, we only need to know how the antenna be-
haves as a 1-port device. As indicated in Figure 2, the
antenna’s scattering function or reflectance sL characterizes its 1-port behavior.
The mathematician knows sL as an element in the unit ball of H∞.

Figure 3 displays sL : jR → C of an HF antenna measured over the frequency
range of 9 to 30 MHz. (Here j = +

√−1 because i is used for current.) At
each radian frequency ω = 2πf , where f is the frequency in Hertz, sL(jω) is a

sG

sL

Lossless
2-Port

Matching
Circuit

Signal
Generator

Antenna

Port 1 Port 2

Figure 2. An antenna connected to a lossless matching 2-port.



HYPERBOLIC GEOMETRY, NEHARI’S THEOREM, ELECTRIC CIRCUITS 3

complex number in the unit disk that specifies the relative strength and phase
of the reflection from the antenna when it is driven by a pure tone of frequency
ω. sL(jω) measures how efficiently we could broadcast a pure sinusoid of fre-
quency ω by directly connecting the sinusoidal signal generator to the antenna.
If |sL(jω)| is near 0, almost no signal is reflected back by the antenna towards
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L
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ℜ : f=9−30 MHz

ℑ

Figure 3. The reflectance sL(jω) of an HF antenna.

the generator or, equivalently, almost all of the signal power passes through the
antenna to be radiated into space. If |sL(jω)| is near 1, most of this signal is
reflected back from the antenna and so very little signal power is radiated.

Most signals are not pure tones, but may be represented in the usual way
as a Fourier superposition of pure tones taken over a band of frequencies. In
this case, the reflectance function evaluated at each frequency in the band mul-
tiplies the corresponding frequency component of the incident signal. The net
reflection is the superposition of the resulting component reflections. To ensure
that an undistorted version of the generated signal is radiated from the antenna,
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the circuit designer looks for a lossless 2-port that “pulls sL(jω) to 0 over all
frequencies in the band.” As a general rule, the circuit designer must pull sL

inside the disk of radius 0.6 at the very least.
To take a concrete example, the circuit designer may match the HF antenna

using a transformer as shown in Figure 4. If we put a signal into in Port 1

sG

s1
sL

Figure 4. An antenna connected to a matching transformer.

of the transformer and measure the reflected signal, their ratio is the scattering
function s1. That is, s1 is how the antenna looks when viewed through the trans-
former. The circuit designer attempts to find a transformer so that the “matched
antenna” has a small reflectance. Figure 5 shows the optimal transformer does
provide a minimally acceptable match for the HF antenna. The grey disk shows
all reflectances |s| ≤ 0.6 and contains s1(jω) over the frequency band.

However, this example raises the following question: Could we do better with a
different matching circuit? Typically, a circuit designer selects a circuit topology,
selects the reactive elements (inductors and capacitors), and then undertakes a
constrained optimization over the acceptable element values. The difficulty of
this approach lies in the fact that there are many circuit topologies and each
presents a highly nonlinear optimization problem. This forces the circuit designer
to undertake a massive search to determine an optimal network topology with
no stopping criteria. In practice, often the circuit designer throws circuit after
circuit at the problem and hopes for a lucky hit. And there is always the nagging
question: What is the best matching possible? Remarkably, “pure” mathematics
has much to say about this analog signal processing problem.

2. A Synopsis of the H∞ Solution

Our presentation of the impedance matching problem weaves together many
diverse mathematical and technological threads. This motivates beginning with
the big picture of the story, leaving the details of the structure to the subse-
quent sections. In this spirit, the reader is asked to accept for now that to
every N -port (generalizing the 1- and 2-ports we have just encountered), there
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Figure 5. The reflectance sL (solid line) of an HF antenna and the reflectance

s1 (dotted line) obtained by a matching transformer.

corresponds an N × N scattering matrix S ∈ H∞(C+,CN×N ), whose entries
are analytic functions of frequency generalizing the reflectances of the previous
section. Mathematically, S : C+ → CN×N is a mapping from open right half
plane C+ (parameterizing complex frequency) to the space of complex N × N

matrices that is analytic and bounded with sup-norm

‖S‖∞ := ess.sup{‖S(jω)‖ : ω ∈ R} < ∞.

For a 1-port, S is scalar-valued and, as we saw previously, is called a scattering
function or reflectance. Scattering matrix entries for physical circuits are not
arbitrary functions of frequency. The circuits in this paper are linear, causal,
time-invariant, and solvable. These constraints force their scattering matrices
into H∞; see [3; 4; 31].
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Figure 6 presents the schematic of the matching 2-port. The matching 2-port
is characterized by its 2× 2 scattering matrix

S(jω) =
[

S11(jω) S12(jω)
S21(jω) S22(jω)

]
.

The matrix entries measure the output response of the 2-port. For example, s22

Lossless 2-portsG

sLvG v1 v2

+ +i1 i2

- -

s1

s11 s12
s21 s22

s2

S=

Figure 6. Matching circuit and reflectances.

measures the response reflected from Port 2 when a unit signal is driving Port 2;
s12 is the signal from Port 1 in response to a unit signal input to Port 2. If the
2-port is consumes power, it is called passive and its corresponding scattering
matrix is a contraction on jR:

S(jω)HS(jω) ≤
[

1 0
0 1

]

almost everywhere in frequency (a.e. in ω), or equivalently that S belongs to the
closed unit ball: S ∈ BH∞(C+,C2×2). The reflectances of the generator and
load are assumed to be passive also: sG, sL ∈ BH∞(C+). Because the goal is
to avoid wasting power, the circuit designer matches the generator to the load
using a lossless 2-port:

S(jω)HS(jω) =
[

1 0
0 1

]
a.e.

Scattering matrices satisfying this constraint provide the most general model for
lossless 2-ports. These are the 2 × 2 real inner functions, denoted by U+(2) ⊂
H∞(C+,C2×2). The circuit designer does not actually have access to all of
U+(2) through practical electrical networks. Instead, the circuit designer op-
timizes over a practical subclass U ⊂ U+(2). For example, some antenna ap-
plications restrict the total number d of inductors and capacitors. In this case,
U = U+(2, d) consists of the real, rational, inner functions of Smith–McMillan
degree not exceeding degree d (d defined in Theorem 6.2).

The figure-of-merit for the matching problem of Figure 6 is the transducer
power gain GT defined as the ratio of the power delivered to the load to the
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maximum power available from the generator [44, pages 606-608]:

GT (sG, S, sL) := |s21|2 1− |sG|2
|1− s1sG|2

1− |sL|2
|1− s22sL|2 , (2–1)

where s1 is the reflectance seen looking into Port 1 of the matching circuit at
the load sL terminating Port 2. This is computed by acting on sL by a linear-
fractional transform parameterized by the matrix S:

s1 = F1(S, sL) := s11 + s12sL(1− s22sL)−1s21. (2–2)

Likewise, looking into Port 2 with Port 1 terminated in sG gives the reflectance

s2 = F2(S, sG) := s22 + s21sG(1− s11sG)−1s12. (2–3)

The worst case performance of the matching circuit S is represented by the
minimum of the gain over frequency:

‖GT (sG, S, sL)‖−∞ := ess.inf{|GT (sG, S, sL; jω)| : ω ∈ R}.
In terms of this gain we can formulate the Matching Problem:

Matching Problem. Maximize the worst case of the transducer power gain
GT over a collection U ⊆ U+(2) of matching 2-ports:

sup{‖GT (sG, S, sL)‖−∞ : S ∈ U}.
The current approach is to convert the 2-port matching problem to an equivalent
1-port problem and optimize over an orbit in the hyperbolic disk. Specifically,
the transducer power gain can be written

GT (sG, S, sL) = 1−∆P (F2(S, sG), sL)2 = 1−∆P (sG, F1(S, sL))2,

where the power mismatch

∆P (s1, s2) :=
∣∣∣∣

s1 − s2

1− s1s2

∣∣∣∣
is the pseudohyperbolic distance between s̄1 and s2. The orbit of the generator’s
reflectance sG under the action of U is the set of reflectances

F2(U, sG) := {F2(S, sG) : S ∈ U} ⊆ BH∞(C+).

Thus, the matching problem is equivalent to maximizing the transducer power
gain over this orbit. The transducer power gain is bounded as follows:

sup{‖GT (sG, S, sL)‖−∞ : S ∈ U} = 1− inf{‖∆P (F2(S, sG), sL)‖2∞ : S ∈ U}
= 1− inf{‖∆P (s2, sL)‖2∞ : s2 ∈ F2(U, sG)}
≤ 1− inf{‖∆P (s2, sL)‖2∞ : s2 ∈ BH∞(C+)}.

Expressing matching in terms of power mismatch in this way manifests the un-
derlying hyperbolic geometry approximation problem. The reflectance of the
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generator is transformed to various new reflectances in the hyperbolic disk un-
der the action of the possible matching circuits. We look for the closest approach
of this orbit to the load sL with respect to the (pseudo) hyperbolic metric. The
last bound is reducible to a matrix calculation by a hyperbolic version of Ne-
hari’s Theorem [42], a classic result relating analytic approximation to an oper-
ator norm calculation. The resulting Nehari bound gives the circuit designer an
upper limit on the possible performance for any class U ⊆ U+(2) of matching
circuits. For some classes, this bound is tight, telling the circuit designer that
the benchmark is essentially obtainable with matching circuits from the specified
class. For example, when U is the class of all lumped lossless 2-ports (networks
of discrete inductors and capacitors)

U+(2,∞) :=
⋃

d≥0

U+(2, d)

and sG = 0, Darlington’s Theorem establishes that

sup{‖GT (sG = 0, S, sL)‖−∞ : S ∈ U+(2,∞)}
= 1− inf{‖∆P (s2, sL)‖2∞ : s2 ∈ BH∞(C+),

provided sL is sufficiently smooth. In this case, the circuit designer knows that
there are lumped, lossless 2-ports that get arbitrarily close to the Nehari bound.
The limitation of this approach is the requirement that the generator reflectance
sG = 0, which is not always true. Thus, a good research topic is to relax this
constraint, or to generalize Darlington’s Theorem. Another limitation of the
techniques described in this paper is that the Nehari methods produce only a
bound— they do not supply the matching circuit. However, the techniques do
compute the optimal s2, leading to another excellent research topic— the “uni-
tary dilation” of s2 to a scattering matrix with s2 = s22. That such substantial
research topics naturally arise shows how an applied problem brings depth to
mathematical investigations.

3. Technical Preliminaries

The real numbers are denoted by R. The complex numbers are denoted by
C. The set of complex M ×N matrices is denoted by CM×N . IN and 0N denote
the N ×N identity and zero matrices. Complex frequency is written p = σ + jω.
The open right-half plane is denoted by C+ := {p ∈ C : Re[p] > 0}. The open
unit disk is denoted by D and the unit circle by T.

3.1. Function spaces.

• L∞(jR) denotes the class of Lebesgue-measurable functions defined on jR
with norm ‖φ‖∞ := ess.sup{|φ(jω)| : ω ∈ R}.

• C0(jR) denotes the subspace of those continuous functions on jR that vanish
at ±∞ with sup norm.
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• H∞(C+) denotes the Hardy space of functions bounded and analytic on C+

with norm ‖h‖∞ := sup{|h(p)| : p ∈ C+}.
H∞(C+) is identified with a subspace of L∞(jR) whose elements are obtained by
the pointwise limit h(jω) = limσ→0 h(σ + jω) that converges almost everywhere
[39, page 153]. Convergence in norm occurs if and only if the H∞ function has
continuous boundary values. Those H∞ functions with continuous boundary
values constitute the disk algebra:

• A1(C+) := 1+̇H∞(C+)∩C0(jR) denotes those continuous H∞(C+) functions
that are constant at infinity.

These spaces nest as

A1(C+) ⊂ H∞(C+) ⊂ L∞(jR).

Tensoring with CM×N gives the corresponding matrix-valued functions:

L∞(jR,CM×N ) := L∞(jR)⊗ CM×N

with norm ‖φ‖∞ := ess.sup{‖φ(jω)‖ : ω ∈ R} induced by the matrix norm.

3.2. The unit balls. The open unit ball of L∞(jR,CM×N ) is denoted as

BL∞(jR,CM×N ) :=
{

φ ∈ L∞(jR,CM×N ) : ‖φ‖∞ < 1
}

.

The closed unit ball of L∞(jR,CM×N ) is denoted as

BL∞(jR,CM×N ) :=
{

φ ∈ L∞(jR,CM×N ) : ‖φ‖∞ ≤ 1
}

.

Likewise, the open unit ball of H∞(C+,CM×N ) is

BH∞(C+,CM×N ) := BL∞(jR,CM×N ) ∩H∞(C+,CM×N ).

3.3. The real inner functions. The class of real H∞(C+,CM×N ) functions
is denoted

Re H∞(C+,CM×N ) = {S ∈ H∞(C+,CM×N ) : S(p̄) = S(p)}.

A function S ∈ H∞(C+,CM×N ) is called inner provided

S(jω)HS(jω) = IN a.e.

The class of real inner functions is denoted

U+(N) := {S ∈ Re BH∞(C+,CN×N ) : S(jω)HS(jω) = IN a.e.}.

Lemma 3.1. U+(N) is closed subset of the boundary of ReBH∞(C+,CN×N ).
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Proof. It suffices to show closure. If {Sm} ⊂ U+(N) converges to S ∈
H∞(C+,CN×N ), then Sm(jω) → S(jω) almost everywhere so that

IN = lim
m→∞

Sm(jω)HSm(jω) = S(jω)HS(jω) a.e.

That is, S(jω) is unitary almost everywhere or S ∈ U+(N). ¤

3.4. The weak-∗ topology. We use the weak-∗ topology on L∞(jR) =
L1(jR)∗. A weak-∗ subbasis at 0 ∈ L∞(jR) is the collection of weak-∗ open sets

O[w, ε] := {φ ∈ L∞(jR) : |〈w, φ〉| < ε},

where ε > 0, w ∈ L1(jR), and

〈w, φ〉 :=
∫ ∞

−∞
w(jω)φ(jω)dω.

Every weak-∗ open set that contains 0 ∈ L∞(jR) is a union of finite intersections
of these subbasic sets. The Banach–Alaoglu Theorem [47, Theorem 3.15] gives
that the unit ball BL∞(jR) is weak-∗ compact. The next lemma shows that the
same holds for a distorted version of the unit ball, a fact that will have significant
import for the optimization problems we consider later.

Lemma 3.2. Let c, r ∈ L∞(jR) with r ≥ 0 define the disk

D(c, r) := {φ ∈ L∞(jR) : |φ− c| ≤ r a.e.}.

Then D(c, r) a closed , convex subset of L∞(jR) that is also weak-∗ compact .

Proof. Closure and convexity follow from pointwise closure and convexity.
To prove weak-∗ compactness, let Mr : L∞(jR) → L∞(jR) be multiplication:
Mrφ := rφ. Observe D(k, r) = k + MrBL∞(jR). Assume for now that Mr is
weak-∗ continuous. Then MrBL∞(jR) is weak-∗ compact, because BL∞(jR)
is weak-∗ compact, and the image of a compact set under a continuous function
is compact. This forces D(k, r) to be weak-∗ compact, provided Mr is weak-∗
continuous. To see that Mr is weak-∗ continuous, it suffices to shows that Mr

pulls subbasic sets back to subbasic sets. Let ε > 0, w ∈ L1(jR). Then

ψ ∈ M−1
r (O[w, ε])Mrψ ∈ O[w, ε] ⇐⇒ |〈w, rψ〉| < ε

⇐⇒ |〈rw, ψ〉| < ε ⇐⇒ ψ ∈ O[rw, ε],

noting that rw ∈ L1(jR). ¤

If K is a convex subset L∞(jR), then K is closed ⇐⇒ K is weak-∗ closed [17,
page 422]. Because H∞(C+) is a closed subspace of L∞(C+), is it also weak-∗
closed. Intersecting weak-∗ closed H∞(C+) with the weak-∗ compact unit ball
of L∞(jR) forces BH∞(C+) to be weak-∗ compact.
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3.5. The Cayley transform. Many computations are more conveniently
placed in function spaces defined on the open unit disk D rather than on the
open right half-plane C+. The notation for the spaces on the disk follows the
preceeding nomenclature with the unit disk D replacing C+ and the unit circle
T replacing jR. H∞(D) denotes the collection of analytic functions on the
open unit disk with essentially bounded boundary values. C(T) denotes the
continuous functions on the unit circle, A(D) := H∞(D)∩C(T) denotes the disk
algebra, and L∞(T) denotes the Lebesgue-measurable functions on the unit circle
T with norm determined by the essential bound. A Cayley transform connects
the function spaces on the right half plane to their counterparts on the disk.

Lemma 3.3 ([27, page 99]). Let the Cayley transform c : C+ → D

c(p) :=
p− 1
p + 1

extend to the composition operator c : L∞(T) → L∞(jR) as

h(p) := H ◦ c(p) (p = jω).

Then c is an isometry mapping





A(D)
H∞(D)
C(T)

L∞(T)





onto





A1(C+)
H∞(C+)
1+̇C0(jR)
L∞(jR)





.

3.6. Factoring H∞ functions. The boundary values and inner-outer factor-
ization of H∞ functions are notions most conveniently developed on the unit
disk and then transplanted to the right half-plane by the Cayley transform [35].
Let φ ∈ L1(T) have the Fourier expansion in z = exp(jθ)

φ(z) =
∞∑

n=−∞
φ̂(n)zn; φ̂(n) :=

∫ π

−π

e−jnθφ(ejθ)
dθ

2π
.

For 1 ≤ p ≤ ∞, define Hp(D) as the subspace of Lp(T) with vanishing negative
Fourier coefficients [27, page 77]:

Hp(D) := {h ∈ Lp(T) : ĥ(n) = 0 for n = −1,−2, . . . }.
Then Hp(D) is a closed subspace of Lp(T) and as [27, page 3]:

H∞(T) ⊂ Hp2(T) ⊂ Hp1(T) ⊂ H1(T) (1 ≤ p1 ≤ p2 ≤ ∞)

Each h ∈ Hp(D) admits an analytic extension on the open unit disk [27, p. 77]:

h(z) =
∞∑

n=0

ĥ(n)zn (z = rejθ).

From the analytic extension, define hr(ejθ) := h(rejθ) for 0 ≤ r ≤ 1. For r < 1,
hr is continuous and analytic. As r increases to 1, hr converges to h in the Lp

norm, provided 1 ≤ p < ∞. For p = ∞, hr converges to h in the weak-∗ topology
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(discussed on page 10). If hr does converge to h in the L∞ norm, convergence
is uniform and forces h ∈ A(D). Although disk algebra A(D) is a strict subset
of H∞(D) in the norm topology, it is a weak-∗ dense subset.

If φ is a positive, measurable function with log(φ) ∈ L1(T) then the analytic
function [48, page 370]:

q(z) = exp
(∫ π

−π

ejt + z

ejt − z
log |φ(ejt)| dt

2π

)
(z ∈ D),

is called an outer function. The magnitude of q(z) matches φ [48, page 371]:

lim
r→1

|qr(rejθ)| = φ(rejθ) (a.e.)

and leads to the equivalence: φ ∈ Lp(T) ⇐⇒ q ∈ Hp(D). We call q(z) a spectral
factor of φ. Every h ∈ H∞(D) admits an inner-outer factorization [48, pages
370-375]:

h(z) = ejθ0b(z)s(z)q(z),

where the outer function q(z) is a spectral factor of |h| and the inner function
consists of the Blaschke product [48, page 333]

b(z) := zk
∞∏

n=1

zn − z

1− z̄nz

z̄n

zn
,

zn 6= 0,
∑

(1− |zn|) < ∞, and the singular inner function

s(z) = exp
(
−

∫ π

−π

ejt + z

ejt − z
dµ(t)

)
,

for µ a finite, positive, Borel measure on T that is singular with respect to
the Lebesgue measure. In the electrical engineering setup, we will see that the
Blaschke products correspond to lumped, lossless circuits while a transmission
line corresponds to a singular inner function.

4. Electric Circuits

The impedance matching problem may be formulated as an optimization of
certain natural figures of merit over structured sets of candidate electrical match-
ing networks. We begin the formulation in this section, starting with an ex-
amination of the sorts of electrical networks available for impedance matching.
Consideration of various choices of coordinate systems parameterizing the set of
candidate matching circuits leads to the scattering formalism as the most suit-
able choice. Next we consider appropriate objective functions for measuring the
utility of a candidate impedance matching circuit. This leads to description and
characterization of power gain and mismatch functions as natural indicators of
the suitability of our circuits. With the objective function and the parameteriza-
tion of the admissible candidate set, we are in position to formulate impedance
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matching as a constrained optimization problem. We will see that hyperbolic
geometry plays a natural and enabling role in this formulation.

4.1. Basic components. Figure 7 represents an N -port— a box with N

pairs of wire sticking out of it. The use of the word “port” means that each
pair of wires obeys a conservation of current —the current flowing into one
wire of the pair equals the current flowing out of the other wire. We can imagine

1•
•
•

v1( t )

i1( t )+

-

vN ( t )

iN ( t )+

-

Figure 7. The N -port.

characterizing such a box by supplying current and voltage input signals of given
frequency at the various ports and observing the current and voltages induced
at the other ports. Mathematically, the N -port is defined as the collection N of
voltage v(p) and current i(p) vectors that can appear on its ports for all choices
of the frequency p = σ + jω [31]:

N ⊆ L2(jR,CN )× L2(jR,CN ).

If N is a linear subspace, then the N -port is called a linear N -port. Figures 8
and 9 present the fundamental linear 1-ports and 2-ports. These examples show

+

-

+ +

- -

v( p)

i( p)

R
C

L

Figure 8. The lumped elements: resistor v(p) = Ri(p); capacitor i(p) = pCv(p);

inductor v(p) = pLi(p).

that N can have the finer structure as the graph of a matrix-valued function: for
instance, with the inductor N is the graph of the function i(p) 7→ pLi(p).
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 v1( p)  v2( p)

 i1( p)  i2( p)
+ +

- -

π

 v1( p)  v2( p)

 i1( p)  i2( p)
+ +

- -

Figure 9. The transformer and gyrator.

More generally, if the voltage and current are related as v(p) = Z(p)i(p)
then Z(p) is called the impedance matrix with real and imaginary parts Z(p) =
R(p)+jX(p) called the resistance and reactance, respectively. If the voltage and
current are related as i(p) = Y (p)v(p) then Y (p) is called the admittance matrix
with real and imaginary parts Y (p) = B(p) + jG(p) called the conductance and
susceptance, respectively. The chain matrix T (p) relates 2-port voltages and
currents as [

v1

i1

]
=

[
t11(p) t12(p)
t21(p) t22(p)

] [
v2

−i2

]
.

The ideal transformer has chain matrix [3, Eq. 2.4]:
[

v1

i1

]
=

[
n−1 0
0 n

] [
v2

−i2

]
, (4–1)

where n is the turns ratio of the windings on the transformer. The gyrator has
chain matrix [3, Eq. 2.14]:

[
v1

i1

]
=

[
0 α

α−1 0

] [
v2

−i2

]
.

Figure 10 shows how the 1-ports can build the series and shunt 2-ports with
chain matrices

v1( p)

i2( p)i1( p)

v1( p) v2( p)

z( p )

y( p )

 i2( p) i1( p)

 v2( p)

Figure 10. Series and shunt 2-ports.

Tseries(p) =
[

1 z(p)
0 1

]
Tshunt(p) =

[
1 0

y(p) 1

]

using the using the impedance z(p) and admittance y(p). Connecting the series
and shunts in a “chain” produces a 2-port called a ladder. The ladder’s chain
matrix is the product of the individual chain matrices of the series and shunt 2-
ports. For example, the low-pass ladders are a classic family of lossless matching
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2-ports. Figure 11 shows a low-pass ladder with Port 2 terminated in a load zL.
The low-pass ladder has chain matrix

v1 v2

+ +

i1 i2

 - -

L1 L2 L3

C1 C1

zL

z1

Figure 11. A low-pass ladder terminated in a load.

T (p) =
[

1 pL1

0 1

] [
1 0

pC1 1

] [
1 pL2

0 1

] [
1 0

pC2 1

] [
1 pL3

0 1

]
.

The impedance looking into Port 1 is computed

z1 =
v1

i1
=

t11zL + t12
t21zL + t22

=: G(T, zL).

Thus, the chain matrices provide a natural parameterization for the orbit of the
load zL under the action of the low-pass ladders. Section 1 showed that these
orbits are fundamental for the matching problem. Even at this elementary level,
the mathematician can raise some pretty substantial questions regarding how
these ladders sit in U+(2) or how the orbit of the load sits in the unit ball of
H∞.

Unfortunately, the impedance, the admittance, and the chain formalisms do
not provide ideal representations for all circuits of interest. For example, there
are N -ports that do not have an impedance matrix (i.e., the transformer does
not have an impedance matrix). There are difficulties inherent in attempting
the matching problem in a formalism where the some of the basic objects under
discussion fail to exist.

In fact, much of the debate in electrical engineering in the 1960’s focused
on finding the right formalism that guaranteed that every N -port had a repre-
sentation as the graph of a linear operator. For example, the existence of the
impedance matrix Z(p) is equivalent to

N =
{[

Zi
i

]
: i ∈ L2(jR,CN )

}
.

but this formalism is not so useful when we need to describe circuits with trans-
formers in them. The claim is that any linear, passive, time-invariant, solvable
N -port always admits a scattering matrix S ∈ BH∞(C+,CN×N ); see [3; 4; 31].
Consequently, we work the matching problem in the scattering formalism, which
we now describe.
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4.2. The scattering matrices. Specializing to the 2-port in Figure 12, define

 2-Port
v1 v2

+ +i1 i2

- -

s11 s12
s21 s22

S=

a1

b1

a2

b2

r2r1

Figure 12. The 2-port scattering formalism.

the incident signal (see [3, Eq. 4.25a] and [4, page 234]):

a = 1
2{R

−1/2
0 v + R

1/2
0 i} (4–2)

and the reflected signal (see [3, Eq. 4.25b] and [4, page 234]):

b = 1
2{R

−1/2
0 v−R

1/2
0 i}, (4–3)

with respect to the normalizing1 matrix

R0 =
[

r1 0
0 r2

]
.

The scattering matrix maps the incident wave to the reflected wave:

b =
[

b1

b2

]
=

[
s11 s12

s21 s22

] [
a1

a2

]
= Sa.

The scattering description can be readily related to other representations when
the latter exist. For instance, the scattering matrix determines the impedance
matrix as

Z̃ := R
−1/2
0 ZR

−1/2
0 = (I + S)(I − S)−1.

To see this, invert Equations 4–2 and 4–3 and substitute into v = Zi. Conversely,
if the N -port admits an impedance matrix, normalize and Cayley transform to
get

S = (Z̃ − I)(Z̃ + I)−1.

Usually, R0 = r0I with r0 = 50 ohms so the normalizing matrix disappear.
The math guys always take r0 = 1. The EE’s have endless arguments about
normalizations. Unless stated otherwise, we’ll always normalize with respect to
r0.

1Two accessible books on the scattering parameters are [3] and [4]. The first of these

omits the factor 1
2

but carries this rescaling onto the power definitions. Most other books

use the power-wave normalization [16]: a = R
−1/2
0 {v + Z0i}/2, where the normalizing matrix

Z0 = R0 + jX0 is diagonal with diagonal resistance R0 > 0 and reactance X0.
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4.3. The chain scattering matrix. Closely related to the scattering matrix
is the chain scattering matrix Θ [25, page 148]:

[
b1

a1

]
= Θ

[
a2

b2

]
=

[
θ11 θ12

θ21 θ22

] [
a2

b2

]
.

When multiple 2-ports are connected in a chain the chain scattering matrix of the
chain is the product of the individual chain scattering matrices. The mappings
between the scattering and chain scattering matrices are [25]:

S 7→ s−1
21

[ − det[S] s11

−s22 1

]
= Θ 7→ θ−1

22

[
θ12 det[Θ]
1 −θ21

]
= S. (4–4)

Although every 2-port has a scattering matrix, it admits chain scattering matrix
only if s21 is invertible.

4.4. Passive terminations. In Figure 6, Port 2 is terminated with the load
reflectance sL so that

a2 = sLb2. (4–5)

Then the reflectance looking into Port 1 is obtained by the chain-scattering
matrix:

s1 :=
b1

a1
=

θ11a2 + θ12b2

θ21a2 + θ22b2
=

θ11sL + θ12

θ21sL + θ22
=: G1(Θ, sL).

Equation 4–4 also allows us to express s1 in terms of the linear-fractional form
of the scattering matrix introduced in Equation 2–2: s1 = F1(S, sL). Similarly,
if Port 1 of the 2-port is terminated with the load reflectance sG, then the
reflectance looking into Port 2 is

s2 = G2(Θ, sG) :=
θ22sG + θ21

θ12sG + θ11
= F2(S, sG),

with F2(S, sG) as introduced in Equation 2–3.

4.5. Active terminations. Equation 4–5 admits a generalization to include
the generators. Figure 13 shows the labeling convention of the scattering vari-
ables. The generalization includes the scattering of the generator in terms of the

 2-Port
s11 s12
s21 s22

S=

a1

b1

bL

b2

cG

aG

bG a2

cL

aL

sG sL
+

-
v1

  i1
  i2

v2

+

-

Figure 13. Scattering conventions.
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voltage source [16, Eq. 3.2]:

bG = sGaG + cG; cG :=
r
−1/2
0

zG + r0
vG. (4–6)

To get this result, use Equations 4–2 and 4–3 to write v1 = r
1/2
0 (a1 + b1) and

i1 = r
−1/2
0 (a1 − b1). Substitute this into the voltage drops vG = zGi1 + v1 of

Figure 13 to get

cG =
r
−1/2
0 vG

zG + r0
= a1 − zG − r0

zG + r0
b1 = bG − sGaG.

We can now analyze the setup in Figure 13. Equations 4–5 and 4–6 give

a =
[

a1

a2

]
=

[
sG 0
0 sL

] [
b1

b2

]
+

[
cG

cL

]
=: SXb + cX .

Substitution into b = Sa solves the 2-port scattering as

a = (I2 − SXS)−1cX .

4.6. Power flows in the 2-port. With respect to an N -port, the complex
power2 is [4, page 241]:

W (p) := v(p)H i(p).

Because v(p) has units volts second and i(p) has units ampères second, W (p)
units of watts/Hz2. The average power delivered to the N -port is [21, page 19]

Pavg := 1
2 Re[W ] = 1

2{aHa− bHb} = 1
2a

H{I − SHS}a. (4–7)

We’re dragging the 1/2 along so our power definitions coincide with [21]. If the
N -port consumes power (Pavg ≥ 0) for all its voltage and current pairs, then the
N -port is said to be passive. If the N -port consumes no power (Pavg = 0) for all
its voltage and current pairs, then the N -port is said to be lossless. In terms of
the scattering matrices [28]:

• Passive: SH(jω)S(jω) ≤ IN

• Lossless: SH(jω)S(jω) = IN

for all ω ∈ R. Specializing these concepts to the 2-port of Figure 14, leads to
the following power flows:

• The average power delivered to Port 1 is

P1 := 1
2 (|a1|2 − |b1|2) =

|a1|2
2

(1− |s1|2).

• The average power delivered to Port 2 is

P2 := 1
2 (|a2|2 − |b2|2) = −PL.

2Baher uses [3, Eq. 2.17]: W (p) = i(p)Hv(p).
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sG

sLcG

a2

P1

s11 s12
s21 s22

S=

a1

b1 b2

PL

bG

aG

bL

aL

P2PG

Figure 14. Matching circuit and reflectances.

• The average power delivered to the load is [21, Eq. 2.6.6]

PL := 1
2 (|aL|2 − |bL|2) =

|b2|2
2

(1− |sL|2).
• The average power delivered by the generator:

PG = 1
2 (|bG|2 − |aG|2).

To compute PG, observe that Figure 14 gives aG = b1 and bG = a1. Substitute
these and b1 = s1a1 into Equation 4–6 to get cG = (1− sGs1)a1. Then

PG = 1
2 (|a1|2 − |b1|2) =

|a1|2
2

(1− |s1|2) =
|cG|2

2
1− |s1|2
|1− sGs1|2 . (4–8)

Lemma 4.1. Assume the setup of Figure 14. There always holds P2 = −PL and
PG = P1. If the 2-port is lossless, P1 + P2 = 0.

4.7. The power gains in the 2-port. The matching network maps the
generator’s power into a form that we hope will be more useful at the load
than if the generator drove the load directly. The modification of power is
generically described as “gain.” The matching problem puts us in the business of
gain computations, and we need the maximum power and mismatch definitions.
The maximum power available from a generator is defined as the average power
delivered by the generator to a conjugately matched load. Use Equation 4–8 to
get [21, Eq. 2.6.7]:

PG,max := PG|s1=sG =
|cG|2

2
(1− |sG|2)−1.

The source mismatch factor is [21, Eq. 2.7.17]:

PG

PG,max
=

(1− |sG|2)(1− |s1|2)
|1− sGs1|2 .

The maximum power available from the matching network is defined as the
average power delivered from the network to a conjugately matched load [21,
Eq. 2.6.19]:

PL,max := PL|sL=s2 :=
|b2|sL=s2 |2

2
(1− |s2|2).
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Less straightforward to derive is the load mismatch factor [21, Eq. 2.7.25]:

PL

PL,max
=

(1− |sL|2)(1− |s2|2)
|1− sLs2|2 .

These powers lead to several types of power gains [21, page 213]:

• Transducer power gain

GT :=
PL

PG,max
=

power delivered to the load
maximum power available from the generator

.

• Power gain or operating power gain

GP :=
PL

P1
=

power delivered to the load
power delivered to the network

.

• Available power gain

GA :=
PL,max

PG,max
=

maximum power available from the network
maximum power available from the generator

.

Lemma 4.2. Assume the setup of Figure 14. If the 2-port is lossless,

GT =
(1− |sG|2)(1− |s1|2)

|1− sGs1|2 .

Proof.

GT =
PL

PG,max

Lemma 4.1=
−P2

PG,max

lossless=
P1

PG,max

Lemma 4.1=
PG

PG,max
.

¤

What’s nice about the proof is that it makes clear that the equality holds because
the power flowing into the lossless 2-port is the power flowing out of the 2-port.
The key to analyzing the transducer power gain is the power mismatch.

4.8. Power mismatch. Previously we established that the power mismatch
is the key to the matching problem. In fact, this is a concept that brings to-
gether ideas from pure mathematics and applied electrical engineering, as seen
in the engineer’s Smith Chart— a disk-shaped analysis tool marked with coordi-
nate curves which look compellingly familiar to the mathematician. A standard
engineering reference observes the connection [51]:

The transformation through a lossless junction [2-port] . . . leaves invariant
the hyperbolic distance . . . The hyperbolic distance to the origin of the
[Smith] chart is the mismatch, that is, the standing-wave ratio expressed
in decibels: It may be evaluated by means of the proper graduation on
the radial arm of the Smith chart. For two arbitrary points W1, W2, the
hyperbolic distance between them may be interpreted as the mismatch that
results from the load W2 seen through a lossless network that matches W1

to the input waveguide.
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Hyperbolic metrics have been under mathematical development for the last 200
years, while Phil Smith introduced his chart in the late 1930’s with a somewhat
different motivation. It is fascinating to see how hyperbolic analysis transcribes
to electrical engineering. Mathematically, we start with the pseudohyperbolic
metric3 on D defined as follows (see [58, page 58]):

ρ(s1, s2) :=
∣∣∣∣

s1 − s2

1− s1s2

∣∣∣∣ (s1, s2 ∈ D).

The Möbius group of symmetries of D consists of all maps g : D → D [20,
Theorem 1.3]:

g(s) = ejθ s− a

1− ās
,

where a ∈ D and θ ∈ R. That ρ is invariant under the Möbius maps g is
fundamental (see [20] and [58, page 58]):

ρ(g(s1),g(s2)) = ρ(s1, s2). (4–9)

The hyperbolic metric4 on D is [58, page 59]:

β(s1, s2) = 1
2 log

(
1 + ρ(s1, s2)
1− ρ(s1, s2)

)
.

Because ρ is Möbius-invariant, it follows that β is also Möbius-invariant:

β(g(s1),g(s2)) = β(s1, s2).

One can visualize the matching problem in terms of the action of this group
of symmetries. At fixed frequency, a given load reflectance sL corresponds to a
point in D. Attaching a matching network to the load modifies this reflectance
by applying to it the Möbius transformation associated with the chain scattering
matrix of the matching network. By varying the choice of the matching network,
we vary the Möbius map applied to sL and sweep the modified reflectance around
the disk to a desirable position.

The series inductor of Figure 10 provides an excellent example of this action
of a circuit as Möbius map acting on the reflectances parameterized as points
of the unit disk. The series inductor has the chain scattering matrix [25, Table
6.2]:

Θ(p) =
[

1− Lp/2 Lp/2
−Lp/2 1 + Lp/2

]
.

that acts on s ∈ D as

G(Θ; s) =
Θ11s + Θ12

Θ21s + Θ22
= − ā

a

s− a

1− ās

∣∣∣∣
a=(1+j2/(ωL))−1

.

3Also known as the Poincaré hyperbolic distance function; see [50].
4Also known as the Bergman metric or the Poincaré metric.
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Figure 15 shows the Möbius action of this lossless 2-port on the disk. Frequency
is fixed at p = j. The upper left panel shows the unit disk partitioned into
radial segments. Each of the other panels show the action of an inductor on
the points of this disk. Increasing the inductance warps the radial pattern to
the boundary. The radial segments are geodesics of ρ and β. Because the
Möbius maps preserve both metrics, the resulting circles are also geodesics. More
generally, the geodesics of ρ and β are either the radial lines or the circles that
meet the boundary of the unit disk at right angles.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
 L=0

ℜ

ℑ

−1 −0.5 0 0.5 1
−1

−0.5

0
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 L=1

ℜ

ℑ

−1 −0.5 0 0.5 1
−1
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0.5

1
 L=2

ℜ

ℑ

−1 −0.5 0 0.5 1
−1
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0.5

1
 L=3

ℜ

ℑ

Figure 15. Möbius action of the series inductor on the unit disk for increasing

inductance values (frequency fixed at p = j).

Several electrical engineering figures of merit for the matching problem are
naturally understood in terms of the geometry of the hyperbolic disk. We are
concerned primarily with three: (1) the power mismatch, (2) the VSWR, (3) the
transducer power gain. The power mismatch between two passive reflectances
s1, s2 is [29]:

∆P (s1, s2) :=
∣∣∣∣

s1 − s2

1− s1s2

∣∣∣∣ = ρ(s̄1, s2), (4–10)
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or the pseudohyperbolic distance between s̄1 and s2 measured along their geo-
desic. Thus, the geodesics of ρ attach a geometric meaning to the power mis-
match and illustrate the quote at the beginning of this section.

The voltage standing wave ratio (VSWR) is a sensitive measure of impedance
mismatch. Intuitively, when power is pushed into a mismatched load, part of the
power is reflected back measured by the reflectance s ∈ D. Superposition of the
incident and reflected wave sets up a voltage standing wave pattern. The VSWR
is the ratio of the maximum to minimum voltage in this pattern: [6, Equation
3.51]:

VSWR(s) = 20 log10

(
1 + |s|
1− |s|

)
[dB].

Referring to Figure 15, the VSWR is a scaled hyperbolic distance from the origin
to s measured along its radial line. Thus, the geodesics of β attach a geometric
meaning to the VSWR.

The transducer power gain GT links to the power mismatch ∆P by the clas-
sical identity of the hyperbolic metric [58, page 58]:

1− ρ(s1, s2)2 =
(1− |s1|2)(1− |s2|2)

|1− s1s2|2 (s1, s2 ∈ D), (4–11)

and Lemma 4.2 provided the matching 2-port is lossless.

Lemma 4.3. If the 2-port is lossless in Figure 14, GT = 1−∆P (sG, s1)2.

That is, maximizing GT is equivalent to minimizing the power mismatch. As the
next result shows, we can use either Port 1 or Port 2 (Proof in Appendix B).

Lemma 4.4. Assume the 2-port is lossless in Figure 6: S ∈ U+(2). Assume
sG and sL are strictly passive: sG, sL ∈ BH∞(C+). Then s1 = F1(S, sL) and
s2 = F2(S, sG) (defined in Equations 2–2 and 2–3 respectively) are well-defined
and strictly passive with the LFT (Linear Fractional Transform) law

∆P (sG, F1(S, sL)) = ∆P (F2(S, sG), sL)

and the TPG (Transducer Power Gain) law

GT (sG, S, sL) = 1−∆P (sG,F1(S, sL))2 = 1−∆P (F2(S, sG), sL)2

holding on jR.

The LFT law is not true if S is strictly passive. For SHS < I2, define the gains
at Port 1 and 2 as follows:

G1(sG, S, sL) := 1−∆P (sG, F1(S, sL))2

G2(sG, S, sL) := 1−∆P (F2(S, sG), sL)2.
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Lemma 4.4 gives that GT = G1 = G2, provided S is lossless. If S is only passive,
we can only say GT ≤ G1, G2. To see this, Equation 4–11 identifies G1 and G2

as mismatch factors:

G1(sG, S, sL) = 1−∆P (sG, s1)2 =
PG

PG,max
,

G2(sG, S, sL) := 1−∆P (s2, sL)2 =
PL

PL,max
.

If we believe that a passive 2-port forces the available gain GA ≤ 1 and power
gain GP ≤ 1 of Section 4.7, the inequalities GT ≤ G1, G2 are explained as

GT =
PL

PG,max
=

PL,max

PG,max

PL

PL,max
= GAG2

GT =
PL

PG,max
=

P1

PG,max

PL

P1
= GP G1.

4.9. Sublevel sets of the power mismatch. We have just seen that
impedance matching reduces to minimization of the power mismatch. We can
obtain some geometrical intuition for the behavior of this by examining Fig-
ure 16, which shows the isocontours of the function s2 7→ ∆P (s2, sL) for a fixed
reflectance sL in the unit disk (at a fixed frequency). The key observation is
that for each fixed frequency, the sublevel sets {s2 ∈ D : ∆P (s2, sL) ≤ ρ} com-
prise a family of concentric disks with hyperbolic center sL. Of course, we must
actually consider power mismatch over a range of frequencies. To this end, the
next lemma characterizes the corresponding sublevel sets in L∞(jR).

Lemma 4.5 (∆P Disks). Let sL ∈ BL∞(jR). Let 0 ≤ ρ ≤ 1. Define the center
function

k := s̄L
1− ρ2

1− ρ2|sL|2 ∈ BL∞(jR), (4–12)

the radius function

r := ρ
1− |sL|2

1− ρ2|sL|2 ∈ BL∞(jR), (4–13)

and the disk

D(k, r) := {φ ∈ L∞(jR) : |φ(jω)− k(jω)| ≤ r(jω)}.

Then,

D-1: D(k, r) is a closed , convex subset of L∞(jR).
D-2: D(k, r) = {φ ∈ BL∞(jR) : ρ ≥ ‖∆P (φ, sL)‖∞}.
D-3: D(k, r) is a weak-∗ compact , convex subset of L∞(jR).
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Figure 16. Sublevel sets of ∆P (s2, sL) in the unit disk.

Proof. Under the assumption that ‖sL‖∞ < 1, it is straightforward to verify
that the center and radius functions are in the open and closed unit balls of
L∞(jR), respectively.
D-1: Convexity and closure follow from pointwise convexity and closure.
D-2: Basic algebra computes D(k, r) = {φ ∈ L∞(jR) : ρ ≥ ‖∆P (φ, sL)‖∞}.
The “free” result is that ‖D(k, r)‖∞ ≤ 1. To see this, let s := ‖sL‖∞. The norm
of any element in D(k, r) is bounded by

‖k‖∞ + ‖r‖∞ ≤ s
1− ρ2

1− ρ2s2
+ ρ

1− s2

1− ρ2s2
=: u(s, ρ).

For s ∈ [0, 1) fixed, we obtain

∂u

∂ρ
= − −1 + s2

(ρs + 1)2
.
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Thus, u(s, ◦) attains its maximum on the boundary of [0, 1]: u(s, 1) = 1. Thus,
‖D(k, r)‖∞ ≤ 1.
D-3: D-1 and Lemma 3.2. ¤

4.10. Continuity of the power mismatch. Consider the mapping ∆ρ :
BL∞(jR) → R+

∆ρ(s2) := ‖∆P (s2, sL)‖∞,

for fixed sL ∈ BL∞(jR). The main problem of this paper concerns the min-
imization of this functional over feasible classes (ultimately, the orbits of the
reflectance under classes of matching circuits). This problem is determined by
the structure of the sublevel sets of ∆ρ. What we have just seen is that the
sublevel sets are disks in function space, a very nice structure indeed. As the
“level” of ∆ρ is decreased, these sets neck down; the question of existence of a
minimizer in a feasible class comes down to the intersection of the feasible class
with these sublevel sets.

Definition 4.1. [48, pages 38–39], [57, page 150] Let γ be a real or extended-
real function on a topological space X.

• γ is lower semicontinuous provided {x ∈ X : γ(x) ≤ α} is closed for every real
α.

• γ is lower semicompact provided {x ∈ X : γ(x) ≤ α} is compact for every
real α.

These properties produce minimizers by the Weierstrass Theorem.

Theorem 4.1 (Weierstrass). [57, page 152] Let K be a nonempty subset of
a a topological space X. Let γ be a real or extended-real function defined on K.
If either condition holds:

• γ is lower semicontinuous on the compact set K, or
• γ is lower semicompact ,

then inf{γ(x) : x ∈ K} admits minimizers.

Lemma 4.5 demonstrates that ∆ρ is both weak-∗ lower semicontinuous and weak-
∗ lower compact. The minimum of ∆ρ in BL∞(jR) is 0 = ∆ρ(sL) that corre-
sponds to a perfect match over all frequencies. However, the matching functions
at our disposal are not arbitrary, and this trivial solution is typically not ob-
tainable with real matching circuits. The constraints on allowable matching
functions lead us to consider minimizing ∆ρ restricted to BH∞(C+), BA1(C+),
and associated orbits. Finally, straight-forward sequence arguments show that
∆ρ is also continuous as a function on BL∞(jR) in the norm topology.

Lemma 4.6. If sL ∈ BL∞(jR), then ∆ρ : BL∞(jR) → R+ is continuous.

Proof. Define ∆P1 : BL∞(jR) → L∞(jR) as ∆P1(s) := (s̄− sL)(1− ssL)−1.
If we show that ∆P1 is continuous then composition with ‖◦‖∞ shows continuity
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of ∆ρ. The first task is to show ∆P1 is well-defined. For each s ∈ BL∞(jR),
∆P1(s) is measurable and

∣∣∣∣
s̄− sL

1− ssL

∣∣∣∣ ≤
2

1− ‖s‖∞‖sL‖∞ ≤ 2
1− ‖sL‖∞ .

Thus, ∆P1(s) ∈ L∞(jR) so is well-defined. For continuity, let {sn} ⊂ BL∞(jR)
and sn → s. Then

∆P1(sn)−∆P1(s) =
sn−sL

1−snsL
− s̄−sL

1−ssL

=
1

(1−snsL)(1−ssL)
{(sn−sL)(1−ssL)−(s̄−sL)(1−snsL)}

=
1

(1−snsL)(1−ssL)
{
sn−s+sL(s̄sn−sns)+(s−sn)s2

L

}
.

In terms of the norm,

‖∆P1(sn)−∆P1(s)‖
≤ (1− ‖sL‖∞)−2{‖sn − s‖∞ + ‖sL‖∞‖s̄sn − sns‖∞ + ‖s− sn‖∞‖sL‖2∞},

so that the difference converges to zero. With ∆P1 a continuous mapping, the
continuity of the norm ‖ ◦ ‖∞ : L∞(jR) → R+ makes the mapping ∆ρ(s) :=
‖∆P1(s)‖∞ also continuous. ¤

5. H∞ Matching Techniques

Recalling the matching problem synopsis of Section 2, our goal is to maximize
the transducer power gain GT over a specified class U of scattering matrices. By
Lemma 4.3, we can equivalently minimize the power mismatch:

sup{‖GT (sG, S, sL)‖−∞ : S ∈ U} = 1− inf{‖∆P (F2(S, sG), sL)‖2∞ : S ∈ U}
= 1− inf{‖∆P (s2, sL)‖2∞ : s2 ∈ F2(U, sG)}
≤ 1− inf{‖∆P (s2, sL)‖2∞ : s2 ∈ BH∞(C+)}.

The next step in our program is to develop tools for computing the upper bound
at the end of this chain of expressions, based on what we know of sL. Ultimately,
we will try to make this a tight bound given the right properties of the admissible
matching circuits parameterized by U. The key computation is a hyperbolic
version of Nehari’s Theorem that computes the minimum power mismatch from
the Hankel matrix determined by sL.

We start towards this in Section 5.1 by reviewing the concept of Hankel op-
erators and their relation to best approximation from H∞ as expressed by the
linear Nehari theory. Section 5.2 extends this to a nonlinear framework that in-
cludes the desired hyperbolic Nehari bound on the power mismatch as a special
case.
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Having computed a bound on our ability to match a given load, we consider
how closely one can approach this in a practical implementation with real cir-
cuits. The key matching circuits we consider in practice are the lumped, lossless
2-ports with scattering matrices in U+(2,∞). Later on, Section 7 demonstrates
that the orbit of sG = 0 under U+(2,∞) is dense in the real disk algebra,
Re BA1(C+) (Darlington’s Theorem), so that smallest mismatch approachable
with lumped circuits is

inf{‖∆P (s2, sL)‖∞ : s2 ∈ F2(U+(2,∞), 0)}
= inf{‖∆P (s2, sL)‖∞ : s2 ∈ ReBA1(C+)}.

If we can relate the latter infimum to the minimization over the larger space
H∞(C+), then minimizing the power mismatch over the lumped circuits can be
related to the computable hyperbolic Nehari bound. This seems plausible from
experience with the classical linear Nehari Theory, where φ real and continuous
implies that the distance from the real subset of disk algebra is the same as the
distance to H∞:

‖φ−H∞(C+)‖∞ = ‖φ− Re A1(C+)‖∞.

Section 5.3 obtains similar results for the nonlinear hyperbolic Nehari bound
using metric properties of the power mismatch ∆P .

Thus, the results of this section will provide the desired result: the Nehari
bound for the matching problem is both computable and tight in the sense that
a sequence of lumped, lossless 2-ports can be found that approach the Nehari
bound.

5.1. Nehari’s theorem. The Toeplitz and Hankel operators are most con-
veniently defined on L2(T) using the Fourier basis. Let φ ∈ L2(T) have the
Fourier expansion

φ(z) =
∞∑

n=−∞
φ̂(n)zn (z = ejθ).

Let P denote the orthogonal projection of L2(T) onto H2(D):

P φ (z) =
∞∑

n=0

φ̂(n)zn.

The Toeplitz operator with symbol φ ∈ L∞(T) is the mapping Tφ : H2(D) →
H2(D)

Tφ h := P (φh).

The Hankel operator with symbol φ ∈ L∞(T) is the mapping Hφ : H2(D) →
H2(D)

Hφ h := U(I − P )(φh),
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where U : H2(D)⊥ → H2(D) is the unitary “flipping” operator:

Uh (z) := z−1h(z−1).

These operators admit matrix representations with respect to the Fourier basis
[56, page 173]:

Tφ =




φ̂(0) φ̂(1) φ̂(2)
. . .

φ̂(−1) φ̂(0) φ̂(1)
. . .

φ̂(−2) φ̂(−1) φ̂(0)
. . .

. . . . . . . . . . . .




and [56, page 191]

Hφ =




φ̂(−1) φ̂(−2) φ̂(−3) · · ·
φ̂(−2) φ̂(−3) φ̂(−4) · · ·
φ̂(−3) φ̂(−4) φ̂(−5) · · ·

...
...

...




.

The operator norm is

‖Hφ‖ := sup{‖Hφh‖∞ : h ∈ BH∞(D)}.

The essential norm is

‖Hφ‖e := inf{‖Hφ −K‖ : K is a compact operator}.

The following version of Nehari’s Theorem emphasizes existence and uniqueness
of best approximations.

Theorem 5.1 (Nehari [56; 45]). If φ ∈ L∞(T), then φ admits best approxi-
mations from H∞(D) as follows:

N-1: ‖φ−H∞(D)‖∞ = ‖Hφ‖.
N-2: ‖φ− {H∞(D) + C(T)}‖∞ = ‖Hφ‖e.
N-3: If ‖Hφ‖e < ‖Hφ‖ then best approximations are unique.

Thus, Nehari’s Theorem computes the distance from φ to H∞(D) using the
Hankel matrix. However, solving the matching problem with lumped circuits
forces us to minimize from the disk algebra A(D). Because the disk algebra is a
proper subset of H∞(D), there always holds the inequality:

‖φ−A(D)‖∞ ≥ ‖φ−H∞(D)‖∞ = ‖Hφ‖.

Fortunately for our application, equality holds when φ is continuous.
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Theorem 5.2 (Adapted from [39, pages 193–195], [33; 34]). If φ ∈ 1+̇C0(jR),

‖φ−A1(C+)‖∞ = ‖φ−H∞(C+)‖∞
and there is exactly one h ∈ H∞(C+) such that

‖φ−A1(C+)‖∞ = |φ(jω)− h(jω)| a.e.

Thus, continuity forces unicity and characterizes the minimum by the circularity
of the error φ − h. To get existence in the disk algebra requires more than
continuity. Let φ : R → C be periodic with period 2π. The modulus of continuity
of φ is the function [18, page 71]:

ω(φ; t) := sup{|φ(t1)− φ(t2)| : t1, t2 ∈ R, |t1 − t2| ≤ t}.
Let Λα denote those functions that satisfy a Lipschitz condition of order α ∈
(0, 1]:

|φ(t1)− φ(t2)| ≤ A|t1 − t2|α.

Let Cn+α denote those functions with φ(n) ∈ Λα [5]. Let Cω denote those
functions that are Dini-continuous:

∫ ε

0

ω(φ; t)t−1dt < ∞,

for some ε > 0. A sufficient condition for a function φ(t) to be Dini-continuous
is that |φ′(t)| be bounded [19, section IV.2]. Carleson & Jacobs have an amazing
paper that addresses best approximation from the disk algebra [5]:

Theorem 5.3 (Carleson & Jacobs [5]). If φ ∈ L∞(T), then there always
exists a best approximation h ∈ H∞(D):

‖φ− h‖∞ = ‖φ−H∞(D)‖∞.

If φ ∈ C(T), then the best approximation is unique. Moreover ,

(a): If φ ∈ Cω then h ∈ Cω.
(b): If φ(n) ∈ Cω then h(n) ∈ Cω.
(c): If 0 < α < 1 and φ ∈ Λα then h ∈ Λα.
(d): If 0 < α < 1, n ∈ N , and φ ∈ Cn+α then h ∈ Cn+α.

As noted by Carleson & Jacobs [5]: “the function-theoretic proofs . . . are all
of a local character, and so all the results can easily be carried over to any
region which has in each case a sufficiently regular boundary.” Provided we
can guarantee smoothness across ±j∞, Theorem 5.3 carries over to the right
half-plane.

Corollary 5.1. If φ ∈ 1+̇C0(jR), then the best approximation

‖φ− h‖∞ = ‖φ−H∞(C+)‖∞
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exists and is unique. Moreover , if φ ◦ c−1 ∈ Cω, then h ◦ c−1 ∈ Cω so that

‖φ− h‖∞ = ‖φ−H∞(C+)‖∞ = ‖φ−A1(C+)‖∞.

Thus, the smoothness of the target function φ is invariant under the best approx-
imation operator of H∞.

5.2. Nonlinear Nehari and simple matching bounds. Helton [28; 31; 29;
32] is extending Nehari’s Theorem into a general Theory of Analytic Optimiza-
tion. Let Γ : jR × C → R+ be continuous. Define γ : L∞(jR) → R+ ∪ ∞
by

γ(h) := ess.sup{Γ(jω, h(jω)) : ω ∈ R}.
and consider the minimization of γ on K ⊆ L∞(jR):

min{γ(φ) : φ ∈ K}.

Helton observed that many interesting problems in electrical engineering and
control theory have the form of this minimization problem and furthermore in
many cases the objective functions have sublevel sets that are disks [32]:

[γ ≤ α] := {φ ∈ BL∞(jR) : γ(φ) ≤ α} = D(cα, rα).

This is certainly the case for the matching problem. For a given load sL ∈
BL∞(jR), we want to minimize the worst case mismatch

γ(s2) = ∆ρ(s2) := ess.sup{∆P (s2(jω), sL(jω)) : ω ∈ R}

over all s2 ∈ BH∞(C+). In this special case, Lemma 4.5 shows explicitly that
the sublevel sets of ∆ρ are disks. These sublevel sets govern the optimization
problem. For a start, the sublevel sets determine the existence of minimizers.

Lemma 5.1. Let γ : BL∞(jR) → R. Assume γ has sublevel sets that are disks
contained in BL∞(jR):

[γ ≤ α] = D(cα, rα) ⊆ BL∞(jR).

Then γ has a minimizer hmin ∈ BH∞(C+).

Proof. Lemma 3.2 gives that γ is lower semicontinuous in the weak-∗ topology.
Because BH∞(C+) is weak-∗ compact, the Weierstrass Theorem of Section 4.10
forces the existence of H∞ minimizers. ¤

In particular, an H∞ minimizer of power mismatch does exist. This is only the
beginning; we’ll see that the disk structure of the sublevel sets also couples with
Nehari’s Theorem to to characterize such minimizers using Helton’s fundamental
link between disks and operators. Ultimately, this line of inquiry permits us to
calculate the matching performance for real problems.
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Theorem 5.4 (Helton [29, Theorem 4.2]). Let C, P , R ∈ L∞(T,CN×N ).
Assume P and R are uniformly strictly positive. Define the disk

D(C, R, P ) := {Φ ∈ L∞(T,CN×N ) : (Φ− C)P 2(Φ− C)H ≤ R2}
and Ř(jω) := R(−jω). Then

∅ 6= D(C, R, P ) ∩H∞(D,CN×N ) ⇐⇒ HCT−1
P−2H

∗
C ≤ TŘ2 ,

For the impedance matching problem, γ is the power mismatch ∆P whose sub-
level sets are contained in BL∞(jR):

D(cα, rα) ∩BH∞(C+) = D(cα, rα) ∩H∞(C+).

Consequently, in our problem the unit ball constraint may be ignored and we may
apply Theorem 5.4 specialized to the disk theory under this stronger assumption.

Corollary 5.2. Let γ : BL∞(jR) → R. Assume γ has sublevel sets that are
disks:

[γ ≤ α] = D(cα, rα) ⊆ BL∞(jR).

Let Cα := cα ◦ c−1 and Rα = rα ◦ c−1 where c is the Cayley transform of
Lemma 3.3. Assume Rα is strictly uniformly positive with spectral factor Qα ∈
H∞(D): Rα = |Qα|. Then the following are equivalent :

(a): D(cα, rα) ∩BH∞(C+) 6= ∅
(b): HCαH∗

Cα
≤ TŘ2

α

(c): ‖Q−1
α Cα −H∞(D)‖∞ ≤ 1.

Proof. By Theorem 5.4, all that is needed is to prove (a)⇐⇒ (c). If (a) is
true, there exists an H ∈ BH∞(D) such that |H − Cα| ≤ Rα = |Qα| a.e.
Because Rα is strictly uniformly positive on T, we may divide by |Qα| to get
|Q−1

α H−Q−1
α Cα| ≤ 1 a.e. Because Qα is outer, Q−1

α H ∈ H∞(D) so that(c) must
be true. Conversely, suppose (c) is true. Because Qα is outer, Q−1

α Cα ∈ L∞(jR).
The Cayley transform of Nehari’s Theorem forces the existence of a G ∈ H∞(D)
such that ‖G −Q−1

α Cα‖∞ ≤ 1. Because Qα is outer, H = QαG ∈ H∞(D) and
|H − Cα| ≤ Rα a.e. Then H ∈ D(Cα, Rα) ∩ H∞(C). Because D(Cα, Rα)
is assumed to be contained in the unit ball of L∞(T), the Cayley transform
forces(a) to hold. ¤

Part (b) amounts to an eigenvalue test that admits a nice graphical display of the
minimizing α. Let λinf(α) denote the smallest “eigenvalue” of TŘ2

α
−HCαH∗

Cα
.

A plot of α versus λinf(α) reveals that λinf(α) is a decreasing function of α that
crosses zero at a minimum. The next result verifies this assertion regarding the
minimum.

Corollary 5.3. Let γ : BL∞(jR) → R. Assume γ has sublevel sets that are
disks contained in BL∞(jR):

[γ ≤ α] = D(cα, rα) ⊆ BL∞(jR).



HYPERBOLIC GEOMETRY, NEHARI’S THEOREM, ELECTRIC CIRCUITS 33

Then γ has a minimizer hmin ∈ BH∞(C+):

γBH∞ := min{γ(h) : h ∈ BH∞(C+)}.

Let cmin and rmin denote the L∞(jR) center and radius functions of the sublevel
disk at the minimum level : [γ ≤ γBH∞ ]. Let Cα := cα ◦ c−1 and Rα = rα ◦ c−1

where c is the Cayley transform of Lemma 3.3. Assume Rmin is strictly uniformly
positive with spectral factor Qmin. Then the following are equivalent :

Min-1: D(cmin, rmin) ∩BH∞ 6= ∅
Min-2: 0 = λinf(γBH∞)
Min-3: ‖Q−1

minCmin −H∞(D)‖∞ = 1.

Moreover , if Q−1
minCmin ∈ C(T) the minimizer hmin is unique.

Proof. Min-1=⇒Min-3: If the inequality were strict, |Cmin−H| < Rmin a.e. for
some H ∈ H∞(D). Then h = H ◦ c belongs to H∞(C+) and drops γ below
its minimum: γ(h) < αmin. This contradiction forces equality at the minimum.
Min-3=⇒Min-1: Corollary 5.2.

Min-1=⇒Min-2: Theorem 5.4 forces HCminH
∗
Cmin

≤ TŘ2
min

or 0 ≤ λinf(γBH∞).

This operator inequality is equivalent to 1 ≥ ‖HQ−1
minCmin‖ [29, page 42]. By

Nehari’s Theorem, 1 ≥ ‖HQ−1
minCmin‖ = ‖Q−1

minCmin −H∞(D)‖∞ = 1, where the
equivalence of Min-1 and Min-3 gives the last equality. Thus, the inequality must
be an equality. Min-2 =⇒Min-1: 0 = λinf(γBH∞) forces 1 = ‖HQ−1

minCmin‖. By

Nehari’s Theorem, 1 = ‖Q−1
minCmin −H∞(D)‖∞. The Cayley transform of Ne-

hari’s Theorem gives an H ∈ H∞(D) such that 1 = ‖Q−1
minCmin−H‖∞. Multiply

by the spectral factor to get Rmin = |Cmin − QminH‖ or that D(Cmin, Rmin) ∩
H∞(D) 6= ∅. Use the assumption that the sublevel sets are contained in the
close unit ball to get Min-1. For unicity, Min-3 forces Hmin = hmin ◦ c−1 to be
a minimizer of 1 = ‖Q−1

minCmin −H∞(D)‖∞ = ‖Q−1
minCmin −Hmin‖∞. Because

Q−1
minCmin is continuous, the Cayley transform of Corollary 5.1 forces unicity. ¤

Lumped matching circuits have continuous scattering matrices. This requires us
to constrain our minimization of power mismatch yet further to the disk algebra.
For minimization of a general γ over the disk algebra, we always have

γBH∞ ≤ γBA1
:= inf{γ(h) : h ∈ BA1(C+)}.

Under smoothness and continuity conditions, equality between the disk algebra
and H∞ can be established.

Corollary 5.4. In addition to the assumptions of Corollary 5.3, assume
Q−1

minCmin is Dini-continuous. Then

γBH∞ = γBA1
= min{γ(h) : h ∈ BA1(C+)}.
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Proof. By Corollary 5.3, there is a unique minimizer Hmin ∈ H∞(D)

1 = ‖Q−1
minCmin −H∞(D)‖∞ = ‖Q−1

minCmin −Hmin‖∞.

By Corollary 5.1, Dini-continuity forces Hmin to be Dini-continuous or hmin =
H ◦ c ∈ A1(C+), Thus, the inclusion of the H∞ minimizer in the disk algebra
forces γBH∞ = γBA1

. ¤

This is a useful general result, but for our matching problem the requirement
of Dini-continuity can in fact be relaxed. An easier approach, specialized to the
case of γ is the power mismatch, gives equality between the minimum over the
disk algebra and that over H∞ using only continuity (proof in Appendix D).

Theorem 5.5. Assume sL ∈ BA1(C+). Then

min{‖∆P (s2, sL)‖∞ : s2 ∈ BH∞(C+)} = inf{‖∆P (s2, sL)‖∞ : s2 ∈ BA1(C+)}.
5.3. The real constraint. Examination of the circuits in Section 4 shows the
scattering matrices are real: S(p) = S(p̄) In fact, the scattering matrices that
are used in the matching problem must satisfy this real constraint. Those H∞

functions satisfying this real constraint form a proper subset Re H∞(C+), which
generally forces the inequality:

inf{‖φ− h‖∞ : h ∈ Re H∞(C+)} ≥ ‖φ−H∞(C+)‖∞

However, equality is obtained provided φ is also real. That the best approxi-
mation operator preserves the real constraint is an excellent illustration of the
general principle: That the best approximation operator preserves symmetries.

Lemma 5.2. Let (X, d) be a metric space. Assume A : X → X is a contractive
map: d(A(x), A(y)) ≤ d(x, y). Let V ⊆ X be nonempty . Define dist(x,V) :=
inf{d(x, v) : v ∈ V}. Assume

A-1: V is A-invariant : A(V) ⊆ V.
A-2: x ∈ X is also A-invariant A(x) = x.

Then equality holds: dist(x,A(V)) = dist(x, V).

Proof. Let {vn} be a minimizing sequence: d(x, vn) → dist(x,V). Because
x is A-invariant, d(x,A(vn)) = d(A(x), A(vn)) ≤ d(x, vn) → dist(x, V). Thus,
dist(x,A(V)) ≤ dist(x, V) forces equality. ¤

Lemma 5.2 makes explicit the structure to handle the real constraint in the
matching problem.

Corollary 5.5. If sL ∈ B Re L∞(jR), there holds

inf{‖∆P (s2, sL)‖∞ : s2 ∈ BA1(C+)} = inf{‖∆P (s2, sL)‖∞ : s2 ∈ Re BA1(C+)}.
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Proof. Apply Lemma 5.2 identifying BL∞(jR) as the metric space, φ̃(jω) =
φ(jω) as the contraction, Re BA1(C+) as the ˜-invariant subset, and sL as the
˜-invariant target function. Recall that the power mismatch ∆P (s2, sL) is the
pseudohyperbolic metric ρ(s2, sL) (Section 4.8). Because ρ is a metric, it fol-
lows that ‖ρ‖∞ is also metric that is ˜-invariant: ‖ρ(s̃2, s̃L)‖∞ = ‖ρ(s2, sL)‖∞.

The technical complication is that ∆P (s2, sL) is well-defined only when one
of its arguments is restricted to the open unit ball BL∞(jR). With sL ∈
B Re L∞(jR), Lemma 4.6 asserts that s2 7→ ‖∆P (s2, sL)‖∞ is a continuous
mapping on BL∞(jR). Thus, we use continuity to drop the B constraint, apply
Lemma 5.2 to the open ball with the real contraction “˜”, and apply continuity
again to close the open ball:

inf{‖∆P (s2, sL)‖∞ : s2 ∈ Re BA1(C+)}
Lemma 4.6= inf{‖∆P (s2, sL)‖∞ : s2 ∈ Re BA1(C+)}
Eq. 4–10

= inf{‖ρ(s2, sL)‖∞ : s2 ∈ Re BA1(C+)}
Corollary 5.5

= inf{‖ρ(s2, sL)‖∞ : s2 ∈ BA1(C+)}
Eq. 4–10

= inf{‖∆P (s2, sL)‖∞ : s2 ∈ BA1(C+)}
Lemma 4.6= inf{‖∆P (s2, sL)‖∞ : s2 ∈ BA1(C+)}. ¤

Not surprisingly, Helton has also uncovered another notion of “real-invariance”
for general nonlinear minimization [32].

6. Classes of Lossless 2-Ports

The matching problems are optimization problems over classes of U+(2):

U+(2, d) ⊂ U+(2,∞) ⊂ U+(2) ⊂ Re BH∞(C+,C2×2).

On the left, U+(2, d) corresponds to the lumped, lossless 2-ports. Optimization
over this set represents an electrical engineering solution. On the right, the H∞

solution provided in the last section is computable from the measured data but
may not correspond to any lossless scattering matrix. The gap between the
H∞ solution and the various electrical engineering solutions may be closed by
continuity conditions.

The first result on gives the correspondence between the lumped N -ports and
their scattering matrices.

The Circuit-Scattering Correspondence [52, Theorems 3.1, 3.2]. Any
N -port composed of a finite number of lumped elements (positive resistors, ca-
pacitors, inductors, transformers, gyrators) admits a real , rational , lossless scat-
tering matrix S ∈ U+(N). Conversely , to any real , rational , scattering matrix
S ∈ U+(N) there corresponds an N -port composed of a finite number of lumped
elements
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This equivalence permits us to delineate the following class of lossless 2-ports by
their scattering matrices:

U+(2, d) := {S ∈ U+(2) : degSM[S(p)] ≤ d},
where degSM[S(p)] denotes the Smith–McMillan degree (defined in Theorem 6.2).
The second result establishes compactness (Appendix C contains the proof).

Theorem 6.1. Let d ≥ 0. U+(N, d) is a compact subset of A1(C+,CN×N ).

It is straight-forward but tedious to demonstrate that the gain function S 7→
‖GT (sG, S, sL)‖−∞ is a continuous function on U+(2, d). Thus, the matching
problem on U+(2, d) has a solution. The third result on U+(2, d) is the Belevitch
parameterization.

Belevitch’s Theorem [53] S ∈ U+(2, d) if and only if

S(p) =
[

s11(p) s12(p)
s21(p) s22(p)

]
=

1
g(p)

[
h(p) f(p)
±f∗(p) ∓h∗(p)

]
,

where f∗(p) := f(−p) and

B-1: f(p), g(p), and h(p) are real polynomials,

B-2: g(p) is strict Hurwitz5 of degree not exceeding d,

B-3: g∗(p)g(p) = f∗(p)f(p) + h∗(p)h(p) for all p ∈ C.

Belevitch’s Theorem lets us characterize several classes of 2-ports, such as the
low-pass and high-pass ladders. The low-pass ladders (Figure 11) admit the
scattering matrix characterization [3, page 121]:

s21(p) =
1

g(p)
.

These scattering matrices (f(p) = 1) form a closed and therefore compact subset
of U+(2, d). Consequently, the matching problem admits a solution over the class
of low-pass ladders. Figure 17 shows a high-pass ladder. A high-pass ladder
admits the scattering matrix characterization [3, page 122]:

s21(p) =
p∂g

g(p)
,

where ∂g denotes the degree of the polynomial g(p). The high-pass ladders form

Figure 17. A high-pass ladder.

5The zeros of g(p) lie in the open left half-plane.
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a closed and therefore compact subset of U+(2, d). Consequently, the matching
problem admits a solution over the class of high-pass ladders.

The fourth result on U+(2, d) is the state-space parameterization illustrated
in Figure 18. The N -port has a scattering matrix S ∈ U+(N, d), where d =
degSM[S(p)] counts the number of inductors and capacitors, The figure shows
that by pulling all the d reactive elements into the augmented load SL(p). What’s
left is an (N + d)-port with has a constant scattering matrix Sa called the
augmented scattering matrix. Then Sa models the (N + d)-port as a collection
of wires, transformers, and gyrators. Consequently, Sa is a real, unitary, and
constant matrix. Thus, S(p) is the image of the augmented load viewed through
the augmented scattering matrix. Theorem 6.2 gives the precise statement of
this state-space representation.

•
•
•

Wires

Transformers

Gyrators

π

•
•
•Sa

•
•
•

Port 1

Port N

SL( p)S( p)

Figure 18. State-space representation of a lumped, lossless N -port containing

d reactive elements.

Theorem 6.2 (State-Space [52, pages 90–93]). Every lumped , lossless, casual ,
time-invariant N -port admits a scattering matrix S(p) and conversely . If S(p)
has degree d, S(p) admits the following state-space representation:

S(p) = F(Sa, SL; p) := Sa,11 + Sa,12SL(p)(Id − Sa,22SL)−1Sa,21,

where the augmented load is

SL(p) =
p− 1
p + 1

[
INL 0
0 −INC

]
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and NL+NC = d counts the number of inductors and capacitors. The augmented
scattering matrix is

Sa =
[

Sa,11 Sa,12

Sa,21 Sa,22

]
N

d

N d

is a constant , real , orthogonal matrix .

This representation reveals the structure of the lumped, lossless N -ports, offers
a numerically efficient parameterization of U+(N, d) in terms of the orthogonal
group, proves the Circuit-Scattering Correspondence, generalizes to lumped, pas-
sive N -ports, and provides an approach to non-lumped or distributed N -ports.

A natural generalization drops the constraint on the number of reactive el-
ements in the 2-port and asks: What is the matching set that is obtained as
degSM[S(p)] →∞? Define

U+(2,∞) =
⋃

d≥0

U+(2, d).

The physical meaning of U+(2,∞) is that it contains the scattering matrices
of all lumped, lossless 2-ports. It is worthwhile to ask: Has the closure has
picked up additional circuits? Mathematically, a lossless matching N -port has a
scattering matrix S(p) that is a real inner function. Inner functions exhibit a fas-
cinating behavior at the boundary. For example, inner functions can interpolate
a sequence of closed, connected subsets Km ⊆ D [12]: limr→1 S(rejθm) = Km.
In contrast to this boundary behavior, if the lossless N -port is lumped, then S

is rational and so must continuous. The converse is true and demonstrated in
Appendix A.

Corollary 6.1. Let S ∈ H∞(C+,CN×N ) be an inner function. The following
are equivalent :

(a): S ∈ A1(C+,CN×N ).
(b): S is rational

Corollary 6.1 answers our question above with the negative:

U+(2,∞) =
⋃

d≥0

U+(2, d).

Thus, continuity forces S ∈ U+(2,∞) to be rational and the corresponding
lossless 2-port to be lumped. It is natural to ask: What lossless 2-ports are not
in U+(2,∞)?

Example 6.1 (Transmission Line). A uniform, lossless transmission line of
characteristic impedance Zc and commensurate length l is called a unit element
(UE) with chain matrix [3, Equation 8.1]

[
v1

i1

]
=

[
cosh(τp) Zc sinh(τp)

Yc sinh(τp) cosh(τp)

] [
v2

−i2

]
,
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where τ is the commensurate one-way delay τ = l/c determined by the speed of
propagation c.

v1 v2

i1 i2
++

- -

Zc

l

Figure 19. The unit element (UE) transmission line.

The scattering matrix of the transmission line normalized to Zc is

SUE(p) =
[

0 e−τp

e−τp 0

]

and gives rise to two observations: First, SUE(jω) oscillates out to ±∞, so
SUE(jω) cannot be continuous across ±∞. Thus, U+(2,∞) cannot contain such
a transmission line. Second, a physical transmission line cannot behave like this
near ±∞. Many electrical engineering books mention only in passing that their
models are applicable only for a given frequency band. One rarely sees much
discussion that the models for the inductor and capacitor are essentially low-
frequency models. This holds true even for the standard model of wire. One
cannot shine a light in one end of a 100-foot length of copper wire and expect
much out of the other end. These model limitations notwithstanding, the circuit-
scattering correspondence will be developed using these standard models. The
transmission line on the disk is

SUE ◦ c−1(z) =




0 exp
(
−τ

1 + z

1− z

)

exp
(
−τ

1 + z

1− z

)
0




and is recognizable as the simplest singular inner function [35, pages 66–67]
analytic on C \ {1} [35, pages 68–69]. Figure 20 shows the essential singularity
of the real part of the (1,2) element of SUE ◦ c−1(z) as z tends toward the
boundary of the unit circle.

7. Orbits and Tight Bounds for Matching

The following equalities convert a 2-port problem into a 1-port problem. Let
U be a subset of U+(2). Let

F1(U, sL) := {F1(S, sL) : S ∈ U}, F2(U, sG) := {F2(S, sG) : S ∈ U}
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Figure 20. Behavior of Re[SUE,12 ◦ c−1(z)] for z = rejθ as r → 1.

denote the orbit of the load and the orbit of the generator, respectively. By
Lemma 4.4,

sup{‖GT (sG, S, sL)‖−∞ : S ∈ U} = 1− inf{‖∆P (sG, S, sL)‖2∞ : S ∈ U}
= 1− inf{‖∆P (sG, s1)‖2∞ : s1 ∈ F1(U; sL)}
= 1− inf{‖∆P (s2, sL)‖2∞ : s2 ∈ F2(U; sG)},

or maximizing the gain on U is equivalent to minimizing the power mismatch on
either orbit. Darlington’s Theorem makes explicit a class of orbits.

Theorem 7.1 (Darlington [3]). The orbits of zero under the lumped , lossless
2-ports are equal

F2(U+(2,∞), 0) = F1(U+(2,∞), 0)

and strictly dense in Re BA1(C+).

Proof. Let S ∈ U+(2,∞). Corollary 6.1 and Belevitch’s Theorem give that

S(p) =
1
g

[
h f

±f∗ ∓h∗

]
∈ Re A1(C+,C2×2),
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where (f, g, h) is a Belevitch triple. With sL = 0 and sG = 0, both s1 =
F1(S, 0) = h/g and belong to Re BA1(C+). However, Corollary 6.1 restricts S to
be rational so the orbits cannot be all of Re BA1(C+). By relabeling S with 1 ↔
2, we get equality between the orbits. To show density, suppose s ∈ Re BA1(C+).
Because the rational functions in Re BA1(C+) are a dense6 subset, we may
approximate s(p) by a real rational function: s ≈ h/g ∈ ReBA1(C+), where
h(p) and g(p) may be taken as real polynomials with g(p) strict Hurwitz and for
all ω ∈ R: g(jω)g∗(jω) − h(jω)h∗(jω) ≥ 0. By factoring g(p)g∗(p) − h(p)h∗(p)
or appealing to the Fejér–Riesz Theorem [46, page 109], we can find a real
polynomial f(p) such that

f(p)f∗(p) = g(p)g∗(p)− h(p)h∗(p).

The conditions of Belevitch’s Theorem are met and

S(p) =
1

g(p)

[
h(p) f(p)
f∗(p) −h∗(p)

]

is a lossless scattering matrix that represents a lumped, lossless 2-port. That is,
h(p)/g(p) dilates to a lossless scattering matrix S(p) for which s ≈ s11. Conse-
quentially, both orbits are dense in Re BA1(C+). ¤

At this point we are in position to obtain a tight bound on matching performance
in the special case of vanishing generator reflectance, sG = 0. For any given load
sL ∈ BH∞(C+). Lemma 4.6 shows that s2 7→ ‖∆P (s2, sL)‖∞ is continuous.
This continuity, coupled with the density claims of Darlington’s Theorem, gives:

max{GT (0, S, sL) : S ∈ U+(2, d)}
= 1−min{‖∆P (s2, sL)‖2∞ : s2 ∈ F2(U+(2, d); 0)}
≤ 1− inf{‖∆P (s2, sL)‖2∞ : s2 ∈ F2(U+(2,∞); 0)}

Darlington
= 1− inf{‖∆P (s2, sL)‖2∞ : s2 ∈ Re BA1(C+)}
≤ 1− inf{‖∆P (s2, sL)‖2∞ : s2 ∈ BH∞(C+)}.

The “max” and the “min” are used because U+(2, d) is compact (Theorem 6.1)
and GT is continuous. The last infimum is attained by a minimizer by the Weier-
strass Theorem using the weak-∗ compactness of BH∞(C+) (page 10) and the
weak-∗ lower semicontinuity of the power mismatch (Section 4.10). The mini-
mum can be computed using the Nonlinear Nehari Theorem (See the comments
following Corollary 5.2 and Corollary 5.3). Thus, the impedance matching prob-
lem has a computable bound:

6Density claims on unbounded regions can be tricky. However, Lemma 3.3 isometrically
maps A1(C+) = A1(D) ◦ c and preserves the rational functions. Therefore, the dense rational
functions in A(D) map to a set of rational functions in A1(C+) that must be dense.
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max{GT (0, S, sL) : S ∈ U+(2, d)}
= 1−min{‖∆P (s2, sL)‖2∞ : s2 ∈ F2(U+(2, d); 0)}
≤ 1− inf{‖∆P (s2, sL)‖2∞ : s2 ∈ F2(U+(2,∞); 0)}

Darlington
= 1− inf{‖∆P (s2, sL)‖2∞ : s2 ∈ Re BA1(C+)}

≤ 1−
Corollary 5.3

min {‖∆P (s2, sL)‖2∞ : s2 ∈ BH∞(C+)} (computable).

The real constraint can be relaxed for real loads sL by Corollary 5.5:

max{GT (0, S, sL) : S ∈ U+(2, d)}
= 1−min{‖∆P (s2, sL)‖2∞ : s2 ∈ F2(U+(2, d); 0)}
≤ 1− inf{‖∆P (s2, sL)‖2∞ : s2 ∈ F2(U+(2,∞); 0)}

Darlington
= 1− inf{‖∆P (s2, sL)‖2∞ : s2 ∈ Re BA1(C+)}

Corollary 5.5
= 1− inf{‖∆P (s2, sL)‖2∞ : s2 ∈ BA1(C+)}

≤ 1−
Corollary 5.3

min {‖∆P (s2, sL)‖2∞ : s2 ∈ BH∞(C+)} (computable).

Finally, the last inequality is actually equality if sL is sufficiently smooth, using
Theorem 5.5. Rolling it all up, we see that sL ∈ Re BA1(C+) forces a lot of
equalities:

max{GT (0, S, sL) : S ∈ U+(2, d)}
= 1−min{‖∆P (s2, sL)‖2∞ : s2 ∈ F2(U+(2, d); 0)}
≤ 1− inf{‖∆P (s2, sL)‖2∞ : s2 ∈ F2(U+(2,∞); 0)}

Darlington
= 1− inf{‖∆P (s2, sL)‖2∞ : s2 ∈ Re BA1(C+)}

Corollary 5.5
= 1− inf{‖∆P (s2, sL)‖2∞ : s2 ∈ BA1(C+)}

Theorem 5.5= 1−
Corollary 5.3

min {‖∆P (s2, sL)‖2∞ : s2 ∈ BH∞(C+)} (computable).

Physically, this tight Nehari bound means that a lossless 2-port can be found
with smallest possible power mismatch and that there is a sequence of lumped,
lossless 2-ports that can get arbitrarily close to this bound. Furthermore, this
bound can be computed from measured data on the load.

8. Matching an HF Antenna

Recent measurements were acquired on the forward-mast integrated HF an-
tenna on the LPD 17, an amphibious transport dock. The problem is match this
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antenna over 9-30 MHz to a 50-ohm line impedance using the simplest match-
ing circuit possible. The goal is to find a simple matching circuit that gets the
smallest power mismatch or the smallest VSWR (Section 4.8) Thus, a practical
matching problem is complicated by not only minimizing the VSWR but making
a tradeoff between VSWR and circuit complexity.

We start with a transformer, consider low- and high-pass ladders, and then
show how the Nehari bound benchmarks these matching efforts. The transformer
has chain and chain scattering matrices parameterized by its turns ratio n (see
[3, Eq. 2.4] and [25, Table 6.2]; see also Figure 4 and Equation 4–1):

Ttransformer =
[

n−1 0
0 n

]
Θtransformer =

1
2n

[
1 + n2 1− n2

1− n2 1 + n2

]
.

Figure 21 displays the power mismatch as a function of the turns ratio n. This
optimal n produced Figure 5 in the introduction. The antenna’s load sL is
plotted as the solid curve in the unit disk. The solid disk corresponds to those
reflectances with VSWR less than 4. The dotted line plots the reflectance looking
to Port 1 of the optimal transformer with Port 2 terminated in the antenna:
s1 = G1(Θtransformer, sL). Lemma 4.4 demonstrates that matching at either port
is equivalent when the 2-port is lossless.
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Figure 21. Power mismatch of an ideal transformer.
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Figure 22. The antenna’s reflectance sL (solid) and the reflectance s1 after

matching with a low-pass ladder of order 4.

Figure 22 matches the antenna with a low-pass ladder of order 4 (See Fig-
ure 11). Comparison with the transformer shows little is to be gained with the
extra complexity. So it is very tempting to try longer ladders, or switch to high-
pass ladders, or just start throwing circuits at the antenna. The first step to gain
control over the matching processes is conduct a search over all lumped, lossless
2-port of degree not exceeding d:

d 7→ min{‖∆P (F2(S, sG), sL)‖∞ : S ∈ U+(2, d)}.
The state-space representation of Theorem 6.2 provides a numerically efficient
parameterization of these lossless 2-ports. Figure 23 reports on matching from
U+(2, 4). What is interesting is that s2 is starting to take a circular shape. This
circular shape is no accident. Mathematically, Nehari’s Theorem implies that
the error is constant at optimum s2:

∆P (s2(jω), sL(jω)) = ρmin.

The electrical engineers know the practical manifestation of Nehari’s Theorem.
For example, a broadband matching technique is described as follows [55]: The
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Figure 23. The antenna’s reflectance sL (solid) and the reflectance s1 after

matching over U+(2, 4).

load impedance zL is plotted in the Smith chart. The engineer is to terminate
this load with a cascade of lossless two-ports. By repeatedly applying “shunt-
stub/series-line cascades, a skilled designer using simulation software can see
[the terminated impedance zT ] form into a fairly tight circle around z = 1.” The
appearance of a circle is a real-world demonstration that Nehari’s Theorem is
heuristically understood by microwave engineers.

The final step for bounding the matching process is to estimate the Nehari
bound. Combine the eigenvalue test of Corollary 5.2 with the characterization
of the power mismatch disks in Lemma 4.5: There is an s2 ∈ BH∞(C+) with

‖∆(s2, sL)‖∞ ≤ ρ ⇐⇒ TŘρ
2 ≥ HCρH∗

Cρ
,

where the center and radius functions are

Cρ = kρ ◦ c−1, kρ = s̄L
1− ρ2

1− ρ2|sL|2 ,

Rρ = rρ ◦ c−1, rρ = ρ
1− |sL|2

1− ρ2|sL|2 .
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Figure 24. Estimate of λinf(ρ) versus ρ in terms of the VSWR

Let λinf(ρ) denote the smallest real number in the spectrum of TŘρ
2 −HCρH∗

Cρ
.

Figure 24 plots an estimate of λinf(ρ). The optimal VSWR occurs near the
zero-crossing point.

Figure 25 uses these VSWR bounds to benchmark several classes of matching
circuits. Each circuit’s VSWR is plotted as a function of the degree d (the total
number of inductors and capacitors). The dashed lines are the VSWR from the
low- and high-pass ladders containing inductors and capacitors constrained to
practical design values. The solid line is the matching estimated from U+(2, d).
A transformer performs as well as any matching circuit of degree 0 and as well
as the low-pass ladders out to degree 6. The high-pass ladders get closer to
the VSWR bound at degree 4. A perfectly coupled transformer (coefficient of
coupling k = 1) offers only a slight improvement over the transformer. In terms
of making the tradeoff between VSWR and circuit complexity, Figure 25 directs
the circuit designer’s attention to the d = 2 region. There exist matching circuits
of order 2 with performance comparable to high-pass ladders of order 4. Thus,
the circuit designer can graphically assess trade-offs between various circuits in
the context of knowing the best match possible for any lossless 2-port.
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Figure 25. Comparing the matching performance of several classes of 2-ports

with the Nehari and U+(2, d) bounds.

9. Research Topics

This paper shows how to apply the Nehari bound to measured, real-world
impedances. The price of admission is learning the scattering formalism and a
few common electric circuits. The payoff is that many substantial research topics
can be tastefully guided by this concrete problem. For immediate applications,
several active and passive devices explicitly use wideband matching to improve
performance:

• antenna [49; 2; 8; 1];
• circulator [36];
• fiber-optic links [7; 26; 23];
• satellite links [40];
• amplifiers [11; 22; 37].

The H∞ applications to the transducers, antenna, and communication links
are immediate. The amplifier is an active 2-port that requires a more general
approach. The matching problem for the amplifier is to find input and output
matching 2-ports that simultaneously maximize transducer power gain, minimize
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the noise figure, and maintain stability. Although a more general problem, this
amplifier-matching problem fits squarely in the H∞ framework [28; 29; 30] and
is a current topic in ONR’s H∞ Research Initiative [41].

9.1. Darlington’s Theorem and orbits. Parameterizing the orbits currently
limit the H∞ approach and leads to a series of generalization on Darlington’s
Theorem. An immediate application of Nehari’s Theorem asks for a “unit-ball”
characterization of an orbit:

Question 9.1. For what sG ∈ BH∞(C+) is it true that F1(U+(2,∞), sG) is
dense in Re BA1(C+)?

This question of characterization is subsumed by the problem of computing or-
bits:

Question 9.2. What is the orbit of a general reflectance F1(U, sL)?

We can also generalize U+(2,∞) and ask about the orbit of sL over all lumped
2-ports.

Question 9.3. Characterize all reflectances that belong to

⋃

d≥0

F1(U+(2, d), sL)

Closely related is the question of compatible impedances or when a reflectance
sL belongs to the orbit of another reflectance s′L.

Question 9.4. Let sL, s′L ∈ BH∞(C+). Determine if there exists an S′ ∈
U+(2) such that sL = F1(S′, s′L).

The theory of compatible impedances is an active research topic in electrical
engineering [54] and has links to the Buerling–Lax Theorem [29].

9.2. U+(2) and circuits. The Circuit-Scattering Correspondence of Section 6
identified lumped, lossless N -ports and the scattering matrices of U+(N, d) [52].
By identifying an N -port as a subset of a Hilbert space, Section 1 claimed
that any linear, lossless, time-invariant, causal, maximal solvable N -port cor-
responded to a scattering matrix in U+(N) [31]. The problem is reconcile the
lumped approach, which has a concrete representation of a circuit, with Hilbert
space claim, which gets a scattering matrix — not a circuit —by operator theory.

Question 9.5. Does every element in U+(2) correspond to a lossless 2-port?

In terms of Kirkoff’s current and voltage laws, if you were handed a collection
of integro-differential partial differential equations, is it obvious that the system
admits a scattering matrix?
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9.3. Circuit synthesis and matrix dilations. If matching problem with
sG = 0

inf{‖∆P (s2, sL)‖2∞ : s2 ∈ F2(U+(2); 0)},
admits a minimizer, then

s2 = F2(S, sG = 0) = s22 + s21sG(1− s11sG)−1s12|sG=0 = s22.

How can we use s2 to get a matching scattering matrix S ∈ U+(2)? Thus, a
circuit synthesis problem is really a question in matrix dilations.

Question 9.6. Given s2 ∈ BH∞(C+), find all S ∈ U+(2) such that

S =
[

s11 s12

s21 s22

]
=

[
s11 s12

s21 s2

]
.

Not all s2’s can dilate to a lossless 2-port. Wohlers [52, page 100-101] shows that
the 1-port with impedance z(p) = arctan(p) cannot dilate to an S ∈ U+(2). The
Douglas–Helton result characterizes those elements in the unit ball of H∞ that
came from a lossless N -port.

Theorem 9.1 ([14; 15]). Let S(p) ∈ BH∞(C+,CN×N ) be a real matrix func-
tion. The following are equivalent :

(a): S(p) admits an real inner dilation S(p) =
[

S(p) S12(p)
S21(p) S22(p)

]
.

(b): S(p) has a meromorphic pseudocontinuation of bounded type to the open left
half-plane C−; that is, there exist φ ∈ H∞(C−) and H ∈ H∞(C−,CN×N )
such that

lim
σ>0
σ→0

S(σ + jω) = lim
σ>0
σ→0

H

φ
(−σ + jω) a.e.

(c): There is an inner function φ ∈ H∞(C+) such that φSH ∈ H∞(C+,CN×N ).

Let M denote the subset of BH∞(C+) of functions that have meromorphic
pseudocontinuations of bounded type. General hyperbolic Carleson–Jacob (The-
orem 5.3) line of inquiry opens up to explore when the inequality

inf{‖∆P (s2, sL)‖∞ : s2 ∈ M} ≥ min{‖∆P (s2, sL)‖2∞ : s2 ∈ BH∞(C+)}
holds with equality.

9.4. Structure of U+(2). Turning to the inclusion U+(2,∞) ⊂ U+(2), the
preceding sections have established that U+(2,∞) is a closed subset of U+(2)
that consists of all rational inner functions parameterized by Belevitch’s Theo-
rem. Physically, U+(2,∞) models all the lumped 2-ports, but does not model
the transmission line. It is natural to wonder what subclass of U+(2) contains
the lumped 2-ports and the transmission line. More precisely,

Question 9.7. What constitutes a lumped-distributed network? How do we
recognize its scattering matrix?
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Wohlers [52] answers the first question by parameterizing the class of lumped-
distributed N -ports, consisting of NL inductors, NC capacitors, and NU uniform
transmission lines using the model in Figure 26. Wohlers [52, pages 168–172]

Wires

Transformers

Gyrators

π

Sa SL( p)

Port 1

Port 2

Port N

S( p)

Figure 26. State-space representation of a lumped-distributed lossless 2-port.

establishes that such scattering matrices exist and have the form,

S(p) = F(Sa, SL; p) = Sa,11 + Sa,12SL(p)(Id − Sa,22SL(p))−1Sa,21,

where the augmented scattering matrix

Sa =
[

Sa,11 Sa,12

Sa,21 Sa,22

]

models a network of wires, transformers, and gyrators. Consequently, Sa is a
constant, real, orthogonal matrix of size d = NL + NC + 2NU . SL(p) is called
the augmented load and models the reactive elements as

SL(p) = qINL
⊕ −qINC

⊕
{

INU
⊗

[
0 e−τp

e−τp 0

]}
.

This decomposition assumes: (1) the first NL +NC ports are normalized to z0 =
1, and (2) the remaining NU pairs of ports are normalized to the characteristic
impedance Z0,nu of each transmission line. Although some work has be done
charactering these scattering matrices, the reports in Wohlers [52, page 173] are
false, as determined by Choi [10].
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9.5. Error bounds. The problem is to determine if Tr2 ≥ H∗
cHc, when all we

know are noisy samples of the center and radius functions measured at a finite
number of frequencies. Of the several approaches to this problem [29], we use
the simple Spline-FFT Method.

The Spline-FFT Nehari Algorithm Given samples {(jwk, C(jωk)} and
{(jwk, R(jωk)}, where 0 ≤ ω1 < ω2 < · · · < ωK < ∞.

SF-1: Cayley transform the samples from jR to the unit circle T:

c(ejθk) := C ◦ c−1(ejθk), r(ejθk) := R ◦ c−1(ejθk).

SF-2: Use a spline to extend {ejθk , c(ejθk)} and {ejθk , r(ejθk)} to functions on
the unit circle T.

SF-3: Approximate the Fourier coefficients using the FFT:

ĉ(N ;n) :=
1
N

N−1∑

n′=0

e−j2πnn′/Nc(e+j2πn′/N ),

r̂(N ;n) :=
1
N

N−1∑

n′=0

e−j2πnn′/Nr(e+j2πn′/N ).

SF-4: Make the truncated Toeplitz and Hankel matrices:

Tr2,M,N =
[
r̂2(N ; m1 −m2)

]M−1

m1,m2=0
,

Hc,M,N = [ĉ(N ;−(m1 + m2))]
M−1
m1,m2=0 .

SF-5: Find the smallest eigenvalue of

AM,N := Tr2,M,N −HH
c,M,NHc,M,N .

We are aware of the following sources of error:

• The samples are corrupted by measurement errors.
• The spline extensions from sampled data to functions defined on the unit

circle T.
• The Fourier coefficients are computed from an FFT of size N .
• The operator A is computed from M ×M truncations.

Question 9.8. Are these all the sources of error (neglecting roundoff)? How
can the Spline-FFT Nehari algorithm adapt to account for these errors? Can we
put error bars on Figure 24?
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10. Epilogue

One of the great joys in applied mathematics is to link an abstract compu-
tation to a physical system. Nehari’s Theorem computes the norm of a Hankel
operator Hφ as the distance between its symbol φ ∈ L∞ and the Hardy subspace
H∞:

‖Hφ‖ = inf{‖φ− h‖∞ : h ∈ H∞}.
One of J. W. Helton’s inspired observations linked this computation to a host of
problems in electrical engineering and control theory. These problems, in turn,
led Helton to deep and original extensions of operator theory, geometry, convex
analysis, and optimization theory.

By linking H∞ theory to the matching circuits, a physical meaning is attached
to the Nehari computation and produces a plot that the electrical engineers can
actually use. Along the way we encountered Darlington’s Theorem, Belevitch’s
Theorem, Weierstrass’ Theorem, the Carleson–Jacobs theorems, Nehari’s The-
orem, inner-function models, and hyperbolic geometry. Impedance-matching
provides a case study of rather surprising mathematical richness in what may
appear at first to be a rather prosaic analog signal processing issue.

A measure of the vitality of a subject is the quality of the unexplored ques-
tions. A small effort invested in circuit theory opens up a host of wonderful
research topics for mathematicians. These topics discussed in this paper indicate
only a few of the significant research opportunities that lie between mathematics
and electrical engineering. For the mathematician, there are few engineering
subjects where an advanced topic like H∞ has such an immediate connection
actual physical devices. We hope our readers do realize a rich harvest from these
research opportunities.

Appendix A. Matrix-Valued Factorizations

This appendix proves Corollary 6.1 using Blaschke–Potapov factorizations.
We start with the scalar-valued case.

Lemma A.1. Let h ∈ H∞(D) be an inner function. The following are equiva-
lent :

(a): h ∈ A(D).
(b): h is rational .

Proof. (a=⇒b) Factor h as h = cbs, where c ∈ T, b is a Blaschke and s is a
singular inner function. If za ∈ T is an accumulation point of the zeros {zn} of
b, that is, there is a subsequence znk

→ za, then continuity of h on D implies
that 0 = h(znk

) → h(za). Continuity of h on D gives a neighborhood U ⊂ T
of za for which |h(U)| < 1. Thus, h cannot be inner with b an infinite Blaschke
product. Thus, b can only be a finite product and has no accumulation points to
cancel the discontinuities of s. More formally, b never vanishes on T and neither



HYPERBOLIC GEOMETRY, NEHARI’S THEOREM, ELECTRIC CIRCUITS 53

s nor |s| is continously extendable to from the interior of the disk to any point
in the support of the singular measure that represents s [35, pages 68–69]. Thus,
h cannot have a singular part and we have h = cb.
(b=⇒ a) A rational h also in H∞(D) cannot have a pole in D. Then h is
continuous on D so belongs to the disk algebra. ¤

The result generalizes to matrix-valued inner functions. For a ∈ D, define the
elementary Blaschke factor [38, Equation 4.2]:

ba(z) :=




|a|
a

a− z

1− āz
if a 6= 0,

z if a = 0.

To get a matrix-valued version, let P ∈ CN×N be an orthogonal projection:
P 2 = P and PH = P . The Blaschke–Potapov elementary factor associated with
a and P is [38, Equation 4.4]:

Ba,P (z) := IM + (ba(z)− 1)P.

There are a couple of ways to see that Ba,P is inner. Let U be a unitary matrix
that diagonalizes P :

UHPU =
[

IK 0
0 0

]
.

Then,

UHBa,P (z)U =
[

ba(z)IK 0
0 IM−K

]
.

From this, we get [38, Equation 4.5]:

det[Ba,P (z)] = ba(z)rank[P ].

Definition A.1 ([38, pages 320–321]). The function B : D → CN×N is called
a left Blaschke–Potapov product if either B is a constant unitary matrix or there
exists a unitary matrix U , a sequence of orthogonal projection matrices {Pk :
k ∈ K}, and a sequence {zk : k ∈ K} ⊂ D such that

∑

k∈K

(1− |zk|)trace[Pk] < ∞

and the representation

B(z) =

{ →∏

k∈K

Bzk,Pk
(z)

}
U

holds.

Definition A.2 ([38, pages 319]). Let S ∈ H∞(D,CN×N ) be an inner function.
S is called singular if and only if det[S(z)] 6= 0 for all z ∈ D.
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Theorem A.1 ([38, Theorem 4.1]). Let S ∈ H∞(D,CN×N ) be an inner func-
tion. There exists a left Blaschke–Potapov product and a CN×N -valued singular
inner function Ξ such that

S = BΞ.

Moreover , the representation is unique up to a unitary matrix U . If

S = B1Ξ1 = B2Ξ2,

then B2 = B1U and Ξ2 = UHΞ1.

Critical for our use is that the determinant maps these matrix-valued generaliza-
tions of the Blaschke and singular functions to their scalar-valued counterparts.

Theorem A.2 ([38, Theorem 4.2]). Let S ∈ BH∞(D,CN×N ).

(a): det[S] ∈ BH∞(D).
(b): S is inner if and only if det[S] is inner .
(c): S is singular if and only if det[S] is singular .

With these results in place, Lemma A.1 generalizes to the matrix-valued case.

Proof of Corollary A.1. (a=⇒b) Lemma 3.3 and Assumption (a) give
that W = S ◦ c−1 is a continuous inner function in A(D,C2×2). Theorem A.1
gives that W = BΞ for a left Blaschke–Potapov product B and singular Ξ.
Observe that det[W ] = det[B] det[Ξ]. If W is inner, then det[W ] is inner by
Theorem A.2(a). Because W is continuous, det[W ] is continuous and Lemma A.1
forces det[W ] to be rational. Therefore, det[W ] cannot admit the singular factor
det[Ξ]. Consequently, W cannot have a singular factor by Theorem A.2(c).
Because det[W ] is rational and

det[W ] = det[B] =
∏

brank[Pk]
zk

,

we see that B must be a finite left Blaschke–Potapov product. Consequently,
S = W ◦ c is rational. Finally, this gives that S is rational.

(b=⇒ a) Let

S(p) =
1

g(p)
H(p),

where g(p) is a real polynomial

g(p) = g0 + g1p + · · ·+ gLpL,

of degree K that is strict Hurwitz (zero only in C−) and H(p) is a real N ×N

polynomial
H(p) = H0 + H1p + · · ·+ HMpM

of degree L. Boundedness forces L ≥ M . Then,

H(p)
g(p)

=
H0 + · · ·+ HMpM

g0 + · · ·+ gLpL

p→∞→
{

0 if L > M ,
HN/gN if L = M .
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Thus, H(p)/g(p) is continuous across p = ±j∞. Thus, S(p) is continuous at
±j∞. ¤

Appendix B. Proof of Lemma 4.4

The chain scattering representations are [25]:

G(Θ1; s) := F1(S, s), Θ1 ∼ 1
s21

[ − det[S] s11

−s22 1

]
,

G(Θ2; s) := F2(S, s), Θ2 ∼ 1
s12

[ − det[S] s22

−s11 1

]
,

where “∼” denotes equality in homogeneous coordinates: Θ ∼ Φ if and only if
G(Θ) = G(Φ). Because S(p) is unitary on jR, Θ1(p) and Θ2(p) are J-unitary on
jR [29]:

ΘHJΘ = J =
[

1 0
0 −1

]
.

Fix ω ∈ R. Define the maps g1 and g2 on the unit disk D as

g1(s) := G(Θ1(jω), s), g2(s) := G(Θ2(jω), s).

Because Θ1(p) and Θ2(p) are J-unitary on jR, it follows that g1 and g2 are
invertible automorphisms of the unit disk onto itself with inverses:

g−1
1 (s) = G(Θ1(jω)−1, s), Θ1(jω)−1 ∼

[ −1 s11(jω)
−s22(jω) det[S(jω)]

]

g−1
2 (s) = G(Θ2(jω)−1, s), Θ2(jω)−1 ∼

[ −1 s22(jω)
−s11(jω) det[S(jω)]

]
.

Because the gk’s and their inverses are invertible automorphisms, Equation 4–9
gives that ∣∣∣∣∣

g(s1)− g(s2)
1− g(s1)g(s2)

∣∣∣∣∣ =
∣∣∣∣

s1 − s2

1− s1s2

∣∣∣∣ ,

for s1, s2 ∈ D and g denoting either g1, g2, g−1
1 , or g−1

2 . For all p ∈ jR, we
obtain

∆P (s2, sL) =
∣∣∣∣

s2 − sL

1− s2sL

∣∣∣∣ =
∣∣∣∣
g2(sG)− sL

1− g2(sG)sL

∣∣∣∣

=

∣∣∣∣∣
sG − g−1

2 (sL)

1− sGg−1
2 (sL)

∣∣∣∣∣ = ∆P (sG,g−1
2 (sL)).

Then ∆P (s2, sL) = ∆P (sG, s1), provided we can show s1 = g−1
2 (sL). In terms

of the chain matrices, this requires us to show

s1 = G(Θ1; sL) = G(Θ−1
2 ; sL) = G(Θ−1

2 ; sL).
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This equality will follow if we can show Θ1 ∼ Θ−1
2 or that

Θ1 ∼
[ −1 s11/ det[S]
−s22/ det[S] 1/ det[S]

]
∼

[ −1 s22

−s11 det[S]

]
∼ Θ−1

2 .

Because S(p) is inner, det[S] is inner so that det[S] = 1/ det[S] on jR. Also, on
jR, S(p) is unitary so that

S−1 =
1

det[S]

[
s22 −s12

−s21 s11

]
=

[
s11 s12

s21 s22

]
.

Then, s22 = s11/ det[S] and s11 = s22/ det[S]. Thus, Θ1 ∼ Θ−1
2 so that s1 =

g−1
2 (sL) or that the LFT law holds. By Lemma 4.3, the LFT laws give the TGP

laws.

Appendix C. Proof of Theorem 6.1

Let C(T,CN×N ) denote the continuous functions on the unit circle T. Let RL
M

denote those rational functions g−1(q)H(q) in C(T,CN×N ) where g(q) and H(q)
are polynomials with degrees ∂[g] ≤ M and ∂[H] ≤ L. The Existence Theorem
[9, page 154] shows that RL

M is a boundedly compact subset of C(T,CN×N ).
Lemma 3.3 shows the Cayley transform preserves compactness. Thus, RL

M ◦ c is
a boundedly compact subset of 1+̇C(jR,CN×N ). By Lemma 3.1, U+(N) is a
closed subset of L∞(jR,CN×N ). The intersection of a closed and bounded set
with a boundedly compact set is compact. Thus, U+(N) ∩RL

M ◦ c is a compact
subset of 1+̇C(jR,CN×N ). We claim that U+(N, d) = U+(N)∩Rd

d ◦c. Observe
Rd

d ◦ c consists of all rational functions with the degree of the numerator and
denominator not exceeding d and that are also continuous on jR, including the
point at infinity. If S ∈ U+(N) ∩ Rd

d ◦ c,then degSM[S] ≤ d. This forces S

into U+(N, d). Consequently, U+(N, d) ⊇ U+(N) ∩ Rd
d ◦ c. For the converse,

suppose S ∈ U+(N, d). By Corollary 6.1, S ∈ A1(C+,CN×N ) and thus forces S

into Rd
d ◦ c. Thus, U+(N, d) ⊆ U+(N) ∩ Rd

d ◦ c and equality must hold. Thus,
U+(N, d) is compact.

Appendix D. Proof of Theorem 5.5

We start by remarking upon the disk with strict inequalities:

D(c, r) := {φ ∈ L∞(jR) : |φ(jω)− c(jω)| < r(jω) a.e.}.

First, D(c, r) need not be open. For example, D(0, 1) contains the open unit
ball and is contained in its closure:

BL∞(jR) ⊂ D(0, 1) ⊂ BL∞(jR).
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However,

φ(jω) :=
ω

1 + |ω|
belongs to D(0, 1) but with ‖φ‖∞ = 1, there is no neighborhood of φ that is
contained in the open unit ball.

Second, consider what the strict inequalities mean for those γ : L∞(jR) → R
that are continuous with sublevel sets

[γ ≤ α] = D(cα, rα).

We cannot claim that [γ < α] is D(cα, rα). Instead, [γ < α] is an open set
contained by D(cα, rα). In this regard, the following result gives us some control
of the strict inequality.

Theorem D.1. Let c, r ∈ L∞(jR). Assume r−1 ∈ L∞(jR). Let V be any
nonempty open subset of L∞(jR) such that V ⊆ D(c, r). For any φ ∈ V ,

‖r−1(φ− c)‖∞ < 1.

Proof. For any φ ∈ V , the openness of V implies there is an ε > 0 such that

φ + εBL∞(jR) ⊂ V.

Consider the particular element of the open ball:

∆φ := ε′ × sgn(φ− c)
r

‖r‖∞ ,

where 0 < ε′ < ε and

sgn(z) :=
{

z/|z| if z 6= 0,
0 if z = 0.

Then φ + ∆φ ∈ D(c, r) so that

r > |φ + ∆φ− c| = |φ− c|+ ε′
r

‖r‖∞ a.e.

Divide by r and take the norm to get

1 ≥ ‖r−1(φ− c)‖∞ + ε′‖r‖−1
∞ ,

or that 1 > ‖r−1(φ− c)‖∞. To complete the argument, we need to demonstrate
that the preceding argument is not vacuous. That is, D(c, r) does indeed contain
an open set. Because r does not “pinch off”, 0 < ‖r‖−∞. Choose any 0 < η <

‖r‖−∞. For any φ ∈ BL∞(jR)

‖(ηφ + c)− c‖∞ ≤ η < r a.e.

Thus, the open set c + ηBL∞(jR) is contained in D(c, r). ¤
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Proof of Theorem 5.5. There always holds

ρBA1
:= inf{‖∆P (s2, sL)‖∞ : s2 ∈ BA1(C+)}
≥ min{‖∆P (s2, sL)‖∞ : s2 ∈ BH∞(C+)} = ρBH∞ .

Suppose the inequality is strict. Then there is an s2 ∈ BH∞(C+) such that

ρBA1
> ‖∆P (s2, sL)‖∞. (D–1)

By Lemma 4.6, the mapping ∆ρ(s2) := ‖∆P (s2, sL)‖∞ is a continuous function
on BL∞(jR). Consequently, [∆ρ < ρBA1

] is open with

[∆ρ < ρBA1
] ⊂ D(kA, rA),

where the center function and radius functions are

kA := s̄L

1− ρ2
BA1

1− ρ2
BA1

|sL|2 , rA := ρBA1

1− |sL|2
1− ρ2

BA1
|sL|2 .

Let rA have spectral factorization rA = |qA|. By Theorem D.1,

‖q−1
A kA − q−1

A s2‖∞ < 1.

If we assume that q−1
A kA ∈ 1+̇C0(jR), Theorem 5.2 forces equality:

1 > ‖q−1
A kA −H∞(C+)‖∞ = ‖q−1

A kA −A1(C+)‖∞.

The equality lets us select sA ∈ A1(C+) that satisfies

1− ε0 > ‖q−1
A (kA − sA)‖∞,

for some 1 > ε0 > 0. This forces the pointwise result:

(1− ε0)rA ≥ |kA − sA| a.e.

With some effort, we will show that this pointwise equality implies

∆ρ(sA) < ρBA1
.

This contradiction implies that Equation D–1 cannot be true or that the inequal-
ity ρBA1

≥ ρBH∞ cannot be strict.
To start this demonstration, we first prove q−1

A kA is continuous. Because sL

belongs to the open unit ball of the disk algebra, both kA and rA belong to
1+̇C0(jR). Thus, it remains to prove that q−1

A is continuous. Lemma 3.3 gives
that RA = rA ◦ c−1 belongs to C(T). Ignore the trivial case when ρBA1

= 0.
Because

RA ≥ ρBA1
(1− ‖sL‖2∞) > 0

it follows that log(RA) ∈ C(T) and defines the outer function [18, page 24]:

QA(z) := exp
(

1
2π

∫ 2π

0

ejt + z

ejt − z
log(RA(ejt))dt

)
∈ A(D).
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Lemma 3.3 gives that qA = QA ◦ c ∈ A1(C+) and is also an outer function.
Because qA is an outer function q−1

A ∈ A1(C+). Thus, a spectral factorization
exists in the disk algebra.

To continue, define for ε ∈ [0, ε0],

ρ(ε) := (1− ε)ρBA1
.

Define

kε := s̄L
1− ρ(ε)2

1− ρ(ε)2|sL|2 , rε := ρρ(ε)
1− |sL|2

1− ρ(ε)2|sL|2 .

In L∞(jR), kε → kA and rε → rA as ε → 0. Then

|sA−kε| ≤ |sA−kA|+ |kA−kε|
≤ (1−ε0)rA + |kA−kε| ≤ (1−ε0)rε + |rA−rε|+ |kA−kε|.

Because the last two terms are bounded as O[ε],

|sA − kε| ≤ rε − ε0rε + O[ε].

Because rA is uniformly positive, and rε converges to rA, the last two terms are
uniformly negative for all ε > 0 sufficiently small. This puts

sA ∈ D(kε, rε) ⇐⇒ ∆ρ(sA) < (1− ε)ρBA1
. ¤
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Engineering Applications of the Motion-Group
Fourier Transform

GREGORY S. CHIRIKJIAN AND YUNFENG WANG

Abstract. We review a number of engineering problems that can be posed
or solved using Fourier transforms for the groups of rigid-body motions of
the plane or three-dimensional space. Mathematically and computationally
these problems can be divided into two classes: (1) physical problems that
are described as degenerate diffusions on motion groups; (2) enumeration
problems in which fast Fourier transforms are used to efficiently compute
motion-group convolutions. We examine engineering problems including
the analysis of noise in optical communication systems, the allowable po-
sitions and orientations reachable with a robot arm, and the statistical
mechanics of polymer chains. In all of these cases, concepts from non-
commutative harmonic analysis are put to use in addressing real-world
problems, thus rendering them tractable.

1. Introduction

Noncommutative harmonic analysis is a beautiful and powerful area of pure
mathematics that has connections to analysis, algebra, geometry, and the the-
ory of algorithms. Unfortunately, it is also an area that is almost unknown to
engineers. In our research group, we have addressed a number of seemingly
intractable “real-world” engineering problems that are easily modeled and/or
solved using techniques of noncommutative harmonic analysis. In particular, we
have addressed physical/mechanical problems that are described well as func-
tions or processes on the rotation and rigid-body-motion groups. The interac-
tions and evolution of these functions are described using group-theoretic convo-
lutions and diffusion equations, respectively. In this paper we provide a survey
of some of these applications and show how computational harmonic analysis on
motion groups is used.

The group of rigid-body motions, denoted as SE(N) (shorthand for “special
Euclidean” group in N -dimensional space), is a unimodular semidirect product
group, and general methods for constructing unitary representations of such Lie
groups have been known for some time (see [1; 25; 35], for example). In the
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past 40 years, the representation theory and harmonic analysis for the Euclidean
groups have been developed in the pure mathematics and mathematical physics
literature. The study of matrix elements of irreducible unitary representation
of SE(3) was initiated by N. Vilenkin [39; 40] in 1957 (some particular matrix
elements are also given in [41]). The most complete study of S̃E(3) (the universal
covering group of SE(3)) with application to the harmonic analysis was given by
W. Miller in [28]. The representations of SE(3) were also studied in [16; 36; 37].
In recent works, fast Fourier transforms for SE(2) and SE(3) have been proposed
[24], and an operational calculus has been constructed [5].

However, despite the considerable progress in mathematical developments of
the representation theory of SE(3), these achievements have not yet been widely
incorporated in engineering and applied fields. In work summarized here we try
to fill this gap. A more detailed treatment of numerous applications can be found
in [6].

In Section 2 we review the representation theory of SE(2), give the matrix
elements of the irreducible unitary representations and review the definition of
the Fourier transform for SE(2). We also review operational properties of the
Fourier transform. We do not go into the intricate details of the Fourier transform
for SE(3), as those are provided in the references described above and they add
little to the understanding of how to apply noncommutative harmonic analysis
to real-world problems. Sections 3, 4 and 5 are devoted to application areas:
coherent optical communications, robotics, and polymer statistical mechanics,
respectively.

2. Fourier Analysis of Motion

In this section we review the basic definitions and properties of the Euclidean
motion groups. Our emphasis is on the motion group of the plane, but most of
the concepts extend in a natural way to three-dimensional space. See [6] for a
complete treatment.

2.1. Euclidean motion group. The Euclidean motion group, SE(N), is the
semidirect product of RN with the special orthogonal group, SO(N). We denote
elements of SE(N) as g = (a, A) ∈ SE(N) where A ∈ SO(N) and a ∈ RN . The
identity element is e = (0, I) where I is the N ×N identity matrix. For any g =
(a, A) and h = (r, R) ∈ SE(N), the group law is written as g◦h = (a+Ar, AR),
and g−1 = (−AT a, AT ). Any g = (a, A) ∈ SE(N) acts transitively on a position
x ∈ RN as

g · x = Ax + a.

That is, position vector x is rigidly moved by rotation followed by a translation.
Often in the engineering literature, no distinction is made between a motion,

g, and the result of that motion acting on the identity element (called a pose
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or reference frame). Hence, we interchangeably use the words “motion” and
“frame” when referring to elements of SE(N).

It is convenient to think of an element of SE(N) as an (N + 1) × (N + 1)
matrix of the form:

g =

(
A a

0T 1

)
.

In the engineering literature, matrices with this kind of structure are called
homogeneous transforms.

For example, each element of SE(2) can be parameterized using polar coordi-
nates as:

g(r, θ, φ) =




cosφ − sinφ r cos θ

sin φ cosφ r sin θ

0 0 1


 ,

where r ≥ 0 is the magnitude of translation. SE(2) is a 3-dimensional man-
ifold much like R3. We can integrate over SE(2) using the volume element
d(g(r, θ, φ)) = (4π2)−1r dr dθ dφ. This volume element is bi-invariant in the
sense that it does not change under left and right shifts by any fixed element
h ∈ SE(2):

d(h ◦ g) = d(g ◦ h) = d(g).

Bi-invariant volume elements exist for SE(N) for N = 2, 3, 4, . . . . A group with
bi-invariant volume element is called a unimodular group.

The Lie group SE(2) has an associated Lie algebra se(2). Physically, elements
of SE(2) describe finite motions in the plane, whereas elements of se(2) represent
infinitesimal motions. Since SE(2) is a three-dimensional Lie group, there are
three independent directions along which any infinitesimal motion can be de-
composed. The vector space of all such motions relative to the identity element
e ∈ SE(2) together with the matrix commutator operation defines se(2). As
with any vector space, we can choose an appropriate basis. One such basis for
the Lie algebra se(2) consists of the following three matrices:

X1 =




0 0 1
0 0 0
0 0 0


 ; X2 =




0 0 0
0 0 1
0 0 0


 ; X3 =




0 −1 0
1 0 0
0 0 0


 .

The following one-parameter motions are obtained by exponentiating the above
basis elements of se(2):

g1(t) = exp(tX1) =




1 0 t

0 1 0
0 0 1


 ;

g2(t) = exp(tX2) =




1 0 0
0 1 t

0 0 1


 ;
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g3(t) = exp(tX3) =




cos t − sin t 0
sin t cos t 0
0 0 1


 .

For the purposes of the current discussion, we can take as a definition of se(2)
the vector space spanned by any linear combination of X1, X2, and X3. The
exponential mapping

exp : se(2) → SE(2)

is well-defined for every element of se(2) and is invertible except at a set of
measure zero in SE(2).

Any rigid-body motion in the plane can be expressed as an appropriate com-
bination of these three basic motions. For example, g = g1(x)g2(y)g3(φ).

2.2. Differential operators on SE(2). The way to take partial derivatives of
a function of motion is to evaluate

X̃R
i f

4
=

d

dt
f(g ◦ exp(tXi))|t=0, X̃L

i f
4
=

d

dt
f(exp(tXi) ◦ g)|t=0.

(In our notation, R means that the exponential appears on the right, and L

means that it appears on the left. This means that X̃R
i is invariant under left

shifts, while X̃L
i is invariant under right shifts. Our notation is different than

others in the mathematics literature where the superscript denotes the invariance
of the vector field formed by the concatenation of these derivatives.) Explicitly,
we find the differential operators X̃R

i in polar coordinates to be [6]

X̃R
1 = cos(φ− θ)

∂

∂r
+

sin(φ− θ)
r

∂

∂θ
,

X̃R
2 = − sin(φ− θ)

∂

∂r
+

cos(φ− θ)
r

∂

∂θ
,

X̃R
3 =

∂

∂φ
,

and in Cartesian coordinates to be

X̃R
1 = cos φ

∂

∂x
− sin φ

∂

∂y
, X̃R

2 = sin φ
∂

∂x
+ cos φ

∂

∂y
, X̃R

3 =
∂

∂φ
.

The differential operators X̃L
i in polar coordinates are

X̃L
1 = cos θ

∂

∂r
− sin θ

r

∂

∂θ
, X̃L

2 = sin θ
∂

∂r
+

cos θ

r

∂

∂θ
, X̃L

3 =
∂

∂φ
+

∂

∂θ
.

2.3. Fourier analysis on SE(2). The Fourier transform, F, of a function of
motion, f(g) where g ∈ SE(N), is an infinite-dimensional matrix defined as [6]:

F(f) = f̂(p) =
∫

G

f(g)U(g−1, p) d(g)
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where U(g, p) is an infinite dimensional matrix function with the property that
U(g1 ◦ g2, p) = U(g1, p)U(g2, p). This kind of matrix is called a matrix represen-
tation of SE(N). It has the property that it converts convolutions on SE(N) into
matrix products:

F(f1 ∗ f2) = F(f2)F(f1).

In the case when N = 2, the original function is reconstructed as

F−1(f̂) = f(g) =
∫ ∞

0

trace(f̂(p)U(g, p))p dp,

and the matrix elements of U(g, p) are expressed explicitly as [6]:

umn(g(r, θ, φ), p) = jn−me−j[nφ+(m−n)θ]Jn−m(p r)

where Jν(x) is the νth order Bessel function and j =
√−1. This inverse transform

can be written in terms of elements as

f(g) =
∑

m,n∈Z

∫ ∞

0

f̂mnunm(g, p)p dp. (2–1)

In analogy with the classical Fourier transform, which converts derivatives
of functions of position into algebraic operations in Fourier space, there are
operational properties for the motion-group Fourier transform.

By the definition of the SE(2)-Fourier transform F and operators X̃R
i and X̃L

i ,
we can write the Fourier transform of the derivatives of a function of motion as

F[X̃R
i f ] = ũ(Xi, p)f̂(p), F[X̃L

i f ] = −f̂(p)ũ(Xi, p),

where

ũ(Xi, p)
4
=

d

dt
U(exp(tXi), p)

∣∣∣∣
t=0

.

Explicitly,
umn(exp(tX1), p) = jn−mJm−n(pt).

We know that
d

dx
Jm(x) = 1

2 [Jm−1(x)− Jm+1(x)]

and

Jm−n(0) =
{

1 for m− n = 0,
0 for m− n 6= 0.

Hence,

ũmn(X1, p) =
d

dt
umn(exp(tX1), p)

∣∣∣∣
t=0

= −jp

2
(δm,n+1 + δm,n−1).

Likewise,

umn(exp(tX2), p) = jn−me−j(n−m)π/2Jm−n(pt) = Jm−n(pt),
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and so

ũmn(X2, p) =
d

dt
umn(exp(tX2), p)

∣∣∣∣
t=0

=
p

2
(Jm−n−1(0)− Jm−n+1(0)) =

p

2
(δm,n+1 − δm,n−1).

Similarly, we find
umn(exp(tX3), p) = e−jmtδm,n

and

ũmn(X3, p) =
d

dt
umn(exp(tX3), p)

∣∣∣∣
t=0

= −jmδm,n.

Fast Fourier transforms for SE(2) and SE(3) have been outlined in [6; 24].
Operational properties for SE(3) which are analogous to those presented here for
SE(2) can be found in [5; 6]. Subsequent sections in this paper describe various
applications of motion-group Fourier analysis to problems in engineering.

3. Phase Noise in Coherent Optical Communications

In optical communications, laser light is used to transmit information along
fiber optic cables. There are several methods that are used to transmit and
detect information within the light. Coherent detection (in contrast to direct
detection) is a method that has the ability to detect the phase, frequency, ampli-
tude and polarization of the incident light signal . Therefore, information can be
transmitted via phase, frequency, amplitude, or polarization modulation. How-
ever, the phase of the light emitted from a semiconductor laser exhibits random
fluctuations due to spontaneous emissions in the laser cavity [19]. This phenom-
enon is commonly referred to as phase noise. Phase noise puts strong limitations
on the performance of coherent communication systems. Evaluating the influ-
ence of phase noise is essential in system design and optimization and has been
studied extensively in the literature [10; 12]. Analytical models that describe the
relationship between phase noise and the filtered signal are found in [2; 11]. In
particular, the Fokker–Planck approach represents the most rigorous description
of phase noise effects [13; 14]. To better apply this approach to system design
and optimization, an efficient and powerful computational tool is necessary. In
this section, we describe one such tool that is based on the motion-group Fourier
transform. Readers unfamiliar with the technical terms used below are referred
to [21]. The discussion in the following paragraph provides a context for this
particular engineering application, but the value of noncommutative harmonic
analysis in this context is solely due to its ability to solve equation (3–1).

Let s(t) be the input signal to a bandpass filter which is corrupted by phase
noise. Using the equivalent baseband representation and normalizing it to unit
amplitude, this signal can be written as [14]

s(t) = ejφ(t)
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where φ(t) is the phase noise, usually modeled as a Brownian motion process.
The function h(t) is the impulse response of the bandpass filter. The output of
the bandpass filter is denoted z(t). Let us represent z(t) through its real and
imaginary parts:

z(t) = x(t) + jy(t) = r(t)ejθ(t).

The 3-D Fokker–Planck equation defining the probability density function (pdf)
of z(t) is derived as [2; 45]:

∂f

∂t
= −h(t) cos φ

∂f

∂x
− h(t) sin φ

∂f

∂y
+

D

2
∂2f

∂φ2
(3–1)

with initial condition f(x, y, φ; 0) = δ(x)δ(y)δ(φ), where δ being the Dirac delta
function. The parameter D is related to the laser line width ∆v by D = 2π∆v.
Having an efficient method for solving equation (3–1) is of great importance in
the design of filters.

A number of papers have attempted to solve the above equations using a
variety of techniques including series expansions, numerical methods based on
discretizing the domain, and analytical methods [42; 45]. However, all of them
are based on classical partial differential equation solution techniques.

In our work, we present a new method for solving these methods using har-
monic analysis on groups. These techniques reduce the above Fokker–Planck
equations to systems of linear ordinary differential equations with constant or
time-varying coefficients in a generalized Fourier space. The solution to this
system of equations in generalized Fourier space is simply a matrix exponential
for the case of constant coefficients. A usable solution is then generated via the
generalized Fourier inversion formula.

Using the differential operators defined on the motion group, the 3-D Fokker–
Planck equation in (3–1) can be rewritten as

∂f

∂t
=

(
−h(t)X̃R

2 +
D

2
(X̃R

3 )2
)
f. (3–2)

This equation describes a kind of process that evolves on the group of rigid-
body motions SE(2). Applying the motion-group Fourier transform to (3–2), we
can convert it to an infinite system of linear ordinary differential equations:

df̂

dt
= A(t)f̂ . (3–3)

For equation (3–2), the matrix is

A(t) = −h(t)ũ(X2, p) +
D

2
(
ũ(X3, p)

)2

and its elements are

A(t)mn = −h(t)
p

2
(δm,n+1 − δm,n−1)− D

2
m2δm,n.
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Numerical methods such as Runge–Kutta integration can be applied to easily
solve the truncated version of this system. In the case when h(t) is a constant,
then A is a constant matrix and the solution to the resulting linear time-invariant
system can be written in closed form as

f̂(p; t) = exp(At)

with the initial condition that f̂(p; 0) is the infinite-dimensional identity matrix.
In practice we truncate A at finite dimension, then exponentiate.

Once we get the solution to (3–3), we can then substitute it into the Fourier
inversion formula for the motion group in (2–1) to recover the pdf f(g; t) of z(t).
To get the pdf f(r, θ; t) is just an integration with respect to φ as

f(r, θ; t) =
1
2π

∫ 2π

0

f(g; t)dφ =
∑

n∈Z
j−ne−jnθ

∫ ∞

0

f̂0,nJ−n(p r)p dp. (3–4)

Integrating equation (3–4) over θ will give us the marginal pdf of |z(t)| as:

f(r; t) =
∫ ∞

0

f̂0,0(p)J0(p r)p dp. (3–5)

Using our method, we can get a simple and compact expression for the marginal
pdf for the output of the bandpass filter given in (3–5).

For details and numerical results generated using this approach, see [43].

4. Robotics

A robotic manipulator arm is a device used to position and orient objects in
space. The set of all reachable positions and orientations is called the workspace
of the arm. A robot arm that can attain only a finite number of different states
is called a discretely-actuated manipulator. For such manipulators, it is a com-
binatorially explosive problem to enumerate by brute force all possible states for
arms that have a high degree of articulation. The function that describes the
relative density of reachable positions and orientations in the workspace (called
a workspace density function) has been shown to be an important quantity in
planning the motions of these manipulator arms [4]. This function is denoted as
f(g; L) where g ∈ SE(N), and L is the length of the arm.

Noncommutative harmonic analysis enters in this problem as a way to reduce
this complexity. It was shown in [4] that the workspace density function f(g;L1+
L2) for two concatenated manipulator segments with length L1 and L2 is the
motion-group convolution

f(g; L1 + L2) = f(g; L1) ∗ f(g; L2) =
∫

G

f(h; L1)f(h−1 ◦ g; L2) dh, (4–1)

where h is a dummy variable of integration and dh is the bi-invariant (Haar) mea-
sure for SE(N). That is, given two short arms with known workspace densities,
we can generate the workspace density of the long arm generated by stacking one
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short arm on the other using equation (4–1). In order to perform these convolu-
tions efficiently, the concept of FFTs for the motion groups was studied in [6].

In the rest of this section, we discuss an alternative method for generating
manipulator workspace density functions that does not explicitly compute con-
volutions. Instead, it relies on the same kinds of degenerate diffusions we have
seen already in the context of phase noise.

4.1. Inspiration of the algorithm. Consider a discretely-actuated serial
manipulator which consists of concatenated segments called modules. Suppose
that each module can reach 16 different states. The workspace of this manipu-
lator with 2 modules, 3 modules and 4 modules can be generated by brute force
enumeration because 162, 163, and 164 are not terribly huge numbers. It is easy
to imagine that the size of the workspace will spread out with the increment of
modules. This enlargement of the workspace is just like the diffusion produced
by a drop of ink spreading in a cup of water. Inspired by this observation, we
view the workspace of a manipulator as something that grows/evolves from a
single point source at the base as the length of the manipulator increases from
zero. The workspace is generated after the manipulator grows to full length.

4.2. Implementation of the algorithm. With this analogy, we then need to
determine what kind of diffusion equation is suitable to model this process. We
get such an equation by realizing that some characteristics of manipulators are
similar to those of polymer chains like DNA.

During our study of conformational statistics in polymer science, we derived a
diffusion-type equation defined on the motion group [7]. This equation describes
the probability density function of the position and orientation of the distal
end of a stiff macromolecule chain relative to its proximal end. By involving
parameters which indicate the kinematic properties of a manipulator into this
equation, we can modify it to the diffusion-type equation describing the evolution
of the workspace density function. It is written explicitly as

∂f

∂L
=

(
αX̃R

1 + β(X̃R
1 )2 + X̃R

3 + ε(X̃R
3 )2

)
f. (4–2)

Here f stands for the workspace density function, and L is the manipulator
length. The differential operators X̃R

1 and X̃R
3 are those defined on SE(2) given

earlier. Parameters β, ε and α describe the kinematic properties of manipulators.
We define these kinematic properties as flexibility, extensibility and the degree
of asymmetry. The parameter β describes the flexibility of a manipulator in the
sense of how much a segment of the manipulator can bend per unit length. A
larger value of β means that the manipulator can bend a lot. The parameter ε

describes the extensibility of a manipulator in the sense of how much a manip-
ulator can extend along its backbone direction. A larger value of ε means that
the manipulator can extend a lot. The parameter α describes the asymmetry in
how the manipulator bends. When α = 0, the manipulator can reach left and
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right with equal ease. When α < 0, there is a preference for bending to the left,
and when α > 0 there is a preference for bending to the right. Since α, β, and
ε are qualitative descriptions of the kinematic properties of a manipulator, they
are not directly measurable.

This simple three-parameter model qualitatively captures the behavior that
has been observed in numerical simulations of workspace densities of discretely-
actuated variable-geometry truss manipulators [23]. Clearly, equation (4–2) can
be solved in the same way as the phase-noise equation. We have done this in [43].

5. Statistical Mechanics of Macromolecules

In this section, we show how certain quantities of interest in polymer physics
can be generated numerically using Euclidean-group convolutions. We also show
how for wormlike polymer chains, a partial differential equation governs a pro-
cess that evolves on the motion group and describes the diffusion of end-to-end
position and orientation. This equation can be solved using the SE(3)-Fourier
transform in a manner very similar to the way the phase-noise Fokker–Planck
was addressed in Section 3. This builds on classical works in polymer theory
such as [8; 15; 20; 22; 34; 44].

5.1. Mass density, frame density, and Euclidean group convolutions.
In statistical mechanical theories of polymer physics, it is essential to compute
ensemble properties of polymer chains averaged over all of their possible confor-
mations [9; 27]. Noncommutative harmonic analysis provides a tool for comput-
ing probability densities used in these averages.

In this subsection we review three statistical properties of macromolecular
ensembles. These are: (1) The ensemble mass density for the whole chain ρ(x),
which is generated by imagining that one end of the chain is held fixed and a
cloud is generated by all possible conformations of the chain superimposed on
each other; (2) The ensemble tip frame density f(g) (where g is the frame of
reference of the distal end of the chain relative to the fixed proximal end); (3)
The function µ(g, x), which is the ensemble mass density of all configurations
which grow from the identity frame fixed to one end of the chain and terminate
at the relative frame g at the other end. Figures that describe these quantities
can be found in [3].

The functions ρ, f , and µ are related to each other. Given µ(g, x), the en-
semble mass density is calculated by adding the contribution of each µ for each
different end position and orientation:

ρ(x) =
∫

G

µ(g, x) dg. (5–1)

This integration is written as being over all motions of the end of the chain, but
only frames g in the support of µ contribute to the integral. Here G is shorthand
for SE(3) and dg denotes the invariant integration measure for SE(3).
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In an analogous way, it is not difficult to see that integrating the x-dependence
out of µ provides the total mass of configurations of the chain starting at frame
e and terminating at frame g. Since each chain has mass M , this means that
the frame density f(g) is related to µ(g, x) as:

f(g) =
1
M

∫

R3
µ(g, x)dx. (5–2)

We note the total number of frames attained by one end of the chain relative
to the other is

F =
∫

G

f(g) dg.

It then follows that ∫

R3
ρ(x)dx = F ·M.

If the functions ρ(x) and f(g) are known for the whole chain then a number
of important thermodynamic and mechanical properties of the polymer can be
determined [6].

We can divide the chain into P segments that are short enough to allow brute
force enumeration calculation of ρi(x) and fi(g) for i = 1, . . . , P , where g is the
relative frame of reference of the distal end of the segment with respect to the
proximal one. For a homogeneous chain, such as polyethylene, these functions
are the same for each value of i = 1, . . . , P .

In the general case of a heterogeneous chain, we can calculate the functions
ρi,i+1(x), fi,i+1(g), and µi,i+1(g, ~x) for the concatenation of segments i and i+1
from those of segments i and i + 1 separately in the following way:

ρi,i+1(x) = Fi+1ρi(x) +
∫

G

fi(h)ρi+1(h−1 ◦ x) dh, (5–3)

fi,i+1(g) = (fi ∗ fi+1)(g) =
∫

G

fi(h)fi+1(h−1 ◦ g) dh. (5–4)

and

µi,i+1(g, ~x) =
∫

G

(
µi(h, ~x)fi+1(h−1 ◦ g) + fi(h)µi+1(h−1 ◦ g, h−1 ◦ ~x)

)
dh.

(5–5)
In these expressions h ∈ G = SE(3) is a dummy variable of integration.

The meaning of equation (5–3) is that the mass density of the ensemble of all
conformations of two concatenated chain segments results from two contribu-
tions. The first is the mass density of all the conformations of the lower seg-
ment (weighted by the number of different upper segments it can carry, which
is Fi+1 =

∫
G

fi+1 dg). The second contribution results from rotating and trans-
lating the mass density of the ensemble of the upper segment, and adding the
contribution at each of these poses (positions and orientations). This contribu-
tion is weighted by the number of frames that the distal end of the lower segment
can attain relative to its base. Mathematically L(h)ρi+1(x) = ρi+1(h−1 ◦ x) is
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a left-shift operation which geometrically has the significance of rigidly trans-
lating and rotating the function ρi+1(x) by the transformation h. The weight
fi(h) dh is the number of configurations of the ith segment terminating at frame
of reference h.

The meaning of equation (5–4) is that the distribution of frames of reference
at the terminal end of the concatenation of segments i and i + 1 is the group-
theoretical convolution of the frame densities of the terminal ends of each of the
two segments relative to their respective bases. This equation holds for exactly
the same reason why equation (4–1) does in the context of robot arms.

Equation (5–5) says that there are two contributions to µi,i+1(g, ~x). The first
comes from adding up all the contributions due to each µi(h, ~x). This is weighted
by the number of upper segment conformations with distal ends that reach the
frame g given that their base is at frame h. The second comes from adding
up all shifted (translated and rotated) copies of µi+1(g, ~x), where the shifting is
performed by the lower distribution, and the sum is weighted by the number of
distinct configurations of the lower segment that terminate at h. This number
is fi(h) dh.

Equations (5–3), (5–4) and (5–5) can be iterated as described in [3; 6].

5.2. Statistics of stiff molecules as solutions to PDEs on SO(3) and
SE(3). Experimental measurements of the stiffness constants of DNA and other
stiff (or semi-flexible) macromolecules have been reported in a number of papers,
as well as the statistical mechanics of such molecules. See [17; 26; 29; 30; 31; 32;
33; 38], for example.

The stiffness and chirality (how helical the molecule is) can be described with
parameters Dlk and dl for l, k = 1, 2, 3. In particular, Dlk are the elements
of the inverse of the stiffness matrix. When a force is applied, these constants
determine how easily one end of the molecule deflects from the helical shape that
it assumes when no forces act on it. The parameters dl describe the helical shape
of an undeformed molecule with flexibility described by Dlk. These parameters
are described in detail in [7].

Degenerate diffusion equations describing the evolution of position and orien-
tation of frames of reference attached to points on the chain at different values
of length, L, have been derived [6; 43]. These equations incorporate stiffness and
chirality information and are written in terms of SE(3) differential operators as

(
∂

∂L
− 1

2

3∑

k,l=1

DlkX̃R
l X̃R

k −
3∑

l=1

dlX̃
R
l + X̃R

6

)
f = 0. (5–6)

The initial conditions are f(a, A; 0) = δ(a)δ(A) where g = (a, A).
This equation has been solved using the operational properties of the SE(3)

Fourier transform in [5; 6; 43].
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6. Conclusions

This paper has reviewed a number of applications of harmonic analysis on
the motion groups. This illustrates the power of noncommutative harmonic
analysis, and its potential as a computational and analytical tool for solving
real-world problems. We hope that this review will stimulate interest among
others working in the field of noncommutative harmonic analysis to apply these
methods to problems in engineering, and we hope that those in the engineering
sciences will appreciate noncommutative harmonic analysis for the powerful tool
that it is.
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Abstract. Three-dimensional volumetric data are becoming increasingly
available in a wide range of scientific and technical disciplines. With the
right tools, we can expect such data to yield valuable insights about many
important phenomena in our three-dimensional world.

In this paper, we develop tools for the analysis of 3-D data which may
contain structures built from lines, line segments, and filaments. These
tools come in two main forms: (a) Monoscale: the X-ray transform, offering
the collection of line integrals along a wide range of lines running through
the image—at all different orientations and positions; and (b) Multiscale:
the (3-D) beamlet transform, offering the collection of line integrals along
line segments which, in addition to ranging through a wide collection of
locations and positions, also occupy a wide range of scales.

We describe different strategies for computing these transforms and sev-
eral basic applications, for example in finding faint structures buried in
noisy data.

1. Introduction

In field after field, we are currently seeing new initiatives aimed at gathering
large high-resolution three-dimensional datasets. While three-dimensional data
have always been crucial to understanding the physical world we live in, this
transition to ubiquitous 3-D data gathering seems novel. The driving force is
undoubtedly the pervasive influence of increasing storage capacity and computer
processing power, which affects our ability to create new 3-D measurement in-
struments, but which also makes it possible to analyze the massive volumes of
data that inevitably result when 3-D data are being gathered.

Keywords: 3-D volumetric (raster-scan) data, 3-D x-ray transform, 3-D beamlet transform,
line segment extraction, curve extraction, object extraction, linogram, slant stack, shearing,
planogram.
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As examples of such ongoing developments we can mention: Extragalactic
Astronomy [50], where large-scale galaxy catalogs are being developed; Biological
Imaging, where methods like single-particle electron microscopy and tomographic
electron microscopy directly give 3-D data about structure of biological interest
at the cellular level and below[45; 26]; and Experimental Particle Physics, where
3-D detectors lead to new types of experiments and new data analysis questions
[22].

In this paper we describe tools which will be helpful for analyzing 3-D data
when the features of interest are concentrated on lines, line segments, curves,
and filaments. Such features can be contrasted to datasets where the objects
of interest might be blobs or pointlike objects, or where the objects of interest
might be sheets or planar objects. Effectively, we are classifying objects by
their dimensionality; and for this paper the underlying objects of interest are of
dimension 1 in R3.

Figure 1. A simulated large-scale galaxy distribution. (Courtesy of Anatoly

Klypin.)

1.1. Background motivation. As an example where such concerns arise,
consider an exciting current development in extragalactic astronomy: the com-
pilation and publication of the Sloan Digital Sky Survey, a catalog of galaxies
which spans an order of magnitude greater scale than previous catalogs and
which contains an order of magnitude more data.

The catalog is thought to be massive enough and detailed enough to shed
considerable new light on the processes underlying the formation of matter and
galaxies. It will be particularly interesting (for us) to better understand the
filamentary and sheetlike structure in the large-scale galaxy distribution. This
structure reflects gravitational processes which cause the matter in the universe
to collapse from an initially fully three-dimensional scatter into a scatter con-
centrated on lower-dimensional structures [41; 25; 49; 48].
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Figure 1 illustrates a point cloud dataset obtained from a simulation of galaxy
formation. Even cursory visual inspection suggests the presence of filaments and
perhaps sheets in the distribution of matter. Of course, this is artificial data.
Similar figures can be prepared for real datasets such as the Las Campanas cat-
alog, and, in the future, the Sloan Digital Sky Survey. To the eye, the simulated
and real datasets will look similar. But can one say more? Can one rigorously
compare the quantitative properties of real and simulated data? Existing tech-
niques, based on two-point correlation functions, seem to provide only very weak
ability to discriminate between various point configurations [41; 25].

This is a challenging problem, and we expect that it can be attacked using
the methods suggested in this paper. These methods should be able to quantify
the extent and nature of filamentary structure in such datasets, and to provide
invariants to allow detailed comparisons of point clouds. While we do not have
space to develop such a specific application in detail in this paper, we hope to
briefly convey here to the reader a sense of the relevance of our methods.

What we will develop in this paper is a set of tools for digital 3-D data
which implement the X-Ray transform and related transforms. For analysis of
continuum functions f(x, y, z) with (x, y, z) ∈ R3, the X-ray transform takes
the form

(Xf)(L) =
∫

L

f(p)dp,

where L is a line in R3, and p is a variable indexing points in the line; hence the
mapping f 7→ Xf contains within it all line integrals of f .

It seems intuitively clear that the X-ray transform and related tools should be
relevant to the analysis of data containing filamentary structure. For example, it
seems that in integrating along any line which matches a filament closely over a
long segment, we will get an unusually large coefficient, while on lines that miss
filaments we will get small coefficients, and so the spread of coefficients across
lines may reflect the presence of filaments.

This sort of intuitive thinking resembles what on a more formal level would be
called the principle of matched filtering in signal detection theory. That principle
says that to detect a signal in noisy data, when the signal is at unknown location
but has a known signature template, we should integrate the noisy data against
the signature template shifted to all locations where the signal may be residing.
Now filaments intuitively resemble lines, so integration along lines is a kind of
intuitive matched filtering for filaments. Once this is said, it becomes clear that
one wants more than just integrating along lines, because filamentarity can be
a relatively local property, while lines are global objects. As filaments might
resemble lines only over moderate-length line segments, one might find it more
informative to compare them with templates of line integrals over line segments
at all lengths, locations, and orientations. Such segments may do a better job of
matching templates built from fragments of the filament.
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Hence, in addition to the X-ray transform, we also consider in this paper
a multiscale digital X-ray transform which we call the beamlet transform. As
defined here, the beamlet transform is designed for data in a digital n × n × n

array. Its intent is to offer multiscale, multiorientation line integration.

1.2. Connection to 2-D beamlets. Our point of view is an adaptation to the
3-D setting of the viewpoint of Donoho and Huo, who in [21] have considered
beamlet analysis of 2-D images. They have shown that beamlets are connected
with various image processing problems ranging from curve detection to image
segmentation. In their classification, there are several levels to 2-D beamlet
analysis:

• Beamlet dictionary: a special collection of line segments, deployed across ori-
entations, locations, and scales in 2-D, to sample these in an efficient and
complete manner.

• Beamlet transform: the result of obtaining line integrals of the image along
all the beamlets.

• Beamlet graph: a graph structure underlying the 2-D beamlet dictionary which
expresses notions of adjacency of beamlets. Network flow algorithms can use
this graph to explore the space of curves in images very efficiently. Multiscale
chains of 2-D beamlets can be expressed naturally as connected paths in the
beamlet graph.

• Beamlet algorithms: algorithms for image processing which exploit the beam-
let transform and perhaps also the beamlet graph.

They have built a wide collection of tools to operationalize this type of analysis
for 2-D images. These are available over the internet [1; 2]. In the BeamLab
environment, one can, for example, assemble the various components in the
above picture to extract filaments from noisy data. This involves calculating
beamlet transforms of the noisy data, using the resulting coefficient pyramid as
input to processing algorithms which are organized around the beamlet graph
and which use various graph-theoretical optimization procedures to find paths
in the beamlet graph which optimize a statistical goodness-of-match criterion.

Exactly the same classification can be made in three dimensions, and very
similar libraries of tools and algorithms can be built. Finally, many of the same
applications from the two-dimensional case are relevant in 3-D. Our goal in this
paper is to build the very basic components of this picture: describing the X-ray
and beamlet transforms that we work with, the resulting beamlet pyramids, and
a few resulting beamlet algorithms that are easy to implement in this framework.
Unfortunately, in this paper we are unable to explore all the analogous beamlet-
based algorithms — such as the algorithms for extracting filaments from noisy
data using shortest-path and related algorithms in the beamlet graph. We simply
scratch the surface.
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1.3. Contents. The contents of the paper are as follows:

• Section 2 offers a discussion of two different systems of lines in 3-D, one
system enumerating all line segments connecting pairs of voxel corners on the
faces of the digital cube, and one system enumerating all possible slopes and
intercepts.

• Section 3 discusses the construction of beamlets as a multiscale system based
on these systems of lines, and some properties of such systems. The most
important pair of properties being (a) the low cardinality of the system: it
has O(n4) elements as opposed to the O(n6) cardinality of the system of all
multiscale line segments, while (b) it is possible to express each line segment
in terms of a short chain of O(log(n)) beamlets.

• Section 4 discusses two digital X-ray transform algorithms based on the vertex-
pairs family of lines.

• Section 5 discusses transform algorithms based on the slope-intercept family
of lines.

• Section 6 exhibits some performance comparisons
• Section 7 offers some basic examples of X-ray analysis and synthesis.
• Section 8 discusses directions for future work.

2. Systems of Lines in 3-D

To implement a digital X-ray transform one needs to define structured families
of digital lines. We use two specific systems here, which we call the vertex-
pair system and the slope-intercept system. Alternative viewpoints on ‘digital
geometry’ and ‘discrete lines’ are described in [33; 34].

2.1. Vertex-pair systems. Take an n×n×n cube of unit volume voxels, and
call the set of vertices V the voxel corners which are not interior to the cube.
These vertices occur on the faces on the data cube, and there are about 6(n+1)2

such vertices. For an illustration, see Figure 2.
To keep track of vertices, we label them by the face they belong to 1 ≤ f ≤ 6

and by the coordinates [k1, k2] within the face.
Now consider the collection of all line segments generated by taking distinct

pairs of vertices in V . This includes many ‘global scale lines’ crossing the cube
from one face to another, at voxel-level resolution. In particular it does not
contain any line segments with endpoints strictly inside the cube.

The set has roughly 18n4 elements, which can be usefully indexed by the pair
of faces (f1, f2) they connect and the coordinates [k1

1, k
1
2], [k

2
1, k

2
2] of the endpoints

on those faces. There are 15 such face-pairs involving distinct faces, and we can
uniquely specify a line by picking any such face-pair and any pair of coordinate
pairs obeying kj

i ∈ {0, 1, 2, . . . n}.
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Figure 2. The vertices associated with the data cube are the voxel corners on

the surface; a digital line indicated in red, with endpoints at vertices indicated in

green.

2.2. Slope-intercept systems. We now consider a different family of lines,
defined not by the endpoints, but by a parametrization. For this family, it is best
to change the origin of the coordinate system so that the data cube becomes an
n× n× n collection of cubes with center of mass at (0, 0, 0). Hence, for (x, y, z)
in the data cube we have |x|, |y|, |z| ≤ n/2. We can consider three kinds of
lines: x-driven, y-driven, and z-driven, depending on which axis provides the
shallowest slopes. An x-driven line takes the form

z = szx + tz, y = syx + ty

with slopes sz,sy, and intercepts tz and ty. Here the slopes |sz|, |sy| ≤ 1. y- and
z-driven lines are defined with an interchange of roles between x and y or z, as
the case may be.

We will consider the family of lines generated by this, where the slopes and
intercepts run through an equispaced family:

sx, sy, sz ∈ {2`/n : ` = −n/2, . . . , n/2−1}, tx, ty, tz ∈ {` : −n+1, . . . , n−1}.

3. Multiscale Systems: Beamlets

The systems of line segments we have just defined consist of global scale seg-
ments beginning and ending on faces of the cube. For analysis of fragments of
lines and curves, it is useful to have access to line segments which begin and
end well inside the cube and whose length is adjustable so that there are line
segments of all lengths between voxel scale and global scale.

A seemingly natural candidate for such a collection is the family of all line
segments between any voxel corner and any other voxel corner. For later use, we
call such segments 3-D beams. This set is expressive— it approximates any line
segment we may be interested in to within less than the diameter of one voxel.



FAST X-RAY AND BEAMLET TRANSFORMS FOR 3-D DATA 85

On the other hand, the set of all such beams can be of huge cardinality—with
O(n3) choices for both endpoints, we get O(n6) 3-D beams —so that it is clearly
infeasible to use the collection of 3-D beams as a basic data structure even for
n = 64. Note that digital 3-D imagery is becoming available with n = 2048 from
Resolution Sciences, Inc., Corte Madera, CA, and many important applications
involve the analysis of volumetric images that contain filamentary objects such
as blood vessel networks or fibers in a paper. For such datasets it seems natural
to use beams-based analysis tools, however, working with O(n6) storage would
be prohibitive.

The challenge, then, is to develop a reduced-cardinality substitute for the
collection of 3-D beams, but one which is nevertheless expressive, in that it can
be used for many of the same purposes as 3-D beams. Throughout this section
we will be working in the context of vertex-pair systems of lines.

3.1. The beamlet system. A dyadic interval D(j, k) satisfies D(j, k) =
[k/2j , (k + 1)/2j ] ⊂ [0, 1] where k is an integer between 0 and 2j ; it has length
2−j . A dyadic cube C(k1, k2, k3, j) ⊂ [0, 1]3 is the direct product of dyadic
intervals

[k1/2j , (k1 + 1)/2j ]⊗ [k2/2j , (k2 + 1)/2j ]⊗ [k3/2j , (k3 + 1)/2j ]

where 0 ≤ k1, k2, k3 < 2j for an integer j ≥ 0. Such cubes can be viewed as de-
scended from the unit cube C(0, 0, 0, 0) = [0, 1]3 by recursive partitioning. Hence,
the splitting C(0, 0, 0, 0) in half along each axis D(j, k1) ⊗ D(j, k2) ⊗ D(j, k3)
yields the eight cubes C(k1, k2, k3, 1) where ki ∈ {0, 1}, splitting those in half
along each axis we get the 64 subcubes C(k1, k2, k3, 2) where ki ∈ {0, 1, 2, 3}, and
if we decompose the unit cube into n3 voxels using a uniform n-by-n-by-n grid
with n = 2J dyadic, then the individual voxels are the n3 cells C(k1, k2, k3, J),
0 ≤ k1, k2, k3 < n.

Figure 3. Dyadic cubes.
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Associated to each dyadic cube we can build a system of lines based on vertex
pairs. For a dyadic cube Q = C(k1, k2, k3, j) tiled by voxels of side 1/n for a
dyadic n = 2J with J > j, let Vn(Q) be the set of voxel corners on the faces of
Q and let Bn(Q) be the collection of all line segments generated by vertex-pairs
from Vn(Q).

Definition 1. We call Bn(Q) the set of 3-D beamlets associated to the cube Q.
Taking the collection of all dyadic cubes at all dyadic scales 0 ≤ j ≤ J , and all
beamlets generated by all these cubes, the 3-D beamlet dictionary is the union
of all the beamlet sets of all dyadic subcubes of the unit cube, and we denote
this set by Bn.

Figure 4. Vertices on dyadic cubes are always just the points on the faces of the

cubes.

Figure 5. Examples of beamlets at two different scales: (a) scale 0 (coarsest

scale); (b) scale 1 (next finer scale).

This dictionary of line segments has three desirable properties.

• It is a multi-scale structure: it consists of line segments occupying a range of
scales, locations, and orientations.

• It has controlled cardinality: there are only O(n4) 3-D beamlets, as compared
to O(n6) beams.
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• It is expressive: a small number of beamlets can be chained together to ap-
proximately represent any beam.

The first property is obvious: the multi-scale, multi-orientation, multi- location
nature has been obtained as a direct result of the construction.

To show the second property, we compute the cardinality of Bn. By assump-
tion, our voxel size 1/n has n = 2J , so there are J + 1 scales of dyadic cubes.
Of course for any scale 0 ≤ j ≤ J there are 23j dyadic cubes of scale j; each of
these dyadic cubes contains 23(J−j) voxels, approximately 6× 22(J−j) boundary
vertices, and therefore 18× 24(J−j) 3-D beamlets.

The total number of 3-D beamlets at scale j is the number of dyadic cubes
at scale j, times the number of beamlets of a dyadic cube at scale j, which gives
18×24J−j . Summing for all scales gives a total of approximately 36×24J = O(n4)
elements total.

We will now turn to our third claim —that the collection of 3-D beamlets is
expressive. To develop our support for this claim, we will first introduce some
additional terminology and make some simple observations, and then state and
prove a formal result.

3.2. Decompositions of beams into chains of beamlets. In decomposing
a dyadic cube Q at scale j into its 8 disjoint dyadic subcubes at scale j + 1, we
call those subcubes the children of Q, and say that Q is their parent. We also
say that 2 dyadic cubes are siblings if they have the same parent. Terms such
as descendants and ancestors have the obvious meanings. In this terminology,
except at the coarsest and finest scales, all dyadic subcubes have 8 children, 7
siblings and 1 parent. The data cube has neither parents nor siblings and the
individual voxels don’t have children. We can view the inheritance structure of
the set of dyadic cubes as a balanced tree where each node corresponds to a
dyadic cube, the data cube corresponds to the root and the voxel cubes are the
leaves. The depth of a node is simply the scale parameter j of the corresponding
cube C(k1, k2, k3, j).

The dividing planes of a dyadic cube are the 3 planes that divide the cube
into its 8 children; we refer to them as the x-divider, y-divider and z-divider.
For example the x-divider of C(0, 0, 0, 0) is the plane {(1/2, y, z) : 0 ≤ y, z ≤ 1},
the y-divider is {(x, 1/2, z) : 0 ≤ x, z ≤ 1}, and the z-divider is {(x, y, 1/2) : 0 ≤
x, y ≤ 1}.

We now make a remark about beamlets of data cubes at different dyadic n.
Suppose we have two data cubes of sizes n1 = 2j1 and n2 = 2j2 , and suppose
that n2 > n1. Viewing the two data cubes as filling out the same volume [0, 1]3,
consider the beamlets in each system associated with a common dyadic cube
C(k1, k2, k3, j), 0 ≤ j ≤ j1 < j2. The collection of beamlets associated with
the n2-based system has a finer resolution than those associated with the n2-
based system; indeed every beamlet in the Bn1 also occurs in the Bn2 . Hence,
in a natural sense, the beamlet families refine, and have a natural limit, B∞,
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Figure 6. Dividing planes of a cube.

say. B∞, of course, is the collection of all line segments in [0, 1]3 with both
endpoints on the boundary of some dyadic cube. We will call members of this
family the continuum beamlets, as opposed to the members of some Bn, which
are discrete beamlets. Every discrete beamlet is also a continuum beamlet, but
not the reverse.

Lemma 1. Divide a continuum beamlet associated to a dyadic cube Q into the
components lying in each of the child subcubes. There are either one, two, three
or four distinct components, and these are continuum beamlets.

Proof. Traverse the beamlet starting from one endpoint headed toward the
other. If you travel through more than one subcube along the way, then at any
crossing from one cube to another, you will have to penetrate one of the x-, y-,
or z-dividers. You can cross each such dividing plane at most once, and so there
can be at most 4 different subcubes traversed. ¤

Theorem 1. Each line segment lying inside the unit cube can be approximated
by a connected chain of m discrete beamlets in Bn where the Hausdorff distance
from the chain to the beam is at most 1/n and where the number of links m in
the chain is bounded above by 6log2(n).

Proof. Consider the arbitrary line segment ` inside the unit cube with end-
points v1 and v2 that are not necessary voxel corners. We can approximate `

with a beam b by replacing each endpoint with the closest voxel corner. Since the√
3/(2n) neighborhood of any point inside the unit cube must include a vertex,

the Hausdorff distance between ` and b is bounded by
√

3/(2n).
We now decompose the beam b into a minimal cardinality chain of connected

continuum beamlets, by a recursive algorithm which starts with a line segment,
and at each stage breaks it into a chain of continuum beamlets, with remainders
on the ends, to which the process is recursively applied.

In detail, this works as follows. If b is already a continuum beamlet for
C(0, 0, 0, 0) we are done; otherwise, b can be decomposed into a chain of (at most
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Figure 7. Decomposition of several beamlets into continuum beamlets at next

finer scale, indicating cases which can occur.

four) segments based on crossings of b with the 3 dividing planes of C(0, 0, 0, 0).
The interior segments of this chain all have endpoints on the dividing planes and
hence are all continuum beamlets for the cubes at scale j = 1. We go to work
on the remaining segments. Either endmost segment of the chain might be a
continuum beamlet for the associated dyadic cube at scale j = 1; if so, we are
done with that segment; if not, we decompose the segment into its components
lying in the children dyadic cubes at scale j = 2. Again, the internal segments of
this chain will be continuum beamlets, and additionally, at least one of the two
endmost segments will be a continuum beamlet. If both endmost segments are
continuum beamlets, then we are done. If not, take the segment which is not a
beamlet and break it into its crossings with the dividing planes of the enclosing
dyadic cube. Continue in this way until we reach the finest level, where, by
hypothesis, we obtain a segment which has an endpoint in common with the
original beam b. Since b is a beam, it ends in a vertex corner, and since the
segment arose from earlier stages of the algorithm, the other endpoint is on the
boundary of a dyadic cube. Hence the segment is a continuum beamlet and we
are done.

Let’s upperbound the number of beamlets generated by this algorithm. As-
sume always that we never fortuitously get an end segments to be a beamlet when
it is not mandated by the above comments. So we have 2 continuum beamlets
at the 1st scale and we are left with 2 segments to replace by 2 chains of discrete
beamlets at finer scales. In the worst case, each of the segments when decom-
posed at the next scale, generates 3 continuum beamlets and 1 non-beamlet.
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Continuing to the finest scale, in which the dyadic cubes are the individual vox-
els, we can have at most 2 beamlets in the chain at the finest scale. So in the
worst case our chain will include 2 continuum beamlets at the 1st scale, 2 at the
finest scale and 6 at any other scale 2, 3, ..., J − 1, So we get a maximum total
of 2 + 6(J − 1) + 2 = 6J − 2 continuum beamlets needed to represent any line
segment in the unit cube.

We now take the multiscale chain of beamlets and approximate it by a chain
of discrete beamlets. The point is that the Hausdorff distance between line
segments is upperbounded by the distance between corresponding endpoints.
Now both endpoints of any continuum beamlet in B∞ lie on certain voxel faces.
Hence they lie within a 1/(

√
2n) neighborhood of some voxel corner. Hence

any continuum beamlet in B∞ can be approximated by a discrete beamlet in Bn

within a Hausdorff distance of 1/(
√

2n). Notice that there may be several choices
of such approximants; we can make the choice of approximant consistently from
one beamlet to the next to maintain chain connectivity if we like.

So we get a maximum total of 6J − 2 connected beamlets needed to ap-
proximate any line segment in the unit cube to within a Hausdorff distance of
max{√3/(2n), 1/(

√
2n)} < 1/n. ¤

The fact that arbitrary line segments can be approximated by relatively few
beamlets implies that every smooth curve can be approximated by relatively few
beamlets.

To see this, notice that a smooth curve can be approximated to within distance
1/m2 by a chain about m line segments— this is a simple application of calculus.
But then, approximating each line segment in the chain by its own chain of
6 log(n) beamlets, we get approximation within distance 1/m2+1/n by O(log(n)·
m) beamlets. Moreover, we can set up the process so that the individual chains of
beamlets form a single unbroken chain. Compare also [17, Lemma 2.2, Corollary
2.3, Lemma 3.2].

4. Vertex-Pairs Transform Algorithms

Let v = (k1, k2, k3) be a voxel index, where 0 ≤ ki < n and let I(v) be the
corresponding voxel intensities of a 3D digital image. Let f(x) be the function
on R3 that represents the data cube by piecewise constant interpolation— i.e.
the value f(x) = I(v) when x ∈ v.

Definition 2. For each line segment b ∈ Bn, let γb(·) correspond to the unit
speed path traversing b.

The discrete X-ray transform based on global-scale vertex-pairs lines is defined
as follows. With Bn([0, 1])3 denoting the collection of vertex-pairs line segments
of associated to the cube [0, 1]3,

XI(b) =
∫

f(γb(`)) d`, b ∈ Bn([0, 1])3.



FAST X-RAY AND BEAMLET TRANSFORMS FOR 3-D DATA 91

The beamlet transform based on multiscale vertex-pairs lines is the collection of
all multiscale line integrals

TI(b) =
∫

f(γb(`)) d`, b ∈ Bn.

4.1. Direct evaluation. There is an obvious algorithm for computing beamlet/
X-ray coefficients: one at a time, simply compute the sums underlying the defin-
ing integrals. This algorithm steps systematically through the beamlet dictionary
using the indexing method we described above, identifies the voxels on the path
γb for each beamlet, visits each voxel and forms a sum weighting the voxel value
with the arc length of γb in that voxel.

In detail, the sum we are referring to works as follows. Let Q(v) denote the
cube representing voxel v and γb the curve traversing b

TI(b) =
∑

I(v) Length(γb ∩Q(v)).

Hence, defining weights wb(v) = Length(γb(l) ∩ Q(v)) as the arc lengths of the
corresponding fragments, one simply needs the sum

∑
v wb(v)I(v).

Of course, most voxels are not involved in this sum; one only wants to involve
the voxels where wb > 0. The straightforward way to do this, explicitly following
the curve γb from voxel to voxel and calculating the arc length of the fragment of
curve within the voxel, is inelegant and bulky. A far better way to do this is to
identify three equispaced sequences and then merge them. Those sequences are:
(1) the intersections of γb with the parallel planes x = k1/n; (2) the intersections
with the planes y = k2/n; and (3) the intersections with the planes z = k3/n.
Each of these collections of intersections is equispaced and easy to calculate. It
is also very easy to merge them in the order they would be encountered in a
traverse of the beamlet in definite order. This merger produces the sequence of
intersections that would be encountered if we pedantically tracked the progress
of the beamlet voxel-by-voxel. The weights wb(v) are just the distances between
successive points.

The complexity of this algorithm is rather stiff: on an n× n× n voxel array
there are order O(n4) beamlets to follow, and most of the sums require O(n)
flops, so the whole algorithm requires O(n5) flops in general. Experimental
studies will be described below.

4.2. Two-scale recursion. There is an asymptotically much faster algorithm
for 3-D X-ray and beamlet transforms, based on an idea which has been well-
established in the two-dimensional case; see articles of Brandt and Dym [12], by
Götze and Druckenmiller [29], and by Brady [9], or the discussion in [21].

The basis for the algorithm is the divide and conquer principle. As depicted
in Figure 7, and proven in Lemma 1, each 3-D continuum beamlet can be de-
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composed into 2, 3, or 4 continuum beamlets at the next finer scale:

b =
⋃

i

bi (4–1)

It follows that ∫
f(γb(`))d` =

∑

i

∫
f(γbi

(`))d`.

This suggests that we build an algorithm on this principle, so that for b ∈ Bn we
identify several bi associated to the child dyadic cubes of b, getting the formula

TI(b) =
∑

i

TI(bi).

Hence, if we could compute all the beamlet coefficients at the finest scale, we
could then use this principle to work systematically from fine scales to coarse
scales, and produce all the beamlet coefficients as a result.

The computational complexity of this fine-to-coarse strategy is obviously very
favorable: it is bounded by 4Bn flops, since each coefficient’s computation re-
quires at most 4 additions. So we get an O(n4) rather than O(n5) algorithm.

There is a conceptual problem with implementing this principle, since in gen-
eral, the decomposition of a discrete beamlet in Bn into its fragments at the
next finer scale (as we have seen) produces continuum beamlets, i.e. the bi are
in general only in B∞, and not Bn. Hence it is not really the case that the terms
TI(bi) are available from finer scale computations. To deal with this, one uses
approximation, identifying discrete beamlets b̂i which are ‘near’ the continuum
beamlets, and approximates the TI(bi) by combinations of ‘nearby’ TI(b̂i).

Hence, in the end, we get favorable computational complexity for an approx-
imately correct answer. We also get one very large advantage: instead of com-
puting just a single X-ray transform, it computes all the scales of the multiscale
beamlet transform in one pass. In other words: it costs the same to compute all
scales or to compute just the coarsest scale.

As we have described it, there are no parameters to ‘play with’ to control
the accuracy, at perhaps greater computational expense. What to do if we want
high accuracy? Staying within this framework, we can obtain higher precision
by oversampling. We create an N ×N ×N data cube, where N = 2en where e

is an oversampling parameter (e.g. e=3), fill the values from the original data
cube by interpolation (e.g. piecewise constant interpolation), run the two-scale
algorithm for BN , and then keep only the coefficients associated to b ∈ BN ∩Bn.
The complexity goes up as 24e.

5. Slope-Intercept Transform Algorithms

We now develop two algorithms for X-ray transform based on the slope-angle
family of lines described in Section 2.2. Both are decidedly more sophisticated
than the vertex-pairs algorithms, which brings both benefits and costs.
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5.1. The slant stack/shearing algorithm. The first algorithm we describe
adapts a fast algorithm for the X-ray transform in dimension 2, using this as
an ‘engine’, and repeatedly applying it to obtain a fast algorithm for the X-ray
transform in dimension 3.

5.1.1. Slant Stack The fast slant stack algorithm has been developed by Aver-
buch et al. (2001) [6] as way to rapidly calculate all line integrals along lines in
2-dimensional slope/angle form; i.e. either x-driven 2-dimensional lines of the
form

y = sx + t,−n/2 ≤ x < n/2;

where s = k/n for −n ≤ k < n and where −n ≤ t < n or y-driven 2-dimensional
lines of the form

x = sy + t,−n/2 ≤ y < n/2,

where s and t run through the same discrete ranges. The algorithm is approx-
imate, because it does not exactly compute the voxel-level definition of X-ray
coefficient assumed in Section 3 above (involving sums of voxel values times
arc lengths). Instead, it computes exactly the appropriate sums deriving from
so-called sinc-interpolation filters. For the set of x-driven lines we have

SlantStack(y = sx + t, I) =
n/2−1∑

u=−n/2

Ĩ(u, su + z),

where I is a 2D discrete array and Ĩ is its 2D sinc interpolant. The transform
for the y-driven lines is defined in a similar fashion with the roles of x and y

interchanged. The algorithm can obtain approximate line integrals along all lines
of these two forms in O(n2 log(n)) flops, which is excellent considering that the
number of pixels is O(n2). It is achieved by using a discrete Projection-Slice
theorem that relates the Slant Stack coefficients and the 2D Fourier coefficients.
To be more specific, we are able to calculate the slant stack coefficients by first
calculating the 2D Fourier Transform of I on a pseudopolar grid (see Figure
8) and then applying a series of 1-D inverse FFTs along radial lines. Each
application of the 1-D inverse FFT yields a vector of coefficients that correspond
to the slant-stack transform of I along a family of parallel lines.

Figure 9 shows backprojections of different delta sequences, each concentrated
at a single point in the coefficient space and corresponding to a choice of slope-
intercept pair. The panels show the 2-D arrays of weights involved in the coef-
ficient computation. Summing with these weights is approximately the same as
exactly summing along lines of given slope/intercept.

As Averbuch et al. point out, the fast slant stack belongs to a group of algo-
rithms developed over the years in synthetic aperture radar by Lawton [40] and
in medical imaging by Pasciak [44] and by Edholm and Herman [24], where it is
called the Linogram. The Linogram has been exploited systematically for more
than ten years in connection with many problems of medical imaging, including
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Figure 8. The Pseudopolar Grid is constructed from concentric squares n = 8 are

converted into data at the intersections of concentric squares and lines radiating

from the origin with equispaced slopes.

Figure 9. 2D Slant Stack Lines.

cone-beam and fan-beam tomography, which concern image reconstruction from
subsets of the X-ray transform. In a 3-D context the most closely related work
in medical imaging concerns the planogram; see [38; 39], and our discussion in
Section 10.5 below. The terminology ‘slant stack’ comes from seismology, where
this type of transform, with different algorithms, has been in use since the 1970’s
[15].

5.1.2. Overall Strategy We can use the slant stack to build a 3-D X-ray transform
by grouping together lines into subfamilies which live in a common plane. We
then extract that plane from the data cube and apply the slant stack to that
plane, rapidly obtaining integrals along all lines in that plane. We ignore for the
moment the question of how to extract planes from digital data when the planes
are not oriented along the coordinate axes.
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In detail, our strategy works as follows. Suppose we want to get transform
coefficients corresponding to x-driven 3-D lines, i.e. lines obeying

y = syx + ty, z = szx + tz.

Within the family of all n4 lines of this type, consider the subfamily Lxz,n(sz, tz)
of all lines with a fixed value of (sz, tz) and a variable value of (sy, ty). Such lines
all lie in the plane Pxz(sz, tz) of (x, y, z) with (x, y) arbitrary, z = szx + tz. We
can consider this set of lines as taking all x-driven 2-D lines in the (x, y) plane
and then ‘tilting’ the plane to obey the equation z = szx + tz. Our intention
is to extract this plane, sampling it as a function of x and y, and use the slant
stack to evaluate all the line integrals for all the x-driven lines in that plane,
thereby obtaining all the integrals in Lxz,n(sz, tz) at once, and to repeat this for
other families, working systematically through values of sz and tz.

Some of these subfamilies with constant intercept t and varying slope s are
depicted in Figure 10.

Figure 10. Planes generated by families of lines in the Slope-Angle dictionary;

subpanels indicate various choices of slope.
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In the end, then, our coordinate system for lines has one slope and one inter-
cept to specify a plane and one slope and one intercept to specify a line within
the plane.

xy

z

Figure 11. Lines selected from planes via slope-intercept indexing.

5.1.3. 3-D Shearing To carry out this strategy, we need to extract data lying in
a general 2-D plane within a digital 3-D array.

We make a simple observation: to extract from the function f(x, y, z) defined
on the full cube its restriction to the plane with z = szx + tz, and x, y varying,
we simply create a new function f ′(x, y, z) defined by

f ′(x, y, z) = f(x, y, z − szx− tz)

for x, y, z varying throughout [0, 1]3, with f taken as vanishing at arguments
outside the unit cube. We then take g(x, y) = f ′(x, y, 0) as our extracted plane.
The idea is illustrated in Figure 12.

In order to apply this idea to the case of digital arrays I(x, y, z) defined on a
discrete grid, note that, in general, z− szx− tz will not be an integer even when
z and x are, and so the expression I(x, y, z − szx− tz) is not defined; one needs
to make sense of this quantity somehow. At this point we invoke the notion of
shearing of digital images as discussed, for example, in [54; 6]. Given a 2-D n×n

image I(x, y) where −n/2 ≤ x, y < n/2, we define the shearing of y as a function
x at slope s, Sh

(s)
xy , according to

(Sh(s)
xy I)(x, y) = I2(x, y − sx).
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Figure 12. Shearing and slicing a 3D image. Extracting horizontal slices of a

sheared 3-D image is the same as extracting slanted slices of the original image.

In words, the image is shifted vertically in each column x =constant, with the
shift varying from one column to the next in an x-dependent way. Here I2(x, y) is
an image which has been interpolated in the vertical direction so that the second
argument can be a general real number and not just an integer. Specifically,

I2(x, u) =
∑

v

φn(u− v)I(x, v),

where φn is an interpolation kernel—a continuous function of a real variable
obeying φn(0) = 1, φn(k) = 0 for k 6= 0. The shearing of x as a function of y

works similarly, with

(Sh(s)
yx I)(x, y) = I1(x− sy, y),

with
I1(u, y) =

∑
v

φn(u− v)I(v, y).

We define a shearing operator for a 3-D data cube by applying a 2-D operator
systematically to each 2-D planes in a family of parallel planes normal to one of
the coordinate axes. Thus, if we speak of shearing in z as a function of x, we
mean

Sh(s)
xz I(x, y, z) = I3(x, y, z − sx).

What shearing does is map a family of tilted parallel planes into a plane normal
to one of the coordinate axes. In the above example, data along the plane
z = sx + t is mapped onto the plane z = t. Figure 12 illustrates the process



98 DAVID L. DONOHO AND OFER LEVI

graphically, exaggerating the process, by allowing pieces of the original image to
be sheared out of the original data volume. In fact those pieces ‘moving out’ of
the data volume get ‘chopped away’ in actual computations.

5.1.4. The Algorithm Armed with this tool, we define the slant stack based X-ray
transform algorithm as follows, giving details only for a part of the computation.
The algorithm works separately with x-driven, y-driven, and z-driven lines. The
procedure for x-driven lines is as follows:

• for each slope sz

– Shear z as a function of x with slope sz, producing the 3-D voxel array
Ixz,sz

.

– for each intercept tz

∗ Extract the 2-D image Isz,tz
(x, y) = Ixz,sz

(x, y, tz).

∗ Calculate the 2-D X-ray transform of this image, obtaining an array of
coefficients X(sy, ty), and storing these in the array X3(′x′, sy, ty, sz, tz).

– end for

• end for

The procedure is analogous for y- and z- driven lines.
The lines generated by this algorithm are as illustrated in Figure 11.
The time complexity of this algorithm is O(n4 log(n)). Indeed, the cost of the

2-D slant-stack algorithm is order n2 log(n) (see [6]), and this must be applied
order n2 times, one for each member of Lxz,n(sz, tz)

5.2. Compatibility with cache memory. A particularly nice property of
this algorithm is that it is cache-aware , i.e. it is very well-organized for use with
modern hierarchical memory computers [32]. In currently dominant computer
architectures, main memory is accessed at a speed which can be an order of
magnitude slower than the cache memory on the CPU chip. As a result, other
things being equal, an algorithm runs much faster if it operates as follows:

• Load n items from main memory into the cache
• Work intensively to compute n results
• Send the n results out to main memory

Here the idea is that the main computations involve relatively small blocks of
data that can be kept in cache all at once, are referred to many times while in
the fast cache memory, saving dramatically on main memory accesses.

The Slant-Stack/Shearing algorithm we have described above has exactly this
form. In fact it can be decomposed in steps, every one of which can be concep-
tualized as follows:

• Load n items from main memory into the cache
• Do some combination of:
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– Compute an n-point forward FFT ; or

– Compute an n-point inverse FFT ; or

– Perform elementwise transformation on the n-vector;

• Send the n results out to main memory

Thus the 2-D slant stack and the 3-D data shearing operations can all be decom-
posed into steps of this form. For example, data shearing requires computing
sums of the form I ′(x, y, z) =

∑
u φ(z − sx − u)I(x, y, u). For each fixed (x, y),

we take the n numbers (I(x, y, u) : u = −n/2, ..., n/2 − 1), take their 1-D FFT
along the last slice, multiply the FFT by a series of appropriate coefficients, and
then take their inverse 1-D. The story for the slant stack is similar, but far more
complicated. A typical step in that algorithm involves the 2-D FFT, which is
obtained by applying order 2n 1-D FFT’s, once along each row and once along
each column. For more details see comments in [6].

It is also worth remarking that several modern CPU architectures offer FFT
in silico, so that the FFT step in the above decomposition runs without any
memory accesses for instruction fetches. Such architectures (which include the
G4 processor running on Apple Macintosh and IBM RS/6000) are even more
favorable towards this algorithm.

As a result of this cache- and CPU-favorable organization the observed behav-
ior of this algorithm is far more favorable than what asymptotic theory would
suggest. The vertex-pairs algorithms of the previous section sit at the opposite
extreme; since those algorithms involve summing data values along lines, and
the indices of those values are scattered throughout the linear storage allocated
to the data cube, those algorithms appear to be performing essentially random
access to memory; hence such algorithms run at the memory access speed rather
than the cache speed. In some circumstances those algorithms can even run
more slowly still, since cache misses can cost considerably more than one mem-
ory access, and random accesses can cause large numbers of cache misses. These
remarks are in line with behavior we will observe empirically below.

5.3. Frequency domain algorithm. Mathematical analysis shows that the
3-D X-ray transform of a continuum function f(x, y, z) can be obtained from the
Fourier transform [51; 47]. This frequency-domain approach requires coordina-
tizing planes through the origin in frequency space by

Pu1,u2 = {ξ = u1ξ1 + u2ξ2}
extracting sections of the Fourier transform along such planes,

ĝ(ξ1, ξ2) = f̂(u1ξ1 + u2ξ2),

and then taking the inverse Fourier transform of those sections:

g = F−1ĝ.
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The resulting function g gives the X-ray transform for lines

g(x1, x2) =
∫

f(x1v1 + x2v2 + tv3)dt,

with an appropriate orthobasis (v1,v2,v3).
To carry this out with digital data would require developing a method to

efficiently extract many planes through the origin of the Fourier transform cube,
and then perform 2-D inverse FFT’s of the data in those planes. But how to
rapidly extract a rich selection of planes through the origin? (The problem
initially sounds similar to the problem encountered in the previous section, but
recall that the set of planes needed there were families of parallel planes, not
families of planes through the origin.

Our approach is as follows. Pick a fixed preferred coordinate axis, x, say.
Pick a subordinate axis, z, say. In each constant-y slice, do a two-dimensional
shearing of the FT data, shearing z as a function of x at fixed slope sz. In
effect, we have tilted the data cube, so that slices normal to the z-axis in the
sheared volume correspond to tilted planar slices in the original volume. So now
take each y-z plane, and apply idea of Cartesian-to-pseudopolar conversion as
described in [6]. This uses interpolation to convert a planar Cartesian grid into
a new point set consisting of n lines through the origin at various angles, and
equispaced samples along each line. This conversion being done for each plane
with x fixed, then, grouping the data in a given line through the origin across all
x values produces a plane; see Figure 13. We then take a 2-D inverse transform
of the data in this plane.

The computational complexity of the method goes as follows. O(n3 log(n))
operations are required for transforming from the original space domain to the
frequency domain; O(n2 log(n)) work for each conversion of a Cartesian plane to

Figure 13. Selecting planes through the origin. Performing cartesian-to-pseudo-

polar conversion in the yz plane and then gathering all the data for one radial

line across different values of x produces a series of planes through the origin.
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pseudopolar coordinates, giving O(n3 log(n)) work to convert a whole stack of
parallel planes in this way; O(n3 log(n)) work to shear the array as a function of
the preferred coordinate; and 3n such shearings need to be performed. Overall,
we get O(n4) coefficients in O(n4 log(n)) flops.

We have not pursued this method in detail, for one reason: it is mathematically
equivalent to the slant-stack-and-shearing algorithm, providing exactly the same
results (assuming exact arithmetic). This is a consequence of the projection-slice
theorem for the slant stack transform proved in [6].

6. Performance Measures

We now consider two key measures of performance of the fast algorithms just
defined: accuracy and timing.

6.1. Accuracy of two-scale recursion. To estimate the accuracy of the two-
scale recursion algorithm, we considered a 163 array and compared coefficients
from two-scale approximation with direct evaluation. We computed the average
error for the different scales and applied the algorithms both to a 3-D image that
contains a single beamlet and to a 3-D image that contains randomly distributed
ones in a sea of zero, chose so that both 3D images has the same l2 norm. The
table below shows that the coefficients obtained from the two-scale recursion are
significantly different from those of direct evaluation.

Analyze Single Beamlet Analyze Random Scatter
scale relative error scale relative error

0 0.117 0 0.056
1 0.107 1 0.061
2 0.076 0 0.048
3 1.5× 10−17 3 3.7× 10−17

One way to understand this phenomenon is to look at what the coefficients are
measuring by studying the equivalent kernels for those coefficients. Let T 1 be the
linear transform on I corresponding to the exact evaluation of the line integrals
and let T 2 be the linear transform corresponding to the two-scale recursion
algorithm. Apply the adjoint of each transform to a coefficient-space vector
with a one in one position and a zero in other positions, getting

wj
b = (T j)′δb, j = 1, 2. (6–1)

Each wj
b lives in image-space — i.e., it is indexed by voxels v, and the entries

wb(v) indicate the weights such that TI [b] =
∑

v I(v)wb(v). In essence this ‘is’
the beamlet we are using in that beamlet transform. For later use: we call the
operation of calculating wb that of ‘backprojection’, because we are going back
from coefficient space to image space. This usage is consistent with usage of the
term in the tomographic literature, i.e. [47; 15].
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Figure 14. Timing comparison.

6.2. Timing comparison. The defining feature of 3-D processing is the
massive volume of data involved and the attendant long execution times for
even basic tasks. So the burning issue is: how do the algorithms perform in
terms of CPU time to complete the task? The display in Figure 14 below shows
that both the direct evaluation and the two scale recursion methods slow down
dramatically as n increases— one expects a 1/n5/3 or 1/n4/3 scaling law to be
evident in this display, and in rough terms, the display is entirely consistent with
that law. The surprising thing in this display is the improvement in performance
of the slant stack with increasing n. This seeming anomaly is best interpreted
in terms of the cache-awareness of the slant stack algorithm. The slant stack
algorithm becomes more and more immune to cache misses as n increases (at
least in the range we are studying), and so the number of cache misses per
coefficient drops lower and lower for this algorithm, while this effect is totally
absent for the direct evaluation and two-scale recursion algorithm.

7. Examples of X-Ray Transforms

We now give a few examples of the X-ray transform based on the slant stack
method.

7.1. Synthesis. While we have not discussed it at length, the adjoint of the
X-ray transform is a very useful operator; for each variant of the X-ray transform
that we have discussed, the corresponding adjoint can be computed using ideas
very similar to those which allowed to compute the transform itself, and with
comparable computational complexity. Just as the X-ray transform takes voxel
arrays into X-ray coefficient arrays, the adjoint transform takes X-ray coefficient
arrays into voxel arrays.



FAST X-RAY AND BEAMLET TRANSFORMS FOR 3-D DATA 103

We have already mentioned, near (6–1) above, that when the adjoint operator
is applied to a coefficient array filled with zeros except for a one in a single slot,
the result is a voxel array. This array contains the weights wb(v) underlying
the corresponding X-ray transform coefficient. In formal mathematical language
this is the Riesz representer of the b-th coefficient. Intuitively, the representer
should have its nonzero weights all concentrated on or near the corresponding
‘geometrically correct’ line.

To check this, we depict in Figure 15 representers of four different X-ray
coefficients. Evidently, these are geometrically correct.

Figure 15. Representers of several X-ray coefficients.

It is also worth considering what happens if we apply the adjoint to coefficient
vectors which are ones in various regions and zeros elsewhere in coefficient space.
Intuitively, the result should be a bundle of lines. Depending on the span of the
region in slope and intercept, the result might be simply like a thick rod (if only
intercepts are varying) or like a dumbbell (if only slopes are varying). To check
this, we depict in Figure 16 backprojection of six different region indicators.
With a little reflection, we can see that these are geometrically correct.

It is of interest to consider backprojection of more interesting coefficient ar-
rays, such as wavelets with vanishing moments. We have done so and will discuss
the results elsewhere.
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Figure 16. X-ray back-projections of various rectangles in coefficient space.

Note that if the rectangle involves intercepts only, the backprojection is rect-

angular (until cut off by cube boundary). If the rectangle involves slopes, the

backprojection is dumbbell-shaped (see lower right)

7.2. Analysis. Now that we have the ability to generate linelike objects in 3-D
via backprojection from the X-ray domain, we can conveniently investigate the
properties of X-ray analysis.

Consider the example given in Figure 17. A beam is generated by backpro-
jection as in the previous section. It is then analyzed according to the X-ray
transform. If the X-ray transform were orthogonal, then we would see perfect
concentration of the transform in coefficient space, at precisely the location of the
spike used to generate the beam. However, the transform is not orthogonal, and
what we see is a concentration—but not perfect concentration— in coefficient
space near the location of the true generator.

Also, if the transform were orthogonal, the rearranged sorted coefficients
would have a single nonzero coefficient. As the figure shows, the coefficients
decay linearly on a semilog plot, indicating power-law decay. The lower right
subpanel shows the decay of the wavelet-X-ray coefficients that are computed by
applying a four dimensional periodic orthogonal wavelet transform to the X-ray
coefficients. As expected, the decay is much faster than the decay of the X-ray
coefficients.

8. Application: Detecting Fragments of a Helix

We now sketch briefly an application of beamlets to detecting fragments of
a helix buried in noise. We suppose that we observe a cube of noisy 3-D data,
and that, possibly, the data contains (buried in noise) a filamentary object. By
‘filamentary object’ we mean the kind of situation depicted in Figure 18. A series
of pixels overlapping a nonstraight curve is highlighted there, and we imagine



FAST X-RAY AND BEAMLET TRANSFORMS FOR 3-D DATA 105

5 10 15

2

4

6

8

10

12

14

16
5 10 15

2

4

6

8

10

12

14

16

0 1000 2000 3000 4000
−2

−1

0

1

2

0 1000 2000 3000 4000
−2

−1

0

1

2

Figure 17. X-Ray analysis of a beam. (a) The X-ray transform sliced in the con-

stant-intercept plane. (b) The X-ray transform sliced in the constant-slope plane.

(c) The sizes of sorted X-ray coefficients. (d) The sizes of sorted wavelet-X-ray

coefficients.

that, when such an object is ‘present’ in our data, that a constant multiple of
that 3-D template is added to a pure noise data cube.

Figure 18. A noiseless helix.

When this is done, we have a situation that is hard to depict graphically, since
one cannot ‘see through’ such a noisy cube. By this we mean the following: to
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visualize such a data cube, it seems that we have just two rendering options.
We can view the cube as opaque, render only the surface, and then we certainly
will not see what’s going on inside the cube. Or we can view the cube as trans-
parent, in which case, when each voxel is assigned a gray value based on the
corresponding data value, we see a very uniformly gray object.

Being stymied by the task of 3-D visualization of the noisy cube, we instead
display some 2-D slices of the cube; see the rightmost panel of Figure 19. For
comparison, we also display the same slices of the noiseless helix. The key point
to take away from this figure is that the noise level is so bad that the presence
of the helical object would likely not be visible in any slice through the data
volume.

Figure 19. Three orthogonal slices through (a) a noiseless helix; (b) the noisy

data volume.

Here is a simple idea for detecting a noisy helix: beamlet thresholding. We
simply take the beamlet transform, normalize each empirical beamlet coefficient
by dividing by the length of the beamlet, and then identify beamlet coefficients
(if any) that are unusually large compared to what one would expect if we were
in a noise-only situation.

Figure 20 shows the results of applying such a procedure to the noisy data
example of Figures 18-19. The extreme right subpanel shows the beamlets that
were found to have significant coefficients. The center panel shows the result of
backprojecting those significant beamlets; a rough approximation to the filament
(far left) has been recovered.

9. Application: A Frame of Linelike Elements

We also briefly sketch an application in using the X-ray transform for data
representation. As we have seen in Section 7.1, the backprojection of a delta
sequence in X-ray coefficient space is a line-like element. We have so far in-
terpreted this as meaning that the X-ray transform defines an analysis of data
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Figure 20. A noiseless helix, a reconstruction from noisy data obtained by

backprojecting coefficients exceeding threshold, and a depiction of the beamlets

associated to significant coefficients.

via line-like elements. But it may also be interpreted as saying that backpro-
jection from coefficient space defines a synthesis operator, which, for the ‘right’
coefficient array, can synthesize a volumetric image from linelike elements.

The trick is to find the ‘right’ coefficient array to synthesize a given desired
object. This can be conceptually challenging because the X-ray transform is
overdetermining, giving order n4 coefficients for an order n3 data cube. Iterative
methods for solving large-scale linear systems can be tried, but will probably be
ineffective, owing to the large spread in singular values of the X-ray operator.

There is a way to modify the (slant-stack/shearing) X-ray transform to pro-
duce something that has reasonably controlled spread of the singular values. This
uses the fact, as described in Averbuch et al. [6], that there is an effective precon-
ditioner for the 2-D slant stack operator S (say), such that the preconditioned
operator S̃ obeys

c0‖I‖2 ≤ ‖S̃I‖2 ≤ c1‖I‖2.

Here c1/c0 < 1.1. Hence, the transform from 2-d images to their coefficients is
almost norm-preserving. In effect, S̃ performs a kind of fractional differentiation
of the image before applying S. If, in following the construction of the X-ray
transform that was laid out in Section 5.1, we simply replace each invocation
of S by S̃. Then effectively, the transform coefficients, grouped together in the
families Lxz,n(sz, tz) have in each such group, roughly the same norm as the data
in the corresponding plane Pxz,n(sz, tz), say of the data cube. For each fixed
slope sz, the family of planes Pxz,n(sz, tz) with different intercepts tz, fill out the
whole data cube, and so the norms of all these planes, combined together by a
sum of squares, gives the squared norm of the whole data cube. It follows that
the transform of a volumetric image I(x, y, z) should yield a coefficient array
with `2 norm roughly proportional to the `2 norm of the array I.

Definition 3. The preconditioned X-ray transform X̃ is the result of following
the prescription for Section 5.1 to build an X-ray transform, only using the
preconditioned slant stack rather than the slant stack.
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We should note that in the theory of the continuum X-ray transform [51], there
is the notion of X-ray isometry, which preserves the L2 norm while mapping
from physical space to line space. This can be viewed as applying the X-ray
transform to a fractional differentiation of the object f , rendering the whole
system an isometry. The preconditioned digital X-ray operator X̃ we have just
described is a digital analog, although it does not provide a precise isometry.

Standard facts in linear algebra (e.g. [28; 30]) imply that, because the output
norm ‖X̃I‖2 is (roughly) proportional to the input norm ‖I‖2, iterative algo-
rithms (relaxation, conjugate gradients, etc.) should be able to efficiently solve
equations X̃I = y.

The X-ray transform is highly redundant (as it maps n3 arrays into O(n4)
arrays). As a way to obtain greater sparsity, one might consider applying an
orthogonal wavelet transform to the X-ray coefficients. This will preserve the
norm of the coefficients, while it may compress the energy into a few large coef-
ficients. The transform is (naturally) 4-dimensional, but as the display in Figure
17 suggests, our concern is more to compress in the slope variable where the
analysis of a beam is spread out, rather than in the intercept variables, where
the analysis of a beam is already compressed.

Definition 4. The wavelet-compressed X-ray transform W̃X is the result of
applying an orthogonal 4-D wavelet transform to the preconditioned X-ray trans-
form.

Label the coefficient indices in the wavelet-compressed X-ray transform domain
as λ ∈ Λ, and let the entries in W̃X be labeled α = (αλ); they are the wavelet-
compressed preconditioned X-ray coefficients.

It turns out that one can reconstruct the original image I from its coefficients
α. As the wavelet transform is norm-preserving, the map I 7→ W̃XI is pro-
portional to an almost norm-preserving transform, and hence one can go back
from coefficient space to image space, using iterative linear algebra. Call this

generalized inverse (linear) transformation W̃X
†
. Then certainly I = W̃X

†
α.

This can be put in a more interesting form. The result of applying this
generalized inverse transform to a delta coefficient sequence δλ0(λ) spiking at
coefficient index λ0 (say) provides a volumetric object φλ0(v). Hence we may
write

I =
∑

λ

αλφλ.

The object φλ is a frame element, and we have thus defined a frame of linelike
elements in 3-space. Emmanuel Candès in personal correspondence has called
such things tubelets, although we are reluctant to settle on that name for now
(tubes being flexible rather than straight and rigid).

In [16] a similar construction has been applied in the continuum case: a
wavelet tight frame has been applied to the X-ray isometry to form a linelike
frame in the continuum R3.
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Figure 21. A frame element.

This construction is also reminiscent of the construction of ridgelets for rep-
resentation of continuous functions in 2-D [14]. Indeed, orthonormal ridgelets
can be viewed as the application of orthogonal wavelet transform to the Radon
isometry [18]. In [19] a construction paralleling the one suggested here has been
carried out for 2-D digital data.

10. Discussion

We finish up with a few loose ends.

10.1. Availability. The figures in this paper can be reproduced by code
which is part of the beamlab package. Point your web browser to http://
www-stat.stanford.edu/̃ beamlab to obtain the software. The software has the
ability to reproduce all the figures in this paper and has been produced consistent
with the philosophy of reproducible research.

10.2. In practice. There are of course many variations on the above schemes,
but we have restrained ourselves from discussing them here, even when they
are variations we find practically useful, in order to keep things simple. A few
examples:

• We find it very useful to work with an alternative vertex-pair dictionary, where
the vertices of beamlets are not at corners of boundary voxels for a dyadic
cube, but instead at midpoints of boundary faces of boundary voxels.

• We find it useful to work with slight variations of the slant stack defined in
[6], where the angular spacing of lines is chosen differently than in that paper.

Rather than burden the reader with such details, we suggest merely that the
interested reader study the released software.
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10.3. Beamlet algorithms. As mentioned in the introduction, in this paper
we have not been able to describe the use of the graph structure of the beamlets
in which two beamlets are connected in the graph if and only if they have an
endpoint in common. In all the examples above, each beamlet is treated in-
dependently of other beamlets. As we showed earlier, every smooth curve can
be efficiently approximated by relatively few beamlets in a connected chain. In
order to take advantage of this fact we must use some mechanism for examining
different beamlet chains. The graph structure affords us such a mechanism.

This structure can be useful because there are some low complexity, network-
flow based procedures [43; 27] that allow one to optimize over all paths through
a graph. Such paths in the beamlet graph correspond to connected chains of
beamlets. When applied in the multiscale graph provided by 2-D beamlets,
these algorithms were found in [21] to have interesting applications in detecting
filaments and segmenting data in 2-D. One expects that the same ideas will prove
useful in 3-D.

10.4. Connections with particle physics. In a series of interesting papers
spanning both 2-D and 3-D applications, David Horn and collaborators Halina
Abramovicz and Gideon Dror have found several ways to deploy line-based sys-
tems in data analysis and detector construction[4; 5; 22]. Most relevant to our
work here is the paper [22] which describes a linelike system of feature detec-
tors for analysis of data from 3-D particle physics detectors. Professor Horn
has pointed out to us, and we agree, that such methods are very powerful in
the right settings, and that the main thing holding back widespread deployment
of such methods is the immense size of the number of lines needed to give a
comprehensive analysis of 3-D data.

10.5. Connections with tomography and medical imaging. The field of
medical imaging is rapidly developing these days, and particularly in the last few
years, 3-D tomography has become a ‘hot topic’, with several major conferences
and workshops. What is the connection of this work to ongoing work in medical
imaging?

Obviously, the X-ray transform, as we have defined it, is closely connected
to problems of medical imaging, which certainly obtain line integrals in 3-space
and aim to use these to reconstruct the object of interest.

However, the layout of our X-ray transform is (seemingly) rather different
than current medical scanners. Such scanners are designed according to physical
and economic constraints which place various constraints on the line integrals
which can be observed by the system. In contrast, we have only computational
constraints and we seek to represent a very wide range of line integrals in our
approach. For example, in an X-ray system, a source is located at a fixed point,
and can send out beams in a cone, and the line integrals can be measured by
a receiving device (film or other) on a planar surface. One obtains many line
integrals, but they all have one endpoint in common. In a PET system, events
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in the specimen generate are detected by pairs of detectors collinear with the
event. One obtains, by summing detector-pair counts over time, an estimated
line integral. The collection of integrals is limited by the geometry of the detector
arrays.

Essentially, in the vertex-pairs transform, we contemplate a situation that
would be analogous, in PET tomography, to having cubical room, with arrays
of detectors lining the walls, floor, and ceiling, and with all pairs of detectors
corresponding to lines which can be observed by the system. In (physical) X-ray
tomography, our notion of X-ray transform would correspond to a system where
there is a ‘source wall’ and the rest of the surfaces were ‘receivers’, with the
specimen or patients being studied oriented successively standing, prone, facing
and in profile to the ‘source wall’. The (omnidirectional) X-ray source would be
located for a sequence of exposures at each point of an array on the source wall
(say).

Neither situation is quite what medical imaging experts mean when they say
3-D tomography. For the last ten years or so, there has been a considerable body
of work on so called cone-beam reconstruction in 3-D physical X-ray tomography;
see [47; 35]. In an example of such a setting [47], a source is located at a fixed
point, the specimen is mounted on a turntable in front of a screen, and an
exposure is made by generating radiation, which travels through the specimen
and the line integral is recorded by a rectangular array at the the screen. This is
repeated for each orientation of the turntable. This would be the equivalent of
observing the X-ray transform only for those lines which originate on a specific
circle in the z = 0 plane, and is considerably less coverage than what we envisage.

In PET imaging there are now so-called ‘fully 3-D scanners’, such as the CTI
ECAT EXACT HR+ described in [46]. This scanner comprises 32 circular de-
tector rings with 288 detectors each, allowing for a total of 77× 106 lines. While
this is starting to exhibit some of the features of our system, with very large
numbers of beams, the detectors are only sensitive to lines occurring within a
cone of opening less than 30 degrees. The closest 3-D imaging device to our
setting appears to be the fully 3-D PET system described in [37; 38; 39] where
two parallel planar detector arrays provide the ability to gather data on all pairs
of lines joining a point in one detector plane to a point in the other plane. In
[38] a mathematical analysis of this system has suggested the relevance of the
linogram (known as slant stack throughout our article) to the fully 3-D problem,
without explicitly defining the algorithm suggested here. Without doubt, ongo-
ing developments in 3-D PET can be expected to exhibit many similarities to
the work in this paper, although it will be couched in a different language and
aimed at different purposes.

Another set of applications in medical imaging, to interactive navigation of
3-D data, is described in [10], based on supporting tools [9; 11; 55] which are
reminiscent of the two-scale recursive algorithm for the beamlet transform.
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10.6. Visibility We conclude with a more speculative connection. Suppose we
have 3-D voxel data which are binary, with a ‘1’ indicating occupied and a ‘0’
indicating unoccupied. Then a beam which hits only ‘0’ voxels is ‘clear’, whereas
a beam which hits some ‘1’ voxels is ‘occluded’. Question: can we rapidly tell
whether a beam is ‘clear’ or ‘occluded’, for a more or less random beam?

The question seems to call for rapid calculation of line integrals along every
possible line segment. Obviously, if we proceed in the ‘obvious’ way, the algo-
rithmic cost of answering a such a query is order n, since there are line segments
containing order n voxels.

Note that, if we precompute the beamlet transform, we can approximately
answer any query about the clarity of a beam in order O(log(n)) operations.
Indeed the beam can written as a chain of beamlets, and we merely have to
examine all those beamlet coefficients checking that they are all zero. There are
only O(log(n)) coefficients to check, from Theorem 1 above.

We can also rapidly determine the maximum distance we can go along a ray
before becoming occluded. That is, suppose we are at a given point and might
want to travel in a fixed direction. How far can we go before hitting something?

To answer this, consider the the segment starting at our fixed point and head-
ing in the given direction until it reaches the boundary of the data cube— we
obviously wouldn’t want to go out of the data cube, because we don’t have infor-
mation about what lies there. Take the segment and decompose into beamlets.
Now check that all the beamlets are ‘clear’, i.e. have beamlet coefficients zero.
If any are not clear, go to the occluded beamlet closest to the origin, and divide
it into its (at most four) children at the next level. If any are not clear, go to the
occluded beamlet closest to the origin, and, once again, divide it into its (at most
four) children at the next level. Continuing in this way, we soon reach the finest
level, and determine the closest occlusion along that beam. The algorithm takes
O(log(n)) operations, assuming the beamlet transform has been precomputed.

This allows for rapid computation of what might be called safety graphs,
where for each possible heading one might consider taking from a given point,
one obtains the distance one can go without collision. The cost is proportional
to #headings× log(n), which seems to be quite reasonable.

Traditional visibility analysis [23] assumes far more about the occluding ob-
jects (e.g. polyhedral structure); perhaps our approach would be more useful
when occlusion is very complicated and arises in natural systems subject to di-
rect voxelwise observation.
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Fourier Analysis and Phylogenetic Trees

STEVEN N. EVANS

Abstract. We give an overview of phylogenetic invariants: a technique for
reconstructing evolutionary family trees from DNA sequence data. This
method is useful in practice and is based on a number of simple ideas
from elementary group theory, probability, linear algebra, and commutative
algebra.

1. Introduction

Phylogeny is the branch of biology that seeks to reconstruct evolutionary fam-
ily trees. Such reconstruction can take place at various scales. For example, we
could attempt to build the family tree for various present day indigenous popula-
tions in the Americas and Asia in order to glean information about the possible
course of migration of humans into the Americas. At the level of species, we
could seek to determine whether modern humans are more closely related to
chimpanzees or to gorillas. Ultimately, we would like to be able to reconstruct
the entire “tree of life” that describes the course of evolution leading to all present
day species. Because the status of the “leaves” on which we wish to build a tree
differs from instance to instance, biologists use the general term taxa (singular
taxon) for the leaves in a general phylogenetic problem.

For example, for 4 taxa, we might seek to decide whether the tree

Taxon 1 Taxon 2 Taxon 3 Taxon 4
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or the tree

Taxon 1 Taxon 4 Taxon 3 Taxon 2

describes the course of evolution. In such trees:

• the arrow of time is down the page,
• paths down through the tree represent lineages (lines of descent),
• any point on a lineage corresponds to a point of time in the life of some

ancestor of a taxon,
• vertices other than leaves represent times at which lineages diverge,
• the root corresponds to the most recent common ancestor of all the taxa.

Phylogenetic reconstruction has a long history. Classically, reconstruction was
based on the observation and measurement of morphological similarities between
taxa with the the possible adjunction of similar evidence from the fossil record;
and these methods continue to be used. However, with the recent explosion in
technology for sequencing large pieces of a genome rapidly and cheaply, recon-
struction from the huge amounts of readily available DNA sequence data is now
by far the most commonly used technique. Moreover, reconstruction from DNA
sequence data has the added attraction that it can operate fairly automatically
on quite well-defined digital data sets that fit into the framework of classical
statistics, rather than proceeding from a somewhat ill-defined mix of qualitative
and quantitative data with the need for expert oversight to adjust for difficulties
such as morphological similarity due to convergent evolution.

There is a substantial literature on both the mathematics behind various
approaches to phylogenetic reconstruction and the algorithmic issues that arise
when we try to implement these approaches with large amounts of data and
large numbers of taxa. We won’t attempt to survey this literature or provide a
complete bibliography. Rather, these lecture notes are devoted to some of the
mathematics behind one particular approach: that of phylogenetic invariants.
Not only is this technique of practical utility, but it requires a nice combination
of elementary group theory, probability, linear algebra, and commutative algebra.

The outline of the rest of these notes is as follows. Section 2 begins with
a discussion of the sort of DNA sequence data that are used for phylogenetic
reconstruction and how these data are pre-processed using sequence alignment
techniques. We then describe a very general class of “Markov random field”
models that incorporate arbitrary mechanisms for nucleotide substitution and
a dependence structure for the nucleotides exhibited by the taxa that mirrors
the phylogenetic tree. Section 3 introduces 3 restricted classes of substitution
mechanisms that are commonly used in the literature: the Jukes-Cantor model
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and the 2- and 3-parameter Kimura models. We observe in Section 4 that stan-
dard statistical techniques such as maximum likelihood are still computationally
very demanding for infering phylogenies even for such restricted models and we
propose the alternative approach of phylogenetic invariants. We point out in
Sections 5 and 6 that an underlying group structure is present in the restricted
substitution models and develop the Fourier analysis that is necessary for ex-
ploiting this group structure to construct and recognise invariants.

Section 7 is a warm-up that uses these algebraic tools to exhibit an invariant
for a particular tree. The ideas in this section are then generalised in Section
8 to characterise the class of all invariants for an arbitrary tree. Finally, we
determine the “dimension” of the space of invariants for an arbitrary tree in
Section 9 and show in Section 10 that different trees have different invariants,
with the “dimension” of the class of distinguishing invariants depending in a
simple manner on the difference between the two trees.

2. Data and General Models

We assume that reader is familiar with the basic notion of the hereditary
information of organisms being carried by DNA molecules that consist of two
linked chains built from an alphabet of four nucleotides and twisted around each
other in a double helix, and, moreover, that such a molecule can be described by
listing the sequence of the nucleotides encountered along one of the chains using
the letters A for adenine, G for guanine, C for cytosine, T for thymine. A lively
and entertaining guide to the fundamentals is [GW91].

The totality of the DNA in any somatic cell constitutes the genome of the
individual. The genomes of different individuals differ. As evolution occurs, one
nucleotide is substituted for another, segments of DNA are deleted, and new
segments are inserted.

Sequence alignment is a procedure that attempts to provide algorithms that
takes DNA sequences from several taxa, line up “common positions” at which
substitutions may or may not have occurred, and determine where deletions and
insertions have occurred in certain sequences relative to the others. For example,
an alignment of two taxa might produce an output such as the following:

Taxon 1 . . . A G T A A C T . . .

Taxon 2 . . . A T ∗ ∗ ∗ C A . . .

Reading from left to right: both taxa have an A in the “same” position, the next
position is common to both taxa but Taxon 1 has a G there whereas Taxon 2
has a T, then (due to insertions or deletions) there is a stretch of 3 positions that
are present in the genome of Taxon 1 but not present in the genome of Taxon 2
etc. There are many approaches to deriving such alignments, and a discussion
of them is outside the scope of these notes. A good introduction to some of the
mathematical issues is [Wat95].
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Our basic data are DNA sequences for each of our taxa that have been pre-
processed in some suitable way to align them. For simplicity, we suppose that we
are dealing with segments where there have been no insertions or deletions, so all
the taxa share the same common positions and differences between nucleotides
at these positions are due to substitutions.

The standard statistical paradigm dictates (in very broad terms) how we
should go about taking these data and producing inferences about the phylogeny
connecting our taxa. Firstly, we should begin with a probability model that
incorporates the possible trees as a “parameter” along with other parameters
that describe the mechanism by which substitutions occur relative to such a
tree. Secondly, we should determine the choice of parameters (in particular,
the choice of tree) that best fits the observed sequence data according to some
criterion.

A standard assumption in the literature is that the behaviour at widely sepa-
rated positions on the genome is statistically independent. With this assumption,
the modelling problem reduces to one of modelling the nucleotide observed at a
given position.

In order to describe the general class of single position models typically used
in the literature, it is easiest to begin by imagining that we can observe not
only the nucleotides for the taxa but also those for the unobserved intermediates
represented by the interior vertices of the tree. (For simplicity, let us refer to the
taxa and the intermediates as “individuals” for the moment.) Two individuals
share the same lineage up to their most recent common ancestor and so the
processes such as mutation leading to substitution act on the genomes of their
common ancestors in the same way up until the split in lineages that occurs at the
most recent common ancestor. After the split in lineages, it is a reasonable first
approximation to assume that the random mechanisms by which substitutions
occur are operating independently on the genomes of the ancestors that are no
longer shared. Mathematically, this translates into an assumption that that
the nucleotides exhibited by two individuals are conditionally independent given
the nucleotide exhibited by their most recent common ancestor. Equivalently,
the nucleotides exhibited by two individuals are conditionally independent given
the nucleotide exhibited by any individual on the path that connects the two
individuals in the tree.

For example, consider the tree

1 2 3 4

5 6

7

with four taxa. Letting Yi denote the nucleotide exhibited by individual i, we
have, for example, that

• Y1 and Y2 are conditionally independent given Y5,
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• the pair (Y1, Y2) are conditionally independent of the pair (Y3, Y4) given any
one of Y5, Y6, or Y7.

Because of this dependence structure, a joint probability such as

P{Y1 =A, Y2 =A, Y3 =G, Y4 =C, Y5 =T, Y6 =T, Y7 =A}
can be computed as

P{Y7 =A} × P{Y5 =T | Y7 =A} × P{Y6 =T | Y7 =A} × P{Y1 =A | Y5 =T}
× P{Y2 =A | Y5 =T} × P{Y3 =G | Y6 =T} × P{Y4 =C | Y6 =T}.

Thus, for a given tree, the joint probabilities of the individuals exhibiting a par-
ticular set of nucleotides are determined by the vector of 4 unconditional proba-
bilities for the root individual and the 4× 4 matrices of conditional probabilities
for each edge.

Given such a model for the nucleotides exhibited by all the individuals (taxa
and intermediates), we obtain a model for the nucleotides exhibited by the taxa
by taking the marginal probability distribution for the taxa. Operationally, this
just means that we sum over the possibilities for the intermediates.

For example, suppose that we have the tree

1 2

3

with two taxa. Then, for example,

P{Y1 =A, Y2 =G} = P{Y1 =A, Y2 =G, Y3 =A}+ P{Y1 =A, Y2 =G, Y3 =G}
+ P{Y1 =A, Y2 =G, Y3 =C}+ P{Y1 =A, Y2 =G, Y3 =T}

= P{Y3 =A}P{Y1 =A | Y3 =A}P{Y2 =G | Y3 =A}
+ P{Y3 =G} × P{Y1 =A | Y3 =G} × P{Y2 =G | Y3 =G}
+ P{Y3 =C} × P{Y1 =A | Y3 =C} × P{Y2 =G | Y3 =C}
+ P{Y3 =T} × P{Y1 =A | Y3 =T} × P{Y2 =G | Y3 =T}.

We now introduce some notation to describe in full generality the sort of
model we have just outlined.

Let T be a finite rooted tree. Write ρ for the root of T, V for the set of
vertices of T, and L ⊂ V for the set of leaves. We regard T as a directed graph
with edge directions leading away from the root. The elements of L correspond
to the taxa, the tree T is the phylogenetic tree for the taxa, and the elements of
V\L correspond to ancestors alive at times when the lineages of taxa diverge.
It is convenient to enumerate L as (l1, . . . , lm) and V as (v1, . . . , vn), with the
convention that lj = vj for j = 1, . . . , m and ρ = vn.

Each vertex v ∈ V other than the root ρ has a a father σ(v) (that is, there
is a unique σ(v) ∈ V such that the directed edge (σ(v), v) is in the rooted tree
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T.) If vα and vω are two vertices such that there exist vertices vβ , vγ . . . , vξ with
σ(vβ) = vα, σ(vγ) = vβ , . . . , σ(vω) = vξ (that is, there is a directed path in T
from α to ω), then we say that vω is a descendent of vα or that vα is an ancestor
of vω and we write vα ≤ vω or vω ≥ vα. Note that a vertex is its own ancestor and
its own descendent. The outdegree outdeg(u) of u ∈ V is the number of children
of u, that is, the number of v ∈ V such that u = σ(v). To avoid degeneracies
we always suppose that outdeg(v) ≥ 2 for all v ∈ V\L. (Note: Terms such as
“father” and “child” are just standard terminology from the theory of trees and
don’t have any biological significance— an edge in our tree may correspond to
thousands of actual generations.)

Let π be a probability distribution on {A,G, C, T}— the root distribution,
The probability π(B) is the probability that the common ancestor at the root
exhibits nucleotide B. For each vertex v ∈ V\{ρ}, let P (v) be a stochastic
matrix on {A,G,C, T} (that is, the rows of P (v) are probability distributions on
{A,G, C, T}.) We refer to P (v) as the substitution matrix associated with the
edge (σ(v), v). The entry P (v)(B′, B′′) is the conditional probability that the
individual at vertex v exhibits nucleotide B′′ given that the individual at vertex
σ(v) exhibits nucleotide B′ ∈ {A,G, C, T}.

Define a probability distribution µ on {A,G, C, T}V by setting

µ((Bv)v∈V) := π(Bρ)
∏

v∈V\{ρ}
P (v)(Bσ(v), Bv).

The distribution µ is the joint distribution of the nucleotides exhibited by all of
the individuals in the tree, both the taxa and the unobserved ancestors. The
induced marginal distribution on {A,G,C, T}L is

p((B`)`∈L) :=
∑

v∈V\L

∑

Bv

µ
(
((Bv)v∈V\L, (B`)`∈L)

)
,

where each of the dummy variables Bv, v ∈ V\L, is summed over the set
{A,G, C, T}. The distribution p is the joint distribution of the nucleotides ex-
hibited by the taxa.

With this model in hand, we could try to make inferences from sequence
data using standard statistical techniques. For example, we could apply the
method of maximum likelihood where we determine the choice of the parameters
T, π, and P (v), v ∈ V\{ρ}, that makes the probability of the observed data
greatest. (As we discussed above, we would need to observe the nucleotides at
several positions and assume they were independent and governed by the same
single-position model.) Maximum likelihood is known to have various optimality
properties when we have large numbers of data, but unless we have just a few
taxa there are a huge number of parameters over which we have to optimise
and implementing maximum likelihood directly is numerically infeasible. There
are various approaches to overcoming these difficulties — for instance, we can
maximise likelihoods 4 taxa at a time and hope to fit the subtrees inferred in this
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manner into one overall tree for all the taxa. Another approach is to constrain
the substitution matrices in some way and hope that the extra structure this
introduces makes the inferential problem easier to solve (while still retaining some
degree of biological plausibility.) That is the approach we will follow starting in
the next section.

3. More Specific Models

The general model for the observed nucleotides outlined in the Section 2 allows
the substitution matrices to be arbitrary. As we discussed in the Section 2, there
are practical reasons for constraining the form of these matrices.

The substitution matrix P (v) represents the cumulative effect of the substitu-
tions that occur between the times that the individuals associated with σ(v) and
v were alive. In order to arrive at a reasonable form for P (v), it is profitable to
think about how we would go about modelling the dynamics of this substitution
process.

The most natural and tractable dynamics are (time-homogeneous) Markovian
ones. That is, if the position currently exhibits a certain nucleotide, B′ say, then
(independently of the past) the nucleotide changes at rate r(B′, B′′) to some
other nucleotide B′′. More formally, if the position currently exhibits nucleotide
B′, then:

• independently of the past, the probability that the elapsed time until a change
occurs is greater than t is exp(−∑

B′′ r(B
′, B′′) t),

• independently of how long it takes until a change occurs, the probability that
it is to B′′ is proportional to r(B′, B′′).

There are obvious caveats in the use of such Markov chain models. Certain
positions on the genome can’t be altered without serious consequences for the
viability of the organism, and so a model that allows substitution to occur in a
completely random fashion is not appropriate at such positions. However, if we
look at positions that are not associated with regions of the genome that have
an identifiable function, then it is somewhat difficult to recognise two positions
as being the “same” in two different individuals for the purposes of alignment.
Some care is therefore necessary in practice to find positions that can be aligned
but are such that a Markov chain model is plausible.

The simplest Markov chain model for nucleotide substitution is the Jukes-
Cantor model [JC69; Ney71] in which r(B′, B′′) is the same for all B′, B′′. Under
this model, the distribution of the amount of time spent at a nucleotide before
a change occurs does not depend on the nucleotide and all 3 choices of the new
nucleotide are equally likely when a change occurs.

Biochemically, the nucleotides fall into two families: the purines (adenine and
guanine) and the pyrimidines (cytosine and thymine). Substitutions within a
family are called transitions, and they have a different biochemical status to
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substitutions between families, which are called transversions. Kimura [Kim80]
proposed a model that recognised this distinction by assigning a common rate
to all the transversions and possibly different common rate to all the transitions.
We can represent the rates schematically as follows:

AOO

²²

oo //___
__

ÂÂ@
@

@
@ C??

ÄÄ~
~

~
~

G T
²²

OO

//oo_ _ _

The solid arrows represent transitions and the dashed arrows represent transver-
sions. There are two rate parameters, α, β > 0, say, such that r(B′, B′′) = α if
B′ and B′′ are connected by a solid arrow, and r(B′, B′′) = β if B′ and B′′ are
connected by a dashed arrow.

Later, Kimura [Kim81] introduced a generalisation of this model with the
following rate structure:
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Now there are 3 types of arrows (solid, dashed, and double) and 3 corresponding
rate parameters (α, β, γ > 0, say.) For example, if the current nucleotide is A

then, independently of the past, the probability that it takes longer than time t

until a change is exp(−(α+β+γ)t) and, independently of how long it takes until
a change, the change is to G with probability α/(α+β+γ), to C with probability
β/(α + β + γ), and to T with probability γ/(α + β + γ). There does not appear
to be a convincing biological rationale for this model with β 6= γ. However,
the extra parameter allows some more flexibility in fitting to data. Moreover,
the analysis of the three-parameter model is no more difficult than that of the
two-parameter one, and is even somewhat clearer from an expository point of
view. We refer the reader to [ES93; EZ98] for the changes that are necessary in
what follows when dealing with the one- and two-parameter models.

Probabilists usually record the rates for a Markov chain as an infinitesimal
generator matrix. For example, the infinitesimal generator for the three-param-
eter Kimura model is

Q =




A G C T

A −(α + β + γ) α β γ

G α −(α + β + γ) γ β

C β γ −(α + β + γ) α

T γ β α −(α + β + γ)


.
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The infinitesimal generator is more than just an accounting device: for any
s, t ≥ 0 the entry in row B′ and column B′′ of the matrix

exp(tQ) = I + tQ +
t2

2!
Q2 +

t3

3!
Q3 + · · ·

gives the conditional probability that nucleotide B′′ will be exhibited at time
s + t given that nucleotide B′ is exhibited at time s.

Because the matrix Q is symmetric, exp(tQ) can be computed using the spec-
tral theorem once the eigenvalues and eigenvectors of Q have been computed.
This is straightforward for Q, but we won’t go into the details. Also, the diago-
nalisation follows easily using the Fourier ideas of Section 6. As an example, the
conditional probability that nucleotide A will be exhibited at time s + t given
that nucleotide A is exhibited at time s is

1
4

(
1 + exp(−2t(α + γ)) + exp(−2t(β + γ)) + exp(−2t(α + β))

)
,

and the the conditional probability that nucleotide G will be exhibited at time
s + t given that nucleotide A is exhibited at time s is

1
4

(
1− exp(−2t(α + γ)) + exp(−2t(β + γ))− exp(−2t(α + β))

)
.

Both of these probabilities converge to 1
4 as t → ∞: of course, we expect from

the symmetries of the Markov chain that if it evolves for a long time, then it will
converge towards an equilibrium distribution in which all nucleotides are equally
likely to be exhibited.

It is clear without computing exp(tQ) explicitly that this matrix is of the form




A G C T

A w x y z

G x w z y

C y z w x

T z y x w


,

where 0 ≤ w, x, y, z ≤ 1. Not all such matrices are given by exp(tQ) for a suitable
choice of α, β, γ, t. However, we suppose from now on that each substitution
matrix P (v) is of this somewhat more general form for some w, x, y, z (that can
vary with v.) Thus, once a tree T with m leaves and n vertices is fixed, there
are 3n independent parameters in the model: 3 for the root distribution π and
3 for each of the n − 1 substitution matrices. Note that each of the 4m model
probabilities p((B`)`∈L), (B`)`∈L ∈ {A,G, C, T}L is a polynomial in these 3n

variables.

4. Making Inferences

From the development in Sections 2 and 3, we have a model for the joint
probability of the taxa exhibiting a particular set of nucleotides. For more than
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a small number of taxa, this model still has too many parameters for us to
apply maximum likelihood. Moreover, maximum likelihood necessarily estimates
all the numerical parameters in the model, even though the tree parameter is
typically the one that is of most interest.

An alternative approach to estimating the tree that does not involve directly
estimating the numerical parameters was suggested in [CF87] and [Lak87]. The
ideas behind this approach is as follows. For a given tree T, the model probabili-
ties p((B`)`∈L), (B`)`∈L ∈ {A,G, C, T}L, have a specific functional form in terms
of the numerical parameters defining the root distribution and the substitution
matrices (indeed, the model probabilities are polynomials in these variables.)
This should constrain the model probabilities to lie on some lower dimensional
surface in RL. Rather than represent this surface explicitly as the range of a vec-
tor of polynomials, we could try to characterise the surface implicitly as a subset
of a locus of points in RL that are common zeroes of a family of polynomials.
That is, we want to represent the surface as a subset of an algebraic variety.

Because we assuming that the same model (with the same numerical substitu-
tion mechanism parameters) governs each position in our data set and that the
behaviour at different positions is independent, the strong law of large numbers
gives that the quantities p((B`)`∈L), (B`)`∈L ∈ {A,G, C, T}L, can be consis-
tently estimated in a model-free way by computing the proportion of positions
in our data set at which Taxon 1 exhibits nucleotide B1, Taxon 2 exhibits nu-
cleotide B2, etc. Call these estimates p̂((B`)`∈L), (B`)`∈L ∈ {A,G,C, T}L, so
that p̂((B`)`∈L) will be close to p((B`)`∈L) with high probability when we observe
a sufficient number of different positions to have enough independent identically
distributed data points for the strong law of large numbers to kick in.

We hope that the varieties for two different trees (say, Tree I and Tree II) have
a “small” intersection and so a “generic” point on the variety for one tree will not
be a common zero of the polynomials defining the variety for the other tree. That
is, we hope that we can find a polynomial f such that f(p((B`)`∈L)) = 0 for all
choices of substitution mechanism parameters for Tree I whereas f(p((B`)`∈L)) 6=
0 for all but a “small” set of choices of substitution mechanism parameters for
Tree II. If this is the case, then f(p̂((B`)`∈L)) should be close to zero (that is,
“zero up to random error”) if Tree I is the correct tree regardless of the numerical
parameters in the model, whereas this quantity should be “significantly nonzero”
if Tree II is the correct tree unless we have been particularly unfortunate and
the numerical parameters are such that the vector p((B`)`∈L) happens to lie on
the intersection of the varieties for the two trees.

The polynomials that are zero on the algebraic variety associated with a tree
are called the (phylogenetic) invariants of the model. Note that the set of in-
variants has the structure of an ideal in the ring of polynomials in the model
probabilities: the sum of two invariants is an invariant and the product of an
invariant with an arbitrary polynomial is an invariant.
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In order to use the invariant idea to reconstruct phylogenetic trees we need
to address the following questions:

i) How do we recognize when a polynomial is an invariant?
ii) How do we find a generating set for the ideal of invariants (and how big is

such a set)?
iii) Do different trees have different invariants?
iv) How do we determine whether a vector of polynomials applied to estimates

of the model probabilities is “zero up to random error” or “significantly
nonzero”?

In principle, questions (i) and (ii) can be answered using general theory from
computational commutative algebra. There is an algorithm using Gröbner bases
that solves the implicitization problem of finding a generating set for the ideal
of polynomials that are 0 on a general parametrically given algebraic variety
(see [CLO92].) Unfortunately, this algorithm appears to be computationally
infeasible for the size of problem that occurs for even a modest number of taxa.
Other methods adapted to our particular problem are therefore necessary, and
this is what we study in these notes. Along the way, we answer question (iii)
and even establish how many algebraically independent invariants there are that
distinguish between two trees. We don’t deal with the more statistical question
(iv) in these notes.

5. Some Group Structure

We begin with a step that may seem somewhat bizarre at first, but pays
off handsomely. Consider the Klein 4-group Z2 ⊕ Z2 consisting of the elements
{(0, 0), (0, 1), (1, 0), (1, 1)} equipped with the group operation of coordinatewise
addition modulo 2. The addition table for Z2 ⊕ Z2 is thus




+ (0, 0) (0, 1) (1, 0) (1, 1)
(0, 0) (0, 0) (0, 1) (1, 0) (1, 1)
(0, 1) (0, 1) (0, 0) (1, 1) (1, 0)
(1, 0) (1, 0) (1, 1) (0, 0) (0, 1)
(1, 1) (1, 1) (1, 0) (0, 1) (0, 0)


.

Identify the nucleotides {A, G,C, T} with the elements of Z2 ⊕ Z2 as follows:
A ↔ (0, 0), G ↔ (0, 1), C ↔ (1, 0), and T ↔ (1, 1). This turns G := {A,G,C, T}
into a group with the addition table




+ A G C T

A A G C T

G G A T C

C C T A G

T T C G A


.
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Suppose that X and Y are two G-valued random variables such that the
conditional distribution of Y given X is described by the matrix




A G C T

A w x y z

G x w z y

C y z w x

T z y x w


.

Note that P{Y = B′′ |X = B′} only depends on the pair of nucleotides (B′, B′′)
through the difference B′′ − B′. It follows easily from this that the joint dis-
tribution of the pair (X, Y ) is same as that of the pair (X,X + Z), where
P{Z = A} = w, P{Z = G} = x, P{Z = C} = y, P{Z = T} = z, and Z is
independent of X.

The model that we described in Section 3 had an arbitrary root distribution
π and substitution matrices P (v) that satisfy P (v)(B′, B′′) = q(v)(B′′ − B′) for
some probability distribution q(v) on G. Repeatedly applying the observation
of the previous paragraph shows that if if (Zv)v∈V is a vector of independent
G-valued random variables, with Zρ having distribution π, and Zv, v ∈ V\{ρ},
having distribution q(v), then the G-valued random variables

Y` :=
∑

v≤`

Zv, ` ∈ L,

have joint distribution

P{Y1 = B1, . . . , Ym = Bm} = p((B`)`∈L).

That is, by suitable addition of independent G-valued “weights,” we can con-
struct a vector of random variables having the same joint distribution as the
nucleotides exhibited by the taxa. For example, for the tree

1 2 3

4

5

the construction is
Y1 = Z1 + Z4 + Z5

Y2 = Z2 + Z4 + Z5

Y3 = Z3 + Z5

6. A Little Fourier Analysis

We’ve seen that the model of Section 3 can be represented in terms of sums
of indpendent random variables taking values in a finite, Abelian group. Prob-
abilists have known for a long time that Fourier analysis is a very powerful
technique for handling such sums. In this section we’ll review some basic facts
about Fourier analysis for an arbitrary finite, Abelian group (H, +).
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Let T = {z ∈ C : |z| = 1} denote the unit circle in the complex plane, and
regard T as an Abelian group with the group operation being ordinary complex
multiplication. The characters of H are the group homomorphisms mapping
H into T. That is, χ : H → T is a character if χ(h1 + h2) = χ(h1)χ(h2) for
all h1, h2 ∈ G. The characters form an Abelian group under the operation of
pointwise multiplication of functions. This group is called the dual group of H
and is denoted by Ĥ. The groups H and Ĥ are isomorphic. Given h ∈ H and
χ ∈ Ĥ, write 〈h, χ〉 for χ(h).

The elements of H form an orthogonal basis for the space of functions from
H to C. Given a function f : H → C, the Fourier transform of f is the function
f̂ : Ĥ → C given by

f̂(χ) =
∑

h∈H
f(h)〈h, χ〉.

A function can be recovered from its Fourier transform via Fourier inversion:

f(h) =
1

#H
∑

χ∈Ĥ
f̂(χ)〈h, χ〉.

Given two finite, Abelian groups H′ and H′′, the dual of the product group
H′′ ⊕H′′ is isomorphic to Ĥ′ ⊕ Ĥ′′ via the identification

〈(h′, h′′), (χ′, χ′′)〉 = 〈h′, χ′〉 × 〈h′′, χ′′〉.

One may write Ĝ = {1, φ, ψ, φψ}, where the following table gives the values
of 〈g, χ〉 for g ∈ G and χ ∈ Ĝ:




(0, 0) (0, 1) (1, 0) (1, 1)
1 1 1 1 1
φ 1 −1 1 −1
ψ 1 1 −1 −1
φψ 1 −1 −1 1


.

The characteristic function of a H-valued random variable X is the Fourier
transform of its probability mass function:

ξ(χ) =
∑

h∈H
P{X = h}〈h, χ〉 = E [〈X, χ〉]

(here, following the usual convention in probability theory, 〈X, χ〉 is the random
variable obtained by composing the random variable X with the function 〈·, χ〉.)
The probability mass function of X can be recovered from its Fourier transform
by Fourier inversion:

P{X = h} =
1

#H
∑

χ∈Ĥ
ξ(χ)〈h, χ〉.
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Finally, note that if X ′ and X ′′ are independent H-valued random variables,
then

E[〈X ′ + X ′′, χ〉] = E[〈X ′, χ〉〈X ′′, χ〉] = E[〈X ′, χ〉]E[〈X ′′, χ〉].
That is, the characteristic function of X ′+X ′′ is the product of the characteristic
functions of X ′ and X ′′.

7. Finding an Invariant

Let’s begin by seeing how the observations of Sections 5 and 6 can be used to
find an invariant for an instance of the model of Section 3.

Consider the tree

1 2 3

4

5

with the associated model for the nucleotides Y1, Y2, Y3 exhibited by the taxa
written in terms of independent G-valued random variables Z1, . . . , Z5 as follows:

Y1 = Z1 + Z4 + Z5

Y2 = Z2 + Z4 + Z5

Y3 = Z3 + Z5

Using the results of Section 6 and the notation given there for for the charac-
ters of G we have

E[〈Y1, φ〉〈Y2, φ〉〈Y3, ψ〉]
= E[〈Z1, φ〉〈Z4, φ〉〈Z5, φ〉〈Z2, φ〉〈Z4, φ〉〈Z5, φ〉〈Z3, ψ〉〈Z5, ψ〉]
= E[〈Z1, φ〉]× E[〈Z2, φ〉]× E[〈Z3, ψ〉]× E[〈Z4, φ2〉]× E[〈Z5, φ2ψ〉]
= E[〈Z1, φ〉]× E[〈Z2, φ〉]× E[〈Z3, ψ〉]× E[〈Z5, ψ〉].

A similar argument shows that

E[〈Y1, φ〉〈Y2, φ〉] E[〈Y3, ψ〉] = E[〈Z1, φ〉] E[〈Z2, φ〉] E[〈Z3, ψ〉] E[〈Z5, ψ〉].
Thus

E[〈Y1, φ〉〈Y2, φ〉〈Y3, ψ〉]− E[〈Y1, φ〉〈Y2, φ〉]E[〈Y3, ψ〉] = 0.

Writing all of the expectations in the last equation as sums in terms of the model
probabilities p((B`)`∈L) gives a polynomial in the model probabilities of total
degree 2 that is satisfied for all choices of the numerical parameters defining the
root distribution and the substitution matrices. Thus we have found an invariant
for this tree.

Now consider the tree

1 3 2

4

5
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with the associated model for the nucleotides Y1, Y2, Y3 exhibited by the taxa
written in terms of independent G-valued random variables Z1, . . . , Z5 as follows:

Y1 = Z1 + Z4 + Z5

Y2 = Z2 + + Z5

Y3 = Z3 Z4 + Z5

Now

E[〈Y1, φ〉〈Y2, φ〉〈Y3, ψ〉]− E[〈Y1, φ〉〈Y2, φ〉] E[〈Y3, ψ〉]
=E[〈Z1, φ〉] E[〈Z2, φ〉] E[〈Z3, ψ〉] E[〈Z4, φψ〉] E[〈Z5, ψ〉]

− E[〈Z1, φ〉] E[〈Z2, φ〉] E[〈Z3, ψ〉] E[〈Z4, φ〉] E[〈Z4, ψ〉] E[〈Z5, ψ〉]
=E[〈Z1, φ〉] E[〈Z2, φ〉] E[〈Z3, ψ〉]

× (
E[〈Z4, φψ〉]− E[〈Z4, φ〉] E[〈Z4, ψ〉])E[〈Z5, ψ〉].

It is not hard to show that that the vector
(
E[〈Z4, φ〉],E[〈Z4, ψ〉],E[〈Z4, φψ〉])

ranges over a subset of R3 with nonempty interior as the distribution of Z4

ranges over the set of possible distributions on G. Thus

E[〈Z4, φψ〉]− E[〈Z4, φ〉]E[〈Z4, ψ〉]

is certainly not identically 0 and the invariant we found for the previous tree is
not an invariant for this tree.

8. Finding All Invariants

The examples studied in Section 7 indicate how we should proceed to find all
the invariants for a general tree. The ideas that we describe in this section were
developed in [ES93].

We call a vector (χ`1 , . . . , χ`m) ∈ Ĝm
an allocation of characters to leaves.

Such an allocation of characters to leaves induces an allocation of characters to
vertices (χv1 , . . . , χvn) ∈ Ĝn

as follows. The character χv is the product of the
χ` for all leaves ` that are descendents of v, that is,

χv :=
∏

`≥v

χ`.

In particular, if v = vi is a leaf (and hence the leaf `i by our numbering conven-
tion), then χvi = χ`i .

Let

{(χi,1, . . . , χi,n), i = 1, . . . , 4m}
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be an enumeration of the various allocations of characters to vertices induced by
the 4m different allocations of characters to leaves. Define 3n vectors {xv,θ =
(x(1)

v,θ, . . . , x
(4m)
v,θ ), v ∈ V, θ = φ, ψ, φψ} of dimension 4m by setting

x
(i)
vj ,θ :=

{
1 if χi,j = θ,
0 otherwise,

for i = 1, . . . , 4m, j = 1, . . . , n and θ ∈ {φ, ψ, φψ}.
Write R(T) for the free Z-module generated by the set {xv,θ : v ∈ V, θ =

φ, ψ, φψ}. That is, R(T) is the collection of integer vectors of dimension 4m

consisting of Z-linear combinations of the xv,θ. Set

N (T) :=

{
a ∈ Z4m

:
4m∑

i=1

aix
(i)
v,θ = 0, v ∈ V, θ = φ, ψ, φψ

}
,

so that Z4m

= R(T)⊕N (T).
For a ∈ Z4m

, the polynomial

∏

{i:ai≥0}

(
E
[ m∏

j=1

〈Yj , χi,j〉
])ai

−
∏

{i:ai≤0}

(
E
[ m∏

j=1

〈Yj , χi,j〉
])−ai

=
∏

{i:ai≥0}

(
∑

(B1,...,Bm)∈Gm

m∏

j=1

〈Bj , χi,j〉p(B1, . . . , Bm)

)ai

−
∏

{i:ai≤0}

(
∑

(B1,...,Bm)∈Gm

m∏

j=1

〈Bj , χi,j〉p(B1, . . . , Bm)

)−ai

is an invariant if and only if a ∈ N (T). It is shown in [ES93] that this is
the only game in town: all invariants arise from algebraic combinations and
rearrangements of these basic invariants.

Indeed, it is shown in [ES93] that if {(a1,r, . . . , a4m,r), r = 1, . . . , rankN (T)}
is a Z-basis for the free Z-module N (T), then the set of polynomials of the form

∏

{i:ai,r≥0}

(
E
[ m∏

j=1

〈Yj , χi,j〉
])ai,r

−
∏

{i:ai,r≤0}

(
E
[ m∏

j=1

〈Yj , χi,j〉
])−ai,r

generates the ideal of invariants but no subset thereof does. Finding a Z-basis
for N (T) is just elementary linear algebra — we are simply finding a basis for
the null space of an integer-valued matrix —and can be done using Gaussian
elimination.

9. How Many Invariants Are There?

Given our tree T with m leaves (taxa) and n vertices in total, we have 4m

model probabilities p((B`)`∈L) that arise as polynomials in 3n “free parame-
ters”— 3 free parameters for the root distribution and 3 free parameters for
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each of the substitution matrices. A naive “degrees of freedom” argument would
suggest that there should, in some sense, be 4m − 3n independent relations be-
tween the model probabilities. We verify this numerology in this section by
showing that rankR(T) = 3n, and hence rankN (T) = 4m − 3n. This and
related results were presented in [EZ98], but our proof here is quite different.

Let X denote the 4m × 3n matrix with columns indexed by V × {φ, ψ, φψ}
that has the column corresponding to (v, θ), given by xv,θ . We need to show
that the matrix X has (real) rank 3n, and this is equivalent to showing that the
associated 3n× 3n Gram matrix XtX has full rank (see 0.4.6(d) of [HJ85].)

The entry of XtX with indices ((v∗, θ∗), (v∗∗, θ∗∗)), v∗, v∗∗ ∈ V, θ∗, θ∗∗ ∈
{φ, ψ, φψ}, is the usual scalar product of xv∗,θ∗ with xv∗∗,θ∗∗ , which is just the
number of assignments of characters to leaves that assign θ∗ to v∗ and θ∗∗ to
v∗∗. We can compute this number of assignments as follows.

If v∗ = v∗∗ and θ∗ = θ∗∗, then it is clear by symmetry that this entry is 4m−1,
whereas if v∗ = v∗∗ and θ∗ 6= θ∗∗, then this entry is obviously 0.

Consider now the case where v∗ 6= v∗∗, so that the collection of leaves de-
scended from v∗ is not the same as the collection of leaves descended from v∗∗.
We claim that the entry of XtX with indices ((v∗, θ∗), (v∗∗, θ∗∗)) is 4m−2. To
see this, write L∗ and L∗∗ for the leaves descended from v∗ and v∗∗, respectively.
Suppose first that L∗∗ ( L∗. If we have an assignment of characters to leaves
that assigns the characters η∗ to v∗ and η∗∗ to v∗∗, then replacing the character
assigned to some `∗ ∈ L∗\L∗∗ from χ∗ (say) to ρ∗ρ∗∗η∗χ∗ and replacing the
character assigned to some `∗∗ ∈ L∗∗ from χ∗∗ (say) to ρ∗∗η∗∗χ∗∗ gives a new
assignment of characters to leaves that assigns ρ∗ to v∗ and ρ∗∗ to v∗∗. It follows
that number of assignments of characters to leaves that assign θ∗ to v∗ and θ∗∗

to v∗∗ is indeed 4m−2 when L∗∗ ( L∗. A symmetric argument argument handles
the case L∗ ( L∗∗, and we leave this to the reader.

We conclude that XtX can be partitioned into 3×3 blocks so that the blocks
down the diagonal are all of the form




4m−1 0 0
0 4m−1 0
0 0 4m−1


 ,

while the off-diagonal blocks are all of the form




4m−2 4m−2 4m−2

4m−2 4m−2 4m−2

4m−2 4m−2 4m−2


 .

Now

XtX = 4m−2(D + 11t),
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where 1 is the (column) vector with all entries equal to 1 and D is a matrix
partitioned into 3× 3 blocks with the blocks down the diagonal all of the form




3 −1 −1
−1 3 −1
−1 −1 3


 ,

and the off-diagonal blocks all zero. Note that D is invertible with inverse a
partitioned matrix that has blocks down the diagonal all of the form




1
2

1
4

1
4

1
4

1
2

1
4

1
4

1
4

1
2


 ,

and the off-diagonal blocks all zero. A standard result on inverses of small rank
perturbations (see 0.7.4 of [HJ85]) gives that XtX is indeed invertible (and hence
full rank), with inverse

4−(m−2)
(
D−1 − 1

1 + 1tD−11
D−111tD−1

)
= 4−(m−2)

(
D−1 − 1

1 + 3n
11t

)
.

10. How Well Do Invariants Distinguish Between Trees?

The last question remaining from Section 4 is, “Do different trees have differ-
ent invariants?” The answer is “Yes.” This follows from Theorem 10 in [SSE93].
We give a different proof which actually establishes “how many” independent
invariants distinguish between two different trees.

We begin by making explicit the natural notion of equivalence for trees with
labelled leaves. We say that two trees T′ and T′′ with the same set L of leaves
are identical if there is a bijection τ from the set of vertices V′ of T′ to the set
of vertices V′′ of T′′ such that τ(`) = ` for each leaf ` ∈ L and u ∈ V′ is the
father of v ∈ V′ in T′ if and only if τ(u) ∈ V′′ is the father of τ(v) ∈ V′′ in T′′.
This is equivalent to requiring that τ(`) = ` for each leaf ` ∈ L and u ∈ V′ is the
ancestor of v ∈ V′ in T′ if and only if τ(u) ∈ V′′ is the ancestor of τ(v) ∈ V′′ in
T′′. It is not hard to see that two trees T′ and T′′ with the same set L of leaves
are identical if and only if for each v′ ∈ V′ the set of leaves descended from v′ is
equal to the set of leaves descended from some v′′ ∈ V′′ and vice-versa.

Given two trees T′ and T′′ with the same set L of leaves, write ν(T′,T′′)
for the number of vertices v′′ of T′′ such that the collection of leaves descended
from v′′ is not the collection of leaves descended from any vertex of T′. If T′

and T′′ are not identical, then either ν(T′,T′′) > 0 or ν(T′′,T′) > 0. We claim
that the rank of the free Z-module N (T′)∩R(T′′) is 3ν(T′,T′′). That is, there
are 3ν(T′,T′′) algebraically independent invariants for the tree T′ that are not
invariants for the tree T′′, and similarly with the roles of T′ and T′′ interchanged.
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To establish this claim, first note that

rank (N (T′) ∩R(T′′)) = rank (R(T′′))− rank (R(T′) ∩R(T′′))

= rank (R(T′) +R(T′′))− rank (R(T′)).

Write V′ and V′′ for the vertices of T′ and T′′, respectively, and let Ṽ′′ denote
the set of vertices v′′ of T′′ such that the collection of leaves descended from v′′

is not the collection of leaves descended from any vertex of T′. Hence |Ṽ ′′| =
ν(T′,T′′). Of course, if v′′ ∈ V′′\Ṽ′′, then there is a vertex v′ ∈ V′ such that
the assignment of characters to v′ and v′′ for each assignment of characters to
leaves are the same, and hence the vector xv′,θ (calculated for T′) is the same as
the vector xv′′,θ (calculated for T′′.) The claim will thus follow if we can show
that the vectors

{xv′,θ : v′ ∈ V′, θ = φ, ψ, φψ} ∪ {xv′′,θ : v′′ ∈ Ṽ′′, θ = φ, ψ, φψ}
are linearly independent over the integers (equivalently, over the reals.)

Let X denote the 4m× 3(|V′|+ |Ṽ′′|) matrix obtained by putting together all
these vectors— say indexing the columns by (V′ ∪ Ṽ′′)×{φ, ψ, φψ} and making
the column corresponding to (v, θ) equal to xv,θ, for v ∈ V′ or v ∈ Ṽ′′. We need
to show that X has (real) rank 3(|V′|+ |Ṽ′′|), and this is equivalent to showing
that the associated 3(|V′| + |Ṽ′′|) × 3(|V′| + |Ṽ′′|) Gram matrix XtX has full
rank. An argument very similar to that in Section 9 completes the proof.
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Diffuse Tomography as a Source of Challenging
Nonlinear Inverse Problems for a General Class

of Networks

F. ALBERTO GRÜNBAUM

Abstract. Diffuse tomography refers to the use of probes in the infrared
part of the energy spectrum to obtain images of highly scattering media.
There are important potential medical applications and a host of diffi-
cult mathematical issues in connection with this highly nonlinear inverse
problem. Taking into account scattering gives a problem with many more
unknowns, as well as pieces of data, than in the simpler linearized situa-
tion. The aim of this paper is to show that in some very simplified discrete
model, reckoning with scattering gives an inversion problem whose solution
can be reduced to that of a finite number of linear inversion problems. We
see here that at least for the model in question, the proportion of variables
that can be solved for is higher in the nonlinear case than in the linear one.
We also notice that this gives a highly nontrivial problem in what can be
called network tomography.

1. Introduction

Optical, or diffuse, tomography, refers to the use of low energy probes to
obtain images of highly scattering media.

The main motivation for this line of work is, at present, the use of an infrared
laser to obtain images of diagnostic value. There is a proposal to use this in
neonatal clinics to measure oxygen content in the brains of premature babies
as well as in the case of repeated mammography. With the discovery of highly
specific markers that respond well in the optical or infrared region there are
many potential applications of this emerging area; see [A1; A2].

There are a number of physically reasonable models that have been used in
the formulation of the associated direct and inverse problems. These models are
based on some approximation to a wave propagation model, such as the so-called
diffusion approximation, or a transport equation model resulting in some type
of linear Boltzmann equation. See [A1; A2; D; NW] for recent surveys of work

The author was supported in part by NSF Grant # FD99711151.
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in this area. These papers give a detailed description of the physically relevant
formulations that different authors have considered.

Our Markov chain formulation, going back to [G1; GP1; SGKZ], is different
from those contained in these papers. We model the evolution of a photon as it
moves through tissue by means of a Markov chain. At any (discrete) instant of
time a photon occupies one of the states of the chain. These states are meant
to represent a discretization of phase space, i.e. they encode position as well
as velocity of a photon at a given time. The chain has three kinds of states:
incoming states (which are meant to represent source positions surrounding the
object of interest), hidden states (which are meant to represent the positions
and velocities of photons inside the tissue) and finally, outgoing states( which
represent detectors surrounding the object). We should also add an absorbing
state at the center of each pixel to indicate that a photon “entering the pixel”
can die in it. Instead of adding these extra states we simply do not assume that
the sum of the one-step transition probabilities from a state should add to one.
The difference between one and this sum is the probability of being absorbed
into the pixel in question when coming into it from the corresponding state.

The direct problem would consist of determining different “input-output”
quantities once the one-step transition probability matrix of our Markov chain
has been given.

The resulting inverse problem amounts to reconstructing the one-step transi-
tion probability matrix for our Markov chain (with three kinds of states) from
boundary measurements. This model is too simple and too general to faithfully
reflect the physics of diffuse tomography but could be of interest in other set-ups.
It gives a difficult class of nonlinear inverse problems for a certain general class
of networks with a complex pattern of connections which are motivated by the
diffuse tomography picture.

Since our model is the result of a discretization both in the positions occupied
by a photon as well as the direction in which it is moving, the states will be
indicated below by arrows placed at the boundaries of each pixel and pointing in
one of four possible directions. One of the smallest cases of interest in dimension
two is this:
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This simple model features four pixels, eight source positions, eight detector
positions as well as eight hidden states. In this figure, incoming states are labeled
by numbers enclosed in squares, outgoing states are labeled by numbers enclosed
in circles, and hidden states are labeled by numbers enclosed in diamonds. The
possible one step transitions are indicated in the next section, whereas the figure
below displays (by means of arrows, as explained earlier) only the eight states of
each kind.

In [G4] a discussion can be found of the corresponding smallest case in di-
mension three, where pixels are replaced by voxels and we have six different
directions for our states.

The physics, or what is left of it, is best compressed into a multiterminal
network where the nodes are the states of our Markov chain and the oriented
edges indicate one-step transitions (with unknown probabilities) between the
corresponding nodes. This is what a probabilist would call a state diagram.

As an example, here is the network corresponding to the physical model shown
on the previous page (for clarity, when two nodes are joined by two opposite
edges, we draw a single edge with arrows at both ends):
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Notice that there is an underlying linear dynamics governed by the (unknown)
one-step transition probability matrix of our Markov chain, but the inversion
problem of interest is still nonlinear.
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A remarkable feature of this simple model is that, at least for systems arising
from very coarse tomographic discretizations, it gives an exactly solvable system
of nonlinear equations, i.e., a certain number of unknowns are expressible in
terms of the data and a number of free parameters. The advantages of this
rather uncommon situation are clear: for instance it is possible to go beyond
iterative methods of solution, which are very common for nonlinear problems.

In both the two-dimensional and three-dimensional situations we can consider
as data the photon count for a source-detector pair which is defined as the proba-
bility that a photon that started at the source in question emerges at the detector
in question regardless of the number of steps involved. If we assume that every
one-step transition takes one unit of time we can consider the time-of-flight as a
random variable associated to each incoming-outgoing pair. The photon count
is the moment of order zero of this collection of random variables.

In Section 2 we see how far one can go using only the moment of order zero
of time of flight. Section 3 considers the situation when we also use a small part
of the information contained in the first moment of this collection of random
variables. Section 4 deals with the issue of dealing with those variables that
cannot be solved from the data. Finally Section 5 alludes to the fact that this
same machinery can be applied in the non-physical situation when the dimension
is neither two nor three but arbitrary.

It is also instructive in each case to consider the standard tomographic linear
problem when scattering is completely ignored and a photon can only be ab-
sorbed in a pixel or continue in its straight-line trajectory. In this case each one
of the four pixels, conveniently labeled (1, 1), (1, 2), (2, 1) and (2, 2) as the entries
of a 2× 2 matrix, is characterized by one parameter, its absorption probability.

The results regarding the ratio between the number of variables we can solve
for and the total number of unknowns for each one of these scenarios are given
below.
In the two-dimensional case, using four pixels (see figure on page 138) there are
three situations:

(1) The linear one where scattering is ignored, gives a problem with 4 unknowns
and 4 pieces of data, of which only three are independent and allows one to
solve for 3 out of 4 unknowns.

(2) The general model discussed above (as in [GP1; GP2]) allows one to solve
for 48 out of a total of 64 unknowns, leaving the ratio of 3

4 unchanged.
(3) The use of time-of-flight information, which is discussed in Section 4, as well

as in [G3], [GM1] gives a slightly better ratio, namely 56
64 = 7

8 .

When this comparison is done in dimension three, with a total of eight voxels,
we get three situations:

(1) The linear version of the problem (scattering being ruled out) gives a system
of 12 equations in 8 unknowns which can be solved for 7 of them in terms of
one arbitrary parameter, giving a ratio of 7

8 .
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(2) The general model (discussed in Sections 2 and 3) yields a system of 576
nonlinear equations in 288 variables that can be solved for 240 of them, with
a ratio of 240

288 = 5
6 .

(3) The use of time-of-flight information (discussed in Section 4) raises the ratio
to 264

288 = 11
12 . This shows that the consideration of a fully nonlinear problem

can (in some sense) lead to a better determined problem than the correspond-
ing linearized one.

We do not consider here the important issues of the difficulty in solving these
systems or the sensitivity to errors of the corresponding problem.

For a very nice and up-to-date discussion of work in this area one can see
[A1], [A2], [D], [NW]. These papers give a detailed description of the physically
relevant formulations that different authors have considered. For an early refer-
ence in the area of network tomography see [V]. For similar problems in an area
of great practical interest see the recent article [CHNY].
Remark This is an appropriate place to mention an oversight in [G4]. The
labeling of the states given in the introduction to that paper does not correspond
to the one used in [G4, Section 3]. The labeling used in the introduction to [G4]
represents an improvement over the one used in [G4, Section 3]. The results in
[G4] are correct, but some of the inversion formulas are unduly complicated since
they are written down using a more complicated labeling scheme. When we use
the labeling given in the introduction to [G4] we can reduce the entire problem
to a set of equivalent linear ones, obviating the last nonlinear step in [G4]. This
is reported in [GM2].

2. General Framework and Some Results

The one-step transition probability matrix P is naturally broken up into blocks
that connect different types of states. We denote by PIO the block dealing with
a one-step transition from an arbitrary incoming state to an arbitrary outgoing
state. PHH denotes the corresponding block connecting hidden to hidden states,
PIH the one connecting incoming to hidden states and finally PHO accounts for
one-step transitions between hidden and outgoing states. For completeness we
give these matrices below.

PHH =




0 N11S 0 0 0 0 N11E 0
S21N 0 0 S21E 0 0 0 0
W21N 0 0 W21E 0 0 0 0

0 0 E22W 0 0 E22N 0 0
0 0 S22W 0 0 S22N 0 0
0 0 0 0 N12S 0 0 N12W
0 0 0 0 E12S 0 0 E12W
0 W11S 0 0 0 0 W11E 0




;
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PHO =




N11W 0 0 0 0 0 0 N11N
0 S21W S21S 0 0 0 0 0
0 W21W W21S 0 0 0 0 0
0 0 0 E22S E22E 0 0 0
0 0 0 S22S S22E 0 0 0
0 0 0 0 0 N12E N12N 0
0 0 0 0 0 E12E E12N 0

W11W 0 0 0 0 0 0 W11N




;

PIH =




0 E11S 0 0 0 0 E11E 0
E21N 0 0 E21E 0 0 0 0
N21N 0 0 N21E 0 0 0 0

0 0 N22W 0 0 N22N 0 0
0 0 W22W 0 0 W22N 0 0
0 0 0 0 W12S 0 0 W12W
0 0 0 0 S12S 0 0 S12W
0 S11S 0 0 0 0 S11E 0




;

PIO =




E11W 0 0 0 0 0 0 E11N
0 E21W E21S 0 0 0 0 0
0 N21W N21S 0 0 0 0 0
0 0 0 N22S N22E 0 0 0
0 0 0 W22S W22E 0 0 0
0 0 0 0 0 W12E W12N 0
0 0 0 0 0 S12E S12N 0

S11W 0 0 0 0 0 0 S11N




.

The choice of names for the variables in P is meant to indicate the corre-
sponding transitions, for instance N11S means that we enter pixel (1, 1) going
north and exit it going south. It is convenient to refer to the figure on page 138
at this point.

Just as in [GP1], [GP2] we find it convenient to introduce matrices A, X, Y ,
W by means of

A = P−1
HO,

PIO = XA−1, PHH = A−1W, PIH = XA−1W − Y.

The transformation, for a given PHO, from the matrices PHH , PIO, PIH to the
matrices W,X, Y was introduced by S. Patch in [P3]. Notice that from A, X,
W and Y it is possible to recover (in that order) the matrices PHO, PIO, PHH

and, finally, PIH .
One advantage of introducing these matrices is that the input-output relation

QIO = PIO + PIH(I − PHH)−1PHO
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can be rewritten, by multiplying both sides first by A on the right and then by
(I −A−1W ) on the right again, in the form

QIO(A−W ) = X − Y.

In [GP1], [GP2] we exploited the block structure of the matrices A, W , X, Y

to show that once QIO is given then A is arbitrary. After choosing A, it is then
possible to derive explicit formulas for X, Y and W .

In the three-dimensional case the situation is a bit better, although the equa-
tions that we have to handle are naturally harder to deal with. We find that the
matrix A can no longer be picked arbitrarily but only 2/3 of it is arbitrary. This
means that using photon count alone it is possible to express 24 of the 72 entries
in the matrix A in terms of the data and 48 free parameters in A. By the photon
count matrix we refer to the matrix whose entries are given by the probabilities
that a photon that starts at a given source position would emerge from the tissue
at a specified detector position. For details consult [G4] and [GM2].

3. Using the First Moment of Time-of-Flight

Now we go beyond the photon count and consider the first moment of the
time-of- flight. As observed in the introduction the moment of order zero of
this collection of random variables (one for each source-detector pair) gives the
photon count matrix QIO.

If we denote the expression

PIH(I − PHH)−2PHO

by R, we have:

Lemma. The first moment of the “time-of-flight” can be expressed as

QIO + R.

Proof. Start from the observation that the j-th moment of the time of flight
is given by

Q
(j)
IO = PIO +

∞∑

k=0

PIHP k
HHPHO(k + 2)j . (3–1)

In particular, if j = 0 we recover (after an appropriate summation of the cor-
responding geometric series) the expression for QIO ≡ Q

(0)
IO given in Section 2.

We will return to this expression later in this section.
For j = 1 we get

Q
(1)
IO = PIO + 2PIH(I − PHH)−1PHO + PIHPHH(I − PHH)−2PHO

= Q
(0)
IO + PIH(I − PHH)−2[I − PHH + PHH ]PHO

= Q
(0)
IO + R. ¤
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Since QIO is taken as data we can consider R as the extra information provided
by the expected value of time of flight.

Observe now that we have the relation

QIOA−X(A) = R(A−W (A)).

This follows, for instance, by noticing that each side of this identity is given by
PIH(I − PHH)−1.

In the two-dimensional case ([GP2; GM1]) this concludes the job since we can
use some of the entries of the matrix R to determine the ratios among eight pairs
of the entries in A. Explicit formulas are given in [GM1].

The three-dimensional case has been given a first treatment in [G4]. By using
the labeling mentioned in the introduction to that paper it is possible to obtain
explicit formulas similar to those mentioned above. For details see [GM2].

It is very important to notice that in either dimension the entire problem
of determining the blocks in P admits a natural “gauge transformation” given
exactly by a diagonal matrix D. Consider the transformation that goes from a
given set of blocks, to a new one given by the relations

P̃IO = PIO,

P̃IH = PIHD−1,

P̃HH = DPHHD−1,

P̃HO = DPHO.

Notice that this gauge transformation preserves the required block structure of
all the matrices in question. Moreover the probability of going from an arbitrary
incoming state to an arbitrary outgoing state in m steps, given by the matrix
PIO if m = 1 and by PIHPm−2

HH PHO if m ≥ 2, is clearly invariant under the
transformation mentioned above. It follows then by referring to (3–1) for the
j-th moment of the time of flight distribution that this is not affected by this
gauge.

In conclusion, we have shown that the zeroth and first moments of the time-
of-flight distribution determine the matrix P up to the choice of the arbitrary
diagonal matrix D introduced above.

4. Taking into Account a Physical Model

An important question remains: how should the values of the 24 free param-
eters be picked (or the 8 free parameters in dimension two)? A similar question
was discussed in [GP2] where we considered the effect of imposing on our very
general model the assumption of “microscopic reversibility”, i.e., a one-step tran-
sition from a state (of our Markov chain) given by the vector v to a state given
by the vector w has the same probability as a transition from the sates given
by the vectors −w and −v respectively. On the other hand, in [G2], [GZ] we
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considered the case of isotropic scattering. Each one of these cases leads to a
dramatic reduction in the number of free parameters.

It is tempting to make some of these simplifying assumptions at the very
beginning of the process, thereby reducing the number of unknowns. Experience
seems to indicate that the possibility of reducing the already nonlinear system of
equations to a linear one is greatly enhanced by making use of these assumptions
at the end of the process.

5. A Network Tomography Problem for the Hypercube

The two-dimensional and three-dimensional problems discussed above have a
firm foundation in diffuse tomography. It is however possible to go to higher
dimensions and consider the corresponding d- dimensional hypercube and the
network that goes along with it. By using the techniques in [GM1] and [GM2]
it is possible to see that by measuring the first two moments (zeroth and first)
of time-of-flight we can determine everything explicitly up to a total of d 2d free
parameters. This happens to be the dimension of the gauge that appears at the
end of Section 3, and thus this result is optimal. Details will appear in [GM3].

Acknowledgments. We thank the editors for useful suggestions on ways to
improve the presentation.
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of Complex Projective Space P2(C)
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Abstract. The classical (scalar-valued) theory of spherical functions, put
forward by Cartan and others, unifies under one roof a number of exam-
ples that were very well-known before the theory was formulated. These
examples include special functions such as like Jacobi polynomials, Bessel
functions, Laguerre polynomials, Hermite polynomials, Legendre functions,
which had been workhorses in many areas of mathematical physics before
the appearance of a unifying theory. These and other functions have found
interesting applications in signal processing, including specific areas such
as medical imaging.

The theory of matrix-valued spherical functions is a natural extension of
the well-known scalar-valued theory. Its historical development, however,
is different: in this case the theory has gone ahead of the examples. The
purpose of this article is to point to some examples and to interest readers
in this new aspect in the world of special functions.

We close with a remark connecting the functions described here with
the theory of matrix-valued orthogonal polynomials.

1. Introduction and Statement of Results

The theory of matrix-valued spherical functions (see [GV; T]) gives a natural
extension of the well-known theory for the scalar-valued case, see [He]. We start
with a few remarks about the scalar-valued case.

The classical (scalar-valued) theory of spherical functions (put forward by
Cartan and others after him) allows one to unify under one roof a number of
examples that were very well known before the theory was formulated. These ex-
amples include many special functions like Jacobi polynomials, Bessel functions,
Laguerre polynomials, Hermite polynomials, Legendre functions, etc.

This paper is partially supported by NSF grants FD9971151 and 1-443964-21160 and by CON-
ICET grant PIP 655-98.
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All these functions had “proved themselves” as the work-horse in many areas
of mathematical physics before the appearance of a unifying theory. Many of
these functions have found interesting applications in signal processing in gen-
eral as well as in very specific areas like medical imaging. It suffices to recall,
for instance, that Cormack’s approach [C] — for which he got the 1979 Nobel
Prize in Medicine, along with G. Hounsfield —was based on classical orthogonal
polynomials and that the work of Hammaker and Solmon [HS] as well as that of
Logan and Shepp [LS] is based on the use of Chebychev polynomials.

The crucial property here is the fact that these functions satisfy the integral
equation that characterizes spherical functions of a homogeneous space. For
a review on some of these topics the reader can either look at some of the
specialized books on the subject such as [He] or start from a more introductory
approach as that given in either [DMcK] and [T1, vol. I].

This integral equation is actually satisfied by all Gegenbauer polynomials and
not only those corresponding to symmetric spaces. This point is fully exploited
in [DG] where this property is put to use to show that different weight functions
can be used in carrying out the usual tomographic operations of projection and
backprojection. This works well for parallel beam tomography but has never
been made to work for fan beam tomography because of a lack of an underlying
group theoretical formulation in this case. For a number of issues in this area,
including a number of open problems, see [G2].

For a variety of other applications of spherical functions one can look at
[DMcK; T1].

We now come to the main issue in this article.
The situation with the matrix-valued extension of this theory is entirely dif-

ferent. In this case the theory has gone ahead of the examples and, in fact, to
the best of our knowledge, the first examples involving nonscalar matrices have
been given recently in [GPT1; GPT2; GPT3]. For scalar-valued instances of
nontrivial type, see [HeSc].

The issue of how useful these functions may turn out to be as a tool in areas
like geometry, mathematical physics, or signal processing in the broad sense is
still open. From a historical perspective one could argue, rather tautologically,
that the usefulness of the classical spherical functions rests on the many inter-
esting properties they all share. With that goal in mind, it is natural to try to
give a glimpse at these new objects and to illustrate some of their properties.
The rather mixed character of the audience attending these lectures gives us an
extra incentive to make this material accessible to people that might normally
not look in the specialized literature.

The purpose of this contribution is thus to present very briefly the essentials
of the theory and to describe one example in some detail. This is not the appro-
priate place for a complete description, and we refer the interested reader to the
papers [GPT1; GPT2; GPT3].
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We hope to pique the curiosity of some readers by exploring the extent to
which the property of “positive linearization of products” holds in the case of
the spherical functions associated to P2(C). This result has been important
in the scalar case, including its use in the proof of the Bieberbach conjecture,
see [AAR]. The property in question is illustrated well by considering the case
of Legendre polynomials: the product of any two such is expressed as a linear
combination involving other Legendre polynomials with degrees ranging from
the absolute value of the difference to the sum of the degrees of the two factors
involved. Moreover, the coefficients in this expansion are positive.

We should stress that the intriguing property described here is one enjoyed by
a matrix-valued function put together from different spherical functions of a given
type. In the classical scalar-valued case these two notions agree and the warning
is not needed. This combination of spherical functions has already been seen,
see [GPT1; GPT2; GPT3] to enjoy a natural form of the bispectral property.
For an introduction to this expanding subject we could consult, for instance,
[DG1; G12]. The roots of this problem are too long to trace in this short paper,
but the reader may want to take a look at [S1]. For off-shoots that have yet to
be explored further one can also see [G13; G15]. The short version of the story
is that some remarkably useful algebraic properties that have surfaced first in
signal processing and which one would like to extend and better understand have
a long series of connections with other parts of mathematics. For a collection of
problems arising in this area see [HK].

The issue of linearization of products, without insisting on any positivity
results, plays (in the scalar-valued case) an important role in fairly successful
applications of mathematics. For example, the issue of expressing the product
of spherical harmonics of different degrees as a sum of spherical harmonics plays
a substantial role in both theoretical and practical algorithms for the harmonic
analysis of functions on the sphere. For some developments in this area see [DH]
as well as [KMHR].

In the context of quantum mechanics this discussion is the backbone of the
addition rule for angular momenta as can be seen in any textbook on the subject.

In the last section we make a brief remark connecting the functions described
here with the theory of matrix-valued orthogonal polynomials, as developed for
instance in [D] and [DVA].

2. Matrix-Valued Spherical Functions

Let G be a locally compact unimodular group and let K be a compact sub-
group of G. Let K̂ denote the set of all equivalence classes of complex finite
dimensional irreducible representations of K; for each δ ∈ K̂, let ξδ denote the
character of δ, d(δ) the degree of δ, i.e. the dimension of any representation in
the class δ, and χδ = d(δ)ξδ.
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Given a homogeneous space G/K a zonal spherical function ([He]) ϕ on G is
a continuous complex valued function which satisfies ϕ(e) = 1 and

ϕ(x)ϕ(y) =
∫

K

ϕ(xky) dk x, y ∈ G. (2–1)

The following definition gives a fruitful generalization of this concept.

Definition 2.1 [T; GV]. A spherical function Φ on G of type δ ∈ K̂ is a
continuous function on G with values in End(V ) such that

(i) Φ(e) equals I, the identity transformation.
(ii) Φ(x)Φ(y) =

∫
K

χδ(k−1)Φ(xky) dk, for all x, y ∈ G.

The connection with differential equations of the group G comes from the prop-
erty below.

Let D(G)K denote the algebra of all left invariant differential operators on G

which are also invariant under all right translation by elements in K. If (V, π)
is a finite dimensional irreducible representation of K in the equivalence class
δ ∈ K̂, a spherical function on G of type δ is characterized by:

(i) Φ : G −→ End(V ) is analytic.
(ii) Φ(k1gk2) = π(k1)Φ(g)π(k2), for all k1, k2 ∈ K, g ∈ G, and Φ(e) = I.
(iii) [DΦ](g) = Φ(g)[DΦ](e), for all D ∈ D(G)K , g ∈ G.

We will be interested in the specific example given by the complex projective
plane. This can be realized as the homogeneous space G/K, where G = SU(3)
and K = S(U(2)×U(1)). In this case iii) above can be replaced by: [∆2Φ](g) =
λ2Φ(g), [∆3Φ](g) = λ3Φ(g) for all g ∈ G and for some λ2, λ3 ∈ C. Here ∆2

and ∆3 are two algebraically independent generators of the polynomial algebra
D(G)G of all differential operators on G which are invariant under left and right
multiplication by elements in G.

The set K̂ can be identified with the set Z×Z≥0. If k =
(

A 0
0 a

)
, with

A ∈ U(2) and a = (det A)−1, then

π(k) = πn,l(A) = (det A)n
Al,

where Al denotes the l-symmetric power of A, defines an irreducible representa-
tion of K in the class (n, l) ∈ Z×Z≥0.

For simplicity we restrict ourselves in this brief presentation to the case n ≥ 0.
The paper [GPT1] deals with the general case. The representation πn,l of U(2)
extends to a unique holomorphic multiplicative map of M(2,C) into End(Vπ),
which we shall still denote by πn,l. For any g ∈ M(3,C), we shall denote by A(g)
the left upper 2×2 block of g, i.e.

A(g) =
(

g11 g12

g21 g22

)
.
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For any π = π(n,l) with n ≥ 0 let Φπ : G −→ End(Vπ) be defined by

Φπ(g) = Φn,l(g) = πn,l(A(g)).

It happens that Φπ is a spherical function of type (n, l), one that will play a very
important role in the construction of all the remaining spherical functions of the
same type.

Consider the open set

A = { g ∈ G : det A(g) 6= 0 } .

The group G = SU(3) acts in a natural way in the complex projective plane
P2(C). This action is transitive and K is the isotropy subgroup of the point
(0, 0, 1) ∈ P2(C). Therefore P2(C) = G/K. We shall identify the complex plane
C2 with the affine plane { (x, y, 1) ∈ P2(C) : (x, y) ∈ C2 }.

The canonical projection p : G −→ P2(C) maps the open dense subset A onto
the affine plane C2. Observe that A is stable by left and right multiplication by
elements in K.

To determine all spherical functions Φ : G −→ End(Vπ) of type π = πn,l, we
use the function Φπ introduced above in the following way: in the open set A
we define a function H by

H(g) = Φ(g)Φπ(g)−1,

where Φ is suppose to be a spherical function of type π. Then H satisfies:

(i) H(e) = I.
(ii) H(gk) = H(g), for all g ∈ A, k ∈ K.
(iii) H(kg) = π(k)H(g)π(k−1), for all g ∈ A, k ∈ K.

Property ii) says that H may be considered as a function on C2.
The fact that Φ is an eigenfunction of ∆2 and ∆3 makes H into an eigenfunc-

tion of certain differential operators D and E on C2.
We are interested in considering the differential operators D and E applied

to a function H ∈ C∞(C2)⊗End(Vπ) such that H(kp) = π(k)H(p)π(k)−1, for
all k ∈ K and p in the affine complex plane C2. This property of H allows us to
find ordinary differential operators D̃ and Ẽ defined on the interval (0,∞) such
that

(D H)(r, 0) = (D̃H̃)(r), (E H)(r, 0) = (ẼH̃)(r),

where H̃(r) = H(r, 0).
Introduce the variable t = (1+r2)−1, which converts the operators D̃ and Ẽ

into new operators D and E.
The functions H̃ turn out to be diagonalizable. Thus, in an appropriate basis

of Vπ, we can write H̃(r) = H(t) = (h0(t), . . . , hl(t)).
We find it very convenient to introduce two integer parameters w, k subject to

the following three inequalities: 0 ≤ w, 0 ≤ k ≤ l, which give a very convenient
parametrization of the irreducible spherical functions of type (n, l). In fact, for
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each pair (l, n), there are a total of l + 1 families of matrix-valued functions
of t and w. In this instance these matrices are diagonal and one can put these
diagonals together into a full matrix-valued function as we will do in the next two
sections. It appears that this function, which coincides with the usual spherical
function in the scalar case, enjoys some interesting properties.

The reader can consult [GPT1] to find a fairly detailed description of the
entries that make up the matrices mentioned up to now. A flavor of the results
is given by the following statement.

For a given l ≥ 0, the spherical functions corresponding to the pair (l, n) have
components that are expressed in terms of generalized hypergeometric functions
of the form p+2Fp+1, namely

p+2Fp+1

(
a, b, s1 +1, . . . , sp +1

c, s1, s2, . . . , sp

; t
)

=
∞∑

j=0

(a)j(b)j

j!(c)j
(1+d1j + · · ·+dpj

p)tj .

3. The Bispectral Property

For given nonnegative integers n, l and w consider the matrix whose rows are
given by the vectors H(t) corresponding to the values k = 0, 1, 2, . . . , l discussed
above. Denote the corresponding matrix by

Φ(w, t).

As a function of t, Φ(w, t) satisfies two differential equations

DΦ(w, t)t = Φ(w, t)tΛ, EΦ(w, t)t = Φ(w, t)tM .

Here Λ and M are diagonal matrices with

Λ(i, i) = −w(w+n+ i+ l+1)−(i−1)(n+ i),

M(i, i) = Λ(i, i)(n− l+3i−3)−3(i−1)(l− i+2)(n+ i),

for 1 ≤ i ≤ l + 1; D and E are the differential operators introduced earlier.
Moreover we have

Theorem 3.1. There exist matrices Aw, Bw, Cw, independent of t, such that

AwΦ(w−1, t)+BwΦ(w, t)+CwΦ(w+1, t) = tΦ(w, t) .

The matrices Aw and Cw consist of two diagonals each and Bw is tridiagonal.
Assume, for convenience, that these vectors are normalized in such a way that
for t = 1 the matrix Φ(w, 1) consists of all ones.

For details on these matrices as well as for a full proof of this statement, which
was conjectured in [GPT1], the reader can consult [GPT2] and [PT].
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4. Linearization of Products

The property in question states that the product of members of certain families
of (scalar-valued) orthogonal polynomials is given by an expansion of the form

PiPj =
j+i∑

k=|j−i|
akPk

and that the coefficients in the expansion are all nonnegative.
For a nice and detailed account of the situation in the scalar case, see for

instance [A], [S]. Very important contributions on these and related matters are
[G] and [K].

It is important to note that the property in question is not true for all families
of orthogonal polynomials, in fact it is not even true for all Jacobi polynomials
P

(α,β)
w , normalized by the condition P

(α,β)
w (1) positive. For our purpose it is

important to recall that nonnegativity is satisfied if α ≥ β and α+β ≥ 1.

The case l = 0, n > 1.
From [GPT1] we know that when l = 0 and n ≥ 0 the appropriate eigenfunc-

tions (without the standard normalization) are given by

Φ(w, t) = 2F1

(−w, w+n+2
n+1

; t
)

.

This means that with the usual convention that the Jacobi polynomials are
positive for t = 1 we are dealing with the family

P (1,n)
w (t).

If n = 0 or n = 1 the family P
(1,n)
w meets the sufficient conditions for nonneg-

ativity given above. For n = 0 the coefficients ak are all strictly positive; in the
case n = 1 the coefficients a|i−j|+2k, are strictly positive while the coefficients
a|i−j|+k, k odd, are zero, as the example below illustrates.

We now turn our attention to the case n > 1.

Conjecture 4.1. For n an integer larger than one, the coefficients in the
expansion for the product PiPj above alternate in sign.

This conjecture is backed up by extensive experiments, one of which is shown
below. It deals with the case of w (that is, i and j) equal to 3 and 4. Richard
Askey supplied a proof of this conjecture. This gives us a new chance to thank
him for many years of encouragement and help.

The product of the (scalar-valued, and properly normalized) functions Φ(3, t)
and Φ(4, t) is given by the expansion

Φ(3, t)Φ(4, t) = a1Φ(1, t)+a2Φ(2, t)+a3Φ(3, t)+a4Φ(4, t)

+a5Φ(5, t)+a6Φ(6, t)+a7Φ(7, t),
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with coefficients given by the expressions

a1 =
(n+2)(n+3)(n+4)
(n+8)(n+9)(n+10)

,

a2 = − 6(n−1)(n+3)(n+4)(n+6)2

(n+7)(n+8)(n+9)(n+10)(n+11)
,

a3 =
3(n+4)(n+5)(7n3 +52n2 +67n+162)
(n+7)(n+9)(n+10)(n+11)(n+12)

,

a4 = −4(n−1)(n+6)(11n3 +123n2 +436n+648)
(n+8)(n+9)(n+11)(n+12)(n+13)

,

a5 =
3(n+5)(n+6)(n+7)(19n3 +155n2 +162n+504)

(n+8)(n+9)(n+10)(n+11)(n+13)(n+14)
,

a6 = − 42(n−1)(n+5)(n+6)2(n+7)(n+8)
(n+9)(n+10)(n+11)(n+12)(n+13)(n+15)

,

a7 =
14(n+5)(n+6)2(n+7)2(n+8)

(n+10)(n+11)(n+12)(n+13)(n+14)(n+15).

This shows that even in the scalar-valued case, as soon as we are dealing
with nonclassical spherical functions we encounter an interesting sign alternating
property that is quite different from the more familiar case. Here and below we
see that things become different once n is an integer larger than one.

Now we explore the picture in the case of general l.

The case l > 0, n > 1

Conjecture 4.2. If i ≤ j then the product of Φ(i, t) and Φ(j, t) allows for a
(unique) expansion of the form

Φ(i, t)Φ(j, t) =
j+i+l∑

k=min{j−i−l,0}
AkΦ(k, t).

Here the coefficients Ak are matrices and the matrix-valued function Φ(w, t) is
the one introduced in Section 3. This conjecture holds for all nonnegative n and
is well known for l = 0 and n = 0.

In the case of l = 0 we obtain the usual range in the expansion coefficients
ranging from j− i to j + i as in the case of addition of angular momenta. For
larger values of l we see that extra terms appear at each end of the expansion.

Conjecture 4.3. If i < j then the coefficients Ak in the expansion

Φ(i, t)Φ(j, t) =
j+i+l∑

k=min{j−i−l,0}
AkΦ(k, t).
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with k in the range j−i, j+i have what we propose to call “the hook alternating
property .”

We will explain this conjecture by displaying one example. First notice that we
exclude those coefficients that are not in the traditional or usual range discussed
above.

At this point it may be appropriate in the name of truth in advertisement
to admit that we have no concrete evidence of the significance of the property
alluded to above and displayed towards the end of the paper. We trust that the
reader will find the property cute and intriguing. It would be very disappointing
if nobody were to find some use for it.

The results illustrated below have been checked for many values of l > 0, but
are displayed here for l = 1 only.

Recall that from [GPT1] the rows that make up the matrix-valued function
H(t, w) are given as follows: the first row is obtained from the column vector

H(t) =




(
1− λ

n+1

)
3F2

(−w, w+n+3, λ−n

n+2, λ−n−1
; t

)

2F1

(−w, w+n+3
n+1

; t
)




with
λ = −w(w+n+3)

and the second row comes from the column vector

H(t) =




2F1

(−w, w+n+4
n+2

; t
)

−(n+1) 3F2

(−w−1, w+n+3, λ

n+1, λ−1
; t

)




with
λ = −w(w+n+4)−n−2.

The product of the matrices Φ(2, t) and Φ(6, t) is given by the expansion

Φ(2, t)Φ(6, t) = A3Φ(3, t)+A4Φ(4, t)+A5Φ(5, t)+A6Φ(6, t)

+A7Φ(7, t)+A8Φ(8, t)+A9Φ(9, t),

where

A3 =




0 0

0
16(n+4)(n+5)(n+6)2(n+7)2

(n+11)(n+12)(n+13)(n+14)(n+15)(n+16)


 ;

A4 =
(

L11 L12

L21 L22

)
with
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L11 =
15(n+5)2(n+6)(n+8)

2(n+12)(n+13)(n+14)(n+15)
,

L12 =
5(n+5)(n+6)(4 n2 +55 n+216)
6(n+13)(n+14)(n+15)(n+16)

,

L21 =
(n+5)(n+6)(n+7)(8 n2 +153n+724)
2(n+12)(n+13)(n+14)(n+15)(n+16)

,

L22 = −5(n+6)(n+7)(248 n4 +4665 n3 +27202n2 +45137 n−23252)
12(n+11)(n+13)(n+14)(n+15)(n+16)(n+17)

;

A5 =
(

M11 M12

M21 M22

)
with

M11 = − (n+5)(n+6)(185 n3 +3284 n2 +15732n+10368)
6(n+7)(n+12)(n+14)(n+15)(n+16)

,

M12 = − (n+5)(85 n4 +1817n3 +11380 n2 +7072n−93460)
7(n+7)(n+13)(n+15)(n+16)(n+17)

,

M21 = − (n+6)2(170n4 +4735 n3 +42068 n2 +99767n−168628)
12(n+7)(n+12)(n+14)(n+15)(n+16)(n+17)

,

M22 =

4327 n7 +163698n6 +2480127 n5 +19091004n4 +78090428 n3

+163454544n2 +172290528 n+132098688
14(n+7)(n+12)(n+13)(n+15)(n+16)(n+17)(n+18)

;

A6 =
(

N11 N12

N21 N22

)
with

N11 =
2(193 n5 +5832 n4 +65284 n3 +328884 n2 +727621 n+634422)

7(n+8)(n+13)(n+14)(n+16)(n+17)
,

N12 =
171 n5 +4729 n4 +45764 n3 +188570 n2 +442336 n+1133640

8(n+8)(n+14)(n+15)(n+17)(n+18)
,

N21 =
171 n6 +7071 n5 +116213 n4 +959879 n3 +4245034 n2 +10640548 n+15755112

7(n+8)(n+13)(n+14)(n+16)(n+17)(n+18)
,

N22 = −
4269 n7 +169934 n6 +2677678 n5 +21066480 n4 +85737209 n3

+169428298 n2 +129986220 n−46794888
8(n+8)(n+13)(n+14)(n+15)(n+17)(n+18)(n+19)

;

A7 =
(

P11 P12

P21 P22

)
with
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P11 = −3(n+5)(129 n4 +3710 n3 +36430 n2 +129960 n+76536)

8(n+9)(n+14)(n+15)(n+16)(n+18)
,

P12 = − (n+5)(n+10)(57 n3 +917 n2 +2274 n−11268)

3(n+9)(n+15)(n+16)(n+17)(n+19)
,

P21 =
−3(57 n6 +2505 n5 +44489 n4 +389955 n3 +1576582 n2 +1465908 n−4434696)

8(n+9)(n+14)(n+15)(n+16)(n+18)(n+19)
,

P22 =

2(n+10)(829 n6 +27979 n5 +352571 n4 +2024521 n3

+5197384 n2 +5712396 n+5004720)

3(n+9)(n+14)(n+15)(n+16)(n+17)(n+19)(n+20)
;

A8 =
(

Q11 Q12

Q21 Q22

)
with

Q11 =
5(n+5)(n+6)(21 n2 +401 n+1920)

6(n+15)(n+16)(n+17)(n+18)
,

Q12 =
15(n+5)(n+6)(n+8)(n+11)

2(n+16)(n+17)(n+18)(n+19)
,

Q21 =
5(n+6)(10 n4 +329n3 +4942 n2 +36611n+96300)

6(n+15)(n+16)(n+17)(n+18)(n+20)
,

Q22 = −3(n+6)(n+11)(430 n4 +9773n3 +67728 n2 +129129 n−59220)
4(n+15)(n+16)(n+17)(n+18)(n+19)(n+21)

;

A9 =
(

0 0
T21 T22

)
with

T21 =
99(n+4)(n+6)(n+7)(n+10)

4(n+16)(n+17)(n+18)(n+19)(n+20)
,

T22 =
165(n+4)(n+6)(n+7)(n+8)(n+10)(n+12)

2(n+16)(n+17)(n+18)(n+19)(n+20)(n+21)
.

Notice that if we concentrate our attention on the coefficients within the
traditional range we see that the first matrix A4 has its first hook made up of
positive entries, the second hook (which in this example consists of only one
entry) has negative signs. The second matrix A5 has its first hook negative, the
second hook positive. The third matrix A6 repeats the behavior of the first one,
the fourth one A7 imitates the second one, and so on.

Extensive experimentation shows that this double alternating property holds
for values of l greater than zero. For coefficient matrices in the traditional
expansion range, the first matrix has its first hook positive, the second one
negative, the third one positive, etc. The second matrix has the same alternating
pattern of signs for the hooks but its first hook is negative. The third matrix
imitates the first, etc.



158 F. ALBERTO GRÜNBAUM, INÉS PACHARONI, AND JUAN TIRAO

The following picture captures the phenomenon described above for n larger
than one and when the index k is in the traditional range.

++ + · · · +
+−− · · · −
+−+ · · · +
+−+
...

...
...

+−+

−−− · · · −
−+ + · · · +
−+− · · · −
−+−
...

...
...

−+−

etc.

5. The Relation with Matrix-Valued Orthogonal Polynomials

We close the paper remarking, once again, that our matrix-valued spherical
functions are orthogonal with respect to a nice inner product and have polyno-
mial entries. Yet, they do not fit directly into the existing theory of matrix-valued
orthogonal polynomials as given for instance in [D] and [DVA].

It is however possible to establish such a connection: define the matrix-valued
function Ψ(j, t) by means of the relation

Φ(j, t) = Ψ(j, t)Φ(0, t).

It is now a direct consequence of the definitions that the family Ψ(j, t) satisfies
all the standard requirements in [DVA] and not only satisfies a three term recur-
sion relation but also Ψ(j, t)t satisfies a fixed differential equation with matrix
coefficients and only the “eigenvalue matrix” depends on j. In other words the
family Ψ(j, t) meets all the conditions given at the beginning of Section 3 and
meets also the conditions of the standard theory in [DVA] giving an example
of a classical family of matrix-valued orthogonal polynomials. In particular, the
coefficients in the differential operator D (obtained by conjugation from the one
in [GPT1]) are matrix polynomials of degree going with the order of differenti-
ation. For a nice introduction to this circle of ideas, see the pioneering work in
[D].

Acknowledgments. We are much indebted to the editors for suggesting a
number of places where the exposition could be improved. Grünbaum acknowl-
edges a useful conversation with A. Duran that steered him in the direction to
Section 5 above.
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Córdoba 5000
Argentina

pacharon@mate.uncor.edu

Juan Tirao
CIEM-FaMAF
Universidad Nacional de Córdoba
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Abstract. To register two images means to align them so that common
features overlap and differences — for example, a tumor that has grown—
are readily apparent. Being able to easily spot differences between two
images is obviously very important in applications. This paper is an intro-
duction to image registration as applied to medical imaging. We first define
image registration, breaking the problem down into its constituent compo-
nent. We then discuss various techniques, reflecting different choices that
can be made in developing an image registration technique. We conclude
with a brief discussion.

1. Introduction

1.1. Background. To register two images means to align them, so that com-
mon features overlap and differences, should there be any, between the two are
emphasized and readily visible to the naked eye. We refer to the process of
aligning two images as image registration.

There are a host of clinical applications requiring image registration. For
example, one would like to compare two Computed Tomography (CT) scans
of a patient, taken say six months ago and yesterday, and identify differences
between the two, e.g., the growth of a tumor during the intervening six months
(Figure 1). One could also want to align Positron Emission Tomography (PET)
data to an MR image, so as to help identify the anatomic location of certain
mental activation [43]. And one may want to register lung surfaces in chest
Computed Tomography (CT) scans for lung cancer screening [7]. While all
of these identifications can be done in the radiologist’s head, the possibility
always exists that small, but critical, features could be missed. Also, beyond
identification itself, the extent of alignment required could provide important
quantitative information, e.g., how much a tumor’s volume has changed.

Kostelec’s work is supported in part by NSF BCS Award 9978116, AFOSR under award
F49620-00-1-0280, and NIH grants PO1 CA80139. Periaswamy’s work is supported in part
by NSF Grants EIA-98-02068 and IIS-99-83806.
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Figure 1. Two CT images showing a pelvic tumor’s growth over time. The

grayscale has been adjusted so as to make the tumor, the darker gray area within

the mass in the center of each image, more readily visible. In actuality, it is

barely darker than the background tissue.

When registering images, we are determining a geometric transformation
which aligns one image to fit another. For a number of reasons, simple im-
age subtraction does not work. MR image volumes are acquired one slice at a
time. When comparing a six month old MR volume with one acquired yesterday,
chances are that the slices (or “imaging planes”) from the two volumes are not
parallel. As a result, the perspectives would be different. By this, we mean the
following. Consider a right cylindrical cone. A plane slicing through the cone,
parallel to its base, forms a circle. If the slice is slightly off parallel, an ellipse
results. In terms of human anatomy, a circular feature in the first slice appears
as an ellipse in the second. In the case of mammography, tissue is compressed
differently from one exam to the next. Other architectural distortions are possi-
ble. Since the body is an elastic structure, how it is oriented in gravity induces a
variety of non-rigid deformations. These are just some of the reasons why simple
image subtraction does not work.

For the neuroscientist doing research in functional Magnetic Resonance Imag-
ing (fMRI), the ability to accurately align image volumes is of vital importance.
Their results acutely depend on accurate registration. To provide a brief back-
ground, to “do” fMRI means to attempt to determine which parts of the brain
are active in response to some given stimulus. For instance, the human subject,
in the MR scanner, would be asked to perform some task, e.g., finger-tap at
regular intervals, or attend to a particular instrument while listening to a piece
of music [20], or count the number of occurrences of a particular color when
shown a collection of colored squares [8]. As the subject performs the task, the
researcher effectively takes 3-D MR movies of the subject’s brain. The goal is to
identify those parts of the brain responsible for processing the information the
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Figure 2. fMRI. By registering the frames in the MR “movie” and performing

statistical analyses, the researcher can identify the active part(s) of the brain

by finding those pixels whose intensities change most in response to the given

stimulus. The active pixels are usually false-coloured in some fashion, to make

them more obvious, similar to those shown in this figure.

stimulus provides. The researcher’s hope of accomplishing this is based on the
Blood Oxygenation Level Dependent (BOLD) hypothesis (see [6]).

The BOLD hypothesis roughly states that the parts of the brain that process
information, in response to some stimulus, need more oxygen than those parts
which do not. Changes in the blood oxygen level manifest themselves as changes
in the strength of the MR signal. This is what the researcher attempts to detect
and measure. The challenge lies in the fact that the changes in signal strength are
very small, on the order of only a few percent greater than background noise [5].
And to make matters worse, the subject, despite their noblest intentions, cannot
help but move at least ever so slightly during the experiment. So, before useful
analysis can begin, the signal strength must be maximized.

This is accomplished by task repetition, i.e., having the subjects repeat the
task over and over again. Then all the image volumes are registered within each
subject. Assuming gaussian noise, adding the registered images will strengthen
the elusive signal. Statistical analyses are done within subject, and then com-
bined across all subjects. This is the usual order of events [18].

1.2. What’s inside this paper. This will be a whirlwind, and by no means
exhaustive, tour of image registration for MRI. We will briefly touch upon a few
of the many and varied techniques used to register MR images. Note that the
survey articles by Brown [11] and Van den Elsen [38] are excellent sources for
more in-depth discussion of image registration, the problem and the techniques.
Our purpose here, within this paper, is to whet the reader’s appetite, to stimulate
her interest in this very important image processing challenge, a challenge which
has a host of applications, both in medical imaging and beyond.
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The paper is organized as follows. We first give some background and estab-
lish a theoretical framework that will provide a means of defining the critical
components involved in image registration. This will enable us to identify those
issues which need to be addressed when performing image registration. This will
be followed by examples of various registration techniques, explained at varying
depths. The methods presented are not meant to represent any sort of definitive
list. We want to point out to the reader just some of the techniques which exist,
so that they can appreciate how difficult the problem of image registration is, as
well as how varied the solutions can be. We close with a brief discussion.

Acknowledgments. We thank Daniel Rockmore and Dennis Healy for inviting
us to participate in the MSRI Summer Graduate Program in Modern Signal
Processing, June 2001. We also thank Digger ‘The Boy’ Rockmore for helpful
discussions, and for granting us the use of his image in this paper.

2. Theory

Suppose we have two brain MR images, taken of the same subject, but at
different times, say, six months ago and yesterday. We need to align the six month
old image, which we will call the source image, with the one acquired yesterday,
the target image. (These terms will be used throughout this paper.) A tumor
has been previously identified, and the radiologist would like to determine how
much the tumor has grown during the six weeks. Instead of trying to “eyeball
it,” the two images would enable an quantitative estimate of the growth rate.
How do we proceed?

Do we assume that a simple rigid motion will suffice? Determining the correct
rotation and translation parameters is, as we will see later, a relatively quick
and straightforward process. However, if non-linear deformations have occurred
within the brain (which, as described in Sec. 1.1, is likely for any number of
reasons), applying a rigid motion model in this situation will not produce an
optimal alignment. So probably some sort of non-rigid or elastic model would
be more appropriate.

Are we looking to perform a global alignment, or a local one? That is, will
the same transformation, e.g., affine, rigid body, be applied to the entire image,
or should we instead employ a local model of sorts, where different parts of the
image/volume are moved in different, though smoothly connected, ways?

Should the method we use depend on active participation by the radiologist,
to help “prime” or “guide” the method so that accurate alignment is achieved?
Or do we instead want the technique to be completely automated and free of
human intervention?

Wow, that’s a lot of questions we have to think about, and answer, too. How
do we begin? To tackle the alignment problem, we had first better organize it.
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2.1. The four components. The multitude of challenges inherent in perform-
ing image registration can be better addressed by distilling the problem into four
distinctive components [11].

I. The feature space. Before registering two images, we must decide exactly what
it is that will be registered. The type of algorithm developed depends critically
on the features chosen. And when you think about it, there are alot of features
from which to choose. Will we work with the raw pixel intensities themselves?
Or perhaps the edges and contours of the images? If we have volumetric data,
perhaps we should use the surface the volume defines, as in a 3-D brain scan?
We could have the user identify features common to both images, with the intent
to aligning those landmarks. Then again, if we wish to align images of different
modalities, say MRI with PET, then perhaps statistical properties of the images
that would be optimal for our purpose. So you see, the feature space we choose
will really drive the algorithm we develop.

II. The search space. When one says, “I want to align these two images,” what
is one really saying? That is, what is the rigorous form of the sentence? The
two images can be considered samples of two (unknown), compact, real-valued
functions, f(x), g(x), defined on Rn (where n is 2 or 3). To align the images
means we wish to find a transformation T (x) such that f(x) = g(T (x)) for all
x. Fine. So what kind of transformation are we willing to consider? This is the
Search Space we need to define.

For example, you can consider the simple rigid body transformations, rotation
plus translation. Or, if you would like to account for differences in scale, you may
instead decide to search for the best affine transformation. But both of these
transformations are global in some respect, and you may want to do something
more localized or elastic, and transform different parts of the image by differing
amounts, e.g., to account for non-uniform deformations. Your decision here will
very much influence the nature of the registration algorithm.

III. The search strategy. Suppose we have chosen our Search Space. We select
a transformation T0(x) and try it. Based on the results of T0(x), how should
we choose the next transformation, T1(x), to try? There are any number of
ways: Linear Programming techniques; a relaxation method; some sort of energy
minimization.

IV. The similarity metric. This ties in with the Search Strategy. When compar-
ing the new transformation with the old, we need to quantify the differences be-
tween the geometrically transformed source image with the target image. That
is, we need to measure how well f(x) compares with g(T (x)). Using mean-
squared error might be the suitable choice. Or perhaps correlation is the key.
Our choice will depend on many factors, such as whether or not the two images
are of the same modality.
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So once these choices are made, our search for an optimal transformation, one
that aligns the source image with the target, continues until we find one that
makes us happy.

3. A Potpourri of Methods

Given the content in Section 2, the reader can well believe that there are
a multitude of registration methods possible, each resulting from a particular
choice of feature and search spaces, search strategy, and similarity metric But
always bear in mind that there is no single right registration algorithm. Each
technique has its own strengths and weaknesses. It all depends on what you
want.

Very broadly speaking, registration techniques may be divided into two cat-
egories, rigid and nonrigid. Some examples of Rigid registration techniques in-
clude: Principal Axes [2], Correlation-based methods [12], Cubic B-Splines [37],
and Procrustes [19; 34]. For Non-Rigid techniques, there are Spline Warps [9],
Viscous Fluid Models [13], and Optic Flow Fields [30].

The survey articles [11; 38] mentioned previously go into some of these tech-
niques in greater depth. Now, to begin our “If it’s Tuesday, this must be Bel-
gium” tour of MR image registration techniques.

3.1. Principal Axes. We begin with the Principal Axes algorithm (e.g.,
see [2]). To summarize its properties, based on the classification scheme of
Section 2.1, the feature space the algorithm acts upon effectively consists of
the features of the images, such as edges, corners, and the like. The search
space consists of global translations and rotations. The search strategy is not
so much a “search,” as we are finding the closed formed solution based on the
eigenvalue decomposition of a certain covariance matrix. The similarity metric is
the variance of the projection of the feature’s location vector onto the principal
axis.

The algorithm is based on the straightforward and powerful observation that
the head is shaped like an ellipse/ellipsoid (depending on the dimension). For
purposes of image registration, the critical features of an ellipse are its center
of mass, and principal orientations, i.e., major and minor axes. Using these
properties, one can derive a straightforward alignment algorithm which can au-
tomatically and quickly determine a rotation + translation that aligns the source
image to the target.

Let I denote the 2-D array representing an image, with pixel intensity I(x, y)
at location (x, y). The center of mass, or centroid, is

x̂ =

∑
x,y x I(x, y)∑
x,y I(x, y)

ŷ =

∑
x,y y I(x, y)∑
x,y I(x, y)

.
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α

E

e

Figure 3. Principal axes. The eigenvectors E and e, corresponding to the largest

and smallest eigenvalues, respectively, indicate the directions of the major and

minor axes, respectively.

With the centroid in hand, we form the covariance matrix

C =
(

c11 c12

c21 c22

)
,

where
c11 =

∑
x,y

(x− x̂)2 I(x, y),

c22 =
∑
x,y

(y− ŷ)2 I(x, y),

c12 =
∑
x,y

(x− x̂)(y− ŷ) I(x, y),

c21 = c12.

The eigenvectors of C corresponding to the largest and smallest eigenvalues
indicate the direction of the major and minor axes of the ellipse, respectively.
See Figure 3.

The principal axes algorithm may be described as follows. First, calculate
the centroid, and eigenvectors of the source and target images via an eigenvalue
decomposition of the covariance matrices. Next, align the centers of mass via a
translation. Next, for each image determine the angle α (Figure 3) the maximal
eigenvector forms with the horizontal axis, and rotate the test image about its
center by the difference in angles. The images are now aligned.

Figure 4 shows the procedure in action. In this example, the target image is
a rotated version of the source image, with a small block missing. Subtracting
the target from the aligned source renders the missing data quite apparent.

While the principal axes algorithm is easy to implement, it does have the
shortcoming that it is sensitive to missing data. As an exaggerated example,
suppose the target MR image covers the entire head, while the source MR image
has only the top half, say from the eyes on up. In this case, the anatomical
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Source Target Difference

Figure 4. Principal axes: aligning axial images. The difference between the

aligned source and target images is easily apparent in the far right panel.

feature located at the centroid of the source image will differ from the anatomical
feature located at the centroid of the target. However, be that as it may, one
can certainly use the algorithm to provide a coarse approximation to “truth.”
That is, one may use rotation + translation parameters as “seed” values for more
accurate methods.

3.2. Fourier-based correlation. Fourier-based Correlation is another method
for performing rigid alignment of images. The feature space it uses consists of
all the pixels in the image, and its search space covers all global translations and
rotations. (It can also be used to find local translations and rotations [31].) As
the name implies, the search strategy are the closed form Fourier-based meth-
ods, and the similarity metric is correlation, and its variants, e.g., phase only
correlation [12]. As with Principal Axes, it is an automatic procedure by which
two images may be rigidly aligned. Furthermore, it is an efficient algorithm,
courtesy of the FFT [12].

The algorithm may be described as follows. Let f(x, y) and g(x, y) denote
the source and target images, respectively. Uppercase letters will denote the
function’s Fourier transform (FT):

f(x, y) FT⇐⇒ F (ωx, ωy), g(x, y) FT⇐⇒ G(ωx, ωy).

To clarify, (x, y) denote coordinates in the spatial domain, and (ωx, ωy) denote
coordinates in the frequency domain. Suppose the source and target are related
by a translation (a, b) and rotation θ:

f(x, y) = g
(
(x cos θ+y sin θ)−a, (−x sin θ+y cos θ)−b

)
.

Then, using properties of the Fourier transform, we have

F (ωx, ωy) = e−ı(a ωx+b ωy)G(ωx cos θ+ωy sin θ, −ωx sin θ+ωy cos θ).

By taking norms and obtaining the power spectrum, all evidence of translation
by (a, b) has disappeared:

∣∣F (ωx, ωy)
∣∣2 =

∣∣G(ωx cos θ+ωy sin θ, −ωx sin θ+ωy cos θ)
∣∣2.
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Figure 5. By considering the power spectra, translations vanish. Furthermore,

in polar coordinates, rotations become translations.

Note that rotating g(x, y) by θ in the spatial domain is equivalent to rotating
|G(ωx, ωy)|2 by that amount in the frequency domain. By switching to polar
coordinates (setting x = r cosψ, y = r sin ψ), we have

|F (r, ψ)|2 = |G(r, ψ−θ)|2

and hence rotation in the cartesian plane becomes translation in the polar plane.
See Figure 5.

We are now in a position to give an outline for the Fourier-based correlation
method of image registration:

1. Take the discrete Fourier transform of the source image f(x) and target image
g(x).

2. Next, send the power spectra to polar coordinates land:

|F (r, ψ)|2 = |G(r, ψ−θ)|2.

3. Use your favourite correlation technique to determine the rotation angle.
(Note that this is strictly a translation problem.) And then rotate the source
image (which is in the spatial domain) by that amount.

4. Use your favourite correlation to now determine the translation amount in
the spatial domain, between the (so far) only-rotated source image, and the
target image.
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Figure 6. We seek the pattern, shown on the top left, in the signal shown on

the top right. In the lower left, we plot the correlation values. The location of

the maximum value should indicate the location of the pattern within the signal,

but as we see in the lower right figure, placing the pattern, drawn in a thick line,

at this “maximum” location is incorrect.

Given how easy and direct the algorithm is, it would come as a surprise if there
were not any caveats associated with it.

In practice, the source and target images are probably not exactly identi-
cal. This could easily result in multiple peaks, which means that the maximum
peak may not be the correct one. This phenomenon is illustrated in Figure 6.
Therefore, when using correlation to determine the proper rotation and trans-
lation parameters, several potential sets of parameters, e.g., corresponding to
the 4 largest correlation peaks, need to be tried. The best (in some sense, e.g.,
least-squares) is the value you choose. Secondly, the images certainly should be
of the same modality. Registering an MR with a PET image probably won’t
work at all!

But on the bright side, along with computation efficiency, one can apply the
technique to subregions of images and “glue” the results together. For example,
one can divide the images into quarters, determine rotation and translation pa-
rameters for each, all independent of each other, and then smoothly apply these
four sets of parameters, to encompass a complete (and non-rigid) registration
of the source to target image [31]. Also, as with Principal Axes, Fourier-based
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correlation may be used to achieve coarse registrations, as starting points for
fancier methods.

3.3. Procrustes algorithm. The Procrustes Algorithm [19; 34] is an image
registration algorithm that depends on the active participation of the user. It
does have as its inspiration a rather colourful character from Greek mythology.
Especially for this reason, we feel compelled to briefly mention it.

It is a “one size fits all” algorithm: one image is compelled to fit another.
The name is most appropriate for this algorithm. Procrustes is a character from
Greek mythology. He was an innkeeper who guaranteed all his beds were the
correct length for his guests. “The top of your head will be at precisely the top
edge of the bed. Similarly the soles of your feet will be at the bottom edge.”
And for his (unfortunate) guests of varying heights, they were. Procrustes would
employ some rather gruesome measures to make his claim true. Ouch.

As already mentioned, the algorithm depends on human intervention. Quite
simply, the user identifies common features or landmarks in the images (so this is
the feature space) and, by rigid rotation and translation (the search space), forces
a registration that respects these landmarks. In a perfect world, to determine
the proper rotation and translation parameters, three pairs of landmarks would
suffice. The rotation parameters place the images in the same orientation, the
translation parameters, well, translate the images into alignment.

But we do not inhabit a perfect world. The slightest variation in distance be-
tween any homologous pair represents an error in landmark identification which
cannot be reconciled with rigid body motions. And so we need to compromise.
(Procrustes would have difficulty understanding this. While his enthusiasm for
achieving a perfect fit is admirable, it could result in some uncomfortable side
effects for the patients.) Lacking a perfect match, the similarity metric employed
is instead the mean squared distance between homologous landmarks when com-
puting the six rigid body parameters. The search strategy is to minimize via
least-squares.

The good news is that this can be accomplished efficiently. A closed form
solution exists, in fact. However, the not so good news is that it depends on the
accurate identification of landmarks. If you say that the anatomical feature at
Point A1 in source image A really corresponds with the anatomical feature at
Point B1 in the target image B, you had better be right. And being right takes
time, especially since the slightest deviation is a source of error.

3.4. AIR: automated image registration. AIR is a sophisticated and
powerful image registration algorithm. Developed by Woods et al [41; 42; 43],
the feature space it uses consists of all the pixels in the image, and the search
space consists of up to fifth-order polynomials in spatial coordinates x, y (and z,
if 3-D), involving as many as 168 parameters. The goal is to define a single,
global transformation. We outline some of AIR’s characteristics:
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• AIR is a fully automated algorithm.
• Unlike the algorithms so far discussed, AIR can be used in multi-modal situ-

ations.
• AIR does not depend on landmark identification.
• AIR uses overall similarity between images.
• AIR is iterative.

It is a robust and versatile algorithm. The fact that AIR software is publicly
available [1] has only added to its widespread use.

AIR is based on the following assumption. If two images, acquired the same
way (i.e., same modality) are perfectly aligned, then the ratio of one image to
another, on a pixel by pixel basis, ought to be fairly uniform across voxels. If
registration is not spot on correct, then there would be a substantial degree of
nonuniformity in ratios. Ergo, to register the two images, compute the standard
deviation of the ratio, and minimize it. This error function is called the “ratio
of image uniformity”, or RIU. The algorithm’s search strategy is based on gra-
dient descent, and the similarity metric is actually a normalized version of the
RIU between the two volumes. An iterative procedure is used to minimize the
normalized RIU in which the registration parameters (three rotation and three
translation terms) with the largest partial derivative is adjusted in each iteration
[41].

Since we are dealing with ratios and not pixel intensities themselves, it is this
idea of using the ratios to register images which provides us with the flexibility
to align images of different modalities.

Suppose we are in the situation where we want to align an MR to a PET
image. On the face of it, the ratios will not be uniform across the images.
Different tissue types will have different ratios. However, and this is key, within
a given tissue type, the ratio ought to be fairly uniform when the images are
registered. Therefore, what you want to do is maximize the uniformity within
the tissue type, where the tissue-typing is based on the MRI voxel intensity.
This requires two modifications of the original algorithm [43]. First, one has
to manually edit the scalp, skull and meninges from the MR image since these
features are not present in the PET image. The second modification consists of
first performing a histogram matching. Denote the two images to be histogram
matched as f1 ( ·) and f2 ( ·), and c2( · ) as the sampled cumulative distribution
function of image f2( ·). The histogram of f2( ·) is made to match that of f1( ·)
by mapping each pixel f1(x, y) to c2 (f1(x, y)), between the MR and PET images
(with 256 bins), followed by a segmentation of the images according to the 256
bin values. Each of the segmented MR and PET images (with corresponding bin
values) are then registered separately.

In terms of implementation, both the within-modality and cross-modality
versions of the algorithm, the registration is performed on sub-sampled images,
in decreasing order of sub-sampling.
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There are a number of things to keep in mind. AIR’s global approach implies
the transformation will be consistent throughout the entire image volume. How-
ever, this does introduce the possibility of obtaining an unstable transformation,
especially near the image boundaries. And small and/or local perturbations may
result in disproportionate changes in the global transformation. And the AIR
algorithm is also computationally intensive. It is not easy, after all, to minimize
the standard deviation of the ratios. However, the algorithm does perform well
with noisy data [36].

3.5. Mutual information based techniques. Mutual Information [39] is an
error metric (or similarity metric) used in image registration based on ideas from
Information Theory. Mutual Information uses the pixel intensities themselves.
The strategy is this: minimize the information content of the difference image,
i.e., the content of target-source.

Consider Figure 7. The particular example is a bit of a cheat, but it illustrates
the point. In the top row we have two axial images. They are the source

Figure 7. The philosophy behind Mutual Information. The source is the top left

image, and the target is the top right. The difference image between the aligned

source and target (lower left) looks nearly completely blank. Some structure

might be vaguely visible, but not nearly as much as the difference image resulting

translating the aligned source by 1 pixel (lower right).
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and target images. The image on the lower left is the difference between the
aligned source and target. Since the pixel intensities of the source and target
are nearly identical, the difference image is basically blank. Now suppose we
take the aligned source and translate it by one pixel. In the resulting difference
image, the boundary of the skull is quite obvious. Whereas in the first difference
image one has to “hunt” for features (and fail to find any), in the second we do
not. Features stand out. So, in a sense, the second difference image has more
information than that first: we see a shape. Mutual Information wants that
difference image to have as little information as possible.

To go a little further, let us begin with the question: how well does one image
explain, or “predict”, another? We use a joint probability distribution. Let
p(a, b) denote the probability that a pixel value a in the source and b in the
target occurs, for all a and b. We estimate the joint probability distribution by
making a joint histogram of pixel values. When two images are in alignment, the
corresponding anatomical area overlap, and hence there are lots of high values.
In misalignment, anatomical areas are mixed up, e.g., brain over skin, and this
results in a somewhat more dispersed joint histogram. See Figures 8 and 9.

What we want to do is make the “crispiest” joint probability distribution
possible. Let I(A,B) denote the Mutual Information of two images A and B.
This can be defined in terms of the entropies (i.e., “How dispersed is the joint
probability distribution?”) H(A), H(B) and H(A,B):

I(A, B) = H(A)+H(B)−H(A, B) =
∑

x∈A, y∈B

p(x, y) log2

(
p(x, y)

p(x)p(y)

)
.

Therefore, to maximize their mutual information I(A,B), to get image A to
tell us as much as possible about B, we need to minimize the entropy H(A,B).
The reader is encouraged to read the seminal paper by Viola et al. [39] for fur-
ther information regarding exactly how the entropy H(A,B) is minimized. In
brief, [39] use a stochastic analog of the gradient descent technique to maximize
I(A,B), after first approximating the derivatives of the mutual information error
measure. In order to obtain these derivatives, the probability density functions
are approximated by a sum of Gaussians using the Parzen-window method [16]
(after this approximation, the derivatives can be obtained analytically). The
geometric distortion model used is global affine. In general, the various im-
plementations differ in the minimization technique. For example, Collignon et
al. [14] use Powell’s method for the minimization.

In the final analysis, we find that Mutual Information is quite good in multi-
modal situations. However, it is computationally very expensive, as well as being
sensitive to the how the interpolation is done, e.g., the minimum found may not
be the correct/optimal one.
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A functional image Perfect alignment

One pixel off Three pixels off

Figure 8. Joint histograms of identical source and target images. No registration

is necessary to align them. The resulting joint histogram is a diagonal line.

Translating by 1 pixel significantly disperses the diagonal (lower left), and by 3

pixels, further still (lower right).

3.6. Optic flow fields. This registration technique [30] borrows tools from dif-
ferential flow estimation. The underlying philosophical principle of the algorithm
is that we want to flow from the source to the target. Think of an air bubble
that is rising to the surface of a lake. The bubble’s surface smoothly bends and
flexes this way and that as it floats upward. The source and target images are
two snapshots taken of the rising bubble. Starting from the two snapshots, the
algorithm determines the deformations that occur when going from source to
target. The source image is the bubble at t = 0, and the target image is the
bubble at t = 1. What happened between 0 and 1 ?

The highlights of this technique are:

• The technique based on differential flow estimation.
• Idea: Want to flow from the source image to reference image.
• The procedure is fully automated.
• Uses an affine model.
• Allows for intensity variations between the source and target images.
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Source Target

Aligned One pixel off

Figure 9. Joint histograms of different source and target images. While not

strictly a diagonal line, the joint histogram of the aligned source and target

images is relatively narrow (lower left). Translating by one pixel significantly

disperses the diagonal (lower right).

Full details and results of the algorithm may be found in [30]. Since the model
is very straightforward, we will delve a little deeper into this algorithm than we
have so far with the previous algorithms discussed. It can be considered as an
example of how, beginning with basic principles, a registration technique is born.

Our starting point is the general form of a 2-D affine transformation:
[

x1

y1

]
=

[
m1 m2

m3 m4

][
x

y

]
+

[
m5

m6

]

where x, y denote spatial coordinates in the source image and x1, y1 denote spa-
tial coordinates in the target. Depending on the values m1, m2, m3 and m4,
certain well known geometric transformations can result (see Figure 10).

Now recall our description at the beginning of this section, that of a bubble
rising through the water. We took two snapshots, one at t = 0, and one at
t = 1, of the same bubble. Hence it is reasonable to have a single function, with
temporal variable t, represent the bubble at time t.

With this in mind, let f(x, y, t), f(x̂, ŷ, t−1) represent the source and target
images, respectively. To further simplify the model, at least for the moment, we
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original:

�
0 1
1 0

�
rotation:

�
cos θ sin θ

− sin θ cos θ

�

scaling:

�
m1 0
0 m4

�
shear:

�
1 m2

m3 1

�
Figure 10. A smattering of linear transformations.

will make the “Brightness-Constancy” assumption: identical anatomical features
in both images will have the same pixel intensity. That is, we are not allowing
for the possibility that, say, the left eye in the MR source image to be brighter or
darker than the left eye in the MR target image. Before tackling more difficult
issues later, we want to ensure that only an affine transformation, and nothing
else, is required to mold the source into the target.

Using the notation we have just introduced (which we will slightly abuse now),
we have the situation:

f(x, y, t) = f(m1x+m2y+m5, m3x+m4y+m6, t−1) (3–1)
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We use a least squares approach to estimate the parameters ~m = (m1 . . .m6)
T

in (3–1). Now the function we really want to minimize is:

E(~m) =
∑

x,y ∈Ω

(
f(x, y, t)−f(m1x+m2y+m5, m3x+m4y+m6, t−1)

)2 (3–2)

where Ω denotes the region of interest. However, the fact that E(~m) is not linear
means that minimizing will be tricky. So we take an easy way out and instead
take its truncated, first-order Taylor series expansion. Letting

k = ft +xfx +yfy,

~c = (xfx yfx xfy yfy fx fy)T
,

(3–3)

where the subscripts denote partial derivatives, we eventually arrive at this much
more reasonable error function:

E(~m) =
∑

x,y ∈Ω

(
k−~cT ~m

)2
. (3–4)

To minimize (3–4), we differentiate with respect to ~m:

dE

d~m
=

∑

Ω

−2~c
(
k−~cT ~m

)
,

set equal to 0, and solve for the model parameters to obtain:

~m =

(∑

Ω

~c~cT

)−1(∑

Ω

~ck

)
. (3–5)

And lo! we have determined ~m. However, there is a caveat. We are assuming
that the 6×6 matrix

(∑
Ω ~c~cT

)
in (3–5) is, in fact, invertible. We can usually

guarantee this by making sure that the spatial region Ω is large enough to have
sufficient image content, e.g., we would want some “interesting” features in Ω like
edges, and not simply a “bland” area. The parameters ~m are for the region Ω.

In terms of actually implementation, the parameters ~m are estimated locally,
for different spatial neighborhoods. By applying this algorithm in a multi-scale
fashion, it is possible to capture large motions. (See [30] for details.) This is
illustrated in Figure 11, in the case where the target image is a synthetically
warped version of the source image.

Editorial. As an aside, we mention that doing an experiment such as this, reg-
istering an image with a warped version of itself is not altogether silly. If an
algorithm being developed fails in an ideal test case such as this, chances are
very good that it will fail for genuinely different images. However, to make a
“fair” ideal test, the method of warping the image should be independent of the
registration method. For example, if the registration algorithm is to determine
an affine transform, do not warp the image using an affine transform. Use some
other method, e.g., apply Bookstein’s thin-plate splines [9].
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Source Target Registered result

Figure 11. Flowing from source to target: An “ideal” experiment.

The optic flow model can next be modified to account for differences of con-
trast and brightness between the two images with the addition of two new pa-
rameters, m7 for contrast, and m8 for brightness. The new version of (3–1) is

m7f(x, y, t)+m8 = f(m1x+m2y+m5,m3x+m4y+m6, t−1). (3–6)

We are also assuming that, in addition to the affine parameters, the brightness
and contrast parameters are constant within small spatial neighborhoods.

Minimizing the least squares error as before, using a first-order Taylor series
expansion, gives a solution identical in form to (3–5) except that this time

k = ft−f +xfx +yfy,

~c = (xfx yfx xfy yfy fx fy −f −1)T ;
(3–7)

compare equations (3–3).
Now, we have been working under the assumption that the affine and con-

trast/brightness parameters are constant within some small spatial neighbor-
hood. This introduces two conflicting conditions.

Recall
(∑

Ω ~c~cT
)
. This matrix needs to have an inverse. As was mentioned

earlier, this can be arranged by considering a large enough region Ω, i.e., a region
with sufficient image content. However, the larger the area, the less likely it is
that the brightness constancy assumption holds. Think about it: image content
can be edges, and edges can have very different intensities, when compared with
surrounding tissue.

Fortunately, the model can be modified one more time. Instead of a single
error function (3–4), we can instead consider the sum of two errors:

E(~m) = Eb(~m)+Es(~m) (3–8)

where

Eb(~m) =
(
k−~cT ~m

)2
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Source Target Registered result

Figure 12. Registering an excessively distorted source image to a target image.

with k and ~c defined as in (3–7) and (??), and

Es(~m) =
8∑

i=1

λi

((
∂mi

∂x

)2

+
(

∂mi

∂y

)2
)

,

where λi is a positive constant, set by the user, that weights the smoothness
constraint imposed on mi.

As before, one works with Taylor series expansions of (3–8), but things become
a little more complicated. Complete details of how to work with (3–8), as well
with generalizations to 3-D, may be found in [30]. Some results are shown in
Figures 12-13.

4. Conclusion

We have presented a whirlwind introduction to image registration for MRI.
After providing a theoretical framework by which the problem is defined, we
presented, in no particular order, a number of different algorithms. We then
provided a more detailed discussion of an algorithm based on the idea of optic
flow fields.

Our intent in this paper was to illustrate how the problem of image registration
can have a wide variety of very dissimilar solutions. And there exist many more
techniques than those presented here. For example, image features that some
of these methods depend upon include surfaces [28; 15; 17], edges [27; 21], and
contours [26; 35]. There are also methods based on B-splines [37; 22; 33], thin-
plate splines [9; 10], and low-frequency discrete cosine basis functions [3; 4].

There are many survey articles the reader may wish to read, to learn more
about medical image registration, In addition to those cited earlier ([11; 38]), we
also call attention to [25; 24; 23; 40]. The simple existence of so many techniques
provides more than sufficient support for the thesis that there are many paths
to the One Truth: perfect image alignment.
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Source Target

Registered edge difference Registered result

Figure 13. Registering two different clinical images. The lower left image shows

how the edges of the registered source compare with the target’s edges. The

lower right image shows the registered source itself, after it has undergone both

geometric and intensity-correction transformations.
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Abstract. We briefly review the mathematics in the coding engine of
JPEG 2000, a state-of-the-art image compression system. We focus in
depth on the transform, entropy coding and bitstream assembler modules.
Our goal is to present a general overview of the mathematics underlying a
state of the art scalable image compression technology.

1. Introduction

Data compression is a process that creates a compact data representation
from a raw data source, usually with an end goal of facilitating storage or trans-
mission. Broadly speaking, compression takes two forms, either lossless or lossy,
depending on whether or not it is possible to reconstruct exactly the original
datastream from its compressed version. For example, a data stream that con-
sists of long runs of 0s and 1s (such as that generated by a black and white
fax) would possibly benefit from simple run-length encoding, a lossless technique
replacing the original datastream by a sequence of counts of the lengths of the
alternating substrings of 0s and 1s. Lossless compression is necessary for situ-
ations in which changing a single bit can have catastrophic effects, such as in
machine code of a computer program.

While it might seem as though we should always demand lossless compres-
sion, there are in fact many venues where exact reproduction is unnecessary. In
particular, media compression, which we define to be the compression of im-
age, audio, or video files, presents an excellent opportunity for lossy techniques.
For example, not one among us would be able to distinguish between two images
which differ in only one of the 229 bits in a typical 1024×1024 color image. Thus
distortion is tolerable in media compression, and it is the content, rather than

Keywords: Image compression, JPEG 2000, transform, wavelet, entropy coder, subbitplane
entropy coder, bitstream assembler.
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the exact bits, that is of paramount importance. Moroever, the size of the orig-
inal media is usually very large, so that it is essential to achieve a considerably
high compression ratio (defined to be the ratio of the size of the original data
file to the size of its compressed version). This is achieved by taking advantage
of psychophysics (say by ignoring less perceptible details of the media) and by
the use of entropy coding, the exploitation of various information redundancies
that may exist in the source data.

Conventional media compression solutions focus on a static or one-time form
of compression — i.e., the compressed bitstream provides a static representation
of the source data that makes possible a unique reconstruction of the source,
whose characteristics are quantified by a compression ratio determined at the
time of encoding. Implicit in this approach is the notion of a “one shoe fits all”
technique, an outcome that would appear to be variance with the multiplicity
of reconstruction platforms upon which the media will ultimately reside. Often,
different applications may have different requirements for the compression ratio
as well as tolerating various levels of compression distortion. A publishing ap-
plication may require a compression scheme with very little distortion, while a
web application may tolerate relatively large distortion in exchange for smaller
compressed media.

Recently scalable compression has emerged as a category of media compres-
sion algorithms capable of trading between compression ratio and distortion after
generating an initially compressed master bitstream. Subsets of the master then
may be extracted to form particular application bitstreams which may exhibit
a variety of compression ratios. (I.e., working from the master bitstream we
can achieve a range of compressions, with the concomitant ability to reconstruct
coarse to fine scale characteristics.) With scalable compression, compressed me-
dia can be tailored effortlessly for applications with vastly different compression
ratio and quality requirements, a property which is particularly valuable in media
storage and transmission.

In what follows, we restrict our attention to image compression, in particular,
focusing on the JPEG 2000 image compression standard, and thereby illustrate
the mathematical underpinnings of a modern scalable media compression algo-
rithm. The paper is organized as follows. The basic concepts of the scalable
image compression and its applications are discussed in Section 2. JPEG 2000
and its development history are briefly reviewed in Section 3. The transform,
quantization, entropy coding, and bitstream assembler modules are examined
in detail in Sections 4 to 7. Readers interested in further details may refer to
[1; 2; 3].

2. Image Compression

Digital images are used every day. A digital image is essentially a 2D data
array x(i, j), where i and jindex the row and column of the data array, and
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x(i, j)is referred to as a pixel. Gray-scale images assign to each pixel a single
scalar intensity value G, whereas color images traditionally assign to each pixel
a color vector (R,G, B), which represent the intensity of the red, green, and
blue components, respectively. Because it is the content of the digital image
that matters, the underlying 2D data array may undergo big changes while still
conveying the content to the user with little or no perceptible distortion. An
example is shown in Figure 1. On the left the classic image processing test case
Lena is shown as a 512 × 512 grey-scale image. To the right of the original
are several applications, each showing different sorts of compression. The first
application illustrates the use of subsampling in order to fit a smaller image (in
this case 256×256). The second application uses JPEG (the predecessor to JPEG
2000) to compress the image to a bitstream, and then decode the bitstream back
to an image of size 512×512. Although in each case the underlying 2D data array
is changed tremendously, the primary content of the image remains intelligible.

Image (512x512)

Subsample (256x256)Manipulation

Compress (JPEG)

167 123

84 200

2D array of data

ENC

DEC

Figure 1. Souce digital image and compressions.

Each of the applications above results in a reduction in the amount of source
image data. In this paper, we focus our attention on JPEG 2000, which is a
next generation image compression standard. JPEG 2000 distinguishes itself
from older generations of compression standards not only by virtue of its higher
compression ratios, but also by its many new functionalities. The most noticeable
among them is its scalability. From a compressed JPEG 2000 bitstream, it is
possible to extract a subset of the bitstream that decodes to an image of variable
quality and resolution (inversely correlated with its accompanying compression
ratio), and/or variable spatial locality.

Scalable image compression has important applications in image storage and
delivery. Consider the application of digital photography. Presently, digital
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cameras all use non-scalable image compression technologies, mainly JPEG. A
camera with a fixed amount of the memory can accommodate a small number
of high quality, high-resolution images, or a large number of low quality, low-
resolution images. Unfortunately, the image quality and resolution must be
determined before shooting the photos. This leads to the often painful trade-off
between removing old photos to make space for new exciting shots, and shooting
new photos of poorer quality and resolution. Scalable image compression makes
possible the adjustment of image quality and resolution after the photo is shot,
so that instead, the original digital photos always can be shot at the highest
possible quality and resolution, and when the camera memory is filled to capacity,
the compressed bitstream of existing shots may be truncated to smaller size
to leave room for the upcoming shots. This need not be accomplished in a
uniform fashion, with some photos kept with reduced resolution and quality,
while others retain high resolution and quality. By dynamically trading between
the number of images and the image quality, the use of precious camera memory
is apportioned wisely.

Web browsing provides another important application of scalable image com-
pression. As the resolution of digital cameras and digital scanners continues to
increase, high-resolution digital imagery becomes a reality. While it is a plea-
sure to view a high-resolution image, for much of our web viewing we’d trade the
resolution for speed of delivery. In the absence of scalable image compression
technology it is common practice to generate multiple copies of the compressed
bitstream, varying the spatial region, resolution and compression ratio, and put
all copies on a web server in order to accommodate a variety of network situa-
tions. The multiple copies of a fixed media source file can cause data management
headaches and waste valuable server space. Scalable compression techniques al-
low a single scalable master bitstream of the compressed image on the server
to serve all purposes. During image browsing, the user may specify a region
of interest (ROI) with a certain spatial and resolution constraint. The browser
then only downloads a subset of the compressed media bitstream covering the
current ROI, and the download can be performed in a progressive fashion so that
a coarse view of the ROI can be rendered very quickly and then gradually refined
as more and more bits arrive. Therefore, with scalable image compression, it is
possible to browse large images quickly and on demand (see e.g., the Vmedia
project [25]).

3. JPEG 2000

3.1. History. JPEG 2000 is the successor to JPEG. The acronym JPEG stands
for Joint Photographic Experts Group. This is a group of image processing ex-
perts, nominated by national standard bodies and major companies to work to
produce standards for continuous tone image coding. The official title of the
committee is “ISO/IEC JTC1/SC29 Working Group 1”, which often appears in
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the reference document. The JPEG members select a DCT based image com-
pression algorithm in 1988, and while the original JPEG was quite successful,
it became clear in the early 1990s that new wavelet-based image compression
schemes such as CREW (compression with reversible embedded wavelets) [5]
and EZW (embedded zerotree wavelets) [6] were surpassing JPEG in both per-
formance and available features, such as scalability. It was time to begin to
rethink the industry standard in order to incorporate these new mathematical
advances.

Based on industrial demand, the JPEG 2000 research and development effort
was initiated in 1996. A call for technical contributions was issued in March
1997 [17]. The first evaluation was performed in November 1997 in Sydney,
Australia, where twenty-four algorithms were submitted and evaluated. Follow-
ing the evaluation, it was decided to create a JPEG 2000 “verification model”
(VM) which was a reference implementation (in document and in software) of
the working standard. The first VM (VM0) is based on the wavelet/trellis coded
quantization (WTCQ) algorithm submitted by SAIC and the University of Ari-
zona (SAIC/UA) [18]. At the November 1998 meeting, the algorithm EBCOT
(embedded block coding with optimized truncation) was adopted into VM3, and
the entire VM software was re-implemented in an object-oriented manner. The
document describing the basic JPEG 2000 decoder (part I) reached committee
draft (CD) status in December 1999. JPEG 2000 finally became an international
standard (IS) in December 2000.

3.2. JPEG. In order to understand JPEG 2000, it is instructive to revisit the
original JPEG. As illustrated by Figure 2, JPEG is composed of a sequence of
four main modules.

QUAN
RUN-LEVEL

CODING
FINAL

BITSTR

DCT
COMP &

PART

JPEG

Figure 2. Operation flow of JPEG.

The first module (COMP & PART) performs component and tile separation,
whose function is to cut the image into manageable chunks for processing. Tile
separation is simply the separation of the image into spatially non-overlapping
tiles of equal size. Component separation makes possible the decorrelation of
color components. For example, a color image, in which each pixel is nor-
mally represented with three numbers indicating the levels of red, green and
blue (RGB) may be transformed to LCrCb (luminance, chrominance red and
chrominance blue) space.
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After separation, each tile of each component is then processed separately
according to a discrete cosine transform (DCT). This is closely related to the
Fourier transform (see [30], for example). The coefficients are then quantized.
Quantization takes the DCT coefficients (typically some sort of floating point
number) and turns them into an integer. For example, simple rounding is a
form of quantization. In the case of JPEG, we apply rounding plus a mask
which applies a system of weights reflecting various psychoacoustic observations
regarding human processing of images [31]. Finally, the coefficients are subjected
to a form of run-level encoding, where the basic symbol is a run-length of zeros
followed by a non-zero level, the combined symbol is then Huffman encoded.

3.3. Overview of JPEG 2000. Like JPEG, JPEG 2000 standardizes the
decoder and the bitstream syntax. The operation flow of a typical JPEG 2000
encoder is shown in Figure 3.

WAVELET
QUAN &

PART
BITPLANE

CODING

BITSTR

ASSEMBLY

FINAL

BITSTR

COMP &

TILE

COLOR

IMAGE

Y COMP

CR COMP

CB COMP

Figure 3. Flowchart for JPEG 2000.

We again start with a component and tile separation module. After this
preprocessing, we now apply a wavelet transform which yields a sequence of
wavelet coefficients. This is a key difference between JPEG and JPEG 2000
and we explain it in some detail in Section 4. We next quantize the wavelet
coefficients which are then regrouped to facilitate localized spatial and resolution
access, where by “resolution” we mean effectively the “degree” of the wavelet
coefficient, as the wavelet decomposition is thought of as an expansion of the
original data vector in terms of a basis which accounts for finer and finer detail,
or increasing resolution. The degrees of resolution are organized into subbands,
which are divided into non-overlapping rectangular blocks. Three spatially co-
located rectangles (one from each subband at a given resolution level) form a
packet partition. Each packet partition is further divided into code-blocks, each
of which is compressed by a subbitplane coder into an embedded bitstream with
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a rate-distortion curve that records the distortion and rate at the end of each
subbitplane. The embedded bitstream of the code-blocks are assembled into
packets, each of which represents an increment in quality corresponding to one
level of resolution at one spatial location. Collecting packets from all packet
partitions of all resolution level of all tiles and all components, we form a layer
that gives one increment in quality of the entire image at full resolution. The
final JPEG 2000 bitstream may consist of multiple layers.

We summarize the main differences:

(1) Transform module: wavelet versus DCT. JPEG uses 8 × 8 discrete cosine
transform (DCT), while JPEG 2000 uses a wavelet transform with lifting
implementation (see Section 4.1). The wavelet transform provides not only
better energy compaction (thus higher coding gain), but also the resolution
scalability. Because the wavelet coefficients can be separated into different
resolutions, it is feasible to extract a lower resolution image by using only the
necessary wavelet coefficients.

(2) Block partition: spatial domain versus wavelet domain. JPEG partitions
the image into 16 × 16 macroblocks in the space domain, and then applies
the transform, quantization and entropy coding operation on each block sep-
arately. Since blocks are independently encoded, annoying blocking artifacts
becomes noticeable whenever the coding rate is low. On the contrary, JPEG
2000 performs the partition operation in the wavelet domain. Coupled with
the wavelet transform, there is no blocking artifact in JPEG 2000.

(3) Entropy coding module: run-level coefficient coding versus bitplane coding.

JPEG encodes the DCT transform coefficients one by one. The resultant block
bitstream can not be truncated. JPEG 2000 encodes the wavelet coefficients
bitplane by bitplane (i.e., sending all zeroth order bits, then first order, etc.
Details are in Section 4.3). The generated bitstream can be truncated at any
point with graceful quality degradation. It is the bitplane entropy coder in
JPEG 2000 that enables the bitstream scalability.

(4) Rate control: quantization module versus bitstream assembly module. In
JPEG, the compression ratio and the amount of distortion is determined by
the quantization module. In JPEG 2000, the quantization module simply
converts the float coefficient of the wavelet transform module into an integer
coefficient for further entropy coding. The compression ratio and distortion
is determined by the bitstream assembly module. Thus, JPEG 2000 can
manipulate the compressed bitstream, e.g., convert a compressed bitstream
to a bitstream of higher compression ratio, form a new bitstream of lower
resolution, form a new bitstream of a different spatial area, by operating only
on the compressed bitstream and without going through the entropy coding
and transform module. As a result, JPEG 2000 compressed bitstream can be
reshaped (transcoded) very efficiently.
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4. The Wavelet Transform

4.1. Introduction. Most existing high performance image coders in applica-
tions are transform based coders. In the transform coder, the image pixels are
converted from the spatial domain to the transform domain through a linear
orthogonal or bi-orthogonal transform. A good choice of transform accomplishes
a decorrelation of the pixels, while simultaneously providing a representation in
which most of the energy is usually restricted to a few (realtively large) coeffi-
cients. This is the key to achieving an efficient coding (i.e., high compression
ratio). Indeed, since most of the energy rests in a few large transform coeffi-
cients, we may adopt entropy coding schemes, e.g., run-level coding or bitplane
coding schemes, that easily locate those coefficients and encodes them. Because
the transform coefficients are highly decorrelated, the subsequent quantizer and
entropy coder can ignore the correlation among the transform coefficients, and
model them as independent random variables.

The optimal transform (in terms of decorrelation) of an image block can be
derived through the Karhunen–Loeve (K-L) decomposition. Here we model the
pixels as a set of statistically dependent random variables, and the K-L basis is
that which achieves a diagonalization of the (empirically determined) covariance
matrix. This is equivalent to computing the SVD (singular value decomposition)
of the covariance matrix (see [28] for a thorough description). However, the K-L
transform lacks an efficient algorithm, and the transform basis is content depen-
dent (in distinction, the Fourier transform, which uses the sampled exponentials,
is not data dependent).

Popular transforms adopted in image coding include block-based transforms,
such as the DCT, and wavelet transforms. The DCT (used in JPEG) has many
well-known efficient implementations [26], and achieves good energy compaction
as well as coefficient decorrelation. However, the DCT is calculated indepen-
dently in spatially disjoint pixel blocks. Therefore, coding errors (i.e., lossy
compression) can cause discontinuities between blocks, which in turn lead to
annoying blocking artifacts. In contrary, the wavelet transform operates on the
entire image (or a tile of a component in the case of large color image), which
both gives better energy compaction than the DCT, and no post-coding blocking
artifact. Moreover, the wavelet transform decomposes the image into an L-level
dyadic wavelet pyramid. The output of an example 5-level dyadic wavelet pyra-
mid is shown in Figure 4.

There is an obvious recursive structure generated by the following algorithm:
lowpass and highpass filters (explained below, but for the moment, assume that
these are convolution operators) are applied independently to both the rows and
columns of the image. The output of these filters is then organized into four
new 2D arrays of one half the size (in each dimension), yielding a LL (lowpass,
lowpass) block, LH (lowpass, highpass), HL block and HH block. The algorithm
is then applied recursively to the LL block, which is essentially a lower resolution
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ORIGINAL

128, 129, 125, 64, 65, � TRANSFORM COEFFICIENTS

4123, -12.4, -96.7, 4.5, �

Figure 4. A 5-level dyadic wavelet pyramid.

or smoothed version of the original. This output is organized as in Figure 4, with
the southwest, southeast, and northeast quadrants of the various levels housing
the LH, HH, and HL blocks respectively. We examine their structure as well as
the algorithm in Sections 4.2 and 4.3. By not using the wavelet coefficients at
the finest M levels, we can reconstruct an image that is 2M times smaller in both
the horizontal and vertical directions than the original one. The multiresolution
nature (see [27], for example) of the wavelet transform is ideal for resolution
scalability.

4.2. Wavelet transform by lifting. Wavelets yield a signal representation in
which the low order (or lowpass) coefficients represent the most slowly changing
data while the high order (highpass) coefficients represent more localized changes.
It provides an elegant framework in which both short term anomaly and long
term trend can be analyzed on an equal footing. For the theory of wavelet and
multiresolution analysis, we refer the reader to [7; 8; 9].

We develop the framework of a one-dimensional wavelet transform using the
z-transform formalism. In this setting a given (bi-infinite) discrete signal x[n] is
represented by the Laurent series X(z) in which x[n] is the coefficient of zn. The
z-transform of a FIR filter (finite impulse response, meaning Laurent series with
a finite number of nonzero coefficients, and thus a Laurent polynomial) H(z) is
represented by a Laurent polynomial

H(z) =
q∑

k=p

h(k)z−k of degree |H| = q − p.

Thus the length of a filter is the degree of its associated polynomial plus one. The
sum or difference of two Laurent polynomials is again a Laurent polynomial and
the product of two Laurent polynomials of degree a and b is a Laurent polynomial
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of degree a + b. Exact division is in general not possible, but division with
remainder is possible. This means that for any two nonzero Laurent polynomials
a(z) and b(z), with |a(z)| ≥ |b(z)|, there will always exist a Laurent polynomial
q(z) with |q(z)| = |a(z)| − |b(z)| and a Laurent polynomial r(z) with |r(z)| <

|b(z)| such that

a(z) = b(z)q(z) + r(z).

This division is not necessarily unique. A Laurent polynomial is invertible if and
only if it is of degree zero, i.e., if it is of the form czp.

The original signal X(z) goes through a low and high-pass analysis FIR filter
pair G(z) and H(z). These are simply the independent convolutions of the origi-
nal data sequence against a pair of masks, and constitute perhaps the most basic
example of a filterbank [27]. The resulting pair of outputs are subsampled by a
factor of two. To reconstruct the original signal, the low and high-pass coeffi-
cients γ(z) and λ(z) are upsampled by a factor of two and pass through another
pair of synthesis FIR filters G′(z) and H ′(z). Although IIR (infinite impulse
response) filters can also be used, the infinite response leads to an infinite data
expansion, an undesirable outcome in our finite world. According to filterbank
theory, if the filters satisfy the relations

G(z)G(z−1) + H ′(z)H(z−1) = 2,

G(z)G(−z−1) + H ′(z)H(−z−1) = 0,

the aliasing caused by the subsampling will be cancelled, and the reconstructed
signal Y (z) will be equal to the original. Figure 5 provides an illustration.

2
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Figure 5. Convolution implementation of one dimensional wavelet transform.

A wavelet transform implemented in the fashion of Figure 5 with FIR filters is
said to have a convolutional implementation, reflecting the fact that the signal is
convolved with the pair of filters (h, g) that form the filter bank. Note that only
half the samples are kept by the subsampling operator, and the other half of the
filtered samples are thrown away. Clearly this is not efficient, and it would be
better (by a factor of one-half) to do the subsampling before the filtering. This
leads to an alternative implementation of the wavelet transform called lifting
approach. It turns out that all FIR wavelet filters can be factored into lifting
step. We explain the basic idea in what follows. For those interested in a deeper
understanding, we refer to [10; 11; 12].
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The subsampling that is performed at the forward wavelet, and the upsam-
pling that is used in the inverse wavelet transform suggest the utility of a decom-
position of the z-transform of the signal/filter into an even and odd part given
by subsampling the z-transform at the even and odd indices, respectively:

H(z) =
∑

n

h(n)z−n

{
He(z) =

∑
n h(2n)z−n (even part),

Ho(z) =
∑

n h(2n + 1)z−n (odd part).

The odd/even decomposition can be rewritten as

H(z) = He(z2) + z−1Ho(z2) with

{
He(z) = 1

2

(
H(z1/2) + H(−z1/2)

)
,

Ho(z) = 1
2z1/2

(
H(z1/2)−H(−z1/2)

)
.

With this we may rewrite the wavelet filtering and subsampling operation (i.e.,
the lowpass and highpass components, γ(z) and λ(z), respectively) using the
even/odd parts of the signal and filter as

γ(z) = Ge(z)Xe(z) + z−1Go(z)Xo(z),

λ(z) = He(z)Xe(z) + z−1Ho(z)Xo(z),

which can be written in matrix form as
(

γ(z)
λ(z)

)
= P (z)

(
Xe(z)

z−1Xo(z)

)
,

where P (z) is the polyphase matrix

P (z) =
(

Ge(z) Go(z)
He(z) Ho(z)

)
.
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Figure 6. Single stage wavelet filter using polyphase matrices.

The forward wavelet transform now becomes the left part of Figure 6. Note
that with polyphase matrix, we perform the subsampling (split) operation before
the signal is filtered, which is more efficient than the description illustrated by
Figure 5, in which the subsampling is performed after the signal is filtered. We
move on to the inverse wavelet transform. It is not difficult to see that the
odd/even subsampling of the reconstructed signal can be obtained through

(
Ye(z)
zYo(z)

)
= P (z)

(
γ(z)
λ(z)

)
,
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where P ′(z) is a dual polyphase matrix

P ′(z) =
(

G′e(z) G′o(z)
G′e(z) H ′

o(z)

)
.

The wavelet transform is invertible if the two polyphase matrices are inverse
to each other:

P ′(z) = P (z)−1 =
1

Ho(z)Ge(z)−He(z)Go(z)

(
Ho(z) −Go(z)

−He(z) Ge(z)

)
.

If we constrain the determinant of the polyphase matrix to be one, i.e.,
Ho(z)Ge(z) − He(z)Go(z) = 1, then not only are the polyphase matrices in-
vertible, but the inverse filter has a simple relationship to the forward filter:

G′e(z) = Ho(z),

G′o(z) = −He(z),

H ′
e(z) = −Go(z),

H ′
o(z) = G2(z),

which implies that the inverse filter is related to the forward filter by the equa-
tions

G′e(z) = z−1H(−z−1), H ′(z) = −z−1G(−z−1)

The corresponding pair of filters (g, h) is said to be complementary. Figure 6
illustrates the forward and inverse transforms using the polyphase matrices.

With the Laurent polynomial and polyphase matrix, we can factor a wavelet
filter into the lifting steps. Starting with a complementary filter pair (g, h),
assume that the degree of filter g is larger than that of filter h. We seek a new
filter gnew satisfying

g(z) = h9z)t(z2) + gnew(z),

where t(z) is a Laurent polynomial. Both t(z) and gnew(z) can be calculated
through long division [10]. The new filter gnew is complementary to filter h, as
the polyphase matrix satisfies

P (z) =
(

He(z)t(z) + Gnew
e (z) Ho(z)t(z) + Gnew

o (z)
He(z) Ho(z)

)

=
(

1 t(z)
0 1

) (
Gnew

e (z) Gnew
o (z)

He(z) Ho(z)

)
=

(
1 t(z)
0 1

)
P new(z).

Obviously, the determinant of the new polyphase matrix P new(z) also equals
one. By performing the operation iteratively, it is possible to factor the polyphase
matrix into a sequence of lifting steps:

P (z) =
(

K1

K2

) m∏

i=0

((
1 ti(z)
0 1

)(
1 0

si(z) 1

))
.

The resultant lifting wavelet can be shown in Figure 7.
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Figure 7. Multi-stage forward lifting wavelet using polyphase matrices.

Each lifting stage above can be directly inverted. Thus we can invert the
entire wavelet:

P ′(z) = P (z)−1 =
(

1/K1

1/K2

) 0∏

i=m

((
1 0

−si(z) 1

)(
1 −ti(z)
0 1

))
.

We show the inverse lifting wavelet using polyphase matrices in Figure 8,
which should be compared with Figure 7. Only the direction of the data flow
has changed.
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Figure 8. Multi-stage inverse lifting wavelet using polyphase matrices.

4.3. Bi-orthogonal 9-7 wavelet and boundary extension. The default
wavelet filter used in JPEG 2000 is the bi-orthogonal 9-7 wavelet [20]. It is
a 4-stage lifting wavelet, with lifting filters s1(z) = f(a, z), t1(z) = f(b, z),
s2(z) = f(c, z), t0(z) = f(d, z), where f , the dual lifting step, is of the form

f(p, z) = pz−1 + p.

The quantities a, b, c and d are the lifting parameters at each stage.
The next several figures illustrate the filterbank. The input data is indexed

as . . . , x0, x1, . . . , xn, . . . , and the lifting operation is performed from right to
left, stage by stage. At this moment, we assume that the data is of infinite
length, and we will discuss boundary extension later. The input data are first
partitioned into two groups corresponding to even and odd indices. During each
lifting stage, only one of the group is updated. In the first lifting stage, the odd
index data points x1, x3, . . . are updated:

x′2n+1 = x2n+1 + a ∗ (x2n + x2n+2),
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where a and x′2n+1 are respectively the first stage lifting parameter and outcome.
The entire operation corresponds to the filter s1(z) represented in Figure 8. The
circle in Figure 9 illustrates one such operation performed on x1.
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Figure 9. Bi-orthogonal 9-7 wavelet.

The second stage lifting, which corresponds to the filter t1(z) in Figure 8,
updates the data at even indices:

x′′2n = x2n + b ∗ (x′2n−1 + x′2n+1),

where b and x′′2n are the second stage lifting parameter and output. The third
and fourth stage lifting can be performed similarly:

Hn = x′2n+1 + c ∗ (x′′2n + x′′2n+2),

Ln = x′′2n + d ∗ (Hn−1 + Hn),

where Hn and Ln are the resultant high and low-pass coefficients. The value of
the lifting parameters a, b, c, d are shown in Figure 9.

As illustrated in Figure 10, we may invert the dataflow, and derive an inverse
lifting of the 9-7 bi-orthogonal wavelet.

Since the actual data in an image transform is finite in length, boundary ex-
tension is a crucial part of every wavelet decomposition scheme. For a symmetric
odd-tap filter (the bi-orthogonal 9-7 wavelet falls into this category), symmetric
boundary extension can be used. The data are reflected symmetrically along
the boundary, with the boundary points themselves not involved in the reflec-
tion. An example boundary extension with four data points x0, x1, x2 and x3
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Figure 10. Forward and inverse lifting (9-7 bi-orthogonal wavelet).

is shown in Figure 11. Because both the extended data and the lifting struc-
ture are symmetric, all the intermediate and final results of the lifting are also
symmetric with respect to the boundary points. Using this observation, it is
sufficient to double the lifting parameters of the branches that are pointing to-
ward the boundary, as shown in the middle of Figure 11. Thus, the boundary
extension can be performed without additional computational complexity. The
inverse lifting can again be derived by inverting the dataflow, as shown in the
right of Figure 11. Again, the parameters for branches that are pointing toward
the boundary points are doubled.
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data points.
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4.4. Two-dimensional wavelet transform. To apply a wavelet transform
to an image we need to use a 2D version. In this case it is common to apply
the wavelet transform separately in the horizontal and vertical directions. This
approach is called the separable 2D wavelet transform. It is possible to design
a nonseparable 2D wavelet (see [32], for example), but this generally increases
computational complexity with little additional coding gain. A sample one-
scale separable 2D wavelet transform is shown in Figure 12. The 2D data array
representing the image is first filtered in the horizontal direction, which results in
two subbands: a horizontal low-pass and a horizontal high-pass subband. These
subbands are then passed through a vertical wavelet filter. The image is thus
decomposed into four subbands: LL (low-pass horizontal and vertical filter), LH
(low-pass vertical and high-pass horizontal filter), HL (high-pass vertical and low-
pass horizontal filter) and HH (high-pass horizontal and vertical filter). Since
the wavelet transform is linear, we may switch the order of the horizontal and
vertical filters yet still reach the same effect. By further decomposing subband
LL with another 2D wavelet (and iterating this procedure), we derive a multiscale
dyadic wavelet pyramid. Recall that such a wavelet was illustrated in Figure 4.
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Figure 12. A single scale 2D wavelet transform.

4.5. Line-based lifting. A trick in implementing the 2D wavelet transform is
line-based lifting, which avoids buffering the entire 2D image during the vertical
wavelet lifting operation. The concept can be shown in Figure 13, which is very
similar to Figure 9, except that here each circle represents an entire line (row)
of the image. Instead of performing the lifting stage by stage, as in Figure 9,
line-based lifting computes the vertical low- and high-pass lifting, one line at a
time. The operation can be described as follows:

Step 1: Initialization, phase 1. Three lines of coefficients x0, x1 and x2 are pro-
cessed. Two lines of lifting operations are performed, and intermediate results
x′1 and x′′0 are generated.
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Figure 13. Line-based lifting wavelet (bi-orthogonal 9-7 wavelet).

Step 2: Initialization, phase 2. Two additional lines of coefficients x3 andx4 are
processed. Four lines of lifting operations are performed. The outcomes are
the intermediate results x′3 and x′′4 , and the first line of low and high-pass
coefficients L0 and H0.

Step 3: Repeated processing. During the normal operation, the line based lift-
ing module reads in two lines of coefficients, performs four lines of lifting
operations, and generates one line of low and high-pass coefficients.

Step 4: Flushing. When the bottom of the image is reached, symmetrical bound-
ary extension is performed to correctly generate the final low and high-pass
coefficients.

For the 9-7 bi-orthogonal wavelet, with line-based lifting, only six lines of working
memory are required to perform the 2D lifting operation. By eliminating the
need to buffer the entire image during the vertical wavelet lifting operation, the
cost to implement 2D wavelet transform can be greatly reduced

5. Quantization and Partitioning

After the wavelet transform, all wavelet coefficients are uniformly quantized
according to the rule

wm,n = sign sm,n

⌊ |sm,n|
δ

⌋
,

where sm,n is the transform coefficient, wm,n is the quantization result, δ is the
quantization step size, sign(x) returns the sign of coefficient x, and b c is the
floor function. The effect of quantization is demonstrated in Figure 14.
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Figure 14. Effect of quantization.

The quantization process of JPEG 2000 is very similar to that of a conven-
tional coder such as JPEG. However, the functionality is very different. In a
conventional coder, since the quantization result is losslessly encoded, the quan-
tization process determines the allowable distortion of the transform coefficients.
In JPEG 2000, the quantized coefficients are lossy encoded through an embed-
ded coder, thus additional distortion can be introduced in the entropy coding
steps. Thus, the main functionality of the quantization module is to map the
coefficients from floating representation into integer so that they can be more
efficiently processed by the entropy coding module. The image coding quality is
not determined by the quantization step size δ but by the subsequent bitstream
assembler. The default quantization step size in JPEG 2000 is rather fine, e.g.,
δ = 1

128 .
The quantized coefficients are then partitioned into packets. Each subband is

divided into non-overlapping rectangles of equal size, as described above, this
means three rectangles corresponding to the subbands HL, LH, HH of each
resolution level. The packet partition provides spatial locality as it contains
information needed for decoding image of a certain spatial region at a certain
resolution.

The packets are further divided into non-overlapping rectangular code-blocks,
which are the fundamental entities in the entropy coding operation. By applying
the entropy coder to relatively small code-blocks, the original and working data
of the entire code-blocks can reside in the cache of the CPU during the entropy
coding operation. This greatly improves the encoding and decoding speed. In
JPEG 2000, the default size of a code-block is 64× 64. A sample partition and
code-blocks are shown in Figure 15. We mark the partition with solid thick
lines. The partition contains quantized coefficients at spatial location (128, 128)
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to (255, 255) of the resolution 1 subbands LH, HL and HH. It corresponds to
the resolution 1 enhancement of the image with spatial location (256, 256) to
(511, 511). The partition is further divided into twelve 64 × 64 code-blocks,
which are shown as numbered blocks in Figure 15.

0 1

2 3

8 9

10 11

4 5

6 7

Figure 15. A sample partition and code-blocks.

6. Block Entropy Coding

Following the partitioning, each code-block is then independently encoded
through a subbitplane entropy coder. As shown in Figure 16, the input of the
block entropy coding module is the code-block, which can be represented as a 2D
array of data. The output of the module is a embedded compressed bitstream,
which can be truncated at any point and still be decodable, and a rate-distortion
(R-D) curve (see Figure 16).

It is the responsibility of the block entropy coder to measure both the coding
rate and distortion during the encoding process. The coding rate is derived
directly through the length of the coding bitstream at certain instances, e.g., at
the end of each subbitplane. The coding distortion is obtained by measuring
the distortion between the original coefficient and the reconstructed coefficient
at the same instance.

JPEG 2000 employs a subbitplane entropy coder. In what follows, we examine
three key parts of the coder: the coding order, the context, and the arithmetic
MQ-coder.

6.1. Embedded coding. Assume that each quantized coefficient wm,n is
represented in the binary form as

±b1b2 . . . bn,
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where b1 is the most significant bit (MSB), and bn is the least significant bit
(LSB), and ± represents the sign of the coefficient. It is the job of the entropy
coding module to first convert this array of bits into a single sequence of bi-
nary bits, and then compress this bit sequence with a lossless coder, such as
an arithmetic coder [22]. A bitplane is defined as the group of bits at a given
level of significance. Thus, for each codeblock there is a bitplane consisting of all
MSBs, one of all LSBs, and one for each of the significance levels that occur in
between. By coding the more significant bits of all coefficients first, and coding
the less significant bits later, the resulting compressed bitstream is said to have
the embedding property, reflecting the fact that a bitstream of lower compression
rate can be obtained by simply truncating a higher rate bitstream, so that the
entire output stream has embedded in it bitstreams of lower compression that
still make possible of partial decoding of all coefficients. A sample binary repre-
sentation of the coefficient can be shown in Figure 17. Since representing bits in
a 2D block results in a 3D bit array (the 3rd dimension is bit significance) which
is very difficult to draw, we only show the binary representation of a column of
coefficients as a 2D bit array in Figure 17. However, keep in mind that the true
bit array in a code-block is 3D.

The bits in the bit array are very different, both in their statistical property
and in their contribution to the quality of the decoded code-block. The sign
is obviously different from that of the coefficient bit. The bits at different sig-
nificance level contributes differently to the quality of the decoded code-blocks.
And even within the same bitplane, bits may have different statistical property
and contribution to the quality of decoding. Let bM be a bit in a coefficient x.
If all more significant bits in the same coefficient x are ‘0’s, the coefficient x is
said to be insignificant (because if the bitstream is terminated at this point or
before, coefficient x will be reconstructed to zero), and the current bit bM is to
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Figure 17. Coefficients and binary representation.

be encoded in the mode of significance identification. Otherwise, the coefficient
is said to be significant, and the bit bM is to be encoded in the mode of refine-
ment. Depending on the sign of the coefficient, the coefficient can be positive
significant or negative significant. We distinguish between significance identifi-
cation and refinement bits because the significance identification bit has a very
high probability of being 0, and the refinement bit is usually equally distributed
between 0 and 1. The sign of the coefficient needs to be encoded immediately
after the coefficient turns significant, i.e., a first non-zero bit in the coefficient is
encoded. For the bit array in Figure 17, the significance identification and the
refinement bits are shown with different shades in Figure 18.
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Figure 18. Embedded coding of bit array.
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6.2. Context. It has been pointed out [14; 21] that the statistics of significant
identification bits, refinement bits, and signs can vary tremendously. For exam-
ple, if a quantized coefficientxi,j is of large magnitude, its neighbor coefficients
may be of large magnitude as well. This is because a large coefficient locates an
anomaly (e.g., a sharp edge) in the smooth signal, and such an anomaly usually
causes a cluster of large wavelet coefficients in the neighborhood as well. To
account for such statistical variation, we entropy encode the significant identifi-
cation bits, refinement bits and signs with context, each of which is a number
derived from already coded coefficients in the neighborhood of the current co-
efficient. The bit array that represents the data is thus turned into a sequence
of bit-context pairs, as shown in Figure 19, which is subsequently encoded by a
context adaptive entropy coder. In the bit-context pair, it is the bit information
that is actually encoded. The context associated with the bit is determined from
the already encoded information. It can be derived by the encoder and the de-
coder alike, provided both use the same rule to generate the context. Bits in the
same context are considered to have similar statistical properties, so that the
entropy coder can measure the probability distribution within each context and
efficiently compress the bits.
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14 0 23 23
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3 0 4 0

0 3 5 0

0 0 0 0
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Ctx: 0  0  9  0  0  0  0  0  0  7  10 0  0  0  0  0  0  0  0  ��

Figure 19. Coding bits and contexts. The context is derived from information

from the already coded bits.

In the following, we describe the contexts that are used in the significant
identification, refinement and sign coding of JPEG 2000. For the rational of
the context design, we refer to [2; 19]. Determining the context of significant
identification bit is a two-step process:

Step 1: Neighborhood statistics. For each bit of the coefficient, the number of
significant horizontal, vertical and diagonal neighbors are counted as h,vand
d, as shown in Figure 20.

Step 2: Lookup table. According to the direction of the subband that the co-
efficient is located (LH, HL, HH), the context of the encoding bit is indexed
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LH subband (also LL) HL subband HH subband
(vertically high-pass) (horizontally high-pass) (diagonally high-pass)

h v d context h v d context d h + v context

2 x x 8 x 2 x 8 ≥3 x 8
1 ≥1 x 7 ≥1 1 x 7 2 ≥1 7
1 0 ≥1 6 0 1 ≥1 6 2 0 6
1 0 0 5 0 1 0 5 1 ≥2 5
0 2 x 4 2 0 x 4 1 1 4
0 1 x 3 1 0 x 3 1 0 3
0 0 ≥2 2 0 0 ≥2 2 0 ≥2 2
0 0 1 1 0 0 1 1 0 1 1
0 0 0 0 0 0 0 0 0 0 0

Table 1. Context for the significance identification coding.

through one of the three tables shown in Table 1. A total of nine context cate-
gories are used for significance identification coding. The table lookup process
reduces the number of contexts and enables probability of the statistics within
each context to be quickly obtained.

v

h

d

CURRENT

Figure 20. Number of significant neighbors: horizontal (h), vertical (v) and

diagonal (d).

To determine the context for sign coding, we calculate a horizontal sign count
hand a vertical sign count v. The sign count takes a value of −1 if both hori-
zontal/vertical coefficients are negative significant; or one coefficient is negative
significant, and the other is insignificant. It takes a value of +1 if both hori-
zontal/vertical coefficients are positive significant; or one coefficient is positive
significant, and the other is insignificant. The value of the sign count is 0 if both
horizontal/vertical coefficients are insignificant; or one coefficient is positive sig-
nificant, and the other is negative significant.

With the horizontal and vertical sign count h and v, an expected sign and a
context for sign coding can then be calculated according to Table 2.

To calculate the context for the refinement bits, we measure if the current
refinement bit is the first bit after significant identification, and if there is any
significant coefficients in the immediate eight neighbors, i.e., h + v + d > 0. The
context for the refinement bit is tabulated in Table 3.
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Sign count
n

H − 1 −1 −1 0 0 0 1 1 1
V − 1 0 1 −1 0 1 −1 0 1

Expected sign − − − − + + + + +
Context 13 12 11 10 9 10 11 12 13

Table 2. Context and the expected sign for sign coding.

Context 14: Current refinement bit is the first bit after significant identifi-
cation and there is no significant coefficient in the eight neighbors.

Context 15: Current refinement bit is the first bit after significant identifica-
tion and there is at least one significant coefficient in the eight neighbors.

Context 16: Current refinement bit is at least two bits away from significant
identification.

Table 3. Context for the refinement bit.

6.3. MQ-coder: context dependent entropy coder. Through the afore-
mentioned process, a data array is turned into a sequence of bit-context pairs, as
shown in Figure 19. All bits associated with the same context are assumed to be
independently and identically distributed. Let the number of contexts be N , and
let there be ni bits in context i, within which the probability of the bits taking
value 1 is pi. Using classic Shannon information theory [15; 16] the entropy of
such a bit-context sequence can be calculated as

H =
N−1∑

i=0

ni

(−p log2 pi − (1− pi) log2(1− pi)
)
. (6–1)

The task of the context entropy coder is thus to convert the sequence of bit-
context pairs into a compact bitstream representation with length as close to the
Shannon limit as possible, as shown in Figure 21. Several coders are available for
such task. The coder used in JPEG 2000 is the MQ-coder. In the following, we
focus the discussion on three key aspects of the MQ-coder: general arithmetic
coding theory, fixed point arithmetic implementation and probability estimation.
For more details, we refer to [22; 23].

MQ-Coder

BITS

CTX
BITSTREAM

Figure 21. Input and output of the MQ-coder.
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6.3.1. The Elias coder. The basic theory of the MQ-coder can be traced to the
Elias Coder [24], or recursive probability interval subdivision. Let S0S1S2 . . . Sn

be a series of binary bits that is sent to the arithmetic coder. Let Pi be the
probability that the bit Si be 1. We may form a binary representation (the
coding bitstream) of the original bit sequence by the following process:

Step 1: Initialization. Let the initial probability interval be (0, 1). We denote
the current probability interval as (C, C+A), where C is the bottom of the
probability interval, and A is the size of the interval. At the initialization, we
have C = 0 and A = 1.

Step 2: Probability interval subdivision. The binary symbols S0S1S2 . . . Sn are
encoded sequentially. For each symbol Si, the probability interval (C, C+A) is
subdivided into two sub-intervals

(
C, C+A(1−Pi)

)
and

(
C+A(1−Pi), C+A

)
.

Depending on whether the symbol Si is 1, one of the two subintervals is
selected: {

C ← C, A ← A(1− Pi), if Si = 0,
C ← A(1− Pi), A ← APi, if Si = 1.

(6–2)

0

1

1-P0

P0

1-P1

P1 1-P2

P2

S0=0 S1=1 S2=0

0.100

Coding

result:

(Shortest binary

bitstream ensures that

interval

B=0.100 0000000 to

D=0.100 1111111 is

(B,D) A

)

A
B

D

⊆

Figure 22. Probability interval subdivision.

Step 3: Bitstream output. Let the final coding bitstream be k1k2 . . . km, where m

is the compressed bitstream length. The final bitstream creates an uncertainty
interval where the lower and upper bound can be determined as

Upperbound D = 0.k1k2 · · · km111 . . . ,

Lowerbound B = 0.k1k2 · · · km000 . . . .

As long as the uncertainty interval (B, D) is contained in the probability in-
terval (C,C+A), the coding bitstream uniquely identifies the final probability
interval, and thus uniquely identifies each subdivision in the Elias coding pro-
cess. The entire binary symbol strings S0S1S2 . . . Sn can thus be recovered
from the compressed representation. It can be shown that it is possible to
find a final coding bitstream with length

m ≤ d− log2 Ae+ 1
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to represent the final probability interval (C, C+A). Notice that A is the
probability of the occurrence of the binary strings S0S1S2 . . . Sn, and the
entropy of the original symbol stream can be calculated as

H =
∑

S0S1···Sn

−A log2 A.

The arithmetic coder thus encodes the binary string within 2 bits of its entropy
limit, no matter how long the symbol string is. This is very efficient.

6.3.2. The arithmetic coder: finite precision arithmetic operations. Exact im-
plementation of Elias coding requires infinite precision arithmetic, an unrealistic
assumption in real applications. Using finite precision, the arithmetic coder is
developed from Elias coding. Observing the fact that the coding interval A be-
comes very small after a few operations, we may normalize the coding interval
parameter C and A as

C = 1.5 · [0.k1k2 · · · kL] + 2−L · 1.5 · Cx, A = 2−L · 1.5 ·Ax,

where L is a normalization factor determining the magnitude of the interval A,
while Ax and Cx are fixed-point integers representing values between (0.75, 1.5)
and (0, 1.5), respectively. Bits k1k2. . . km are the output bits that have already
been determined (in reality, certain carryover operations have to be handled
to derive the true output bitstream). By representing the probability interval
with the normalization L and fixed-point integers Ax and Cx, it is possible
to use fixed-point arithmetic and normalization operations for the probability
interval subdivision operation. Moreover, since the value of Ax is close to 1.0,
we may approximate Ax · Pi with Pi, the interval sub-division operation (6–2)
calculated as

Cx = Cx,

Cx = C + Ax − Pi,

Ax = Ax − Pi,

Ax = Pi,

if Si = 0,

if Si = 1,

which can be done quickly without any multiplication. The compression perfor-
mance suffers a little, as the coding interval now has to be approximated with a
fixed-point integer, and Ax · Pi is approximated with Pi. However, experiments
show that the degradation in compression performance is less than three percent,
which is well worth the saving in implementation complexity.

6.3.3. Probability estimation. In the arithmetic coder it is necessary to estimate
the probability Pi for each binary symbol Si to take the value 1. This is where
context comes into play. Within each context, it is assumed that the symbols
are independently identically distributed. We may then estimate the probability
of the symbol within each context through observation of the past behaviors of
symbols in the same context. For example, if we observe ni symbols in context
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i, with oi symbols to be 1, we may estimate the probability that a symbol takes
on the value 1 in context i through Bayesian estimation as

Pi =
oi + 1
ni + 2

.

In the MQ-coder [22], probability estimation is implemented through a state-
transition machine. It may estimate the probability of the context more effi-
ciently, and may take into consideration the non-stationary characteristic of the
symbol string. Nevertheless, the principle is still to estimate the probability
based on past behavior of the symbols in the same context.

6.4. Coding order: subbitplane entropy coder. In JPEG 2000, because
the embedded bitstream of a code-block may be truncated, the coding order,
which is the order that the data array is turned into bit-context pair sequence,
is of paramount importance. A sub-optimal coding order may allow important
information to be lost after the coding bitstream is truncated, and lead to severe
coding distortion. It turns out that the optimal coding order first encodes those
bits with the steepest rate-distortion slope, which is defined as the coding dis-
tortion decrease per bit spent [21]. Just as the statistical properties of the bits
are different in the bit array, their contribution of the coding distortion decrease
per bit is also different.

Consider a bit bi in the i-th most significant bitplane, where there are a total
of n bitplanes. If the bit is a refinement bit, then previous to the coding of
the bit, the uncertainty interval of the coefficient is (A,A+2n−i). After the
refinement bit has been encoded, the coefficient lies either in (A, A+2n−i−1) or
in (A+2n−i, A+2n−i−1). If we further assume that the value of the coefficient is
uniformly distributed in the uncertainty interval, we may calculate the expected
distortion before and after the coding as

Dpre,REF =
∫ A+2n−i

A

(x−A− 2n−i−1)2 dx = 1
12 4n−i,

Dpost,REF = 1
12 4n−i−1.

Since the value of the coefficient is uniformly distributed in the uncertainty
interval, the probability for the refinement bit to take the values 0 and 1 is equal,
thus, the coding rate of the refinement bit is:

RREF = H(bi) = 1 bit. (6–3)

The rate-distortion slope of the refinement bit at the i-th most significant
bitplane is thus:

sREF(i) =
Dprev,REF −Dpost,REF

RREF
=

1
12 4n−i − 1

12 4n−i−1

1
= 4n−i−2 (6–4)

In the same way, we may calculate the expected distortion decrease and coding
rate for a significant identification bit at the i-th most significant bitplane. Before
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the coding of the bit, the uncertainty interval of the coefficient ranges from −2n−i

to 2n−i. After the bit has been encoded, if the coefficient becomes significant,
it lies in (−2n−i, −2n−i−1) or (+2n−i−1, +2n−i) depending on the sign of the
coefficient. If the coefficient is still insignificant, it lies in (−2n−i−1, 2n−i−1). We
note that if the coefficient is still insignificant, the reconstructed coefficient before
and after coding both will be 0, which leads to no distortion decrease (coding
improvement). The coding distortion only decreases if the coefficient becomes
significant. Assuming the probability that the coefficient becomes significant is
p, and the coefficient is uniformly distributed within the significance interval
(−2n−i, −2n−i−1) or (+2n−i−1, +2n−i), we may calculate the expected coding
distortion decrease as

Dprev,SIG −Dpost,SIG = p
9
4

4n−i (6–5)

The entropy of the significant identification bit can be calculated as

RSIG = −(1− p) log2(1− p)− p log2 p + p · 1 = p + H(p),

where H(p) = −(1− p) log2(1− p)− p log2 p is the entropy of the binary symbol
with the probability of 1 being p. In (6–5), we account for the one bit which is
needed to encode the sign of the coefficient if it becomes significant.

We may then derive the expected rate-distortion slope for the significance
identification bit coding as

sSIG(i) =
Dprev,SIG −Dpost,SIG

RSIG
=

9
1 + H(p)/p

4n−i−2

From this and (6–4), we arrive at the following conclusions:

Conclusion 1. The more significant bitplane that the bit is located, the earlier
it should be encoded.

A key observation is, within the same coding category (significance identifi-
cation/refinement), one more significance bitplane translates into 4 times more
contribution in distortion decrease per coding bit spent. Therefore, the code-
block should be encoded bitplane by bitplane.

Conclusion 2. Within the same bitplane, we should first encode the significance
identification bit with a higher probability of significance.

It can be shown that the function H(p)/p increases monotonically as the
probability of significance decreases. As a result, the higher probability of sig-
nificance, the higher contribution of distortion decrease per coding bit spent.

Conclusion 3. Within the same bitplane, the significance identification bit
should be encoded earlier than the refinement bit if the probability of significance
is higher than 0.01.
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It is observed that the insignificant coefficients with no significant coefficients
in its neighborhood usually have a probability of significance below 0.01, while
insignificant coefficients with at least one significant neighbor usually have a
higher probability of significance.

As a result of these three conlusions, the entropy coder in JPEG 2000 en-
codes the code-block bitplane by bitplane, from the most significant bitplane to
the least significant bitplane; and within each bitplane, the bit array is further
ordered into three subbitplanes: the predicted significance (PS), the refinement
(REF) and the predicted insignificance (PN).

Using the data array in Figure 23 as an example, we illustrate the block coding
order of JPEG 2000 with a series of sub-figures in Figure 23. Each sub-figure
shows the coding of one subbitplane. The block coding order of JPEG 2000 is
as follows:

Step 1: The most significant bitplane, the PN subbitplane of b1. (See Fig-
ure 23(a).)

First, the most significant bitplane is examined and encoded. Since at first,
all coefficients are insignificant, all bits in the MSB bitplane belong to the PN
subbitplane. Whenever a 1 bit is encountered (rendering the corresponding
coefficient non-zero) the sign of the coefficient is encoded immediately after-
wards. With the information of those bits that have already been coded and
the signs of the significant coefficients, we may figure out an uncertain range
for each coefficient. The reconstruction value of the coefficient can also be
set, e.g., at the middle of the uncertainty range. The outcome of our sam-
ple bit array after the coding of the most significant bitplane is shown in
Figure 23(a). We show the uncertainty range and the reconstruction value
of each coefficient under columns “value” and “range” in the sub-figure, re-
spectively. As the coding proceeds, the uncertainty range shrinks, and brings
better and better representation to each coefficient.

Step 2: The PS subbitplane of b2. (See Figure 23(b).)
After all bits in the most significant bitplane have been encoded, the coding

proceeds to the PS subbitplane of the second most significant bitplane (b2).
The PS subbitplane consists of bits of the coefficients that are not significant,
but has at least one significant neighbor. The corresponding subbitplane cod-
ing is shown in Figure 23(b). In this example, coefficients w0 and w2 are the
neighbors of the significant coefficient w1, and they are encoded in this pass.
Again, if a 1 bit is encountered, the coefficient becomes significant, and its
sign is encoded right after. The uncertain ranges and reconstruction value of
the coded coefficients are updated according to the newly coded information.

Step 3: The REF subbitplane of b2. (See Figure 23(c).)
The coding then moves to the REF subbitplane, which consists of the

bits of the coefficients that are already significant in the past bitplane. The
significance status of the coefficients is not changed in this pass, and no sign
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of coefficients is encoded.
Step 4: The PN subbitplane of b2. (See Figure 23(d).)

Finally, the rest of the bits in the bitplane are encoded in the PN subbit-
plane pass, which consists of the bits of the coefficients that are not significant
and have no significant neighbors. Sign is again encoded once a coefficient
turns into significant.

Steps 2, 3, and 4 are repeated for the following bitplanes, with the subbitplane
coding ordered being PS, REF and PN for each bitplane. The block entropy
coding continues until certain criteria, e.g., the desired coding rate or coding
quality has been reached, or all bits in the bit array have been encoded. The
output bitstream has the embedding property. If the bitstream is truncated, the
more significant bits of the coefficients can still be decoded. An estimate of each
coefficient is thus obtained, albeit with a relatively large uncertain range.
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Figure 23. Order of coding: (a) Bitplane b1, subbitplane PN, then bitplane b2,

subbitplanes (b) PS, (c) REF and (d) PN.

7. The Bitstream Assembler

The embedded bitstream of the code-blocks are assembled by the bitstream
assembler module to form the compressed bitstream of the image. As described
in section 6, the block entropy coder not only produces an embedded bitstream
for each code-block i, but also records the coding rate Rk

i and distortion Dk
i
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at the end of each subbitplane, where k is the index of the subbitplane. The
bitstream assembler module determines how much bitstream of each code-block
is put to the final compressed bitstream. It determines a truncation point ni for
each code-block so that the distortion of the entire image is minimized upon a
rate constraint:

min
∑

i

Dnii, with
∑

i

Rnii ≤ B. (7–1)

Since there are a discrete number of truncation points ni, the constraint min-
imization problem of equation (7–1) can be solved by distributing bits first to
the code-blocks with the steepest distortion per rate spent. The process of bit
allocation and assembling can be performed as follows:

Step 1: Initialization. We initialize all truncation points to zero: ni = 0.
Step 2: Incremental bit allocation. For each code block i, the maximum possible

gain of distortion decrease per rate spent is calculated as

Si = max
k>ni

Dni
i −Dk

i

Rk
i −Rni

i

.

We call Si the rate-distortion slope of the code-block i. The code-block
with the steepest rate-distortion slope is selected, and its truncation point is
updated as

nnew
i = argk>ni

(
Dnii−Dki

Rk
i −Rnii

= Si

)
.

A total of R
nnew

i
i − Rni

i bits are sent to the output bitstream. This leads to
a distortion decrease of Dni

i −D
nnew

i
i . It can be easily proved that this is the

maximum distortion decrease achievable for spending R
nnew

i
i −Rni

i bits.
Step 3: Repeat Step 2 until the required coding rate B is reached.

The above optimization procedure does not take into account the last seg-
ment problem, i.e., when the coding bits available is smaller than R

nnew
i

i −Rni
i

bits. However, in practice, usually the last segment is very small (within 100
bytes), so that the residual sub-optimally is not a big concern.

Following exactly the optimization procedure above is computationally complex.
The process can be speeded up by first calculating a convex hull of the R-D slope
of each code-block i, as follows:

Step 1: Set S to the set of all truncation points.
Step 2: Set p to the first truncation point in S.
Step 3: Do until p is the last truncation point in S:

(i) Set k to the next truncation point after p in S.

(ii) Set Sk
i =

Dp
i −Dk

i

Rk
i −Rp

i

.
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(iii) If p is not the first truncation point in S and Sk
i ≥ Sp

i , remove p from S

and move p back one truncation point in S; otherwise, set p = k.

(iv) [End of current iteration. Restart at step 3(i), unless p is the last trun-
cation point in S.]

Once the R-D convex hull is calculated, the optimal R-D optimization becomes
simply the search of a global R-D slope λ, where the truncation point of each
code-block is determined by:

ni = arg max
k

(
Sk

i > λ
)

Putting the truncated bitstream of all code-blocks together, we obtain a com-
pressed bitstream associated with each R-D slope λ. To reach a desired coding
bitrate B, we just search the minimum λ whose associated bitstream satisfies
the rate inequality (7–1). The R-D optimization procedure can be illustrated in
Figure 24.
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Figure 24. Bitstream assembler: for each R-D slope λ, a truncation point can

be found at each code-block. The slope λ should be the minimum slope that

the allocated rate for all code-blocks is smaller than the required coding rate B.

To form a compressed image bitstream with progressive quality improvement
property, so that we may gradually improve the quality of the received im-
age as more and more bitstream arrives, we may design a series of rate points,
B(1), B(2), . . . , B(n). A sample rate point set is 0.0625, 0.125, 0.25, 0.5, 1.0 and
2.0 bpp (bit per pixel). For an image of size 512 × 512, this corresponds to a
compressed bitstream size of 2k, 4k, 8k, 16k, 32k and 64k bytes. First, the global
R-D slope λ(1) for rate point B(1) is calculated. The first set of truncation point
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of each code-block n
(1)
i is thus derived. These bitstream segments of the code-

blocks of one resolution level at one spatial location is grouped into a packet. All
packets that consist of the first segment bitstream form the first layer that rep-
resents the first quality increment of the entire image at full resolution. Then,
we may calculate the second global R-D slope λ(2) corresponding to the rate
point B(2). The second truncation point of each code-block n

(2)
i can be derived,

and the bitstream segment between the first n
(1)
i and the second n

(2)
i truncation

points constitutes the second bitstream segment of the code-blocks. We again
assemble the bitstream of the code-blocks into packets. All packets that consist
of the second segment bitstreams of the code-blocks form the second layer of the
compressed image. The process is repeated until all n layers of bitstream are
formed. The resultant JPEG 2000 compressed bitstream is thus generated and
can be illustrated with Figure 25.
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Figure 25. JPEG 2000 bitstream syntax. SOC = start of image (codestream)

marker; SOT = start of tile marker; SOS = start of scan marker; EOI = end of

image marker.

8. The Performance of JPEG 2000

Finally, we briefly demonstrate the compression performance of JPEG 2000.
We compare JPEG 2000 with the traditional JPEG standard. The test image
is the “Bike” standard image (gray, 2048 × 2560), shown in Figure 26. Three
modes of JPEG 2000 are tested, and are compared against two modes of JPEG.
The JPEG modes are progressive (P-DCT) and sequential (S-DCT) both with
optimized Huffman tables [4]. The JPEG 2000 modes are single layer with the
bi-orthogonal 9-7 wavelet (S-9,7), six layer progressive with the bi-orthogonal 9-7
wavelet (P6-9,7), and 7 layer progressive with the (3,5) wavelet (P7-3,5). The
JPEG 2000 progressive modes have been optimized for 0.0625, 0.125, 0.25, 0.5,
1.0, 2.0 bpp and lossless for the 5× 3 wavelet. The JPEG progressive mode uses
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a combination of spectral refinement and successive approximation. We show
the performance comparison in Figure 27.

Figure 26. Original “Bike” test image.

JPEG 2000 results are significantly better than JPEG results for all modes
and all bit-rates on this image. Typically JPEG 2000 provides only a few dB
improvement from 0.5 to 1.0 bpp but substantial improvement below 0.25 bpp
and above 1.5 bpp. Also, JPEG 2000 achieves scalability at almost no additional
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Figure 27. Performance comparison: JPEG 2000 versus JPEG. From [1], cour-

tesy of the authors, Marcellin et al.

cost. The progressive performance is almost as good as the single layer JPEG
2000 without the progressive capability. The slight difference is due solely to
the increased signaling cost for the additional layers (which changes the packet
headers). It is possible to provide “generic rate scalability” by using upwards of
fifty layers. In this case the “scallops” in the progressive curve disappear, but
the overhead may be slightly increased.
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Abstract. This article presents a simple version of Integrated Sensing and
Processing (ISP) for statistical pattern recognition wherein the sensor mea-
surements to be taken are adaptively selected based on task-specific metrics.
Thus the measurement space in which the pattern recognition task is ul-
timately addressed integrates adaptive sensor technology with the specific
task for which the sensor is employed. This end-to-end optimization of sen-
sor/processor/exploitation subsystems is a theme of the DARPA Defense
Sciences Office Applied and Computational Mathematics Program’s ISP
program. We illustrate the idea with a pedagogical example and applica-
tion to the HyMap hyperspectral sensor and the Tufts University “artificial
nose” chemical sensor.

1. Introduction

An important activity, common to many fields of endeavor, is the act of refin-

ing high order information (detections of events, classification of objects, identifi-

cation of activities, etc.) from large volumes of diverse data which is increasingly

available through modern means of measurement, communication, and process-

ing. This exploitation function winnows the available data concerning an object

or situation in order to extract useful and actionable information, quite often

through the application of techniques from statistical pattern recognition to the

data. This may involve activities like detection, identification, and classification

which are applied to the raw measured data, or possibly to partially processed

information derived from it.

When new data are sought in order to obtain information about a specific

situation, it is now increasingly common to have many different measurement

degrees of freedom potentially available for the task. Some appreciation of the

dimensionality of available data can be obtained by considering measurements
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from one sensor, the hyperspectral camera, which is gaining broad application

in fields ranging from geological remote sensing to military target identification.

This sensor produces an output comprised of hundreds of megapixel images of

a scene, each image corresponding to the appearance of that scene in light from

a narrow band of frequencies. Taken together, these images present a finely

resolved spectrum for each pixel in the scene. The data sets are often presented

as cubes and can have on the order of a billion voxels per scene. Of course for

real scenes, the billions of degrees of freedom exhibit correlations; nevertheless,

the raw data is presented in an overwhelmingly high dimensional space.

This situation is magnified when one considers the diversity of sophisticated

sensing mechanisms which might be applied to a given task. For example, re-

mote sensing of terrain may be performed with natural light cameras, infrared

cameras, hyperspectral imagers, fully polarimetric imaging radar, or combina-

tions of all of these. This gives us many different views of the scene, but also

presents a challenging requirement for effective processing and exploitation al-

gorithms enabling reliable and affordable extraction of information from the

high-dimensional spaces of sensed data.

In many situations, constraints on the available time, bandwidth, human and

machine resources, and on the prior relevant experience all significantly limit the

ability to deal intelligently with the many potential sensing degrees of freedom.

This is particularly the case in time-critical applications. In fact, one often

finds that not all of the available sensor degrees of freedom are equally useful

in a given situation, suggesting the need for a reasoned approach for choosing

those particular measurement types to be made and/or communicated and/or

processed.

In this paper we show that it is sometimes possible to identify a particu-

larly informative subspace of the space of all possible sensor measurements when

it comes to the application of exploitation tasks on the sensed data. We will

present examples in which performance is enhanced significantly by finding and

working in the corresponding reduced-dimensionality subspace of sensed data.

Even more, we will demonstrate in several cases that the determination of this

particularly informative subspace then suggests the selection of a further sub-

space of measurements to improve exploitation performance yet further. This is

somewhat analogous to the game of “20 questions,” in which we progressively

refine the scope and specificity of our questions based on partial understanding

derived from previous attempts to narrow down the possibilities.

This process of focusing and targeting measurements is in fact often realizable

in practice, due in part to significant engineering advances made in adaptive

“smart” sensor technology. Current and projected capabilities for modifying

the way certain important sensors look at the world motivate the development

of mathematical methodology for guiding the adaptive selection of the types

measurements made by an adaptive sensor/processor subsystem with an eye to

enhancing and simplifying the exploitation of the resulting data. We present
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examples in which the way a sensor views a scene determines the abstract space

in which the exploitation is ultimately addressed. In these cases, a judicious

choice of sensor viewpoint improves exploitation performance dramatically.

Effective realization of the next generation of sensor/exploitation systems will

require balanced integration and joint optimization of adaptive sensor front end

functions with the pattern recognition tasks applied to sensor measurements

in the system’s back end. Development of methodologies for end-to-end joint

optimization of sensor/processor/exploitation subsystems with respect to task-

specific metrics, is a key theme of the DARPA Applied and Computational

Mathematics Program’s “Integrated Sensing and Processing” (ISP) effort. Var-

ious aspects of this program are currently being pursued by several groups of

researchers in academia, industry, and government. Preliminary results suggest

that certain applications in target detection and identification may derive signif-

icant performance enhancements by applying this concept to take full advantage

of adaptive sensor technology.

In this paper, we illustrate one aspect of the ISP idea, in which the ex-

ploitation subsystem is concerned with supervised statistical pattern recogni-

tion (classification) and the observations take their value in a space with some

linear ordering properties, such as multivariate time series. We illustrate the

idea with a pedagogical example and application to the HyMap hyperspectral

sensor (in which case the functional domain is spectral rather than temporal)

and the Tufts University “artificial nose” chemical sensor. Other applications

include gene expression analysis via DNA microarrays collected at multiple time

instances, functional brain imaging collected at multiple time instances, etc.

2. Statistical Pattern Recognition

Pattern recognition starts with observations and returns class labels. Sta-

tistical pattern recognition addresses the problem in a probabilistic framework

and applies to it statistical methods. Here we provide a brief description of the

basic set up of statistical pattern recognition. For additional details, see, e.g.,

Fukunaga (1990), Devroye et al. (1996), Duda et al. (2000), Hastie et al. (2001),

and references therein.

Let the pair (X, Y ) be distributed according to probability distribution F ;

(X, Y ) ∼ F . Intuitively, X represents measurements made on some phenomenon

of interest and Y indicates higher order information about that phenomenon,

such as its membership in one of several disjoint classes.

More formally, the feature vector X is a Ξ-valued random variable. Usually

Ξ = R
d or some subset thereof. More generally, Ξ may allow for more elabo-

rate data structures such as multivariate time series, images, categorical data,

dissimilarity data, etc. We will consider cases in which feature observations are

multivariate time series and spectral responses. For categorical data Ξ is simply

a set (unordered). In some applications, Ξ may consist of mixed data— some
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categorical, some continuous and some time series. For example, in a medical

application one might have sex (categorical), temperature (continuous), and an

EKG (time series).

The class label Y is a {1, . . . , J}-valued random variable, with J > 1 usually

finite. The label Y indicates the class to which the associated feature vector X

belongs. The prior probabilities of class membership are given by πj := P [Y = j].

We denote by Fj the class-conditional distributions of X |Y = j.

We partition statistical pattern recognition into two main categories: super-

vised and unsupervised. The distinguishing feature between these two categories

is that for supervised pattern recognition training data exist for which the class

labels Y are observed, while this is not the case in the unsupervised case. We

refer to the supervised case as classification and the unsupervised case as clus-

tering.

2.1. Classification. In the supervised case, training data are available. The

training data set is given by Dn := {(X1, Y1), . . . , (Xn, Yn)}′. That is, we have

available observations for which the true categorization is known. The goal is to

develop a classifier g which will take an unlabelled feature vector X , with true

but unobserved class label Y , and estimate its class label by Ŷ = g(X). We

hope that Ŷ = Y with high probability. Obviously, g should use the available

training data and will have functional dependence on the particular observed

training data set as well as on the measured features we are trying to classify;

thus

g : Ξ × (Ξ × {1, . . . , J})n → {1, . . . , J}.

The use of training data to build the classifier is referred to as training.

In order for statistical pattern recognition methodologies to have any guaran-

tee of success, we must assume that the training data are representative. Usu-

ally this means that (Xi, Yi)
iid∼ F . Alternatively, writing I{E} as the indicator

function for event E, the class-conditional sample sizes given by Nj(Dn) :=∑n
i=1 I{Yi = j} may be design variables rather than random variables, in which

case the conditional random variables Xi|Yi = j are independent and identically

distributed (iid) according to the class-conditional distributions Fj . In the for-

mer case the class-conditional sample sizes Nj(Dn) yield consistent estimates of

the priors— π̂j(Dn) := Nj(Dn)/n → πj almost surely as n → ∞. In the latter

case a priori knowledge of the prior probabilities must be assumed.

Given a training data set Dn, the probability of misclassification for classifier

g is given by

L(g|Dn) := P [g(X ;Dn) 6= Y |Dn].

The Bayes optimal probability of misclassification is given by

L? = min
g:Ξ→{1,...,J}

P [g(X) 6= Y ];
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notice that for the purposes of defining this bound, we consider classifiers which

are not constrained by a particular training set. A Bayes rule is any map g?

with L(g?) = L?. The Bayes rule can be obtained from the class-conditional

distributions Fj and the prior probabilities πj as

g?(x) = argmax
j

πj dFj(x).

Notice that g? depends on the distribution of (X, Y ), but not on the training

data set.

The goal of classification, then, is to devise a methodology for taking training

data Dn and constructing a classifier g such that L(g|Dn) is as close to L? as

possible. In particular, we desire consistency: L(g;Dn) → L? as n → ∞ (in

probability or with probability one).

2.2. The curse of dimensionality. A common misconception in statistical

pattern recognition is that “more is better”. It is intuitively obvious— and

wrong— that if ten features per observation are good then a hundred features

are even better. This is a result of one manifestation of the so-called curse of

dimensionality (Bellman (1961), Scott (1992)).

The curse has several manifestations. Silverman (1986) considers probability

density function estimation, and provides a table for the number of observations

needed to obtain a point estimate with a given accuracy as the dimension in-

creases. The estimator considered is a nonparametric one, the kernel estimator.

It is shown that the number of observations required grows from 4 for univariate

data to over 800,000 for ten-dimensional data. Thus, to achieve a given accu-

racy for a kernel estimator at a single point, the required number of observations

grows exponentially in the dimension.

Another consequence of the curse of dimensionality is discussed in Scott

(1992), where he points out statistical ramifications of the fact that the vol-

ume of a cube in high dimensions resides primarily in the corners, the volume

of a sphere resides mostly near the boundary. This is shown by comparing the

volume of a sphere with radius r to that of an interior sphere of radius r − ε,

and noting that for arbitrarily small ε > 0 the appropriate ratio of volumes goes

to 0 as dimensionality goes to infinity, indicating that essentially none of the

volume resides in the interior sphere. That is, “high-dimensional space is mostly

empty”, which in turn suggests that required sample size for fixed performance

grows (rapidly) with dimension. (See also Silverman (1986), Table 4.2.)

Jain et al. (2000) discusses another aspect of the curse, first described by

Trunk (1979). It is shown that in the simple case of two d-dimensional multi-

variate normals with equal (known) identity covariances, known priors πj = 1/2,

and means

µj = (−1)j
[
1,

1√
2
,

1√
3
, . . . ,

1√
d

]′
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for classes j = 1, 2, the probability of error for the linear classifier— the classifier

which labels an observation as belonging to the class associated with the nearest

of the two class-conditional sample means — goes to 0 as d → ∞ if the means

are known, but this probability of error converges to 1
2 if the means must be

estimated from any training sample of (arbitrarily large but) fixed size. In other

words, adding variates that each decrease the Bayes error can actually increase

the classification error when estimates must be used rather than the (unknown)

truth.

2.3. Classifiers. Assume for simplicity that the class-conditional probabil-

ity density functions fj exist. Then any density estimator f̂j yields a plug-in

classification rule:

ĝ(x) = argmax
j

π̂j(Dn)f̂j(x;Dn).

For iid training data the class conditional sample sizes, π̂j , are consistent esti-

mators for the priors; if in addition a density estimator is employed for which

f̂j → fj in L1 or L2 a.s., for instance, then L(ĝ|Dn) → L? a.s.

Density estimation comes in two basic flavors, parametric and nonparamet-

ric. (We categorize “semiparametric” with nonparametric for the purposes of

this discussion.) Parametric density estimation assumes that a parameterized

functional form for the class-conditional densities fj is known and focuses on es-

timating the (few) unknown parameters. Nonparametric methods, on the other

hand, make no such parametric assumption. Parametric density estimation is

an easier problem— rates of convergence are faster, for example —due to the

fact that the target is finite dimensional. Of course, if the assumed parametric

form is not correct, a parametric approach will not in general yield consistent

classification. Nonparametric methods provide a more general guarantee of con-

sistency, at a price of reduced efficiency if indeed a simple parametric form is

appropriate. Classical examples of these two categories, which allow for a fruitful

“compare and contrast” exercise, are given by finite mixture models (McLachlan

and Krishnan (1997)) versus kernel estimators (Silverman (1986)).

Density estimation is, however, quite expensive in high dimensions (curse of di-

mensionality). Thus, for multivariate feature vectors in particular, there is much

interest in developing applicable classification methodologies which somehow re-

duce this cost. One approach involves preprocessing to yield reduced dimension-

ality without seriously degrading classification performance. Thus, one might

choose a projection P : Ξ → R
d′

, where d′ = 1 or 2, say, and consider classifica-

tion, as above, using [(P(X1), Y1), . . . , (P(Xn), Yn)]′ as the transformed training

data. See, for instance, principal component analysis, independent component

analysis, linear discriminant analysis, and projection pursuit. These techniques

can be found in standard multivariate statistics texts such as Seber (1984), Mar-

dia et al. (1995), Johnson and Wichern (1998), and in pattern recognition texts

such as Fukunaga (1990), Duda et al. (2000), and Hastie et al. (2001).



INTEGRATED SENSING/PROCESSING FOR PATTERN RECOGNITION 229

Consideration of the maxim “classification is easier than density estimation”

suggests that instead of trying to estimate the probability densities, one might

choose to estimate the decision region directly. This, too, can be done paramet-

rically or nonparametrically.

The simplest decision region is a linear one, and several methods involve either

estimating the best linear separator of the data or extending to piecewise linear

discriminators. See for example Sklansky and Wassel (1979).

A popular nonparametric method is the nearest neighbor classifier (and its

extension, the k-nearest neighbor classifier). The idea is simple, yet powerful:

choose the category associated with the nearest element of the training set. Given

a training set Dn = {(X1, Y1), . . . , (Xn, Yn)}′, the nearest neighbor classifier gnn

is defined to be

gnn(x;Dn) = Yarg min
i

{ρ(x,Xi)},

where ρ : Ξ×Ξ → [0,∞) is a distance function. This classifier has been studied

widely — “simple rules survive!” and is a standard against which new classifiers

are often tested.

It is well known that the nearest neighbor rule has asymptotic error bounded

above by 2L?. This means that if the classes are strictly separable, so that

L? = 0, then the nearest neighbor classifier is consistent.

The k-nearest neighbor classifier is an obvious extension. Rather than con-

sidering only the nearest observation, consider the k nearest elements of the

training set. A simple vote is taken amongst the classes. (More complicated

voting schemes have been investigated.)

Denoting the k-nearest neighbor classifier by gk, the following theorem of

Stone (1977) establishes the universal consistency of this classifier.

Theorem. Given iid training data Dn, if k → ∞ and k/n → 0 then

EL(gk;Dn) → L?

for all distributions.

Many other classifiers have been, and continue to be, developed. We argue,

however, that for high-dimensional problems the choice of classifiers is not the

most pressing problem. Rather, dimensionality reduction is the fundamental

determining aspect of classification performance in high dimensions.

2.4. Misclassification rate estimation. In order to assess how good a classi-

fier is, or to compare classifiers, we would like to know the misclassification rate

(probability of misclassification) L. Unfortunately, knowing the exact value of L

requires knowledge of the (unknown) class-conditional distributions. Therefore,

an important issue in pattern recognition is the estimation of the misclassification

rate.

One method for misclassification rate estimation is called the training/test set

method: one selects a training set from which to build the classifier, and holds
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out an independent test set (for which the class labels are also known) upon

which to evaluate the classifier. This unbiased holdout estimate of classification

performance is denoted L̂m
n where n observations are used in training and m ob-

servations are used in testing. Analysis is easy: mL̂m
n is the sum of independent

Bernoulli random variables, and hence follows a Binomial(m, L(g|Dn)) distribu-

tion. A problem with this approach is that it requires the collection of additional

labelled data beyond that which is used to build the classifier. Labelled data

can be expensive, and one might want to use all the available labelled data for

training, under the assumption that this will yield a better classifier.

The method in which one uses all the labelled data to build the classifier and

then uses the same data to test the classifier is called resubstitution, denoted

L̂(R). The resubstitution error rate can sometimes be useful in the analysis of

classifiers, but obviously yields a biased (optimistic) estimate of the error.

An improvement on the resubstitution method, with some of the flavor of the

training/test method, is leave m-out cross-validation, denoted L̂
(m)
n . In this, m

observations are withheld from a training set of size n and are subsequently used

to test the resultant classifier. This is repeated with the next m observations,

until all observations have been in a test set (each observation is used in only one

test set). If m = 1, this is simply referred to as cross-validation. For a discussion

of the relative merits of various methods for estimating misclassification rate, see

Devroye et al. (1996) or Ripley (1996).

2.5. Clustering. In the unsupervised case, we have available to us feature

vectors Xn := {X1, . . . , Xn}′, with no class labels available. The goal is to cluster

these data in such a way as to provide clusters Ck ⊂ Xn, k = 1, . . . , K which

correspond to some (interesting? useful?) unobserved class labels. Clustering is

obviously a more difficult problem than classification. However, clustering is a

likely candidate for the exploitation subsystem in some ISP applications.

Clustering can be viewed as the discovery of latent classes within the data.

The clusters correspond to classes that were not identified by the collector of the

data. These can represent, for example, different variants of a disease in a medi-

cal application, previously unidentified subspecies in a biological application, or

different types of vehicle in an image processing application.

Unlike classification, clustering per se is not well posed. Before proceeding,

one must define (implicitly or explicitly) a definition of cluster. Different def-

initions lead to different clusterings, and without a priori information, there

is little reason to select one clustering over another. Thus, clustering depends

fundamentally on the underlying cluster model.

A further distinction is that clustering requires a determination of the number

of clusters. This can be done a priori, but usually it is done interactively, either

through presentation of potential classes to the user, or through some testing

procedure on the model. Thus, clustering combines all of the hard questions in

statistics: model selection, model building and model assessment.
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3. Integrated Sensing and Processing

The smooth functioning of industry, the government, and even our individ-

ual day-to-day activities increasingly relies on a broad spectrum of sensing sys-

tems keeping a vigilant eye (ears, nose, etc.) on myriad complex environments

and tasks. We are becoming accustomed to the benefits of sophisticated sens-

ing/exploitation systems, ranging from the CT scanners and magnetic resonance

imagers that our doctors may inflict upon us, all the way to the suite of radars,

thermal imagers, accelerometers, gps, and chemical sensors which some modern

cars carry. (Progress.) Moreover, vast quantities of sophisticated sensor data

is readily obtained for perusal in the comfort of one’s home: large quantities of

imagery from webcams, surveillance cameras, hyperspectral sensors, synthetic

aperture radars (SAR), and X-ray astronomical data, to name only a few types,

can all be quickly accessed on the internet.

The growing complexity and volume of digitized sensor measurements, the

requirements for their sophisticated real time exploitation, the limitations of hu-

man attention, and increasing reliance on automated adaptive systems all drive

a trend towards heavily automated computational processing of the flood of raw

sensor data in order to refine out essential information and permit effective ex-

ploitation. Complex computational tasks like image formation and enhancement,

feature extraction, target detection, classification, intelligent compression, index-

ing, and operator cueing contribute substantially to the successful operation of

the ubiquitous sensing systems essential for our modern technological society.

A generic sensor system may be viewed as a machine for converting informa-

tion about an object or situation through various representations. The infor-

mation is initially carried in physical fields (for example, light waves entering

a camera lens), transduced into a digital representation (such as the pixels of

a grayscale image), which may be computationally manipulated (contrast en-

hanced for example), and, in many cases, converted to concentrated symbolic

information (such as the identification of a particular person standing before the

camera). A cartoon model of the generic sensor system is depicted in Figure 1

with the feedforward flow of information from stage to stage indicated by the

horizontal arrows. Each subsystem in the figure performs its specific transforma-

tion of information in its turn, from physical fields to digital representation in the

physical layer, with digital manipulations and enhancements in pre-processing,

and finally exploitation to extract high level content. Digital processing generally

begins on a pixel array “thrown over the fence” from the physical layer. There

is generally little direct feedback from the processing layers to the physical layer

that would enable a rapid adaptation of that subsystem’s behavior on the basis

of discoveries or requirements of processing layers. In consequence, the physi-

cal layer typically measures a rather fixed representation of the physical fields,

and the digital processor endeavors to extract useful information out of this by

computational processing.
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Over the last 40 years the need for for effective computational processing and

exploitation of digitized sensor data has been met by advances in algorithms

from Digital Signal Processing (DSP) and statistical pattern recognition. These

advances have combined the power of applied mathematics with the growing

precision, stability, throughput, and easy availability of digital processors in an

attempt to meet the growing challenges posed by modern applications. One

big impact of these advances on sensor systems is the decoupling into the sub-

systems described previously: physical sensor layer, digital processor layer, dig-

ital/symbolic exploitation layer. This represents a significant transformation

of sensor/exploitation systems from those of previous times, when exploitation

tasks were not automated, and only rudimentary signal processing was performed

directly on sensor measurements in the analog domain. Within the current di-

vision of labor, analog manipulation is limited to the first stages of the physical

sensing, whereas recent computational mathematical developments in DSP and

pattern recognition naturally concern the digital processing and exploitation lay-

ers almost exclusively.

Recent DARPA sponsored reviews of trends in sensor systems have suggested

that the growth of computational complexity in sensor systems networks is

quickly becoming a hard limit to scale-up through the concomitant growth of

costs of hardware and software, power consumption, and specialization. As sen-

sor data volume and dimensionality grows, computational loads appear to be

outstripping the steady Moore’s law growth of processor power and the sporadic

algorithmic breakthroughs in throughput. One response to this is DARPA’s In-

tegrated Sensing and Processing (ISP) program, which attempts to meet this

challenge by leveraging mathematical advances across all components of a sens-

ing system. ISP seeks examples of sensing systems for which it is possible and

advantageous to jointly optimize traditionally the decoupled subsystems of a

sensor system. This contrasts sharply with standard approaches which indepen-

dently optimize subsystems such as the physical layer (sensor head), and the

various computational processing layers.

ISP begins with the observation that the main impact of mathematical de-

velopments for sensor systems in recent times has been in the processing and

exploitation layers, where the ability to computationally adapt mathematical

representations and transformations of digital data in real time enable the dis-

covery and exploitation of structure hidden in raw sensor output. Similar but

largely untapped opportunities now exist in a current generation of digitally

controllable sensor heads for a broad spectrum of phenomena, suggesting new

capability to adaptively sense features more informative than pixels.

To realize this capability will require effective mathematical optimizations and

control strategies which intelligently integrate currently disjoint tasks of sensing

and computation. This promises immediate benefit of “load balancing” between

sensor head and processing, with lower signal processing burden while greatly

improving the quality and information concentration of the measurements. Car-
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rying on with this idea, ISP contemplates “back end” functions such as classifier

algorithms playing an active role in dynamic control of their sensor inputs; in

effect playing a mathematically optimal game of “20 questions” through tailored

sensor queries suited to the task at hand and what is known or suspected up to

the present time. In the new picture of a sensor system, the components have

overlapping functionality and communicate data and control in an all-to-all load

balanced network.

In this paper, we demonstrate several simple “proof-of-concept” examples of

ISP, in which the exploitation subsystem feeds back to the sensor information

on what next to sense, based on the determination of the exploitation (classifier)

on the current data. Thus, based on preliminary classification of what has been

observed, the sensor changes what it is collecting and how it is processing the

observations. Again we refer to the cartoon presented in Figure 1. Traditionally,

a sensor collects measurements which are processed in some manner and fed to

a classifier. The classifier renders its decision and some action is taken based

on this decision. This traditional flow is indicated by the horizontal arrows.

In adaptive sensors a sensor-preprocessor feedback loop may be present. In

the full ISP scenario, the classifier also modifies the set of measurements to be

sensed based on exploitation-level feedback. Thus, based on analysis done in the

different subsystems, sensor adjustments are fed back to the sensor to improve

the overall performance of the system without adversely impacting the overall

throughput.

Sensor Preprocessor Exploitation

Figure 1. Integrated Sensing and Processing (ISP). The initial sensor measure-

ments are processed in the preprocessor. This may indicate adjustments to the

sensor (top arrow) — for example, to improve signal to noise ratio. Preliminary

classification results at the exploitation stage suggest changes to the sensing,

which information is also fed back to the sensor (bottom arrow).

One analogy for the ISP is a human doctor, viewed as an adaptive sen-

sor/exploitation system. The doctor collects preliminary information, tempera-

ture, blood pressure, etc. Then, based on these measurements and external in-

formation (for example, information about the outbreak of a plague), the doctor

selects new measurements to collect in order to improve or confirm the prelim-

inary diagnosis. This can be viewed as adjusting the sensor to collect different

or more precise information, based on a preliminary classification from the ex-

ploitation subsystem. Similarly, a hyperspectral sensor might adjust the spectral

range of the sensor based on preliminary indications from the classifier of the

potential class of the observed object.
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λ

Figure 2. Illustration of a hyperspectral data cube. The cube consists of spatial

images (bands) taken at different wavelengths λ.

The ISP approach will be illustrated in the following sections with a ped-

agogical example and two experimental applications. These illustrations will

demonstrate that for some simple but perhaps realistic situations the ISP idea

of utilizing information obtained in the classification subsystem to drive sensor

parameters can improve the overall performance.

4. Experiment: Hyperspectral Data Cube

For this experiment we have obtained from Naval Space Command a HyMap

hyperspectral data set— imagery of the airport at Dahlgren, Virginia (Figure

2). The data consist of 126 images, each one representing the appearance of the

scene in light which lies in a narrow spectral band. These bands are obtained

throughout the visible, near infrared, and short wave infrared range. Equiva-

lently, we can think of the data as a collection of spectra indexed by the spatial

locations in the scene. Spectral imagery data of this sort can provide information

about the spatial structure and chemical makeup of the objects within the scene

of regard, and is being exploited for problems of detection and identification in

a diversity of settings, ranging from biomedicine to defense.

Hyperspectral data gives very fine spectral resolution, but this is not always

an advantage. Obviously hyperspectral data is very high-dimensional compared

to multispectral imagery, which is similar in concept but comprised fewer, coarser

spectral bands. One must be concerned with the curse of dimensionality in the

statistical pattern recognition tasks applied to hyperspectral data. Moreover,

the large data sets produced by hyperspectral imagers can also lead to signifi-

cant computational and communication challenges, particularly for time-critical
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applications. Furthermore, the narrow spectral range of the hyperspectral bands

mean that one must collect light for some time before obtaining enough photons

in a given band to produce an image with reasonable signal-to-noise ratio. A

multispectral sensor with fewer bands would offer coarser spectral resolution but

could offer better time resolution, lower dimensional data, and less overall data

burden than a hyperspectral sensor. A multispectral sensor with tunable bands

could potentially offer some of the benefits of both worlds.

To explore this possibility, we used the more than 100 bands of the HyMap

hyperspectral data set as the basis for simulation of a two-band ISP sensor system

in which the two are chosen adaptively. For the purposes of this experiment, 6

bands with high noise were removed and 120 bands are used to give an indication

of the distribution of photons over wavelength. The coarse bands of the ISP

sensor are each the result of a Gaussian filter applied to the 120 band HyMap

spectrum. That is, for each spatial location, a weighted sum of the the spectral

intensities multiplied by the amplitude of a Gaussian with mean µλ and standard

deviation σλ is returned. Thus the sensor has four adjustable parameters: the

spectral means and standard deviations of the Gaussian filters.

Pixels were selected from the image and classed as corresponding to one of 7

classes, using ground truth based on a visit to the site. The 7 classes are: runway,

pine, oak, grass, water, brush, swamp. A training set of 700 observations (100

from each class, selected randomly) was chosen, and the remaining (14,048)

observations were designated a test set.

The experiment simulates an adaptable sensor which operates as follows. Ini-

tially the sensor collects information about the scene in two pre-specified bands

(the factory setting), simulated by applying the two Gaussian windows to the

HyMap data with fixed initial filter parameter settings. A classifier examines

the two band data for each pixel and indicates its coarse classification in the

form of the most likely (at most three) classes to which it may belong. Given

the classes that this first classifier identifies as contenders, the sensor adjusts its

filter parameters to collect new two band data optimized for the task of refining

the initial classification by discriminating among the short list of candidates se-

lected in round one. See Figure 3. Thus, the overall sensing and classification

takes place in multiple stages with feedback to the sensor to improve the results.

The classifiers must be trained and optimized; therefore for all stages, the train-

ing data has been split into two equal subsets, with one set used in classifier

construction and the other used to estimate the performance of the classifier.

More precisely:

Stage 1. We employ a 7-nearest neighbor classifier as the initial coarse-grained

classifier. For each observation presented to it, the labels of the top three most

likely classes (of the seven defined above) are returned. The filter parameters

defining the two bands of the sensor are selected so as to maximize the empirical

probability that this classifier places the correct class amongst the top three.
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These parameters, along with the 7-nearest neighbor classifier defined by the full

training set, constitutes the initial sensor/classification system. This provides the

“factory setting” of the system.

Stage 2. For each of the
(
7
3

)
“superclasses” (combinations of 3 candidate classes),

filter parameters are selected which optimize the classification of an observation

drawn from this superclass, narrowing down its classification to just one of these 3

candidates. That is, we optimize to maximize the probability that an observation

is assigned to the correct class given the data available for the 3 class “superclass”

identified for that observation in stage 1. The classifier applied to the sensor

features tuned to a given superclass is a 1-nearest neighbor classifier based on

the training data restricted to the 3 candidate classes of that superclass.

Again, performance is evaluated using the split training set, not the indepen-

dent test set. The filter parameters selected for each combination of classes will

be used to tune the sensor for the best possible discrimination when initial clas-

sification of a test observation indicates that particular combination of classes

constitutes the candidate set.

Stage 3. The overall classifier is tested as follows. For each observation in

the test set, the initial “factory setting” filter parameters are used to obtain the

initial two sensor features. The 7-nearest neighbor classifier is evaluated on these

initial features. Generally this will return the three leading candidate classes for

the observation. In the event that all 7 nearest neighbors are labelled with the

same class, unanimity is viewed as decisive and the test observation is classified

accordingly without further ado. Otherwise, the filter parameters appropriate

to the candidate set of classes are used to adapt the sensor and produce a new

feature vector. This new feature vector is passed to the appropriate nearest

neighbor classifier, which renders its decision.

The results of this experiment indicate that this optimization which includes

feedback from the exploitation subsystem can yield significant performance im-

provement. The initial classifier places the true class of the test observation

into the top three classes 94.15% of the time. This places a lower bound on the

possible performance of the overall system at L̂LB = 0.0585. Using a nearest

neighbor classifier on these features produces an error of L̂nn = 0.1844. (If in-

stead of optimizing the parameters for the top-3 classifier we optimize for the

nearest neighbor classifier we obtain an error of L̂optnn = 0.165.) Our two-stage

classifier, which adjusts the sensor based on a preliminary classification as sug-

gested by the “feedback loop” in Figure 1, has an error of L̂isp = 0.101. Thus

this experiment demonstrates a significant improvement due to altering sensor

parameters based on classification-specific feedback. Notice that we are simulat-

ing the effect of the Gaussian filter feature extraction; if implemented in a sensor

system, we would expect the classification performance to be even better due to

integration gains inherent in observing the spectral features directly.



INTEGRATED SENSING/PROCESSING FOR PATTERN RECOGNITION 237

Sensor

Top-3 Classifier

Classes

(1,2,3)
. . . Classes

(5,6,7)

1

2

3

4

Classifier

(1,2,3)

Classifier

(5,6,7)

5

λ λ

λ

Figure 3. Illustration of the hyperspectral experiment. First, the sensor collects

the default bands (1) and a classifier determines the top three classes most likely

to contain the true class (2). This determines the new bands to sense (3), which

is fed back to the sensor (4). The sensor collects the appropriate bands, which

are passed to the ultimate classifier (5).

5. Pedagogical Example: Multivariate Time Series

As a pedagogical example of ISP, consider a case in which each observa-

tion consists of a multivariate time series (this sort of data is rather common).

For each entity under investigation, the sensor is capable of observing any of

d > 1 time series (“bands”) on a time interval [0, T ] at a maximum resolution

rmax — that is, at equally-spaced times t1 = T/rmax, t2 = 2T/rmax, . . . , trmax
=

rmaxT/rmax = T . However, sensor and/or channel constraints dictate a max-

imum throughput for each observation of τ < d · rmax. This is a reasonable

simplified model of constraints which might imposed on a real systems by lim-



238 CAREY E. PRIEBE, DAVID J. MARCHETTE, AND DENNIS M. HEALY, JR.

itations of sensor power, available communications bandwidth, computational

power, etc.

We want to perform feature selection based on exploitation-level considera-

tions, but the exploitation subsystem cannot have access to all potential fea-

tures simultaneously. We assume that the sensor/processor subsystem is ca-

pable of adapting to subsample each band at a band-specific resolution rb <

rmax (with b ∈ {1, . . . , d})— that is, at equally-spaced times t1 = T/rb, t2 =

2T/rb, . . . , trb
= T . (The direct subsampling considered here is done without

any filtering of the continuous time input, and may introduce aliasing; we shall

see that ISP improvement is nonetheless possible.)

Given a training sample Dn of entities with known class labels (class-con-

ditional training sample sizes nj for j ∈ {1, . . . , J} with
∑J

j=1 nj = n) the goal

is to optimize, based on classification performance, over the collection of band-

specific resolutions. That is, we seek

~r∗ := arg min
~r∈Rτ

L~r(g|Dn)

where L~r(g|Dn) denotes the probability of misclassification for classifier g trained

on training sample Dn which has been subsampled in accordance with resolutions

~r and, for c > 0,

Rc :=

{
~r = [r1, . . . , rd]

′ ∈ [0, rmax]d :
d∑

b=1

rb ≤ c

}
.

Thus Rτ is the collection of band-specific resolutions satisfying the throughput

constraint τ .

However, since the exploitation subsystem never sees all the dimensions si-

multaneously, this optimization must be performed iteratively. That is, we be-

gin with an initial sensor setting (say uniform allocation of resolution, ~r1 =

[τ/d, . . . , τ/d]′) and obtain some measure of which bands are useful for the clas-

sification task at hand. This information is provided to the sensor/processor

subsystem, and the resolution is increased for the more useful bands and de-

creased for the less useful bands. (We operate here under the guiding principle

that higher resolution for bands with discriminatory information is likely to yield

an improvement in classification performance. For this version of ISP to work—

as opposed to yielding random search— some such guiding principle must be

present to allow the sensor/processor subsystem to choose which measurements

to make based on feedback from the exploitation subsystem.)

Let L1 := L~r1(g|Dn) represent the mis-classification performance using fea-

tures at the initial choice of resolutions, ~r1. The (penalized) feature selection in

the first iteration,

~r1∗ := arg min
~r∈Rτ

L~r(g|Dn) + λ

d∑

b=1

rb
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yields performance L1∗ := L~r1∗(g|Dn). We expect, if d is large and the number

of bands with significant discriminatory information is small, that L1∗ < L1.

This expected improvement is due to the fact that this feature selection repre-

sents dimensionality reduction and, in high dimensions with finite training data,

dimensionality reduction done properly can yield superior performance due to

the curse of dimensionality. (Recall the Jain–Trunk example.)

A simpler version of this feature selection is to perform a band-by-band anal-

ysis to determine which bands are useful and which bands are to be discarded.

This can be accomplished by considering the special unpenalized “all or nothing”

choice of bands:

~r1∗ := arg min
~r∈R̃′

τ

L~r(g|Dn)

with

R̃′
τ := {~r = [r1, . . . , rd]′ ∈ {0, τ/d}d}.

At this stage, those bands b for which r1∗
b = 0 are to be discarded, with the newly-

available channel capacity to be evenly allocated among those bands which have

been deemed useful. Thus ~r2 = [r2
1 , . . . , r

2
d]′ where

r2
b = I{r1∗

b > 0} · τ/
∑

β I{r1∗
β > 0}.

Finally, we define L2 := L~r2(g|Dn). If our guiding principle — in this case, that

higher resolution will increase the discriminatory information in the useful bands,

then we expect that L2 < L1∗.

Of course, the probability of misclassification is not generally available for use

in our optimization objective. Using the available training data Dn we can, for

any given ~r, obtain an estimate L̂~r(g|Dn) of the probability of misclassification.

Thus we can, in principle, seek

~̂r∗ := arg min
~r∈Rτ

L̂~r(g|Dn).

Alternatively, some appropriate surrogate may be employed. For instance, a

simple classifier g — a classifier for which L̂~r(g|Dn) is readily available—can be

used in the optimization. Then a more elaborate classifier g′ can be used for

the ultimate exploitation. This surrogate approach will be considered in the

sequel. Note, however, that when exploitation means classification, as it does

herein, appropriate surrogates will likely still require class label information and

may need to reside at the exploitation subsystem— on the opposite side of the

channel throughput constraint from the sensor/processor subsystem.

We consider for illustration the case in which each class j, band b process is

autoregressive. That is, the i-th observation Xj,b,i, i = 1, . . . , nj, is given by an

(independent) autoregressive ARj,b(p) process of order p ≥ 1;

Xj,b,i(tk) =

p∑

l=1

αj,b,lXj,b,i(tk−l) + ε(tj,b,i,k)
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for tk ∈ {. . . ,−2T/rmax,−T/rmax, 0, T/rmax, 2T/rmax, . . .}, where the ε(tj,b,i,k)

are iid normal(0, σ2
ε). We write ~αj,b = [αj,b,1, . . . , αj,b,p]

′ to denote the class-

specific, band-specific time series parameter vector. (Recall that a requirement

for stationarity yields a constraint on ~αj,b.)

In this case, no purely signal processing considerations will allow for the de-

termination of which bands/resolutions are to be preferred. This determination

must be made based on feedback from the exploitation module which is in turn

based on an analysis necessarily taking into account the class labels— classifica-

tion performance analysis or some appropriate surrogate.

Maximum likelihood estimates of the parameters ~αj,b can be obtained based

on observations of the training entities. These estimates are consistent and

asymptotically normal (Anderson (1971)). Thus the training sample provides

for an asymptotically Bayes optimal classifier.

Furthermore, this provides for a reasonable surrogate. For each band b an hy-

pothesis test of H0 : ~α1,b = ~α2,b against the general alternative can be performed

using Hotelling’s T 2 test statistic (Muirhead (1982)), for instance. Those bands

for which the null hypothesis is rejected at some specified significance level are

considered to be “useful” for discrimination. The consistency of the hypothesis

test employed implies that, in the limit, good bands will not be discarded while

most bands with no discriminatory information will be discarded. For instance,

for d = 25 with exactly five of the bands useful for discrimination, testing at the

0.05 level of significance will be expected to reject for 19 of the 20 useless bands

while rejecting for all five of the useful bands (as the estimates ~̂αj,b approach

their asymptotic distributions). It follows that L1? < L1 for large T .

More specifically, for the two class, two band AR(1) case (p = 1, J = 2, and

d = 2), consider T = 1, rmax = 100, and initial sensor settings of rb = 50 for

b = 1, 2 (~r1 = [50, 50]′). Let the class j = 1 model be specified by α1,1 = α1,2 = 0;

similarly, let the class j = 2 model be specified by α2,1 = 0 and α2,2 = 0.1. (For

p = 1 we drop the superfluous lag subscript l from the parameters αj,b,l.) Thus

there is no discriminatory information in band b = 1, while band b = 2 at

the highest resolution will allow for optimal discrimination. For these AR(1)

processes, a t-test of H0 : α1,b = α2,b is an appropriate surrogate, and is here

employed. To obtain ~r1∗ we optimize over R̃′
100 via these t-tests, meaning that

if exactly one band rejects the null hypothesis we completely eliminate the band

which fails to reject and up-sample, to full resolution rmax = 100, the band

which does reject the null hypothesis. Using class-conditional training sample

sizes nj = 10, classification performance based on these observations, as measure

by a Monte Carlo estimate L̂ based on 50 Monte Carlo replicates of 100 test

samples per class per replicate, is

L̂1 = 0.2184, L̂1∗ = 0.2156, L̂2 = 0.0426.

Thus, as designed, the exploitation-based feedback and sensor adaptation yield

L̂2 � L̂1. As noted above, the consistency of the hypothesis test employed in
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this example implies that, for large enough class-conditional sample sizes, this

empirically observed result can be proved; that is, L2 � L1. (Note that, since

d = 2 for this case, L̂1 ≈ L̂1∗ is not surprising.)

Regarding the first feature selection, 43 times out of 50 Monte Carlo replicates

this selection correctly chose band b = 2 (~r1∗ = [0, 50]′). In five cases both bands

yielded rejection in the hypothesis test, in which cases L2 = L1∗ = L1. In

one case neither band yielded rejection; again L2 = L1∗ = L1. In one case

band b = 1 only — the wrong selection!— yielded rejection; for this one replicate

L̂2
repl > L̂1∗

repl > L̂1
repl.

6. Experiment: “Artificial Nose” Chemical Sensor

We consider data taken from a novel chemical sensor/optical read-out system

designed and constructed at Tufts University. The fundamental component of

this sensor is a solvatochromic dye embedded in a polymer matrix White et al.

(1996) which responds to the introduction of a chemical analyte to its environ-

ment with a change in its fluorescence intensity. These basic devices can be

fabricated in a number of well characterized variants, each responding in some

way to particular chemical analytes Dickinson et al. (1996). In general, the de-

vices are cross reactive rather than specific; that is, each will respond significantly

to a variety of analytes, although fortunately with differences in the details of

the response signature from one analyte to another. By analyzing the responses

of several of these devices one may obtain a specific identification in many cases

of interest.

For application of these devices in a sensor system, the fluorescence signature

must be stimulated and read-out during the exposure of a device to an analyte.

For example, a device can be attached to an optical fiber through which laser

illumination is provided in order to stimulate the signature fluorescence of that

device. The resulting light signal is conducted back through the same fiber for

read-out. Typically, an array of devices with their optical fiber readouts will be

bundled together to make a sensor. See Priebe (2001) for a discussion of pattern

recognition for this kind of sensor.

The Tufts data we study in this section was obtained from a bundle of 19

varying sensors attached to fibers. An observation is obtained by passing an

airborne analyte (a single chemical compound or a mixture) over the fiber bundle

in a four second pulse, or “sniff.” The information of interest is the change over

time in emission fluorescence intensity of the dye molecules for each of the 19

fiber-optic sensors (see Figure 4).

Data collection consists of recording sensor responses to various analytes at

various concentrations. Each observation is a measurement of the time varying

fluorescence intensity at each of two wavelengths (620 nm and 680 nm), within

each sensor of the 19-fiber bundle. The sensor produces observations Xj,i,b(tk)

where b = 1, . . . , d = 38 represents the fiber-bandwidth pair φ · λ for fibers
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Figure 4. The Tufts artificial nose consists of optical fibers doped with a sol-

vatochromic dye. Reaction of the polymer matrix with an analyte produces

photons which are sampled at two wavelengths to produce a response for each

fiber. These photons are captured by a CCD device, resulting in a time series of

light intensity above (or below) the background intensity. The figure illustrates

the response of two fibers sampled at a single wavelength.

φ ∈ {1, . . . , 19} and wavelengths λ ∈ {1, 2}. The index i = 1, . . . , n represents

the observation number. The class label j flags the presence or absence of a

chemical of interest, described in more detail below. While the process is natu-

rally described as functional with t ranging over a 20 second interval [0, T = 20],

the data as collected are discrete with the 20 seconds recorded at rmax = 60

equally spaced time steps tk = 20
60 , 40

60 , . . . , 1200
60 , for each response. Construction

of the database involves taking replicate observations for the various mixtures of

chemical analytes.

The sensor responses are inherently aligned due to the “sniff” signifying the

beginning of each observation. The response for each sensor for each observation

is normalized by manipulating the individual sensor baselines. This preprocess-

ing consists of subtracting the background sensor fluorescence (the intensity prior

to exposure to the analyte) from each response to obtain the desired observation:

the change in fluorescence intensity for each fiber at each wavelength. Functional

data analysis smoothing techniques are utilized to smooth each sensor response

Ramsay and Silverman (1997).

The task at hand is the identification of an unlabelled odorant observation

X . Specifically, we consider the detection of trichloroethylene (TCE) in complex

backgrounds. (TCE, a carcinogenic industrial solvent, is of interest as the target

due to its environmental importance as a groundwater contaminant.)

In addition to TCE in air, eight diluting odorants are considered: BTEX (a

mixture of benzene, toluene, ethylbenzene, and xylene), benzene, carbon tetra-

chloride, chlorobenzene, chloroform, kerosene, octane, and Coleman fuel. Dilu-

tion concentrations of 1:10, 1:7, 1:2, 1:1, and saturated vapor are considered.

We consider the training database Dn = [(X1, Y1), . . . , (Xn, Yn)]′ to consist

of 38-dimensional time series (representing odorant observations) and their as-

sociated class labels Yi ∈ {1, 2} (TCE absent and present, respectively). The

database Dn consists of n1 observations from class 1 and n2 observations from

class 2. Class 1, the TCE-absent class, consists of n1 = 352 observations; the

database Dn contains 32 observations of pure air and 40 observations of each of
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the eight diluting odorants at various concentrations in air. There are likewise

n2 = 760 class 2 (TCE-present) observations; 40 observations of pure TCE, 80

observations of TCE diluted to various concentrations in air, and 80 observations

of TCE diluted to various concentrations in each of the eight diluting odorants

in air are available. Thus there are n = n1 + n2 = 1112 observations in the

training database Dn. This database is well designed to allow for investigation

of the ability of the sensor array to identify the presence of one target analyte

(TCE) when its presence is obscured by a complex background; this is referred

to as the “needle in the haystack” problem. This is the database considered in

Priebe (2001).

As in our pedagogical autoregressive process example, we consider a through-

put constraint. In this case, with d = 38 and rmax = 60, consider a through-

put constraint of τ = 1140 < d · rmax = 2280. Then τ/d = 30. Let ~r1 =

[τ/d, . . . , τ/d]′ = [rmax/2, . . . , rmax/2]′. With this initial set up we obtain L̂1 =

0.237. (Probability of misclassification error rates here are obtained via 10-fold

cross-validation using the one-nearest neighbor classifier.)

We obtain ~r1∗ by optimizing over R′
τ . Actually, this still leaves 238 candidate

dimensionality reductions to consider, and so we “sub-optimize”; we calculate

L̂b(g|Dn) for each individual band b = 1, . . . , d and select the “best few”. A

subset of 12 of the 38 bands are selected based on this criterion, and after this

optimization we obtain L̂1∗ = 0.121.

The best 12 individual bands selected for ~r1∗ are then upsampled, while the

remaining 38 are downsampled. The components of ~r2 are given by

r2
b = I{r1∗

b > 0} · rmax + I{r1∗
b = 0} · rmax/4.

After optimization and feedback adjustment we obtain L̂2 = 0.102.

We have, as desired, L̂2 < L̂1∗ < L̂1. The improvement from ~r1 to ~r1∗

is dramatic, indicating that the dimensionality reduction employed— although

simplistic — was successful. Using ~r2 as opposed to ~r1∗ yields an improvement

of 1.9%. The reduction in misclassification rate is from 134 misclassified to 113

misclassified— 21 observations, or 15.7% of the previously misclassified observa-

tions. This improvement obtained by using ~r2 as opposed to ~r1∗ is statistically

significant (McNemar’s test).

7. Discussion

We have presented examples illustrating “Integrated Sensing and Process-

ing” (ISP) as a path towards end-to-end optimization of a sensor/processor/

exploitation system with respect to its performance in supervised statistical pat-

tern recognition (classification) tasks. The approach we have studied in this

paper takes the form of dimensionality reduction in sensor feature space coupled

with adaptation of sensor features. These techniques are aimed explicitly at
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improving an exploitation objective— probability of misclassification— and are

necessarily implemented iteratively due to throughput constraints.

We note that the results presented are quite preliminary and only begin explo-

ration of the ISP concept. For instance, classifier adaptation and optimization

is certainly an aim in ISP, although we have not pursued this direction in the

present paper. Ultimately, ISP seeks to jointly optimize sensor function, digital

preprocessing, and exploitation systems, including classifier design; however, it

is our belief that this issue is secondary to that of dimensionality reduction for

many high-dimensional classification applications.

Dimensionality reduction is fundamentally important for many disparate ap-

plications in pattern recognition as well as in other fields including control, mod-

eling and simulation, operations research, and visualization. The topic is the

subject of intense research in these various communities, and now becomes a

fundamental enabling technology for the new discipline of ISP. In this paper we

have considered only very simple dimensionality reduction methodologies, which

just begin to indicate the possibilities and implications for integrating sensing

and processing. Nevertheless, we feel that the results of these first experiments

indicate significant promise for this line of inquiry.

A critically important aspect of the dimensionality reduction strategies con-

sidered in this paper is the identification of some guiding principle or heuristic

for guiding the sensor/processor subsystem in its choices of which measurements

to make based on dimensionality-reduction feedback from the exploitation sub-

system. The choice of such a principle is a sensor- and application-specific task.

For many multivariate time series scenarios “higher resolution in useful bands”

approach taken in this paper seems to be a reasonable principle. This might be

extended to include variable resolution in quantization, or in spatial sampling

in other sensors. Finding appropriate guiding principle(s)for various important

cases of practical interest may perhaps represent the single most important as-

pect of developing a workable ISP methodology.
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Abstract. In this paper we investigate quadrature rules for functions on
compact Lie groups and sections of homogeneous vector bundles associated
with these groups. First a general notion of band-limitedness is introduced
which generalizes the usual notion on the torus or translation groups. We
develop a sampling theorem that allows exact computation of the Fourier
expansion of a band-limited function or section from sample values and
quantifies the error in the expansion when the function or section is not
band-limited. We then construct specific finitely supported distributions on
the classical groups which have nice error properties and can also be used
to develop efficient algorithms for the computation of Fourier transforms
on these groups.
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1. Introduction

The Fourier transform of a function on a compact Lie group computes the
coefficients (Fourier coefficients) that enable its expression as a linear combina-
tion of the matrix elements from a complete set of irreducible representations
of the group. In the case of abelian groups, especially the circle and its lower
dimensional products (tori) this is precisely the expansion of a function on these
domains in terms of complex exponentials. This representation is at the heart
of classical signal and image processing (see [25; 26], for example).

The successes of abelian Fourier analysis are many, ranging from national
defense to personal entertainment, from medicine to finance. The record of
achievements is so impressive that it has perhaps sometimes led scientists astray,
seducing them to look for ways to use these tools in situations where they are
less than appropriate: for example, pretending that a sphere is a torus so as
to avoid the use of spherical harmonics in favor of Fourier series —a favored
mathematical hammer casting the multitudinous problems of science as a box of
nails.

There is now however in the applied and engineering communities, a growing
awareness, appreciation, and acceptance of the use of the techniques of non-
abelian Fourier analysis. A favorite example is the use of spherical harmonics
for problems with spherical symmetry. While this is of course classical mathe-
matical technology (see [2; 23], for example), it is only fairly recently that serious
attention has been paid to the algorithmic and computational questions that arise
in looking for efficient and effective means for their computation [4; 8; 22]. Re-
cent applications include the new analysis of the cosmic microwave background
(CMB) data— in this setting, the highest order Fourier coefficients of the func-
tion that measures the CMB in all directions from a central point are expected
to reveal clues to understanding events in the first moments following the Big
Bang [24; 32]. Other examples include the use of spherical harmonic transforms
in estimation and control problems on group manifolds [18; 19], and for the so-
lution of nonlinear partial differential equations on the sphere, such as the PDEs
of climate modeling [1]. The closely related problem of computing Fourier trans-
forms on the Lie group SO(3) is receiving increased attention for its applicability
in volumetric shape matching [13; 14; 17].

In order to bring these new transforms to bear on applications, we must
bring the well-studied analytic theory of the representations of compact groups
(see [33], for instance) into the realm of the computer. Generally speaking,
implementation requires that two problems need to be addressed. On the one
hand we need to find a reduction of the a priori continuous data to a finite set
of samples of the function, and possibly of its derivatives as well, and we must
solve the concomitant problem of function reconstruction, which may only be
approximate, from this finite set of samples. This is the sampling problem. On
the other hand, efficient and reliable algorithms are required in order to turn the
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discrete data into the Fourier coefficients. These sorts of algorithms go by the
name of Fast Fourier Transforms or FFTs.

In the abelian case the theory and practice are by now well-known. Shannon
sampling is the terminology often used to encompass the solution of the sam-
pling problem for functions on the line, or — and more relevant to this paper—
the problem of sampling for a function on the circle, while the associated FFT
provides tremendous efficiencies in computation.

In this paper we focus on the sampling problem for compact Lie groups,
through an investigation of quadrature rules on these groups. Following the
well-known abelian case we distinguish between two situations: the band-limited
case in which the function in question is known to have only a finite number
of nonzero Fourier coefficients, and the non-band-limited case. In the former
situation it is possible to exactly reconstruct the function from a finite collection
of samples, while in the latter, the best we can hope for is an approximation to the
Fourier expansion, as well as some measure of how close is this approximation.

We first describe a general setting, a filtered algebra, where an extension of
the classical notion of band-limited, as in [28], makes sense, and adapt it to
the special case of functions on a compact Lie group, G. We define a space of
functions As on G, the band-limited functions with band-limit s, in such a way
that As.At is contained in As+t. Then we develop a sampling theorem of the
following form:

Assume ϕ is a distribution on G and f is a continuous function on G that
is sufficiently differentiable for the product f.ϕ to exist. There is a canonical
projection, Ps, from the space of distributions onto As. We describe norms, ‖ ‖,
‖ ‖∗, ‖ ‖∗∗ such that

‖Ps(f.(ϕ− µ))‖ ≤ M(s, t)‖ϕ− µ‖∗‖(1− Ps)f‖∗∗,
provided that Ps+t(ϕ − µ) = 0, where µ is Haar measure of unit mass on the
group and M(s, t) is a function which we explicitly bound in the case of the
classical groups.

When f is band-limited this gives a condition on the distribution used to
sample f that allows exact computation of the Fourier transform of f from the
sampled function. When f is not band-limited it quantifies the error introduced
when using the Fourier expansion of f.ϕ to approximate that of f . In particular
we show that for sufficiently differentiable functions the projection of the approx-
imate expansion onto a space of band-limited functions closely approximates the
projection of the original function onto this space without requiring significantly
more sample values than the dimension of the band-limited space. The amount
of oversampling is related to the growth function of the algebra generated by
the matrix coefficients, and hence to its Gel’fand–Kirillov dimension. This is the
content of Section 2.

In Section 3 we extend these results to the expansion of sections of homoge-
neous vector bundles in terms of basis sections coming from the decomposition of
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the corresponding induced representation, e.g. the expansion of a tensor field on
the sphere in tensor spherical harmonics [16]. Finally in Section 4 we construct
finitely supported distributions on the classical groups which are convolutions
of distributions supported on one parameter subgroups and which have all the
properties required by the sampling theorem, i.e. Ps+t(ϕ− µ) = 0 and ‖ϕ− µ‖∗
is bounded. These distributions can be used to develop fast algorithms for the
computation of Fourier transforms on these groups. A general algebraic ap-
proach for such algorithms, which uses efficient algorithms for computing with
orthogonal polynomial systems [5], is presented in [21].

Remark. This paper only considers the compact case, but the non-compact
is at least as interesting. In this setting G. Chirikjian has pioneered the use of
representation theoretic techniques for a broad range of interesting applications
including robotics, image processing, and computational chemistry [3].

2. Sampling of Functions

Before going into the general situation it is instructive to consider the familiar
case of functions on the 2-sphere S2, identified with the subalgebra of functions
on the compact Lie group SO(3) that right-invariant with respect to transla-
tion by SO(2), the subgroup of rotations that leave fixed the North Pole. See
Section 2.2.1 for notation.

Example: The Fourier transform on S2. Let Ylm, with |m| ≤ l, denote the
spherical harmonic on S2 of order l and degree m (see [23] for explicit definitions).
Any continuous function, f , on S2 has an expansion in spherical harmonics∑

lm almYlm which converges under suitable conditions on f , e.g., when f is C2.
The coefficients alm are called the Fourier coefficients of the function f .

Assume s is a nonnegative integer; then f is said to be band-limited with
band-limit s if all the coefficients alm in the expansion of f are zero for l > s,
i.e. if f =

∑
|m|≤l≤s almYlm. If we now pick N = (s + 1)2 points x1, . . . , xN on

S2 in general position, then the function values of f at these points completely
determine f provided f is band-limited with band-limit s, so the linear map
from function values (f(xi))1≤i≤N to coefficients (alm)|m|≤l≤s is a vector space
isomorphism. The numbers alm can be found from the function f using the
formula alm =

∫
S2 f.Ylmdµ, where µ is the invariant measure on the sphere of

unit mass. We can also find these numbers by inverting the equations f(xi) =∑
|m|≤l≤s almYlm(xi). Another method would be calculate the integrals using

sums of the form

N∑

i−1

f(xi)Ylm(xi)wi,
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where the wi are numbers, called sample weights, depending only on the points
xi. This is only possible, however, if the wi and the xi satisfy

N∑

i=1

Ylm(xi)wi = δ(0,0),(l,m) for |m| ≤ l ≤ s,

which is not usually possible for general sets of N = (s + 1)2 points, but is
possible for general sets of N = (2s + 1)2 points; the condition then determines
the sample weights, wi. This is precisely the condition that we can integrate
exactly any band-limited function of band-limit 2s using the points and weights,
and it follows from the fact that the product of two band-limited functions of
band-limit s has band-limit 2s.

What about functions that may not be band-limited? To treat this more
general case we first rewrite this discussion. Let As denote the space of band-
limited functions with band-limit s, let ϕs =

∑
wiδxi

be a finitely supported
measure on S2, and let blm =

∫
S2 f.Ylmdϕs be the Fourier coefficients of the

finite measure f.ϕs. If f is in As and 〈ϕs − µ, A2
s〉 = 0, then alm = blm for

|m| ≤ l ≤ s; to obtain the condition above note that A2
s = A2s. If f is not in

As, then we can not assume that we will have alm = blm for l ≤ s, but we can
bound the error. It follows from the example immediately after Theorem 3.7
that, provided 〈ϕs − µ, A2s〉 = 0, we have

s∑

l=0

(2l+1)

( l∑

m=−l

(blm−alm)2
)1/2

≤ 2(s+1)4
( N∑

i=1

wi

)∑

l>s

(2l+1)

( l∑

m=−l

a2
lm

)1/2

.

Let Ps denote the projection from the space of distributions C0(S2)′ onto As

given by truncation of the expansion in spherical harmonics, then we can rewrite
the above inequality to obtain

‖Ps(f.(ϕs − µ))‖C0 ≤ ‖Ps(f.(ϕs − µ))‖A0 ≤ 2(s + 1)4‖ϕs‖C′0‖(1− Ps)f‖A0

≤ K‖ϕs‖C′0‖(1− Ps)f‖W6 ,

where ‖ ‖A0 is the norm of absolute summability inherited from that on SO(3),
‖ ‖W6 is the Sobolev norm on C6, and K is a positive constant; the last inequality
follows from an application of Bernstein’s theorem on SO(3) (see [6; 27]). Hence,
of f is in C6, and ϕs is a sequence of measures on S2 which converges weak-∗ to
µ and for which 〈ϕs, A2s〉 = 0, then ‖Ps(f.(ϕs − µ))‖C0 tends to zero as s tends
tends to infinity.

This approach to the construction of quadrature rules for functions on S2,
can be generalized, and is the goal of the remainder of this section, which is
divided into two parts. First we generalize the band-limited sampling of the
introduction to filtered algebras and outline an approach for dealing with func-
tions which are not band-limited. Next we treat the case of continuous functions
on a compact Lie group, G. Any such function, f , has a Fourier expansion in
terms of the matrix coefficients of irreducible unitary representations of G. The
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Fourier transform of f is the collection of all coefficients in this expansion, and
may be represented as an element of the space

∏
γ End Vγ , where γ ranges over

the irreducible unitary representations of G, and Vγ is the space on which this
representation acts. Sampling a Cm function, f , corresponds to multiplying it by
a distribution, ϕ, of order at most m. By putting norms on the space

∏
γ End Vγ

we can, under suitable assumptions on ϕ, bound the difference between a finite
number of the Fourier coefficients of f and f.ϕ.

In what follows we assume a familiarity with the basic ideas and tools of the
representation theory of compact groups. There are many excellent resources for
this material. Standard texts include [33; 29].

2.1. An Abstract Framework. Several of the results of this paper fit into a
simple framework. Assume A is a complex algebra and {As} is a set of subspaces
of A such that As.At ⊆ As+t, where s and t range over some semigroup, which
we shall take to be the non-negative integers or reals. Let A′ denote the dual of
A, and define a A-module structure of A′ by

(a.ϕ)(g) = ϕ(g.a)

for any a, g in A, and ϕ in A′. Let Ps denote the projection from A′ onto A′s
given by restriction of linear functionals. Then we have the following trivial
result.

Lemma 2.1. Assume ϕ, µ are linear functionals in A′ such that Ps+t(ϕ−µ) = 0.
Then

Ps(f.ϕ) = Ps(f.µ)

for any f in At.

This lemma simply states that, if the linear functionals, ϕ and µ, agree on the
subspace As+t, then they also agree on the subspace As.At.

Example. Assume A is a finitely generated C-algebra with identity, and let S

be a finite generating set containing the identity. Define S0 = C.1, and let Sk

denote the span of all products of k elements of S. Then Sk.Sl = Sk+l for any
nonnegative integers k and l.

The lemma above does not necessarily hold for elements, f , which do not belong
to At. To deal with this case, let us introduce norms on the algebra, A. Assume
that ‖ ‖A′s is a norm on A′s and that ‖ ‖A, ‖ ‖B are norms on A. Let AA′ be
the continuous dual of A with respect to ‖ ‖A, let ‖ ‖′A denote the dual norm,
and let AB be the completion of A with respect to ‖ ‖B . Now define

M(s, t) = sup{‖Ps(h.ϕ)‖A′s : ‖h‖B = 1, ‖ϕ‖′A = 1, h ∈ A, ϕ ∈ A′, Ps+tϕ = 0}.

When there is a possibility of confusion, we shall denote this M
A′s,A
B (s, t). If

M(s, t) < ∞ then Ps(h.ϕ) is well defined whenever ϕ is in the A-continuous
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dual of A, Ps+tϕ = 0, and h is in the B-completion of A. In addition, it only
depends on the coset of h modulo At.

Lemma 2.2. Assume ϕ, µ are linear functionals in AA′ such that Ps+t(ϕ−µ) =
0, and let h ∈ AB. Then

‖Ps(f.ϕ)− Ps(f.µ)‖A′s ≤ M(s, t)‖ϕ− µ‖′A‖f‖B/At

where ‖ ‖B/At
denotes the quotient seminorm on AB/At.

The next section of this paper is concerned with bounding M(s, t) in the case
where A is the algebra spanned by the matrix coefficients of finite dimensional
representations of a compact Lie group. We shall also bound the quantity

M(s, t) = sup{‖e.h‖A/As+t
: ‖e‖As = 1, ‖h‖B = 1, e ∈ As, h ∈ A}

for some particular choices of norms ‖ ‖As
on As. If As is finite dimensional

and ‖ ‖A′s is dual to ‖ ‖As , then we have M(s, t) ≤ M(s, t). Weakening ‖ ‖A or
‖ ‖A′s , or strengthening ‖ ‖B or ‖ ‖As will decrease M(s, t) and M(s, t).

When the algebra A has a symmetric bilinear form 〈 , 〉 such that 〈a1, a2.a3〉 =
〈a1.a2, a3〉, then we have an A-module morphism from A into A′. Thus we can
translate Lemma 2.1 into a statement about subspaces of A.

Lemma 2.3. (i) A⊥s+t.As ⊆ A⊥t .
(ii) Let A−s = ∪t≤sAt, then A−⊥s+t.As ⊆ A−⊥t .

Proof. Part (ii) holds because As.A
−
t ⊆ A−s+t. ¤

2.2. Sampling of Functions on a Compact Lie Group

2.2.1. Notation and conventions. In what follows, we’ll assume G is a connected
compact Lie group, with Lie algebra g. Let T be a maximal torus of G and t be
it’s Lie algebra, then h = tC is a Cartan subalgebra of gC . Choose a fundamental
Weyl chamber and for any dominant integral weight, λ, let ∆λ be the irreducible
Lie algebra representation of highest weight λ. If Ĝ denotes the unitary dual of
G, then the map sending an irreducible unitary representation, ρ, to it’s highest
weight allows us to identify Ĝ with a subset of the set the set of all dominant
integral weights. For any λ in Ĝ denote the group representation of highest
weight λ by ∆λ as well, and set dλ = dim∆λ =

∏
α∈∆+(〈λ + δ, α〉 / 〈δ, α〉) where

δ = 1
2

∑
α∈∆+ α and 〈 , 〉 is the Killing form, and ∆+ is the set of positive roots.

Let r = dim([G,G] ∩ T ) be the semisimple rank of G, l be the dimension of the
center of G, and k be the number of positive roots of G. Then 2k+r+l = dim G,
and dλ is a polynomial of degree k on h∗. For any representation, ρ, of G, let ρ∨

be the representation dual to ρ. This gives an involution, ( )∨ on Ĝ.
Choose a norm on g. For any nonnegative integer, m, define a norm on Cm(G),

by ‖f‖Cm = sup{‖L(X1 . . . Xp)f‖∞ : 0 ≤ p ≤ m, X1, . . . , Xp ∈ g, ‖X1‖ = . . . =
‖Xp‖ = 1}, where L is the left regular representation. Denote the dual norm
on Cm(G)′, by ‖ ‖Cm

′ . These norms are all invariant under the right regular
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representation. If we were to replace the left regular representation by the right
regular representation in the above definitions, we would get an equivalent set of
norms invariant under the left regular representation. For 0 ≤ m ≤ ∞, denote
bilinear pairing between Cm(G)′ and Cm(G) by 〈 , 〉. For ϕ in Cm(G)′, and
g, h in Cm(G), we have 〈ϕ, g.h〉 = 〈ϕ.g, h〉. Define an involution on C∞(G) by
f̆(x) = f(x−1), and anti-involutions by f̄(x) = f(x), f∗(x) = f(x−1). These
extend to involutions and anti-involutions on C∞(G)′ by setting 〈T̆ , f〉 = 〈T, f̆〉,
〈T̄ , f〉 = 〈T, f̄〉, and T ∗ = ˘̄T , for any T ∈ C∞(G)′ and f ∈ C∞(G). If µG denotes
Haar measure on G of unit mass, then the map f 7→ f.µG gives us an inclusion
L1(G) ⊆ C0(G)′, and since G is compact, we also have inclusions Lp(G) ⊇ Lq(G)
for 1 ≤ p ≤ q ≤ ∞. Denote the Lp norm on Lp(G) by ‖ ‖p.

Let A denote the span of all matrix coefficients of finite dimensional unitary
representations of G. Then A is a subalgebra of C∞(G) under pointwise multi-
plication of functions. A is invariant under the involutions, ,̄ ,̆ ∗, and the pairing
〈 , 〉 restricts to a nondegenerate bilinear form on A. The hermitian form 〈f, g〉
is positive definite so the bilinear form is nondegenerate on any subspace of A

closed under .̄ In particular, if As = As then we can use the bilinear form to
identify A′s with As. We shall use ⊥ to refer to orthogonal complements taken
with respect to the bilinear form. For a subspace closed under ¯ this is the same
as the complement taken with respect to the hermitian form. For any λ ∈ Ĝ, let
Aλ be the span of the matrix coefficients of ∆λ. The Schur relations show easily
that A⊥λ =

∑
µ∈Ĝ\{λ⊥}Aµ.

2.2.2. The Fourier transform. Let F(Ĝ) =
∏

λ∈Ĝ EndVλ, where Vλ is the Hilbert
space on which ∆λ acts. Choose a norm on h∗. For 1 ≤ q < ∞ and 0 ≤ m < ∞,
define on F(Ĝ) the following norms, which may possibly be infinite:

‖A‖Fq =

( ∑

λ∈Ĝ

dλ‖Aλ‖q
q,λ

)1/q

,

‖A‖F∞ = sup{‖Aλ‖∞ : λ ∈ Ĝ},
‖A‖Am = ‖A0‖1,0 +

∑

λ∈Ĝ\{0}
dλ‖λ‖m‖Aλ‖1,λ,

‖A‖A′m = sup{‖λ‖−m‖Aλ‖∞,λ : λ ∈ Ĝ, λ 6= 0} ∪ {‖A0‖∞,0},

where ‖ ‖∞,λ is the operator norm on EndVλ relative to the Hilbert space
norm on Vλ, and for 1 ≤ q < ∞, ‖ ‖q,λ is the norm on End Vλ given by
‖Aλ‖q,λ = (Tr(Aλ(Aλ)∗)q/2)1/q. Let Fq(Ĝ), Am(Ĝ) and A′m(Ĝ) be the cor-
responding subspaces of F(Ĝ) on which these norms are finite. For general
properties of norms of these types see [11].

Recall that if H is a complex Hilbert space, and A is a linear operator on
H, then A∗ is a linear operator on H, and At is a linear operator on its dual
space, H ′, as is Ā = A∗t. Hence we can define an involution on F(Ĝ), by
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(At)λ = (Aλ∨)t, for A ∈ F(Ĝ), λ ∈ Ĝ, and anti-involutions, (A∗)λ = (Aλ)∗,
(Ā)λ = Aλ∨ .

We shall now assume that the norm on h∗ satisfies ‖λ∨‖ = ‖λ‖ for any λ ∈ Ĝ.
Then the maps ( )t, ( )∗, and ( ) preserve all the above norms on F(Ĝ). Define
a bilinear pairing between A′m and Am, by 〈A′, A〉 =

∑
λ∈Ĝ dλ Tr((A′t)λAλ).

The map T : A′m(Ĝ) → Am(Ĝ)′ given by TA′(A) = 〈A′, A〉 is an isometric
isomorphism, and so we shall use this map to identify Am(Ĝ)′ and A′m(Ĝ) from
now on.

Define the Fourier transform to be the map F : C∞(G)′ → F(Ĝ), given by
〈ϕ,F(s)λv〉 = 〈s, x 7→ 〈ϕ,∆λ(x)v〉〉 for any ϕ ∈ V ∗

λ and v ∈ Vλ. When f is
a function in L1(G) this becomes (Ff)λ =

∫
G

f(x)∆λ(x)dµG(x). To make the
statement of the next lemma simpler, it is convenient to assume choose the
norms on h∗ and g so that ‖∆λ(X)‖∞,λ ≤ ‖λ‖.‖X‖; to see that this is possible,
just consider the case where the norm on g is Ad-invariant. This condition
can always be achieved by scaling either the norm on h∗ or the norm on g.
More specifically, this condition avoids additional constants in the statements of
Lemma 2.4((d),(f)).

Lemma 2.4 (Properties of F). Assume m is a nonnegative integer, 1 ≤ q ≤ 2
and 1/q + 1/q′ = 1.

(i) F : C∞(G)′ → F(Ĝ) is one to one.
(ii) ‖Ff‖q′ ≤ ‖f‖q. These are the Hausdorff–Young inequalities.
(iii) F(Lq′(G)) ⊇ Fq(Ĝ), and for any A in Fq(Ĝ) we have ‖F−1(A)‖q′ ≤ ‖A‖q

(iv) F(Cm(G)) ⊇ Am(Ĝ), and for any A in Am(Ĝ) we have ‖F−1A‖Cm ≤
‖A‖Am .

(v) Assume T ∈ Cm(G)′, A ∈ Am(Ĝ), and f = F−1A. Then 〈T, f〉 = 〈FT, Ff〉.
(vi) For any s in Cm(G)′ we have ‖Fs‖A′m ≤ ‖s‖Cm

′

(vii) For any s in C∞(G)′ we have F(s) = Fs, Fs̆ = (Fs)t, and Fs∗ = (Fs)∗.
In particular, F is real relative to the real structures on C∞(G)′ and F(Ĝ)
induced by the anti-involutions, ( ), on these spaces.

(viii) (F(s1 ∗ s2))λ = (Fs1)λ (Fs2)λ, for any distributions, s1, s2, in C∞(G)′,
and any λ in Ĝ, where s1 ∗ s2 denotes the convolution of the distributions s1

and s2.
(ix) ‖F(s1 ∗ s2)‖A′m1+m2

≤ ‖Fs1‖A′m1
‖Fs2‖A′m2

.

Proof. See [20; 11]. ¤

The image FA consists of precisely those elements, A, of F(Ĝ) such that Aλ = 0
except for finitely many λ. All the norms defined above are finite on FA, and
FA is dense in each of these spaces under the corresponding norm. As F is one
to one, we can transfer the algebra structure on A to FA, and hence obtain a
A-module structure on the spaces Am and A′m. The map T , is an isomorphism
of of A-modules, and we can use same formula to get a dual pairing between
F(Ĝ) and FA, and hence a A-module isomorphism between (FA)′ and F(Ĝ).
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2.2.3. Simple bounds for M(s,t). Let us assume that an increasing set of finite di-
mensional subspaces {As}, is given, that As.At ⊆ As+t, and that

⋃
s≥0 As = A.

Examples for such subspaces can be obtained from finite dimensional generating
sets of A, or as described in Section 2.2.4, from a norm on h∗. We shall bound
M(s, t) for several different choices of norms, ‖ ‖A, ‖ ‖B , ‖ ‖As , on A and As.

Using the Leibniz rule one sees that for f, g ∈ Cm(G), we have ‖fg‖Cm
≤

2m‖f‖Cm‖g‖Cm . Therefore

Result. Assume the A, B norms are both ‖ ‖Cm and that ‖ ‖As is the restriction
of ‖ ‖Cm to As. Then M(s, t) ≤ 2m

When m = 0, this tells us that if ϕ is a regular bounded complex Borel measure
on G satisfying Ps+t(ϕ − µG) = 0, h is a continuous function on G, and Y =
(g 7→ 〈∆λ(g)u, v〉 is a matrix coefficient in As, then

∣∣∫
G

h.Y dϕ− ∫
G

h.Y dµG

∣∣ ≤
‖u‖‖v‖‖ϕ‖C′0‖h‖C0/At

. Clearly ‖h‖C0/At
tends to zero as t tends to infinity.

In a similar fashion, we can bound M(s, t) for weaker choices of the norm
‖ ‖As

on As.

Result. Assume the A, B norms are both ‖ ‖Cm and that ‖ ‖As is the restriction
of ‖ ‖C′0 to As, then for some K > 0, independent of m,

M(s, t) ≤ Km

(
1 +

∑

As∩Aλ 6=φ

d2
λ‖λ‖m

)
.

Consider this for s = t. Assume that ϕ is a distribution of order m on G

satisfying P2s(ϕ− µG) = 0, and h is a Cm function of G. Then

‖Ps(h.ϕ− h.µ)‖C0 ≤ 2m

(
1 +

∑

As∩Aλ 6=φ

d2
λ‖λ‖m

)
‖ϕ‖C′m‖h‖Cs/As

,

but the sum in this bound is bounded from below by a constant times s2k+m+r+l,
and we are forced to consider higher differentiability conditions on h in order to
get convergence of ‖Ps(h.ϕ − h.µ)‖C0 to zero. Doing so leads us naturally to
the consider the norms Am, on A, and more careful arguments with these new
norms will give us more refined bounds on M(s, t) in the situation above.

2.2.4. Norms on Ĝ. Let ‖ ‖ be a norm on h∗. For any s ≥ 0 let As be
the span of all the matrix coefficients of representations ∆λ for ‖λ‖ ≤ s, i.e.
As =

∑
‖λ‖≤s Aλ. There are several properties we may require of this norm on

h∗. We say that a norm ‖ ‖ on h∗ has property I if whenever λ, µ, ν are in Ĝ,
and ∆ν is a summand of ∆λ ⊗∆µ, then ‖ν‖ ≤ ‖λ‖+ ‖ν‖. We say that ‖ ‖ has
property II if ‖ν′‖ ≤ ‖λ‖ whenever ν′ is a weight of ∆λ.

Lemma 2.5. ‖ ‖ has property I if and only if for any s, t > 0, As.At ⊆ As+t

Lemma 2.6. (i) If ‖ ‖ satisfies property I, and ∆ν is a summand of ∆λ ⊗∆µ,
then

∣∣‖λ‖ − ‖µ‖
∣∣ ≤ ‖ν‖.
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(ii) ‖ ‖ has property I if and only if
∣∣‖λ‖−‖ν‖

∣∣ ≤ ‖µ‖ whenever ∆ν is a summand
of ∆λ ⊗∆µ.

Proof. Part (ii) is a direct consequence of (i). To prove (i), assume I, and
suppose ∆ν is a summand of ∆λ ⊗ ∆µ. Then Aν ⊆ Aλ.Aµ. For any s ≥ 0,
let A−s =

∑
‖ρ‖<s Aρ. Then Aλ ⊆ A−⊥‖λ‖, and Aµ ≤ A‖µ‖. Assume ‖λ‖ ≥ ‖µ‖.

Lemma 2.3 shows that A−⊥‖λ‖.Aµ ⊆ A−⊥‖λ‖−‖µ‖. Hence Aν ⊆ A−⊥‖λ‖−‖µ‖, and so
‖λ‖ − ‖µ‖ ≤ ‖ν‖. ¤

To show that II implies I, we need the following lemma.

Lemma 2.7. Assume λ, µ, ν are dominant integral weights. If ∆ν is a summand
of ∆λ ⊗∆µ, then ν = µ + ν′ where ν′ is a weight of ∆λ

Proof. Follows from Steinberg’s formula for the decomposition of tensor prod-
ucts. See [12] ¤

Corollary 2.8. II implies I

All the norms on h∗ which we will use, will satisfy property I. Let us now show
that norms satisfying properties I or II really do exist.

Assume 〈 , 〉 is a positive definite Ad-invariant inner product on gC . Then
define ‖µ‖Ad =

√
〈µ, µ〉. This gives a norm on h∗ which is invariant under the

Weyl group.
For calculations involving the classical groups another set of norms is more

convenient. Assume G is a simple classical group and let λ1, . . . , λr be the fun-
damental dominant weights with the standard labeling (i.e. that which appears
in [12, p. 58]). Define the linear functional, H, on h∗ by requiring that for
µ =

∑
aiλi, we have

(i) H(µ) =
∑r

i=1 ai when G is SU(r + 1) or Sp(r).
(ii) H(µ) =

∑r−1
i=1 ai + 1

2ar when G is SO(2r + 1).
(iii) H(µ) =

∑r−2
i=1 ai + 1

2 (ar−1 + ar) when G is SO(2r).

Define a norm ‖ ‖H on h∗ by requiring that ‖µ‖H = H(µ) for any dominant
weight and ‖ ‖H is invariant under the Weyl group. Note that in each of the
above cases ‖ ‖H is also invariant under ∨.

To verify that we indeed have defined norms it is easiest to use a different
description. Let {ei} denote the usual basis of Cr. When G is SU(r + 1) we
have an isomorphism between h∗ and Cr+1/ 〈e1 + . . . er+1 = 0〉. such that λi =∑i

j=1 ei. When G is any other simple classical group we have an isomorphism
between h∗ and Cr with λi =

∑r−2
j=1 for 1 ≤ i ≤ r−2, and λr−1 = e1 + · · ·+er−1,

λr = e1+· · · er for Sp(r), λr−1 = e1+· · ·+er−1, λr = 1
2 (e1+. . . er) for SO(2r+1),

and λr−1 = 1
2 (e1 + · · ·+ er−1 − er), λr = 1

2 (e1 + · · ·+ er) for SO(2r). When G

is Sp(r), SO(2r + 1) or SO(2r), the norm ‖ ‖H corresponds to the sup norm on
Cr. When G is SU(r + 1) it corresponds to twice the quotient of the sup norm
on Cr+1.
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Lemma 2.9. (i) If g is abelian, then any norm on h∗ has property II.
(ii) Assume ‖ ‖1, ‖ ‖2 are norms on g1 and g2 which both satisfy the same

property I or II. Assume g = g1⊕ g2, and ‖λ1 + λ2‖ = ‖λ1‖1 + ‖λ2‖2 for any
λ1 ∈ h1 and λ2 ∈ h2. Then ‖ ‖ satisfies the corresponding property I or II on
h∗ = h∗1 ⊕ h∗2.

(iii) ‖ ‖Ad has property II for any g.
(iv) ‖ ‖H has property II for any of the simple classical groups.

Proof. Parts (i) and (ii) are trivial. For (iii), note that g = z ⊕ [g, g] is
an orthogonal direct sum, so we need only prove the result in the case where
G is semisimple and 〈 , 〉 on it is simply the Killing form. So let’s assume
that this is the case, λ ∈ Ĝ, and µ is a weight of λ. Since all elements of
the Weyl group are isometries, we may also assume that µ is dominant. Then
〈λ, λ〉 − 〈µ, µ〉 = 〈λ + µ, λ− µ〉 , which is greater than 0 because λ + µ is a
dominant weight and λ− µ is in the positive root lattice.

Part (iv) is equivalent to the condition that H(α) ≥ 0 for any simple root α.
This is easily checked by inspection of the Cartan matrices of the simple classical
lie algebras. ¤

There is a nice interpretation of As in the case where G is SU(r + 1), Sp(r) or
SO(2r+1), and ‖ ‖ = ‖ ‖H . In this case, A1 is the span of the matrix coefficients
of the representations with highest weight a fundamental analytically integral
dominant weight (i.e. an element of a basis for the analytically integral dominant
weight over the nonnegative integers) or 0. Hence A1 is a finite dimensional
generating set for A, and for any positive integer s, As is the span of all products
of up to s elements of A1. In particular, As.At = As+t.

2.2.5. Further bounds for M(s, t). We shall now bound M(s, t), as defined in
Section 2.1, where ‖ ‖A = ‖ ‖Am , ‖ ‖B = ‖ ‖Ap . It is clear that the pairing
between A′m and Am allows us to identify FA′s with FAs, and that Am and A′m
are dual norms on this finite dimensional subspace. In the definition of M(s, t) we
shall use ‖ ‖As = ‖ ‖A′m1

, ‖ ‖A′s = ‖ ‖Am1
. The projection, Ps, from FA′ = F(Ĝ)

onto FAs is given by (PsA)λ = 0 when ‖λ‖ > s, and (PsA)λ = Aλ when ‖λ‖ ≤ s.
The quotient norm on Ap(Ĝ)/FAt is clearly given by ‖f‖Ap/FAt

= ‖f −Ptf‖Ap .
Hence

M(s, t) = sup{‖Ps(h.ϕ)‖Am1
: h, ϕ ∈ FA, ‖h‖Ap = 1, ‖ϕ‖A′m = 1, Ps+tϕ = 0},

M(s, t) = sup{‖e.h− Ps+t(e.h)‖Am : ‖h‖Ap = 1, ‖e‖A′m1
= 1, e ∈ FAs, h ∈ FA}.

The bounds for M(s, t) depend on the following lemma.

Lemma 2.10. Assume f, g are in A0(Ĝ). Then f.g is well-defined, and

‖f.g‖A0 ≤ ‖f‖A0‖g‖A0 .

Proof. See [11]. ¤
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Theorem 2.11. Assume the norm on h∗ satisfies property I. Then there is a
K > 0 such that for any non negative integers, p ≥ m ≥ 0, and any s, t > 1, we
have

M(s, t) ≤ KGs2k+2r+l+m1(s + t)mt−p.

Proof. Assume that e ∈ FAs, h ∈ FA are such that ‖h‖Ap = 1, and ‖e‖A′0 = 1.
For any λ in Ĝ, let Pλ denote the projection from F(Ĝ) onto the subspace
corresponding to End Vλ. Let eν = Pνe, hλ = Pλh, and let Π(ν) denote the set
of weights of ∆ν .

Then

‖e.h‖Am/FAs+t
≤

∑

‖µ‖>s+t

dµ‖µ‖m‖Pµ(e.h)‖1,µ,

≤
∑

‖µ‖>s+t

dµ‖µ‖m
∑

‖ν‖≤s,λ−µ∈Π(ν)∣∣‖λ‖−‖µ‖
∣∣≤‖ν‖

‖Pµ(eν .hλ)‖1,µ

≤
∑

‖ν‖≤s

d2
ν max{1, ‖ν‖m1}

∑

µ,λ

‖µ‖mdλ‖hλ‖1,λ,

where we used the inequality

‖Pµ(eν .hλ)‖1,µ ≤ d−1
µ dλdν‖hλ‖1,λ‖eµ‖1,µ ≤ d−1

µ dλd2
ν‖hλ‖1,λ‖eν‖∞,ν ,

which follows directly from Lemma 2.10. Now sum on µ lemma to see that for
some K > 0, the above quantities are bounded by

∑

‖ν‖≤s

d2
ν max{1, ‖ν‖m1}

∣∣Π(ν)
∣∣ ∑

‖λ‖>t

dλ(‖λ‖+ s)m‖hλ‖1,λ

≤
∑

‖ν‖≤s

d2
ν max{1, ‖ν‖m1}∣∣Π(ν)

∣∣(‖ν‖+ t)mt−p
∑

‖λ‖>t

dλ‖λ‖p‖hλ‖1,λ

≤ (s + t)msm1

( ∑

‖ν‖≤s

d2
ν

∣∣Π(ν)
∣∣
) ∑

‖λ‖>t

dλ‖λ‖p‖hλ‖1,λ

≤ Ks2k+2r+l+m1(s + t)mt−p
∑

‖λ‖>t

dλ‖λ‖p‖hλ‖1,λ.

The last inequality holds because there is a constant C > 0 such that
∣∣Π(ν)

∣∣ ≤
C‖ν‖r. This holds for the norm ‖ ‖Ad and hence for any other norm on h∗. ¤

When G is abelian we can get a more explicit bound for even more general norms
on FA. We shall bound M(s, t) for slightly more general choices of ‖ ‖A, ‖ ‖B

and ‖ ‖As than we used above. We have dλ = 1, so each End Vλ is naturally
and uniquely isomorphic to C. Define norms, on FA, for 1 ≤ q < ∞ and
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−∞ ≤ m < ∞, by

‖A‖FqAm =

(
|A0|q +

∑

λ∈Ĝ\{0}

(‖λ‖m |Aλ|
)q

)1/q

‖A‖F∞Am = sup{‖λ‖m |Aλ| : λ ∈ Ĝ, λ 6= 0} ∪ {|A0|}.
If 1/q + 1/q′ = 1, then ‖ ‖Fq′A−m is the dual norm to ‖ ‖FqAm , and when both
norms are restricted to As, this holds for q = ∞ as well. When m = 0 we have
‖ ‖FqA0 = ‖ ‖Fq

, and when q is 1 or ∞, m ≥ 0, , we have ‖ ‖F1Am
= ‖ ‖Am

and
‖ ‖F∞A−m = ‖ ‖A′0 . Now let ‖ ‖A′s be the restriction of ‖ ‖Fq1Am1

to FAs, let
‖ ‖A = ‖ ‖Fq2Am2

and ‖ ‖B = ‖ ‖Fq3Am3
.

Theorem 2.12. Assume G is abelian, 1 ≤ q1, q2, q3 ≤ ∞, and s and t are
positive integers. Then

M(s, t) ≤
(

1 +
∑

‖ν‖≤s

(‖ν‖m1)q1

)1/q1

(s + t)m2t−m3

provided q3 ≤ q2 and m3 ≥ m2.

Proof. Similar to 2.11, except in this case, start with h, ϕ in FA and expand
out the product h.ϕ directly. ¤

2.2.6. Examples: Sampling for S1, SO(3), and the simple classical Lie groups

The Simplest Example: Sampling on S1. Assume m is a nonnegative integer,
f is a Cm complex function on S1, ϕ is a distribution of order at most m

on S1, and f , ϕ and f.ϕ have the Fourier expansions
∑

k ckxk,
∑

k mkxk and∑
k bkxk respectively. Then ‖Ff‖q = (

∑
k |ck|q)1/q, ‖Ff‖Am =

∑
k km |ck| and

‖Fϕ‖A′m = sup{k−m |mk| : k ∈ Z}. Hence

( ∑

|k|≤s

|ck − bk|q
)1/q

≤ (2s + 1)1/q(1 +
s

t
)mN

∑

|k|>t

km |ck|

≤ (2s + 1)1/q(1 +
s

t
)mN

π√
3

( ∑

|k|>t

∣∣km+1ck

∣∣2
)1/2

,

provided mk = 0 for 0 < |k| ≤ s+ t and m0 = 1, and where N = sup{k−m |mk| :
|k| > s + t}. The factor π/

√
3 could be replaced by a factor of the form Cb−ε

for any ε strictly less than 1
2 . When f is Cm+1 we can further bound this sum

by a Sobolev norm, as
( ∑

|k|>b

∣∣km+1ck

∣∣2
)1/2

=

(
1
2π

∫ 2π

0

∣∣∣∣
dm+1

dθm+1
(f − Ptf)(eiθ)

∣∣∣∣
2

dθ

)1/2

.

Setting m = 0 and q = ∞ in the above gives us the results of the introduction.
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Example: Sampling on SO(3). For this example we take G = SO(3). Then the
dual Ĝ can be identified with the set of nonnegative integers. The dimension
function is dλ = 2λ + 1, the rank is r = 1, there is only one positive root, and
the dimension of the center of SO(3) is zero. Then following the proofs above we
find that when the A and B norms are ‖ ‖Am , ‖ ‖Ap , p ≥ m, and ‖ ‖As = ‖ ‖A′0 ,
we have

M(s, t) ≤
( s∑

ν=0

(2ν + 1)3
)(

1 +
s

t

)m

tm−p

≤ (s + 1)2(1 + 4s + 2s2)
(
1 +

s

t

)m

tm−p.

Example: The classical simple Lie groups. Assume G is a classical simple com-
pact Lie group. Let the norm on h∗ be ‖ ‖H , let the A, B, and As norms be
‖ ‖Am

, ‖ ‖Ap
, and ‖ ‖A′0 , where p ≥ m. Let ΛR be the root lattice, and let Bs

denote the closed ball of radius s for ‖ ‖H . Then the proofs above, together with
property II, show that

M(s, t) ≤ (s + t)mt−p
∑

‖ν‖H≤s

d2
ν

∣∣(ν + ΛR) ∩B‖ν‖H

∣∣,

where the sum is over analytically integral dominant weights. We can bound∣∣(ν + ΛR) ∩B‖ν‖H

∣∣ for such ν as follows.

(i) G = SU(r + 1):
∣∣(ν + ΛR) ∩B‖ν‖H

∣∣ ≤ (s + r + 1)r.
(ii) G = Sp(r):

∣∣(ν + ΛR) ∩B‖ν‖H

∣∣ ≤ 2r−1(s + 1)r.
(iii) G = SO(2r + 1):

∣∣(ν + ΛR) ∩B‖ν‖H

∣∣ = (2s + 1)r.
(iv) G = SO(2r):

∣∣(ν + ΛR) ∩B‖ν‖H

∣∣ ≤ 2(s + 1)2(2s + 1)r−2.

We can use these bounds and the Weyl dimension formula to obtain explicit
bounds on M(s, t).

(i) G = SU(r + 1):

M(s, t) ≤ 1
(r + 3).r!

∏r
i=1 i!2

(s + t)mt−p
(
s +

r

3
+

5
2

)r2+3r

.

(ii) G = Sp(r):

M(s, t) ≤ 1
(r + 1)!

∏r
i=1(2i− 1)!2

2r2−2(s + t)mt−p
(
s +

5r

12
+

7
4

)2r2+2r

.

(iii) G = SO(2r + 1):

M(s, t) ≤ 1
(r + 1)!

∏r
i=1(2i− 1)!2

2r2+2r−1(s + t)mt−p
(
s +

5r

12
+

25
24

)2r2+2r

.

(iv) G = SO(2r + 1):

M(s, t) ≤ 1
r.r!

∏r−1
i=1 (2i)!2

2r2+2r−2(s + t)mt−p
(
s +

5r

12
+ 1

)2r2+2r

, for r ≥ 3.
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2.2.7. Differentiability and Sampling. We shall now see how the differentiability
of the function being sampled plays a rôle. Define Am(G) to be the set of all
continuous functions, f , on G, such that Ff is in Am(Ĝ). Define ‖ ‖Am on
Am(G) by ‖f‖Am = ‖Ff‖Am . Then we have the following result.

Lemma 2.13. Assume p is a nonnegative real number and m is a positive integer,
and let X1, . . . , Xn be a basis for the complexified Lie algebra, gC of the connected
simple Lie group G. Then

Ap+m(G) =
{
f ∈ Cp+m(G) : L(Xi1 . . . Xim)f ∈Ap(G) for all 1≤ i1, . . . , il ≤ n

}

and the following norms on Ap+m are equivalent

(i) ‖f‖Ap+m .
(ii) max{‖L(Xi1 . . . Xij

)f‖Ap
: 0 ≤ j ≤ m, and 1 ≤ i1 . . . , ij ≤ n}

(iii) max
{‖L(Y1 . . . Yj)f‖Ap : 0≤ j ≤m, Y1, . . . , Yj ∈ gC , ‖Y1‖= . . . = ‖Yj‖= 1

}
.

In addition, this holds when G is an arbitrary compact connected Lie group and
m is even.

Proof. See [20]. ¤

Lemma 2.14. Assume G is a compact group of dimension n and that m > n/2.
Then Cm(G) ⊆ A0(G), and this inclusion is continuous relative to the Sobolev
norm on Cm(G) given by

‖f‖Wm = sup
{‖L(Y1 . . . Yj)f‖2 : 0 ≤ j ≤ m, Y1, . . . , Yj ∈ gC , ‖Yi‖ = 1

}

and the norm ‖ ‖A0 on A0(G).

Proof. The space Cm(G) is continuously included in the Besov space Λn/2
1,2 (G),

which in turn is continuously included in A0(G). For definitions and proof, see
[27] and [6]. ¤

Now we can use the bounds we have been obtaining to find convergence condi-
tions on a sequence of measures ϕs and differentiability conditions on a function
f , that ensure that ‖FPs(f − f.ϕ)‖Cm1

tends to zero.

Corollary 2.15. Assume that G is a n-dimensional compact connected Lie
group, m, m1, p are nonnegative integers, and ϕs is a sequence of distributions
in Cm(G)′ converging weak-∗ to Haar measure and satisfying P2s(ϕ − 1) = 0.
Assume f is a function on G.

(i) If f is in Cd3n/2e+r+m+m1+p+1, then sp‖FPs(f − f.ϕs)‖Am1
tends to zero as

s tends to infinity.
(ii) If f is in Cd3n/2e+r+m+m1+p and either G is simple or n + m + m1 + r + p

is even, then sp‖FPs(f − f.ϕs)‖Am1
tends to zero as s tends to infinity.
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Proof. For clarity, let’s just prove the case where m1 = p = 0, and G is
simple. Assume that f is in Cd3n/2e+r and ϕs is a sequence of measures in Cm′

converging weak-∗ to Haar measure and satisfying P2s(ϕs − 1) = 0.
Then ‖ϕs‖A′m is bounded by a constant times ‖ϕs‖C′m is bounded, and f is

in An+r+m(G). Hence ‖ϕs‖A′m‖f‖An+r+m/As
converges to zero. However, our

bounds for M(s, s) show that

‖FPs(f − f.ϕs)‖A0 ≤ K2msn+r+ms−(n+r+m)‖ϕs‖A′m‖f‖An+r+m/As
. ¤

3. Sampling of Sections

It is an easy matter to generalize the above results and obtain a sampling
theorem for sections of homogeneous vector bundles. As the theory here fol-
lows directly from the sampling theory for groups, I have not been as complete.
Assume K is a compact subgroup of the compact Lie group G, τ is a finite dimen-
sional unitary representation of K on E0, and E = G×τ E0. Then then we can
multiply a Cm section of E by a distribution on G/K to obtain a “distributional
section” of E, which we will think of as a sampled version of the original section.
If we project a sampling distribution on G to a distribution on G/K, then we
obtain an appropriate sampling distribution on G/K. For harmonic analysis on
homogeneous vector bundles over G/K, where G is compact, see [31].

3.1. Abstract Sampling for Modules. We shall now generalize the situation
of Section 2.1. Let A be a complex algebra. For simplicity we shall assume that
A is commutative. Assume that M, N are A-modules and that we have a A-
bilinear pairing, 〈 , 〉 between them. Then for any h in M, and ϕ in A′, we can
define ϕ.h in N′ = HomC(N′;C), by

(ϕ.h)(e) = ϕ(〈e, h〉).
Let As, {Ms}, {Ns} be sets of subspaces of A, M, and N, such that 〈Ns, Mt〉 ≤
As+t. We set Ps to be the projection from A′ onto A′s or from N′ onto N′s given
by restriction of linear functionals.

Lemma 3.1. Assume ϕ, µ are linear functionals in A′ such that Ps+t(ϕ−µ) = 0.
Then

Ps(ϕ.h) = Ps(µ.h)

for any h in Mt

Example. Assume M is a finitely generated A-module, X is a finite dimensional
generating set for M, and As.At ⊆ As+t. Let N = HomA(M; A), and define

Ms = As.X,

Ns = {f ∈ N : f(X) ⊆ As}.
Then 〈Ns, Mt〉 ⊆ As+t.
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We now return to the general situation. Let ‖ ‖A , ‖ ‖B , ‖ ‖Ns
, and ‖ ‖N′s

be norms on N, M, Ns and N′s respectively, and denote their dual norms with a
prime. Then we can define

N(s, t) = sup{‖Ps(h.ϕ)‖N′s : ‖h‖B = 1, ‖ϕ‖′A = 1, h ∈ M, ϕ ∈ A′, Ps+tϕ = 0}

When there is a possibility of confusion, we shall write N
N′s,A
B .

Let MB ′ denote that continuous dual of M with respect to ‖ ‖B , and NB be
the completion of ‖ ‖B with respect to ‖ ‖B .

Lemma 3.2. Assume ϕ, µ are linear functionals in AA′ such that Ps+t(ϕ−µ) = 0
and h ∈ MB. Then

‖Ps(f.ϕ)− Ps(f.µ)‖N′s ≤ N(s, t)‖ϕ− µ‖′A‖f‖B/Mt
,

where ‖ ‖B/Mt
denotes the quotient seminorm on MB/Mt.

3.2. Harmonic Analysis of Vector-Valued Functions. Assume E0 is a
finite dimensional complex vector space with norm ‖ ‖E0 . Let Cm(G; E0) be
the space of Cm functions on G with values in E0, and when m is a nonneg-
ative integer, define ‖f‖Cm;E0 = sup{‖L(X1 . . . Xp)f(x)‖E0 : x ∈ G, 0 ≤ p ≤
m, X1 . . . Xp ∈ g, ‖X1‖ = . . . = ‖Xp‖ = 1}. All norms, ‖ ‖E0 , on E0 will
give an equivalent norms ‖ ‖Cm;E0 on Cm(G; E0). Let ‖ ‖(Cm;E0)′ be the dual
norm to ‖ ‖Cm;E0 , and ‖ ‖(Cm;E∗0 )′ be the norm on Cm(G;E∗

0 )′, when E∗
0 is

given the norm dual to that on E0. The space C∞(G;E∗
0 )′ is the space of all

distributions on G with values in E0, and Cm(G; E∗
0 )′ is the space of all such

distributions of order at most m. We can embed C0(G; E0) continuously into
C0(G;E∗

0 )′ by means of the map f 7→ µG.f , where for any h in C0(G;E∗
0 ), we

have 〈µG.f, h〉 = 〈µG, (x 7→ 〈h(x), f(x)〉)〉 =
∫

G
〈h(x), f(x)〉dµG(x), and µG is

Haar measure on G.
Let F(Ĝ; E0) =

∏
γ∈Ĝ (End(Vγ)⊗ E0), and define the Fourier transform, F,

from C∞(G; E∗
0 )′ into F(Ĝ;E0), by

〈X ⊗ e∗, (Fs)γ〉 = 〈s, (x 7→ 〈X, ∆γ(x)〉 e∗)〉
for any γ in Ĝ, X in End(Vγ)∗, e∗ in E∗

0 , and s in C∞(G; E∗
0 )′. For a contin-

uous function, f , on G with values in E0, this becomes (Ff)γ =
∫

G
∆γ(x) ⊗

f(x)dµG(x).
We shall define norms on F(Ĝ; E0) which generalize the norms ‖ ‖Am we had

when E0 was C. Given two finite dimensional complex vector spaces, V and W ,
and norms ‖ ‖V on V and ‖ ‖W on W , define the tensor product of these norms,
‖ ‖V⊗W , to be the operator norm on V ⊗ W = HomC(V ∗; W ) relative to the
dual norm ‖ ‖V ∗ on V ∗, and the norm ‖ ‖W on W . For any γ in Ĝ let ‖ ‖1,γ;E0

denote the norm on End(Vγ) ⊗ E0, which is the tensor product of the norms
‖ ‖1,γ and ‖ ‖E0 . Define a norm ‖ ‖Am;E0 , which is possibly infinite on F(Ĝ; E0),
by ‖A‖Am;E0 = ‖A0‖1,0;E0 +

∑
λ∈Ĝ,λ 6=0 dλ‖λ‖m‖Aλ‖1,λ;E0 . Let Am(Ĝ;E0) be
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the subspace of F(Ĝ; E0) on which this norm is finite. This space is the space
of absolutely summable Fourier transforms of distributions on G with values in
E0 whose first m derivatives also have absolutely summable transforms. The
map, F is one to one, and it’s inverse gives a continuous from Am(Ĝ; E0) into
Cm(G; E0).

Now, let M = A⊗E0, N = A⊗E∗
0 . These naturally embed in C∞(G;E0) and

C∞(G;E∗
0 ), and the spaces FM, FN are the subspaces of F(Ĝ; E0) and F(Ĝ; E∗

0 )
of elements with only finitely many components. Hence we can use F to shift
any norm on FM over to M. Let Ms = As ⊗ E0, and Ns = As ⊗ E∗

0 . There is
a natural A-bilinear pairing between M and N. Composing this form with Haar
measure gives a C-bilinear pairing between Ms and Ns, which we shall use to
identify N′s with Ms.

For calculation of N(s, t), it is more convenient to use the norm ‖ ‖Am⊗E0

defined on Am(Ĝ)⊗ E0, by

‖A‖Am⊗E0 = sup{‖ 〈e∗0, A〉Am(Ĝ) ‖Am
: ‖e∗0‖E∗0 = 0},

where 〈 , 〉Am(Ĝ) is the natural Am(Ĝ)-bilinear pairing between E∗
0 and ‖ ‖Am⊗E0 .

It is easy to show that Am(Ĝ) ⊗ E0 naturally embeds in Am(Ĝ; E0). In fact,
these two spaces are equal, as the following lemma will show. First, some termi-
nology. We say that E0 has dual bases of unit vectors if there is a basis {vi} of
unit vectors in E0, with a dual basis {v∗i } of E∗

0 consisting of unit vectors. This
happens, for example, when ‖ ‖E0 is a Hilbert space norm, or a p-norm in some
basis.

Lemma 3.3. (i) ‖ ‖Am⊗E0 ≤ ‖ ‖Am;E0 .
(ii) If E0 has dual bases of unit vectors, then ‖ ‖Am;E0 ≤ (dimE0)‖ ‖Am⊗E0 .
(iii) ‖ ‖Am;E0 and ‖ ‖Am⊗E0 are equivalent norms.

Define M(s, t) using the Am1 , Am, Ap norms, as we did in Section 2.2.5. We
shall now relate this function to the function N(s, t) for various choices of the
norms on N′s = Ms, A, and M.

Theorem 3.4. (i) If N(s, t) is defined using the Am1⊗E0, Am, Ap⊗E0 norms
on N′s, A and M, then

N
Am1⊗E0,Am

Ap⊗E0
(s, t) ≤ M

Am1 ,Am

Ap
(s, t).

(ii) If N(s, t) is defined using the (Am1 ; E0), Am, (Ap; E0) norms on N′s, A and
M, then for some C > 0,

N
(Am1 ;E0),Am

(Ap;E0)
(s, t) ≤ C.(dimE0)M

Am1 ,Am

Ap
(s, t).

When E0 has dual bases of unit vectors, we may take C = 1 in the above
inequality.
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Proof. Assume that ϕ is in A, h is in M, and e∗0 is in E∗
0 .

‖ 〈e∗0, Ps(ϕ.h)〉A ‖Am1
= ‖Ps(ϕ. 〈e∗0, h〉A)‖Am1

≤ M(s, t)‖ϕ‖A′m‖ 〈e∗0, h〉A ‖Ap

≤ M(s, t)‖ϕ‖A′m‖e∗0‖E∗0 ‖h‖Ap⊗E0 .

This proves (i). The second part is an easy corollary of the first. ¤

The proof of the first part of this theorem did not involve many special properties
of the norms Am; the basic properties used are that FM is dense in the Ap(Ĝ)⊗E0

and FA is dense in Am(Ĝ)′.
Another approach to bounding N(s, t) uses an analog of Lemma 2.10 to cal-

culate the bound directly. In some circumstances (e.g. when G is abelian), this
gives better results than the combination of the previous theorem and the bounds
for M(s, t). In particular, we do not use the assumption that E0 has dual bases
of unit vectors.

Lemma 3.5. Assume f is a continuous complex function on G, g is in C0(G; E0),
and Ff ∈ A0(Ĝ), and Fg ∈ A0(Ĝ; E0). Then

‖F(f.g)‖A0;E0 ≤ (dimE0)‖Ff‖A0‖Fg‖A0;E0 .

Proof. This has essentially the same proof as for the case when E0 is simply
the complex numbers, as given in [11]. ¤

Lemma 3.5 implies that if fλ is in the λ-isotypic subspace of C∞(G), gµ is in
the µ-isotypic subspace of C∞(G;E0), under the left regular actions, and ν is in
Ĝ, then

‖F(fλ.gµ)‖1,ν;E0 ≤ (dimE0) d−1
ν dλdµ‖Ffλ‖1,λ‖Fgµ‖1,µ;E0 .

When E0 = C, this inequality our main ingredient in the bound on M(s, t).
The generalization gives us bounds on N(s, t). The second half of the following
theorem concerns the case when G is abelian. When G is abelian, define norms
on FM for 1 ≤ q < ∞ and −∞ ≤ m < ∞ by

‖A‖FqAm =

(
|A0|q +

∑

λ∈Ĝ\{0}

(‖λ‖m‖Aλ‖E0

)q

)1/q

,

‖A‖F∞Am = sup
{‖λ‖m‖Aλ‖E0 : λ ∈ Ĝ, λ 6= 0

} ∪ {|A0|}.

Theorem 3.6. (i) Assume G is nonabelian, the norm on h∗ has property I, and
N(s, t) is defined using the (Am1 ;E0), Am, (Ap;E0) norms on N′s, A and M.
Then for some KG depending only on G and the norm on h∗,

N
(Am1 ;E0),Am

(Ap;E0)
(s, t) ≤ (dim E0)sr+l+m1+1(s + t)2k+r+m−1t−p.
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(ii) Assume G is abelian, 1 ≤ q1, q2, q3 ≤ ∞, and s and t are positive integers.
Then we have

N
(Fq1Am1 ),(Fq2Am2 )

Fq3Am3
(s, t) ≤

(
1 +

∑

‖ν‖≤s

(‖ν‖m1)q1

)1/q1

(s + t)m2t−m3 ,

provided q3 ≤ q2 and m3 ≥ m2.

Proof. The key observation in the proof of (i) is that

‖Ps(h.ϕ)‖Am1 ;E0

≤
∑

‖ν‖≤s

dν(1 + ‖ν‖m1)
∑

‖µ‖>s+t, ‖λ‖>t,
|‖µ‖−‖λ‖|≤‖ν‖, πµ=πν−πλ

d−1
ν dλd2

µ‖µ‖m‖(Fh)λ‖1,λ;E0‖ϕ‖A′m ,

where π is the natural projection from h∗ onto the dual of the center of g. Now
sum over µ and then ν.

The proof of (ii) is essentially the same as for Theorem 2.12. ¤

3.3. Homogeneous Vector Bundles. Assume E = G×τ E0 is a homogeneous
vector bundle, where τ is a unitary representation of K. E has a G-invariant
unitary structure determined by the inner product on E0. Let Γm(E) denote the
space of Cm sections of E with the norm ‖s‖Γm = sup{‖L(X1 . . . Xp)s(x)‖x :
x ∈ G/K, 0 ≤ p ≤ m, X1 . . . Xp ∈ g}, where ‖ ‖x denotes the norm on the
fiber, Ex, determined by the unitary structure of E. If δ(G/K) is the density
bundle and µG/K is the invariant density of unit mass on G/K, we obtain a
map Γ0(E) → Γ0(E ⊗ δ(G/K)) ↪→ Γ0(E∗)′; f 7→ f.µG/K , allowing us to identify
Γ(E) with a subspace of Γ0(E∗)′. Thus we think of Γ∞(E∗)′ as the space of all
distributions, or generalized sections, of E.

There is a representation ψτ of K by isometries on each of the spaces Cm(G; E0)
and Cm(G; E∗

0 )′, defined by ψτ (k)f(x) = τ(k)f(x.k), on elements of C(G; E0),
and which commutes with the left regular action of G on these spaces. The corre-
sponding spaces of invariant functions or distributions are denoted, Cm(G; τ) and
Cm′(G; τ). We then have an isometry1 jτ : Cm′(G; τ) → Γm(E∗)′ which restricts
to an isometry between Cm(G; τ) and Γm(E). Thus questions about spaces of
sections of E can be simply reduced to ones concerning ψτ -invariant vector val-
ued functions on G. In particular, the multiplication map Cm(G/K)′×Γm(E) →
Γ(E∗)′ corresponds to the map Cm(G)′K ×Cm(G; τ) → Cm′(G; τ) which is the
restriction of the scalar multiplication map for distributions on G with functions
in Cm(G; E0).

1The space Cm′(G; τ) of invariant vectors in Cm(G; E∗0 )′ is isometric, via the restriction
map, to the space Cm(G; τ∨)′. This is because the canonical projection from Cm(G; E∗0 )′ onto
Cm′(G; τ) is the transpose of the projection from Cm(G; E∗0 ) onto Cm(G; τ∨), and this last

projection is also a contraction.
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As in Section 3.2 we set M = A⊗E0 and N = A⊗E∗
0 . Let M̂, N̂ and Â be the

subspaces of ψτ -, ψτ∨ -, and K-invariant vectors in M, N, and A. Let M̂s, N̂s,
Âs, be the intersections of the spaces above with Ms, Ns and As respectively.
Finally, we can use jτ and jτ∨ to obtain corresponding subspaces, M̃, Ñ, Ã, M̃s,
Ñs, Ãs in Γ∞(E), Γ∞(E∗) and C∞(G/K).

Choosing norms on N′s = Ms, A, and M, allows us to define a function N(s, t)
as in Section 3.1. If we assume that Ns is invariant under the projection from N

onto Ñ, then the dual of this projection is an injection from Ñ′s into N′s, and we
may restrict the norm on N′s to Ñ′s; in fact, the C-bilinear pairing between Ñs

and M̃s is nondegenerate in this case. If we also restrict the norms on A and M

to Ã, and M̃, then we can define another function Ñ(s, t) using these restricted
norms.

Theorem 3.7. Assume that all the subspaces As and the norm on A are all
invariant under the right regular action of K. Then Ñ(s, t) ≤ N(s, t)

Proof. First note that under these hypotheses, the subspaces Ms, Ns are
invariant under the representations ψτ , and ψτ∨ , and so the projections onto
these spaces commute with the projections from M, and N onto M̃ and Ñ.
Hence the definition of Ñ makes sense. The projection from A onto Ã, PK , is a
contraction with respect to ‖ ‖A, and its dual, PK∗, is an isometric embedding of
the continuous dual of Ã with respect to the restricted norm into the continuous
dual of A with its norm. PK , which is given by integration over K, commutes
with the projections, from A onto As, and hence for any ϕ in the continuous
dual of Ã such that Psϕ = 0, we also have Ps(PK∗ϕ) = 0. This allows us to
imbed the calculation of Ñ(s, t) into a calculation involving only the spaces N,
M, A and the subspaces Ns, Ms, and As, where it is obvious that Ñ ≤ N . ¤

We shall now define the Fourier transform map for spaces of sections of E. The
representation, ψτ , of K on the γ-isotypic subspace of C∞(G;E0) corresponds,
under the Fourier transform F, to the representation Id⊗∆∨

γ ⊗ τ , on End(Vγ)⊗
E0 = Vγ ⊗ V ∗

γ ⊗E0. The subspace of invariant vectors of this space is naturally
isomorphic to Vγ ⊗ HomK(Vγ ; E0). So the natural space in which to define
the Fourier transform of a section of E is F(Ê) =

∏
γ∈Ĝ Vγ ⊗ HomK(Vγ ; E0).

Define norms ‖ ‖Am on F(Ê) by restricting the norms ‖ ‖Am;E0 on F(Ĝ; E0),
and let Am(Ê) denote the subspace of F(Ê) on which the corresponding norm is
finite. Let P τ denote both the projection from C∞(G; E∗

0 )′ onto the ψτ -invariant
subspace, C∞′(G; τ) and also the projection from F(Ĝ;E0) onto F(Ê). Define
the Fourier Transform map F : Γ∞(E∗) → F(E) so that P τF = FP τ , then F

maps Γm(E) into Am(Ê). When τ is the trivial representation, the dual space
to Am(E) corresponds to the space of invariant distributions on G for which A′m,
the dual norm previously, is finite. We then have that ‖Fϕ‖A′m ≤ ‖ϕ‖(Cm)′ for
any complex distribution, ϕ, on G/K. Also note that if ϕ is a distribution on G

satisfying Psϕ = 0, then PKϕ satisfies the same equation in C∞(G/K)′.
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Example: Functions on S2. Consider the case where G = SO(3), K = SO(2),
and τ is the trivial representation of SO(2). Then E = S2 × C is the trivial
bundle over S2, and sections of E may be identified with complex functions on
S2. Identify the dual of SO(3) with the set of nonnegative integers. For any l ≥ 0
we have dim HomSO(2)(Vl;C) = 1. Choose a ∆∨

l (SO(2))-invariant unit vector, u∗l
in V ∗

l for each l. Then the map v 7→ v⊗u∗l gives an isomorphism between Vl and
Vl⊗HomSO(2)(Vl;C). The space Vl⊗HomSO(2)(Vl;C) is naturally isomorphic to
the subspace of End Vl = Vl ⊗ V ∗

l invariant under Id⊗∆∨
l . The composition of

these two isomorphisms is map, v 7→ Av, from Vl into End(Vl) which is defined
by Avw = u∗l (w)v for any w ∈ Vl. Assume v is any vector in Vl. We shall now
find ‖Av‖q,l. Let Prv be the self-adjoint projection onto the linear span of v,
then AvA∗v = ‖v‖2 Prv, where ‖v‖ is the Hilbert space norm, so

‖Av‖q,l = (Tr (AvA∗v)q/2)1/q = (Tr(‖v‖q Prv))1/q = ‖v‖

Using the isomorphisms above, we can identify F(Ê) with
∏

l≥0 Vl, and if y ∈
F(Ê), then ‖y‖Am =

∑
l≥0(2l +1)max{1, lm}‖yl‖. One can now use the bounds

as follows. Assume f is a Cm function on S2 with Ff = y, and ϕ is a distribution
of order at most m on S2 satisfying Ps+t(ϕ − 1) = 0. Let F(ϕ.f) = z, then for
any positive integers s, t, and any p ≥ m,

s∑

l=0

(2l + 1)‖yl − zl‖

≤ (s + 1)2(1 + 4s + 2s2)
(
1 +

s

t

)m

tm−p‖F(ϕ− 1)‖A′m

∑

l>t

(2l + 1)lp‖yl‖

and ‖F(ϕ− 1)‖A′m = sup{l−m‖(Fs)l‖ : l > s + t}.
Example: Line bundles over S2. For this example take G = SO(3), K = SO(2),
and let τ = ρn be the representation of SO(2) with weight n, where n is a
nonzero integer. Then E is a line bundle over S2. The space HomSO(2)(Vl; ρn)
has dimension 1 for l ≥ |n| and is zero-dimensional when 0 ≤ l < |n|. When
l ≥ |n| we may choose a unit vector, w∗l , in the ρn-isotypic space of Vl and
obtain an isomorphism, v 7→ v ⊗ wl, between Vl and HomSO(2)(Vl; ρn). As
before, this allows us to identify F(E) with

∏
l≥|n| Vl, and for any y ∈ F(Ê) we

have ‖y‖Am =
∑

l≥|n|(2l + 1)lm‖yl‖. To state the sampling theorem for this
situation, assume f is a Cm section of E with Ff = y, and ϕ is a distribution of
order at most m on S2 satisfying P2b(s − 1) = 0. Let F(ϕ.f) = z, and assume
s, t are positive integers, and p ≥ m, then

s∑

l=|n|
(2l + 1)‖yl − zl‖

≤ (s + 1)2(1 + 4s + 2s2)
(
1 +

s

t

)m

tm−p‖F(ϕ− 1)‖A′m

∑

l≥t+1,|n|
(2l + 1)lp‖yl‖.
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4. Construction of Sampling Distributions

4.1. The General Construction. Now we will outline a method for con-
structing distributions whose Fourier transform vanishes at a given finite set of
irreducible representations. These distributions will be finitely supported, have
any specified order, and will be of the form χ = ψ1 ∗ · · · ∗ ψn, where n = dim G

and each of the ψi are supported on a finite subset of a 1-parameter subgroup
of G. In addition ψ1, . . . , ψn may be chosen so that χ has bounded Am norm as
the set of irreducible representations at which its Fourier transform must van-
ish increases. These properties have been chosen as they are required for the
development of efficient algorithms for the computation of the Fourier trans-
form of functions sampled on the support of these distributions, as in [21]. The
thesis [20] contains a description of these algorithms for functions sampled on
the support of the projection of these distributions to the homogeneous spaces
SO(n)/ SO(n − 1) and SU(n)/ SU(n − 1); they are generalizations of the algo-
rithm for computing expansions in spherical harmonics developed by Driscoll
and Healy in [4]. Here is the general construction.

Assume G is a connected compact Lie group, and K is a connected compact
subgroup of G. The Fourier transforms of a distribution, ψ ∈ C∞(K)′, and its
image iψ in C∞(G)′ are simply related; if ρ is a representation of G, then ρ(iψ) =
(ρ

∣∣K)(ψ). So the relation between the two Fourier transforms is determined by
the way that representations of G split on restriction to K.

For any set, Ω0 of irreducible representations of G, define a two-sided ideal in
C∞(G)′ by

TΩ0 = {f ∈ C∞(G)′ : ∀ψ ∈ Ω0 ψ(f) = 0}.
We wish to show how for any finite set of representations, Ω0, we can construct
a finitely supported distribution, χ, on G, such that χ − 1 ∈ TΩ0 . It obviously
suffices to consider the case when G is simple and simply connected, the abelian
case being trivial. Let us also restrict ourselves to the case when G has a rank
one homogeneous space, G/K; this only leaves a few exceptional groups out of
our reach.

By induction we can assume that the problem has been solved for K; this is
because K is a quotient of a product of abelian groups and semisimple groups
which themselves have rank 1 homogeneous spaces. Now let Ω1 be the set of
all irreducible representations of K that are contained in the restriction of some
representation in Ω0 to K. This set is finite, and TΩ0 ⊆ i(TΩ1).

By induction, we can find a finitely supported distribution, χ̂, on K such that
χ̂ − 1K ∈ TΩ1 . Let χK = i(χ̂), then χK = cK (mod TΩ0), where cK is the
characteristic distribution of the submanifold, K, of G. By polar decomposition,
G = KAK, where A is a 1 parameter subgroup of G. The idea is to choose a
finitely supported distribution, ψ, with support in A, and then let χ = χK ∗ ψ ∗
χK . Then, χ = cK ∗ψ ∗ cK = KPKψ (mod TΩ0), where KPK is the projection
onto bi-invariant distributions. KPKψ has an expansion in terms of spherical
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functions. The polar decomposition allows us to establish an isomorphism of
[−1, 1] with K\G/K via the obvious composition of maps [−1, 1] → A → G →
K\G/K. So we can lift KPKψ up to a finitely supported distribution on [−1, 1],
where its spherical function expansion corresponds to an expansion in Jacobi
polynomials of some sort. By the Chebyshev property of orthogonal polynomials
[20, Lemma 3.2], we can choose ψ so that the expansion of KPKψ−1 in spherical
functions only contains spherical functions corresponding to representations that
are not in Ω0. That is, choose ψ so that KPKc = 1 (mod TΩ0). Then χ − 1 ∈
TΩ0 .

An apparent problem with this method, is that the number of distributions
in the convolution product for χ is too large. We desire exactly dimG of these
factors, but the method above yields 1 factor for S1, 3 for SU(2), 4 for S(U2×U1),
9 for SU(3), and 2k+2k−1−3 for SU(k), and dimSU(k) = k2−1. In the examples
that follow, we use relations between the ψi modulo TΩ0 to reduce the number
of factors to dim G, when G is one of the classical groups.

4.1.1. Quadrature Rules. Assume that 〈ϕm〉 is a sequence of orthonormal poly-
nomials relative to the positive measure w(x) dx on [a, c]. Then a finitely sup-
ported distribution satisfying 〈ψ, ϕm〉 = δ0m for 0 ≤ m ≤ n is equivalent to a
quadrature formula that exactly integrates polynomials of degree at most n with
respect to w(x)dx. In the case where ψ is a measure supported at the roots
of ϕn, this determines the usual Gaussian integration formula, which has the
advantages that ψ is positive and 〈ψ, ϕm〉 δ0m for 0 ≤ m ≤ 2n + 1. Similarly, by
choosing the support of ψ to be the roots of the n-th l-orthogonal polynomial
we may find a distribution of order 2l, supported on these points, such that
〈ψ, ϕm〉 = δ0m for 0 ≤ m < (2l + 2)n. For more on this, see [7].

When ψ is a positive measure, satisfying the above conditions, the total vari-
ation norm of ψ must be 1. If this measure is pushed onto a Lie group, then
the resulting positive measure also has total variation norm 1, and a convolution
of such measures has total variation norm 1. The construction above (and in
the following examples) can therefore be required to produce measures of total
variation 1 on the classical groups. When ψ is supported at the points cos(πl/n),
0 ≤ l < n, the total variation norm of ψ tends to 1 as n tends to infinity, provided
that w is a nonnegative L1 function on [−1, 1], and 0 <

∫ π

0
w(cos θ)dθ < ∞ (See

[20]).
Together with Lemma 2.4 this shows that the distribution χ of the subsection

above can be constructed so it is bounded in the Am norm as the set Ω0 varies
over finite subsets of Ĝ. To get an explicit formula for χ we need to know how
to convolve point distributions on G; this is explained in [20].

4.2. Example: Sampling on SO(n). The arguments of Section 4.1, when
applied to the chain of groups

SO(n) ⊇ SO(n− 1) ⊇ · · · ⊇ SO(2),
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lead to a sampling distribution on SO(n) that is closely related to the param-
etrization of that group, by means of Euler angles. Let

rm(θ) =




1
. . .

cos θ sin θ

− sin θ cos θ
. . .

1




,

where the “rotation block” appears in columns and rows m − 1 and m. Note
that rm ^ rn for |n−m| > 1 and SO(n) = SO(n− 1).rn([0, π]). SO(n− 1). The
highest weight of a representation of SO(2r +1) is determined by its coordinates
m1,2r+1, . . . , mr,2r+1 relative to the basis {ei} described in Section 2.2.4. These
numbers range over all sets of integers satisfying

m1,2r+1 ≥ · · · ≥ mr,2r+1 ≥ 0.

The highest weight of a representation of SO(2r), may also be expressed in the
coordinates of Section 2.2.4, and these coordinates are integers, m1,2r, . . . , mr,2r,
satisfying

m1,2r ≥ · · · ≥ |mr,2r| .
The “betweenness” relations for the restriction of representations of SO(2r + 1)
to SO(2r) and SO(2r) to SO(2r − 1) are then

m1,2r+1 ≥ m1,2r ≥ m2,2r+1 ≥ . . . ≥ mr,2r+1 ≥ |mr,2r|

and

m1,2r ≥ m1,2r−1 ≥ m2,2r ≥ . . . ≥ mr−1,2r−1 ≥ |mr,2r| ,
where the mi,j are either all integral or all half integral. For convenience, we’ll
assume that n is either 2k + 1 or 2k, that the numbers m1,k, . . .mk,n satisfy the
appropriate restrictions, and that n > 2 in what follows.

Choose a positive integer, s. We shall construct a distribution, cn on SO(n),
such that cn− 1 vanishes on representations ∆λ with ‖λ‖H ≤ s. In terms of the
coordinates mi,j , this is the same as requiring that m1,n ≤ s.

The map [0, π] ←→ SO(n−1)\SO(n)/ SO(n−1) : θ 7→ SO(n−1)rn(θ) SO(n−1)
is a homeomorphism, and its restriction to (0, π) is a diffeomorphism. We may
therefore identify this double coset space with [0, π]. The class one represen-
tations for SO(n)/ SO(n − 1) have highest weights, (m, 0, . . . , 0), where m is a
nonnegative integer, and the corresponding spherical functions are Gegenbauer
polynomials in cos(θ), where θ ∈ [0, π], namely

ϕn
m =

Γ(n− 2)m!
Γ(n + m− 2)

.C(n−2)/2
m (cos θ).
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See [30] for a proof of this. For fixed n, the sequence of functions C
(n−2)/2
m is a

sequence of real orthogonal polynomials, so the sequence of functions ϕn
m is an

extended Chebyshev system.
Choose real finitely supported distributions, ψ̃i,k, on [0, π], for 2 < i ≤ k ≤ n

which each satisfy 〈
ψ̃i,k, ϕi

m

〉
= δ0m for 0 ≤ m ≤ s.

A lot of choices are involved here. In particular, the support, F , of ψ̃i,k may be
any nonempty finite subset of [0, π], and the order, p, of ψ̃i,k is likewise arbitrary
provided that (p + 1) |F | ≥ s + 1.

For the case n = 2, choose ψ̃2,k to be a real distribution supported on a finite
subset of [0, 2π) such that

〈
ψ̃2,k, eim.( )

〉
= δ0m for |m| ≤ s.

Define ψi,k = (ri)∗(ψ̃i,k) for 2 ≤ i ≤ k ≤ n, i.e. 〈ψi,k, f〉 = 〈ψ̃i,k, f ◦ rk〉, for any
C∞ function, f , on G. Finally we can define our sampling distributions:

c2 = ψ2,2,

cn = ψ2,n ∗ · · · ∗ ψn,n ∗ cn−1.

The convolution product for cn has dim SO(n) = n(n−1)
2 factors. It is clear that

we can choose the si,k so that the order of cn is 0 and cn has support of size at
most (2s + 1)n−1s(n−1)(n−2)/2. If we allow cn to have a higher order, then we
can decrease the size of its support.

Theorem 4.1. If ‖λ‖H ≤ s, then ∆λ(cn − 1) = 0.

Proof. Let

Ωn
s = {λ ∈ ŜO(n) : ‖λ‖H ≤ s}

= {∆(m1,n,...,mk,n) : |m1,n| ≤ s}.
Using the embeddings C∞(SO(2))′ ↪→ · · · ↪→ C∞(SO(n))′ and the betweenness
relations for the restriction of representations of SO(n) to SO(n − 1), it is ob-
vious that TΩ2

s
⊆ · · · ⊆ TΩn

s
We shall show, using induction, that cn = cSO(n)

(mod TΩn
s
), for all n. Now, from the general arguments given previously, we

know that if we define ĉk by

ĉ2 = ψ2,2,

ĉk = ĉk−1 ∗ ψk,k ∗ ĉk−1,

then ĉs = cSO(k) (mod TΩk
s
), for all k. We need to show that ĉn = cn. To prove

this, it suffices to show that if ψ2, . . . ψn are distributions with the support of ψk

contained in rk(R), and satisfying cSO(k−1) ∗ ψk ∗ cSO(k−1) = cSO(k) (mod TΩk
s
),



274 DAVID KEITH MASLEN

then ĉn = ψ2 ∗ · · ·ψn ∗ cn−1 (mod TΩn
s
). By induction, we assume that this is

true for numbers less than n. Then for any ψ2, . . . , ψn as above, we have

ĉn = cn−1 ∗ ψn ∗ cSO(n−1) (mod TΩn
s
)

= (ψ2 ∗ · · · ∗ ψn−1 ∗ cn−2) ∗ ψn ∗ cSO(n−1) (mod TΩn
s
)

= ψ2 ∗ · · · ∗ ψn−1 ∗ ψn ∗ cSO(n−2) ∗ cSO(n−1) (mod TΩn
s
)

= ψ2 ∗ · · · ∗ ψn ∗ cn−1 (mod TΩn
s
),

where we have used the facts that cSO(n−2)∗cSO(n−1) = cSO(n−1), and cn−2 ^ ψn.
¤

The distribution P SO(n−1)(ψ2,n ∗ · · · ∗ ψn,n) on Sn−1 = SO(n)/ SO(n − 1) is
zero on the associated spherical functions coming from representations of SO(n)
satisfying |m1,n| ≤ s. In [20], it is shown that a fast transform is possible for
functions sampled on the support of this distribution.

A similar argument leads to the parametrization of SO(n) by Euler angles.

4.3. Example: Sampling on SU(n). In this case, the appropriate chain of
subgroups to use is,

SU(n) ⊆ S(Un−1 × U1) ⊆ SU(n− 1) ⊆ · · · ⊆ S(U1 × U1).

Let rk(θ) be the same matrix as was used in the case of SO(n), but also define
qk(θ) = Diag(e−iθ, . . . , e−iθ, eikθ, 1, . . . , 1). where there are exactly k entries of
the form e−iθ. Note that qk(θ) ^ SU(k), that the qk generate the usual choice
of maximal torus in SU(n), and that

S(Un−1 × U1) = qn−1([0, 2π]).SU(n− 1),

SU(n) = S(Un−1 × U1).rn([0, π/2]).S(Un−1 × U1).

In fact, the map

[0, π/2] → S(Un−1 × U1)\SU(n)/S(Un−1 × U1) :

θ 7→ S(Un−1 × U1)rn(θ)S(Un−1 × U1)

is a homeomorphism, and its restriction to (0, π/2) is a diffeomorphism.
Let λ1,n, . . . λn−1,n be the coordinates of the highest weight of a representation

of SU(n) relative to the basis, {ei} of the dual of the usual Cartan subalgebra,
as given in Section 2.2.4. Then

λ1,n ≥ · · · ≥ λn−1,n ≥ 0.

Representations of the group S(Un−1 × U1), are determined by a collection
of numbers (λ1,n−1, . . . λn−2,n−1; λn−1,n−1), where (λ1,n−1, . . . λn−2,n−1) is the
highest weight of the restriction to SU(n− 1), and λn−1,n−1 is the weight of the
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restriction to the subgroup qn−1(R). The relations giving the representations of
S(Un−1 × U1) arising are

λ1,n−1 = µ1 − µn−1,

. . .

λn−2,n−1 = µn−2 − µn−1,

λn−1,n−1 = (n− 1)
n−1∑

j=1

λj,n − n

n−1∑

j=1

µj ,

where the µj are integers satisfying

λ1,n ≥ µ1 ≥ λ2,n ≥ . . . λn−1,n ≥ µn−1 ≥ 0.

In the case n = 2 the appropriate relation is λ1,2 ≥ |λ1,1| , where λ1,2 − λ1,1

must be even. To restrict to SU(n − 1) from S(Un−1 × U1) simply throw away
λn−1,n−1. If we now define for m ≥ 2

Ωm
s = {∆λ : ‖λ‖H ≤ s} = {∆(λ1,m,...,λm−1,m) : λ1,m ≤ s}

Ω̆m−1
s = {∆(λ;λm−1,m−1) : ‖λ‖H ≤ s, |λm−1,m−1| ≤ (m− 1)s}

= {∆(λ1,m−1,...,λm−2,m−1;λm−1,m−1) : λ1,m−1 ≤ s, |λm−1,m−1| ≤ (m− 1)s}
Ω̆1

s = {∆(λ1,1) : |λ1,1| ≤ s},
then using the embeddings

C∞(S(U1 × U1))′ ↪→ C∞(SU(2))′ ↪→ . . . ↪→ C∞(S(Un−1 × U1))′ ↪→ C∞(SU(n))′

and the restriction relations given above, we see that

TΩ̆1
s
⊆ TΩ2

s
⊆ · · ·TΩn−1

s
⊆ TΩ̆n−1

s
⊆ TΩn

s
.

The class 1 representations of SU(n) relative to S(Un−1 × U1) have highest
weights of the form (2m, m, . . .), where m ≥ 0, and using the map [0, π/2] ←→
S(Un−1×U1)\SU(n)/S(Un−1×U1) specified above, have corresponding spherical
functions which are Jacobi polynomials in cos 2θ,

ϕn
m =

(n− 2)!m!
(n + m− 2)!

.Pn−2,0
m (cos 2θ).

For a proof of this, see [20].
For 2 ≤ i ≤ k ≤ n choose be a real finitely supported distribution, ψ̃i,k,

on [0, π/2], that satisfies 〈ψ̃i,k, ϕi
m〉 = δ0,m for 0 ≤ m ≤ b s

2c. For 1 ≤ j ≤
k < n, choose a real finitely supported distribution, ζ̃j,k, on [0, 2π) that satisfies
〈ζ̃j,k, eim( )〉 = δ0,m for |m| ≤ jb. Define ζ̃ ′n−1,n in the same way, with j = n−1.
Then set ψi,k = (ri)∗(ψ̃i,k), ζj,k = (qj)∗(ζ̃j,k), and define ζ ′n−1,n similarly. Finally
define

c2 = ζ1,2 ∗ ψ2,2 ∗ ζ ′1,2,

cn = (ζ1,n ∗ ψ2,n) ∗ · · · ∗ (ζn−1,n ∗ ψn,n) ∗ ζ ′n−1,n ∗ cn−1.
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Theorem 4.2. cn = cSU(n) (mod TΩn
s
) and cn∗ζ ′n−1,n = cS(Un×U1) (mod TΩ̆n

s
).

Proof. We use induction on n. It suffices to show that if the ψk are distributions
supported on rk(R), and ζk, ζ ′k satisfy cS(Uk−1×U1) ∗ ψk ∗ cS(Uk−1×U1) = cSU(k),
and ζ ′k = ζk = cqk(R) modulo TΩn

s
, then

cSU(n) = (ζ1 ∗ ψ2) ∗ · · · ∗ (ζn−2 ∗ ψn−1) ∗ ζ ′n−2 ∗ cSU(n−1) (mod TΩn
s
).

By induction, we can assume this holds for numbers less than n. Let Qn be the
subgroup of SU(n) given by Qn = {Diag(ei(n−1)θ, e−iθ, . . . e−iθ) : θ ∈ R}, and
note that ζn−2 ∗ cSU(n−2) ∗ ζn−1 = ζn−1 ∗ cSU(n−2) ∗ cQn

(mod TΩn
s
). Therefore,

working modulo TΩn
s
, we have

cSU(n) = cSU(n−1) ∗ ζn−1 ∗ ψn,n ∗ ζ ′n−1 ∗ cSU(n−1)

= ζ1 ∗ ψ2 ∗ · · · ∗ ψn−1 ∗ (ζ ′n−2 ∗ cSU(n−2) ∗ ζn−1) ∗ ψn ∗ ζ ′n−1 ∗ cSU(n−1)

= ζ1 ∗ · · · ∗ ψn−1 ∗ (ζn−1 ∗ cSU(n−2) ∗ cQn
) ∗ ψn ∗ ζ ′n−1 ∗ cSU(n−1)

= ζ1 ∗ · · · ∗ ψn−1 ∗ ζn−1 ∗ ψn ∗ cSU(n−2) ∗ cQn
∗ ζ ′n−1 ∗ cSU(n−1)

= ζ1 ∗ ψ2 ∗ · · · ∗ ψn−1 ∗ ζn−1 ∗ ψn,n ∗ ζ ′n−1,n ∗ cSU(n−1),

where we used the fact that Qn ⊆ S(Un−1 × U1). ¤

The distribution, P SU(n−1)(ζ1,n ∗ ψ2,n ∗ · · · ∗ ζn−1,n ∗ ψn,n ∗ ζ ′n−1,n), on S2n−1 =
SU(n − 1)/ SU(n − 1), is zero on associated spherical functions coming from
representations whose highest weight, (λ1,n, . . . , λn−1,n), satisfies λ1,n ≤ b. In
[20] is is shown how to perform fast transforms for functions sampled on the
support of this distribution. By commutativity, (ζ1,n∗ψ2,n)∗· · ·∗(ζn−1,n∗ψn,n) =
(ζ1,n ∗ · · · ∗ ζn−1,n) ∗ ψ2,n ∗ · · ·ψn,n), so by replacing ζ1,n ∗ · · · ∗ ζn−1,n by an
appropriate distribution on the maximal torus of SU(n), we can obtain yet more
distributions on SU(n), which satisfy the above theorem.

The same commutativity relations can applied to the subgroups qi and rj of
SU(n). This yields a parametrization of SU(n), which is analogous to the Euler
angles for SO(n).

4.4. Example: Sampling on Sp(n). Sp(n) = {A ∈ Mn(H) : A∗A = Id},
where H denotes the division ring of quaternions. By elementary geometry, one
can see that Sp(n)/(Sp(n − 1) × Sp(1)) is isomorphic to the right quaternionic
projective space, Pn−1H and that the map

[0, π/2] → (Sp(n− 1)× Sp(1))\ Sp(n)/(Sp(n− 1)× Sp(1))

: θ 7→ (Sp(n− 1)× Sp(1)).rn(θ).(Sp(n− 1)× Sp(1))

is a homeomorphism, and its restriction to (0, π/2) is a diffeomorphism. Note
that Sp(1) ↔ SU(2).

Let

Rn =

{(
1 . . .

a

)
: a ∈ Sp(1)

}
,
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so that Sp(n− 1)× Sp(1) = Sp(n− 1).Rn.
Working in the basis {ei} of Section 2.2.4, the highest weights of representa-

tions of Sp(n) are determined by integers m1,n, . . . , mn,n, where

m1,n ≥ · · · ≥ mn,n ≥ 0.

The highest weights, ν = (m1,n−1, . . . , mn−1,n−1), of those representations occur-
ring in the restriction of the representation, ∆(m1,n,...,mn,n), of Sp(n) to Sp(n−1)
satisfy

p1 ≥ m1,n−1 ≥ p2 ≥ · · · ≥ mn−1,n−1 ≥ pn,

where
m1,n ≥ p1 ≥ · · · ≥ mn,n ≥ pn ≥ 0,

but the corresponding multiplicities may be greater than one. The restriction of
∆(m1,n,...,mn,n) to Sp(n− 1)× Sp(1) is precisely

∑
ν

(
∆ν ⊗

( n⊗

i=1

∆(min{mi−1,n−1,mi,n}−max{mi,n−1,mi+1,n})

))
,

where mn+1,n = mn,n−1 = 0, m0,n−1 = +∞, and ν ranges over the highest
weights of irreducible representations of Sp(n) appearing in the restriction of
∆(m1,n,...,mn,n) to Sp(n−1); see [33]. Hence, highest weights, m, of the represen-
tations occurring in the restriction from Sp(n) to Rn satisfy m1n ≥ m. It should
be clear then, that if we define, for any positive integer s,

Ωn
s = {∆λ : ‖λ‖H ≤ s} = {∆(m1,n,...,mn,n) : m1,n ≤ s},

then TΩ1
s
⊆ · · · ⊆ TΩn

s
. Also, let ΩSU(2)

s be the set of all irreducible representa-
tions, ∆m, of SU(2) such that 0 ≤ m ≤ b, and denote the corresponding set of
representations of Rn by ΩRn

s . Using the embedding C∞(Rn)′ ↪→ C∞(Sp(n))′,
we see that TΩRn

s
⊆ TΩn

s
.

For any 1 ≤ k ≤ n, we can construct, using previous techniques, a finitely
supported measure, υk,n, on Rn ↔ SU(2), such that υk,n = cRk

(mod T
Ω

Rk
s

).
Now assume that n ≥ 2. The class one representations of Sp(n) relative to
Sp(n − 1) × Sp(1) have highest weights of the form (m,m, 0, . . .), where m is a
nonnegative integer, and the corresponding spherical functions can be written
using the map [0, π/2] → (Sp(n− 1)× Sp(1))\ Sp(n)/(Sp(n− 1)× Sp(1)), in the
form

ϕn
m =

(2n− 3)!m!
(m + 2n− 3)!

.P 2n−3,1
m (cos 2θ).

For a proof of this, see [15]. Let ψ̃k,n be a real finitely supported distribution
on [0, π/2] that satisfies 〈ψ̃k,n, ϕk

m〉 = δ0,m for 0 ≤ m ≤ s, and set ψk,n =
(rk)∗(ψ̃k,n). Then define cn inductively by

c1 = υ1,1,

cn = υ1,n ∗ (ψ2,n ∗ υ2,n) ∗ · · · ∗ (ψn,n ∗ υn,n) ∗ cn−1.



278 DAVID KEITH MASLEN

This finitely supported measure is the convolution product of dimSp(n) = 2n2 +
n factors each supported on a 1-parameter subgroup of Sp(n), and it is easy to
prove the following theorem.

Theorem 4.3. cn = cSp(n) (mod TΩn
s
).

Proof. Similar to the SO(n) and SU(n) cases. ¤

Acknowledgments

I thank Dan Rockmore for reorganizing this paper, and for rewriting the intro-
duction to bring it up to date. I would like to thank Persi Diaconis, and Dennis
Healy for many discussions and a lot of encouragement and advice along the way.
I would also like to thank the Harvard University Department of Mathematics,
and the Max-Planck-Institut für Mathematik, which supported me during the
writing of this paper.

References

[1] J. P. Boyd, Chebyshev and Fourier Spectral Methods, Lecture Notes in Engineering
49, Springer, New York, 1989.

[2] W. Byerly, An elementary treatise on Fourier’s series and spherical, cylindrical,
and ellipsoidal harmonics: with applications to problems in mathematical physics,
Ginn, Boston, 1893.

[3] G. Chirikjian and A. Kyatkin, Engineering applications of noncommutative har-
monic analysis: with emphasis on rotation and motion groups, CRC Press, Boca
Raton (FL), 2000.

[4] J. R. Driscoll and D. M. Healy Jr., “Computing Fourier transforms and convolutions
on the 2-sphere”, Adv. Applied Math. 15 (1994), 202–250.

[5] J. R. Driscoll, D. M. Healy Jr., and D. Rockmore, “Fast spherical transforms on
distance transitive graphs”, SIAM J. Comput., 26:4, 1997, 1066–1099.

[6] G. I. Gaudrey and R. Pini, “Bernstein’s theorem for compact, connected Lie
groups”, Math. Proc. Cambridge Philosoph. Soc. 99 (1986), 297–305.

[7] A. Ghizetti and A. Ossicini, Quadrature Formulae, Birkhäuser, Basel, 1970.
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Abstract. In 1965 J. Cooley and J. Tukey published an article detailing an
efficient algorithm to compute the Discrete Fourier Transform, necessary
for processing the newly available reams of digital time series produced
by recently invented analog-to-digital converters. Since then, the Cooley–
Tukey Fast Fourier Transform and its variants has been a staple of digital
signal processing.

Among the many casts of the algorithm, a natural one is as an efficient
algorithm for computing the Fourier expansion of a function on a finite
abelian group. In this paper we survey some of our recent work on he
“separation of variables” approach to computing a Fourier transform on an
arbitrary finite group. This is a natural generalization of the Cooley–Tukey
algorithm. In addition we touch on extensions of this idea to compact and
noncompact groups.

Pure and Applied Mathematics: Two Sides of a Coin

The Bulletin of the AMS for November 1979 had a paper by L. Auslander and
R. Tolimieri [3] with the delightful title “Is computing with the Finite Fourier
Transform pure or applied mathematics?” This rhetorical question was answered
by showing that in fact, the finite Fourier transform, and the family of efficient
algorithms used to compute it, the Fast Fourier Transform (FFT), a pillar of
the world of digital signal processing, were of interest to both pure and applied
mathematicians.
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Auslander had come of age as an applied mathematician at a time when pure
and applied mathematicians still received much of the same training. The ends
towards which these skills were then directed became a matter of taste. As
Tolimieri retells it (private communication), Auslander had become distressed
at the development of a separate discipline of applied mathematics which had
grown apart from much of core mathematics. The effect of this development
was detrimental on both sides. On the one hand applied mathematicians had
fewer tools to bring to problems, and conversely, pure mathematicians were often
ignoring the fertile bed of inspiration provided by real world problems. Auslander
hoped their paper would help mend a growing perceived rift in the mathematical
community by showing the ultimate unity of pure and applied mathematics.

We will show that investigation of finite and fast Fourier transforms contin-
ues to be a varied and interesting direction of mathematical research. Whereas
Auslander and Tolimieri concentrated on relations to nilpotent harmonic analy-
sis and theta functions, we emphasize connections between the famous Cooley–
Tukey FFT and group representation theory. In this way we hope to provide
further evidence of the rich interplay of ideas which can be found at the nexus
of pure and applied mathematics.

1. Background

The finite Fourier transform or discrete Fourier transform (DFT) has several
representation theoretic interpretations: either as an exact computation of the
Fourier coefficients of a function on the cyclic group Z/nZ or a function of band-
limit n on the circle S1, or as an approximation to the Fourier transform of a
function on the real line. For each of these points of view there is a natural group-
theoretic generalization, and also a corresponding set of efficient algorithms for
computing the quantities involved. These algorithms collectively make up the
Fast Fourier Transform or FFT.

Formally, the DFT is a linear transformation mapping any complex vector of
length n, f = (f(0) . . . , f(n− 1))t ∈ Cn, to its Fourier transform, f̂ ∈ Cn. The
kth component of f̂ , the DFT of f at frequency k, is

f̂(k) =
n−1∑

j=0

f(j)e2πijk/n (1–1)

where i =
√−1, and the inverse Fourier transform is

f(j) =
1
n

n−1∑

k=0

f̂(k)e−2πijk/n. (1–2)

Thus, with respect to the standard basis, the DFT can be expressed as the
matrix-vector product f̂ = Fn · f where Fn is the Fourier matrix of order n,
whose j, k entry is equal to e2πijk/n. Computing a DFT directly would require n2
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scalar operations. (For precision’s sake: Our count of operations is the number
of complex additions of the number of complex multiplications, whichever is
greater.) Instead, the FFT is a family of algorithms for computing the DFT of
any f ∈ Cn in O(n log n) operations. Since inversion can be framed as the DFT
of the function f̌(k) = 1

n f̂(−k), the FFT also gives an efficient inverse Fourier
transform.

One of the main practical implications of the FFT is that it allows any cycli-
cally invariant linear operator to be applied to a vector in only O(n log n) scalar
operations. Indeed, the DFT diagonalizes any group invariant operator, making
possible the following algorithm: (1) compute the Fourier transform (DFT). (2)
Multiply the DFT by the eigenvalues of the operator, which are also found using
the Fourier transform. (3) Compute the inverse Fourier transform of the result.
This technique is the basis of digital filtering and is also used for the efficient
numerical solution of partial differential equations.

Some history. Since the Fourier matrix is effectively the character table of
a cyclic group, it is not surprising that some of its earliest appearances are in
number theory, the subject which gave birth to character theory. Consideration
of the Fourier matrix goes back at least as far as to Gauss, who was interested
in its connections to quadratic reciprocity. In particular, Gauss showed that for
odd primes p and q,

(
p

q

)(
q

p

)
=

TraceFpq

TraceFp TraceFq
, (1–3)

where
(

p
q

)
denotes the Legendre symbol. Gauss also established a formula for

the quadratic Gauss sum TraceFn, which is discussed in detail in [3].
Another early appearance of the DFT occurs in the origins of representation

theory in the work of Dedekind and Frobenius on the group determinant. For
a finite group G, the group determinant ΘG is defined as the homogeneous
polynomial in the variables xg (for each g ∈ G) given by the determinant of
the matrix whose rows and columns are indexed by the elements of G with g, h-
entry equal to xgh−1 . Frobenius showed that when G is abelian, ΘG admits the
factorization

ΘG =
∏

χ∈ bG
( ∑

g∈G

χ(g)xg

)
, (1–4)

where Ĝ is the set of characters of G. The linear form defined by the inner sum
in (1–4) is a “generic” DFT at the frequency χ.

In the nonabelian case, ΘG admits an analogous factorization in terms of
irreducible polynomials of the form

ΘD(G) = det

( ∑

g∈G

D(g)xg

)
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where D is an irreducible matrix representation of G. The inner sum here is a
generic Fourier transform over G. See [12] for a beautiful historical exposition
of these ideas.

Gauss’s interests ranged over all areas of mathematics and its applications, so
it is perhaps not surprising that the first appearance of an FFT can also be traced
back to him [10]. Gauss was interested in certain astronomical calculations, a
recurrent area of application of the FFT, necessary for interpolation of asteroidal
orbits from a finite set of equally-spaced observations. Surely the prospect of a
huge laborious hand calculation was good motivation for the development of a
fast algorithm. Making fewer hand calculations also implies less opportunity for
error and hence increased numerical stability!

Gauss wanted to compute the Fourier coefficients, ak, bk of a function repre-
sented by a Fourier series of bandwidth n,

f(x) =
m∑

k=0

ak cos 2πkx +
m∑

k=1

bk sin 2πkx, (1–5)

where m = (n− 1)/2 for n odd and m = n/2 for n even. He first observed
that the Fourier coefficients can be computed by a DFT of length n using the
values of f at equispaced sample points. Gauss then went on to show that if
n = n1n2, this DFT can in turn be reduced to first computing n1 DFTs of length
n2, using equispaced subsets of the sample points, i.e., a subsampled DFT, and
then combining these shorter DFTs using various trigonometric identities. This
is the basic idea underlying the Cooley–Tukey FFT.

Unfortunately, this reduction never appeared outside of Gauss’s collected
works. Similar ideas, usually for the case n1 = 2 were rediscovered intermit-
tently over the succeeding years. Notable among these is the doubling trick of
Danielson and Lanczos (1942), performed in the service of x-ray crystallography,
another frequent employer of FFT technology. Nevertheless, it was not until the
publication of Cooley and Tukey’s famous paper [7] that the algorithm gained
any notice. The story of Cooley and Tukey’s collaboration is an interesting one.
Tukey arrived at the basic reduction while in a meeting of President Kennedy’s
Science Advisory Committee where among the topics of discussions were tech-
niques for off-shore detection of nuclear tests in the Soviet Union. Ratification
of a proposed United States/Soviet Union nuclear test ban depended upon the
development of a method for detecting the tests without actually visiting the
Soviet nuclear facilities. One idea required the analysis of seismological time
series obtained from off-shore seismometers, the length and number of which
would require fast algorithms for computing the DFT. Other possible applica-
tions to national security included the long-range acoustic detection of nuclear
submarines.

R. Garwin of IBM was another of the participants at this meeting and when
Tukey showed him this idea Garwin immediately saw a wide range of potential
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applicability and quickly set to getting this algorithm implemented. Garwin was
directed to Cooley, and, needing to hide the national security issues, told Cooley
that he wanted the code for another problem of interest: the determination
of the periodicities of the spin orientations in a 3-D crystal of He3. Cooley
had other projects going on, and only after quite a lot of prodding did he sit
down to program the “Cooley–Tukey” FFT. In short order, Cooley and Tukey
prepared their paper, which, for a mathematics/computer science paper, was
published almost instantaneously—in six months!. This publication, Garwin’s
fervent proselytizing, as well as the new flood of data available from recently
developed fast analog-to-digital converters, did much to help call attention to
the existence of this apparently new fast and useful algorithm. In fact, the
significance of and interest in the FFT was such that it is sometimes thought
of as having given birth to the modern field of analysis of algorithms. See also
[6] and the 1967 and 1969 special issues of the IEEE Transactions in Audio
Electronics for more historical details.

The Fourier transform and finite groups. One natural group-theoretic
interpretation of the Fourier transform is as a change of basis in the space of
complex functions on Z/nZ. Given a complex function f on Z/nZ, we may
expand f , in the basis of irreducible characters {χk}, defined by χk(j) = e2πijk/n.
By (1–2) the coefficient of χk in the expansion is equal to the scaled Fourier
coefficient 1

n f̂(−k), whereas the Fourier coefficient f̂(k) is the inner product of
the vector of function values of f with those of the character χk.

For an arbitrary finite group G there is an analogous definition. The characters
of Z/nZ are the simplest example of a matrix representation, which for any group
G is a matrix-valued function ρ(g) on G such that ρ(ab) = ρ(a)ρ(b), and ρ(e)
is the identity matrix. Given a matrix representation ρ of dimension dρ, and
a complex function f on G, the Fourier transform of f at ρ is defined as the
matrix sum

f̂(ρ) =
∑

x∈G

f(x)ρ(x). (1–6)

Computing f̂(ρ) is equivalent to the computation of the d2
ρ scalar Fourier trans-

forms at each of the individual matrix elements ρij ,

f̂(ρij) =
∑

x∈G

f(x)ρij(x). (1–7)

A set of matrix representations R of G is called a complete set of irreducible
representations if and only if the collection of matrix elements of the represen-
tations, relative to an arbitrary choice of basis for each matrix representation
in the set, forms a basis for the space of complex functions on G. The Fourier
transform of f with respect to R is then defined as the collection of individual
transforms, while the Fourier transform on G means any Fourier transform com-
puted with respect to some complete set of irreducibles. In this case, the inverse
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transform is given explicitly as

f(x) =
1
|G|

∑

ρ∈R
dρ Trace(f̂(ρ)ρ(x−1)). (1–8)

Equation (1–8) shows us a relation between the group Fourier transform and the
expansion of a function in the basis of matrix elements. The coefficient of ρij

in the expansion of f is the Fourier transform of f at the dual representation
[ρji(g−1)] scaled by the factor dρ/ |G|.

Viewing the Fourier transform on G as a simple matrix-vector multiplication
leads to some simple bounds on the number of operations required to compute
the transform. The computation clearly takes no more than the |G|2 scalar
operations required for any matrix-vector multiplication. On the other hand the
column of the Fourier matrix corresponding to the trivial representation is all
ones, so at least |G| − 1 additions are necessary. One main goal of this finite
group FFT research is to discover algorithms which can significantly reduce the
upper bound for various classes of groups, or even all finite groups.

The current state of affairs for finite group FFTs. Analysis of the Fourier
transform shows that for G abelian, the number of operations required is bounded
by O(|G| log |G|). For arbitrary groups G, upper bounds of O(|G| log |G|) remain
the holy grail in group FFT research. In 1978, A. Willsky provided the first non-
abelian example by showing that certain metabelian groups had an O(|G| log |G|)
Fourier transform algorithm [20]. Implicit in the big-O notation is the idea that
a family of groups is under consideration, with the size of the individual groups
going to infinity.

Since Willsky’s initial discovery much progress has been made. U. Baum has
shown that the supersolvable groups admit an O(|G| log |G|) FFT, while others
have shown that symmetric groups admit O(|G| log2 |G|) FFTs (see Section 3).
Other groups for which highly improved (but not O(|G| logc |G|)) algorithms have
been discovered include the matrix groups over finite fields, and more generally,
the Lie groups of finite type. See [15] for pointers to the literature. There is much
work to be done finding new classes of groups which admit fast transforms, and
improving on the above results. The ultimate goal is to settle or make progress
on the following conjecture:

Conjecture 1. There exist constants c1 and c2 such that for any finite group
G, there is a complete set of irreducible matrix representations for which the
Fourier transform of any complex function on the G may be computed in fewer
than c1|G| logc2 |G| scalar operations.

2. The Cooley–Tukey Algorithm

Cooley and Tukey showed [7] how the Fourier transform on the cyclic group
Z/nZ, where n = pq is composite, could be written in terms of Fourier transforms
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on the subgroup qZ/nZ ∼= Z/pZ. The trick is to change variables, so that the one
dimensional formula (1–1) is turned into a two dimensional formula, which can
be computed in two stages. Define variables j1, j2, k1, k2, through the equations

j = j(j1, j2) = j1q + j2, 0 ≤ j1 < p, 0 ≤ j2 < q,

k = k(k1, k2) = k2p + k1, 0 ≤ k1 < p, 0 ≤ k2 < q.
(2–1)

It follows from these equations that (1–1) can be rewritten as

f̂(k1, k2) =
q−1∑

j2=0

e2πij2(k2p+k1)/n

p−1∑

j1=0

e2πij1k1/pf(j1, j2). (2–2)

We now compute f̂ in two stages:

• Stage 1: For each k1 and j2 compute the inner sum

f̃(k1, j2) =
p−1∑

j1=0

e2πij1k1/pf(j1, j2). (2–3)

This requires at most p2q scalar operations.
• Stage 2: For each k1, k2 compute the outer sum

f̂(k1, k2) =
q−1∑

j2=0

e2πij2(k2p+k1)/nf̃(k1, j2). (2–4)

This requires an additional q2p operations.

Thus, instead of (pq)2 operations, the above algorithm uses (pq)(p+q) operations.
Stage 1 has the form of a DFT on the subgroup qZ/nZ ∼= Z/pZ, embedded

as the set of multiples of q,whereas stage 2 has the form of a DFT on a cyclic
group of order q, so if n could be factored further, we could apply the same trick
to these DFTs in turn. Thus, if N has the prime factorization N = p1 · · · pm,
then we recover Cooley and Tukey’s original m-stage algorithm which requires
N

∑
i pi operations [7].

A group-theoretic interpretation. Auslander and Tolmieri’s paper [3] re-
lated the Cooley–Tukey algorithm to the Weil–Brezin map for the finite Heisen-
berg group. Here we present an alternate group-theoretic interpretation, origi-
nally due to Beth [4], that is more amenable to generalization.

The change of variables on the first line of (2–1) may be interpreted as the
factorization of the group element j as the (group) product of j1q ∈ qZ/nZ,
with the coset representative j2. Thus, if we write G = Z/nZ, H = qZ/nZ,
and let Y denote our set of coset representatives, the change of variables can be
rewritten as

g = y · h, y ∈ Y, h ∈ H (2–5)

The second change of variables in (2–1) can be interpreted using the notion of
restriction of representations. It is easy to see that restricting a representation
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on a group G to a subgroup H yields a representation of that subgroup. In the
case of qZ/nZ this amounts to the observation that

e2πij1q(k2p+k1)/n = e2πij1k1/p,

which is used to prove (2–2).
The restriction relations between representations may be represented diagra-

matically using a directed graded graph with three levels. At level zero there is
a single vertex labeled 1, called the root vertex. The vertices at level one are
labeled by the irreducible representations of Z/pZ, and the vertices at level two
are labeled by the irreducible representations of Z/nZ. Edges are drawn from
the root vertex to each of the vertices at level one, and from a vertex at level one
to a vertex at level two if and only if the representation at the tip restricts to the
representation at the tail. The directed graph obtained is the Bratteli diagram
for the chain of subgroups Z/nZ > Zp/Z > 1. Figure 1 shows the situation for
the chain Z/6Z > 2Z/6Z ∼= Z/3Z > 1.
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Figure 1. The Bratteli diagram for Z/6Z > 2Z/6Z > 1. The representation χk

of Z/mZ is defined by χk(l) = e2πikl/m.

In this way the irreducible representations of Z/nZ are indexed by paths
(k1, k2) in the Bratteli diagram for Z/nZ > Z/pZ > 1. The DFT factorization
(2–2) now becomes

f̂(k1, k2) =
∑

y∈Y

χk1,k2(y)
∑

h∈H

f(y · h)χk1(h). (2–6)

The two-stage algorithm is now restated as first computing a set of sums that
depend on only the first leg of the paths, and then combining these to compute
the final sums that depend on the full paths.

In summary, the group elements have been indexed according to a particular
factorization scheme, while the irreducible representations (the dual group) are
now indexed by paths in a Bratteli diagram, describing the restriction of repre-
sentations. This allows us to compute the Fourier transform in stages, using one
fewer group element factor at each stage, but using paths of increasing length in
the Bratteli diagram.



THE COOLEY–TUKEY FFT AND GROUP THEORY 289

3. Fast Fourier Transforms on Symmetric Groups

A fair amount of attention has been devoted to developing efficient Fourier
transform algorithms for the symmetric group. One motivation for developing
these algorithms is the goal of analyzing data on the symmetric group using a
spectral approach. In the simpler case of time series data on the cyclic group,
this approach amounts to projecting the data vector onto the basis of complex
exponentials.

The spectral approach to data analysis makes sense for a function defined
on any kind of group, and such a general formulation is due to Diaconis (see
[8], for example). The case of the symmetric group corresponds to considering
ranked data. For instance, a group of people might be asked to rank a list of 4
restaurants in order of preference. Thus, each respondent chooses a permutation
of the original ordered list of 4 objects, and counting the number of respon-
dents choosing each permutation yields a function on S4. It turns out that the
corresponding Fourier decomposition of this function naturally describes various
coalition effects that may be useful in describing the data.

To get some feel for this notice that the Fourier transform at the matrix
elements ρij(π) of the (reducible) defining representation count the number of
people ranking restaurant i in position j. If instead ρ is the (reducible) permuta-
tion representation of Sn on unordered pairs {i, j}, then for each choice of {i, j}
and {k, l} the individual Fourier transforms count the number of respondents
ranking restaurants i and j in positions k and l. See [8] for a more thorough
explanation.

The first FFT for symmetric groups (an O(|G| log3 |G|) algorithm) was due
M. Clausen. In what follows we summarize recent improvements on Clausen’s
result.

Example: Computing the Fourier transform on S4. The fast Fourier
transform for S4 is obtained by mimicking the group-theoretic approach to the
Cooley–Tukey algorithm. More precisely, we shall rewrite the formula for the
Fourier transform using two changes of variables: one using factorizations of
group elements, and the other using paths in a Bratteli diagram. The former
comes from the reduced word decomposition of g ∈ S4, by which g may be
uniquely expressed as

g = s4
2 · s4

3 · s4
4 · s3

2 · s3
3 · s2

2, (3–1)

where sj
i is either e or the transposition (i i−1), and sj

i1
= e implies that sj

i2
= e

for i2 ≤ i1. Thus any function on the group S4 may be thought of as a function
of the 6 variables s4

2, s
4
3, s

4
4, s

3
2, s

3
3, s

2
2.

To index the matrix elements of S4 paths in a Bratteli diagram are used, this
time relative to the chain of subgroups S4 ≥ S3 ≥ S2 ≥ S1 ≥ 1. The irreducible
representations of Sn are in one-to-one correspondence with partitions of the
integer n, with restriction of representations corresponding to deleting a box in
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the Young diagram. The corresponding Bratteli diagram is called Young’s lattice,
and is shown in Figure 2. Paths in Young’s lattice from the empty partition φ

••
•
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•

•

•

•
•
•
•
•
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(1,1,1,1)

Figure 2. Young’s lattice up to level 4.

to β4, a partition of 4, index the basis vectors of the irreducible representation
corresponding to β4. Matrix elements, however, are determined by specifying a
pair of basis vectors, so to index the matrix elements, we must use pairs of paths
in Young’s lattice, starting at φ and ending in the same partition of 4. Since
there are no multiple edges in Young’s lattice, each path may be described by
the sequence of partitions φ, β1, β2, β3, β4, through which it passes.

Before we can state a formula for the Fourier transform, analogous to (2–2)
and (2–6), we must choose bases for the irreducible representations of S4 in
order to define our matrix elements. Efficient algorithms are known only for
special choices of bases, and our algorithm uses the representations in Young’s
orthogonal form, which is equivalent to the following equation (3–2) for the
Fourier transform in the new sets of variables.

f̂

(
β4 β3 β2 β1

γ3 γ2 γ1

)

=
∑

g=s4
2s4

3s4
4s3

2s3
3s2

2

∑
ϕ2,ϕ1,η1

(
P 4

s4
4

(
β4 β3

γ3 ϕ2

)
P 3

s4
3

(
β3 β2

ϕ2 ϕ1

)
P 2

s4
2

(
β2 β1

ϕ1

)

×P 3
s3
3

(
γ3 ϕ2

γ2 η1

)
P 2

s3
2

(
ϕ2 ϕ1

η1

)
P 2

s2
2

(
γ2 η1

γ1

)
f(g)

)
. (3–2)

The functions P i
sj

i

in equation (3–2) are defined below, and for each i, the vari-
ables βi, γi, ϕi, ηi are partitions of i, satisfying the restriction relations described
by Figure 3. A solid line between partitions means that the right partition is
obtained from the left partition by removing a box.

The relationship between (3–2) and Figure 3 is extremely close—we derived
the diagram from the reduced word decomposition first, and then read the equa-
tion off the diagram. Each 2-cell in Figure 3 corresponds to a factor in the
product of P functions in (3–2), and the labels on the boundary of each cell
give the arguments of P i

sj
i

. The sum in (3–2) is over those variables occurring in
the interior of Figure 3. Thus, the variables describing the Fourier transformed
function are exactly those appearing on the boundary of the figure.
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Figure 3. Restriction relations for (3–2).

Equation (3–2) can be summarized by saying that we take the product over
2-cells, and sum on interior indices, in Figure 3. This suggests a generalization of
the Cooley–Tukey algorithm, that corresponds to building up the diagram one
cell at a time. At each stage multiply by the factor corresponding to a 2-cell,
and form the diagram consisting of those 2-cells that have been considered so far.
Then sum over any indices that are in the interior of the diagram for this stage,
but were not in the interior for previous stages. At the end of this algorithm we
have multiplied by the factors for each 2-cell, and summed over all the interior
indices, and have therefore computed the Fourier transform.

The order in which the cells are added matters, of course. The order s2
2, s3

2,
s3
3, s4

2, s4
3, s4

4 is known to be most efficient. Here is the algorithm in detail.

• Stage 0: Start with f(s4
2s

4
3s

4
4s

3
2s

3
3s

2
2), for all reduced words.

• Stage 1: Multiply by P 2
s2
2
. Sum on s2

2.

• Stage 2: Multiply by P 2
s3
2
. Sum on s3

2.

• Stage 3: Multiply by P 3
s3
3
. Sum on η1, s

3
3.

• Stage 4: Multiply by P 2
s4
2
. Sum on s4

2.

• Stage 5: Multiply by P 2
s4
3
. Sum on ϕ1, s

4
3.

• Stage 6: Multiply by P 3
s4
4
. Sum on ϕ2, s

4
4.

The indices occurring in each stage of the algorithm are shown in Figure 4.

To count the number of additions and multiplications used by the algorithm,
we must count the number of configurations in Young’s lattice corresponding to
each of the diagrams in Figure 4. This yields a grand total of 130 additions and
130 multiplications for the Fourier transform on S4.

The generalization to higher order symmetric groups is straightforward. The
reduced word decomposition gives the group element factorization and Young’s
orthogonal form allows us to change variables, and the formula and algorithm
for the Fourier transform can be read off a diagram generalizing Figure 3. The
diagram for S5 is shown, for example, in Figure 5.
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Figure 4. Variables occurring at each stage of the fast Fourier transform for S4
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Figure 5. Restriction relations in the Fourier transform formula for S5.

We have computed the exact operation counts for symmetric groups Sn with
n ≤ 50, and a general formula seems hard to come by. (Presumably n ≤ 50 would
cover all cases where the algorithm might ever be implemented, but the same
numbers arise in FFTs on homogeneous spaces, which have far fewer elements.)

However, bounds are easier to obtain:

Theorem 3.1 ([13]). The number of additions (or multiplications) required by
the above algorithm (as generalized to Sn > Sn−1 > · · · > S1) is exactly

n! ·
n∑

k=2

1
k

k∑

i=2

1
(i− 1)!

Fi

where Fi is the number of configurations in Young’s lattice of the form

•

•

•

· · ·
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φ
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γ1
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βn−1

γn−1

βn (3–3)
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Furthermore, Fi ≤ 3(1 − 1
i )i!, so the number of additions (multiplications) is

bounded by 3
4n(n− 1) · n!.

Why stop at Sn? The algorithm for the FFT on Sn generalizes to any wreath
product Sn[G] with the symmetric group. The subgroup chain is replaced by
the chain

Sn[G] > Sn−1[G]×G > Sn−1[G] > · · · > S2[G] > G×G > G, (3–4)

and the reduced word decomposition is replaced by the factorization

x = sn
2 · · · sn

ngnsn−1
2 · · · sn−1

n−1g
n−1 · · · s2

sg
2g1. (3–5)

Adapting the Sn argument along these lines gives the following new result.

Theorem 3.2. The number of operations needed to compute a Fourier transform
on Sn[G] is at most

(
3n(n− 1)

4
|G|d2

G + n
(
tG + 1

4 |G|(hGd2
G − |G|)

)) |Sn[G]|

where hG is the number of conjugacy classes in G, dG is the maximal degree of
an irreducible representation of G, and tG is the number of operations required
to compute a Fourier transform on G. If G is abelian, then the inner term
hGd2

G − |G| = 0.

The functions P i
sj

i

defining Young’s orthogonal form are defined as follows: For
any two boxes b1 and b2 in a Young diagram, we define the axial distance from
b1 to b2 to be d(b1, b2), where d(b1, b2) = row(b1) − row(b2) + column(b1) −
column(b2). Now suppose βi, βi−1, αi−1, αi−2 are partitions and that αi−1, βi−1

are obtained from βi by removing a box, and are obtained from αi−2 by adding
a box. Then the skew diagrams of βi − βi−1 and βi−1 − αi−2 each consist of a
single box, and P i is given by

P i
e

(
βi βi−1

αi−1 αi−2

)
=

{
1 if αi−1 = βi−1,
0 if αi−1 6= βi−1.

P i
(i i−1)

(
βi βi−1

αi−1 αi−2

)
=

{
d(βi − βi−1, βi−1 − αi−2)−1 if αi−1 = βi−1,√

1− d(βi − βi−1, βi−1 − αi−2)−2 if αi−1 6= βi−1.
(3–6)

For a proof of this formula, in slightly different notation, see [11], Chapter 3.

4. Generalization to Other Groups

The FFT described for symmetric groups suggests a general approach to com-
puting Fourier transforms on finite groups. Here is the recipe.

(i) Choose a chain of subgroups

G = Gm ≥ Gm−1 ≥ · · · ≥ G1 ≥ G0 = 1 (4–1)
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for the group. This determines the Bratteli diagram that we will use to index
the matrix elements of G. In the general case, this Bratteli diagram may have
multiple edges, so a path is no longer determined by the nodes it visits.

(ii) Choose a factorization g = gn · gn−1 · · · g1 of each group element g. Choose
the gi so that they lie in as small a subgroup Gk as possible, and commute
with as large a subgroup Gl as possible.

(iii) Choose a system of Gel’fand–Tsetlin bases [9] for the irreducible represen-
tations of G relative to the chain (4–1). These are bases that are indexed
by paths in the Bratteli diagram, that behave well under restriction of rep-
resentations. Relative to such a basis, the representation matrices of gi will
be block diagonal whenever gi lies in a subgroup from the chain, and block
scalar whenever gi commutes with all elements of a subgroup from the chain.

(iv) Now write the Fourier transform in coordinates, as a function of the pairs of
paths in the Bratteli diagram with a common endpoint, and with the original
function written as a function of g1, . . . , gn. This will be a sum of products
indexed by edges in the Bratteli diagram which lie in some configuration
generalizing (3). This configuration of edges specifies the way in which the
nonzero elements of the representation matrices appear in the formula for the
Fourier transform in coordinates.

(v) The algorithm proceeds by building up the product piece by piece, and
summing on as many partially indexed variables as possible.

Further considerations and generalizations. The efficiency of the above
approach, both in theory, in terms of algorithmic complexity, and practice, in
terms of execution time, depends on both the choice of factorization and the
Gel’fand–Tsetlin bases. In particular, very interesting work of L. Auslander, R.
Johnson and J. Johnson [2] shows how in the abelian case, different factorizations
correspond to different well-known FFTs, each well suited for execution on a
different computer architecture. This work shows how to relate the 2-cocycle of
a group extension to construction of the important “twiddle factor” matrix in
the factorization of the Fourier matrix. It marks the first appearances of group
cohomology in signal processing and derives an interesting connection between
group theory and the design of retargetable software.

The analogous questions for nonabelian groups and other important signal
processing transform algorithms, that is, the problem of finding architecture-
optimized factorizations, is currently being investigated by the SPIRAL project
at Carnegie Mellon [19].

Another abelian idea: the “chirp-z” FFT. The use of subgroups depends
upon the existence of a nontrivial subgroup. Thus, for a reduction in the case of
a cyclic group of prime order, a new idea is necessary. In this case, C. Rader’s
“chirp-z transform” (the “chirp” here refers to radar chirp—the generation of
an extremely short electromagnetic pulse, i.e., something approaching the ideal
delta function) may be used [16].
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The chirp-z transform proceeds by turning computation of the DFT into com-
putation of convolution on a different, albeit related, group. Let p be a prime.
Since Z/pZ is also a finite field, there exists a generator g of Z/pZ×, a cyclic
group (under multiplication) of order p − 1. Thus, for any f : Z/pZ → C and
nonzero frequency index g−b, we can write f̂(g−b) as

f̂(g−b) = f(0) +
p−2∑
a=0

f(ga)e2πiga−b/p. (4–2)

The summation in (4–2) has the form of a convolution on Z/(p − 1)Z, of the
sequence f ′(a) = f(ga), with the function z(a) = exp2πiga/p, so that f̂ may
be almost entirely computed using Fourier transforms of length p− 1 for which
Cooley–Tukey-like ideas may be used. It is an interesting open question to
discover if the chirp-z transform has a nonabelian generalization.

Modular FFTs. A significant application of the abelian FFT is in the efficient
computation of Fourier transforms for functions on cyclic groups defined over
finite fields. These are necessary for the efficient encoding and decoding of various
polynomial error correcting codes. Many abelian codes, e.g., the Golay codes
used in deep-space communication, are defined as Fp-valued functions on a group
Z/mZ with the property that f̂(k) = 0 for k ∈ S some specified set of indices
S, where now the Fourier transform is defined in terms of a primitive (p − 1)st

root of unity.
These sorts of spectral constraints define cyclic codes, and they may imme-

diately be generalized to any finite group. Recently, this has been done in the
construction of codes over SL2(Fp), using connections between expander graphs
and linear codes discovered by M. Sipser and D. Spielman. For further discussion
of this and other applications see [17].

5. FFTs for Compact Groups

The DFT and FFT also have a natural extension to continuous compact
groups. The terminology “discrete Fourier transform” derives from the algorithm
having been originally designed to compute the (possibly approximate) Fourier
transform of a continuous signal from a discrete collection of sample values.

Under the simplifying assumption of periodicity a continuous function may
be interpreted as a function on the unit circle, and compact abelian group, S1.
Any such function f has a Fourier expansion defined as

f(e2πit) =
∑

l∈Z

f̂(l)e−2πilt (5–1)

where

f̂(l) =
∫ 1

0

f(e2πit)e2πiltdt. (5–2)
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If f̂(l) = 0 for |l| ≥ N , then f is band-limited with band-limit N and the DFT
(1–1) is in fact a a quadrature rule or sampling theorem for f . In other words,
the DFT of the function

1
2N − 1

f(e2πit)

on the group of (2N−1)-st roots of unity computes exactly the Fourier coefficients
of the band-limited function. The FFT then efficiently computes these Fourier
coefficients.

The first nonabelian FFT for a compact group was a fast spherical harmonic
expansion algorithm discovered by J. Driscoll and D. Healy. Several ingredients
were required: (1) A notion of “band-limit” for functions on S2; (2) A sampling
theory for such functions; and (3) A fast algorithm for the computation.

The spherical harmonics are naturally indexed according to their order (the
common degree of a set of homogeneous polynomials on S2). With respect to
the usual coordinates of latitude and longitude, the spherical harmonics separate
as a product of exponentials and associated Legendre functions, each of which
separately has a sampling theory. Finally, by using the usual FFT for the expo-
nential part, and a new fast algorithm (based on three-term recurrences) for the
Legendre part, an FFT for S2 is formed.

These ideas generalize nicely. Keep in mind that the representation theory
of compact groups is much like that of finite groups: there is a countable com-
plete set of irreducible representations and any square-integrable function (with
respect to Haar measure) has an expansion in terms of the corresponding ma-
trix elements. There is a natural definition of band-limited in the compact case,
encompassing those functions whose Fourier expansion has only a finite number
of terms. The simplest version of the theory is as follows:

Definition 5.1. Let R denote a complete set of irreducible representations
of a compact group G. A system of band-limits on G is a decomposition of
R =

⋃
b≥0Rb such that

(i) Rb is finite for all b ≥ 0;
(ii) b1 ≤ b2 implies that Rb1 ⊆ Rb2 ;
(iii) Rb1 ⊗Rb2 ⊆ spanZRb1+b2 .

Let {Rb}b≥0 be a system of band-limits on G and f ∈ L2(G). Then, f is band-
limited with band-limit b if the Fourier coefficients are zero for all matrix elements
in ρ for all ρ /∈ Rb.

The case of G = S1 provides the classical example. If Rb = {χj : |j| ≤ b} where
χj(z) = zj , then χj ⊗ χk = χj+k and the corresponding notion of band-limited
(as per Definition 1) coincides with the usual notion.

For a nonabelian example, consider G = SO(3). In this case the irreducible
representations of G are indexed by the nonnegative integers with Vλ the unique
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irreducible of dimension 2λ + 1. Let Rb = {Vλ : λ ≤ b}. The Clebsch-Gordan
relations

Vλ1 ⊗ Vλ2 =
λ1+λ2∑

j=|λ1−λ2|
Vj (5–3)

imply that this is a system of band-limits for SO(3). When restricted to the
quotient S2 ∼= SO(3)/ SO(2), band-limits are described in terms of the highest
order spherical harmonics that appear in a given expansion.

This notion of band-limit permits the construction of a sampling theory [14].
For example, in the case of the classical groups, a system of band-limits Rn

b is
chosen with respect to a particular norm on the dual of the associated Cartan
subalgebra. Such a norm ‖ · ‖ (assuming that it is invariant under taking duals,
and ‖α‖ ≤ ‖β‖ + ‖γ‖, for α occurring in β ⊗ γ) defines a notion of band-limit
given by all α with norm less than a fixed b. This generalizes the definition
above. The associated sampling sets Xn

b are contained in certain one-parameter
subgroups. These sampling sets permit a separation of variables analogous to
that used in the Driscoll–Healy FFT. Once again, the special functions satisfy
certain three-term recurrences which admit a similar efficient divide-and-conquer
computational approach (see [15] and references therein.) one may derive efficient
algorithms for all the classical groups, U(n),SU(n), Sp(n).

Theorem 5.2. Assume n ≥ 2.

(i) For U(n), TXn
b
(Rn

b ) ≤ O(bdim U(n)+3n−3).
(ii) For SU(n), TXn

b
(Rn

b ) ≤ O(bdim SU(n)+3n−2).
(iii) For Sp(n), TXn

b
(Rn

b ) ≤ O(bdim Sp(n)+6n−6).

Here TXn
b
(Rn

b ) denotes the number of operations needed for the particular sample
set Xn

b and representations Rn
b for the associated group.

6. Further and Related Work

Noncompact groups. Much of modern signal processing relies on the under-
standing and implementation of Fourier analysis for L2(R), i.e., the noncompact
abelian group R. Nonabelian, noncompact examples have begun to attract much
attention.

In this area some of the most exciting work is being done by G. Chirikjian
and his collaborators. They have been exploring applications of convolution on
the group of rigid motions of Euclidean space to such diverse areas as robotics,
polymer modeling and pattern matching. See [5] for details and pointers to the
literature.

To date, the techniques used here are approximate in nature and interesting
open problems abound. Possibilities include the formulation of natural sampling,
band-limiting and time-frequency theories. The exploration of other special cases
such as semisimple Lie groups (see [1], for a beautifully written succinct survey
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of the Harish-Chandra theory) would be one natural place to start. A sampling
and band-limiting theory would be the first step towards developing a a compu-
tational theory, i.e., FFT. “Fast Fourier transforms on semisimple Lie groups”
has a nice ring to it!

Approximate techniques. The techniques in this paper are all exact, in the
sense that if computed in exact arithmetic, they yield exactly correct answers.
Of course, in any actual implementation, errors are introduced and the utility of
an algorithm will depend highly on its numerical stability.

There are also “approximate methods”, approximate in the sense that they
guarantee a certain specified approximation to the exact answer that depends
on the running time of the algorithm. For computing Fourier transforms at
nonequispaced frequencies, as well as spherical harmonic expansions, the fast
multipole method due to V. Rokhlin and L. Greengard is a recent and very im-
portant approximate technique. Multipole-based approaches efficiently compute
these quantities approximately, in such a way that the running time increases
by a factor of log(1/ε), where ε denotes the precision of the approximation. M.
Mohlenkamp has applied quasi-classical frequency estimates to the approximate
computation of various special function transforms.

Quantum computing. Another related and active area of research involves
connections with quantum computing. One of the first great triumphs of the
quantum computing model is P. Shor’s fast algorithm for integer factorization on
a quantum computer [18]. At the heart of Shor’s algorithm is a subroutine which
computes (on a quantum computer) the DFT of a binary vector representing an
integer. The implementation of this transform as a sequence of one- and two-
bit quantum gates, is the quantum FFT, is effectively the Cooley–Tukey FFT
realized as a particular factorization of the Fourier matrix into a product of
matrices composed as tensor products of certain two by two unitary matrices,
each of which is a “local unitary transform”. Extensions of these ideas to the
more general group transforms mentioned above are a current important area of
research of great interest in computer science.

So, these are some of the things that go into the computation of the finite
Fourier transform. It is a tapestry of mathematics both pure and applied, woven
from algebra and analysis, complexity theory and scientific computing. It is on
the one hand a focused problem, but like any good problem, its “solution” does
not end a story, but rather initiates an exploration of unexpected connections
and new challenges.
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Abstract. This paper addresses some of the fundamental problems which
have to be solved in order for optical networks to utilize the full bandwidth
of optical fibers. It discusses some of the premises for signal processing in
optical fibers. It gives a short historical comparison between the develop-
ment of transmission techniques for radio and microwaves to that of optical
fibers. There is also a discussion of bandwidth with a particular empha-
sis on what physical interactions limit the speed in optical fibers. Finally,
there is a section on line codes and some recent developments in optical
encoding of wavelets.

1. Introduction

When Claude Shannon developed the mathematical theory of communication
[1] he knew nothing about lasers and optical fibers. What he was mostly con-
cerned with were communication channels using radio- and microwaves. Inher-
ently, these channels have a narrower bandwidth than do optical fibers because
of the lower carrier frequency (longer wavelength). More serious than this the-
oretical limitation are the practical bandwidth limitations imposed by weather
and other environmental hazards. In contrast, optical fibers are a marvellously
stable and predictable medium for transporting information and the influence
of noise from the fiber itself can to a large degree be neglected. So, until re-
cently there was no real need for any advanced signal processing in optical fiber
communications systems. This has all changed over the last few years with the
development of the internet.

Optical fiber communication became an economic reality in the early 1970s
when absorption of less than 20 dB/km was achieved in optical fibers and life-
times of more than 1 million hours for semiconductor lasers were accomplished.
Both of these breakthroughs in material science were related to minimizing the
number of defects in the materials used. For optical fiber glass, it is absolutely
necessary to have fewer than 1 parts per billion (ppb) of any defect or transition
metal in the glass in order to obtain necessary performance.
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Figure 1. Electromagnetic spectrum of importance for communication. Fre-

quencies are given in Hertz.

For the last thirty years, optical fibers have in many ways been a system engi-
neer’s dream. They have had, literally, an infinite bandwidth and as mentioned
above, a stable and reproducible noise floor. So no wonder it’s been sufficient
to use intensity pulse-code modulation, also known as on-off keying (OOK), for
transmitting information in optical fibers.

The bit-rate distance product for optical fibers has grown exponentially over
the last 30 years. (Using bandwidth times length as a measurement makes
sense, since any medium can transport a huge bandwidth if the distance is short
enough.) For this growth to occur, several fundamental and technical problems
had to be overcome. In this paper we will limit ourselves to three fundamental
processes; absorption, dispersion and nonlinear optical interactions. Historically,
absorption and dispersion were the first physical limitations that had to be ad-
dressed. As the bit-rate increase shows, great progress has been made in reducing
the effects of absorption and dispersion on the effective bandwidth. As a conse-
quence, nonlinear effects have emerged as a significant obstacle for using the full
bandwidth potential of optical fibers.

These three processes are undoubtedly the most researched physical processes
in optical glass fibers, which is one reason for discussing them. Another rea-
son, of great importance to mathematicians, is that recent developments in
time/frequency and wavelet analysis have introduced novel line coding schemes
which seem to be able to drastically reduce the impact from many of the delete-
rious physical processes occurring in optical fiber communications.

2. Signal Processing in Optical Fibers

The spectrum of electromagnetic waves of interest for different kinds of com-
munication is shown in Figure 1.

A typical communications system for using these waves to convey information
is shown in Figure 2. This system assumes digitized information but is otherwise
completely transparent to any type of physical medium used for the channel.

Any electromagnetic wave is completely characterized by its amplitude and
phase:

E(r, t) = A(r, t) exp
(
φ(r, t)

)
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Figure 2. Typical block diagram of a digital communications system.

where A is the amplitude and φ(r, t) is the phase. So, amplitude and phase are
the two physical properties that we can vary in order to send information in the
form of a wave. The variations can be in either analog or digital form. Note that
even today, in our digitally swamped society, analog transmission is still used
in some cases. One example is cable-TV (CATV), where the large S/N ratio
(because of the short distances involved) provides a faithful transmission of the
analog signal. The advantage in using analog transmission is that it takes up
less bandwidth than a digital transmission with the same information content.

The first optical fiber systems in the 1970s used time-division multiplex-
ing(TDM), each individual channel was multiplexed onto a trunk line using
protocols called T1-T5, where T1-T5 refers to particular bit rates; see Figure 3.
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Figure 3. Time-division multiplexing.

Each individual channel was in turn encoded with the users’ digital informa-
tion.

TDM is still the most common scheme used for sending information down
an optical fiber. Today, we are using a multiplexing protocol called SONET
which uses the acronyms OC48, OC96, etc., where OC48 corresponds to a bit
rate of 565 Mbits/sec and each doubling of the OC-number corresponds to a
doubling of the bit rate. The increase in speed has been made possible by
the dramatic improvement of electronic circuits and the shift from multi-mode
fibers to dispersion-compensated single-mode fibers. Several large national labs
are testing, in the laboratory, time-multiplexed systems up to 100 Gbits/sec,
commercially most systems are still . 2.5 Gbits/sec.

As industry is preparing for an ever growing demand of bandwidth it is clear
that electronics cannot keep up with the optical bandwidth, which is estimated
to be 30 Tbits/sec for optical fibers. Because of this wavelength-division multi-
plexing(WDM) has attracted a lot of attention. In a TDM system each bit is an
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optical pulse, for WDM system each bit can either be a pulse or a continuous
wave (CW). WDM systems rely on the fact that light of different wavelengths
do not interfere with each other (in the linear regime); see Figure 4.
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Figure 4. Wavelength-division multiplexing.

Signal processing in optical fibers has, historically, been separated into two
distinct areas: pulse propagation and signal processing. To introduce these areas
we will keep with tradition and describe them separately, however, please bear
in mind that the area in which mathematicians may play the most important
role in future signal processing is to understand the physical limitations imposed
by basic processes that are part of the pulse propagation and invent new signal
processing schemes which oppose these deleterious effects.

A pulse propagating in an optical fiber can be expressed by

E(x, y, z, t) = x̂Ex(x, y, z, t) + ŷEy(x, y, z, t) + ẑEz(x, y, z, t),

where z is the direction of propagation and x, y are in the transversal plane; see
Figure 5. The geometry shown in Figure 5 is for a single-mode fiber.

In such a fiber, the light has been confined to such a small region that only one
type of spatial beam (mode) can propagate over a long distance. Even though
this mode’s spatial dependence is described by a Bessel function it is for most
purposes sufficient to spatially model it as a plane wave. Therefore, the signal

cure

cladding x

y

z

Figure 5. Optical fiber geometry.



SIGNAL PROCESSING IN OPTICAL FIBERS 305

−150 −100 −50 0 50 100 150
−1.5

−1

−0.5

0

0.5

1

1.5
Gaussian Pulse Envelope and Carrier Frequency

Femtoseconds

A
m

pl
itu

de

Figure 6. Gaussian pulse with the carrier frequency illustrated. The optical

equivalent pulse has a 1015 times higher carrier frequency than shown here.

pulse representing a bit can mathematically be written as

E(z, t) = x̂Ex(z, t),

where the subscript x is often ignored, tacitly assuming that we only have to
deal with one (arbitrary) scalar component of the full vectorial electromagnetic
field.

In a glass optical fiber the signal has to obey the following wave equation

∇2E(z, t) =
1
c2

∂2E(z, t)
∂t2

,

where c is the speed of light.
A solution to this equation can be written as

E(z, t) = p(z, t)ei(kz−ω0t),

where p(z, t) is the temporal shape of the pulse (bit) representing a 1 or a 0. For
a Gaussian pulse at z = 0,

p(0, t) = Ae−t2/(2T 2),

and the electromagnetic field at z = 0

E(0, t) = Ae−t2/(2T 2)e−iω0t, (2–1)

where ω0 is the carrier frequency. This pulse is depicted in Figure 6.
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To describe how this pulse changes as it propagates along the fiber we start
by taking the Fourier transform (FT) of the field in equation (2–1):

Ẽ(0, ω) =
1√
2π

∞∫

−∞
E(0, t)eiωt dt. (2–2)

The reason for moving to the frequency domain is because in this domain the
actual propagation step consists of “simply” multiplying the field with the phase
factor eikz, where k is the wavenumber. To find out the temporal pulse shape
after a distance z we then transform back to the time domain; that is,

E(z, t) =
1√
2π

∞∫

−∞
Ẽ(0, ω)e−iωt+ikz dω.

So the principle is quite easy; nevertheless in reality it becomes more compli-
cated because the phase factor, eikz, is different for different frequencies ω since
k = k(ω). The wavenumber k is related to the refractive index via

k(ω) =
ωn(ω)

c
.

The refractive index can be described for most materials, at optical frequen-
cies, using the Lorentz formula

n(ω) =

√√√√n2
0 +

∑

j

b2
j

ω2 − ω2
0j + i2δjω

, (2–3)

where the different j’s refer to different resonances in the media, b is the strength
of the resonance and δ is the damping term (≈ the width of the resonance).

For picosecond pulses (10−12 sec) or longer the pulse spectrum is concentrated
around the carrier frequency ω0 and we may therefore Taylor expand k(ω) around
k(ω0):

k(ω) =
∞∑

n=0

1
n!

kn(ω0)(ω − ω0)n,

where kn(ω0) = ∂nk
∂ωn |ω=ω0 .

Typically, it is sufficient to carry this expansion to the ω2-term. Using this
expansion we can now rewrite (2–2) as

E(z, t) =
ei(k0z−ω0t)

√
2π

∞∫

−∞
Ẽ(0, ω)ei[k(ω0)+k1(ω0)(ω−ω0)+k2(ω0)(ω−ω0)

2]e−iωt dω,

which can be further rewritten as

E(z, t) = p(z, t)ei(k(ω0)z−ω0t),
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where, for a gaussian input pulse, p(z, t) is

p(z, t) =
A

(
1 + k2(ω0)z2/T 4

)1/4
exp

(
− (k1(ω0)z − t)2

2T 2
(
1 + k2(ω0)z2/T 4

)
)
.

Hence, the envelope remains Gaussian as the pulse is propagating along the
optical fiber, however its width is increased and the amplitude is reduced (con-
servation of energy). From this type of analysis one may determine the optimum
bit-rate (necessary temporal guard bands) for avoiding cross talk.

Line coding. In addition to using both time and wavelength multiplexing to
increase the speed of optical fiber networks it is also necessary to use signal
processing to maintain bit-error rates (BER) of . 10−9 for voice and . 10−12

for data. (BER is defined as the probability that the received bit differs from
the transmitted bit, on average.) A ubiquitous signal processing method is line
coding in which binary symbols are mapped onto specific waveforms; see Fig-
ure 7. In this way, pulses can be preconditioned to make them more robust
to transmission impairments. Specific line codes are chosen which are adjusted
differently for various physical communications media by arranging the mapping
accordingly.

Line codes (three different types are shown in Figure 7) are all examples of
pulse-code modulation or on-off keying. In this case it is only the amplitude
which is varied; this is done by simply sending more or less light down the fiber.

010 1 1110 0 0

RZ

NRZ

BIPHASE

Tb

Figure 7. Three types of line codes for optical fiber communications.

The choice of line codes depends on the specific features of the communication
channel that needs to be opposed [5]. Common properties among all line codes
include:
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(i) the coded spectrum goes to zero as the frequency approaches zero (DC energy
cannot be transmitted).

(ii) the clock can be recovered from the coded data stream (necessary for detec-
tion).

(iii) they can detect errors (if not correct).

Another consideration in choosing a line code is that different coding formats will
use more or less bandwidth. It is known that for a given bit-rate per bandwidth
(bits/s/Hz), an ideal Nyquist channel uses the narrowest bandwidth [7]. Typi-
cally, adopting a line code will increase the needed transmission bandwidth, since
redundancy is built into the system (table 1) where everything is normalized to
the Nyquist bandwidth B.

Line codes Transmission Bandwidth
bandwidth efficiency

RZ ± 2B 1
4 bit/s/Hz

NRZ ±B 1
2 bit/s/Hz

Duobinary ± 1
2B 1 bit/s/Hz

Single Sideband ± 1
2B 1 bit/s/Hz

M-ary ASK (M = 2N ) ±B/N log2 N

Table 1. Bandwidth characteristics for different types of line codes.

Even though in the past, binary line codes were preferred to multilevel codes
due to optical nonlinearities, it is now firmly established that multilevel line codes
can be, spectrally, as efficient as a Nyquist channel. In particular, duobinary line
coding (which uses three levels) have recently been shown to be very successful
in reducing ISI due to dispersion [6].

Closely related to line coding is pulse or waveform generation. The waveform
associated with a Nyquist channel is a sinc-pulse (giving rise to the “minimum”
rect-shaped spectrum). The main problem with this waveform is that it requires
perfect timing (no jitter) to avoid large ISI. The reason for this intolerance to
timing jitter is found in the (infinitely) sharp fall-off of the spectrum. To address
this problem, pulses are generated using a “raised-cosine” spectrum [1; 7] which
removes the “sharp zeroes”. Unfortunately, it makes the transmission bandwidth
twice as large as the Nyquist channel. Lately, it has been suggested that wavelet
like pulses (local trigonometric bases) are a good choice for achieving efficient
time/frequency localization [8] (see section on novel line coding schemes).
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Figure 8. Examples of different bandwidth limited channels.

3. Physical Processes in Optical Fibers

Absorption. It may seem strange that the small absorption in optical fibers,
which in the late 1960s was less than 20 dB/km (that is, over a distance of
L km we have Pin/Pout ≥ 10−20 L/10), still was not sufficient to make optical
communications viable (in an economical sense).

Figure 9. Absorption in optical fibers.
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From 1970 to 1972 scientists managed to make fibers of even greater purity
which reduced the absorption to no more than 3 dB/km at 800 nm (Figure 9).
Using more or less the same type of fibers the absorption could be reduced to
no more than 0.15 dB/km by going to longer wavelengths, such as 1.3µm and
1.55 µm. This was possible through the invention of new semiconductor lasers
using InGaAsP material. Despite this very low absorption, again, seen from an
economical perspective, absorption was still the limiting factor. This changed
with the invention of the erbium-doped fiber amplifier (EDFA). A short piece of
fiber (only a few meters long) doped with Erbium and spliced to the system’s fiber
could now amplify the propagating pulses (bits) to “arbitrary” levels, thereby
removing absorption as a system’s physical limitation.

Dispersion. The next attribute which required attention was dispersion. Signal
dispersion (mathematically described via the ω2-term in equation (2–3)) a source
of intersymbol interference (ISI) in which consecutive pulses blend into each
other. Again, it turns out that optical glass fibers have inherently outstanding
dispersion properties. As a matter of fact, any particular fiber has a characteristic
wavelength for which the dispersion is zero. This is typically between 1.27–
1.39 µm. However, as is the case for absorption, long distance transmission can
cause dispersion.

DISPERSION
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waveguide

ps/(nm km)

( m)
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Figure 10. Dispersion in optical fibers.

There are two major contributiors to dispersion: material and waveguide
structure. (A waveguide is a device, such as a duct, coaxial cable, or glass
fiber, designed to confine and direct the propagation of electromagnetic waves.
In optical fibers the confinement is achieved by having a region with a larger
refractive index.)
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Material dispersion, which comes from electronic transitions in the solid, is
determined as soon as the chemical constituents of the glass have been fixed.
Waveguide dispersion is a function of the geometry of the core or, more pre-
cisely, how the refractive index in the core and cladding vary in space. This is
important because it means that fiber manufacturers have a fair amount of flex-
ibility in modifying the total dispersion of the fiber. Today, there is a plethora
of fibers with different dispersion characteristics. However, it is not yet possible
to reliably manufacture fibers with zero dispersion for all wavelengths between,
say, 1400–1550 nm. Thus, even though the dispersion can be made as small as 2–
4 ps/nm·km over this wavelength region, we still need to worry about dispersion
for long-distance networks. Two methods used to combat dispersion are fiber
Bragg gratings and line coding and combinations of the two. We now describe
each of these in turn.

Optical fiber Bragg gratings are short pieces of fiber (. 10 cm) in which the
refractive index in the core has been altered to modify the dispersion properties.
Mathematically, the fiber Bragg grating is a filter whose properties can be de-
scribed using a transfer function. Similarly, we can describe pulse propagation
over a distance z in an optical fiber using a transfer function. If linear effects
up to the quadratic frequency term (group-velocity dispersion) in the Taylor
expansion of k in (2–3) are included, the transfer function is

H(ω) = H0 exp(−α z/2)︸ ︷︷ ︸
amplitude

exp(−jknz) exp(−jDω2z/(4π))︸ ︷︷ ︸
phase

,

where k is the propagation constant, ω is the angular frequency, n is the refractive
index, α is the absorption coefficient, and D is the dispersion coefficient. So for
a known distance L, an EDFA can be used to amplify the amplitude and the
Bragg grating (with a transfer function H−1) can mostly remove the influence
of the dispersion (the dispersion is primarily modeled by the exp(−jDω2z) term
in the phase). The severest limitation to this scheme are nonlinear effects which
can change both absorption and dispersion in a dramatic fashion.

Nonlinear optics. A description of electromagnetic waves interacting with
matter ends up dealing with the electric and magnetic susceptibilities χe and
χm, respectively. In this short exposé of nonlinear optics we will limit ourselves
to non-magnetic materials, such as the glass that optical fibers are made of. The
more common (in a linear description) dielectric constant, εr, is related to the
susceptibility χ

(1)
e via εr = 1 + χ

(1)
e . The susceptibility, in turn, has complete

information about how the material interacts with electromagnetic waves. The
wave equation for an arbitrary dielectric medium can be written as

∇2E(r, t) =
∂2P (r, t)

∂t2
,

where E(r, t) is the electric field and P (r, t) is the induced polarization field
(an identical wave equation can be written for the magnetic field H(r, t)). All
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linear interactions can be described by assuming that the polarization field and
the electric field are related via the constitutive relation,

P (r, ωs) = ε0χ
(1)
e (ωs;−ωs)E(r, ωs).

Unfortunately, most real phenomena are not linear and this holds for electro-
magnetic interactions with matter. For waves whose wavelengths do not coincide
with specific resonant transitions in the material, we can describe the polariza-
tion using a Taylor series expansion of the field amplitudes,

P (r, ωs) = ε0 ·
(
χ(1)

e (ωs;−ωs)E(r, ωs) + χ(2)
e (ωs; ω1, ω2)E1(r, ω1) ·E2(r, ω2)

+ χ(3)
e (ωs;ω1, ω2, ω3)E1(r, ω1) ·E2(r, ω2) ·E3(r, ω3) + . . .

)
,

where ωs is the frequency of the generated polarization, χ(n) is the electric sus-
ceptibility of first, second and third order for n = 1, 2, 3, respectively, E(r, ωn)
are the electric field amplitudes at different carrier frequencies, ω1, ω2, ω3, etc.

The susceptibilities have a general form given by

χ
(n)
i,j,k,...(ω; ω1, ω2, . . .) =

∑ 〈g|r|f〉
(ω2

0 − ω2 − j2ωγ)
=

spatial dispersion
frequency dispersion

. (3–1)

The subscripts i, j, k, . . . , are connected with the structural symmetry of the
material (spatial dispersion) and the particular polarization of the electromag-
netic waves. The denominator describes the frequency dispersion with ω being
the frequency of an electromagnetic wave, ω0 being a resonant frequency in the
material and γ being the width of the resonance. The summation is over all
the possible states that can occur in the material while it is interacting with the
electromagnetic waves. As can be seen from (3–1), the electronic susceptibilities
are complex quantities. It is common to separate the susceptibilities into a real
and imaginary part. For the third-order nonlinear susceptibility this could look
like

χ
(3)
ijkl(ωs;ω1, ω2, ω3) = χ

(3)
Real + i · χ(3)

Imaginary.

In general, the real part describes light-matter interactions that leave the mate-
rial in the original energy state, while the imaginary part describes interactions
that transfer energy between the electromagnetic wave and the material in such
a way as to leave the material in a different energy state than the original state.
Processes described by the real part are commonly referred to as parametric pro-
cesses and two examples of such a process are four-photon mixing and self-phase
modulation. It is interesting to note that nonlinear processes controlled by the
real part require phase matching while processes due to the imaginary part do
not. Examples of processes described by the imaginary part are Raman and
Brillouin scattering, and two-photon absorption.

For Raman and Brillouin scattering one also needs to distinguish between
spontaneous and stimulated processes. In simple terms, spontaneous Raman
and Brillouin scattering are due to fluctuations in one or more optical properties
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caused by the internal energy of the material. Stimulated scattering is driven by
the light field itself, actively increasing the internal fluctuations of the material.

Nonlinear susceptibilities of importance for tele- and data communication are
all made up of electric-dipole transitions. When these transitions are between
real energy levels of the material we talk about resonant processes. In gen-
eral, resonant processes are strong and slow; strong because the susceptibility
gets large at resonances and slow because the electrons have to be physically
relocated. The nonlinear susceptibilities of importance for us are all due to
non-resonant processes. These nonlinearities are distinguished by their small
susceptibilities but very fast response. This is in part due to the electrons only
making virtual transitions. A virtual energy level only exists for the combined
system, matter and light.

In optical glass fibers, for symmetry reasons, the third-order nonlinearity, χ(3),
is the dominant nonlinear susceptibility. For pulse modulated systems the three
most important nonlinearities are self-phase modulation, four-photon mixing and
stimulated Raman scattering. The pros and cons of these nonlinearities can be
summarized as follows (see [2; 3; 4]):

Self-phase modulation. Positive effects: solitons, temporal compression. Neg-
ative effects: spectral broadening, hence enhanced GVD.

Four-photon mixing. Positive effects: generation of new wavelengths. Nega-
tive effects: crosstalk between different wavelength channels.

Stimulated Raman Scattering. Positive effects: amplification (broadband
and wavelength independent). Negative effects: crosstalk between different
wavelength channels.

4. Novel Line Coding Schemes

With the introduction of communication channels in both time and wave-
length (frequency) the challenge of fitting as much information as possible into a
given time-frequency space, has become more similar to the problem that Shan-
non and, to some extent, Gabor were addressing in the 1940s. This is a fun-
damental problem— one which appears in many different fields such as; signal
processing, image processing, quantum mechanics etc. Common to all of these
different fields is the relation of two physical variables via a Fourier transform,
which therefore, are subject to an “uncertainty relationship”, which ultimately
determines the information capacity; see Figure 11.

To build robust pulse forms which have good time-frequency localization prop-
erties recent research in applied mathematics has shown that shaping optical
pulses as wavelets can dramatically improve the spectral efficiency and robust-
ness of an optical fiber network [8]. In table 2 we note that present systems
(2.5Gbs) only have a 5% spectral efficiency (that is, only 5% of the available
bandwidth is used for sending information). It is hoped that in five to ten years
we will have 40 Gbs systems utilizing 40% of the available spectral bandwidth.



314 ULF ÖSTERBERG

time

frequency

guard 

bands

individual channels in

the time/frequency plane

Figure 11. Time/frequency representation of the available bandwidth for any

communication channel.

Bit rate Channel Spectral
(Gbs) spacing(GHz) efficiency(%)

2.5 100/50 2.5/5.0
10 200/100/50 5/10/20
40 100 40

Table 2. Spectral efficiency for present (2.5 Gbs) and future high-speed systems.

To achieve this spectral efficiency we can use an element of an orthonormal
bases p(t) as our input pulse. Our total digital signal, with 1s and 0s can be
described as a pulse train

s(t) =
2BTb∑

j=1

ajp(t− kTb),

where B is the bandwidth of our channel, Tb is the time between pulses (Figure 7)
and p(t) is the temporal shape of the bits. One possible choice for p(t) could be
the local trigonometric bases,

pnk(t) = w(t− n)× cos
(
(k + 1

2 )π(t− n)
)
,

where w(t−n) is a window function; see Figures 8 and 12. The window function
has very smooth edges, which partly explains the good time-frequency localiza-
tion of these bases (Figure 12). Compared to other waveforms—sinc pulses,
for instance— the local trigonometric bases have much better systems perfor-
mance, they are particularly resistant to timing jitter. So, despite the fact that
sinc pulses are theoretically the best pulses they are not the best choice for an
imperfect communications system.

One possible way to use these special wavelets in a network could be to par-
tition the fiber bandwidth into many frequency channels, each defined by a par-
ticular basis function. These channels are orthogonal with out the use of guard
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bands. Detection is performed by matched filters. Both the frequency parti-
tioning and the matched filter detection can be performed all-optically, radically
increasing the network’s capacity.

User 1

User 2

User 3

User 4

User 5

User 6

Linecoded
Waveforms

One band of the
optical filterbank

Modulated
Bit stream

FrequencyTime Time

Next band

+

+

+

Figure 12. Encoding of orthogonal waveforms onto individual channels.Different

spectral windows, if shaped properly, can be made to overlap, making it possible

to use the full spectral bandwidth.

Conclusion. Even though dramatic improvements have been made during the
last 10 years to combat absorption, dispersion and nonlinear effects in optical
fibers it is also apparent that we need to do more if we are going to realize
the ultimate bandwidths which are possible in glass optical fibers. One very
powerful way to make a system transparent to fiber impairments is to encode
amplitude and phase information which will be immune to the negative effects
of, for example, dispersion and nonlinear interactions.
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The Generalized Spike Process, Sparsity, and
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Abstract. We consider the best sparsifying basis (BSB) and the kurtosis
maximizing basis (KMB) of a particularly simple stochastic process called
the “generalized spike process”. The BSB is a basis for which a given set
of realizations of a stochastic process can be represented most sparsely,
whereas the KMB is an approximation to the least statistically-dependent
basis (LSDB) for which the data representation has minimal statistical
dependence. In each realization, the generalized spike process puts a single
spike with amplitude sampled from the standard normal distribution at a
random location in an otherwise zero vector of length n.

We prove that both the BSB and the KMB select the standard basis, if
we restrict our basis search to all possible orthonormal bases in Rn. If we
extend our basis search to all possible volume-preserving invertible linear
transformations, we prove the BSB exists and is again the standard basis,
whereas the KMB does not exist. Thus, the KMB is rather sensitive to
the orthonormality of the transformations, while the BSB seems insensi-
tive. Our results provide new additional support for the preference of the
BSB over the LSDB/KMB for data compression. We include an explicit
computation of the BSB for Meyer’s discretized ramp process.

1. Introduction

This paper is a sequel to our previous paper [3], where we considered the best
sparsifying basis (BSB), and the least statistically-dependent basis (LSDB) for
input data assumed to be realizations of a very simple stochastic process called
the “spike process.” This process, which we will refer to as the “simple” spike
process for convenience, puts a unit impulse (i.e., constant amplitude of 1) at
a random location in a zero vector of length n. Here, the BSB is the basis of
Rn that best sparsifies the given input data, and the LSDB is the basis of Rn

that is the closest to the statistically independent coordinate system (regardless
of whether such a coordinate system exists or not). In particular, we considered
the BSB and LSDB chosen from all possible orthonormal transformations (i.e.,
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O(n)) or all possible volume-preserving linear transformations (i.e., SL±(n,R),
where the determinant of each element is either +1 or −1).

In this paper, we consider the BSB and LSDB for a slightly more compli-
cated process, the “generalized” spike process, and compare them with those of
the simple spike process. The generalized spike process puts an impulse whose
amplitude is sampled from the standard normal distribution N(0, 1).

Our motivation to analyze the BSB and the LSDB for the generalized spike
process stems from the work in computational neuroscience [22; 23; 2; 27] as well
as in computational harmonic analysis [11; 7; 12]. The concept of sparsity and
that of statistical independence are intrinsically different. Sparsity emphasizes
the issue of compression directly, whereas statistical independence concerns the
relationship among the coordinates. Yet, for certain stochastic processes, these
two are intimately related, and often confusing. For example, Olshausen and
Field [22; 23] emphasized the sparsity as the basis selection criterion, but they
also assumed the statistical independence of the coordinates. For a set of nat-
ural scene image patches, their algorithm generated basis functions efficient to
capture and represent edges of various scales, orientations, and positions, which
are similar to the receptive field profiles of the neurons in our primary visual
cortex. (Note the criticism raised by Donoho and Flesia [12] about the trend
of referring to these functions as “Gabor”-like functions; therefore, we just call
them “edge-detecting” basis functions in this paper.) Bell and Sejnowski [2]
used the statistical independence criterion and obtained the basis functions sim-
ilar to those of Olshausen and Field. They claimed that they did not impose
the sparsity explicitly and such sparsity emerged by minimizing the statistical
dependence among the coordinates. These motivated us to study these two cri-
teria. However, the mathematical relationship between these two criteria in the
general case has not been understood completely. Therefore we chose to study
these simplified processes, which are much simpler than the natural scene images
as a high-dimensional stochastic process. It is important to use simple stochastic
processes first since we can gain insights and make precise statements in terms
of theorems. By these theorems, we now understand what are the precise condi-
tions for the sparsity and statistical independence criteria to select the same basis
for the spike processes, and the difference between the simple and generalized
spike processes. Weidmann and Vetterli also used the generalized spike process
to make precise analysis of the rate-distortion behavior of sparse memoryless
sources that serve as models of sparse signal representations [28].

Additionally, a very important by-product of this paper (as well as our pre-
vious paper [3]) is that these simple processes can be used for validating any
independent component analysis (ICA) software that uses mutual information
or kurtosis as a measure of statistical dependence, and any sparse component
analysis (SCA) software that uses `p-norm (0 < p ≤ 1) as a measure of sparsity.
Actual outputs of the software can be compared with the true solutions obtained
by our theorems. For example, the ICA software based on maximization of kur-
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tosis of the inputs should not converge for the generalized spike process unless
there is some constraint on the basis search (e.g., each column vector has a unit
`2-norm). Considering the recent popularity of such software ([17; 5; 21]), it is a
good thing to have such simple examples that can be generated and tested easily
on computers.

The organization of this paper is as follows. The next section specifies no-
tation and terminology. Section 3 defines how to quantitatively measure the
sparsity and statistical dependence of a stochastic process relative to a given
basis. Section 4 reviews the results on the simple spike process obtained in [3].
Section 5 contains our new results for the generalized spike process. In Section 6,
we consider the BSB of Meyer’s ramp process [20, p. 19], as an application of
the results of Section 5. Finally, we conclude in Section 7 with a discussion.

2. Notation and Terminology

We first set our notation and the terminology. Let X ∈ Rn be a random vector
with some unknown probability density function (pdf) fX . Let B ∈ D ⊂ Rn×n,
where D is the so-called basis dictionary. For very high-dimensional data, we
often take D to be the union of the wavelet packets and local Fourier bases (see
[25] and references therein for more about such basis dictionaries). In this pa-
per, however, we use much larger dictionaries: O(n) (the group of orthonormal
transformations in Rn) or SL±(n,R) (the group of invertible volume-preserving
transformations in Rn, i.e., those with determinants equal to ±1). We are inter-
ested in finding a basis within D for which the original stochastic process either
becomes sparsest or least statistically dependent. Let C(B |X) be a numerical
measure of deficiency or cost of the basis B given the input stochastic process
X. Under this setting, the best basis for the stochastic process X among D

relative to the cost C is written as B? = arg minB∈D C(B |X).
We also note that log in this paper implies log2, unless stated otherwise. The

n×n identity matrix is denoted by In, and the n×1 column vector whose entries
are all ones, i.e., (1, 1, . . . , 1)T , is denoted by 1n.

3. Sparsity vs. Statistical Independence

We now define measures of sparsity and statistical independence for the basis
of a given stochastic process.

Sparsity. Sparsity is a key property for compression. The true sparsity measure
for a given vector x ∈ Rn is the so-called `0 quasi-norm which is defined as

‖x‖0 def= #{i ∈ [1, n] : xi 6= 0},

i.e., the number of nonzero components in x. This measure is, however, very
unstable for even small geometric perturbations of the components in a vector.



320 NAOKI SAITO

Therefore, a better measure is the `p norm:

‖x‖p
def=

( n∑

i=1

|xi|p
)1/p

, 0 < p ≤ 1.

In fact, this is a quasi-norm for 0 < p < 1 since it does not satisfy the triangle
inequality, but only the weaker conditions: ‖x+y‖p ≤ 2−1/p′(‖x‖p+‖y‖p) where
p′ = p/(p − 1) is the conjugate exponent of p; and ‖x + y‖p

p ≤ ‖x‖p
p + ‖y‖p

p. It
is easy to show that limp ↓ 0 ‖x‖p

p = ‖x‖0. See [11] for the details of the `p norm
properties.

Thus, we use the expected `p-norm minimization as a criterion to find the
best basis for a given stochastic process in terms of sparsity:

Cp(B |X) = E‖B−1X‖p
p, (3–1)

We propose to minimize this cost in order to select the best sparsifying basis
(BSB):

Bp = arg min
B∈D

Cp(B |X).

Remark 3.1. It should be noted that minimization of the `p norm can also be
achieved for each realization. Without taking the expectation in (3–1), we can
select the BSB, Bp = Bp(x,D) for each realization x. We can guarantee that

min
B∈D

Cp(B |X = x) ≤ min
B∈D

Cp(B |X) ≤ max
B∈D

Cp(B |X = x).

For highly variable or erratic stochastic processes, Bp(x,D) may change signifi-
cantly for each x. Thus if we adopt this strategy to compress an entire training
dataset consisting of N realizations, we need to store additional information in
order to describe a set of N bases.

Whether we should adapt a basis per realization or on the average is still an
open issue. See [26] for more details.

Statistical independence. The statistical independence of the coordinates of
Y ∈ Rn means fY (y) = fY1(y1)fY2(y2) · · · fYn(yn), where each fYk

is a one-
dimensional marginal pdf of fY . Statistical independence is a key property for
compressing and modeling a stochastic process because: (1) an n-dimensional
stochastic process of interest can be modeled as a set of one-dimensional pro-
cesses; and (2) damage of one coordinate does not propagate to the others. Of
course, in general, it is difficult to find a truly statistically independent coordi-
nate system for a given stochastic process. Such a coordinate system may not
even exist for a given stochastic process. Therefore, the next best thing is to
find the least statistically-dependent coordinate system within a basis dictionary.
Naturally, then, we need to measure the “closeness” of a coordinate system (or
random variables) Y1, . . . , Yn to the statistical independence. This can be mea-
sured by mutual information or relative entropy between the true pdf fY and
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the product of its marginal pdfs:

I(Y ) def=
∫

fY (y) log
fY (y)∏n

i=1 fYi
(yi)

dy

= −H(Y ) +
n∑

i=1

H(Yi),

where H(Y ) and H(Yi) are the differential entropy of Y and Yi respectively:

H(Y ) = −
∫

fY (y) log fY (y) dy,

H(Yi) = −
∫

fYi
(yi) log fYi

(yi) dyi.

We note that I(Y ) ≥ 0, and I(Y ) = 0 if and only if the components of Y are
mutually independent. See [9] for more details of the mutual information.

Suppose Y = B−1X and B ∈ GL(n,R) with det B = ±1. We denote this set
of matrices by SL±(n,R). Note that the usual SL(n,R) is a subset of SL±(n,R).
Then, we have

I(Y ) = −H(Y ) +
n∑

i=1

H(Yi) = −H(X) +
n∑

i=1

H(Yi),

since the differential entropy is invariant under an invertible volume-preserving
linear transformation:

H(B−1X) = H(X) + log |detB−1| = H(X),

because |detB−1| = 1. Based on this fact, we proposed the minimization of the
following cost function as the criterion to select the so-called least statistically-
dependent basis (LSDB) in the basis dictionary context [25]:

CH(B |X) =
n∑

i=1

H
(
(B−1X)i

)
=

n∑

i=1

H(Yi). (3–2)

Now we can define the LSDB as

BLSDB = arg min
B∈D

CH(B |X).

Closely related to the LSDB is the concept of the kurtosis-maximizing basis
(KMB). This is based on the approximation of the marginal differential entropy
H(Yi) in (3–2) by higher order moments/cumulants using the Edgeworth expan-
sion and was derived by Comon [8]:

H(Yi) ≈ − 1
48

κ(Yi) = − 1
48

(µ4(Yi)− 3µ2
2(Yi)) (3–3)
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where µk(Yi) is the k-th central moment of Yi, and κ(Yi) / µ2
2(Yi) is called

the kurtosis of Yi. See also Cardoso [6] for a nice exposition of the various
approximations to the mutual information. Now, the KMB is defined as follows:

Bκ = arg min
B∈D

Cκ(B |X) = arg max
B∈D

n∑

i=1

κ(Yi), (3–4)

where Cκ(B |X) = −∑n
i=1 κ(Yi). (This involves a slight abuse of terminology:

the name is “kurtosis-maximizing basis” although what is maximized is the un-
normalized κ, without the factor 1/µ2

2.) Note that the LSDB and the KMB are
tightly related, yet can be different. After all, (3–3) is simply an approximation
to the entropy up to the fourth order cumulant. We also would like to point
out that Buckheit and Donoho [4] independently proposed the same measure as
a basis selection criterion, whose objective was to find a basis under which an
input stochastic process looks maximally “non-Gaussian.”

Remark 3.2. Earlier work of Pham [24] also proposes minimization of the cost
(3–2). We would like to point out the main difference between our work [25]
and Pham’s. We use the basis libraries such as wavelet packets and local Fourier
bases that allow us to deal with datasets with large dimensions such as face
images whereas Pham used the more general dictionary GL(n,R). In practice,
however, the numerical optimization (3–2) clearly becomes more difficult in his
general case particularly if we want to use this for high dimensional datasets.

4. Review of Previous Results on the Simple Spike Process

In this section, we briefly summarize the results of the simple spike process.
See [3] for the details and proofs.

An n-dimensional simple spike process generates the standard basis vectors
{ej}n

j=1 ⊂ Rn in a random order, where ej has one at the j-th entry and all the
other entries are zero. We can view this process as a unit impulse located at a
random position between 1 and n.

The Karhunen–Loève basis. The Karhunen–Loève basis of this process is
not unique and not useful because of the following proposition.

Proposition 4.1. The Karhunen–Loève basis for the simple spike process is
any orthonormal basis in Rn containing the “DC” vector 1n = (1, 1, . . . , 1)T .

This proposition reflects the non-Gaussian nature of the simple spike process,
i.e., the optimality of the KLB can be claimed only for the Gaussian processes.

The Best Sparsifying Basis. As for the BSB, we have the following result:

Theorem 4.2. The BSB with any p ∈ [0, 1] for the simple spike process is the
standard basis if D = O(n) or SL±(n,R).
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Statistical dependence and entropy of the simple spike process. Before
stating the results on the LSDB of this process, we note a few specifics about
the simple spike process. First, although the standard basis is the BSB for this
process, it clearly does not provide the statistically independent coordinates.
The existence of a single spike at one location prohibits spike generation at other
locations. This implies that these coordinates are highly statistically dependent.

Second, we can compute the true entropy H(X) for this process unlike other
complicated stochastic processes. Since the simple spike process selects one pos-
sible vector from the standard basis vectors of Rn with uniform probability 1/n,
the true entropy H(X) is clearly log n. This is one of the rare cases where we
know the true high-dimensional entropy of the process.

The LSDB among O(n). For D = O(n), we have:

Theorem 4.3. The LSDB among O(n) is:

• for n ≥ 5, either the standard basis or the basis whose matrix representation
is

1
n




n− 2 −2 · · · −2 −2

−2 n− 2
. . . −2

...
. . . . . . . . .

...

−2
. . . n− 2 −2

−2 −2 · · · −2 n− 2




; (4–1)

• for n = 4, the Walsh basis, i .e.,

1
2




1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1


 ;

• for n = 3, 


1√
3

1√
6

1√
2

1√
3

1√
6

−1√
2

1√
3

−2√
6

0


 ;

• for n = 2, 1√
2

[
1
1

1
−1

]
, and this is the only case where the true independence is

achieved .

Remark 4.4. Note that when we say the basis is a matrix as above, we really
mean that the column vectors of that matrix form the basis. This also means
that any permuted and/or sign-flipped (i.e., multiplied by −1) versions of those
column vectors also form the basis. Therefore, when we say the basis is a matrix
A, we mean not only A but also its permuted and sign-flipped versions of A.
This remark also applies to all the propositions and theorems below, unless
stated otherwise.
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Remark 4.5. There is an important geometric interpretation of (4–1). This
matrix can also be written as:

BHR(n)
def= In − 2

1n√
n

1T
n√
n

.

In other words, this matrix represents the Householder reflection with respect
to the hyperplane {y ∈ Rn | ∑n

i=0 yi = 0} whose unit normal vector is 1n/
√

n.

Below, we use the notation BO(n) for the LSDB among O(n) to distinguish it
from the LSDB among GL(n,R), which is denoted by BGL(n). So, for example,
for n ≥ 5, BO(n) = In or BHR(n).

The LSDB among GL(n,R). As discussed in [3], for the simple spike pro-
cess, there is no important distinction in the LSDB selection from GL(n,R) and
from SL±(n,R). Therefore, we do not have to treat these two cases separately.
On the other hand, the generalized spike process in Section 5 requires us to
treat SL±(n,R) and GL(n,R) differently due to the continuous amplitude of the
generated spikes.

We now have a curious theorem:

Theorem 4.6. The LSDB among GL(n,R) with n > 2 is the following basis
pair (for analysis and synthesis respectively):

B−1
GL(n) =




a a · · · · · · · · · · · · a

b2 c2 b2 · · · · · · · · · b2

b3 b3 c3 b3 · · · · · · b3
...

...
. . .

...
...

...
. . .

...
bn−1 · · · · · · · · · bn−1 cn−1 bn−1

bn · · · · · · · · · · · · bn cn




, (4–2)

BGL(n) =




(1 +
∑n

k=2 bkdk) /a −d2 −d3 · · · −dn

−b2d2/a d2 0 · · · 0

−b3d3/a 0 d3
. . .

...
...

...
. . . . . . 0

−bndn/a 0 · · · 0 dn




(4–3)

where a, bk, ck are arbitrary real-valued constants satisfying a 6= 0, bk 6= ck, and
dk = 1/(ck − bk), k = 2, . . . , n.

If we restrict ourselves to D = SL±(n,R), then the parameter a must satisfy :

a = ±
n∏

k=2

(ck − bk)−1.
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Remark 4.7. The LSDB such as (4–1) and the LSDB pair (4–2), (4–3) provide
us with further insight into the difference between sparsity and statistical inde-
pendence. In the case of (4–1), this is the LSDB, yet it does not sparsify the
simple spike process at all. In fact, these coordinates are completely dense, i.e.,
C0 = n. We can also show that the sparsity measure Cp gets worse as n → ∞.
More precisely:
Proposition 4.8.

lim
n→∞

Cp

(
BHR(n) |X

)
=

{∞ if 0 ≤ p < 1,
3 if p = 1.

It is interesting to note that this LSDB approaches the standard basis as n →∞.
This also implies that

lim
n→∞

Cp

(
BHR(n) |X

) 6= Cp

(
lim

n→∞
BHR(n) |X

)
.

As for the analysis LSDB (4–2), the ability to sparsify the simple spike process
depends on the values of bk and ck. Since the parameters a, bk and ck are
arbitrary as long as a 6= 0 and bk 6= ck, we put a = 1, bk = 0, ck = 1, for
k = 2, . . . , n. Then we get the following specific LSDB pair:

B−1
GL(n) =




1 1 · · · 1
0
... In−1

0


 , BGL(n) =




1 −1 · · · −1
0
... In−1

0


 .

This analysis LSDB provides us with a sparse representation for the simple
spike process (though this is clearly not better than the standard basis). For
Y = B−1

GL(n)X,

Cp = E
[‖Y ‖p

p

]
=

1
n
× 1 +

n− 1
n

× 2 = 2− 1
n

, 0 ≤ p ≤ 1.

Now take a = 1, bk = 1, ck = 2 for k = 2, . . . , n in (4–2) and (4–3). Then

B−1
GL(n) =




1 1 · · · 1

1 2
. . .

...
...

. . . . . . 1
1 · · · 1 2


 , BGL(n) =




n −1 · · · −1
−1
... In−1

−1


 .

The sparsity measure of this process is

Cp =
1
n
× n +

n− 1
n

× {(n− 1) + 2p} = n + (2p − 1)
(
1− 1

n

)
, 0 ≤ p ≤ 1.

Therefore, the simple spike process under this analysis basis is completely dense,
i.e., Cp ≥ n for 0 ≤ p ≤ 1 and the equality holds if and only if p = 0. Yet this is
still the LSDB.

Finally, from Theorems 4.3 and 4.6, we have:
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Figure 1. The pdf of the generalized spike process (n = 2).

Corollary 4.9. There is no invertible linear transformation providing the
statistically independent coordinates for the simple spike process for n > 2.

5. The Generalized Spike Process

In [13], Donoho et al. analyze the following generalization of the simple spike
process in terms of the KLB and the rate distortion function, which was recently
followed up in details by Weidmann and Vetterli [28]. This process first picks one
coordinate out of n coordinates randomly as before, but then the amplitude of
this single spike is picked according to the standard normal distribution N(0, 1).
The pdf of this process can be written as

fX(x) =
1
n

n∑

i=1


∏

j 6=i

δ(xj)


 g(xi), (5–1)

where δ(·) is the Dirac delta function, and g(x) = (1/
√

2π) · exp(−x2/2), i.e.,
the pdf of the standard normal distribution. Figure 1 shows this pdf for n =
2. Interestingly enough, this generalized spike process shows rather different
behavior (particularly in the statistical independence) from the simple spike
process in Section 4. We also note that our proofs here are rather analytical
compared to those for the simple spike process presented in [3], which have a
more combinatorial flavor.

The Karhunen–Loève basis. We can easily compute the covariance matrix of
this process, which is proportional to the identity matrix. In fact, it is just In/n.
Therefore, we have the following proposition, which was also stated without
proof by Donoho et al. [13]:
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Proposition 5.1. The Karhunen–Loève basis for the generalized spike process
is any orthonormal basis in Rn.

Proof. We first compute the marginal pdf of (5–1). By integrating out all xi,
i 6= j, we can easily get:

fXj (xj) =
1
n

g(xj) +
n− 1

n
δ(xj).

Therefore, we have E[Xj ] = 0. Since Xi and Xj cannot be simultaneously
nonzero, we have

E[XiXj ] = δijE[X2
j ] =

1
n

δij ,

since the variance of Xj is 1/n, which is easily computed from the marginal pdf
fXj . Therefore, the covariance matrix of this process is, as announced, In/n.
Therefore, any orthonormal basis is the KLB. ¤

In other words, the KLB for this process is less restrictive than that for the
simple spike process (Proposition 4.1), and the KLB is again completely useless
for this process.

5.1. Marginal distributions and moments under SL±(n,R). Before an-
alyzing the BSB and LSDB, we need some background. First, we compute the
pdf of the process relative to a transformation Y = B−1X, B ∈ SL±(n,R). In
general, if Y = B−1X, then

fY (y) =
1

|det B−1|fX(By).

Therefore, from (5–1), and the fact |detB| = 1, we have

fY (y) =
1
n

n∑

i=1


∏

j 6=i

δ(rT
j y)


 g(rT

i y), (5–2)

where rT
j is the j-th row vector of B. As for its marginal pdf, we have:

Lemma 5.2.

fYj (y) =
1
n

n∑

i=1

g(y; |∆ij |), j = 1, . . . , n, (5–3)

where ∆ij is the (i, j)-th cofactor of matrix B, and g(y; σ) = g(y/σ)/σ represents
the pdf of the normal distribution N(0, σ2).

In other words, we can interpret the j-th marginal pdf as a mixture of Gaussians
with the standard deviations |∆ij |, i = 1, . . . , n. Figure 2 shows several marginal
pdfs for n = 2. As we can see from this figure, it can vary from a very spiky
distribution to a usual normal distribution depending on the rotation angle of
the coordinate.
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Figure 2. The marginal pdfs of the generalized spike process (n = 2). All the

pdfs shown here are projections of the 2D pdf in Figure 1 onto the rotated 1D

axis. The axis angle in the top row is 0.088 rad., which is close to the the first

axis of the standard basis. The axis angle in the bottom row is π/4 rad., i.e.,

45 degree rotation, which gives rise to the exact normal distribution. The other

axis angles are equispaced between these two.

Proof. Rewrite (5–2) as

fY (y) =
1
n

n∑

i=1

δ(rT
1 y) · · · δ(rT

i−1y)δ(rT
i+1y) · · · δ(rT

ny)g(rT
i y). (5–4)

The j-th marginal pdf can be written as

fYj
(yj) =

∫
fY (y1, · · · , yn) dy1 · · · dyj−1 dyj+1 · · · dyn.

Consider the i-th term in the summation of (5–4) and integrate it out with
respect to y1, . . . , yj−1, yj+1, . . . , yn:

∫
δ(rT

1 y) · · · δ(rT
i−1y)δ(rT

i+1y) · · · δ(rT
ny)g(rT

i y) dy1 · · · dyj−1 dyj+1 · · · dyn.

(5–5)
We use the change of variable formula to integrate this. Let rT

k y = xk, k =
1, . . . , n, and let b` be the `-th column vector of B. The relationship By = x

can be rewritten as
B(i,j)y(j) + yjb

(i)
j = x(i),

where B(i,j) is the (n−1)×(n−1) matrix by removing i-th row and j-th column,
and the vectors with superscripts indicate the length n − 1 column vectors by
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removing the elements whose indices are specified in the parentheses. The above
equation can be rewritten as

y(j) =
(
B(i,j)

)−1 (
x(i) − yjb

(i)
j

)
.

Thus,
dy(j) = dy1 · · · dyj−1 dyj+1 · · · dyn

=
1

|det B(i,j)| dx(i)

=
1

|∆ij | dx1 · · · dxi−1 dxi+1 · · · dxn.

We now express rT
i y = xi in terms of yj and x.

rT
i y=

(
r

(j)
i

)T
y(j) + bijyj (5–6)

=
(
r

(j)
i

)T (
B(i,j)

)−1(
x(i) − yjb

(i)
j

)
+ bijyj

=
(
r

(j)
i

)T (
B(i,j)

)−1
x(i) + yj

(
bij −

(
r

(j)
i

)T (
B(i,j)

)−1
b
(i)
j

)

(∗)
=

(
r

(j)
i

)T (
B(i,j)

)−1
x(i) +

yj

∆ij
det B

=
(
r

(j)
i

)T (
B(i,j)

)−1
x(i) ± yj

∆ij
,

where (∗) follows from a lemma proved in Appendix A:

Lemma 5.3. For any B = (bij) ∈ GL(n,R),

bij −
(
r

(j)
i

)T (
B(i,j)

)−1
b
(i)
j =

1
∆ij

det B, 1 ≤ i, j ≤ n.

Now let’s go back to the integration (5–5). Thanks to the property of the delta
function with Equation (5–6), we have
∫
· · ·

∫
δ(x1) · · · δ(xi−1)δ(xi+1) · · · δ(xn)g(rT

i y)
1

|∆ij | dx1 · · · dxi−1 dxi+1 · · · dxn

=
1

|∆ij |g(±yj/∆ij)

= g(yj ; |∆ij |),
where we used the fact that g(·) is an even function. Therefore, we can write
the j-th marginal distribution as announced in (5–3). ¤

We now compute the moments of Yi, which will be used later. We use the fact
that this is a mixture of n Gaussians each of which has mean 0 and variance
|∆ij |2. The following lemma computes the higher order moments.

Lemma 5.4.

E[|Yj |p] =
Γ(p)

n 2p/2−1Γ(p/2)

n∑

i=1

|∆ij |p, for all p > 0. (5–7)
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Proof. We have:

E[|Yj |p] =
1
n

n∑

i=1

∫ ∞

−∞
|y|pg(y; |∆ij |) dy

=
1
n

n∑

i=1

√
2
π
|∆ij |pΓ(1 + p)D−1−p(0)

by Gradshteyn and Ryzhik [14, Formula 3.462.1], where D−1−p(·) is Whittaker’s
function as defined by Abramowitz and Stegun [1, pp.687]:

D−a−1/2(0) = U(a, 0) =
√

π

2a/2+1/4 Γ(a/2 + 3/4)
.

Thus, putting a = p + 1/2 to the above equation yields:

D−1−p(0) =
√

π

21/2+p/2 Γ(1 + p/2)
.

Therefore,

E[|Yj |p] =
1
n

n∑

i=1

|∆ij |p Γ(1 + p)
2p/2 Γ(1 + p/2)

=
1
n

n∑

i=1

|∆ij |p Γ(p)
2p/2−1 Γ(p/2)

=
Γ(p)

n 2p/2−1 Γ(p/2)

n∑

i=1

|∆ij |p,

as we desired. ¤

The Best Sparsifying Basis. As for the BSB, there is no difference after all
between the generalized spike process and the simple spike process.

Theorem 5.5. The BSB with any p ∈ [0, 1] for the generalized spike process is
the standard basis if D = O(n) or SL±(n,R).

Proof. We first consider the case p ∈ (0, 1]. Using Lemma 5.4, the cost function
(3–1) can be rewritten as

Cp(B |X) =
n∑

j=1

E[|Yj |p] =
Γ(p)

n 2p/2−1 Γ(p/2)

n∑

i=1

n∑

j=1

|∆ij |p.

We now define a matrix B̃
def= (∆ij). Then B̃ ∈ SL±(n,R) since

B−1 =
1

detB
(∆ji) = ±(∆ji),

and B−1 ∈ SL±(n,R). Therefore, this reduces to

Cp(B |X) =
Γ(p)

n 2p/2−1 Γ(p/2)

n∑

i=1

n∑

j=1

|b̃ij |p = K(p, n) · Cp(B̃ | X̃),
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where X̃ represents the simple spike process, and K(p, n) is the constant before
the double summations above, which is dependent only on p and n. This means
that for fixed p and n, searching for the B that minimizes the sparsity cost for
the generalized spike process is equivalent to searching for the B̃ that minimizes
the sparsity cost for the simple spike process. Thus, Theorem 9.5.1 in [3] (or
Theorem 4.2 in this paper) asserts that the B̃ must be the identity matrix In or
its permuted or sign flipped versions. Suppose ∆ij = δij . Then, B−1 = ±(∆ji) =
±In, which implies that B = ±In. If (∆ji) is any permutation matrix, then B−1

is just that permutation matrix or its sign flipped version. Therefore, B is also
a permutation matrix or its sign flipped version.

Finally, consider the case p = 0. Then, any linear invertible transformation
except the identity matrix or its permuted or sign-flipped versions clearly in-
creases the number of nonzero elements after the transformation. Therefore, the
BSB with p = 0 is also a permutation matrix or its sign flipped version.

This completes the proof of Theorem 5.5. ¤

The LSDB/KMB among O(n). As for the LSDB/KMB, we can see some
differences from the simple spike process.

We first consider the case of D = O(n). So far, we have been unable to prove
the following conjecture.

Conjecture 5.6. The LSDB among O(n) is the standard basis.

The difficulty is the evaluation of the sum of the marginal entropies (3–2) for
the pdfs of the form (5–3). However, a major simplification occurs if we consider
the KMB instead of the LSDB, and we can prove:

Theorem 5.7. The KMB among O(n) is the standard basis.

Proof. Because E[Yj ] = 0, E[Y 2
j ] = 1

n

∑n
i=1 ∆2

ij , and µ4(Yj) = 3
n

∑n
i=1 ∆4

ij by
(5–7), the cost function in (3–4) becomes

Cκ(B |X) =
3
n

n∑

j=1

( n∑

i=1

∆4
ij −

1
n

( n∑

i=1

∆2
ij

)2 )
. (5–8)

Note that this is true for any B ∈ SL±(n,R). If we restrict our basis search
to the set O(n), another major simplification occurs because we have a special
relationship between ∆ij and the matrix element bji of B ∈ O(n):

B−1 =
1

detB
(∆ji) = BT .

In other words,
∆ij = (det B)bij = ±bij .

Therefore,
n∑

i=1

∆2
ij =

n∑

i=1

b2
ij = 1.
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Inserting this into (5–8), we get a simplified cost for D = O(n):

Cκ(B |X) = − 3
n

(
1−

n∑

i=1

n∑

j=1

∆4
ij

)
.

This means that the KMB can be rewritten as

Bκ = arg max
B∈O(n)

∑

i,j

b4
ij . (5–9)

Note that the existence of the maximum is guaranteed because the set O(n) is
compact and the cost function

∑
i,j b4

ij is continuous.
Now consider a matrix P = (pij) = (b2

ij). Then, from the orthonormality of
columns and rows of B, this matrix P belongs to a set of doubly stochastic ma-
trices S(n). Since doubly stochastic matrices obtained by squaring the elements
of O(n) consist of a proper subset of S(n), we have

max
B∈O(n)

∑

i,j

b4
ij ≤ max

P∈S(n)

∑

i,j

p2
ij .

Now we prove that such P must be an identity matrix or its permuted version.

max
P∈S(n)

n∑

j=1

n∑

i=1

p2
ij ≤

n∑

j=1

(
maxPn

i=1 pij=1

n∑

i=1

p2
ij

)
=

n∑

j=1

1 = n,

where the first equality follows from the fact that maxima of the radius of the
sphere

∑
i p2

ij subject to
∑

i pij = 1, pij ≥ 0 occur only at the vertices of that
simplex, i.e., pj = eσ(j), j = 1, . . . , n where σ(·) is a permutation of n items.
That is, the column vectors of P must be the standard basis vectors. This
implies that the matrix B corresponding to P = In or its permuted version must
be either In or its permuted and/or sign-flipped version. ¤

The LSDB/KMB among SL±(n,R). If we extend our search to this more
general case, we have:

Theorem 5.8. The KMB among SL±(n,R) does not exist .

Proof. The set SL±(n,R) is not compact. Therefore, there is no guarantee
that the cost function Cκ(B |X) has a minimum value on this set. In fact, there
is a simple counterexample: let B = diag(a, a−1, 1, · · · , 1), where a is any nonzero
real scalar. Then Cκ(B |X) = −(a4 + a−4 + n− 2) tends to −∞ as a increases
to ∞. ¤

As for the LSDB, we do not know whether the LSDB exists among SL±(n,R)
at this point, although we believe that the LSDB is the standard basis. The
negative result in the KMB does not necessarily imply the negative result in the
LSDB.
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6. An Application to the Ramp Process

Although the generalized spike process is a simple stochastic process, we have
the following important interpretation. Consider a stochastic process generat-
ing a basis vector randomly selected from some fixed orthonormal basis and
multiplied by a scalar varying as the standard normal distribution at a time.
Then, that basis itself is simultaneously the BSB and the KMB among O(n).
Theorems 5.5 and 5.7 claim that once we transform the data to the generalized
spike process, we cannot do any better than that, both in terms of sparsity and
independence within O(n).

Along this line of thought, we now consider the following stochastic process
as an application of the theorems in this paper:

X(t) = ν · (t−H(t− τ)), t ∈ [0, 1), ν ∼ N(0, 1), τ ∼ unif[0, 1), (6–1)

where H(·) is the Heaviside step function, i.e., H(t) = 1 if t ≥ 0 and 0 otherwise.
This is a generalized version of the ramp process of Yves Meyer [20, p. 19]. Some
realizations of the simple ramp process are shown in Figure 3.

We now consider the discrete version of (6–1). Let our sampling points be
tk = 2k+1

2n , k = 0, . . . , n−1. Suppose the discontinuity (at t = τ) does not happen
at the exact sampling points. Then all the realizations whose discontinuities are
located anywhere in the open interval ( 2k−1

2n , 2k+1
2n ) have the same discretized

0.0 0.2 0.4 0.6 0.8 1.0

8
6

4
2

0

10 realizations of the ramp process

Figure 3. Ten realizations of the simple ramp process. The position of the

discontinuity is picked uniformly randomly from the interval [0, 1). A realization

of the generalized ramp process can be obtained by multiplying a scalar picked

from the standard normal distribution to a realization of the simple ramp process.
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version. Therefore, any realization now has the form

x̃j = νxj = ν(x0j , . . . , xn−1,j)T , xkj =

{
2k+1
2n for k = 0, . . . , j − 1,

2k+1
2n − 1 for k = j, . . . , n− 1,

where j is picked uniformly randomly from the set {0, 1, · · · , n− 1}. (Note that
the index of the vector components starts with 0 for convenience). Then:

Theorem 6.1. The BSB pair of the discretized version of the generalized ramp
process (6–1), selected from SL±(n,R), are:

B−1
ramp = (2n)−1/n




−1 0 · · · · · · 0 −1
1 −1 0 · · · 0 −2

0
. . . . . . . . .

...
...

...
. . . 1 −1 0 −2

...
. . . 1 −1 −2

0 · · · · · · 0 1 −3




, (6–2)

Bramp = (2n)1/n


x0

∣∣∣∣∣x1

∣∣∣∣∣ · · ·
∣∣∣∣∣xn−1


 . (6–3)

Proof. It is straightforward to show that the matrix without the factor (2n)−1/n

in (6–2) is the inverse of the matrix [x0|x1| · · · |xn−1]. Then, the factors (2n)−1/n

and (2n)1/n in (6–2) and (6–3), which are easily obtained, are necessary for these
matrices to be in SL±(n,R). It is now clear that the analysis basis B−1

ramp trans-
forms the discretized version of the generalized ramp process to the generalized
spike process whose amplitudes obey N(0, (2n)−2/n) instead of N(0, 1). Once
converted to the generalized spike process, then from Theorem 5.5, we know
that we cannot do any better than the standard basis in terms of the sparsity
cost (3–1). This implies that the BSB among SL±(n,R) is the basis pair (6–2)
and (6–3). ¤

In fact, this matrix is a difference operator (with DC measurement) so that it
detects the location of the discontinuity in each realization, while the synthesis
basis vectors (6–3) are the realizations of this process themselves modulo scalar
multiplications. Clearly, this matrix also transforms the discretized version of
the simple ramp process (i.e., with ν ≡ 1 in (6–1)) to the simple spike process
whose nonzero amplitude is (2n)−1/n. Therefore, if the realizations of the simple
or generalized ramp process is fed to any software that is supposed to find a spar-
sifying basis among SL±(n,R), then that software should be able to find (6–2)
and (6–3). As a demonstration, we conducted a simple experiment using Car-
doso’s JADE (Joint Approximate Diagonalization of Eigenmatrices) algorithm
[6] applied to the discretized version of the simple ramp process.

The JADE algorithm was designed to find a basis minimizing the sum of
the squared fourth order cross-cumulants of the input data (i.e., essentially the
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Figure 4. The analysis BSB vs. the analysis basis obtained by JADE algorithm

(n = 32). A row permutation and a global amplitude normalization were applied

to the JADE analysis basis to have a better correspondence with the BSB.

KMB) under the whitening condition, EY Y T = In. In fact, the best basis is
searched for within a subset of GL(n,R), which has a very special structure:
every element in this set is of the form B = W−1U where W is the whitening
matrix of the inputs X and U ∈ O(n). Note that this subset is neither O(n)
nor SL±(n,R). For our numerical experiment with JADE, we modified the code
available from [5] so that it does not remove the mean of the input dataset.
(Otherwise, we could only extract n− 1 basis vectors.) In Figure 4, we compare
the theoretical optimum, i.e., the analysis BSB (6–2), and the analysis basis
obtained by JADE, which is almost identical to the BSB (modulo permutations
and sign flips).

Now, what happens if we restrict the basis search to the set O(n)? The ba-
sis pair (6–2) and (6–3) are not orthogonal matrices. Therefore, we will never
be able to find the basis pair (6–2), (6–3) within O(n). Consequently, even if
we found the BSB among O(n), the ramp process would be less sparsified by
that orthonormal BSB than by (6–2). Yet, it is of interest to determine the
BSB within O(n) due to the numerical experiments of Cardoso and Donoho
[7]. They apply the JADE algorithm without imposing the whitening condition
to the discretized version of the simple ramp process. This strategy is essen-
tially equivalent to searching the KMB within O(n). The resulting KMB, which
they call “jadelets” [7], is very similar to Daubechies’s almost symmetric wavelet
basis called “symmlets” [10, Sec. 6.4]. For the generalized ramp process, the
KMB among SL±(n,R) may not exist as Theorem 5.8 shows, because within
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SL±(n,R), the generalized ramp process is equivalent to the generalized spike
process via (6–2) and (6–3). On the other hand, we cannot convert the gener-
alized ramp process to the generalized spike process within O(n), although the
KMB among O(n) exists for the generalized spike process. These observations
indicate that the orthonormality may be a key to generate the wavelet-like mul-
tiscale basis for the generalized ramp process. At this point, however, we do
not fully understand why orthonormality has to be a key for generating such a
wavelet-like multiscale basis. The mystery of the orthonormality was intensified
after we failed to reproduce their results using the modified JADE algorithm.
This issue needs to be investigated in the near future.

7. Discussion

Unlike the simple spike process, the BSB and the KMB (an alternative to the
LSDB) selects the standard basis if we restrict our basis search to the set O(n).
If we extend our basis search to SL±(n,R), then the BSB exists and is again
the standard basis whereas the KMB does not exist. Of course, if we extend the
search to nonlinear transformations, then it becomes a different story. We refer
the reader to our recent articles [18; 19], for the details of a nonlinear algorithm.

The results of this paper further support the conclusion of the previous work
[3]: dealing with the BSB is much simpler than the LSDB. To deal with statistical
dependency, we need to consider the probability law of the underlying process
(e.g., entropy or the marginal pdfs) explicitly. That is why we need to consider
the KMB instead of the LSDB to prove the theorems. Also in practice, given a
finite set of training data, it is a nontrivial task to reliably estimate the marginal
pdfs. Moreover, the LSDB unfortunately cannot tell how close it is to the true
statistical independence; it can only tell that it is the best one (i.e., the closest one
to the statistical independence) among the given set of possible bases. In order
to quantify the absolute statistical dependence, we need to estimate the true
high-dimensional entropy of the original process, H(X), which is an extremely
difficult task in general. We would like to note, however, a recent attempt to
estimate the high-dimensional entropy of the process by Hero and Michel [15],
which uses the minimum spanning trees of the input data and does not require
us to estimate the pdf of the process. We feel that this type of techniques will
help assessing the absolute statistical dependence of the process under the LSDB
coordinates. Another interesting observation is that the KMB is rather sensitive
to the orthonormality of the basis dictionary whereas the BSB is insensitive to
that. Our previous results on the simple spike process (e.g., Theorems 4.3 and
4.6) also suggest the sensitivity of the LSDB to the orthonormality of the basis
dictionary.

On the other hand, the sparsity criterion neither requires estimation of the
marginal pdfs nor reveals the sensitivity to the orthonormality. Simply comput-
ing the expected `p norms suffices. Moreover, we can even adapt the BSB for



GENERALIZED SPIKE PROCESS, SPARSITY, AND INDEPENDENCE 337

each realization rather than for the whole realizations, which is impossible for
the LSDB, as we discussed in [3; 26]. These observations, therefore, suggest that
the pursuit of sparse representations should be encouraged rather than that of
statistically independent representations. This is also the viewpoint indicated
by Donoho [11].

Finally, there are a few interesting generalizations of the spike processes, which
need to be addressed in the near future. We need to consider a stochastic process
that randomly throws in multiple spikes to a single realization. If we throw in
more and more spikes to one realization, the standard basis is getting worse
in terms of sparsity. Also, we can consider various rules to throw in multiple
spikes. For example, for each realization, we can select the locations of the
spikes statistically independently. This is the simplest multiple spike process.
Alternatively, we can consider a certain dependence in choosing the locations
of the spikes. The ramp process of Yves Meyer ((6–1) with ν ≡ 1) represented
in the wavelet basis is such an example; each realization of the ramp process
generates a small number of nonzero wavelet coefficients around the location of
the discontinuity of that realization and across the scales. See [4; 13; 20; 26] for
more about the ramp process.

Except in very special circumstances, it would be extremely difficult to find
the BSB of a complicated stochastic process (e.g., natural scene images) that
truly converts its realizations to the spike process. More likely, a theoretically
and computationally feasible basis that sparsifies the realizations of a compli-
cated process well (e.g., curvelets for the natural scene images [12]) may gener-
ate expansion coefficients that may be viewed as an amplitude-varying multiple
spike process. In order to tackle this scenario, we certainly need to identify
interesting, useful, and simple enough specific stochastic processes, develop the
BSB adapted to such specific processes, and deepen our understanding of the
amplitude-varying multiple spike process.

Acknowledgment

I would like to thank Dr. Jean-François Cardoso of ENST, Paris, and Dr.
Motohico Mulase and Dr. Roger Wets, both of UC Davis, for fruitful discussions.
This research was partially supported by NSF DMS-99-73032, DMS-99-78321,
and ONR YIP N00014-00-1-0469.

Appendix A. Proof of Lemma 5.3

Proof. Consider the system of linear equations

B(i,j)z(j) = b
(i)
j ,
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where z(j) = (z1, · · · , zj−1, zj+1, · · · , zn)T ∈ Rn−1, j = 1, . . . , n. Using Cramer’s
rule (e.g., [16, pp.21]), we have, for k = 1, . . . , j − 1, j + 1, . . . , n,

z
(j)
k =

1
det B(i,j)

det


b

(i)
1

∣∣∣∣∣ · · ·
∣∣∣∣∣ b

(i)
k−1

∣∣∣∣∣ b
(i)
j

∣∣∣∣∣ b
(i)
k+1

∣∣∣∣∣ · · ·
∣∣∣∣∣ b(i)

n




(a)
= (−1)|k−j|−1 B(i,k)

B(i,j)

(b)
= (−1)|k−j|−1 ∆ik/(−1)i+k

∆ij/(−1)i+j
= −∆ik

∆ij
,

where (a) follows from the (|k−j|−1) column permutations to move b
(i)
j located

at the k-th column to the j-th column of B(i,j), and (b) follows from the definition
of the cofactor. Hence,

bij −
(
r

(j)
i

)T (
B(i,j)

)−1
b
(i)
j = bij −

(
r

(j)
i

)T
z(j) = bij +

1
∆ij

∑

k 6=j

bik∆ik

=
1

∆ij

n∑

k=1

bik∆ik =
1

∆ij
detB.

This completes the proof of Lemma 5.3. ¤
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