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Preface

This book is based on the lecture notes for the courses Semiconduc-
tor Nanostructures and Electronic Transport in Nanostructures that the
author gives regularly at the physics department of ETH Zurich. The
course is aimed at students in the fourth year who have already attended
the introductory lectures Physics I–IV, theoretical lectures in electrody-
namics, classical and quantum mechanics, and a course Introduction to
Solid State Physics. The course is also attended by PhD students within
their PhD programme, or by others working in the field of semiconductor
nanostructures or related scientific areas. Beyond the use of the material
contained in this book as the basis for lectures, it has become a popular
reference for researchers in a number of research groups at ETH work-
ing on related topics. This book is therefore primarily intended to be a
textbook for graduate students, PhD students and postdocs specializing
in this direction.

In order to acquire the knowledge about semiconductor nanostruc-
tures needed to understand current research, it is necessary to look at
a considerable number of aspects and subtopics. For example, we have
to answer questions like: which semiconducting materials are suitable
for creating nanostructures, which ones are actually used, and which
properties do these materials have? In addition, we have to look at
nanostructure processing techniques: how can nanostructures actually
be fabricated? A further topic is the historical development of this mod-
ern research field. We will have to find out how our topic is embedded
in the physical sciences and where we can find links to other branches
of physics. However, at the heart of the book will be the physical ef-
fects that occur in semiconductor nanostructures in general, and more
particularly on electronic transport phenomena.

Using this book as the basis for a course requires selection. It would be
impossible to cover all the presented topics in depth within the fourteen
weeks of a single semester given two hours per week. The author regards
the quantization of conductance, the Aharonov–Bohm effect, quantum
tunneling, the Coulomb blockade, and the quantum Hall effect as the five
fundamental transport phenomena of mesoscopic physics that need to be
covered. As a preparation, Drude transport theory and the Landauer–
Büttiker description of transport are essential fundamental concepts. All
this is based on some general knowledge of semiconductor physics, in-
cluding material aspects, fabrication, and elements of band structure.
This selection, leaving out a number of more specialized and involved
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topics would be a solid foundation for a course aimed at fourth year
students.

The author has attempted to guide the reader to the forefront of cur-
rent scientific research and also to address some open scientific questions.
The choice and emphasis of certain topics do certainly follow the pref-
erence and scientific interest of the author and, as illustrations, his own
measurements were in some places given preference over those of other
research groups. Nevertheless the author has tried to keep the discus-
sions reasonably objective and to compile a basic survey that should
help the reader to seriously enter this field by doing his or her own
experimental work.

The author wishes to encourage the reader to use other sources of
information and understanding along with this book. Solving the ex-
ercises that are embedded in the chapters and discussing the solutions
with others is certainly helpful to deepen understanding. Research arti-
cles, some of which are referenced in the text, or books by other authors
may be consulted to gain further insight. You can use reference books,
standard textbooks, and the internet for additional information. Why
don’t you just start and type the term ‘semiconductor nanostructures’
into your favorite search engine!

Thomas Ihn,
Zurich, January 2009



Acknowledgements

I want to thank all the people who made their contribution to this book,
in one way or other. I thank my family for giving me the freedom to
work on this book, for their understanding and support. I thank all the
colleagues who contributed with their research to the material presented.
I thank my colleagues at ETH who encouraged me to tackle this project.
Many thanks go to all the students who stimulated the contents of the
book by their questions and comments, who found numerous mistakes,
and who convinced me that it was worth the effort by using my previous
lecture notes intensively.

I wish to acknowledge in particular those present and former col-
leagues at ETH Zurich who contributed unpublished data, drawings,
or other material for this book:

Andreas Baumgartner, Christophe Charpentier, Christoph Ellenberger,
Klaus Ensslin, Andreas Fuhrer, Urszula Gasser, Boris Grbič, Johannes
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1.1 A short survey

Nanostructures in physics. How is the field of semiconductor nano-
structures embedded within more general topics which the reader may
already know from his or her general physics education? Figure 1.1 is
a graphical representation that may help. Most readers will have at-
tended a course in solid state physics covering its basics and some of its
important branches, such as magnetism, superconductivity, the physics
of organic materials, or metal physics. For this book, the relevant branch
of solid sate physics is semiconductor physics. Particular aspects of this
branch are materials, electrical transport properties of semiconductors
and their optical properties. Other aspects include modern semiconduc-
tor devices, such as diodes, transistors and field-effect transistors.

Miniaturization of electronic devices in industry and research.
We all use modern electronics every day, sometimes without being aware
of it. It has changed life on our planet during the past fifty years enor-
mously. It has formed an industry with remarkable economical success
and a tremendous influence on the world economy. We all take the avail-
ability of computers with year by year increasing computing power for
granted. The reason for this increase in computer power is, among other
things, the miniaturization of the electronic components allowing us to
place a steadily increasing amount of functionality within the same area
of a computer chip. The decreasing size of transistors also leads to de-
creasing switching times and higher clock frequencies. Today’s silicon-
based computer processors host millions of transistors. The smallest
transistors, fabricated nowadays in industrial research laboratories have
a gate length of only 10 nm.

Of course, this trend towards miniaturization of devices has also af-
fected semiconductor research at universities and research institutes all
over the world and has inspired physicists to perform novel experiments.

Solid State Physics

− magnetism
− superconductivity
− soft condensed matter,
   organic materials
− semiconductor physics
− physics of metals
− ...

Semiconductor Physics

− materials
− electrical transport proper-
  ties

− optical properties
− semiconductor devices,
   miniaturisation
  => NANOSTRUCTURES

Solid State Physics

− magnetism
− superconductivity
− soft condensed matter,
   organic materials
− semiconductor physics
− physics of metals
− ...

Semiconductor Physics

− materials
− electrical transport proper-
  ties

− optical properties
− semiconductor devices,
   miniaturisation
  => NANOSTRUCTURES

Fig. 1.1 Schematic representation
showing how the field of semiconductor
nanostructures has emerged as a special
topic of solid state physics.

On one hand they benefit from the industrial technological developments
which have established materials of unprecedented quality and innova-
tive processing techniques that can also be used in modern research.
On the other hand, physicists are interested in investigating and under-
standing the physical limits of scalability towards smaller and smaller
devices, and, eventually, to think about novel device concepts beyond
the established ones. Can we realize a transistor that switches with sin-
gle electrons? Are the essentially classical physical concepts that govern
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Fig. 1.2 The physics of semiconductor
nanostructures is related to many other
areas of physics.
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the operation of current transistors still applicable for such novel de-
vices? Do we have to take quantum effects into account in such small
structures? Can we develop new operating principles for semiconductor
devices utilizing quantum effects? Can we use the spin of the electrons
as the basis for spintronic devices?

All these highly interesting questions have been the focus of research
in industry, research institutes, and universities for many years. In the
course of these endeavors the field of semiconductor nanostructures was
born around the mid 1980s. Experiments in this field utilize the techno-
logical achievements and the quality of materials in the field of semicon-
ductors for fabricating structures which are not necessarily smaller than
current transistors but which are designed and investigated under condi-
tions that allow quantum effects to dominate their properties. Necessary
experimental conditions are low temperatures, down to the millikelvin
regime, and magnetic fields up to a few tens of tesla. A number of
fundamental phenomena has been found, such as the quantization of
conductance, the quantum Hall effect, the Aharonov–Bohm effect and
the Coulomb-blockade effect. In contrast, quantum phenomena play
only a minor role in today’s commercial semiconductor devices.

Nanostructure research and other branches of physics. The
physics of semiconductor nanostructures has a lot in common with other
areas of physics. Figure 1.2 is an attempt to illustrate some of these links.
The relations with materials science and electronics have already been
mentioned above. Beyond that, modern semiconductor electronics is an
integrated part of measurement equipment that is being used for the
measurement of the physical phenomena. The physics of low temper-
atures is very important for experimental apparatus such as cryostats
which are necessary to reveal quantum phenomena in semiconductor
nanostructures. Quantum mechanics, electrodynamics and quantum
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Fig. 1.3 Development of the mini-
mum pattern sizes in computer proces-
sor chips over time. Data on Intel
processors were compiled from Intel
publications. The dashed line repre-
sents the prediction of Moore’s law,
i.e., an exponential decrease of pat-
tern size over time. Abbreviations
in the bottom part of the chart indi-
cate milestones in semiconductor nano-
structure research, namely, 2DEGs:
two-dimensional electron gases, SdH:
Shubnikov–de Haas effect, QHE: quan-
tum Hall effect, QPC: quantum point
contact (showing conductance quanti-
zation), QD: quantum dot (Coulomb
blockade), AB: Aharonov–Bohm effect,
QD qubit: quantum dot qubit. This
shows the close correlation between in-
dustrial developments and progress in
research.

statistics together form the theoretical basis for the description of the
observed effects. From metal physics we have inherited models for diffu-
sive electron transport such as the Drude model of electrical conduction.
Analogies with optics can be found, for example, in the description of
conductance quantization in which nanostructures act like waveguides
for electrons. We use the terms ‘modes’, ‘transmission’, and ‘reflection’
which are also used in optics. Some experiments truly involve electron
optics. The field of zero-dimensional structures, also called quantum
dots or artificial atoms, has strong overlap with atom physics. The fact
that transistors are used for classical information processing and the
novel opportunities that nanostructures offer have inspired researchers to
think about new quantum mechanical concepts for information process-
ing. As a result, there is currently a very fruitful competition between
different areas of physics for the realization of certain functional units
such as quantum bits (called qubits) and systems of qubits. The field of
semiconductor nanostructures participates intensely in this competition.
Reading this book you will certainly find many other relations with your
own previous knowledge and with other areas of physics.

History and Moore’s law. Historically, the invention of the transistor
by Shockley, Bardeen, and Brattain, at that time at the Bell laboratories,
was a milestone for the further development of the technological use
of semiconductors. The first pnp transistor was developed in 1949 by
Shockley. In principle it already worked like today’s bipolar transistors.
Since then miniaturization of semiconductor devices has made enormous
progress. The first transistors with a size of several millimeters had
already been scaled down by 1970 to structure sizes of about 10 µm.
Since then, miniaturization has progressed exponentially as predicted by
Moore’s law (see Fig. 1.3). With decreasing structure size the number
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of electrons participating in transistor switching decreases accordingly.
If Moore’s law continues to be valid, industry will reach structure sizes
of the order of the electron’s wavelength within the next decade. There
is no doubt that the importance of quantum effects will tend to increase
in such devices.

The size of semiconductor nanostructures. The world of nano-
structures starts below a characteristic length of about 1 µm and ends
at about 1 nm. Of course, these limits are not strict and not always will
all dimensions of a nanostructure be within this interval. For example, a
ring with a diameter of 5 µm and a thickness of 300 nm would certainly
still be called a nanostructure. The word ‘nano’ is Greek and means
‘dwarf’. Nanostructures are therefore ‘dwarf-structures’. They are fre-
quently also called mesoscopic systems. The word ‘meso’ is again Greek
and means ‘in between’, ‘in the middle’. This expresses the idea that
these structures are situated between the macroscopic and the micro-
scopic world. The special property of structures within this size range
is that typically a few length scales important for the physics of these
systems are of comparable magnitude. In semiconductor nanostructures
this could, for example, be the mean free path for electrons, the structure
size, and the phase-coherence length of the electrons.

Beyond the nanostructures lies the atomic world, starting with macro-
molecules with a size below a few nanometers. Carbon nanotubes, small
tubes of a few nanometers in diameter made of graphene sheets, are at
the boundary between nanostructures and macromolecules. They can
reach lengths of a few micrometers. Certain types of these tubes are
metallic, others semiconducting. Their interesting properties have made
them very popular in nanostructure research of recent years.

Electronic transport in nanostructures. The main focus of this
book is the physics of electron transport in semiconductor nanostruc-
tures including the arising fundamental quantum mechanical effects.
Figure 1.4 shows a few important examples belonging to this theme.
Measuring the electrical resistance, for example, using the four-terminal
measurement depicted schematically at the top left is the basic experi-
mental method. The quantum Hall effect (bottom left) is a phenomenon
that arises in two-dimensional electron gases. It is related to the con-
ductance quantization in a quantum point contact. Another effect that
arises in diffusive three-, two-, and one-dimensional electron gases is the
so-called weak localization effect (top middle). Its physical origin can be
found in the phase-coherent backscattering of electron waves in a spa-
tially fluctuating potential. This effect is related to the Aharonov–Bohm
effect in ring-like nanostructures (top right). A characteristic effect in
zero-dimensional structures, the quantum dots, is the Coulomb-blockade
effect. Its characteristic feature is the sharp resonances in the conduc-
tance as the gate voltage is continuously varied. These resonances are
related to the discrete energy levels and to the quantization of charge in
this many-electron droplet. While the summary of effects shown in Fig.
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(e) Fig. 1.4 Summary of important quan-
tum transport phenomena in semicon-
ductor nanostructures. (a) Schematic
drawing of a four-terminal resistance
measurement. (b) Weak localization
effect in a diffusive two-dimensional
electron gas, which is related to the
AharonovBohm effect shown in (c). (c)
Aharonov-Bohm effect in a quantum
ring structure. (d) The longitudinal-
and the Hall-resistivity of a two-
dimensional electron gas in the quan-
tum Hall regime. (e) Conductance of a
quantum dot structure in the Coulomb-
blockade regime.

1.4 cannot be complete, it shows the rich variety of transport phenom-
ena which makes the field of semiconductor nanostructures particularly
attractive.

1.2 What is a semiconductor?

The term ‘semiconductor’ denotes a certain class of solid materials.
It suggests that the electrical conductivity is a criterion for deciding
whether a certain material belongs to this class. We will see, however,
that quantum theory provides us with an adequate description of the
band structure of solids and thereby gives a more robust criterion for
the distinction between semiconductors and other material classes.

Resistivity and conductivity. The electrical conductivity of solid
materials varies over many orders of magnitude. A simple measure-
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ment quantity for the determination of the conductivity is the electrical
resistance R which will be more thoroughly introduced in section 10.1 of
this book. If we consider a block of material with length L and cross-
sectional area A, we expect the resistance to depend on the actual values,
i.e., on the geometry. By defining the (specific) resistivity

ρ = R
A

L

we obtain a geometry-independent quantity which takes on the same
value for samples of different geometries made from the same material.
The resistivity is therefore a suitable quantity for the electrical charac-
terization of the material. The (specific) conductivity σ is the inverse of
the resistivity, i.e.,

σ = ρ−1.

Empirically we can say that metals have large conductivities, and insu-
lators small, while semiconductors are somewhere in between. Typical
numbers are shown in Table 1.1.

Table 1.1 Typical resistivities of
materials at room temperature.

Material ρ (Ωcm)

Insulators ∼ 1014

Macor (ceramic)
SiO2 (quartz)
Al2O3 (sapphire)
Semiconductors 10−2 − 109

Metals ∼ 2 × 10−6

Cu 1.7 × 10−6

Al 2.6 × 10−6

Au 2.2 × 10−6

Temperature dependence of the resistance. The temperature de-
pendence of the electrical resistance is a good method for distinguishing
metals, semiconductors and insulators.

The specific resistivity of metals depends weakly and linearly on tem-
perature. When a metal is cooled down from room temperature, electron–
phonon scattering, i.e., the interaction of electrons with lattice vibra-
tions, loses importance and the resistance goes down [see Fig. 1.5(a)].
At very low temperatures T , the so-called Bloch–Grüneisen regime is
reached, where the resistivity shows a T 5-dependence and goes to a
constant value for T → 0. This value is determined by the purity of,
and number of defects in, the involved material. In some metals this
‘standard’ low-temperature behavior is strongly changed, for example,
by the appearance of superconductivity, or by Kondo-scattering (where
magnetic impurities are present).

In contrast, semiconductors and insulators show an exponential de-
pendence of resistivity on temperature. The resistance of a pure high-
quality semiconductor increases with decreasing temperature and di-
verges for T → 0 [cf., Fig. 1.5(b)]. The exact behavior of the tempera-
ture dependence of resistivity depends, as in metals, on the purity and
on the number of lattice defects.

Band structure and optical properties. A very fundamental prop-
erty that semiconductors share with insulators is their band structure.
In both classes of materials, the valence band is (at zero temperature)
completely filled with electrons whereas the conduction band is com-
pletely empty. A band gap Eg separates the conduction band from the
valence band [see Fig. 1.6(a)]. The Fermi level EF is in the middle of
the band gap.
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Fig. 1.5 Left: Characteristic tem-
perature dependence of the resistivity
(a) of a metal, (b) of a semiconduc-
tor. Right: Characteristic optical ab-
sorption as a function of photon energy
(c) of a metal, (d) of a semiconductor.

This property distinguishes semiconductors and insulators from met-
als, in which a band gap may exist, but the conduction band is partially
filled with electrons up to the Fermi energy EF and the lowest electronic
excitations have an arbitrarily small energy cost [Fig. 1.6(b)].

The presence of a band gap in a material can be probed by optical
transmission, absorption, or reflection measurements. Roughly speak-
ing, semiconductors are transparent for light of energy below the band
gap, and there is very little absorption. As depicted in Fig. 1.5(d), at
the energy of the band gap there is an absorption edge beyond which
the absorption increases dramatically. In contrast, metals show a finite
absorption at arbitrarily small energies due to the free electrons in the
conduction band [Fig. 1.5(c)].

Semiconductors can be distinguished from insulators only by the size
of their band gap. Typical gaps in semiconductors are between zero and
3 eV. However, this range should not be seen as a strict definition of
semiconductors, because, depending on the context, even materials with
larger band gaps are often called semiconductors in the literature. The
band gaps of a selection of semiconductors are tabulated in Table 1.2.

Table 1.2 Band gaps (in eV) of se-
lected semiconductors.

Si Ge GaAs AlAs InAs

1.1 0.7 1.5 2.2 0.4

Doping of semiconductors. A key reason why semiconductors are
technologically so important is the possibility of changing their electronic
properties enormously by incorporating very small amounts of certain
atoms that differ in the number of valence electrons from those found
in the pure crystal. This process is called doping. It can, for example,
lead to an extreme enhancement of the conductivity. Tailored doping
profiles in semiconductors lead to the particular properties utilized in
semiconductor diodes for rectifying currents, or in bipolar transistors
for amplifying and switching.
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Fig. 1.6 Schematic representation of
band structure within the first Bril-
louin zone, i.e., up to wave vector π/a,
with a being the lattice constant. Gray
areas represent energy bands in which
allowed states (dispersion curves) ex-
ist. States are occupied up to the Fermi
level EF as indicated by thick disper-
sion curves. (a) In insulators and semi-
conductors, all conduction band states
are unoccupied at zero temperature and
EF lies in the energy gap. (b) In metals
EF lies in the conduction band and the
conduction band is partially occupied
resulting in finite conductivity.
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1.3 Semiconducting materials

Semiconducting materials are numerous and versatile. We distinguish
elementary and compound semiconductors.

Elementary semiconductors. Silicon (Si) and germanium (Ge), phos-
phorous (P), sulfur (S), selenium (Se), and tellurium (Te) are elementary
semiconductors. Silicon is of utmost importance for the semiconductor
industry. Certain modifications of carbon (C60, nanotubes, graphene)
can be called semiconductors.

Compound semiconductors. Compound semiconductors are classi-
fied according to the group of their constituents in the periodic table of
elements (see Fig. 1.7). Gallium arsenide (GaAs), aluminium arsenide
(AlAs), indium arsenide (InAs), indium antimonide (InSb), gallium an-
timonide (GaSb), gallium phosphide (GaP), gallium nitride (GaN), alu-
minium antimonide (AlSb), and indium phosphide (InP), for example,
all belong to the so-called III-V semiconductors. In addition, there
are II-VI semiconductors, such as zinc sulfide (ZnS), zinc selenide
(ZnSe) and cadmium telluride (CdTe), III-VI compounds, such as
gallium sulfide (GaS) and indium selenide (InSe), as well as IV-VI
compounds, such as lead sulfide (PbS), lead telluride (PbTe), lead
selenide (PbSe), germanium telluride (GeTe), tin selenide (SnSe), and
tin telluride (SnTe). Among the more exotic semiconductor materials
there are, for example, the copper oxides CuO and Cu2O (cuprite), ZnO
(zinc oxide), and PbS (lead sulfide, galena). Also of interest are organic
semiconductors such as polyacetylene (CH2)n or anthracene (C14H10).
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Fig. 1.7 Periodic table of elements. Si
and Ge in group IV, for example, are el-
ementary semiconductors. Compound
semiconductors contain, for example,
elements from groups III and V, or II
and VI.

Binary and ternary compounds. Compound semiconductors with
two chemical constituents are called binary compounds. In addition,
there are compound semiconductors with three constituents, such as
AlxGa1−xAs (aluminium gallium arsenide), InxGa1−xAs (indium gal-
lium arsenide), InxGa1−xP (indium gallium phosphide), and also CuFeS2

(chalcopyrite). In this case, one talks about ternary semiconductors or
semiconductor alloys. They play an important role for the so-called
‘bandgap engineering’ which will be discussed in a later chapter.

In this book, with its focus on electronic transport in semiconductor
nanostructures, the emphasis is often put on III-V semiconductors or
on silicon. The reason is that there exists a very mature technology
for fabricating nanostructures from these materials and because an ex-
traordinary purity of these materials can be achieved. Both properties
are extremely important for observing the quantum transport effects
discussed later on.

Further reading

• Kittel 2005; Ashcroft and Mermin 1987; Singleton
2001; Seeger 2004; Cohen and Chelikowski 1989;

Yu and Cardona 2001; Balkanski and Wallis 2000.

• Papers: Wilson 1931a; Wilson 1931b.

Exercises

(1.1) The ‘Landolt–Börnstein’ is an important series of
data handbooks, also containing data about semi-
conductors. Find out where and how you have ac-
cess to this reference. Find the volumes in which
data about the semiconductors Si and GaAs can be

found. Look up the values Eg of the band gaps of
these two materials.

(1.2) You order a silicon wafer of 0.5mm thickness and
a resistivity of 10Ωcm. What is the resistance of
a bar of 1 cm width and 10 cm length, if measured
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between the two ends of the bar? Compare the re-
sult to the resistance of a piece of copper having
the same size. How much bigger is it?

(1.3) Find out which processor is used in your com-
puter. Research on the internet how many tran-
sistors there are in the processor, and what the
minimum pattern size is.

(1.4) Find all the Nobel prize winners who obtained their

prize for important discoveries and/or contribu-
tions to modern semiconductor technology, and dis-
cuss their achievements.

(1.5) Assume that a single bit in an SRAM memory con-
sisting of six transistors occupies a total area of
400 nm × 150 nm. What is the area needed for a
1 GB memory?
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2.1 Crystal structure

Diamond and zincblende structure. Semiconductors form periodic
crystal lattices. Silicon and germanium crystallize in the diamond lattice
(see Fig. 2.1), whereas GaAs, AlAs, InAs, GaSb, for example, have a
zincblende structure.

The diamond structure is an fcc lattice with a basis consisting of two
atoms of the same kind (see Fig. 2.1). The zincblende lattice looks like
the diamond lattice, but the two atoms forming the basis of the fcc
lattice are different (e.g. Ga and As in GaAs, see Fig. 2.1).

Notation for crystal directions. Directions in a crystal are denoted
in square brackets. The z-direction, for example, is described by [001].
Negative directions have a bar. For example, the −z-direction is [001̄].

Notation for lattice planes: Miller indices. Lattice planes (all
parallel planes) are labeled with the so-called Miller indices in round
brackets. The normal vector characterizes the orientation of the plane.
Integer numbers are chosen for the components of this vector. These are
the Miller indices. The x-y plane, for example, is described by (001).
Important orientations of crystal surfaces are the (001), the (111), the
(110), the (11̄0), and the (311) directions.

Lattice constant a

Fig. 2.1 Crystal structure of dia-
mond. The spheres represent the po-
sitions of the atoms in the lattice.
The zincblende structure is identical,
but neighboring atoms are different el-
ements (e.g. Ga and As).

2.2 Fabrication of crystals and wafers

2.2.1 Silicon

Reduction of silica. The fabrication of high purity silicon wafers from
quartz sand for the semiconductor industry is depicted in Fig. 2.2 and
briefly described below. The earth’s crust contains a 25.7% by weight
of silicon. There are enormous resources in the silicon dioxide (SiO2,
quartz, silica) contained in quartz sand. Silica makes the sand glitter
in the sunlight. Silicon is made from silica in a furnace at 2000◦C by
reduction with carbon (coke) from the reaction

SiO2 + 2C → Si + 2CO.

This material has a purity of 97%.
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Fig. 2.2 Steps for the fabrication of
high purity silicon wafers.

quartz sand

reduction of SiO2 with carbon in a furnace at 2000°C
SiO2 + 2C -> Si + 2CO

grinding of the material and reaction to trichlorine silane
Si + 3HCl -> SiHCl3 + H2

distillation of trichlorine silane for enhanced purity

deposition of Si in a CVD process
SiHCl3 + H2 -> Si + 3HCl

product: polycrystalline silicon

Czochralski method: pulling single crystals from the melt
alternatively or in addition: zone melting

Wiresaw slicing into wafers of  0.3–1 mm thickness
orientation (100) or (111)

surface polishing

Si wafer

sand dunes, Death Valley
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Chemical purification. The raw material is milled and mixed with
hydrochloric acid (HCl). Under this influence it reacts to trichlorosilane
(SiHCl3) according to

Si + 3HCl → SiHCl3 + H2

and impurities such as Fe, Al and B are removed. The purity of trichloro-
silane can be increased by distillation. In a subsequent CVD (chemical
vapor deposition) process, polycrystalline silicon is deposited contain-
ing less than 0.01 ppb of metallic impurities and less than 0.001 ppb of
dopants (meaning 99.99999999% of Si):

SiHCl3 + H2 → Si + 3HCl.

At this stage, doping atoms can be deliberately added.

Single crystal ingots. Large single crystals, so-called ingots, are then
obtained by pulling the crystal from the melt (Si melts at 1420◦C) of the
polycrystalline material (Czochralski method, after the polish scientist
J. Czochralski, 1916. See Fig. 2.3). Before this process, the chunks of
polycrystalline material undergo thorough cleaning and surface etching
in a cleanroom environment. Alternatively, single crystals are produced
using zone melting, which is also an appropriate method for further
cleaning existing single crystals. The end product is single crystals with a
length of 1–2 m and a diameter of up to just over 30 cm (see Fig. 2.4). The
density of dislocations in these single crystals is smaller than 1000 cm−3

(Yu and Cardona, 2001)1, and the ratio of the number of impurity atoms
to silicon atoms is smaller than 10−12.

Grinding, slicing, and polishing. A mechanical rotary grinding pro-
cess gives the ingot a perfect cylindrical shape. Wiresaw slicing normal
to the cylinder axis produces flat silicon disks (so-called wafers) of about
0.3mm to 1 mm thickness. The surfaces are typically in (100) or (111)
direction and will be polished (by lapping and etching). On the basis
of such silicon wafers, transistor circuits, including computer processors,
can be fabricated.

2.2.2 Germanium

Germanium is extracted, like silicon, from its oxide, germanium dioxide
(GeO2) by reduction with carbon. High purity Germanium is obtained
via GeCl4, in analogy with the processes used for silicon. Large single
crystals are pulled using the Czochralski method or zone melting. Nat-
ural germanium contains five different isotopes. Nowadays, germanium
crystals can be made that contain only one particular isotope.

1Traditionally dislocation density is given per cm2, because it is a density of line
defects cut by a cross-section through the crystal. However, modern electron mi-
croscopy, or X-ray diffraction techniques give defect densities per cm3 and thereby
also capture bent dislocation defects that will not appear at the surface, e.g., of thin
film samples (Yu, 2009).
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Fig. 2.3 Schematic of the Czochralski
method for pulling semiconductor crys-
tals from the melt (Yu and Cardona,
2001).

heater
susceptor
(graphite)

inert gas (Ar)

SiO2
crucibleSi melt

Si single
crystal

Si seed

2 50 rpm

Fig. 2.4 Silicon single crystal, fab-
ricated with the Czochralski method.
The crystal has a diameter of 20 cm and
a length of almost 2 m. It is suspended
from the thin seed crystal (see upper
right inset). (Copyright Kay Chernush,
reproduced with permission).
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2.2.3 Gallium arsenide

High pressure compounding. The compound III-V semiconductor
gallium arsenide is fabricated from high purity gallium and arsenic. The
exothermal reaction forming GaAs occurs at sufficiently high tempera-
ture and high pressure (compounding). Doping is possible during this
step.

Single crystal ingots. Single crystals are pulled employing the Czoch-
ralski method. The GaAs melt is covered with liquid boron oxide (B2O3),
in order to avoid the discharge of volatile anionic vapor. This is referred
to as the LEC method (liquid-encapsulated Czochralski method). The
quartz crucible can be used only once. It breaks when the remaining
melt cools down. Alternatively, boron nitride crucibles can be used.

Compared to silicon, gallium arsenide single crystals cannot be pu-
rified very well. Silicon contaminants originate from the crucible and
carbon from the graphite heaters and other parts of the apparatus. So-
called semi-insulating GaAs is fabricated by compensating for shallow
donors with deep acceptors (e.g., Si, Cr) and shallow acceptors with deep
donors (e.g., C). If crucibles made of boron oxide are used, so-called un-
doped GaAs can be produced. The density of dislocations depends on
the diameter of the crystal and is for two- or three-inch material of the
order of 104−105 cm−2. The density of dislocations is typically smallest
in the center of the single crystal.

Grinding, slicing and polishing. The pulled crystals are oriented
and cut into thin wafers with two- or three-inch diameter and 0.015–
0.035 in= 0.4–0.9 mm thickness. Surface polishing leads to wafer mate-
rial that is ready for the fabrication of electronic devices.

2.3 Layer by layer growth

2.3.1 Molecular beam epitaxy – MBE

What is the meaning of ‘epitaxy’? The word epitaxy consists of
two ancient Greek words: first, epi (επί) means ‘onto’, and second, taxis
(τάξιζ) means ‘arranging’ or ‘ordering’, but also the resulting ‘arrange-
ment’. The word expresses the process of growing additional crystal
layers onto the surface of a substrate.

How it works. Starting from a semiconductor wafer, crystals can be
grown with the so-called molecular beam epitaxy (MBE). One could
call this method, which requires pressures of 10−10 to 10−11 mbar in
the ultra high vacuum (UHV) regime, a refined evaporation technique.
The wafer substrate is mounted in the UHV chamber on a substrate
holder that can be heated (see Fig. 2.5). Atoms of different elements are
evaporated from effusion cells that work like little ovens (Knudsen cells).
The atom beams hit the heated substrate, atoms stick to the surface and
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Fig. 2.5 (a) MBE system for arsenide epitaxy in the FIRST Center for Micro- and Nanoscience, ETH Zurich. The length of
the chamber is roughly 1 m. (Image courtesy of H. Rusterholz and S. Schön.) (b) Schematic cross-section of an MBE-chamber.

diffuse around on the surface until they have found the energetically most
favorable place in the crystal lattice. Typical growth temperatures are
between 500◦C and 600◦C. Almost every material combination including
doping can be grown, if the flux of the atoms (e.g., Ga, As, Al, Si, In) is
controlled with shutters, and the substrate temperature is appropriate.
In the right regime, the crystal grows atomic layer by atomic layer. In
this way, very sharp transitions between materials (interfaces) and very
sharp doping profiles can be achieved. A typical growth rate is one
monolayer per second, or about 1 µm per hour.

In-situ observation of crystal growth. In-situ analysis of the crys-
tal growth is facilitated by the fact that it takes place in UHV. Typically
the RHEED (reflected high-energy electron diffraction) method is im-
plemented. The method consists of scattering an electron beam incident
under a very small angle at the surface [see Fig. 2.5(b)]. The resulting
diffraction pattern is observed on a fluorescent screen. In the case of
layer by layer growth, the RHEED intensity oscillates periodically, be-
cause the morphology of the surface changes periodically. This is a way
of counting the number of atomic layers during growth.

Who operates MBE machines? MBE machines are operated by
leading research labs and in industry. They grow, for example, Si, Ge,
SiGe, GaAs/AlGaAs heterostructures and all kinds of other III-V or
II-VI materials and heterostructures.

Which materials can be combined? In order to grow a certain layer
sequence consisting of different materials, their lattice constants have to
match reasonably well. For example, GaAs almost perfectly matches
AlAs, as does the ternary alloy AlxGa1−xAs. Extraordinary quality
samples can be grown with this material system. Interfaces between
the materials have a roughness of not more than one atomic layer. Such
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layer sequences containing different materials are called heterostructures.
They are an ideal starting point for the fabrication of more complicated
semiconductor nanostructures.

Increasing substrate quality. Lattice dislocations in the substrate
tend to propagate further into the growing crystal thereby impairing its
quality. In the case of GaAs the material quality can be significantly
improved by either growing a very thick GaAs layer on top of the sub-
strate, or by repeatedly growing a few monolayers of GaAs and AlAs
(short period superlattice). Also for other materials, such buffer layers
were successfully employed.

Strained layers. If the lattice constants of subsequent layers are not
perfectly matched, strain will develop in the crystal around the interface.
The strain is typically released by the formation of lattice dislocations
if the top layer grows beyond a certain critical thickness. Relatively
thin layers, however, can be grown in a matrix of non-lattice-matched
materials without the formation of dislocations. Such layers are called
pseudomorphic.

Advantages of MBE. Using MBE, the growth of almost arbitrary
materials is possible. A suitable sequence of layers leads to a layer quality
that can be significantly improved over that of the substrate (e.g., fewer
dislocations or impurities). In a good machine for GaAs, the background
doping (i.e., the concentration of unintentionally incorporated impurity
atoms) can be below 5 × 1013 cm−3.

MBE machines allow us to control the layer thicknesses on the atomic
scale, and also doping can be incorporated with atomic precision. Crys-
tal growth is very homogeneous across the whole wafer, if the wafer is
rotated.

Disadvantages compared to other methods. The main disadvan-
tage of MBE machines is the cost of purchase and maintenance. The
machines are also very complex and have very stringent vacuum require-
ments making involved and expensive pumping systems crucial.

2.3.2 Other methods

Other epitaxial methods are, for example, the ‘vapor phase epitaxy’
(VPE), the ‘metal-organic chemical vapour deposition’ (MOCVD) and
the ‘liquid phase epitaxy’ (LPE). The MOCVD method is widely used
and will therefore be briefly discussed below.

MOCVD Growing GaAs crystals with VPE brings the elements (e.g.,
Ga, As or doping atoms) in gaseous phase to the wafer surface. The
MOCVD method is a variant of this principle, where gallium is supplied
in the form of trimethyl gallium. The highly toxic AsH3 gas is used as
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the arsenic source. Aluminium can be supplied in the form of trimethyl
aluminium. The main problems of this method are safety issues related
to the toxic gases.

Further reading

• Crystal structure: Kittel 2005; Ashcroft and Mer-
min 1987; Singleton 2001; Yu and Cardona 2001.

• Fabrication of semiconductor crystals: Yu and Car-
dona 2001.

Exercises

(2.1) Given the lattice constant a, determine the fol-
lowing characteristic quantities for the simple cu-
bic, body centered cubic (bcc), face centered cubic
(bcc), and diamond lattices: (a) unit cell volume,
(b) number of atoms in the unit cell, (c) primitive
cell volume, (d) coordination number, (e) nearest
neighbor separation.

(2.2) The density of silicon is ρSi = 2330 kg/m3. Calcu-
late the side length of the cubic unit cell and the
separation of neighboring silicon atoms.

(2.3) Find points in the unit cell of silicon that are
symmetry points with respect to spatial inversion.
Spatial inversion around the origin of the coor-
dinate system transforms a vector (x, y, z) into
(−x,−y,−z).

(2.4) Does the GaAs crystal have points of inversion sym-
metry? Explain.

(2.5) A silicon wafer with a thickness t = 200 µm has
an initial weight m0 = 46.6mg. After thermal ox-
idation forming an SiO2 covered surface, the same
wafer has increased its weight to m1 = 46.89 mg.
The density of silicon is ρSi = 2.33 g/cm3 and that

of the oxide is ρoxide = 2.20 g/cm3. Determine the
thickness of the oxide layer and the reduction in
thickness of the pure silicon material.

(2.6) The UHV chamber of an MBE machine has a di-
ameter of the order of 1 m. Estimate the pressure
required in the chamber for atoms to traverse it
ballistically, i.e. without collisions.

(2.7) Estimate the rate at which gas molecules of mass
m in a gas with pressure p at temperature T hit
the surface of a substrate.

(2.8) Estimate how long it takes in an MBE chamber
for a monolayer of oxygen atoms to form at the
substrate surface, given that the background gas
is at room temperature and has a partial oxygen
pressure of 10−10 mbar. Assume that all imping-
ing atoms stick to the surface and use the kinetic
theory of gases.

(2.9) Estimate the required growth rate in an MBE
chamber with a background pressure of 10−10 mbar
which makes sure that less than 106 cm−2 impuri-
ties are incorporated in a single atomic plane of the
crystal.
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3.1 Spinless and noninteracting electrons

The basic problem. The band structure of semiconductors emerges
as a solution of Schrödinger’s equation for noninteracting electrons in
the periodic potential of the crystal lattice:[

− �
2

2me
∆ + V (r)

]
ψ(r) = Eψ(r), (3.1)

where the potential has the property

V (r) = V (r + R). (3.2)

The vector R is an arbitrary translation vector that moves the lattice
onto itself.

Fourier expansion of the potential and reciprocal lattice. Owing
to its periodicity, the crystal potential can be expanded in a Fourier
series:

V (r) =
∑
G

VGe
iGr. (3.3)

The allowed vectors of the reciprocal lattice G are determined from the
periodicity of the lattice, eq. (3.2):

V (r) =
∑
G

VGe
iGr =

∑
G

VGe
iG(r+R) =

∑
G

VGe
iGreiGR (!)

= V (r + R).

This gives the condition

eiGR = 1, or GR = 2πn,

where n is an integer number.
The reciprocal lattice of an fcc lattice with lattice constant a is a

bcc lattice with lattice constant 2π/a. Table 3.1 shows the shortest
reciprocal lattice vectors of an fcc lattice.

Table 3.1 The shortest
reciprocal lattice vectors G′
of an fcc lattice. Lengths are
in units of 2π/a.

Origin:
(0, 0, 0)

Nearest neighbors:
±(1, 1, 1)
±(−1, 1, 1)
±(1,−1, 1)
±(−1,−1, 1)

Next nearest neighbors:
±(2, 0, 0)
±(0, 2, 0)
±(0, 0, 2)

±(2, 2, 0)
±(2,−2, 0)
±(2, 0, 2)
±(2, 0,−2)
±(0, 2, 2)
±(0, 2,−2)

First Brillouin zone. The first Brillouin zone comprises those points
in reciprocal lattice space that are closer to the origin (i.e., to the Γ
point) than to any other point of the reciprocal lattice. As an example,
Fig. 3.1 shows the first Brillouin zone of the fcc lattice. Points of high
symmetry are commonly labeled with capital letters Γ, X, L, U , K, W .
Their coordinates are given in Table 3.2.
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Band structure equation and Bloch’s theorem. With the Fourier
expansion of the potential, eq. (3.3), Schrödinger’s equation (3.1) reads[

− �
2

2me
∆ +

∑
G

VGe
iGr

]
ψ(r) = Eψ(r), (3.4)

This differential equation can be transformed into an algebraic equation
by expanding the wave functions ψ(r) in the Fourier series

ψ(r) =
∑
q

cqe
iqr. (3.5)

L

X

K

U

W

Fig. 3.1 First Brillouin zone of the fcc
lattice. The points Γ, X, L, and others
are indicated.

Table 3.2 Coordinates of
symmetry points in the
reciprocal lattice of an fcc
lattice. Lengths are in
units of 2π/a.

Γ (0, 0, 0)
X (1, 0, 0)
L (1/2,−1/2, 1/2)
U (1,−1/4, 1/4)
K (3/4,−3/4, 0)

W (1,
√

2/2, 0)

The values of q are, for example, restricted by the assumption of
periodic boundary conditions (Born–von Karman boundary conditions).
However, the values of q are so dense, owing to the macroscopic size of
the crystal, that we can regard this vector as being quasi-continuous.
Inserting this expansion into Schrödinger’s equation (3.4) gives

∑
q

eiqr

[(
�

2q2

2me
− E

)
cq +

∑
G

VGcq−G

]
= 0.

Multiplying this equation by e−iq′r and integrating over r we see that
each Fourier component obeys the equation(

�
2q2

2me
− E(q)

)
cq +

∑
G

VGcq−G = 0. (3.6)

Here, we have introduced E(q) ≡ E for denoting the quasi-continuous
energy dispersion depending on the wave vector q. An arbitrary vector
q can be mapped on a vector k in the first Brillouin zone by adding a
suitable reciprocal lattice vector G′, i.e., k = q+G′. With this notation
we find from eq. (3.6):(

�
2(k − G′)2

2me
− E(k)

)
ck−G′ +

∑
G

VGck−G′−G = 0.

Since G + G′ is itself a reciprocal lattice vector, we introduce G′′ =
G + G′ and obtain(

�
2(k − G′)2

2me
− E(k)

)
ck−G′ +

∑
G′′

VG′′−G′ck−G′′ = 0. (3.7)

This is the desired algebraic equation for the coefficients ck−G′ and the
energies E(k). For any given vector G′ a particular dispersion relation
EG′(k) results. We can introduce a band index n replacing this vector,
because the lattice of possible vectors G′ is discrete. Then we talk about
the nth energy band with dispersion relation En(k). Eq. (3.7) is thereby
the equation for determining the band structure of a solid.

Equation (3.7) contains only coefficients cq of the wave function (3.5)
in which q = k−G, with G being a reciprocal lattice vector. Therefore,
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for given k, there is a wave function ψk(r) that solves Schrödinger’s
equation and takes the form

ψk(r) =
∑
G

ck−Ge
i(k−G)r = eikr

∑
G

ck−Ge
−iGr := eikrunk(r) (3.8)

Here we have introduced functions unk(r) with the property

unk(r + R) =
∑
G

ck−Ge
−iG(r+R) =

∑
G

ck−Ge
−iGr e−iGR︸ ︷︷ ︸

=1

= unk(r).

(3.9)
The vector R is a translation vector of the crystal lattice. The function
unk(r) has the translational symmetry of the lattice. The two eqs (3.8)
and (3.9) express what is known as Bloch’s theorem.

Pseudopotential method. The plane wave expansion shown above
provides a straightforward formal way to calculate band structures. In
practice, however, the problem arises that very large numbers of plane
wave coefficients are significant which makes it hard to achieve numerical
convergence taking only a reasonable number of states into account.
Therefore, more refined methods make use of the fact that the inner
shells of the atoms in a lattice are tightly bound. They are hardly
influenced by the presence of the neighboring atoms. These core states
can therefore be assumed to be known from the calculation of the atomic
energy spectra.

The remaining task of calculating the extended states of the valence
electrons can be simplified by constructing states that are orthogonal to
the core states. In effect, the valence electrons are found to move in an
effective potential (the so-called pseudopotential) which is the sum of the
bare potential created by the nuclei and a contribution created by the
orthogonality requirement to the core states. It can be shown that the
energy levels of the valence and conduction band states can be obtained
by solving the Schrödinger equation (3.7) containing the pseudopotential
as a weak perturbation of free electron motion.

Although the pseudopotential method converges with a relatively small
number of plane wave contributions, the problem remains to determine
the (usually nonlocal) pseudopotential. In practice, the simplest solu-
tion is the use of empirical (often local) pseudopotentials that depend on
parameters that can be adjusted such that the resulting band structure
fits the results of measurements.

Free electron model. We obtain the lowest order approximation to
the valence and conduction band structure of a semiconductor by com-
pletely neglecting the lattice periodic (pseudo)potential contribution in
eq. (3.7). The dispersion relation for a particular type of lattice is then
given by

En(k) =
�

2(k − G′)2

2me
. (3.10)
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As an example, we consider an fcc lattice. The reciprocal lattice is
bcc and the shortest reciprocal lattice vectors are listed in Table 3.1.
Fig. 3.2 shows the resulting band structure along certain straight lines
connecting symmetry points in the first Brillouin zone. Degeneracies
occur at points Γ, X, L, U , and K (cf. Fig. 3.1) whose coordinates are
listed in Table 3.2. For example at L, the two parabolic dispersions co-

L X U,K

20

10

0
k

E
(k

)
(e

V
)

Fig. 3.2 Band structure of an fcc lat-
tice in the free electron model.

incide which have minima at (0, 0, 0) and at 2π/a(1, 1, 1). An eight-fold
degeneracy exists at the Γ-point in Fig. 3.2 (encircled) resulting from
parabolae with minima at the nearest neighbors (Table 3.1). This de-
generacy will be lifted leading to the band gap, and separate valence and
conduction bands, if the lattice periodic potential is taken into account.

Pseudopotential method for diamond and zincblende semicon-
ductors: a case study. The weak potential modulation acts strongest
at degeneracy points of the free electron dispersion and tends to lift
degeneracies at least partially. As a result, a band gap, i.e., an ener-
getic region in which no states exist, will open up between valence and
conduction bands.

In order to see this effect, matrix elements VG′′−G′ of the pseudopo-
tential in eq. (3.7) will be required. The contributions with G′′ = G′

lead to diagonal matrix elements V0 that simply shift the dispersion
curves in energy. Off-diagonal elements involving finite length recipro-
cal lattice vectors G = G′′ − G′ give significant contributions only for
the shortest vectors.

As an example, we briefly discuss the pseudopotential method for
diamond and zincblende structures. The Fourier transform of the lattice
potential is

VG =
1
Ω

∫
PC

d3r V (r)e−iGr,

where the integration is performed over the primitive cell (PC) with
volume Ω. In diamond or zincblende crystals the PC contains two atoms
A and B and we write the pseudopotential as the sum of two atomic
pseudopotentials, i.e., V (r) = VA(r− rA)+VB(r− rB). If we choose the
origin at the midpoint between atoms A and B, we have rA = −rB =
a(1/8, 1/8, 1/8). As a consequence,

VG =
1
Ω

∫
PC

d3r VA(r − rA)e−iGr +
1
Ω

∫
PC

d3r VB(r − rB)e−iGr

= e−iGrA
1
Ω

∫
PC

d3r VA(r)e−iGr + e−iGrB
1
Ω

∫
PC

d3r VB(r)e−iGr.

We see that the Fourier transforms of the pseudopotentials of atoms
A and B enter as parameters. They depend only on |G| owing to the
symmetry of the core electronic states. The exponential prefactors are
called structure factors. Defining

V
A/B
G =

1
Ω

∫
PC

d3r VA/B(r)e−iGr,
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we can write the matrix elements as

VG = (V A
G + V B

G )︸ ︷︷ ︸
V s

G

cos(GrA) − i (V A
G − V B

G )︸ ︷︷ ︸
V a

G

sin(GrA).

As a consequence, only symmetric (V s
G) and asymmetric (V a

G) combina-
tions of V A/B

G enter into the calculation.
The particular symmetries of the lattices leads to considerable sim-

plifications. For diamond lattices, atoms A and B are identical, and
therefore V a

G = 0, i.e., all matrix elements are real. The diagonal matrix
element VG=0 = V s

0 is always real and leads to an overall energy shift, as
mentioned above. Matrix elements V|G|2=4 ≡ ±iV4 are purely imaginary
for zincblende semiconductors. Matrix elements V|G|2=8 ≡ ±V8 are real
also for zincblende crystals.

Figure 3.3 shows the result of such a pseudopotential calculation for
silicon which can nowadays easily be implemented on a standard per-
sonal computer. The 51 × 51 hamiltonian matrix was diagonalized
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Fig. 3.3 Result of local pseudopoten-
tial calculations for silicon. The funda-
mental band gap is shaded in gray.

numerically in Mathematica using the three empirical pseudopotential
parameters V s

3 = −2.87 eV, V s
8 = 0.544 eV, and V a

11 = 1.09 eV. Matrix
elements for longer reciprocal lattice vectors were set to zero. The zero
of energy was chosen to be the valence band maximum at Γ. Compar-
ison with the free electron model in Fig. 3.2 shows many similarities.
However, pronounced gaps have opened, for example, at L and Γ. The
fundamental band gap in silicon (shaded in gray) is between the valence
band maximum at Γ and the conduction band minimum near X.

Figure 3.4 is the result of a similar calculation performed for GaAs
having different A and B atoms in the primitive cell. In this case,
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Fig. 3.4 Result of local pseudopoten-
tial calculations for GaAs. Spin–orbit
interaction effects were neglected. The
fundamental band gap is shaded in
gray.

five nonzero parameters are necessary due to the finite asymmetric con-
tributions. The parameters used in this calculation were V s

3 = −3.43
eV, V s

4 = V s
8 = 0, V s

11 = 1.09 eV, V a
3 = 0.925 eV, V a

4 = 0.90 eV, and
V a

11 = 0.163 eV. Unlike in silicon, in GaAs the fundamental band gap
appears between the valence band maximum at Γ and the conduction
band minimum at Γ. The conduction band minima at L and X are
higher in energy.

Better approximations, beyond the presented empirical pseudopoten-
tial method, take nonlocal pseudopotentials into account, sometimes
even including interaction effects self-consistently. As discussed in the
next section, an important ingredient missing so far for determining the
band structure is the spin–orbit interaction.

Tight-binding approximation. So far we have discussed band struc-
ture calculations using the strategy of the plane-wave expansion (3.5).
In some cases, a different approach called the tight-binding approxima-
tion, leads to useful results. It regards the atoms in the lattice as weakly
interacting, such that the atomic orbitals remain (almost) intact. The
wave function for electrons in a particular band is a linear combination
of degenerate wave functions that are not too different from atomic wave
functions. The linear combination is chosen such that the wave function
fulfills Bloch’s theorem (Ashcroft and Mermin, 1987).
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Fig. 3.5 (a) Graphene has a hexagonal
lattice with a two-atom basis (atoms
A and B). Lattice vectors are a1 and
a2. Characteristic edges are also indi-
cated. The armchair edge has A and
B atoms, whereas the zigzag edge has
only one type of atom (A or B). (b)
Scanning tunneling microscopy image
of the graphene lattice with atomic res-
olution showing the hexagonal lattice
structure (Li, 2003. Image courtesy of
Eva Andrei, Rutgers University).

(a) (b)
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The best-known example is the approximate calculation of the band
structure of a single layer of graphite called graphene. Graphene is a
two-dimensional atomic plane of carbon atoms that are arranged in a
planar honeycomb lattice as shown in Fig. 3.5(a) and (b) with a bond
length of about 0.14 nm. The better known graphite consists of stacked
graphene planes. Graphene is an interesting material in current research:
Although its band structure had already been calculated in 1947 (Wal-
lace), single layer graphene sheets have only recently become available
for condensed matter research (Novoselov et al., 2004). They exhibit a
fascinating variant of the quantum Hall effect (Novoselov et al., 2005;
Zhang et al., 2005). Graphene sheets can also be rolled up to form car-
bon nanotubes which are also fascinating research objects in mesoscopic
physics and other fields. Band structure calculations for graphene are
facilitated compared to those of three-dimensional crystals, because of
the two-dimensionality of the problem. We show the details of the calcu-
lation of the graphene π- and π� bands in order to illustrate the method
of using a linear combination of atomic orbitals.

In graphene, the carbon atoms are bound via sp2-hybrid orbitals form-
ing σ-bonds in the plane of the hexagonal lattice. Each carbon atom con-
tributes three of its four valence electrons to σ-bonds. The fourth valence
electron occupies the pz-orbital. Overlapping pz-orbitals form π-bonds
between neighboring atoms, or—in the language of band structure—the
π- and π�-bands.

The crystal lattice of graphene can be described as a Bravais lattice
with two basis atoms A and B [see Fig. 3.5(a)]. For the Bravais lattice
we choose basis vectors a1 = a(1, 0) and a2 = a(−1/2,

√
3/2), where

a = 2.46 Å. We take atoms B to sit at the sites R = n1a1 + n2a2

and atoms A at R = n1a1 + n2a2 + t1, with vectors t1 = a(0, 1/
√

3),
t2 = a(−1/2,−1/2

√
3), and t3 = a(1/2,−1/2

√
3) pointing from the B

atom at the origin to the nearest neighbor A atoms. The reciprocal

kx

ky

KK ’

K ’

K ’K

K

M b1

b2

Fig. 3.6 First Brillouin zone of
graphene with symmetry points Γ, K,
K′, and M , and the reciprocal lattice
vectors b1 and b2.

lattice vectors are given by (see Fig. 3.6) b1 = 2π/a(1, 1/
√

3) and b2 =
2π/a(0, 2/

√
3). Points of high symmetry in the first Brillouin zone are

the Γ-point, the points K and K′, and the M-points (see Table 3.3).
The wavefunction is taken to be the linear combination of atomic
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orbitals

ψk(r) =
1√
N

∑
R

eikR [Aφ(r − R − t1) +Bφ(r − R)] , (3.11)

where A and B are unknown amplitude parameters to be determined

Table 3.3 Coordinates
of symmetry points in
the reciprocal lattice of
graphene. Lengths are in
units of 2π/a.

Γ (0, 0)

K (1/3, 1/
√

3)

(1/3,−1/
√

3)
(−2/3, 0)

K′ (2/3, 0)

(−1/3,−1/
√

3)

(−1/3, 1/
√

3)

M (1/2, 1/2
√

3)

(0, 1/
√

3)

(0,−1/
√

3)

(1/2,−1/2
√

3)

(−1/2,−1/2
√

3)

(−1/2, 1/2
√

3)

and N is the number of lattice sites in the crystal. The wave function
φ(r) describes the pz-orbital of the sp2-hybridized carbon atom. The
wavefunction (3.11) can also be written in the form of eq. (3.8)

ψk(r) = eikruk(r), (3.12)

with

uk(r) =
1√
N

∑
R

e−ik(r−R) [Aφ(r − R − t1) +Bφ(r − R)]

having the periodicity of the crystal lattice. It therefore fulfills Bloch’s
theorem expressed in eqs (3.8) and (3.9).

The Hamiltonian for the crystal lattice is given by

H =
p2

2me
+
∑
R

[V0(r − R − t1) + V0(r − R)] .

Before we tackle the full eigenvalue problem with our trial wave func-
tion, we apply H to φ(r) and find

Hφ(r) =
[

p2

2me
+ V0(r)

]
φ(r)

+ V0(r − t1)φ(r) +
∑
R�=0

[V0(r − R − t1) + V0(r − R)]φ(r)

:= εφ(r) + ∆VBφ(r),

where ε is the energy of the pz-orbital in the carbon atom. Because we
are free to set the zero of energy, we choose ε = 0 and therefore have

Hφ(r) = ∆VBφ(r).

The right-hand side of this equation is small, because where ∆VB is
appreciable, φ(r) is small, and vice versa. Correspondingly,

Hφ(r − t1) = ∆VAφ(r − t1),

with small right-hand side and

∆VA = V0(r) +
∑
R�=0

[V0(r − R − t1) + V0(r − R)] .

We are now ready to solve the eigenvalue problem Hψk(r) = Eψk(r)
using the wave function (3.11). We solve this problem by projecting onto
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the two states φ(r) and φ(r−t1). The projection leads to two equations
for A and B, namely,∫

d3rφ�(r)Hψk(r) = E

∫
d3rφ(r)�ψk(r)∫

d3rφ�(r − t1)Hψk(r) = E

∫
d3rφ�(r − t1)ψk(r).

They can be transformed into[∫
d3rψ�

k(r)∆VBφ(r)
]�

= E

∫
d3rφ(r)�ψk(r)[∫

d3rψ�
k(r)∆VAφ(r − t1)

]�

= E

∫
d3rφ�(r − t1)ψk(r).

We now approximate the overlap integrals by considering only the con-
tributions of nearest neighbor atoms. After some algebra this gives the
matrix equation(

σ − E α�(k)(γ − Es)
α(k)(γ − Es) σ − E

)(
A
B

)
= 0 (3.13)

where

α(k) = 1 + eik(t2−t1) + eik(t3−t1)

γ =
∫
d3rφ(r − t1)V0(r − t1)φ�(r)

σ = 3
∫
d3rφ�(r)V0(r − t1)φ(r)

s =
∫
d3rφ�(r)φ(r − t1).

We note here that the wave functions for the pz-orbital can be chosen
to be real and we have therefore applied γ = γ�, and s = s�. We find
the energy eigenvalues from the characteristic equation

|α(k)|2(γ − Es)2 = (σ − E)2.

As a further approximation, we neglect terms multiplying E that are
second order in the overlap integrals on the left-hand side

(γ − Es)2 = γ2 − 2γsE + s2E2 ≈ γ2,

because on the right-hand side, there are lower order terms. This leads
to the two branches of the energy dispersion relation

E(k) = σ ± γ|α(k)|
= σ ± γ

√
3 + 2 cos[k(t2 − t1)] + 2 cos[k(t3 − t1)] + 2 cos[k(t3 − t2)].

The constant σ merely gives an energy offset that is due to the first order
energy shift of the atomic level under the influence of the remaining
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crystal lattice. We redefine our energy offset accordingly and obtain the
final result

E(k) = ±γ
√

1 + 4 cos2[kxa/2] + 4 cos[kxa/2] cos[
√

3kya/2],

where we have used the addition theorems for the trigonometric func-
tions and the definitions of t1, t2, and t3 in order to simplify the expres-
sion. Figure 3.7 shows this dispersion relation describing the π-band,
i.e., the valence band of graphene, and the π�-band which forms the
conduction band along a specific line within the first Brillouin zone. A
three-dimensional version of the dispersion is shown in Fig. 3.8. Most
remarkably, a degeneracy of the dispersion remains at the K- and K′-
points, while a gap opens at M . The π-band, which is lower in energy,
takes two electrons per k-point (as a result of spin degeneracy). There-
fore, the π-band is completely filled at zero temperature with the two
pz-electrons of the two atoms A and B forming the basis of the lattice.
In contrast, the π�-band is completely empty. Graphene is sometimes
referred to as a zero-gap semiconductor, because the zero temperature
Fermi energy lies at the energy of the K- and K′-points. The linear
dispersion at the K- and K′-points is one of the reasons why the appear-
ance of some effects of mesoscopic physics is very different in graphene
from that in other semiconducting materials with parabolic dispersion
relations at the band edge.
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Fig. 3.7 Plot of the π- and the π�-
bands in graphene.

(b)K M K’

-band

-band

E

Fig. 3.8 Three-dimensional plot of the
π- and the π�-bands in graphene. The
black line indicates the boundaries of
the hexagonal first Brillouin zone (see
also Fig. 3.6).

3.2 Electron spin and the Zeeman
hamiltonian

Spin and magnetic moment. So far we have completely neglected
the spin of the electron. However, each electron possesses a magnetic
dipole moment µ that can be described by the electronic spin. It is a
degree of freedom of the electron, in addition to the three degrees of
freedom of the spatial motion. For a free electron, spatial motion and
spin dynamics are independent.

In quantum mechanics, the spin operator is defined as

S =
1
2
σ,

where the components of σ are the Pauli matrices

σx =
(

0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
. (3.14)

The magnetic moment of the electron is related to the spin angular
momentum via

µ = −1
2
gµBσ,

where µB = |e|�/2me is Bohr’s magneton and g = 2.0023. For the
electron µB = 9.274 × 10−24 Am2 = 57.88 µeV/T.



28 Band structure

Spin wave functions are described by two-component spinors. Consis-
tent with the description of the spin operator S via the Pauli matrices,
we write the spinor of an electron in Pauli notation as a two-component
vector

|χ〉 =
(
χ0

χ1

)
,

where the normalization condition requires χ2
0 + χ2

1 = 1.

Magnetic moments in external magnetic fields. In a homogeneous
magnetic field, a torque

M = µ × B

acts on the electron and leads to precession about the magnetic field
axis. The energy of the magnetic dipole moment in a magnetic field is
described by the Zeeman hamiltonian

H = −µB =
1
2
gµBσB.

Example: Spin in a static magnetic field. As an example of the
use of Pauli’s spinor notation we solve the problem of a spin in a static
magnetic field B = B(sin θ cos δ, sin θ sin δ, cos θ). The orientation of
B in space is characterized by the two angles θ and δ (0 ≤ θ ≤ π,
0 ≤ δ ≤ 2π), which specify a unit vector in the direction of B. The
hamiltonian for a spin in this field is given by

H =
1
2
gµBB

(
cos θ sin θe−iδ

sin θe+iδ − cos θ

)
.

The two energy eigenvalues of this hamiltonian are readily found to be

E± = ±1
2
gµBB,

and the normalized eigenvectors can be written as

|χ+〉 =
(

cos(θ/2)
sin(θ/2)eiδ

)
, and |χ−〉 =

(
sin(θ/2)

− cos(θ/2)eiδ

)
.

The energy splitting ∆EZ = E+ − E− = gµBB is called the Zeeman
energy. It increases linearly with the magnetic field strength.

Bloch sphere representation. An instructive geometric interpreta-
tion of the two eigenvectors is found, if we consider the expectation
values of the Pauli matrices. They form the so-called polarization vec-
tor P = (〈σx〉, 〈σy〉, 〈σz〉). In case of the state |χ+〉 its components are
given by

Px = sin θ cos δ
Py = sin θ sin δ
Pz = cos θ,



3.3 Spin–orbit interaction 29

which represents a unit vector in real space which is parallel to B (see
Fig. 3.9). If a particle occupies this state, we therefore say that its spin
is oriented parallel to B. For the case of the state |χ−〉 we find

Px = − sin θ cos δ
Py = − sin θ sin δ
Pz = − cos θ,

which represents a unit vector antiparallel to B, associated with a spin
antialigned with the magnetic field (see Fig. 3.9).

Fig. 3.9 Bloch sphere representation of
the electron spin.

The tip of the vector P will always lie on the surface of a sphere of
unity radius. The representation of a spin state as a point on such a
surface as it is shown in Fig. 3.9 is called the Bloch sphere representation;
the spherical surface itself is called the Bloch sphere. In dynamical prob-
lems, e.g., in a case where the electron spin is not in an eigenstate of the
Zeeman hamiltonian, the time evolution of the spin can be visualized as
a trajectory on the Bloch sphere.

The electron spin is a paradigm for a two-level quantum mechanical
system. The Bloch-sphere representation of the electron spin can there-
fore be generalized to a representation of arbitrary two-level quantum
systems. In the context of quantum information processing two-level
systems are called qubits, for which the Bloch sphere is an illustrative
representation. This will be discussed in more detail in section 22.3.2.

3.3 Spin–orbit interaction

Spin in a magnetic field gradient. One variant, how the spin can
influence the spatial motion of the electron, occurs in the famous Stern–
Gerlach experiment, where the magnetic dipole moment of the electron
experiences a force

F = ∇(µB)

in a magnetic field gradient. Electrons with different spin orientation
are therefore deflected in two opposite directions.

Magnetic moment in external electric fields. Another mutual in-
fluence between spin and orbital motion occurs if an electron moves in
an electric field. In order to make this more transparent, we use the fol-
lowing plausibility argument: Let us assume that in the inertial system
in which an atom (or a crystal lattice) is at rest, there is an electric field
E caused by the atom (or the lattice). The electron will see in its own
rest system not only a pure electric field, but also a magnetic field which
is in the lowest order in v/c

B′ = − 1
c2

v × E,

due to the relativistic transformation of the fields (primed variables de-
note quantities in the coordinate system in which the electron is at rest).
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The magnetic moments in the lab frame and the electron’s rest frame
are the same to first order of v/c. The magnetic field B′ couples to the
magnetic dipole moment of the electron, i.e., to the spin via the Zeeman
interaction and we have in lowest order of v/c

H ′SO = gµBB′S′

= −gµB
1
c2

(v × E)S = HSO

The above argument is incomplete as it neglects complications arising
due to the acceleration of the electron (see e.g., Jackson, 1983) leading to
the so-called Thomas precession (Thomas, 1927). If the term is exactly
derived from the relativistic Dirac equation by taking the nonrelativistic
limit, the result is

HSO = −gµB

2
1
c2

(v × E)S (3.15)

=
g�

4c2m2
e

(∇V (r) × p)S. (3.16)

This exact expression differs only by a factor 1/2, the Thomas-factor,
from the expression obtained from the above incomplete argument. It
is the nature of this spin–orbit interaction that the electron feels a mag-
netic field oriented normal to its direction of motion and normal to the
external electric field. For some purposes it is convenient to combine the
expression for the spin–orbit interaction (3.15) with the kinetic energy
of the free electron motion giving

H =
1

2me

[
p − gµB

2c2
(E × S)

]2
,

which is correct up to order v/c.

Effect of spin–orbit interaction on the band structure. In gen-
eral, spin degeneracy of states in a semiconductor is the result of spatial
inversion symmetry of the crystal lattice and time-reversal symmetry.
Both symmetry operations together transform the wave vector k into
−k. Time reversal, however, also inverts the orientation of the spin. If a
crystal lattice possesses a center of inversion, and if time-reversal sym-
metry is given, the dispersion relations obey E↑(k) = E↓(k), i.e., spin
degeneracy is given. This is, for example, the case for the elementary
semiconductors silicon and germanium which have a diamond crystal
lattice. However, inversion symmetry and time-reversal symmetry do
not imply the complete absence of spin–orbit interaction effects.

The strength of the spin–orbit interaction depends on the gradient
of the potential and is therefore more important the higher the nu-
clear charge of the element. Heavy elements in the periodic table show
stronger effects. This is also valid in crystals. For example, in silicon
the spin–orbit interaction is much weaker than in germanium or gallium
arsenide. It is even more important in InAs and InSb.



3.4 Band structure of some semiconductors 31

We have seen above that the periodic pseudopotential lifts degenera-
cies present in the free electron model at symmetry points in the first
Brillouin zone and creates band gaps. The spin–orbit interaction lifts
further degeneracies that have remained due to the crystal symmetry.
A very important manifestation of this effect is the so-called spin–orbit
split-off band which is a branch of the valence band lowered energetically
due to spin–orbit interaction. For example, in germanium the valence
band structure comprises a heavy and a light hole branch degenerate at
Γ, and a spin–orbit split-off band that is about ∆0 = 290 meV lower
in energy, while in silicon ∆0 is only 44 meV. In GaAs we find a bigger
value of ∆0 than in Ge, namely 340 meV. A few values of ∆0 for selected
semiconductors are summarized in Table 3.4.

Table 3.4 Energy differ-
ence ∆0 between the band
of heavy and light holes
that are degenerate at Γ,
and the spin–orbit split-off
band for selected semicon-
ductors (Winkler, 2003).

material ∆0 (meV)

C 6
Si 44
Ge 290

GaAs 340
InAs 380
GaSb 800
InSb 820
InP 110
AlSb 750
AlAs 290
GaN 11
CdTe 920

If the inversion symmetry of the crystal is broken, such as, for ex-
ample, in zinc blende semiconductors, i.e., GaAs, InAs, or InSb, the
degeneracy E↑(k) = E↓(k) disappears and we talk about the so-called
bulk inversion asymmetry (often abbreviated BIA) which adds another
contribution to the spin–orbit interaction called the Dresselhaus con-
tribution (Dresselhaus, 1955; Winkler, 2003). The dispersion relations
have two branches, E+(k) and E−(k) (Dresselhaus, 1955). Here, ‘+’
and ‘−’ do not denote the two spin orientations ↑ and ↓, because the
corresponding states are typically not eigenstates of the spin along a
global axis. In time-reversal-invariant systems, i.e., in the absence of a
magnetic field, only the more general relation E+(k) = E−(−k) is valid.

3.4 Band structure of some
semiconductors

Silicon band structure. The calculated band structure of silicon in-
cluding the effect of the spin–orbit interaction is depicted in Fig. 3.10(a).
Comparing with Fig. 3.3 we find only very small differences owing to the
fact that spin–orbit effects are small because silicon is a light element
(cf. Table 3.4).

Germanium band structure. The situation is different already for
the calculated germanium band structure depicted in Fig. 3.10(b) where
the spin–orbit splitting of the valence band states is more than six times
bigger than in silicon. Furthermore, in germanium the lowest conduc-
tion band minimum occurs at L rather than at X, and an additional
conduction band minimum higher in energy arises at Γ.

Gallium arsenide band structure. The calculated band structure
of gallium arsenide is depicted in Fig. 3.11(a). The lowest conduction
band minimum is at Γ, but higher minima are still present at L and X.
The spin–orbit split-off valence band has also moved down in energy as
compared to germanium.
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(a) (b)

Fig. 3.10 (a) Band structure of silicon resulting from a pseudopotential calculation including the effects of spin–orbit coupling.
Solid lines were calculated with a nonlocal, dashed lines with a local pseudopotential. (b) Band structure of germanium obtained
as the result of a pseudopotential calculation including spin–orbit coupling effects (Cohen and Chelikowski, 1989).
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Fig. 3.11 Band structure of GaAs (a) and InAs (b) resulting from calculations using the pseudopotential method including
spin–orbit effects (Cohen and Chelikowski, 1989).
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Indium arsenide band structure. The indium arsenide band struc-
ture depicted in Fig. 3.11(b) is an example where the energy gap (Eg =
0.4 eV) is comparable to the spin–orbit splitting of the valence band
(∆0 = 0.38 eV). As in GaAs, the valence band maximum and the con-
duction band minimum are at Γ.

Comparison of band structures. All four band structures appear
to be very similar to each other and to the band structure of the free
electron model in Fig. 3.2. The reasons are the underlying lattice sym-
metries and there being the same number of valence electrons.

Si and Ge are called indirect semiconductors, because the valence band
maximum and the conduction band minimum are at different points in
the first Brillouin zone. In contrast, GaAs and InAs are called direct
semiconductors, because the valence band maximum and the conduction
band minimum are both at the same point Γ.

3.5 Band structure near band extrema:
k·p-theory

In semiconductor nanostructures the relevant parts of the band structure
are near the lowest minimum of the conduction band or close to maxima
of the valence band. There is a method, called k ·p perturbation theory,
for calculating the band structure close to such extrema. In the following
we will give an overview over this widely used and powerful method.

The method. Inserting the wave function of eq. (3.8) into Schrödinger’s
equation (3.1) for the crystal lattice, we obtain the following equation
for the lattice periodic part unk(r) of the wave function{[

p2

2me
+ V (r)

]
+
[

�

me
k · p +

�
2k2

2me

]}
unk(r) = Eunk(r). (3.17)

Here, p = −i�∇ is the momentum operator and unk(r) fulfills periodic
boundary conditions at the boundaries of the primitive cell. Let us
assume that we have solved this equation and found the energies En

and the corresponding functions un0(r) ≡ |n〉 for the special case k = 0.
These functions form a complete set of basis states that can be used to
expand unk(r) for arbitrary k leading to

unk(r) =
∑

n

cn(k)un0(r).

Inserting this expansion into eq. (3.17) gives the following set of equa-
tions determining the coefficients cn(k):

∑
n

[(
En +

�
2k2

2me

)
δn,n′ +

�

me
k · 〈n′ |p|n〉

]
cn(k) = Ecn′(k) (3.18)
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Symmetries of the states at the band edge. Within k · p-theory
the symmetries of the states at the band extrema un0(r) are of crucial
importance. Crystals of semiconductors with diamond structure have
the symmetry of the point group Oh of the cube. Zincblende lattices
have the symmetry of the point group Td of the tetrahedron which has
a lower symmetry than the cube. We obtain Oh from Td by adding
inversion symmetry. Denoting by Ci the point group containing only
the inversion and the identity operation, we obtain Oh = Td ⊗ Ci. On
the other hand, the point group of the cube is a subgroup of the group R
of arbitrary rotations. This shows that there is a hierarchy of symmetries
that can be expressed as

R ⊃ Oh ⊃ Td.

The hamiltonian H of the crystal can be split into parts with these
hierarchical symmetries, as

H = Hrotation +Hcube +Htetrahedron,

where Hrotation is the spherically symmetric part of the hamiltonian,
Hcube is the part with cubic symmetry, and Htetrahedron is the part
with the symmetry of the tetrahedron. Splitting the hamiltonian in
this fashion provides a hierarchy of approximations. In the spherical
approximation one keeps only the part Hrotation, and the eigenstates of
the hamiltonian are eigenstates of total angular momentum J2 and its
z-component Jz. Neglecting the spin, this leads to eigenstates of orbital
angular momentum and we can talk about s-like or p-like states at the
band edge.

In diamond and zincblende semiconductors the states at the valence
band edge have p-like symmetry. As a consequence there are three de-
generate angular momentum states |� = 1, �z = 0,±1〉 . These (orbital)
states are frequently denoted as

|X〉 =
−1√

2
(|1, 1〉 − |1,−1〉 ) , |Y 〉 =

i√
2

(|1, 1〉 + |1,−1〉 ) , |Z〉 = |1, 0〉 .

The phase for the orbital states is chosen such that these are real-valued
functions.

In contrast, the state at the conduction band edge at Γ has s-like
symmetry (� = 0) and is denoted as |S〉 . We choose this function to be
purely imaginary. The next higher conduction band is again p-like with
the three states

|X ′〉 , |Y ′〉 , |Z ′〉 ,
which are again chosen to be purely imaginary. All these states can be
occupied with two spin orientations.

The spherical approximation describes quite well the relevant big en-
ergy scales, such as the energetic spacing of states at Γ. Taking Hcube

into account leads to the angular momentum being only an ‘almost good’
quantum number. This means that angular momentum eigenstates will
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mix and the energies will be slightly modified, but the changes are small
on the scale of the interband separation. Adding Htetrahedron causes
even smaller corrections. This hierarchy manifests itself in the close
similarities between the band structures of diamond lattices (Si, Ge)
and zincblende lattices.

Band edge parameters. In k · p-theory the eigenvalue problem is
expressed using matrix elements of the momentum operator. Due to the
symmetry of the wave functions we find

me

�
P = 〈X |px|S〉 = 〈Y |py|S〉 = 〈Z |pz|S〉 ,

me

�
P ′ = 〈X ′ |px|S〉 = 〈Y ′ |py|S〉 = 〈Z ′ |pz|S〉 ,

me

�
Q = 〈X |py|Z ′〉 = 〈Y |pz|X ′〉 = 〈Z |px|Y ′〉 ,

with the so-called band edge parameters P , P ′ and Q. Other matrix
elements, such as 〈X |py|S〉 and others, are zero. In our notation P and
Q are real, while P ′ is purely imaginary.

The only additional parameters of the theory are the band edge ener-
gies En. The upper edge of the valence band is chosen to be the zero of
energy by convention; the lower edge of the conduction band (at Γ) has
the energy E0 and the higher conduction band (at Γ) has energy E′0.

Perturbation theory. For small |k| in eq. (3.18) we can treat the k-
dependent terms as a perturbation and calculate the energy dispersions
using perturbation theory. This method is called k · p-perturbation
theory. There will be no terms linear in k at band extrema, i.e., the
corrections to En vanish in first order. In second order, we obtain, for
nondegenerate En, the expression

En(k) = En +
�

2k2

2me
+

�
2

m2
e

∑
m,m�=n

|k · pmn|2
En − Em

.

Typically many of the matrix elements pmn = 0, and the last term of
this equation simplifies considerably.

Following this treatment, the wave functions unk close to a band ex-
tremum are given in first order as

unk(r) = un0(r) +
�

me

∑
n′ �=n

k · pnn′

En − En′
· un′0(r). (3.19)

Conduction band dispersion of GaAs. As an example, we consider
the conduction band minimum of GaAs with the energy parameters
E0 = Eg = 1.519 eV and E′0 = 4.488 eV. The largest contributions
to the last term arise from the energetically closest bands, i.e., from
the valence band. Taking k in x-direction, only the matrix element
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Fig. 3.12 Band gap Eg vs. rel-
ative effective conduction band mass
m�/me for a number of semiconduc-
tors. The solid line represents the result
of eq. (3.21) with 2meP 2/�2 = 17 eV.
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< S|px|X >≡ meP/� is nonzero and we get the approximate dispersion

Ec(k) ≈ Ec +
�

2k2

2me
+

�
2

m2
e

|k(me/�)P |2
Ec − Ev

= Ec +
�

2k2

2me

(
1 +

2meP
2/�2

Eg

)
.

(3.20)

Conduction band effective mass. The dispersion remains parabolic
like the dispersion of a free electron. However, the curvature of the
parabola, described by the electron’s mass in the free electron case, is
modified. It is therefore convenient to introduce the conduction band
effective mass parameter m� as

1
m�

=
1
me

(
1 +

2meP
2/�2

Eg

)
, (3.21)

leading to the dispersion

Ec(k) ≈ Ec + �
2k2/2m�. (3.22)

We see from eq. (3.21) that the effective mass in semiconductors with
large band gap Eg tends to be bigger than in those with small band gaps.
Figure 3.12 shows the relation between the band gap and the effective
conduction band masses at Γ of a number of semiconductors (symbols),
together with the approximation given in eq. (3.21). In fact, it turns out
that the momentum parameter P is very similar for different materials.
We can estimate its size by considering how the band structure of GaAs
in Fig. 3.11(a) comes about. The parameter P is essentially the expec-
tation value of the momentum in the vicinity of Γ. The free electron
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dispersion has been folded back once at the boundary of the first Bril-
louin zone leading to a wave vector 2π/a at Γ. With a ≈ 0.5 nm this
gives 2meP

2/�2 ≈ 22 eV. With this estimate of P we obtain a value
m� = 0.061me which is very close to the measured m� = 0.067me. The
effective conduction band masses for a number of semiconductors are
listed in Table 3.5.

Table 3.5 Effective
conduction band
masses of some semi-
conductors (in units of
the free electron mass).

material m�/me

GaN 0.17
GaAs 0.067
GaSb 0.047
InP 0.080
InAs 0.023
InSb 0.014

Constant energy surface for isotropic dispersions. In general,
surfaces of constant energy in conduction and valence bands of semi-
conductors play an important role for many physical phenomena. For
example, if a semiconductor is strongly doped, a Fermi surface arises
near the valence band maximum or conduction band minimum—very
much like in a metal. It plays an important role in the conductivity at
low temperatures. In the case of an isotropic dispersion like eq. (3.20),
surfaces of constant energy are simply spherical. The corresponding
Fermi surface is referred to as a ‘Fermi sphere’.

Density of states for parabolic dispersions in three dimensions.
As with the shape of constant energy surfaces, the density of states is
often an important quantity entering certain physical properties. The
general definition of the density of states is

D(E) =
1
V

∑
n,k,σ

δ(E − Enkσ),

where V is the volume of the crystal, n is the band index, k is the
wave vector and σ is the spin quantum number. The quantity D(E)dE
describes the number of quantum states in the energy interval [E,E+dE]
normalized to the volume. The functional form of the density of states
depends only on the dispersion relation Enkσ. Here we assume that
states are spin degenerate. From its definition we see that the density
of states is a sum of contributions of the individual energy bands:

D(E) = 2
∑

n

Dn(E), where Dn(E) =
1
V

∑
k

δ(E − Enk).

The prefactor 2 is the result of the spin degeneracy.
Integrating the density of states over energy up to a maximum en-

ergy value results in the total number of states (per volume) below this
energy:∫ E

−∞
dE′D(E′) =

2
V

∫ E

−∞
dE′
∑
n,k

δ(E′ − Enk) =
2
V

∑
n,k

Enk<E

1 = N (E).

Correspondingly,

D(E) =
dN (E)
dE

.

This relation is frequently used for calculating the density of states.
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Fig. 3.13 Density of states of GaAs.
The dotted line is the result of an XPS-
measurement, and the solid line is the
prediction of a pseudopotential calcula-
tion (Cohen and Chelikowski, 1989).
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For complicated functional forms of the dispersion relation the density
of states can typically not be calculated analytically. As an example, Fig.
3.13 shows the density of states of GaAs over a broad energy range. The
band gap can be clearly identified as an energy interval with vanishing
density of states.

Here we are interested in the density of states for the case of isotropic
parabolic dispersion, eq. (3.22), giving

Nc(E) =
2
V

∑
k,Enk<E

1 =
2

(2π)3

∫ k(E)

0

d3k

=
8π

(2π)3

∫ k(E)

0

dkk2 =
8π

(2π)3

∫ k(E)

0

d(k2) · k
2

Using the dispersion relation, the magnitude of the wave vector k can be
expressed as a function of energy as k2 = 2m�(E − Ec)/�2. This leads
to

Nc(E) =
2

(2π)2

(
2m�

�2

)3/2 ∫ E−Ec

0

dE ·
√
E.

and the density of states is

D3D(E) =
dNc(E)
dE

=
2

(2π)2

(
2m�

�2

)3/2√
E − Ec. (3.23)

Extensions of simple k · p-theory. The k · p-perturbation theory
can be extended to the case of degenerate band edge states En, e.g., for
calculating the dispersion relation at the valence band edge. However, in
this case spin–orbit effects are important (see below). The method can
also be extended to higher orders resulting in nonparabolicities of bands.
Furthermore it can be performed also at conduction band minima that
do not arise at k = 0, as found, for example, in silicon and germanium.

Conduction band dispersion for silicon. The dispersion of the con-
duction band in silicon is particularly interesting near the six equivalent
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(a) (b)

Fig. 3.14 (a) Surfaces of constant energy close to the minima of the conduction band of silicon. (b) Surfaces of constant energy
close to the conduction band of germanium (Singleton, 2001).

X-points at the edge of the first Brillouin zone (cf. Fig. 3.1). It is found
that the dispersion is not isotropic around the conduction band minima,
but follows the dispersion relation (here quoted for the minimum in the
kx-direction)

Ec ≈
�

2(kx − k0)2

2mL
+

�
2(k2

y + k2
z)

2mT
, (3.24)

with mL = 0.98me, mT = 0.19me, and k0 being the position of the
minimum in the kx direction.

Constant energy surfaces in the silicon conduction band. Fol-
lowing the above dispersion relation, we can see that surfaces of constant
energy close to the conduction band minima of silicon are ellipsoids.
Their arrangement in reciprocal space reflects the symmetry of the crys-
tal [see Fig. 3.14(a)].

Conduction band dispersion for germanium. In germanium, con-
duction band minima arise at the eight equivalent L points of the first
Brillouin zone (cf. Fig. 3.1). Around these minima, the dispersion is
anisotropic, as in the case of silicon. A longitudinal effective mass
mL = 1.64me and a transverse effective mass mT = 0.082me are found.
The dispersion is described by eq. (3.24), but the orientation of k0 has
to be changed to the (1,1,1) or equivalent directions.
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Constant energy surfaces in the germanium conduction band.
The eight equivalent surfaces of constant energy in the germanium con-
duction band are of ellipsoidal shape. They are cut in the middle by the
Brillouin zone edge as shown in Fig. 3.14(b).

Dispersion of graphene near K. For the calculation of the disper-
sion of graphene near K [see also (Ando, 2005)] we start from eq. (3.17)
and assume that we have solved this equation for k = K and found the
lattice periodic functions unK(r). Within the tight-binding approxima-
tion introduced for graphene on page 23 we can write the two degenerate
wave functions at K as

u
(A)
K (r) =

1√
N

∑
R

e−iK(r−R)φ(r − R − t1)

u
(B)
K (r) =

1√
N

∑
R

e−iK(r−R)φ(r − R), (3.25)

where the former is nonzero only on sites of A-atoms, the latter only on
sites of B-atoms.

Now we consider the problem at k = K+q for small q. Inserting into
eq. (3.17) the eigenvalue equation for the unq(r) gives

{[
p2

2me
+ V (r)

]
+
[

�

me
Kp +

�
2K2

2me

]

+
�

me
q (p + �K) +

�
2q2

2me

}
unq = Eunq.

Because we are interested only in small q, we neglect the q2-term on the
left-hand side. The solutions are expanded in the eigenfunctions (3.25)
according to

unq(r) = Aqu
(A)
K (r) +Bqu

(B)
K (r).

Contributions of other bands are neglected in lowest order.
Inserting this wave function into the eigenvalue equation and project-

ing onto the two basis functions u(A)
K and u(B)

K gives the matrix equation
for the two coefficients Aq and Bq

�

me
q
(

pAA + �K pAB

pBA pBB + �K

)(
Aq

Bq

)
= E

(
Aq

Bq

)
,

where pAA, pBB , and pAB are matrix elements of the momentum op-
erator. Neglecting overlap integrals between neighboring sites, we find
pAA = pBB = −�K. For the evaluation of pAB we take only nearest
neighbor contributions into account and assume circular symmetry of
φ(r). This leads to (cf. Fig. 3.5 for the definitions of the vectors t�)

pAB =
�

i
λ

3∑
�=1

eiK(t1−t�)t� =
√

3�λ

2
(ex − iey),
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where λ is a coupling constant. The eigenvalue problem at K therefore
reduces to

�
2

2me

√
3λ
(

0 qx − iqy
qx + iqy 0

)(
Aq

Bq

)
= E

(
Aq

Bq

)
. (3.26)

The solution of this eigenvalue problem gives the energy dispersion

E(q) = ±�c�|q|,

where we have introduced the effective velocity c� = �
√

3λ/2me with
the value c� ≈ 106 m/s. This velocity can be regarded as the only band
structure parameter which is relevant in grapene near K for the band
under consideration. In the expression for the dispersion, the ‘+’-sign
refers to the conduction band (π�-band) dispersion, whereas the ‘−’-sign
refers to the valence band (π-band, see also Fig. 3.7).

Using the vector σ of Pauli matrices, the effective hamiltonian in the
vicinity of K [see eq. (3.26)] can be written as HK = �c�qσ = �c�|q|nσ
with n = q/|q|. Owing to the two-component state vector (Aq, Bq),
the electrons near K are often said to have a pseudospin which gives
the relative amplitudes of the electronic wave function on the two sub-
lattice atoms. The direction of the pseudospin determines the character
of the underlying molecular orbital state, e.g., bonding or antibonding.
The hamiltonian HK shows that the direction of the pseudospin is al-
ways tied to the direction of q, by analogy with the physical spin of a
massless neutrino which points along the direction of propagation. The
operator nσ is the operator of the helicity of a particle with zero rest
mass. It has eigenvalues ±1, called right-handed (‘+’) and left-handed
(‘−’) helicity. At K, conduction band states are right-handed (positive
helicity), whereas valence band states are left-handed (negative helicity).

Density of states in graphene. The density of states in graphene
around the energy of the K-point differs from that of three-dimensional,
and two-dimensional systems with parabolic dispersion relations. The
number of states per unit area in the conduction band below the energy
E is given by

Nc(E) =
4
A

∑
k,Ek<E

1 =
4

(2π)2

∫ k(E)

0

d2k.

The prefactor 4 results from the two-fold spin, and the two-fold valley
degeneracy (K and K′). The integral evaluates to

Nc(E) =
4
2π

∫ k(E)

0

dkk =
4

2π�2c�2

∫ E

0

dEE.

As a consequence, the density of states in the conduction band (E > 0)
is

Dc(E) =
2|E|
π�2c�2 . (3.27)
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The valence band is symmetric to the conduction band and gives the
density of states for E < 0

Dv(E) =
2|E|
π�2c�2 .

The total density of states of graphene is depicted in Fig. 3.15. We see
that the total density of states at the energy of the K-point vanishes for
ideal graphene.

E

D(E)

conduction band

valence band

E(K)

Fig. 3.15 Density of states of graphene
near the energy of the K-point.

3.6 Spin–orbit interaction within
k·p-theory

Adding spin–orbit terms to the k · p-method. Spin–orbit interac-
tion is introduced into k · p-theory by adding the spin–orbit coupling
hamiltonian from eq. (3.16) to the hamiltonian in eq. (3.1). The wave
functions of the system are now spinors with two components with a
combined band–spin index ν [cf. eq. (3.8)]:

ψk(r) = eikruνk(r)

Inserting this expression into Schrödinger’s equation gives{[
p2

2me
+ V (r) +

g�

4c2m2
e

(∇V (r) × p)S
]

+
[

�

me
k · π +

�
2k2

2me

]}
uνk(r) = Euνk(r), (3.28)

with
π = p +

g�

4mec2
S ×∇V (r).

Again, we first consider the problem at k = 0 and obtain the dispersion
relations for small k in a second step from perturbation theory.

Band edge states and their symmetries. Owing to the spin–orbit
coupling term, the determination of the spinors uν0(r) from[

p2

2me
+ V (r) +

g�

4c2m2
e

(∇V (r) × p)S
]
uν0(r) = Euν0(r)

is not straightforward. We choose the basis functions un0(r) ⊗ |σ〉 of
the problem without spin–orbit coupling, where Sz |σ〉 = σ |σ〉 with
σ = ±1/2. Some freedom remains in the combination of the degenerate
band edge states, e.g., |X〉 , |Y 〉 , and |Z〉 . For the nondegenerate lowest
conduction band we choose the two basis states∣∣∣∣ S0

〉
and

∣∣∣∣ 0
S

〉
.

Following the procedure common in atom physics, the p-like states can
first be combined to states with well-defined angular momentum |�, �z〉 .
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This results in the three � = 1-like states |1, 1〉 = −(|X〉 + i |Y 〉 )/
√

2,
|1, 0〉 = |Z〉 , and |1,−1〉 = (|X〉 − i |Y 〉 )/

√
2. Again following proce-

dures known from atom physics, we further define eigenstates of total
angular momentum J = L + S resulting in six states, four of which are
j = 3/2-like, namely,∣∣∣∣ 32 , 32

〉
= − 1√

2

∣∣∣∣ X + iY
0

〉
∣∣∣∣ 32 , 12

〉
=

1√
6

∣∣∣∣ 2Z
−X − iY

〉
∣∣∣∣ 32 ,−1

2

〉
=

1√
6

∣∣∣∣ X − iY
2Z

〉
∣∣∣∣ 32 ,−3

2

〉
=

1√
2

∣∣∣∣ 0
X − iY

〉

and two of which are j = 1/2-like, i.e.,∣∣∣∣ 12 , 12
〉

= − 1√
3

∣∣∣∣ Z
X + iY

〉
∣∣∣∣ 12 ,−1

2

〉
= − 1√

3

∣∣∣∣ X − iY
−Z

〉
.

Corresponding definitions are made for the band edge states of the p-like
upper conduction band.

Matrix equation for determining dispersion relations. Having
defined these basis states, we can expand the lattice periodic spinors
uνk:

uνk(r) =
∑
n,σ

cn,σ(k)un0 ⊗ |σ〉 =
∑
n,σ

cn,σ(k) |n, σ〉 .

With this expansion we now substitute in eq. (3.28) and obtain the
matrix equation for the expansion coefficients cn,σ(k):

∑
n′,σ′

{[
En′ +

�
2k2

2me

]
δn,n′δσ,σ′ + ∆nσ,n′σ′

+
�

me
k · Pnσ,n′σ′

}
cn′,σ′(k) = En(k)cn,σ(k).

Here we have introduced

∆nσ,n′σ′ =
g�

4c2m2
e

〈n, σ |(∇V (r) × p)S|n′σ′〉

Pnσ,n′σ′ = 〈n, σ |π|n′, σ′〉 .

Band edge parameters. The spin–orbit-related matrix element
∆n′σ′,nσ leads to coupling and splitting of band edge states at k = 0.
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However, owing to the symmetry of states, many of these matrix ele-
ments are zero. For example, the band edge state of the GaAs valence
band is six-fold degenerate (three orbital wave functions with two spin
states each). The spin–orbit interaction splits these six states at k = 0
into four plus two, where the latter two form the spin–orbit split-off
band. The corresponding band edge parameter is the spin–orbit gap (cf.
Table 3.4)

∆0 = − 3i�
4m2

ec
2

〈
X
∣∣∣[(∇V ) × p]y

∣∣∣Z〉 .
For the two-fold spin degenerate s-like conduction band all matrix el-
ements ∆cσ,cσ′ = 0. For the p-like higher conduction band there is a
spin–orbit gap ∆′0 as for the valence band with

∆′0 = − 3i�
4m2

ec
2

〈
X ′
∣∣∣[(∇V ) × p]y

∣∣∣Z ′〉 .
The nonvanishing off-diagonal matrix element ∆n′σ′,nσ couples at k = 0
the p-like valence band states to the p-like higher conduction band states
via the matrix element

∆− = − 3i�
4m2

ec
2

〈
X
∣∣∣[(∇V ) × p]y

∣∣∣Z ′〉 ,
if the crystal has no inversion symmetry, i.e., in zincblende crystals.
Within our definition, the matrix elements P , Q, ∆0, and ∆′0 are real,
whereas P ′ and ∆′− are purely imaginary.

The matrix elements Pnσ,n′σ′ mix band edge states more strongly the
larger k is and the smaller |En − En′ | is. Without spin–orbit coupling
this leads to the renormalization of the electron mass, i.e., to the concept
of the effective mass. In addition, spin–orbit interaction leads to an
increased mixing between the two spin states with increasing k.

Fig. 3.16 Graphical overview of band
edge parameters. (Reprinted with per-
mission from Mayer and Roessler, 1991.
Copyright 1991 by the American Phys-
ical Society.)

Figure 3.16 shows an overview of the various band edge parameters
and their influence on band structure. These parameters are considered
in the framework of the so-called ‘extended Kane model’, which is based
on the 14 × 14 matrix hamiltonian which results from consideration of
the basis states at the valence and conduction band extrema introduced
above. Table 3.6 lists values of the band edge parameters for selected
semiconductors.

Coupling of the s-like conduction band to remote bands is treated here
via the reduced Hermann–Weisbuch parameters Cr und C ′r in perturba-
tion theory. The corresponding coupling of the valence band states to
remote bands is similarly treated using the reduced Luttinger parame-
ters γ′i, κ

′ and q′.

Spin–orbit interaction hamiltonian in zincblende crystals. Us-
ing the above techniques it can be shown that the spin–orbit interac-
tion can be incorporated in the description of conduction band elec-
trons in zincblende crystals by considering the additional hamiltonian
(D’yakonov and Perel, 1972; Winkler, 2003)

HD ∝ px(p2
y − p2

z)σx + py(p2
z − p2

x)σy + pz(p2
x − p2

y)σz. (3.29)
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Table 3.6 Band edge parameters for selected semiconduc-
tors (Winkler, 2003).

Material GaAs AlAs InAs InSb InP

m�/me 0.067 0.150 0.023 0.014 0.080
g� −0.44 1.52 −14.9 −51.6 1.26

E0 (eV) 1.52 3.13 0.42 0.24 1.42
∆0 (eV) 0.34 0.29 0.38 0.82 0.11
P (eVÅ) 10.49 8.97 9.20 9.64 8.85

E′
0 (eV) 4.49 4.54 4.39 3.16 4.72

∆′
0 (eV) 0.17 0.15 0.24 0.33 0.07

P ′ (eVÅ) 4.78i 4.78i 0.87i 6.32i 2.87i
Q (eVÅ) 8.165 8.165 8.331 8.130 7.216

The constant of proportionality is a material-dependent spin–orbit cou-
pling parameter. The x-, y-, and z-directions are chosen to be along
(100), (010), and (001), respectively.

Conduction band effective mass revisited. Earlier we introduced
the conduction band effective mass based on a very simple theory ne-
glecting the spin–orbit interaction. A more elaborate theory including
spin–orbit effects leads to an admixture of more bands than the heavy
and light holes. As a consequence, more band edge parameters enter the
expression (cf. Fig. 3.16 and Table 3.6). To a good approximation we
have

me

m�
= 1 +

1
3

2meP
2

�2

(
2
E0

+
1

E0 + ∆0

)

−1
3

2meP
′2

�2

(
2

E′0 − E0 + ∆′0
+

1
E′0 − E0

)
. (3.30)

Effective conduction band g-factor. It turns out that the spin–orbit
interaction also affects the energy splitting of conduction band states in
an external magnetic field B. This splitting is known as the Zeeman
effect. The Zeeman energy splitting ∆E = g�µBB contains an effective
g-factor which is material specific, whereas g = 2 for the free electron
in vacuum. The spin–orbit interaction leads to a renormalization of the
free-electron g. Some example values are tabulated in Table 3.6. The
effective g-factor can be calculated from the band edge parameters given
in the same table. It is, in good approximation, given by

g� = 2 − 2
3

2meP
2

�2

(
1
E0

− 1
E0 + ∆0

)

+
2
3

2meP
′2

�2

(
1

E′0 − E0
− 1
E′0 − E0 + ∆′0

)
. (3.31)

In the limit of vanishing spin–orbit interaction we have ∆0 → 0 and
∆′0 → 0, and therefore g� → g = 2. This means that the deviation of
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Fig. 3.17 Grayscale plots of (a) heavy
and (b) light hole dispersion relations
in the kx-ky plane calculated with the
GaAs parameters. The grayscales for
(a) and (b) are chosen to be different in
order to emphasize the effect of warp-
ing.
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the g-factor from the free-electron value is a result of spin–orbit interac-
tion. The effective g�-factor becomes relevant in the next chapter, where
the motion of crystal electrons in magnetic fields is considered [see in
particular the effective-mass Schrödinger eq. (4.5)].

Dispersion relation for the valence band. The description of the
valence band dispersion using an effective mass is problematic because
there is a four-fold degeneracy at Γ. From k · p-theory we can derive
the following expression for the two dispersions for heavy and light holes
(hh/lh) close to Γ

Ehh/lh = −Ak2 ∓
√
B2k4 + |C|2

(
k2

xk
2
y + k2

yk
2
z + k2

zk
2
x

)
, (3.32)

where the negative sign refers to the heavy hole dispersion. The material-
specific parameters A, B, and C are tabulated for many semiconductors.
The parameter C is responsible for the nonspherical warping of the va-
lence band (see Fig. 3.17). This warping leads to different effective
masses in different crystallographic directions. For example, in GaAs
we have A = −6.9, B = −4.4, and |C|2 = 43 (in units of �

2/2me).
Figure 3.17 shows a grayscale plot of the heavy hole (a) and light hole
(b) dispersion relations in the kx-ky plane. The parameters A, B, and
C can be expressed with the band edge parameters from k · p-theory:

2me

�2
A = 1 − 2

3

(
P 2

meE0
+

2Q2

meE′0

)
2me

�2
B =

2
3

(
− P 2

meE0
+

Q2

meE′0

)
(

2me

�2
C

)2

=
16P 2Q2

3meE0meE′0

It is often desirable and convenient to use an isotropic approximation
of the form

Ehh/lh =
�

2k2

2mhh/lh
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for the heavy and light hole dispersion relations. It can be obtained from
eq. (3.32) by averaging over all directions in k-space. The result for the
heavy and light hole masses is

1
mhh

=
1
�2

[
−2A+ 2B

(
1 +

2|C|2
15B2

)]
1
mlh

=
1
�2

[
−2A− 2B

(
1 +

2|C|2
15B2

)]
.

Constant energy surfaces for valence bands. There are two sur-
faces of constant energy near the valence band maximum at Γ, because
of the existence of heavy and light hole bands. Surfaces of constant en-
ergy are strongly warped and deviate significantly from spheres (see Fig.
3.17), in contrast to the GaAs conduction band.

3.7 Thermal occupation of states

At zero temperature all valence band states are filled in a semiconduc-
tor without impurities and defects, while all conduction band states are
empty. At finite temperatures, electrons can be thermally excited from
the valence to the conduction band leading to the conduction band elec-
tron density

nc(T ) =
∫ ∞

Ec

dEDc(E) · 1
e(E−µ)/kBT + 1

.

The density of the missing electrons in the valence band (i.e., the density
of holes) is given by

pv(T ) =
∫ Ev

−∞
dEDv(E)

(
1 − 1

e(E−µ)/kBT + 1

)

=
∫ Ev

−∞
dEDv(E)

1
e(µ−E)/kBT + 1

.

Fig. 3.18 shows the meaning of the individual factors below the integral
for the density of the occupied states. A semiconductor in which the
density of electrons and holes is governed by these relations is called
an intrinsic semiconductor. This implies very low impurity and defect
concentrations and no intentional doping.

Here we consider the case Ec −µ� kBT and µ−Ev � kBT allowing
the approximations

1
e(E−µ)/kBT + 1

≈ e−(E−µ)/kBT , if E > Ec

1
e(µ−E)/kBT + 1

≈ e−(µ−E)/kBT , if E < Ev.
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Fig. 3.18 Thermal occupation of elec-
tron and hole states in the conduction
and valence band of a semiconductor.
The carrier densities are thermally ac-
tivated.
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states
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Fermi distribution
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With these simplifications we obtain

nc(T ) =
∫ ∞

Ec

dEDc(E)e−(E−µ)/kBT

=
∫ ∞

Ec

dEDc(E)e−(E−Ec)/kBT

︸ ︷︷ ︸
:=Nc(T )

e−(Ec−µ)/kBT (3.33)

pv(T ) =
∫ Ev

−∞
dEDv(E)e−(µ−E)/kBT

=
∫ Ev

−∞
dEDv(E)e−(Ev−E)/kBT

︸ ︷︷ ︸
Pv(T )

e−(µ−Ev)/kBT

In an intrinsic semiconductor the densities are related via nc(T ) = pv(T ),
and we therefore obtain

nc(T )pv(T ) = n2
c(T ) = Nc(T )Pv(T )e−(Ec−Ev)/kBT

= Nc(T )Pv(T )e−Eg/kBT

and as a consequence

nc(T ) =
√
Nc(T )Pv(T )e−Eg/2kBT .

Comparing with eq. (3.33) allows the determination of the chemical po-
tential µ as a function of temperature:

µ(T ) = Ev +
Eg

2
+
kBT

2
ln
Pv(T )
Nc(T )

.

This equation implies that the chemical potential (Fermi level) is exactly
in the middle of the band gap for T → 0. Typically, the logarithmic ratio
lnPv(T )/Nc(T ) will be of the order one and the Fermi level will not move
away from the gap center by more than kBT . Therefore, our calculation
is valid for kBT � Eg, i.e. for most typical semiconductors even at room
temperature (kBT ≈ 25 meV).



3.8 Measurements of the band structure 49

~~

1.1

0.9

0.7

0.0
1.42

294 K

GaAs

186 K
90 K

21 K

1.44 1.46 1.48
Photon energy [eV]

1.50 1.52 1.54

A
bs

or
pt

io
n 

co
ef

fic
ie

nt
 [1

04  
cm

–1
]

Fig. 3.19 Absorption coefficient of
GaAs measured at different temper-
atures as a function of photon en-
ergy. At temperatures of 186 K and
below, the exciton resonance can be
seen. (Reprinted with permission from
Sturge, 1962. Copyright 1962 by the
American Physical Society. See also Yu
and Cardona, 2001.)

3.8 Measurements of the band structure

Interband absorption and emission. Semiconductors can absorb
and emit photons involving electronic transitions between valence and
conduction band states. These optical transitions obey energy and mo-
mentum conservation. The energy of the photon hν has to be equal
to the energetic difference of the participating valence and conduction
band state:

hν = Ec(kc) − Ev(kv).

The photon momentum �k has to be taken up (or released) by the
electronic system, meaning that

�k = �kc − �kv.

For absorption to take place, the energies of photons have to exceed the
band gap, i.e., depending on the material it must be in the wavelength
range of a few microns (infrared) up to a few hundred nanometers (vis-
ible region; E = 1.24 eV µm/λ). This range of wavelengths is suitable
for optical applications, such as light emitting diodes or semiconductor
lasers. The momentum of a photon at these energies is of the order
of 5 × 104 cm−1, which is very small compared to the wave vectors of
the electrons π/a ≈ 5 × 107 cm−1. Therefore we talk about vertical
transitions between E(k) bands.

Absorption measurements near the fundamental gap are therefore a
suitable method for determining the fundamental gap of a semiconduc-
tor experimentally. Figure 3.19 shows the absorption coefficient of GaAs
measured at various temperatures. At room temperature, optical ab-
sorption sets in slightly above 1.42 eV, i.e., as soon as the photon energy
exceeds the band gap. Below this energy, the semiconductor is trans-
parent. At lower temperatures the absorption edge is shifted to higher
energies (blue shift). Qualitatively this is a result of the thermal contrac-
tion of the crystal lattice leading to a slightly reduced lattice constant
and thereby to an increased band gap. In addition, a strongly enhanced
absorption is seen at the absorption edge at low temperatures. This
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Fig. 3.20 Measured and calculated va-
lence band structure of GaAs. The
calculations were performed using the
pseudopotential method. Measure-
ments were made using angle-resolved
photoemission. (Reprinted with per-
mission from Chiang et al., 1980. Copy-
right 1980 by the American Physical
Society.)
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is the so-called exciton resonance. The optical excitation creates an
electron–hole pair consisting of a positively charged hole and a nega-
tively charged electron (see also section 4.2). Their mutual Coulomb
interaction leads to a bound state with typical binding energies of about
5 meV. Such an interacting electron–hole pair is called an exciton. Note
that, typically, the electron and the hole have different effective masses.

Angle resolved photoemission spectroscopy (ARPES). The band
structure of the valence band can be measured with angle-resolved pho-
toemission. This technique uses photons with an energy large enough to
extract electrons from the crystal (photoeffect). Synchrotron radiation
experiments use photons in the range between 25 and 100 eV, such that
the final state of the electron after photon absorption is far beyond the
work function (|e|Φ = 5.15 eV for GaAs), i.e., at an energy where the
influence of the lattice potential is negligibly small and the electrons can
be described with free electron states.

Figure 3.20 shows the valence band structure of GaAs measured in
this way in comparison to a pseudopotential calculation. Experiment
and calculation agree very well. The experiment was performed on a
[110] oriented GaAs sample with the photons incident onto the surface at
an angle of 45◦. In this case, the wave vectors of the extracted electrons
are given by

�k‖ =
√

2me(Ei + hν − eΦ) sin θ

and
�k⊥ =

√
2me[(Ei + hν − eΦ) cos2 θ − V0],

where θ is the emission angle and V0 = −14.5 eV is the bottom of the
‘muffin tin’ potential measured from the vacuum level. For a certain
direction of k, the initial energy Ei and the magnitude k of the wave
vector can be determined from these two equations, because the photon
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energy hν and the work function eΦ are known, and the angle θ can be
chosen.

Further reading

• Band structure, general introduction: Kittel 2005;
Ashcroft and Mermin 1987; Singleton 2001.

• Band structure of semiconductors: Yu and Car-
dona 2001; Cohen and Chelikowski 1989; Balkanski

and Wallis 2000.

• Density of states and thermal occupation: Ashcroft
and Mermin 1987; Seeger 2004.

• Graphene and carbon nanotubes: Ando 2005.

Exercises

(3.1) Sketch the free electron band structure of a two-
dimensional square lattice along the path Γ-A-B-
Γ. Write down the wave functions with the lowest
energies at these three points.

A

B

(3.2) In this problem we try to approximate the π-band
dispersion relation of graphene (see page 23). To
this end we describe the hexagonal two-dimensional
crystal lattice (see Fig. 3.5) as a Bravais lattice with
the two basis vectors

a1 =
√

3a0(1/2,
√

3/2)

a2 =
√

3a0(−1/2,
√

3/2),

where a0 is the nearest neighbor separation. The
primitive cell spanned by these two vectors contains
the basis of the lattice consisting of two atoms A
and B (see Fig 3.5).

(a) Determine the basis vectors of the reciprocal
lattice and construct the first Brillouin zone
(BZ).

(b) Consider the model of free electrons with the
dispersion in eq. (3.10). Draw the dispersion
relations along lines leading from the center
of the first BZ to one of its corners (K-point),
and to the center of its boundary lines (M -
point). Restrict this drawing to the two sets
of shortest reciprocal lattice vectors. Com-
pare your drawing to Fig. 3.7.

(c) Consider the lowest doubly degenerate states
at the M -point on the boundary of the first
BZ. Calculate the splitting of these degener-
ate states under the influence of a small po-
tential modulation.

(d) Find reasons why the periodic potential mod-
ulation leaves a two-fold degeneracy at the
lowest K-point energy.

(3.3) Draw the first Brillouin zone of an fcc lattice as
seen in the kz-direction.

(3.4) Implement a pseudopotential bandstructure cal-
culation in Mathematica (or another program of
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you choice) for determining the band structure of
diamond and zincblende semiconductors approxi-
mately.

(3.5) Given the band gaps of InAs (0.36 eV) and InP
(1.27 eV) estimate the relative effective masses
m�/m of conduction band electrons using eq.
(3.21). Compare with the values tabulated in Ta-
ble 3.5.

(3.6) Calculate the analytical expression for the density
of states of two-, and one-dimensional systems as-
suming a two-, or one-dimensional parabolic dis-
persion relation.

(3.7) Calculate an analytical expression for the density
of states near the conduction band minimum of sil-
icon using the dispersion relation in eq. (3.24).

(3.8) Consider a gas containing N electrons. The change
dE in total energy of the system in response to a
small change in entropy (dS) in volume (dV ) or in
electron number dN is given by

dE(S, V,N) = TdS + pdV + µchdN + UdQ,

where µch is the chemical potential, U is the elec-
trostatic potential and dQ = −edN is the change

of charge in the system upon a change in electron
number.

(a) Discuss, why, in this system of charged parti-
cles, the electrochemical potential µ = µch −
eU is a state variable. (In general, U could
even vary spatially.)

(b) Let this system be isolated such that its total
energy E, its total volume V and its electron
number N cannot change. In a Gedanken-
experiment split the system into two subsys-
tems 1 and 2 which obey

E1 + E2 = E = const.

V1 + V2 = V = const.

N1 +N2 = N = const.

Show using the second law of thermodynam-
ics that the two systems will have the same
temperature T1 = T2, the same pressure
p1 = p2, and the same electrochemical po-
tential µ1 = µ2.
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In this chapter we are interested in the quantum mechanical motion
of electrons in the crystal if the periodic lattice potential is perturbed.
This can occur as a result of the presence of lattice defects, impurities,
or doping atoms. It can also arise due to the incorporation of interfaces
between different layers of materials. Other reasons could be the pres-
ence of external electric or magnetic fields, or internal fields arising from
time-dependent lattice distortions or vibrations such as those caused
by phonons or surface acoustic waves. In this chapter, we will restrict
ourselves to static perturbations small enough to be treated in lowest
order perturbation theory, and of a spatial range much larger than the
lattice constant of the underlying material. We will see that this restric-
tion leads to considerable simplifications leading us to an effective mass
Schrödinger equation for electrons in conduction bands with parabolic
dispersion.

4.1 Quantum mechanical motion in a
parabolic band

Weak and long-range perturbations of perfect crystal symmetry can be
caused, for example, by an external electric field, or by the presence of
a charged doping atom. Figure 4.1 shows schematically the perturbed

continuous
conduction band
levels
occupied
valence band
levels

discrete impurity level
in valence band (always occupied)

discrete impurity level in conduction band
(occupied for n-type semiconductor at T = 0)

Fig. 4.1 Continuum and discrete en-
ergy levels in the vicinity of a dop-
ing atom in a semiconductor. E1

is the energy of a discrete level be-
low the conduction band edge; E2 is
the energy of a state in the contin-
uum. (Reprinted with permission from
Slater, 1949. Copyright 1949 by the
American Physical Society.)
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lattice potential in the presence of a positively charged doping atom.
There are a number of different ways of solving this quantum mechan-

ical problem for the electronic motion. The methods differ essentially
in the set of basis functions used as a starting point for a perturbation
treatment. People have used Bloch-states (Enderlein and Schenk, 1992),
band edge states from k ·p-theory (Luttinger and Kohn, 1955), and the
so-called Wannier states (Wannier, 1937; Zinman, 1972; Kittel, 1970).
In order to give some insight into the derivation of the equation of mo-
tion, we will work in the Bloch-state basis and restrict the discussion to
a perturbation of a parabolic conduction band with minimum at Γ as it
is found, for example, in GaAs.

The problem on the basis of Bloch-states. Assume that we have
solved Schrödinger’s equation for the unperturbed crystal. The corre-
sponding dispersion relations En(k) and the Bloch-functions ψnk(r) =
eikrunk(r) are known. Now we seek the solution of the perturbed Schrö-
dinger equation

[H0 + U(r)] Ψ(r) = EΨ(r), (4.1)

where H0 is the hamiltonian of the unperturbed lattice and U(r) is the
perturbing potential. We expand the wave function Ψ(r) on the basis of
Bloch-states:

Ψ(r) =
∑
n,k

Fn(k)ψnk(r).

Inserting this expansion into Schrödinger’s equation gives∑
nk

ψnk(r) [En(k) − E + U(r)]Fn(k) = 0.

Multiplying by ψ�
n′k′(r) and integrating over r leads to∑

n,k

[(En(k) − E) δnk,n′k′ + Un′k′,nk]Fn(k) = 0, (4.2)

where we have used the orthogonality of Bloch-states and introduced
the matrix elements of the perturbing potential

Un′k′,nk =
∫
d3r ψ�

n′k′(r)U(r)ψnk(r).

The matrix elements of the perturbation. We will now further
simplify the matrix elements of the perturbation. To this end we intro-
duce the Fourier transform of U(r) (see Appendix A.2) and obtain

Un′k′,nk =
∫
d3q U(q)

∫
d3r ei(k−k′+q)ru�

n′k′(r)unk(r).

In this expression we can expand the lattice periodic function
u�

n′k′(r)unk(r) into a Fourier series and obtain for the matrix element

Un′k′,nk =
∫
d3q U(q)

∑
K

Cn′k′
nk (K)

∫
d3r ei(k−k′+q+K)r
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with the so-called Bloch integral

Cn′k′
nk (K) =

1
V0

∫
EZ

d3r e−iKru�
n′k′(r)unk(r).

The spatial integral in the expression for the matrix element Un′k′,nk

contributes only if the exponent vanishes, i.e., if q = k′ − k − K. As a
matter of fact, the integral is a representation of Dirac’s delta function.
Therefore the matrix element simplifies to

Un′k′,nk = (2π)3
∑
K

U(k′ − k − K)Cn′k′
nk (K). (4.3)

So far we have used the periodicity of the crystal lattice without using
any approximation.

Simplifying approximations. For further simplifications to the prob-
lem we make the following assumptions about the perturbation:

(1) We assume that the perturbing potential changes slowly on the
scale of the lattice constant, i.e., U(q) is significant only for q �
π/a.

(2) We assume that the perturbation is small compared to typical
energy separations of bands in the crystal.

(3) We assume that the coefficients Fn(k) have significant values only
for small values of k.

According to the third assumption, we consider only states near the
nondegenerate Γ-minimum. As a consequence of this and the first as-
sumption, in the sum over K only K = 0 is retained and the matrix
element simplifies to

Un′k′,nk ≈ (2π)3U(k′ − k)Cn′k′
nk (0).

Now we would like to simplify the Bloch integral Cn′k′
nk (0). Based on

the third assumption, we employ the expansion of the Bloch-functions
near the conduction band minimum, eq. (3.19). We obtain

Cn′k′
nk (0) =

1
V0

∫
EZ

d3r u�
n′k′(r)unk(r) ≈ 1

(2π)3
δnn′ + O(k2),

and therefore
Un′k′,nk ≈ U(k′ − k)δnn′ .

This means that, given our assumptions, the perturbation does not mix
states of neighboring bands, but only states of different k near the Γ-
minimum. With the above result for the matrix element, the equation
of motion (4.2) simplifies to∑

k

[(En(k) − E) δk,k′ + U(k′ − k)]Fn(k) = 0.
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Simplification of the wave function. The wave function in real space
now reads

Ψ(r) =
∑
k

Fn(k)eikrunk(r).

Only small wave vectors k are important here, due to the long-range
nature of U(r). We therefore approximate unk(r) ≈ un0(r) and obtain
for the wave function

Ψ(r) = un0(r)
∑
k

Fn(k)eikr = un0(r)Fn(r).

In the last step we have interpreted the sum over k as the Fourier series
of a real space function Fn(r). This function is of long range compared
to the lattice period and is called the envelope function of the wave
function.

Approximating the dispersion. We now approximate the dispersion
relation En(k) accordingly by using an approximation for small k. Near
the Γ-minimum we have [cf. eq. (3.22)]

Ec(k) = Ec +
�

2k2

2m�
,

where m� is the effective mass of electrons in the conduction band. With
these simplifications the equation of motion for electrons reads

�
2

2m�
k2Fc(k) +

∑
k′
U(k − k′)Fc(k′) = (E − Ec)Fc(k).

Equation of motion in real space. This equation determines the
Fourier components of the envelope function Fc(r). Transformation
from Fourier space into real space is straightforward. The first term
on the left-hand side corresponds to the second derivative of the enve-
lope function in real space. The second term is a convolution integral
which transforms into the product of the two corresponding functions
in real space. We therefore obtain the following differential equation
determining the envelope function Fc(r):[

− �
2

2m�
∆ + Ec + U(r)︸ ︷︷ ︸

:=Ec(r)

]
Fc(r) = EFc(r). (4.4)

This is exactly Schrödinger’s equation (4.1) where the periodic lattice
potential hidden in H0 has disappeared, but the free electron mass in H0

has been replaced by the effective mass of the conduction band electrons.
Introducing the local band edge energy Ec(r), this function acts as the
effective potential in which the conduction band electrons move.

The envelope function Fc(r) brings about very convenient simplifica-
tions. For example, matrix elements of a quantum mechanical quantity,
which have to be calculated using the complete electronic wave function,
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can usually be expressed as integrals over the envelope function alone.
As an example, we consider the electron density. Assume that the en-
velope functions Fi(r) are solutions of eq. (4.4) with energies Ei. The
electron density of the system is then given by

n(r) =
∑

i

|ψi(r)|2 f(Ei) = |uc0(r)|2
∑

i

|Fi(r)|2 f(Ei),

where f(E) is the Fermi distribution function. The envelope function
and the lattice periodic function uc0(r) vary on different length scales.
Within a primitive cell at position R of the lattice Fi(r) ≈ Fi(R) is
essentially constant. If we are interested only in the mean density in the
primitive cell at R, it is given by

n(R) =
1

VEZ

∫
EZ

dV |uc0(r)|2︸ ︷︷ ︸
=1

∑
i

|Fi(R)|2 f(Ei) =
∑

i

|Fi(R)|2 f(Ei).

On a length scale that is large compared to the lattice constant, the
electron density is given by the envelope function alone and we can
neglect the lattice periodic function un0(r).

Hydrogen-like impurities. A simple application of the concept of the
envelope function is the determination of the energy levels of a hydrogen-
like impurity in a semiconductor. It has indeed been shown that modern
fabrication techniques have the potential to allow a precise incorpora-
tion of single doping atoms at predefined locations. Figure 4.2 shows
scanning tunneling microscope images of a hydrogen passivated Si(001)
surface. Using the tip of the scanning tunneling microscope, hydrogen
atoms can be locally desorbed. Such a spot of about 1 nm size is shown in
Fig. 4.2(a). If the surface is then exposed to PH3, the molecules are pref-
erentially adsorbed at those positions, where the hydrogen passivation
has been removed. A thermal annealing step lets the P atom diffuse into
the top layer of the Si substrate where it forms a substitutional doping
site as shown in Fig. 4.2(b).

Fig. 4.2 STM images of atomically
controlled single phosphor atom in-
corporation into Si(001). (a) Hydro-
gen terminated Si(001) surface with a
hydrogen desorption point. (b) The
same area after PH3 dosing and an-
nealing showing a single P atom incor-
porated at the location defined by the
H-desporption point. (Reprinted with
permission from Schofield, 2003. Copy-
right 2003 by the American Physical
Society.)

As an example for the use of the effective mass equation, we consider
a silicon atom sitting on the Ga site in a GaAs lattice. The silicon atom
can satisfy all bonds with neighboring arsenic atoms using only three of
its four valence electrons. As a consequence, one excess electron and an
excess positive elementary charge in the silicon nucleus remain. Such
a silicon atom is called a donor, because it can give away the excess
electron. However, the positively charged donor ion will bind the excess
electron, and the Coulomb interaction between them will appear in the
equation for the envelope function:[

− �
2

2m�
∆ − e2

4πεε0r

]
Fc(r) = (E − Ec)Fc(r).

The important point is that the relative dielectric constant of the host
crystal, in our case GaAs, enters in the Coulomb potential. It accounts
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for the polarization of the lattice by the charged donor, which effectively
reduces the interaction strength. The solution of this quantum problem
is that of the hydrogen problem, in which the Rydberg energy ERy =
13.6 eV is replaced by an effective Rydberg energy E�

Ry and Bohr’s radius
aB = 0.53 Å by an effective radius a�

B:

E�
Ry =

e4m�

2(4πεε0)2�2
= ERy

m�

me

1
ε2

a�
B =

4πεε0�
2

m�e2
= aB

me

m�
ε.

For GaAs, with ε = 12.53 and m� = 0.067me, we find E�
Ry = 5.7 meV

and a�
B = 100 Å. The energy levels of the hydrogen-like impurity are

then
En = Ec −

E�
Ry

n2
.

These states are discrete and lie below the conduction band edge of
the unperturbed crystal as schematically shown in Fig. 4.3. As in the
hydrogen atom, the excitation energy E�

Ry from the ground state to the
lower edge of the conduction band (continuum) is called the binding
energy. Measured binding energies of donors in GaAs are 5.789 meV for
SeAs, 5.839 meV for SiGa, 5.870 meV for SAs, 5.882 meV for GeGa, and
5.913 meV for CGa. These values agree quite well with the theoretical
prediction for E�

Ry.

Fig. 4.3 Energy levels of a hydrogen-
like impurity in GaAs (Yu and Car-
dona, 2001).

Figure 4.4 shows the total wave function of the ground state includ-
ing the Bloch part emphasizing that the envelope function determines
the shape of the probability density distribution on length scales large
compared to the lattice constant.

Equation of motion at the Γ-minimum of the conduction band
in the presence of a magnetic field. The equation of motion of
an electron at the conduction band minimum under the influence of a

Fig. 4.4 Total wave function of the
hydrogen-like impurity in GaAs includ-
ing the Bloch contribution (Yu and
Cardona, 2001).



4.2 Semiclassical equations of motion, electrons and holes 59

magnetic field has been derived by Luttinger (1951), and by Luttinger
and Kohn (1955) using similar methods. It was also found that, in this
case, the equation for the envelope function is identical to the effective
mass Schrödinger equation for a free particle in a magnetic field. Under
the simultaneous influence of a vector potential A(r) and an electrostatic
potential U(r) the equation of motion for electrons at the Γ-minimum
of the conduction band (see, e.g., Winkler 2003) reads

[
1

2m�

(
�

i
∇ + |e|A(r)

)2

+ U(r) +
1
2
g�µBσB

]
Fc(r) = (E − Ec)Fc(r).

(4.5)
Here, the elementary charge |e| = 1.6× 10−19 C is taken to be a positive
number. In the following chapters of the book we will frequently call
the envelope function Fc(r) simply the wave function of the electron,
because its equation of motion is identical with that of an electron with
mass m� in vacuum. We will further use the convention that all energies
are measured from the conduction band edge of the unperturbed crystal,
such that Ec = 0 in the above equation. The effective mass m� and the
effective g�-factor entering in the above equation can be calculated from
the knowledge of the band edge parameters given in Table 3.6 using eqs.
(3.30) and (3.31).

Equation (4.5) is of great importance for semiconductor nanostruc-
tures. Methods of structuring and patterning materials allow the fab-
rication of tailored potential landscapes U(r). Magnetic fields can be
created in the laboratory that influence the electronic motion as they do
in the free electron case. Solving the equations of motion is greatly facil-
itated by the existence of many analytical solutions and approximative
schemes from quantum mechanics textbooks.

The considerations leading to eq. (4.5) for conduction band electrons
near Γ can be extended to semiconductors with conduction band minima
at other points in the first Brillouin zone (e.g., silicon or germanium). In
this case, the wave function is expanded at the corresponding conduction
band minima rather than at Γ. More complicated equations of motion
result due to the valley degeneracy and the anisotropic effective masses.
The theory for valence band holes is also much more demanding, because
there are degenerate states at Γ.

4.2 Semiclassical equations of motion,
electrons and holes

Conduction band electrons. With the validity of the effective mass
Schrödinger equation (4.5) for the crystal electron, the semiclassical limit
of quantum mechanics (i.e., the motion of wave packets) must have its
range of application in semiconductor physics. Wave packets can be
constructed from the envelope functions Fc(r) and the dynamics of its
center of mass can be investigated. The result is Newton’s equation of
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motion
m�r̈ = −|e|(E − ṙ × B), (4.6)

where E is the electric field and B is the magnetic field at the location of
the electron. As a consequence, there is a variety of possibilities in the
physics of semiconductor nanostructures to investigate the borderlines
between classical and quantum physics. Examples are investigations of
the relation between classical and quantum chaos, or the transition from
quantum to classical mechanics in the presence of decoherence.

Valence band holes. We will now briefly discuss the dynamics of holes,
i.e., missing electrons near a maximum of the valence band, in the classi-
cal limit. The convex curvature of the valence band could be interpreted
using a negative effective mass. Newton’s equation of motion reads in
this case

−m�r̈ = −|e|(E − ṙ × B).

However, a negative effective mass is physically not very intuitive. We
can reinterpret this equation of motion by multiplying it by −1:

m�r̈ = +|e|(E − ṙ × B)

This can be interpreted as the equation of motion for particles with posi-
tive mass m�, but with positive charge +|e|. The occurrence of a positive
charge at the top of the valence band is also intuitive from another point
of view. In the electrically neutral, uncharged semiconductor crystal the
valence band is completely filled. Removing an electron from the top
of the valence band, an initially localized positive charge remains. Such
a missing electron is called a hole. According to the above equation of
motion, the effective mass m� and the charge +e are properties of this
hole which appears to move through the crystal like a classical particle.

Further reading

• Papers: Slater 1949; Luttinger 1951; Luttinger and
Kohn 1955.

• Effective mass from k ·p-theory: Davies 1998; Kit-
tel 1970; Yu and Cardona 2001.

• Effective mass from quasi-classical considerations
with group velocity and Newton’s equation of mo-

tion: Kittel 2005; Kittel 1970; Singleton 2001;
Ashcroft and Mermin 1987.

• Effective mass from the hydrogen problem in semi-
conductors, doping: Davies 1998.

• Band structure of semiconductors: Winkler 2003.
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Exercises

(4.1) Consider the differential equation for the enve-
lope function, eq. (4.5), with a magnetic field
B = (0, 0, B) and the Coulomb potential U(r) =
e2/4πεε0r.

(a) Give reasons why the solution of the problem
can be separated in that of the orbital motion
and that of the spin dynamics.

(b) Discuss qualitatively the effects of the mag-
netic field on the spin dynamics.

(c) Discuss qualitatively how the magnetic field
affects the orbital energy levels and wave
functions.

(4.2) In silicon, the hamiltonian for the conduction band
envelope function in the effective mass equation is
given by

H =
�

2

2mL

∂2

∂x2
+

�
2

2mT

�
∂2

∂y2
+

∂2

∂z2

�
+ Vc(r),

where Vc = e2/4πεε0r is the Coulomb potential,
and mL and mT are the longitudinal and trans-
verse effective masses, respectively. Consider the
case mL = mT + ∆m, where ∆m/mT � 1. Calcu-
late the effect of the presence of ∆m on the energies
of the 1s-, 2s-, and 2p-states of a hydrogen-like im-
purity using perturbation theory.
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5.1 Band engineering

The possibility of growing materials of very different composition atomic
layer by atomic layer with molecular beam epitaxy provides a method
of varying the band structure in the growth direction and tailoring it
according to the requirements of electronic or optical devices.

Material aspects: Figure 5.1 shows the relation between lattice con-
stant and band gap for a number of common binary semiconductor ma-
terials. Only materials of the same lattice constant and crystal structure
can be grown on top of each other without creating strain. For example,
a very common combination is the GaAs/AlAs material system.

In contrast, if, for example, InAs is grown on GaAs, a strained layer
is formed due to the lattice mismatch. Experience shows that for this
particular material combination InAs layers of up to 15 nm thickness can
be grown before dislocations form that relax the strain. If an InAs layer
below 15 nm thickness is sandwiched between thick GaAs layers, the
lattice constant of this thin layer is strained such that it almost matches
the GaAs lattice constant. Such a strained layer is called pseudomorphic.

Another possibility for combining layers of different materials is the
combination of ternary alloys. In Fig. 5.1, the lines connecting two
binary compounds having one constituent in common give the lattice
constant–band gap relation of the corresponding ternary compound. As
an example, we find that In0.53Ga0.47As and In0.52Al0.48As have the
same lattice constant, but different band gaps.

In case of GaAs and AlAs the ternary compound GaxAl1−xAs can
be formed which has been extensively studied. Layers of GaAs can
be combined with layers of GaxAl1−xAs for arbitrary values of the Ga
fraction x, because the lattice mismatch between GaAs and AlAs is only
0.15%. Figure 5.2 shows how the band gap of AlxGa1−xAs changes as a
function of x. For x < 0.45 the band gap is direct; above it is indirect.
Usually one grows material with x < 0.4 in order to make sure that the
lowest conduction band minimum is at Γ. In this range of x the band
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Fig. 5.1 Band gap of some com-
mon semiconductors vs lattice con-
stant. The curves connect binary com-
pounds that have one constituent in
common, such as GaAs and AlAs mix-
ing to AlxGa1−xAs. Solid lines repre-
sent direct, dashed lines indirect band
gaps (Singleton, 2001).

Lattice constant

(
m

)
W

a

Fig. 5.2 Energies of the conduction
band minimum at Γ, X, and L and
the Γ-maximum of the valence band of
AIxGa1−xAs at room temperature as
a function of the aluminium fraction
x. (Redrawn from Yu et al., 1992 and
Adachi, 1985.)
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gap is given by

Eg = (1.516 + 1.247x) eV for AlxGa1−xAs with x < 0.45. (5.1)

This formula is valid for temperatures below one Kelvin.

Band edges at interfaces between different materials. With these
possibilities for combining different materials, the question arises of how
the band structure is changed at the interface. For example, GaAs and
AlxGa1−xAs have different band gaps. What are the consequences for
the motion of electrons (or holes) normal to the interface? Can charge
carriers penetrate the interface?

The simplest theory visualized in Fig. 5.3 starts from the electron
affinities χA and χB of the two materials A and B. The electron affinity
is by definition the maximum energy one gains by adding an electron
at rest from a region far away from the crystal to the neutral undoped
semiconductor. The energy of the electron at large distance is called the
vacuum level. The maximum energy is gained if the electron is filled into
the bottom of the conduction band. If we consider two different mate-
rials, the vacuum level is the same for both. At the interface between
two materials, the relative position of their conduction band minima
is therefore given by the difference of the electron affinities, i.e., there
arises a step in the conduction band edge, called conduction band offset,
of size ∆Ec = |χA − χB|.

For example, in GaAs we have χGaAs = 4.07 eV, and for Al0.3Ga0.7As
we find χAlGaAs = 3.74 eV. The resulting conduction band offset is
∆Ec = 330 meV. The band gap difference between these materials is
∆Eg = 370 meV, and therefore there will be a valence band offset ∆Ev =
40 meV.

A word of caution is due here. Although this theory based on the
electron affinities gives results of the right order of magnitude in most

vacuum level

Ev

Ev

Ec

Ec
A

B

A

B

Eg
A

Eg
B

A B

valence band valence band

conduction band conduction band

Ev

Ec

Fig. 5.3 Relative position of the band
edges at a heterointerface (Davies,
1998).
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cases, the band offsets that are determined experimentally can deviate
significantly from this prediction. In the case of GaAs/Al0.3Ga0.7As, for
example, ∆Ec/∆Ev = 0.62 is the generally accepted value, while the
simple theory gives ∆Ec/∆Ev = 0.85.

In general, heterointerfaces belong to one of three categories (see
Fig. 5.4). At a type I interface, such as in GaAs/Al0.3Ga0.7As, the con-
duction band edge is energetically higher, while the valence band edge
is lower in one material than in the other. At an interface of type II,
both band edges of one material are higher than in the other material;
however, the valence band edge stays below the conduction band edge.
If the latter condition is not fulfilled, we have a type III interface.

Type I

Ec

Ev

Type II

Ec

Ev

Type III

Ec
Ev

Fig. 5.4 Band line-up of conduction
and valence band edges of two mate-
rials at a heterointerface of type I, II,
and III.

Envelope functions in the conduction band at heterointerfaces.
Detailed theoretical investigations show, in agreement with experimental
results, that the theory of envelope functions can also be applied at
heterointerfaces if the conduction band minima (valence band maxima)
of both materials are at Γ. This is not obvious because there is no
translational symmetry of the crystal structure normal to the interface,
the lattice periodic part of the wave functions can differ between the
materials, and the perturbation given by the interface is typically not
smooth on the scale of the lattice constant. Furthermore, as a result of
the different band structures, the effective masses of the two materials
will differ.

It turns out that the problem can be treated using the envelope func-
tion approximation if the boundary conditions of the envelope function
at the interface are given by

F (A)
c (r) = F (B)

c (r), (5.2)

i.e., the envelope function is steady at the interface, and

jA(r) = i�
2m�

A

(
F

(A)
c (r)∇F (A)

c

�
(r) − c.c.

)
= i�

2m�
B

(
F

(B)
c (r)∇F (B)

c

�
(r) − c.c.

)
= jB(r) (5.3)

for r at the interface, which guarantees that the probability current
density is steady at the interface. Using eq. (5.2) in eq. (5.3) gives the
condition

1
m�

A

∇F (A)
c (r) =

1
m�

B

∇F (B)
c (r) (5.4)

that has to be obeyed at the interface.

Quantum wells. In order to demonstrate the consequences of eqs (5.2)
and (5.4) we consider a 10 nm GaAs layer (material B) sandwiched be-
tween thick Al0.3Ga0.7As layers (material A). The band edge in the
growth direction schematically shown in Fig. 5.5 has the shape of a po-
tential well. Schrödinger’s equation for the envelope function F (r) in
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the two materials reads

− �
2

2m�
A

∆F (r) = (E − E(A)
c )F (r) for |z| > W/2

− �
2

2m�
B

∆F (r) = (E − E(B)
c )F (r) for |z| < W/2.

The problem can be separated into three independent problems, one for

BA A

Ec

zW/2 W/2

E

Fig. 5.5 Conduction band edge of an
ABA type I heterostructure forming a
quantum well, and the corresponding
lowest bound state with its envelope
function.

each spatial direction. The envelope function can therefore be written
as F (r) = ξ(x)η(y)χ(z). As a result of translational invariance in x- and
y-directions ξ(x) = eikxx and η(y) = eikyy. The equation of motion in
the z-direction is then

�
2

2m�
A

[
− ∂2

∂z2
+ k2
‖

]
χ(z) = (E − E(A)

c )χ(z) for |z| > W/2

�
2

2m�
B

[
− ∂2

∂z2
+ k2
‖

]
χ(z) = (E − E(B)

c )χ(z) for |z| < W/2,

where we have introduced k‖ =
√
k2

x + k2
y. We are interested in bound

states with E
(A)
c > E > E

(B)
c . The problem is symmetric with respect

to z = 0. As a consequence, we expect wave functions with either even
or odd parity, i.e., we use, in analogy with the standard quantum well
problem,

χ(z) = B ·
{

sin(kzz)
cos(kzz)

for |z| < W/2

and
χ(z) = Ae−κ|z| for |z| > W/2

with

kz =

√
2m�

B(E − E
(B)
c )

�2
− k2
‖

κ =

√
2m�

A(E(A)
c − E)
�2

+ k2
‖.

The boundary conditions (5.2) and (5.4) at the interface require

Ae−κW/2 = B

{
− sin(kzW/2)
cos(kzW/2)

Aκ

m�
A

e−κW/2 =
Bkz

m�
B

{
cos(kzW/2)
sin(kzW/2) ,

which leads to the transcendental equation{
− tan(kzW/2)
cot(kzW/2)

}
=
m�

A

m�
B

kz

κ
.

This equation can be solved numerically. The solution is given by energy
eigenvalues of the form

E = En(k‖) +
�

2k2
‖

2m�
B
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Fig. 5.6 Energy En(k‖) for the two
lowest bound states plotted as a func-

tion of k‖ =
�
k2

x + k2
y .
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The distinct dispersion relations labeled by the quantum number n are
called dispersion relations of subband n. The corresponding wave func-
tions χn(z) are called subband states and the En(k‖ = 0) are the subband
energies. The dispersion En(k‖) is plotted in Fig. 5.6 using the mate-
rial parameters of the Ga[Al]As material system. It is approximately
parabolic, with negative curvature. The positive curvature of the to-
tal dispersion is therefore weakened, which can be interpreted as an
increase of the in-plane effective mass. The electron acquires a larger
effective mass because the wave function penetrates into the AlGaAs
barrier where electrons have a larger effective mass than in GaAs. The
mass increase for the lowest state is, however, quite small because of
the exponential decrease of the wave function in the barrier. The total
dispersion for the lowest three bound states is schematically plotted in
Fig. 5.7. Two-dimensional electron systems in which only the energet-
ically lowest subband is occupied with electrons are said to be in the
quantum limit.

Simplified effective mass Schrödinger equation for heterostruc-
tures. As in the example discussed above, corrections to the in-plane
effective mass in heterostructures are often quite small. It can be shown
in a perturbative treatment that the in-plane effective mass m�

‖ is given
by

1
m�
‖

=
pA

m�
A

+
pB

m�
B

, (5.5)

where pA and pB are the probabilities of finding the electron in mater-
ial A or B, respectively, and pA +pB = 1. In cases where pA � pB due to
the small weight of the wave function in the barrier material B we find
m�
‖ ≈ m�

B. Similar considerations apply if one considers the problem of
different effective g� in a heterostructure.
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Fig. 5.7 Top left: Dispersion rela-
tions for the lowest two bound states in
a quantum well heterostructure. Top
right: density of states as a function of
energy. Lower left: density of states as
a function of energy.

Therefore, in many cases the problem of finding the bound states
and energy levels in a heterostructure can be solved with good accuracy
using the constant effective mass and g� of the material in which the
major part of the wave function resides. The simplified Schrödinger
equation for electrons in a heterostructure with a spherically symmetric
conduction band is then, in analogy with eq. (4.5), given by[

(p + |e|A(r))2

2m�
+ U(r) + Ec(r) +

1
2
g�µBσB(r)

]
F (r) = EF (r), (5.6)

where Ec(r) is an effective potential arising from the spatially varying
conduction band edge, and the material parameters m� and g� are given
by the material where the dominant weight of the wave function is lo-
cated.

Constant energy surfaces in heterostructures. In the quantum
well example considered above, the motion of electrons in the growth
direction (z-direction) is quantized and the motion in the plane of the
quantum well is free. Therefore, the system is called two-dimensional.
Constant energy surfaces in the kx-ky plane are circles, because the
dispersion relation is isotropic in k‖ (see Fig. 5.7).
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Density of states for parabolic dispersions in two dimensions.
The density of states for electrons in the quantum well heterostruc-
ture differs significantly from that found for three-dimensional systems
[eq. (3.23)], or two-dimensional graphene [eq. (3.27)]. Assuming a two-
dimensional spin-degenerate parabolic dispersion with in-plane effective
mass m�

En(k‖) = En +
�

2k2
‖

2m�

the integrated density of states below an energy E is given by

N (E) =
2
A

∑
k,En(k)<E

1 =
2

(2π)2

∫
d2k

=
m�

π�2

∫ E

0

dE′ =
m�

π�2
E.

The resulting density of states for two-dimensional systems with par-
abolic dispersion is therefore

D(E) =
dN (E)
dE

=
m�

π�2
. (5.7)

In contrast to the three-dimensional case in eq. (3.23), the density of
states in two dimensions is independent of energy. If we take several
subbands into account, the total density of states shows a number of
steps. Figure 5.7 shows the density of states for a quantum well with
more than one bound state.

Theoretical models with Bloch functions. More elaborate calcu-
lations of the band structure in heterostructures take the full Bloch
functions into account. One can show that the concept of an envelope
function still makes sense. As an example, Fig. 5.8 shows the result of
such a calculation. The strongly oscillating part of the wave function
is caused by the lattice-periodic part of the Bloch states. The envelope
function does indeed show the kink in agreement with the boundary
condition in eq. (5.4).

Two-dimensional hole gases. An effective confinement of holes in
valence band quantum wells is also possible. Examples are heterostruc-
tures consisting of GaAs/AlGaAs, or Si/SiGe in which the lattice in the
SiGe quantum well is strained due to lattice mismatch. The description
of two-dimensional holes in an envelope function approximation is more
complicated than that of electrons in the conduction band due to the
four-fold degeneracy of states |3/2,+3/2〉 , |3/2,+1/2〉 , |3/2,−1/2〉 and
|3/2,−3/2〉 at the top of the valence band. Calculations show that the
quantization in the z-direction (normal to the heterointerfaces) lifts the
degeneracy of light and heavy holes such that two pairs of degenerate
states emerge. One of the degenerate pairs is at Γ made of heavy hole
states |3/2,+3/2〉 and |3/2,−3/2〉 . It is more strongly bound than the
other pair of states which consists at Γ of light hole states |3/2,+1/2〉
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Fig. 5.8 Wave function of the lowest
bound state in a 6 nm quantum well.
The thin curve is the envelope function.
(Reprinted with permission from Burt,
1994; copyright 1994, American Insti-
tute of Physics.)

and |3/2,−1/2〉 . Most interestingly, the in-plane dispersion relation for
the heavy and light hole quantized states shows mass inversion, i.e.,
the heavy hole subband has a smaller in-plane mass than the light hole
subband. As a result, the two subband dispersions cross at finite wave
vectors as shown in Fig. 5.9. At the crossing point, heavy and light hole
states mix, and an avoided crossing results. In two-dimensional hole
gases in the quantum limit, only the heavy hole subband is occupied.

Parabolic quantum wells. The material combination of GaAs and
AlxGa1−xAs can also be used to create smooth potentials Ec(z) in
eq. (5.6). To this end, the aluminium fraction x is varied during growth
in a parabolic fashion. The result is a parabolic conduction band edge,
i.e., a parabolic confinement potential, because for x < 0.45 the band
edge of AlxGa1−xAs varies linearly with the aluminium fraction x [see
eq. (5.1)]. Such structures realize the potential of a harmonic oscillator
in the growth direction of the crystal. However, as in the above example
of the hard wall quantum well, the variation of the effective mass m�

k
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Fig. 5.9 (a) Subband energies and
subband states of heavy (HHs) and
light holes (LHs) in a quantum well.
(b) Dispersion relations of heavy and
light holes (Davies, 1998).
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and g� with aluminium fraction x along the growth direction makes the
calculation of bound states more difficult. For small variations of x the
mass variation can be neglected.

5.2 Doping, remote doping

Donors and acceptors. The properties of semiconductor materials
can not only be changed during epitaxial growth by the choice and con-
centration of the material constituents, but also by a systematic incor-
poration of relatively small concentrations of doping atoms on specific
lattice sites. Dopants that can release electrons into the conduction band
through thermal activation (e.g., Si on a Ga lattice site in a GaAs crys-
tal) are called donors. Typically these are atoms that possess one extra
valence electron compared to the lattice atom that they replace. In this
case we talk about n-doping. Dopants that thermally release holes into
the valence band (e.g., B on a Si site in a Si crystal) are called accep-
tors. These are typically atoms that have one valence electron less than
the lattice atom they replace. This type of doping is called p-doping.
Many dopants form states in the band gap close to the bottom of the
conduction band (shallow donors) or the top of the valence band (shal-
low acceptors). The states of shallow donors can often be described by
the model of a hydrogen-like impurity (see page 57). Typically, shallow
donors or acceptors are key ingredients for semiconductor nanostruc-
tures. Other defects form states that are deep within the band gap.
These are called deep donors or deep acceptors. They typically reduce
the material quality and are therefore undesired in semiconductor nano-
structures. An example would be single missing crystal atoms (voids)
that typically create states in the middle of the band gap.

Volume doping. If the dopants are evenly and statistically distrib-
uted in the crystal we talk about volume doping. It is characterized by
the doping concentration which we will denote with ND in the case of
donors and NA in the case of acceptors. The mean donor (acceptor)
separation can be estimated by d = N

−1/3
D (d = N

−1/3
A ). If d� a�

B (a�
B

is the effective Bohr radius, i.e. the characteristic extent of the ground
state wave function), the states of neighboring dopants typically do not
overlap, and the system can be described as consisting of independent
hydrogen-like impurities. As a consequence, the density of states has a
sharp peak below the conduction band edge (in case of n-doping) at the
energy of the hydrogen impurity ground state, as shown in Fig. 5.10(a).
As the impurity concentration increases, the quantum states of neigh-
boring doping atoms will start to overlap and the density of states peak
becomes severely broadened as depicted in Fig. 5.10(b). If d � a�

B the
states of neighboring dopants do strongly overlap, their energy levels
will split and the resulting density of impurity states below (for donors)
or above (for acceptors) the band edges will be broadened even more,
and electron (hole) states are no longer bound to individual dopants.
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Fig. 5.10 Schematic plot of the den-
sity of states (DOS) near the conduc-
tion band edge for different doping lev-
els in case of n-doping. (a) Low doping
concentration. (b) Intermediate doping
concentration. (c) Degenerate doping.

This latter case can be considered in the following way: the dopants
create a spatially varying band edge energy. The spatially averaged con-
tribution to this effective potential can be interpreted as a constant shift
of the band edge into the band gap, or a smearing of the density of states
as shown in Fig. 5.10(c). The electrons (holes) move in this potential as
in the unperturbed conduction (valence) band. The remaining, spatially
varying contribution leads to electron–dopant scattering, an effect that
can often be treated by perturbation theory. As in a metal, the free elec-
trons (or holes) will screen these potential fluctuations thereby reducing
their influence on the electron motion. In this case, the Fermi energy at
the temperature T = 0 lies above (below) the conduction (valence) band
edge and we talk about degenerate electron (hole) gases, or degenerate
doping.

In n-doped GaAs with a�
B = 100 Å we find d ≈ a�

B at a donor con-
centration of ND = 1018 cm−3. This means that out of 64,000 lattice
atoms one is a dopant and the relative concentration of donors is about
1.6 × 10−5.

Sheet doping, δ-doping. During epitaxial MBE growth of a semi-
conductor crystal, dopants can also be incorporated in a plane. The
doping profile in the growth direction of the crystal will then exhibit
a sharp spike at the position of the doped plane. This way of doping
a semiconductor is called δ-doping. As in the case of volume doping,
the sheet doping concentration determines the material properties. The
mean donor (acceptor) separation in the plane can now be estimated
to be d = N

−1/2
D (d = N

−1/2
A ). If d � a�

B, the model of independent
hydrogen-like impurities is appropriate. If d � a�

B, states of neighbor-
ing dopants overlap strongly. Again we can extract a mean potential
created by the donors in the plane by spatial averaging (Jellium model).
The remaining fluctuating part of the potential can again be treated as
a perturbation of the free electron motion, which will be screened by the
free electrons in the conduction band. In GaAs, the characteristic sheet
doping concentration for donors is ND ≈ a2

B = 1012 cm−2.
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Within the Jellium model the motion of electrons along an n-type
doping plane can be regarded as that of free electrons with an effective
mass m�. However, in the growth direction of the crystal, the electrons
remain bound to the plane. This can easily be seen if we consider the
electrostatic potential φ of a homogeneously charged sheet in a semicon-
ductor. It is found as the solution of Poisson’s equation

∂2φ

∂z2
= −|e|NDδ(z)

εε0
.

The solution that is symmetric around the doping plane is

φ(z) = −|e|ND

2εε0
|z|

and therefore the potential U(z) for the electrons is

U(z) = −|e|φ(z) =
e2ND

2εε0
|z| . (5.8)

This triangular potential binds the donor electrons to the doping plane as
a heterostructure potential well created bound states binding electrons
within the well.

Electron–electron interaction. The triangular potential in eq. (5.8)
does not make physical sense because it becomes arbitrarily large for
|z| → ∞. The reason is that we have so far completely neglected ef-
fects of the electron–electron interaction. In particular, this is true for
eq. (5.6), valid for electrons in the isotropic Γ-minimum of the conduc-
tion band. Including interactions on the approximation level of eq. (5.6)
leads to a many-body effective mass hamiltonian for the envelope func-
tion.

H =
∑

i

[
(pi + |e|A(ri))

2

2m�
+ U(ri) + Ec(ri) +

1
2
g�µBσiB(ri)

]

+
∑
i, j

i �= j

VC(ri − rj) (5.9)

In the simplest case the interaction between the electrons is described by
the Coulomb interaction potential VC(r) = e2/4πεε0|r|. A solution of the
corresponding eigenvalue problem for the many-body envelope function
cannot be found analytically and ‘brute force’ numerical solutions are
restricted to small electron numbers. We will further discuss the general
problem of solving Schrödinger’s equation for interacting electrons, and
the specific example of the delta doping layer in section 8.2.

Remote doping. The δ-doping technique has the big disadvantage that
the motion of the electrons is bound to the doping plane in which the
fluctuating part of the donor potential is strong. As a consequence, elec-
trons are strongly scattered and the electrical resistivity of such layers
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Fig. 5.11 Conduction band edge in
growth direction of a heterostructure
with remote doping.

is relatively high. Using a combination of δ-doping (or a thin volume
doped layer) and a heterointerface, this disadvantage can be ruled out.
This remote doping technique is shown in Fig. 5.11. It was introduced in
1978 by Dingle and Störmer (Dingle and Störmer, 1978). This doping
technique implies that the doped layer is placed at a distance from a
type I heterointerface. The undoped spacer layer between the heteroin-
terface and the doping layer has a larger band gap than the material on
the other side of the heterointerface. Due to the conduction (valence)
band offset it is energetically favorable for the donor electrons (acceptor
holes) to move to the material with the smaller band gap. The electro-
static attraction between positively charged donors (negatively charged
acceptors) and electrons (holes), however, keeps the charge carriers close
to the interface where, similar to the quantum well case, quantum con-
fined states exist along the growth direction. In other words, there is
an electric dipole formed by the plane with the charged donors and the
two-dimensional electron gas.

As a result of the spatial separation between dopants and charge car-
riers, the fluctuating part of the dopant potentials in the plane of the
charge carriers is strongly reduced from a divergent 1/r potential to
a potential of the order of e2/(4πεε0d), where d is the separation be-
tween the two charged planes. Electron–dopant scattering is therefore
also strongly reduced and the electrical resistivity of such a structure is
considerably smaller than that of a pure δ-doped layer.

DX-centers in AlGaAs. So far we have mainly considered hydrogen-
like shallow dopants. It turns out that Si-donors in AlxGa1−xAs also
exist in a second state, the so-called DX-center. The crystal lattice de-
forms around the donor, if the latter gets occupied by an electron [see
Fig. 5.12(b) and (c)]. This deformation is energetically more favorable,
and the electron is more strongly bound than in a shallow donor. For
example, the binding energy is EDX = 120 meV for Si in Al0.3Ga0.7As.
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Fig. 5.12 (a) Schematic representation
of the conduction band close to a DX-
center. (b) Undistorted lattice for the
case that the DX-state is not occupied.
(c) Lattice deformation in case of the
occupied DX-state (Davies, 1998).

The extent of the electronic donor state reduces to atomic dimensions.
The binding energy of the DX-center depends on the aluminium fraction
x. In pure GaAs the energy of the DX-center is above the conduction
band edge, but it drops for x > 0.2 below the conduction band edge. Ex-
perimentally one finds that the occupation of DX-states freezes below
about 150 K. This is due to the fact that, apart from the large bind-
ing energy, an activation energy is also required to occupy the state.
Fig. 5.12 represents this situation schematically.

5.3 Semiconductor surfaces

Surface reconstruction. We now discuss the band structure near sur-
faces and its modifications compared to the bulk. As a first step we
consider just the semiconductor surface without any metal evaporated
on top. When the surface is formed, certain bonds remain without bond
partners due to the termination of the crystal. These dangling bonds
stick out of the surface and they would form energy bands of surface
states resulting from their periodic arrangement. However, such bands
are only called surface states if the resulting bands lie within the band
gap of the bulk band structure, otherwise they are called surface res-
onances owing to their coupling to the states in the bulk. A surface
can reduce its energy by rearranging the atoms at the surface, slightly
allowing dangling bonds to mutually saturate each other. This process
is called surface reconstruction. In this way, new unit cells form at the
surface and the surface states are shifted in energy.

Electronic depletion and Fermi level pinning. In the case where
no surface states exist within the band gap (this is, for example, the case
on a clean freshly cleaved GaAs surface), the Fermi level in the bulk and
at the surface are the same [see Fig. 5.13(a)]. If there are surface states,
as is the case for most semiconductors, then the Fermi energies at the
surface and in the bulk are not the same and charges are transferred
between surface and bulk. As a result, electric fields arise and the bands
bend. This situation is called Fermi level pinning in the band gap at the
surface. The surface charge is neutralized by the charge of dopants in
the volume of the crystal which results from the band bending.

It is of great importance for the understanding of semiconductor nano-
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Fig. 5.13 (a) No surface states exist and therefore there is no pinning of the Fermi level at the surface. (b) Undoped
semiconductor with surface states. The Fermi level in the bulk is in the middle of the gap. (c) The same as (b) for an n-doped
semiconductor. (d) The same as (b) for a p-doped semiconductor (Yu and Cardona, 2001).

structures that in many cases the mere presence of a semiconductor sur-
face depletes the underlying doped semiconductor material owing to the
Fermi level pinning effect. This effect may still be present if oxides form
at the surface or if metallic electrodes are evaporated onto the surface.

5.4 Metal electrodes on semiconductor
surfaces

The deposition of metallic electrodes onto semiconductor surfaces is of
great technological importance. In principle, there are two types of
metallic electrodes: ohmic contacts and Schottky contacts which have
rectifying properties.

Schottky contacts. Schottky contacts play an important role as gate
electrodes in field effect transistors. A Schottky contact can be fabri-
cated by evaporating a thin metal film onto a semiconductor surface. For
example, a thin aluminium film can be evaporated onto a GaAs surface
in a vacuum chamber with a background pressure of about 10−6 mbar.

It turns out that the energy difference between the Fermi level and
the conduction band edge at the surface of some materials depends only
weakly on the type of metal that is evaporated. The density of surface
states is high enough to equilibrate the difference between the Fermi en-
ergies in the metal and at the semiconductor surface by charge transfer
without a big energy shift of the Fermi level at the surface. For example,
in GaAs a barrier between the Fermi energy in the metal and the con-
duction band edge of about 0.8 eV is formed almost independent of the
metal. Figure 5.14 shows barrier heights for different metals on n-GaAs
and n-Si.

We consider a simple model of a Schottky contact as depicted in
Fig. 5.15. A metal contact is placed onto an n-doped GaAs substrate.
The energetic separation from the Fermi level in the metal to the con-
duction band edge in the semiconductor is Φb = 0.8 eV. Far into the
bulk of the semiconductor, the Fermi level is close to the conduction
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Fig. 5.14 Schottky barriers between n-
GaAs or n-Si, and various metals, after
Sze 1981.
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band edge, because of the n-doping. In thermodynamic equilibrium, the
Fermi levels in the metal and in the semiconductor have to be the same.
This is achieved by the presence of band bending in the semiconductor
near the surface. It arises as a result of donor ionization in the vicinity of
the surface leading to a space charge layer (depletion layer). In our sim-
ple model we assume that the space charge layer has a constant charge
density ρ0 = eND and a thickness d. According to Poisson’s equation
the resulting electrostatic potential near the semiconductor surface is
parabolic with a maximum at z = −d:

∂2φ(z)
∂z2

= −|e|ND

εε0
⇒ φ(z) = −|e|ND

2εε0
|z + d|2 .

The effective potential seen by electrons in the conduction band is there-
fore U(z) = −|e|φ(z). The thickness d of the space charge layer ad-
justs in such a way that the potential at the surface at z = 0 obeys
−|e|φ(0) = Φb. This leads to

d =
√

2εε0Φb

e2ND
,

i.e., the larger the donor concentration, the smaller the thickness d of
the space charge layer. If an additional voltage VG is applied between
metal and semiconductor, the boundary condition becomes −|e|φ(0) =
Φb − |e|VG and the thickness of the depletion layer is

d(VG) =

√
2εε0(Φb − |e|VG)

e2ND
.

A negative voltage on the metal electrode increases the thickness of
the depletion layer. This depletion of a semiconductor resulting from
the voltage applied between semiconductor and metallic gate is called
field effect. Assuming, for example, a doping concentration of ND =
3 × 1017 cm−3 in GaAs we find at VG = 0 a depletion region with a
thickness of d = 61 nm.

Field effect in a remotely doped heterostructure with a gate.
Employing the field effect, the Schottky contact allows us to tune the
electron density in a heterostructure with remote doping. The principle
is illustrated in Fig. 5.16. The structure essentially operates like a paral-
lel plate capacitor, where the metallic top gate and the two-dimensional
electron gas bound to the heterointerface are the two capacitor plates.
Applying negative gate voltages to the top gate the electron density can
be reduced down to zero (complete depletion). With positive gate volt-
ages the electron density can be increased until the electrons start to
occupy the doped layer in the barrier. The tunability of the electron
density is possible due to the Fermi level pinning. The Schottky bar-
rier acts as an insulating barrier blocking electron transfer between the
metal and the two-dimensional electron gas.
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Fig. 5.16 Result of a self-consistent
calculation of the conduction band edge
in a heterostructure with remote dop-
ing and Schottky contact at the sur-
face. The simplest way to describe the
field effect in this structure is the par-
allel plate capacitor model. (Modelling
program courtesy of G.L. Snider, Uni-
versity of Notre Dame.)
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The simple plate capacitor model allows us to describe the tunability
of the electron density as a function of gate voltage VG. The capacitance
per unit area of the barrier is given by

C =
εε0
d
,

where d is the separation of the metallized surface from the electron gas
(we have assumed for simplicity that all materials forming the barrier
have the same relative dielectric constant). The electron sheet density
ns is then given over a certain gate voltage range by the linear relation

ns = n(0)
s − εε0

ed
VG. (5.10)

A more complete description of the capacitive action of the top gate re-
quires a quantum mechanical model. Such a model for the heterostruc-
ture will be extensively discussed in chapter 9.

Figure 5.17 shows the result of a measurement of the electron density
in a remotely doped quantum well as a function of the applied gate
voltage. The linear dependence of the density on gate voltage can be
seen. As an example, we find with ε = 11.75 for Al0.3Ga0.7As and
a barrier thickness of 40 nm a tunability of 1.6 × 1012 cm−2 per volt.
Assuming a density n(0)

s = 5×1011 cm−2, about 300 mV applied voltage
is sufficient to completely deplete the electron gas.

Electrons can penetrate the barrier region between metal and elec-
tron gas either by thermionic emission or by quantum tunneling. The
latter process requires a sufficiently thin barrier, the former sufficiently
high temperatures. At room temperature (kBT ≈ 25 meV), leakage cur-
rents due to thermionic emission are, for barrier heights of the order of
1 eV, relatively small. Quantum tunneling can be suppressed by growing
sufficiently thick barriers.

Ohmic contacts. As a result of global charge neutrality, the depletion
layer of a Schottky barrier becomes thinner, the larger the volume doping
of the underlying semiconductor material is. If the doping concentration
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Fig. 5.17 Electron density in a 10 nm
wide GaAs quantum well as a function
of the gate voltage. The sheet density
ns was determined from the Hall effect.

is high enough, the tunnel barrier becomes sufficiently thin such that
the Schottky contact no longer acts as an insulator and ohmic transport
characteristics are found. This means that the current measured through
the Schottky contact is proportional to the voltage.

One technological possibility for making an electrical contact to a
semiconductor layer that has not been doped during growth is doping
by alloying a metal. As an example, we consider a GaAs heterostructure
(see Fig. 5.16) with remote doping. A so-called eutectic mixture of gold
and germanium (this is an AuGe alloy with weight fractions 88% Au and
12% Ge) is evaporated onto the semiconductor surface. Then the sample
is heated in an oven to about 450◦C. Due to the high temperature, the
germanium diffuses into the GaAs material and leads to n-doping with
a concentration of 1019 cm−3. Although the detailed mechanisms of this
process remain to be investigated, it is believed that Ga leaves the crystal
and diffuses into the gold layer, while the germanium atoms end up at
Ga lattice sites and therefore act as donors. Depending on the duration
and the exact temperature of this alloying process the ohmic contacts
diffuse 100 nm–1 µm into the semiconductor. In this way, contact to
buried two-dimensional electron gases can be made.

The quality of an ohmic contact is characterized by the contact re-
sistance Rc. Obviously it is inversely proportional to the area A of the
contact. The specific contact resistance rc is therefore defined as

rc = RcA

and has the units Ωcm2. Typical values for rc in AlxGa1−xAs/GaAs
heterostructures are 100 − 10−6 Ωcm2, depending on the doping level in
the AlxGa1−xAs barrier.
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Further reading

• Band engineering: Singleton 2001; Weisbuch and
Vinter 1991; Davies 1998; Heinzel 2007.

• Band offsets, donor levels, remote doping: Levin-
shtein et al. 1996.

• Surface states: Yu and Cardona 2001; Heinzel 2007.

• δ-doping: Schubert 1996.

• Ohmic contacts and Schottky contacts: (Williams
1990).

Exercises

(5.1) Consider the heterostructure potential well prob-
lem depicted in Fig. 5.5. Derive eq. (5.5) by treat-
ing the problem with different masses in the well
and the barrier in first order perturbation theory.
Use 1/m�

A − 1/m�
B as the small parameter.

(5.2) In this problem you will calculate the effective po-
tential for electrons U(z) = −eφ(z) around a δ-
doped layer at temperature T = 0 using the so-
called Thomas–Fermi approximation. The δ-doped
layer can be considered as a homogeneous sheet
charge density NDδ(z) and the electronic charges
bound to the doped layer are described by the elec-
tron density n(z). Solve the problem by following
these steps:

(a) The electrostatic potential φ(z) can be found
from Poisson’s equation. Write down this
equation.

(b) In the Thomas–Fermi approximation, the
electron density distribution n(z) is found
by integrating at each position z the three-

dimensional density of states from the local
band edge up to the Fermi energy, i.e.,

n(z) =

� EF+eφ(z)

0

dED3D(E).

Solve this integral and insert the result in
Poisson’s equation. Simplify the resulting
equation by substituting eφ̃(z) := EF +eφ(z).

(c) Solve the resulting differential equation by
integrating twice. Determine the integra-
tion constants by introducing physically mo-
tivated boundary conditions for z → ∞ and
for z → 0. Hints:

(i) Solve the equation for z �= 0 and treat
the δ-function using a suitable boundary
condition for z → 0.

(ii) Simplify the problem by considering the
symmetry around z = 0.

(iii) Substitute x := φ̃(z) and y(x) :=
∂φ̃(z)/∂z.



Fabrication of
semiconductor
nanostructures 6

6.1 Growth methods 83

6.2 Lateral patterning 88

Further reading 93

There are numerous methods of fabricating semiconductor nanostruc-
tures. This chapter can therefore only give prominent examples and
show some of the most common techniques used in nanostructure fab-
rication. We distinguish bottom-up approaches, in which atoms are
assembled into nanoscale structures during a growth process, and top-
down approaches in which the nanostructures are carved out of macro-
scopic crystalline structures or defined electrostatically using patterned
metallic electrodes. Sometimes, particular structures are obtained by a
clever combination of the two approaches.

6.1 Growth methods

Self-assembly. Self-assembling growth (sometimes also called self-or-
ganized growth) of nanostructures in an MBE chamber belongs to the
so-called bottom-up approaches in which structures are assembled from
their atomic constituents during growth. As an example, we consider the
growth of InAs on a GaAs substrate. The lattice constants of the two
materials differ by 7%, leading to a strongly strained InAs layer. At an
appropriate growth temperature, when the second monolayer forms, the
InAs material releases this strain by forming small islands of 5–20 nm
in diameter and a few nanometers in height. These islands are called
self-assembled quantum dots1 (SAQDs). The island formation is the
result of a competition between binding energies on surfaces, at edges,

1The term quantum dot was to the best of the author’s knowledge coined in (Reed
et al., 1986) as an extrapolation from 1D confinement in quantum wells, via 2D
confinement in quantum wires to complete 3D confinement in quantum dots. It was
quickly adopted by the scientific community. However, research on the physics of
single electrons in completely confined structures already had a long-standing history
at that time. For example, Millikan observed the effects of single electron charging
on the speed of falling oil droplets (Millikan, 1911), single-electron tunneling in solids
was studied by Gorter (Gorter, 1951) and later by Giaever and Zeller (Giaever and
Zeller, 1968), and by Lambe and Jaklevic (Lambe and Jaklevic, 1969). Kulik and
Shekhter had developed a detailed transport theory (Kulik and Shekhter, 1975).
However, in the mid 1980s there was rapid progress in nanofabrication technology
and the control over device parameters was improved tremendously.
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and in the volume, as well as strain energies. The elastic energy of the
strained two-dimensional InAs layer on GaAs grows with the square of
the layer thickness. The total energy of the system can therefore be
reduced by the formation of edges and islands at low thicknesses. Most
interestingly, these self-assembled quantum dots have a perfect crystal
structure without lattice defects. This regime of crystal growth where
lattice mismatched material spontaneously forms islands is called the
Stranski–Krastanov growth mode. If one continues the growth of the
GaAs crystal after the formation of the SAQDs, they become embedded
in a GaAs matrix with nanometer-sized InAs enclosures. Typically, the
sheet density of these dots is in the range between 5 × 109 and 1 ×
1011 cm−2.

Fig. 6.1 AFM image of SAQDs on a
GaAs (001) surface. The dots have a
diameter of 30–40 nm, a height of 4–
8 nm and they are statistically distrib-
uted on the surface. (Reprinted with
permission from Petroff et al., 2001.
Copyright 2001, American Institute of
Physics.)

Figure 6.1 shows an image of InAs quantum dots on a GaAs (100)
substrate. The dots are statistically distributed on the surface. A regular
arrangement of dots can be achieved by prepatterning the substrate (see
below).

Electrons and holes can be trapped on the InAs islands due to the
smaller band gap of InAs as compared to GaAs (type I heterostructure).
An electron experiences a locally strongly reduced potential, i.e., poten-
tial well with confinement in all three spatial dimensions. Bound states
form in this well similar to the situation in an atom.

The calculation of the electronic structure of SAQDs is complicated
by the fact that the exact geometry and material composition are often
not exactly known. For example, in InAs SAQDs on GaAs, gallium can
easily get alloyed into the dot material and form the ternary semiconduc-
tor InxGa1−xAs. Additional complications arise because the material is
strained, and piezoelectric effects enter. The results of calculations using
the effective mass approximation have been found not to be reliable.

Experimentally, individual SAQDs could be investigated. In opti-
cal experiments, extremely sharp emission lines of individual dots were
found in the photoluminescence, and they resemble atomic transitions.
SAQDs have also been used as the active material in the resonators of
semiconductor lasers. The transport properties of individual SAQDs
were investigated by single-electron tunneling experiments.

The number of materials for which this growth technique can be ex-
ploited is large. SAQDs have been realized with Si/SiGe, III-V semi-
conductors and II-VI materials. The challenge for materials engineers
is the growth of dots with a very narrow size and shape distribution
and with homogeneous chemical composition. Another challenge is to
predetermine the position of the SAQDs in the plane.

Prepatterned substrates. Nanostructures can also be fabricated by
MBE-growth on prepatterned substrates. An example is the realization
of quantum wires on a (100) GaAs substrate. Long V-shaped grooves
oriented in the [011] direction are defined by electron beam lithography
(see below) and subsequent etching. On this prepatterned substrate,
a periodic sequence of AlGaAs/GaAs quantum wells is grown. Fig-
ure 6.2(a) shows a cross-sectional view of such a structure. One can see



6.1 Growth methods 85

250 nm

13
0 

nm

(a) (b)

Fig. 6.2 (a) Image of GaAs quan-
tum wires grown on a prepatterned
substrate. The cross-sectional image
was taken with a transmission elec-
tron microscope. Image courtesy of D.
Meertens, Forschungszentrum Jülich.
(b) AFM image of InAs quantum dots
grown on a prepatterned InP substrate.
(Reprinted from Williams et al., 2001
with permission from Elsevier.)

that at the bottom of the V-groove the (dark) GaAs layers are thicker
than at the tilted side walls. As a consequence, the electronic states at
the bottom of the groove are energetically lowered, and one-dimensional
bound states form along the groove.

Prepatterning a substrate before the self-assembled growth of quan-
tum dots can lead to ordering of the SAQDs. Figure 6.2(b) shows an
example where a well-defined ridge has formed on an InP substrate.
If one grows InAs on this ridge under appropriate growth conditions,
SAQDs form along the ridge with a quite regular mutual separation.

Cleaved-edge overgrowth. A technique called cleaved-edge over-
growth (CEO) was developed at the beginning of the 1990s at the Bell
Labs. It allows the fabrication of very high quality quantum wires and
quantum dots. The method starts with the MBE-growth of a conven-
tional GaAs/AlGaAs quantum well. Subsequently the material is in-situ
cleaved along the (110) direction (see Fig. 6.3). The growth continues
on top of the cleaved surface with another quantum well. In this way,
two orthogonal electronic systems of the highest quality meet along a
line. Along this line one-dimensional bound states form.

If this crystal is cleaved again orthogonally to the previous cleavage,
the growth can be continued with a third quantum well. The three
resulting wells touch at a single point where bound zero-dimensional
quantum dot states form (see Fig. 6.4). If two parallel quantum wells
are grown, two quantum dots coupled by tunneling or by electrostatic
interaction can be created.

2. cleave

1. MBE growth 3. MBE growth

(110)
(110)

(0
01

)

Fig. 6.3 Schematic presentation of
the cleaved-edge overgrowth (CEO)
method.

Catalytic growth of nanowires. Nanowires can also be grown us-
ing the so-called vapor–liquid–solid growth mode. Aerosol gold particles
with size in the range between a few nanometers and a few tens of
nanometers are deposited onto a crystalline III-V semiconductor sub-
strate oriented along the (111) direction. This substrate is then trans-
ferred to the growth chamber of a MOVPE system (metal organic vapor
phase epitaxy). When constituents of a semiconductor crystal are pro-
vided they will diffuse into the gold particles. Once a critical saturation
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Fig. 6.4 Scheme of a complicated nano-
structure fabricated by applying a two-
step CEO process. At each cross-
ing point of three orthogonal quantum
wells, a quantum dot forms. In this
structure, a coupled quantum dot sys-
tem was realized (Schedelbeck et al.,
1997).
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concentration is reached in the particle, crystal growth sets in at the
interface between the substrate and the gold particle. In this way, high
quality crystalline semiconducting nanowires can be grown normal to the
substrate between the substrate and the gold particles. The diameter
of these wires, which are also referred to as nanowhiskers, is determined
by the size of the gold particle; their length is determined by the growth
rate and the growth time. Lengths of several micrometers have been
reported. While a random deposition of aerosol gold particles creates
a random distribution of the nanowires, ordered arrays of gold catalyst
can be created using electron beam lithography techniques (see below).
A growth method has been reported in Mandl et al. 2006, where in-
stead of the gold catalyst, a thin SiOx-layer has been deposited on the
substrates prior to the MOVPE wire growth. Nanowhiskers of many
different materials have been studied, such as Si, Ge, GaAs, GaP, and
InAs. A review of the growth and optical properties of GaAs and InAs
whiskers can be found in Sato et al. 1995.

During nanowire growth the material composition can be changed,
and abrupt heterointerfaces have been realized normal to the wire axis.
Figure 6.5 shows a cross-section through an InAs nanowire with barri-
ers made of InP. In this image the catalytic gold particle on top of the
nanowire can be seen. Using this growth technique incorporating het-
erointerfaces, quantum dot structures and resonant tunneling structures
can be made.

Such nanowires have been characterized with optical techniques and
transport experiments. For the latter, the nanowires are typically bro-
ken off the substrate and put with the wire axis parallel to the surface
of another substrate. The wires can then be located and contacted with
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the lithographic techniques described below. In nanowires without het-
erointerfaces, quantum dots can be induced with laterally patterned gate
electrodes. Possible applications of these nanowires are field effect tran-
sistors with particularly low power consumption, memory applications,
light emitters, and nanosensing.

(a) (b)

(InAs)

(InP)

20 nm 30 nm

Fig. 6.5 (a) High resolution transmis-
sion electron microscope image of an
InAs nanowire with several InP/InAs
heterointerfaces. (b) Color-coded im-
age (printed here in grayscale) in
which the InP regions are emphasized.
(Reprinted with permission from Bjork
et al., 2002. Copyright 2002 American
Chemical Society.)

Carbon nanotube fabrication. Carbon nanotubes (CNTs) can be
viewed as two-dimensional graphene sheets (i.e., monolayer graphite)
that are rolled up to form seamless cylindrical tubes of diameters in
the nanometer range and lengths of many micrometers up to a mil-
limeter. They exhibit an enormous tensile strength and have interest-
ing electronic and optical properties.2 Two types of CNTs can be dis-
tinguished. Single-walled nanotubes (SWNTs) consist only of a single
graphene sheet, whereas multiwalled nanotubes (MWNTs) are made of
several coaxial single-wall tubes, the outer ones surrounding the inner
ones.

Depending on the direction in which the graphene sheets are rolled
up, SWNTs can be classified using the so-called chiral vector. If a1 and
a2 are the two unit vectors of the honeycomb graphene lattice (see Fig.
3.5), a chiral vector can be represented as C = na1 +ma2, with n and
m being integer. A CNT in which the start and end point of C coincide
for certain (n,m) is called an (n,m)-nanotube. Armchair nanotubes
have n = m and zig-zag nanotubes (n, 0). Other nanotubes are called
chiral. Figure 6.6 shows a scanning tunneling microscope image of a
chiral carbon nanotube with atomic resolution. Electronically, SWNTs
are metallic for 2n+m = 3k (k integer) and semiconducting otherwise.

Fig. 6.6 Scanning tunneling micro-
scope image of a CNT with atomic
resolution. (Wildoer et al., 1998.
Reprinted by permission from Macmil-
lan Publishers Ltd. Copyright 1998.)

CNTs can be produced in a variety of ways. Initially they were found
to be produced in arc discharges using carbon electrodes. This method
is probably most widely used. SWNTs and MWNTs are produced at
the same time in a random mixture.

An alternative production method is laser ablation from a graphite
target. A pulsed laser vaporizes the graphite in a high temperature
reactor which is flushed with an inert gas. Nanotubes form at the cooler
walls of the reactor chamber. This method has a yield of about 70% and
produces predominantly SWNTs. The tube diameter can be controlled
to some extent by the reaction temperature.

Chemical vapor deposition has also been used to produce CNTs. This
growth method uses a substrate on which catalytic particles, for exam-
ple, nickel, cobalt, or iron, are prepared. The size of these particles is
related to the diameter of the CNT that will grow. Carbon is provided in
the growth chamber as a carbon containing gas, such as ethanol, ethyl-
ene, or acetylene. At the sites of the catalyst particles, the gas molecules
are broken apart and the nanotubes grow in random directions at the
edges of the particle.

2For example, they were used to enhance the frame of the carbon fiber bicycle frame
of F. Landis used in the 2006 Tour de France.
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If strong electric fields are applied during the growth, a plasma can
be created leading to the plasma enhanced chemical vapor deposition
method. In this case the nanotubes grow in the direction of the electric
field.

For making electrical contacts to carbon nanotubes, they are brought
into solution and spread onto a suitable substrate. Individual tubes can
then be located with a scanning electron microscope. Metallic contacts
to the tubes are made with lateral patterning techniques and metal
evaporation. Figure 6.7 shows an example of a CNT connecting two Pt
electrodes on a Si/SiO2 substrate.

CNT

metal finger

metal finger

Fig. 6.7 Scanning force microscope im-
age of a CNT connecting two plat-
inum contact fingers (Tans et al., 1997.
Reprinted by permission from Macmil-
lan Publishers Ltd. Copyright 1997.)

6.2 Lateral patterning

Apart from the growth methods for the fabrication of nanostructures
introduced in the previous section, there are very common and tech-
nologically mature methods for laterally structuring substrates. In in-
dustry, mainly photolithographic methods are used. In research, more
flexible methods, such as electron beam lithography (EBL), or local
anodic oxidation with a scanning force microscope (AFM lithography)
are employed. From the processing perspective three techniques can be
distinguished: we can either remove material (e.g., by wet chemical etch-
ing), deposit material (e.g., by evaporating metal electrodes), or modify
the material locally (e.g., by local oxidation or by ion implantation).

Photolithography. Using the technique of photolithography, a pattern
can be transferred from a so-called mask onto a thin layer of photore-
sist. The process is similar to the preparation of a paper copy of a
photograph. The mask acts as the negative, the substrate with the
photoresist corresponds to the photographic paper. The photoresist is
exposed to UV-light through the mask and then developed. The de-
veloper (a suitable chemical agent) dissolves the resist in those regions
where it was exposed and the semiconductor surface is uncovered locally.
In this way the resist pattern becomes an image of the mask pattern.

Figure 6.8 shows the relevant steps of a photolithographic process with
subsequent etching of the semiconductor:

wafer after
cleaning
after spinning
photoresist

UV-exposure

after
developing
after
etching
after resist
stripping

Fig. 6.8 Lateral patterning of a semi-
conductor wafer with photolithography
and etching.

(1) wafer cleaning

(2) spinning photoresist

(3) exposure of the resist through the mask

(4) developing the resist

(5) etching of the uncovered surfaces

One distinguishes positive resists, negative resists, and image reversal
resists. The positive resist dissolves in the exposed regions during de-
velopment (see Fig. 6.8), whereas negative resist dissolves in the regions
that were not exposed.
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A typical positive resist is made of a light-sensitive compound, a base
material and a suitable organic solvent. The developer rapidly dis-
solves the base material in the presence of the light-sensitive compound
(e.g., 15 nm/s), in its absence more than a hundred times worse (e.g.,
0.1 nm/s). The resist is exposed with light of a wavelength between 300
and 450 nm, i.e., in the UV-range (mercury-vapor lamp). It destroys
the light-sensitive compound in such a way that the exposed resist be-
comes soluble. The wavelength of the light limits the spatial resolution
of the method through diffraction and interference effects. With shorter
wavelengths and refined photoresists a resolution well below 100 nm is
reached in industry today.

The sample is covered with the photoresist using a resist spinner.
Rotation speeds between 2000 and 8000 rpm lead to resist thicknesses
between 2.5µm and 300 nm.

If metallic electrodes need to be deposited on a semiconductor wafer,
the so-called lift-off technique is used. Figure 6.9 shows the essential
steps of this process. Crucial for this process is that after the develop-
ment step the photoresist edges have an undercut profile. If a sufficiently
thin metal film is evaporated, it will not be continuous at the resist edge.
Upon resist removal, the parts of the metal film on top of the resist will
be lifted and removed with the resist.

wafer after
cleaning

after spinning
photoresist

UV-exposure

after
developing
after metal
evaporation

after lift-off

Fig. 6.9 Lateral patterning of gate
electrodes with the lift-off technique.Electron beam lithography (EBL). Special resists exist that are

not made for exposure with light but with electrons of a certain energy
(typically 10 to 25 keV). For the exposure, the beam of a scanning elec-
tron microscope can be used. The position of the beam can be exactly
controlled and as a result one can directly write a pattern into the resist
without the need of a mask. Therefore electron beam lithography is a
very flexible method which is widely used in research. With the best
microscopes, structures down to the size of about 30 nm can be written.

As in photolithography, positive and negative resists are used, made on
the basis of polymers. The most common positive resist is PMMA (poly-
methyl methacrylate, or polymethyl-2-methylpropanoate, also known as
acrylic). In positive resists, chemical bonds are cracked by the imping-
ing electrons and the exposed region is more soluble. In negative resists,
the exposure leads to a strong cross-linking of the molecules and, as a
result, to a weaker solubility. The dose for an exposure is typically in
the range of 2 × 10−7 to 8 × 10−7 C/cm2.

Hall bar structure: As an example for the application of the tech-
niques introduced above, we describe the fabrication of a so-called Hall
bar structure. The following processing steps are necessary (see also
Fig. 6.10):

(1) Mesa patterning

• wafer cleaning

• spinning photoresist
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Fig. 6.10 Step by step fabrication of
a Hall bar structure with top gate.
(a) Mesa structure. (b) After the fab-
rication of ohmic contacts. (c) After
evaporating the top gate.

mesa structure

ohmic contacts

top gate

(a)

(b)

(c)

• exposure of the resist through the mask with the mesa struc-
ture

• developing the resist
• etching of the uncovered semiconductor surfaces
• removing the remaining photoresist

(2) Ohmic contacts
• wafer cleaning
• spinning photoresist
• exposure of the resist through the mask with the ohmic con-

tact structure
• developing the resist
• evaporating gold–germanium–nickel
• lift-off process
• alloying contacts

(3) Top gate
• wafer cleaning
• spinning photoresist
• exposure of the resist through the mask with the gate struc-

ture
• developing the resist
• evaporating titanium–platinum–gold
• lift-off process
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Split-gate technique. Using the so-called split-gate technique, very
narrow quantum channels for electrons can be fabricated on the basis
of two-dimensional electron gases. To this end, two (or more) finger-
shaped gate electrodes are evaporated in such a way that only a narrow
channel remains in-between. An example is shown in Fig. 6.11. The two-
dimensional electron gas below the gate can be completely depleted by
applying negative voltages on the three gate electrodes. The electrons

Fig. 6.11 Two quantum point contacts
defined with the split-gate technique.
In the narrowest region, the separa-
tion of the two electrodes is 250 nm.
(Reprinted with permission from van
Houten et al., 1989. Copyright 1989 by
the American Physical Society.)

can only pass through the narrow channels between the gates. Such a
narrow channel is called a quantum point contact. Figure 6.12 shows a
cross-sectional view through such a channel.

split gate

2DEG plane

electron channel

Fig. 6.12 Cross-sectional view of a
heterostructure with a two-dimensional
electron gas and a split-gate on the sur-
face. Negative voltages on the gate
electrodes deplete the electron gas and
a narrow electronic channel forms.

Fabricating a number of split-gates allows us to define quantum dots.
These structures are based on two-dimensional electron gases and six
gate fingers are evaporated as shown in Fig. 6.13. The electron gas is
depleted by applying negative voltages to the finger gates. Owing to the
larger separation of the two middle fingers as compared to the two outer
pairs of gates, electrons can be localized on an island between the gates.
The two outer pairs of electrodes determine the coupling of the island
to the extended electron gas outside the quantum dot.

Fig. 6.13 GaAs/AlGaAs heterostruc-
ture with a two-dimensional electron
gas below the surface and a split-gate
defined quantum dot. Negative volt-
ages applied to the gate electrodes de-
plete the underlying electron gas such
that electrons are localized on the is-
land between the two central gate fin-
gers.

AFM lithography. AFM lithography is a method for the fabrication
of semiconductor nanostructures which is innovative, very flexible, and
simple in principle. It is not used industrially, but a number of research
labs have developed the relevant know-how for using the method rou-
tinely for nanostructure fabrication.

Figure 6.14 shows schematically how this technique works. The basis
is, for example, a GaAs/AlGaAs heterostructure with a shallow two-
dimensional electron gas (about 40 nm below the surface). At room
temperature a water film will be present on the surface. Its thickness
can be controlled via the humidity of the air.

The tip of a scanning force microscope is positioned close to the sur-
face. Using the piezoelectric actuators of the microscope, the tip can
be moved laterally along the surface of the substrate. A control loop
measures the force between tip and surface and keeps the tip–sample
separation constant during the lateral motion using another piezoelec-
tric actuator (z-piezo). By scanning the tip line by line above the surface
and measuring the voltage applied to the z-piezo, one obtains a map of
the surface topography. During such mapping the forces between the tip
and the surface are in the range of a few nanonewtons and no mechani-
cal wear arises. Lateral resolutions in the nanometer range are routinely
achieved, atomic resolution is possible. Vertically, the resolution can be
increased into the subangstrom range.

If doped silicon tips or metal coated tips are used, voltages can be ap-
plied between the tip and the sample. An appropriate voltage (typically
between −10 and −20 V) results in a local oxidation of the sample sur-
face below the tip. For this process, the water film plays an important
role. The piezoelectric actuators are used to move the tip slowly over
the surface. In this way, oxide lines of arbitrary shape can be written on
the surface. Oxide line widths of about 100 nm are routinely achieved.
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Fig. 6.14 Principle of AFM lithogra-
phy.

GaAs

AlGaAs

e.g. 20V

AFM tip

water film

2DEG

oxide li
ne

Fig. 6.15 (a) Quantum ring struc-
ture fabricated by AFM lithography
on a GaAs/AlGaAs heterostructure.
(b) Schematic picture of the structure
where all the length scales are indicated
(Fuhrer et al., 2001).
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The height of the lines can vary between 2 and 30 nm.
It turns out that the electron gas is completely depleted below the

oxide lines. In this way, oxide lines split the electron gas into electrically
separate parts. At liquid helium temperatures, a few hundred millivolts
can be applied between these parts, before a measurable leakage cur-
rent flows. By arranging the oxide lines on the surface in a suitable
way, many types of nanostructures can be fabricated. Among them are
quantum point contacts, quantum wires, quantum dots, and quantum
rings. Figure 6.15 shows, as an example, a quantum ring fabricated in
this way. The regions labeled ‘qpc1a’, ‘qpc1b’, ‘qpc2a’, ‘qpc2b’, ‘pg1’,
and ‘pg2’ denote parts of the two-dimensional electron gas that can be
used as in-plane gates for tuning the electron density in the structure.
Between the source and the drain contact, a voltage can be applied for
measuring the conductance of the ring.
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(c)(b)(a)

Fig. 6.16 (a) Folding and unfolding the
adhesive tapes reduces the number of
layers per flake. (b) Flakes are trans-
ferred onto a substrate by pressing it on
the adhesive side of the tape. (c) Single
layer flakes can be discerned under an
optical microscope.

Exfoliation of graphene. A particularly simple technique is used to
deposit single-layer graphene flakes on substrates. The starting material
is, for example, a powder consisting of natural graphite flakes. The pow-
der is distributed on an adhesive tape. Subsequent folding and unfolding
the tape [see Fig. 6.16(a)] tears the stacked graphene sheets apart and
therefore leads to thinning of the graphene flakes, some of which can
be single layer, sitting on the sticky side of the tape (Novoselov et al.,
2004). This material is then transferred onto a highly doped silicon
substrate which is covered by a 300 nm SiO2 layer by pressing the ox-
idized surface onto the tape [Fig. 6.16(b)]. The thickness of the oxide
layer on the substrate has been chosen such that a single-layer graphene
flake on the surface can be distinguished from thicker flakes and from
the bare surface under an optical microscope by using a green filter [see
Fig. 6.16(c)]. A metal grid fabricated on the oxide by photolithography
before the transfer of the flakes allows one to describe the position of
a flake, once it has been found. Later on, the flake can be contacted
and patterned by electron beam lithography and metal evaporation or
etching.

Further reading

• Weisbuch and Vinter 1991; Heinzel 2007; Williams
1990.
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7.1 The electrostatic problem

The determination of static electric fields, or the electric potentials
within a nanostructure is a well-known problem of electrostatics. Fig-
ure 7.1 shows a typical arrangement with all the necessary components.
Due to the presence of heterointerfaces and surfaces, there are spatially
varying dielectric properties that can be described by a spatially vary-
ing relative dielectric constant ε(r). There will be fixed charges in the
problem, such as ionized dopants or fixed surface charges, and electronic
charges whose motion will have to be described within the effective mass
Schrödinger equation (5.9) on page 74. Furthermore, there may be gate
electrodes on surfaces on which voltages can be applied. The general
treatment of this situation given in this chapter will enable us to gain
further insight into the possibilities for creating confinement potentials
for electrons (or holes), i.e., insight into the potential U(ri) and the
electron–electron interaction VC(ri − rj) in eq. (5.9).

The problem consists of finding the solution of Poisson’s equation

∇ [ε(r)ε0∇φ(r)] = −ρ(r) (7.1)

in which the electrostatic potential fulfills the following boundary con-
ditions: on the surfaces Si of the metallic electrodes (gates) the electro-

confined electrons
in 2DEG plane

doping
plane

surface
charges

induced charges on
gate electrodes

1

2

Fig. 7.1 Schematic illustration of a
typical distribution of fixed and mobile
charges in a semiconductor nanostruc-
ture with gate electrodes.
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Fig. 7.2 Example of the potential de-
scribed by Green’s function, plotted as
electric field lines. A unity charge q = 1
at r1 fills space with an electric field
that is, at the gate electrodes, oriented
normal to the surface. Surface charges
will be induced on these surfaces. Elec-
tric field lines are deflected at dielectric
interfaces.

induced charges on
gate electrodes

1

2

G1=0=0

q

G2

static potential takes constant values φi, i.e.,

φ(r)|Si
= φi.

The charge density ρ(r) in eq. (7.1) describes the spatially fixed charges
of ionized dopants, surface charges, or other ionized impurities, described
by the density ρion(r), and the density of the mobile charge carriers
(electrons) denoted as ρe(r), such that ρ(r) = ρion(r) + ρe(r).

7.2 Formal solution using Green’s function

An analytic solution of eq. (7.1) can only be found in very few special
cases involving particular symmetries. Usually one has to find solutions
numerically. However, there is a way of solving the problem formally by
introducing Green’s function. The solution of the problem will therefore
express the electrostatic potential φ(r) with the help of this function.
The different terms of this result can be physically interpreted, and
insight into the problem can be gained even without actually calculating
Green’s function.

Green’s function. We define Green’s function G(r, r1) as the solution
of the equation

∇ [ε(r)ε0∇G(r, r1)] = −δ(r − r1) (7.2)

with the boundary conditions

G(r, r1)|r∈Si
= 0.

Green’s function describes the electrostatic potential at r that is created
by a unity point charge placed at r1, if all metal electrodes are grounded.
Green’s function has the property G(r1, r2) = G(r2, r1) (The proof is
found in Appendix B).

Green’s integral theorem. In order to solve eq. (7.1) formally, we fur-
ther need an extended version of Green’s integral theorem (the derivation
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can be found in AppendixB):∮
S

ds [ψε∇φ− φε∇ψ] · n =
∫

V

dV {ψ∇ [ε∇φ] − φ∇ [ε∇ψ]} (7.3)

Here the unit vector n is normal to surface S pointing outwards with
respect to the volume enclosed by S.

General solution of the electrostatic problem. In order to solve
our electrostatic problem, we replace in Green’s theorem, eq. (7.3), ψ by
Green’s function G(r, r1), ε by ε(r)ε0, and φ by φ(r) from eq. (7.1), and
obtain

φ(r) =
∫

V

dV1G(r1, r)ρion(r1)

+
∫

V

dV1G(r1, r)ρe(r1)

−
∑

i

φi

∫ ∫
Si

ds1i [ε(r1)ε0∇1G(r1, r)] · ni (7.4)

This solves the electrostatic problem for a given charge density distri-
bution, if Green’s function G(r1, r2) is known. This function is given
by the geometry of the gate electrodes and the relative dielectric function
alone. In particular, it is independent of the voltages φi on the electrodes
and of the charge distribution in the system.

The solution for the potential in eq. (7.4) expresses the superposition
principle. The potential appears to be the sum of various terms that can
be interpreted individually. The first term describes the electrostatic
potential created by the distribution of fixed charges for grounded gate
electrodes and we define

Φion(r) :=
∫

V

dV1G(r1, r)ρion(r1). (7.5)

The second term describes the electrostatic potential created by the
distribution of electronic charges in the system and we define

Φe(r) :=
∫

V

dV1G(r1, r)ρe(r1). (7.6)

The third term contains no charge density, but includes the voltages φi

on the gate electrodes. It is a sum of contributions of all the individual
gate electrodes. The characteristic potential of gate electrode i defined
as

αi(r) := −
∫ ∫

Si

ds1i [ε(r1)ε0∇1G(r1, r)] · ni (7.7)

describes the electrostatic potential distribution in the structure if there
were no charges, with a unity voltage applied to gate i and zero voltage
on all other gates. Another property of the characteristic potential αi(r)
is found if one considers the case in which all φi in eq. (7.4) have the
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same value V0. In this case we know that φ(r) = V0 must hold and
therefore it follows that ∑

i

αi(r) = 1. (7.8)

The solution of the electrostatic problem, eq. (7.4) can now be ex-
pressed in the form

φ(r) = Φion(r) + Φe(r) +
∑

i

φiαi(r). (7.9)

7.3 Induced charges on gate electrodes

We will find an alternative interpretation of the characteristic potentials
αi(r) by calculating the screening charges induced on the gate electrodes.
The total charge induced at the surface of electrode i is given by

Qi =
∫ ∫

Si

dSiε(r)ε0∇φ(r) · ni

=
∫ ∫

Si

dSiε(r)ε0∇

⎧⎨
⎩Φion(r) + Φe(r) +

∑
j

φjαj(r)

⎫⎬
⎭ · ni.

Again, the charge appears to be a superposition of different contribu-
tions. We can therefore rewrite the expression in the form

Qi = Q
(0)
i +

∑
j

Cijφj , (7.10)

where we have defined the charge on gate electrode i for zero gate volt-
ages, i.e., the screening charge on the gates induced by the static and
electronic charges in the system,

Q
(0)
i :=

∫ ∫
Si

dSiε(r)ε0∇{Φion(r) + Φe(r)} · ni, (7.11)

and the elements of the capacitance matrix

Cij :=
∫ ∫

Si

dSiε(r)ε0∇αj(r) · ni (7.12)

describing the charges induced on the gates due to the application of
voltages on them.

Screening charge induced on the gates by charges in the sys-
tem. We can simplify the expression for Q(0)

i in eq. (7.11) by using the
definitions of Φion(r) and Φe(r) in eqs (7.5) and (7.6), and the definition
of the characteristic potentials αi(r) in eq. (7.7).

Q
(0)
i =

∫
V

dV [ρion(r) + ρe(r)]
∫ ∫

Si

ds1iε(r1)ε0∇1G(r, r1) · ni

= −
∫

V

dV ρion(r)αi(r) −
∫

V

dV ρe(r)αi(r) (7.13)
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Another meaning of the characteristic function αi(r) emerges from this
expression. If a charge +e is placed at r, the quantity −eαi(r) is the
screening charge induced on the surface of electrode i. From eq. (7.8) it
follows that the sum over the charges induced on all gate electrodes is
equal to −e.

Combining the two meanings of the characteristic function αi(r)—the
electrostatic potential at r, created by a unity voltage on electrode i, and
the fraction of induced charge on electrode i, if a charge is placed at r—
allows us to find an important interpretation of the quantity eαi(r)φi:
On the one hand, this is the electrostatic energy of the charge e placed
at r, but on the other hand it is the work performed by the voltage
source for bringing the screening charge −eαi(r) onto electrode i.

The capacitance coefficients. The expression for the capacitance co-
efficients in eq. (7.12) can be rewritten by using eq. (7.7) and the result
is

Cij =
∫ ∫

Si

dsiε(ri)ε0
∫ ∫

Sj

dsjε(rj)ε0∇i {[∇jG(ri, rj)] · nj} · ni.

These coefficients form the capacitance matrix of the system and they
depend on the geometry of the system only. They are independent of
the potentials on the gate electrodes.

The capacitance coefficients obey the equation∑
j

Cij = 0

because the charge on electrode i must not change, if all potentials φi

are lifted by the same amount. Furthermore, they are symmetric in
the indices i and j, i.e., Cij = Cji. This means that the number of
independent matrix elements in a problem with N electrodes reduces to
N(N − 1)/2. Using these properties for the capacitance matrix of the
system we obtain for the total induced charge on electrode i

Qi = Q
(0)
i +

∑
j

Cij (φj − φi) ,

i.e., the induced charge depends only on voltage differences.

7.4 Total electrostatic energy

We are now interested in calculating the total electrostatic energy of our
system. It is given by

W =
1
2

∫
V

dV [ρion(r) + ρe(r)]φ(r) +
1
2

∑
i

φiQi

The first term describes the energy of the charges within the system,
and the second term is the energy of the screening charges induced on
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the electrodes. Inserting the result for the potential φ(r), eq. (7.9), and
for the screening charge Qi induced on gate i, eq. (7.10), we obtain

W = Wion−ion +Wion−e +We−e +
1
2

∑
ij

φiCijφj , (7.14)

where the energy of the fixed charges in the system has been defined to
be

Wion−ion :=
1
2

∫
dV ρion(r)Φion(r), (7.15)

the energy of the electronic system is

We−e :=
1
2

∫
dV ρe(r)Φe(r), (7.16)

and the interaction energy between the fixed charges and the electronic
system is

Wion−e :=
∫
dV ρe(r)Φion(r). (7.17)

7.5 Simple model of a split-gate structure

In order to illustrate the general considerations of the previous section,
we discuss a simple model for a split-gate structure fabricated on top
of a heterostructure in which a two-dimensional electron gas resides at
the heterointerface below the surface (Glazman and Larkin, 1991). Fig-
ure 7.3(a) shows a cross-sectional view of such a structure. We are inter-
ested in the potential φ(x) in which the electrons move. This potential
is, on the one hand, given by the fixed ionized dopants in the doping
plane, and, on the other hand, by the voltages on the two gate electrodes.
In accordance with the superposition principle expressed in eq. (7.9) we
split the potential into two contributions. The first contribution, ΦG,

z

x

0

0

D VR

left gate right gate

2DEG

(a)

(b)

VL

Fig. 7.3 Electrostatic model of a split
gate on a heterostructure with remote
doping and two-dimensional electron
gas.

is caused by the voltages VL and VR on the two gate electrodes in the
absence of the donor charges. The second contribution, Φion, is created
by the ionized donors, if VL = VR = 0. We assume that the split gate
is much more extended in the y-direction than the width D of the slit
between the two gates. In order to simplify the model, we neglect the
separation of the plane of the gates, the donors and the electron gas as
depicted in Fig. 7.3(b). This is a good approximation if these separations
are small compared to the depletion lengths near the gate electrodes. In
this model the semiconductor fills all space for which z ≤ 0. We further
assume that the donor charges at |x| > D/2 are completely neutralized
by the image charges on the gate electrodes. As a result, only positive
charges in the region |x| < D/2 are relevant.

The potential ΦG(x, z) obeys Laplace’s equation

∆ΦG = 0

with the boundary conditions

ΦG(x, z = 0) =
{
VL for x < −D/2
VR for x > D/2 .
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In agreement with eq. (7.9) the solution has the form

ΦG(x, z) = VLαL(x, z) + VRαR(x, z)

and it can be shown (Glazman and Larkin, 1991) that the characteristic
function αL(x, z) can be written as

αL(x, z) = −sgn(x)
1
π

Im ln

⎧⎨
⎩2ζ
D

−
[(

2ζ
D

)2

− 1

]1/2
⎫⎬
⎭ ,

where ζ = x + iz, and αR(x, z) = 1 − αL(x, z). The characteristic
function αL(x, z) is plotted in Fig. 7.4.
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Fig. 7.4 Characteristic potential of the
left gate, αL(x, z).

The potential Φion(x, z) due to the charged donors in the slit between
the gates can be expressed as (Glazman and Larkin, 1991)

Φion(x, z) =
ens

εε0

D

2
Im

⎧⎨
⎩2ζ
D

+ i

[
1 −
(

2ζ
D

)2
]1/2

⎫⎬
⎭ ,

where ns is the electron density in the original two-dimensional electron
gas. This potential normalized to −ensD/2εε0 is plotted in Fig. 7.5. It
fulfills the boundary condition Φion(x, z = 0) = 0 for |x| > D/2, i.e., on
the metallic electrodes. This boundary condition implies that screening
of the charged donors by the gate electrodes is accounted for, which has
a significant influence on the potential. It is evident that the ions create
an attractive potential for electrons with its minimum at x = 0. This
potential is responsible for the confinement of the electron motion to
a narrow channel. The steep potential walls of the confinement are a
result of the screening effect of the gate electrodes. 1

4
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z/D
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Fig. 7.5 Normalized potential of the
donor layer Φ̄ion(x, z).

The total potential of the system is the sum of ΦG(x, z) and Φion(x, z).
If both gate voltages are the same, the gates contribute a constant to the
total potential. If an asymmetric gate voltage is applied, i.e., VL �= VR,
the position of the potential minimum in the channel can be shifted, i.e.,
the electron channel is shifted in real space. In a real structure this can
improve the situation if no ideal channel forms as a result of residual
potential fluctuations due to the discreteness of the donor charges. In
this case, asymmetrically applied gate voltages can frequently improve
the situation.

In our considerations we have neglected the potential contribution
that is caused by the electrons in the channel. This approximation is
only valid if the channel is almost completely depleted. At high electron
concentrations in the channel, this potential has to be taken into account
self-consistently.

The question of how surface charges have to be included in the calcu-
lation is discussed in the literature. In experiments on nanostructures
in GaAs/AlGaAs at temperatures below 4.2 K, it is frequently assumed
that the surface charge distribution is frozen and does not change on the
application of gate voltages. This is in contrast to models considering a
pinned Fermi level at the surface, which implies a constant surface po-
tential. In this case, charge will be exchanged between the electron gas
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and the surface upon a change of gate voltages. This may be relevant at
elevated temperatures. A comparison of these two models can be found
in Davies et al. 1995.

Further reading

• Jackson 1983; Maxwell 1873. • Papers: Glazman and Larkin 1991; Davies et al.
1995.

Exercises

(7.1) Consider a parallel plate capacitor with plate sepa-
ration d and plate dimensions much larger than d.
Both plates are grounded. Far away from the plate
edges you place a single electron at a distance x < d
from one of the two plates. What is the charge in-
duced on each of the two capacitor plates?

(7.2) Consider a parallel plate capacitor with plate sep-
aration d and plate dimensions much larger than
d. One plate is kept grounded, the other is con-
nected to a voltage source keeping it at the voltage
V0 = 1V. A third, initially charge-neutral sheet
of metal is inserted into this capacitor parallel to

its two plates at a distance x (0 < x < d) to the
grounded plate. What is the energy required to
add a single electron (initially at ground potential)
to the central plate? What is the energy to add a
second electron?

(7.3) Two electrons are placed at the same distance d
above a metallic plane connected to ground. Dis-
cuss how their mutual repulsion is altered by the
presence of the metallic plane. How does the com-
ponent parallel to the metallic plane of the repelling
force between the electrons change with the sepa-
ration x of the two electrons?
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8.1 General hamiltonian

The electrons in a semiconductor move according to the predictions of
Schrödinger’s equation. The effective mass approximation leads to a
Schrödinger equation for the envelope function. The many-particle prob-
lem of interacting particles is governed by a hamiltonian of the form
shown in eq. (5.9). We will now specify the confinement and interaction
potential in this hamiltonian taking screening effects of gate electrodes
into account. We achieve this by starting from the total electrostatic
energy of the system given in eq. (7.14) together with the definitions in
eqs (7.15), (7.16), and (7.17).

Discrete electronic distribution. As a start, we specify the electron
density distribution in our nanostructure as

ρe(r) = −|e|
∑

i

δ(r − ri),

where the sum is over all electrons in the system and ri describes the
location of the ith electron. With this distribution, and eq. (7.5), we find
for the electron–ion interaction energy, eq. (7.17), the expression

Wion−e = −|e|
∑

i

∫
V

dV ′ρion(r′)G(r′, ri).

In a similar fashion we obtain for the electron–electron interaction en-
ergy, eq. (7.16), using eq. (7.6),

We−e :=
e2

2

∑
i

G(ri, ri) +
e2

2

∑
ij,j �=i

G(ri, rj).

The second term describes the mutual interaction between electrons.
The first term is a self-interaction term. For a system without dielec-
tric interfaces and gate electrodes, this term would diverge and should
be neglected. However, if gate electrodes and dielectric interfaces are
present, this term also describes the interaction between an electron
and its image charges. We will therefore keep this term in the following.
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Potential energy of an N-electron system. While eq. (7.14) is an
expression for the total electrostatic energy of a system, we are now
interested in the electrostatic energy of the electronic system alone. In
order to find this energy, we determine how much energy we have to
use to build up the electronic system. Assume that there are already
p− 1 electrons in the system and we wish to add the pth electron. The
required energy is

∆Wp = Wp −Wp−1

= −|e|
∫

V

dV ρion(r)G(rp, r) +
e2

2
G(rp, rp) + e2

p−1∑
n=1

G(rn, rp)

A part of this energy is, however, provided by the voltage sources con-
nected to the gate electrodes, because when we add the electron the
induced screening charges on the gates change as well. This change in
charge is, according to eqs (7.10) and (7.13) given by

∆Qi,p = |e|αi(rp).

The work done by the voltage sources is then

∆Wp,sources =
∑

i

φi∆Qi,p = |e|
∑

i

φiαi(rp).

The required extra energy to add the pth electron is the difference ∆Wp−
∆Wp,sources, i.e.,

Vp(rp) = −|e|
∫

V

dV ρion(r)G(rp, r)

+
e2

2
G(rp, rp) + e2

p−1∑
n=1

G(rn, rp)

−|e|
∑

i

φiαi(rp).

This expression can be interpreted as the potential energy of the pth
electron. We obtain the total potential energy of the electronic system
by summing Vp(rp) over all N electrons of the system.

Hamiltonian for the N-electron system. We are now ready to write
down the hamiltonian for the N -electron system in the effective mass
approximation [cf., eq. (5.9)] as

HN =
N∑

n=1

{
[pn + |e|A(rn)]2

2m�
+ U(rn) +

1
2
g�µBσnB(rn)

+ e2
n−1∑
m=1

G(rm, rn)

}
, (8.1)
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where

U(r) = Ec(r) − |e|
∫

V

dV ′ρion(r′)G(r, r′) +
e2

2
G(r, r) − |e|

∑
i

φiαi(r)

(8.2)
This hamiltonian is valid in materials with a parabolic and isotropic band
in which the wave function is concentrated mainly in one material. The
first term in eq. (8.1) describes the kinetic energy of the electrons and
allows for a magnetic field. The second term describes a single-particle
confinement potential originating from the terms specified in eq. (8.2).
The first stems from a change in material composition. Such a change
can be abrupt, as in a quantum well, or continuous, as in a parabolic
quantum well. The second term in eq. (8.2) is the potential caused by
the distribution of fixed charges in the system, such as ionized dopants,
ionized impurities, and fixed surface charges. Often the discreteness of
the charge distribution is neglected and an average charge density per
volume is used instead (Jellium model). The third term in eq. (8.2)
describes the interaction of an electron with its own screening charges
induced on the gate electrodes and at dielectric interfaces. Its diverging
self-energy contribution has to be removed by suitable mathematical
techniques. The action of voltages φi applied to the gates is given by
the last term in eq. (8.2). In the hamiltonian (8.1) the third term, also
called the Zeeman term, acts on the spin-degree of freedom and leads to
an energy splitting of spin-degenerate levels if the magnetic field is finite.
The last term in (8.1) describes the electron–electron interaction. It is
responsible for the many-body nature of the problem. It is frequently
considered within approximations, such as the Hartree and the Hartree-
Fock methods, or density-functional theory.

The above hamiltonian (8.1) nicely summarizes the ways in which we
can tailor the confinement potential for electrons in semiconductor nano-
structures. The choice of the primary material determines the effective
mass m� and the effective g-factor g�. Combining different materials in
heterostructures leads to band offsets acting as an effective confinement
potential in (8.2), but also to modifications of electronic interactions,
if the heterointerface is a dielectric interface [boundary conditions for
G(r, r′)]. The distribution of doping atoms in the structure contributes
to the confinement, but also causes spatial fluctuations of the potential
at the location of the electronic states due to the discreteness of the dis-
tribution. The same is valid for residual charged background impurities
in the material. Significant freedom is given for tailoring the confine-
ment potential via the last term in (8.2) with suitable gate geometries
and by applying appropriate gate voltages. This term is responsible
for the confinement of electrons in laterally patterned split-gate devices,
such as quantum point contacts and quantum dots. At the same time,
gate electrodes tend to screen the interaction among electrons and to
flatten spatial potential fluctuations of charged impurities by imposing
boundary conditions on Green’s function G(r, r′).
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Example: screening in a two-dimensional electron gas with
gate. In order to demonstrate the screening effect due to the presence
of a gate electrode, we consider a two-dimensional electron gas in a
GaAs/AlGaAs heterostructure with top gate. The electron gas is at a
distance d parallel to the gate. We assume for simplicity that GaAs and
AlxGa1−xAs have exactly the same relative dielectric constant ε. The
z-axis is the growth direction and therefore all interfaces and the plane
of the electron gas are at z = const. Green’s function for this system is
given by

G(r1, r2) =
1

4πεε0

(
1

|r1 − r2|
− 1

|r1 − r3|

)
,

where r3 = (r2ex)ex + (r2ey)ey − (r2ez)ez. We find for the interaction
between electrons in the plane of the electron gas the expression

G(r1, r2) =
1

4πεε0ρ

⎛
⎜⎜⎝1 − 1√

1 +
(

2d
ρ

)2

⎞
⎟⎟⎠ ,

where ρ is the separation of the two electrons in the plane. For small
separations ρ � 2d the interaction between electrons is essentially not
modified by the presence of the gate and is proportional to 1/ρ. For
ρ � 2d the interaction decays proportional to 1/ρ3. Each electron ex-
periences the field of an electric dipole created by the other electron
and its image charge. This is how the gate screens the electron–electron
interaction.

8.2 Single-particle approximations for the
many-particle problem

The Schrödinger problem with the hamiltonian (8.1) cannot be solved
analytically. Numerical algorithms have to be applied and clever ap-
proximation methods have to be used. There are a number of such
approximations that are quite commonly applied to many-body prob-
lems. Among them are the local density approximation, the Hartree ap-
proximation, the Hartree–Fock approximation, and the Thomas–Fermi
approximation.

Local density approximation. Density-functional theory (DFT) was
introduced by Hohenberg, Kohn and Sham (Hohenberg and Kohn, 1964;
Kohn and Sham, 1965). In 1998, Walter Kohn was awarded the Nobel
prize in chemistry for his development of the density-functional theory.
It expresses the total energy of an interacting system as a functional
of the electron density. The theory was developed for the case where
Green’s function is given by the bare Coulomb potential, i.e., the case
in which image charge effects due to gates and dielectric interfaces are
not relevant. In this case, the third term in eq. (8.2) drops out and the
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total energy of the system can (in units of E�
Ry and a�

B) be written as
(Hohenberg and Kohn, 1964; Kohn and Sham, 1965)

Ev[n] =
1
2

∫
dV∇r∇r′ n1(r, r′)|r=r′ +

∫
dV U(r)n(r)

+
1
2

∫ ∫
dV dV ′

n(r)n(r′)
|r − r′| + Exc[n(r)]. (8.3)

Here, n1(r, r′) is the single-particle density matrix. The first term de-
scribes the kinetic energy of the system corresponding to the first term
of (8.1) with zero magnetic field, the second is the potential energy in the
external potential U(r), given by eq. (8.2). The third and fourth terms
are contributions to the interaction, i.e., the last term in the hamiltonian
(8.1), the third describing the classical Coulomb energy, and Exc[n(r)]
being the so-called exchange–correlation energy. The interaction terms
can be written down in a straightforward way for the case of gated
structures with Green’s function replacing the bare Coulomb interac-
tion. It has been shown, that the correct ground state electron density
distribution minimizes the energy functional Ev[n(r)], if n(r) fulfills the
condition ∫

dV n(r) = N,

where N is the number of electrons in the system. So far this formalism
does not employ any approximations.

The problem, however, is to find an explicit expression of the exchange–
correlation energy functional. In the local density approximation (LDA),
which is valid in inhomogeneous electron gases with slowly varying den-
sity, one can approximate

Exc[n(r)] =
∫
dV n(r)εxc[n(r)],

where εxc[n] is the exchange–correlation energy of a single electron in a
homogeneous electron gas of constant density n.

Minimization of the energy functional Ev[n] in eq. (8.3) leads in this
approximation to a self-consistent single-electron Schrödinger equation
of the form (Kohn and Sham, 1965){

p2

2m�
+ U(r) + VH(r) + Vxc[n(r)]

}
ψn(r) = Enψn(r), (8.4)

where Vxc[n] = d[nεxc(n)]/dn. For the potential U(r) we can explicitly
write

U(r) = Ec(r) − |e|
∫

V

dV ′ρion(r′)G(r, r′) − |e|
∑

i

φiαi(r). (8.5)

The Hartree potential VH(r) is a solution of Poisson’s equation

∆VH =
e2n(r)
εε0

, (8.6)
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with appropriate boundary conditions, and the density n(r) is deter-
mined from the wave functions via

n(r) =
N∑

n=1

|ψn(r)|2 ,

where the sum extends over the N energetically lowest states. Effects of
finite temperature can be taken into account by taking the distribution
of electrons according to the Fermi–Dirac distribution into account. In
this case the density is given by

n(r) =
N∑

n=1

|ψn(r)|2 f(En − EF), (8.7)

and the Fermi energy has to be determined from the requirement of local
charge neutrality ∫

dV [ρion(r) − |e|n(r)] = 0. (8.8)

Approximate expressions for Vxc[n] assuming an unscreened Coulomb
interaction potential have been given by a number of authors (Gun-
narsson and Lundqvist, 1976; Hedin and Lundqvist, 1971; Perdew and
Zunger, 1981; Roesler et al., 1984). For example, the form of Gunnars-
son and Lundqvist is (in units of E�

Ry)

Vxc[rs] = −
[
1 + 0.0545rs ln

(
1 +

11.4
rs

)]
2

παrs
, (8.9)

with the interaction parameter

rs =
[
4π
3
a�
B

3n

]−1/3

.

Equations (8.4–8.9) are the set of equations that have to be solved self-
consistently. The total minimized energy of the whole system is then
given by

E =
∑

n

(
〈Tn〉 + 〈Un〉 +

1
2
〈V (n)

H 〉 + 〈V (n)
xc 〉

)
, (8.10)

where the expectation values 〈. . .〉 are summed over all occupied single-
particle states, and n denotes the quantum numbers. The quantities
〈Tn〉, 〈Un〉, 〈V (n)

H 〉, and 〈V (n)
xc 〉 denote expectation values of the kinetic,

the potential, the Hartree and the exchange–correlation energies, respec-
tively. We emphasize here that the factor 1/2 in front of 〈V (n)

H 〉 stems
from eq. (8.3) and avoids double counting of the electron–electron inter-
action terms. By contrast, the energy eigenvalues En obtained from the
single-particle eq. (8.4) are given by

En = 〈Tn〉 + 〈Un〉 + 〈V (n)
H 〉 + 〈V (n)

xc 〉 (8.11)

without the factor 1/2.
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Hartree approximation. The Hartree approximation emerges from
the local density approximation by neglecting the exchange–correlation
potential Vxc(r) in eq. (8.4). The many-body wave function Ψ(r1, . . . , rN )
is approximated as the product ofN single-particle wave functions ψ(ri).
The latter are chosen such that the total energy of the system is mini-
mized. The resulting single-particle Schrödinger equation reads{

p2

2m�
+ U(r) + VH(r)

}
ψn(r) = Enψn(r), (8.12)

where U(r) is determined by eq. (8.5), the Hartree potential is the solu-
tion of eq. (8.6) with the density given by eq. (8.7), and the Fermi energy
determined by eq. (8.8).

Example I: Electron distribution in delta-doped layers. As a
first example for the application of the self-consistent method of calcu-
lating the electronic structure of nanostructures we reconsider the case
of the delta-doped layer introduced on page 73. We employ the Hartree
approximation where each individual electron moves in the effective po-
tential U(r) + VH(r), where the Hartree potential VH(r) is the electro-
static potential created by all other electrons. In case of the delta-doped
layer, no heterointerface and no gate electrodes are involved. There-
fore we have in eq. (8.5) Ec(r) = 0 and αi(r) = 0. The second term
in eq. (8.5) is given by eq. (5.8), if we regard the doping plane as being
uniformly charged thereby neglecting the spatial discreteness of the ion-
ized donors. As a result, this problem reduces to the one-dimensional
Schrödinger equation[

− �
2

2m�

∂2

∂z2
+
e2ND

2εε0
|z| + VH(z)

]
Fn(z) = EnFn(z). (8.13)

The Hartree potential is found from the solution of Poisson’s equation

d2VH(z)
dz2

= −e
2n(z)
εε0

. (8.14)

The electron density in this equation can be determined from the enve-
lope functions via

n(z) = 2 ·
∑
n,k

|Fn(z)|2 1
e(Enk−µ)/kT + 1

= 2kT · m
�

π�2
·
∑

n

|Fn(z)|2 ln
(
e(µ−En)/kT + 1

)
. (8.15)

In the last step we have assumed a parabolic conduction band dispersion.
The chemical potential µ in eq. (8.15) has to be chosen such that charge
neutrality is established, meaning that∫ +∞

−∞
dzn(z) = ND. (8.16)
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Equations (8.13)–(8.16) are the system of equations for determining the
bound states of the δ-doped layer that has to be solved self-consistently.

The result of such a calculation for three δ-doped layers in GaAs with
a spacing of 100 nm is shown in Fig. 8.1. The electrons that are bound
to the doping plane screen the potential of the δ-layers such that, from
a distance, the system looks charge-neutral. This situation is similar to
atoms, where the strong internal electric fields caused by the charged
nucleus are screened by the electrons such that, from a distance, the
atom is seen as a charge-neutral object.
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Fig. 8.1 (a) Self-consistently calcu-
lated conduction band edge and bound
energy levels of three δ-doped lay-
ers in GaAs. (b) Electron densities
of the three bound subband states.
(Reprinted with permission from Kos-
tial et al., 1993. Copyright 1993 by the
American Physical Society.)

The self-consistent Hartree method for solving Schrödinger’s equation,
Poisson’s equation, and the charge density equation under the require-
ment of charge neutrality is very powerful and can also be applied to
systems without translational invariance in the plane. It describes the
interplay between quantization and screening that is very important in
many semiconductor nanostructures.

Example II: Formation of a one-dimensional channel in a split-
gate structure As the second example for the application of the Hartree
approximation we discuss a calculation by Laux, Frank, and Stern (Laux
et al., 1988). They investigated the formation of a one-dimensional
conducting channel in the split-gate structure shown schematically in
Fig. 8.2. At zero gate voltages, a two-dimensional electron gas exists at
the interface between GaAs and AlGaAs. If a negative voltage is ap-
plied to the gates, the electron gas under the gates is depleted and a
narrow electronic channel develops below the slit between the two gates.
The problem is translationally invariant in the y-direction. Therefore,
in Schrödinger’s equation, the y-direction separates.

Fig. 8.2 Schematic cross-section of
the structure for which the self-
consistent calculation of the electronic
channel is made. The structure is
a GaAs/AIGaAs heterostructure with
modulation doping and split gate.
(Reprinted from Laux et al., 1988 with
permission from Elsevier.)
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Fig. 8.3 (a) Effective confinement potential U(r) + VH(r) in the x-direction in the plane of the two-dimensional electron gas.
(b) Energy levels and Fermi level (electrochemical potential) for electrons. (Reprinted from Laux et al., 1988 with permission
from Elsevier.)

We write for the total wave function

ψnk(r) = χn(x, z)eikyy

and for the total energy

En(ky) = En +
�

2k2
y

2m�
.

The quantum number n is discrete, while ky is a continuous variable.
Figure 8.3(a) shows the total potential U(x, z) + VH(x, z) along x in

the plane of the electron gas calculated self-consistently for a number of
gate voltages. The zero of energy is the Fermi energy. The calculation
was made for a temperature T < 4.2 K. Bound quantum states arise in
the x-direction in the almost parabolic potential. They are called one-
dimensional modes that are described by the wave functions χn(x, z)
and the corresponding energies En. At a gate voltage of −1.56 V the
whole potential is above the Fermi energy and no states are occupied.
The channel is depleted. At a gate voltage of −1.52 V the shape of the
confinement potential is still parabolic, but its minimum is below the
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Fig. 8.4 Electron density at a num-
ber of gate voltages. The occupation of
subbands shows in a modulation of the
electron density normal to the channel
direction. (Reprinted from Laux et al.,
1988 with permission from Elsevier.)

Fermi energy. In order to find out whether the lowest quantum state E0

is occupied, we have to examine the quantization energies. These are
plotted in Fig. 8.3(b). It turns out that above −1.52 V the lowest bound
state is occupied. This is also evident in the plots of the electron density
in Fig. 8.4. The electron density has the shape of the squared ground
state wave function.
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In Fig. 8.3(b) we can see that more and more modes become occu-
pied with increasing gate voltage. As a result, the confinement potential
gets broader and forms a flat bottom [see Fig. 8.3(a)]. Accordingly, the
electron density in Fig. 8.4 becomes broader and shows an oscillatory
structure caused by the contributions of higher subbands. The energetic
separation of the states depends on the gate voltages and is between 1
and 5 meV corresponding to a temperature of about 11 K. For the ob-
servation of these quantization effects, experiments at low temperatures
have to be performed.

Hartree–Fock approximation. In the Hartree–Fock approximation
the many-body wave function is taken to be a Slater-determinant of
single-particle wave functions. This accounts for the fermionic character
of the electrons. Minimization of the total energy results in the Hartree
equation (8.12) with an additional term describing the exchange interac-
tion. While this term can be accounted for explicitly in nanostructures
with a small number of electrons, e.g., in few-electron quantum dots, in
large systems the local density approximation with its local exchange–
correlation potential eq. (8.9) can be applied.

Thomas–Fermi approximation. Within the approximation of Tho-
mas and Fermi the necessity of solving Schrödinger’s equation can be
completely avoided by also expressing the kinetic energy in eq. (8.4) as
a local functional of the density. Essentially, one determines the local
electron density by filling the three-dimensional density of states D(E)
(in two-dimensional problems the 2D density of states) from the local
band edge (subband edge) E0(r) = U(r)+VH(r) up to the Fermi energy:

ρe(r) = −|e|
∫
dED[E − U(r) − VH(r)]f(E − EF).

This electron density is plugged into Poisson’s eq. (8.6) for determining
VH. This method is particularly useful if the potential U(r) has small
variations on the scale of the Fermi energy on length scales large com-
pared to the Fermi-wavelengths of the electron. The quantization of
states is completely neglected.

Further reading

• Density-functional theory: Giuliani and Vignale
2005.

• Hartree and Hartree–Fock approximations: Lan-
dau and Lifschitz 1962; Madelung 1972; Giuliani
and Vignale 2005.

• Thomas–Fermi approximation: Kittel 2005;
Ashcroft and Mermin 1987; Giuliani and Vignale
2005.

• Papers: Laux et al. 1988.
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Exercises

(8.1) (a) Consider a shallow, low-density, two-
dimensional electron gas in a Ga[Al]As het-
erostructure with top gate. The separation
between the plane of the electron gas and
the gate is d = 34nm, the electron density is
ns = 1 × 1011 cm−2, and the relative dielec-
tric constant of GaAs is ε = 12.8. Discuss
the importance of screening by the top gate
for the electron–electron interaction in the
two-dimensional electron gas.

(b) Consider the same structure without a top

gate. How does the electron–electron inter-
action potential change?

(8.2) Consider a single ionized donor with positive charge
+e located in the center of an Al0.3Ga0.7As barrier
of 34 nm thickness. On one side of the barrier there
is a metallic gate electrode; on the other side there
is GaAs. Write down an expression for the poten-
tial which an electron near the GaAs/AlGaAs het-
erointerface would see. How deep is the potential
and what is its extent in the plane of the interface?
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The physics of two-dimensional electron gases is very rich and interest-
ing. Furthermore, two-dimensional electron gases in heterostructures are
fundamental building blocks of semiconductor nanostructures. A large
number of high quality semiconductor nanostructures have been made
by lateral patterning. We will therefore apply the general techniques
described in the previous chapters within a case study of GaAs/AlGaAs
heterostructures.

9.1 Electrostatics of a GaAs/AlGaAs
heterostructure

Consider a GaAs/AlGaAs heterostructure as it is depicted schemati-
cally in Fig. 9.1. As a first step we are interested in the electrostatic
description of this structure. For simplicity we assume that the relative
dielectric constants of GaAs and AlGaAs are identical. We choose the z-
axis in the growth direction of the crystal, normal to the heterointerface
with its origin, z = 0, at this interface. The AlGaAs barrier material is
in the region z < 0, GaAs fills the half space z > 0. On top of the GaAs
cap layer a thick metal layer has been deposited (but not shown in the
figure).

GaAs

AlxGa1 xAs

GaAs

-donor
layer

AlAs

2DEG

GaAs

x
y

z

Cap layer

s

d

z

AlxGa1 xAs

Fig. 9.1 Layer sequence in a typical
GaAs/AlGaAs heterostructure with re-
mote doping.
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Jellium model. Doping atoms are randomly placed within the doping
plane. We describe their distribution as

Nd(r, z) =
∑

i

δ(r − ri)δ(z + s),

where r = (x, y) and the ri denote the positions of doping atoms in the
plane. The average doping density is given by 〈Nd(r, z)〉 = Ndδ(z + s).
The discrete distribution of doping atoms is often dealt with by splitting
it into a constant r-independent spatially averaged distribution and a
fluctuating part:

Nd(r, z) = Ndδ(z + s) + C(r)δ(z + s).

This equation defines the fluctuating part C(r). Its spatial average van-
ishes, i.e., 〈C(r)〉 = 0.

As a result of the superposition principle, the electrostatic potential
created by the charged dopants can similarly be split into two contri-
butions. The first is caused by the mean doping density Ndδ(z + s). It
is independent of r, but depends on z. The second contribution results
from the fluctuating part of the doping density C(r)δ(z+ s). It leads to
a spatially fluctuating potential with zero spatial average.

Within the jellium model, the spatially fluctuating part C(r) of the
distribution of dopants is neglected. As a result the problem becomes
translationally invariant in the (x, y)-plane simplifying the electrostatics
and quantum mechanics considerably. Building on the solution of the
jellium model the fluctuations C(r) can later be introduced within two-
dimensional screening and scattering theory.

Electrostatics within the jellium model. For z � 0 the electric
field in the sample is zero and the conduction band edge is flat. If we
place a cylindrical closed surface along z with one end face in the region
z � 0 and the other in the region −s < z < 0, we can apply Gauss’s
law of electrostatics and find the electric field in the spacer layer

E =
|e|ns

εε0
,

and the corresponding electrostatic potential

φ(z) = −|e|ns

εε0
z for −s < z < 0.

If we extend the cylinder further in the negative z-direction, we include
the δ-doping layer and find the new value

E =
|e|(ns −Nd)

εε0
,

and correspondingly

φ(z) =
|e|ns

εε0
s− |e|(ns −Nd)

εε0
(z + s) for −s− d < z < −s.
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At the semiconductor/metal interface the potential takes the value

φ(−s− d) =
|e|ns

εε0
s+

|e|(ns −Nd)
εε0

d.

The effective potential for electrons in the conduction band is given
by Ec(z) = −|e|φ(z), where we choose Ec(z) = 0 in GaAs and the
conduction band offset ∆Ec in AlGaAs. The total potential is shown in
Fig. 9.2.

9.2 Electrochemical potentials and applied
gate voltage

Owing to Fermi level pinning at the metal/GaAs interface the electro-
chemical potential (Fermi level) at the surface is at the energy

µG = Ec(−s− d) − Φb,

where Φb is the built-in potential which is about half the band gap.
Within the electron gas the electrochemical potential is given by the
sum of the (not yet known) quantization energy and the Fermi energy:

µ2DEG = E0(ns) + EF(ns).

As a consequence, the relation between an applied gate voltage UG be-
tween top gate and electron gas is

−|e|UG = µG−µ2DEG = −e
2ns

εε0
s− e2(ns −Nd)

εε0
d−Φb−E0(ns)−EF(ns).
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9.3 Capacitance between top gate and
electron gas

From this relation, the capacitance per unit area between top gate and
electron gas can be calculated to be

1
C/A

= −d(−|e|UG)
e2dns

=
1
εε0

(
s+ d+

εε0
e2

dE0(ns)
dns

+
εε0
e2

dEF(ns)
dns

)
.

(9.1)
In addition to the simple geometrical contribution to the capacitance
which is given by the separation s + d between metal and heterointer-
face, there is a quantum capacitance contribution expressed by the last
two terms in brackets. We identify the quantity dEF(ns)/dns with the
inverse of the system’s density of states D2D = m�/π�

2. The correspond-
ing length scale is εε0/e2D2D = a�

B/4. The finite density of states in the
electron gas increases the effective separation of the capacitor plates by
a�
B/4, which gives, in GaAs, about 2.5 nm. The quantity Cq := e2D2DA

has the dimensions of a capacitance and is called quantum capacitance.
The fact that the density of states of a two-dimensional system enters
the capacitance is exploited in the capacitance spectroscopy method.
For example, in a magnetic field, the oscillatory density of states at the
Fermi energy that we will discuss later in the book can be directly mea-
sured. The term before the last one depends on the quantization energy
of the electrons in the triangular potential of the structure. If the elec-
tron density increases, the potential becomes steeper, the quantization
energy E0 rises, and the width and center of mass of the ground state
wave function decrease. This behavior will now be discussed within a
quantum mechanical model for the system.

9.4 Fang–Howard variational approach

Calculating the quantization energy for electrons in a two-dimensional
electron gas is a nontrivial problem of many-body physics without an
analytic solution. The simplest approximation is to calculate the quanti-
zation energy in a fixed (i.e., density independent) triangular potential.
Rather than following this very crude approximation we will discuss a
variational approach minimizing the energy of the system by optimizing
one variational parameter in the wave function. The hamiltonian of the
electronic system is given by

H =
∑

i

[
− �

2

2m�
∆i + U(zi)

]
+

1
2

∑
i,j;j �=i

G(ri, rj), (9.2)

where G(ri, rj) describes the Coulomb interaction between electrons in
the electron gas. Compared to eq. (8.1) we consider the case of zero mag-
netic field (leading to spin degeneracy) and neglect image charge effects
due to the gate electrode. The potential U(z) contains the electrostatic
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potential of the donors and the contribution of the band offset at the
heterointerface.

Our first approximation will be to consider the height of the poten-
tial barrier at the heterointerface to be infinite. In this case, the wave
function does not penetrate into the barrier, but rather vanishes at the
interface. It is then sufficient to consider the problem for z ≥ 0.

We will further treat the electron–electron interaction within the self-
consistent Hartree approximation (cf., p. 109). In this case, the single-
particle envelope wave functions ψnk(r) fulfill the Hartree equation[

− �
2

2m�
∆ + VH(z)

]
ψnk(r) = En(k)ψnk(r), (9.3)

and
VH(z) =

∑
nk

∫
d3r′G(r, r′) |ψnk(r′)|2

is the Hartree potential. The sum is taken over all states occupied at
zero temperature. We can omit the U(zi) contribution in the hamil-
tonian (9.2) by requiring that the Hartree potential and its derivative
vanish for z → ∞. This will automatically generate the correct electric
field at the heterointerface for a given sheet electron density ns. As a
result of the translational invariance of the problem in the x-y-plane,
the Hartree potential depends only on z, and in the wave functions the
parts depending on x- and y-coordinates in the plane can be separated
leading to

ψnk(r) =
1√
A
eikρϕn(z), (9.4)

where k and ρ are an in-plane wave vector and a position vector, re-
spectively. Using this Ansatz the energies are

En(k) = En +
�

2k2

2m�

and the ϕn(z) obey the one-dimensional Schrödinger equation[
− �

2

2m�

∂2

∂z2
+ VH(z)

]
ϕn(z) = Enϕn(z).

Although nowadays the problem can be solved self-consistently on a
personal computer within seconds, we can improve our understanding
of the system by using another approximative approach.

Following the idea of the Hartree approximation we use a product of
single-particle wave functions of the form (9.4) to approximate the many-
body wave function. However, unlike the usual Hartree-approximation,
we do not calculate the wave functions self-consistently, but try to find
a good approximation by using the so-called Fang–Howard variational
wave function for the ground state in the z-direction

ϕ0(z) =

√
b3

2
ze−bz/2
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which is normalized and accounts for our assumption that the wave
function is zero at the heterointerface. The variational parameter b will
now be determined such that the expectation value of the hamiltonian
(9.2), normalized to the number of electrons, is minimized.

In analogy to eq. (8.10) this expectation value consists of two parts:

E = 〈T̂ 〉 +
1
2
〈V̂H〉,

i.e., the expectation value of the single-particle kinetic energy and that of
the electron–electron interaction energy which is half the Hartree energy.
Inserting the product wave function into the hamiltonian (9.2) we find
the expectation value of the kinetic energy in the z-direction

〈T̂ 〉 =
2
A

∑
k

(
�

2k2

2m�
− �

2

2m�

b3

2

∫
dzze−bz/2 ∂

2

∂z2
ze−bz/2

)

=
(

1
2
π�

2

m�
ns +

�
2b2

8m�

)
ns.

The first term represents the in-plane kinetic energy of the system,
whereas the second part is the kinetic energy in the confinement di-
rection.

In order to find the expectation value of the Hartree interaction 〈VH〉,
we determine the electron density distribution

ρ(z) = −|e|ns |ϕ0(z)|2 = −|e|ns
b3

2
z2e−bz.

The Hartree potential is now obtained as a solution of Poisson’s equation

∂2VH(z)
∂z2

=
|e|ρ(z)
εε0

with the boundary conditions ∂VH(0)/∂z = e2ns/εε0 and VH(0) = 0.
The solution is found to be

VH(z) =
e2ns

2εε0b
{
6 −
[
(bz)2 + 4bz + 6

]
e−bz

}
.

Figure 9.3 shows the resulting potential. The function Vbare(z) repre-
sents the part of the potential created by the charged donors and the
surface charges in the absence of the electron gas. The two-dimensional
electron gas screens this potential in the z-direction making the electric
field zero for z → ∞.

With this result we obtain, for the expectation value of the Hartree
potential,

〈V̂H〉 =
e2n2

s

2εε0b
b3

2

∫ ∞
0

dzz2e−bz
{
6 −
[
(bz)2 + 4bz + 6

]
e−bz

}
=

e2n2
s

4εε0b

∫ ∞
0

dx
{
6x2e−x −

[
x4 + 4x3 + 6x2

]
e−2x

}
=

33e2n2
s

16εε0b
.
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Fig. 9.3 Hartree potential normal to
a heterointerface. The electron density
distribution is plotted as well.

The total energy that is to be minimized is then

E =
(
π�

2

2m�
ns +

�
2b2

8m�

)
ns +

33e2n2
s

32εε0b
.

This expression is minimum if its derivative with respect to b is zero,
resulting in

b =
(

33π
2
nsa

�2
B

)1/3 1
a�
B

.

The result fulfills our expectation that the width of the wave function
decreases with increasing electron density.

The corresponding ground state quantization energy is given by the
expectation value of the single-particle hamiltonian (9.3) [see also eq.
(8.11)]

E0(ns) = 〈T 〉 + 〈VH〉 =
5
4
E�

Ry

(
33π
2
nsa

�2
B

)2/3

.

The quantization energy in the z-direction increases with increasing elec-
tron density, in agreement with our intuition.

We briefly return to the capacitance between top gate and electron
gas in eq. (9.1). There, a length scale appears containing the derivative
of the quantization energy with respect to the electron density. With
the above result this length scale becomes

εε0
e2

dE0(ns)
dns

=
55
32

(
33π
2
nsa

�2
B

)−1/3

a�
B.

This length scale decreases with increasing electron density. We compare
it with the expectation value for the center of mass of the wave function

〈z〉 =
b3

2

∫ ∞
0

dzz3e−bz =
3
b

= 3
(

33π
2
nsa

�2
B

)−1/3

a�
B

and find
εε0
e2

dE0(ns)
dns

=
55
96

〈z〉.
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We see that this length scale describes the effective increase of the sep-
aration between metallic top gate and electron gas by the finite extent
of the wave function. For a two-dimensional electron gas in GaAs with
density ns = 3 × 1011 cm−2 this additional separation is 6.9 nm and
〈z〉 = 12 nm.

Influence of DX-centers on AlGaAs/GaAs heterostructures. In
AlGaAs heterostructures, DX-centers have a profound influence on the
tunability of the electron density. When designing a heterostructure,
one has to take care that the energy of DX-states remains above the
electrochemical potential of the two-dimensional electron gas. Otherwise
the DX-centers can become electrically neutral and the tunability of
the electron gas is almost entirely suppressed. Instead, the occupation
of states in the doping plane is tuned. Even in structures where this
effect has been accounted for in the design, at positive gate voltages the
tunability of the electron density saturates, even before the Schottky
barrier becomes transparent for electrons. This effect can, for example,
be seen in Fig. 5.17.

9.5 Spatial potential fluctuations and the
theory of screening

9.5.1 Spatial potential fluctuations

In the above discussion of the two-dimensional electron gas in a GaAs/Al-
GaAs heterostructure we have used the jellium model replacing the dis-
crete dopant distribution by a smeared mean density. We will now dis-
cuss the influence of the neglected fluctuating part C(r)δ(z + s) of the
dopant distribution on the potential landscape in the two-dimensional
electron gas. Neglecting image charge effects, the corresponding electro-
static potential is

V (r, z) =
e2

4πεε0

∫
d2r′

C(r′)√
(r − r′)2 + (z + s)2

.

The in-plane average of this electrostatic potential is

〈V (r, z)〉 = 0,

because 〈C(r)〉 = 0.
Frequently, the Fourier transform of this potential in the plane is of

importance. It can be shown to be (see Appendix A.3):

V (q, z) =
e2

2εε0
C(q)
q

e−q|z+s|.

We can see in this expression that the short-range contributions of the
fluctuating potentials (large q) are exponentially damped. The larger
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the spacer thickness s, the larger are the length scales on which the
potential varies in the plane.

It turns out that the mean square fluctuation
〈
V 2(r, z)

〉
of the po-

tential diverges in a sample of infinite size [see, e.g., Efros et al. 1993].
Therefore, the effect of screening by the electron gas is very important
for the understanding of the magnitude of spatial potential fluctuations.

9.5.2 Linear static polarizability of the electron gas

General theory. A static potential Vtot(r, z) within the electron gas,
as it is caused by the fluctuating part of the donor distribution, leads
to the appearance of in-plane forces acting on the electrons. The result
is a local modification of the electron density called an induced electron
density nind(r, z).

The linear static polarizability P (r, z; r′, z′) of the electron gas is the
linear response function relating the induced electron density with the
static potential. It is a system property independent of the external
potential. We write

nind(r, z) =
∫
d2rdzP (r, z; r′, z′)Vtot(r′, z′). (9.5)

This nonlinear nonlocal polarizability was calculated by Hedin and
Lundqvist in first order perturbation theory for electronic systems of
arbitrary dimensionality (Hedin and Lundqvist, 1969). It is given by

P (r, r′) = 2
∑

nmkq

f(Enk) − f(Emk+q)
Enk − Emk+q − i0+

ψnk(r)ψ�
mk+q(r)ψ�

nk(r′)ψmk+q(r′).

Here f(E) is the Fermi–Dirac distribution function, and the wave func-
tions ψnk(r) are the (envelope) wave functions of the state with quantum
numbers nk in the unperturbed system. In a two-dimensional electron
gas the unperturbed wave functions are given by eq. (9.4). Including
them into the above expression gives

P (r − r′; z, z′) =
1

4π2

∫
d2q e−iq(r−r′)P (q; z, z′),

where

P (q; z, z′) =
∑
nm

Πnm(q, µ, T )ϕn(z)ϕ�
m(z)ϕ�

n(z′)ϕm(z′)

with
Πnm(q, µ, T ) =

1
2π2

∫
d2k

f(Enk) − f(Emk+q)
Enk − Emk+q − i0+

.

As a consequence the integral on the right-hand side of eq. (9.5) is a
two-dimensional convolution integral and the two-dimensional Fourier
transform (Fourier–Bessel transform, see AppendixA.3) of the induced
electron density in the plane is

nind(q, z) =
∫
dz′P (q; z, z′)V (q, z′). (9.6)
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The polarization function Πnm(q, µ, T ) appearing in the polarizability
can be calculated exactly for two-dimensional systems with parabolic
dispersion at zero temperature. The result is

Πnm(q, EF , 0) =
m�

π�2

[
k

(n)
F

q
I

(
En − Em

2qk(n)
F

− q

2k(n)
F

)

−k
(m)
F

q
I

(
En − Em

2qk(m)
F

+
q

2k(m)
F

)]

with

I(x) =
{
x+ i

√
1 − x2 f. |x| < 1

x− sgn(x)
√
x2 − 1 f. |x| > 1

.

Polarization for systems with only one occupied subband. As-
sume that only one quantized subband in the z-direction is occupied
(quantum limit) in a system with parabolic dispersion. The wave func-
tion of this subband is denoted with ϕ0(z). In this case the polarizability
is well described by

P (r, z; r′, z′) =
1

(2π)2

∫
d2qΠ00(q, EF, T )e−iq(r−r′) |ϕ0(z)|2 |ϕ0(z′)|2 ,

(9.7)
and therefore

P (q; z, z′) = Π00(q, EF, T ) |ϕ0(z)|2 |ϕ0(z′)|2 .

At temperature T = 0 we have

Π00(q, EF , 0) = −m�

π�2

{
1 for q ≤ 2kF

1 −
√

1 − 4k2
F

q2 for q > 2kF

.

Note here that m�/π�
2 = D2D is the two-dimensional density of states.

At finite temperatures the polarization function can be calculated from
the zero temperature result using the formula of Maldague (Maldague,
1978):

Π(q, T, µch) =
∫ ∞

0

Π(q, T = 0, µ′)dµ′

4kT cosh2[(µch − µ′)/2kT ]
. (9.8)

Figure 9.4 shows the polarization function for different temperatures. At
T = 0 the function is constant for q < 2kF . At q = 2kF there is a kink
known as the Kohn anomaly (or Kohn singularity). It is a singularity,
because the function does not have a well-defined derivative at q = 2kF.
For larger wave vectors, the function decreases monotonically. At finite
temperatures the Kohn anomaly is smeared out. Most importantly, the
temperature dependence of the polarization function is most pronounced
around q = 2kF .
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Thomas–Fermi approximation. The Fourier transform of the polar-
ization function, Π00(q, EF, T ), has been found to be independent of q
for q ≤ 2kF. For the screening of long-range fluctuating potentials it is a
good approximation to assume that the function is q-independent for all
q. This approximation is identical to the Thomas–Fermi approximation.
In the two-dimensional quantum limit

P (r, z; r′, z′) = −D2Dδ(r − r′) |ϕ0(z)|2 |ϕ0(z′)|2 ,

i.e., the polarizability becomes a local function and the induced density
is given by

nind(r, z) = −D2D |ϕ0(z)|2
∫
dz′ |ϕ0(z′)|2 Vtot(r, z′).

The remaining integral is the expectation value of the potential normal
to the plane of the electron gas which we will denote with 〈Vtot(r)〉.
The distribution of the induced density in the z-direction follows the
distribution of the ground state wave function. In the plane the electrons
fill the density of states at each position r up to the energy 〈Vtot(r)〉.
This is the characteristic feature of the Thomas–Fermi approximation. It
can be successfully used, if the dominant Fourier components of Vtot(r)
arise for q � 2kF, i.e., in the case of long-range fluctuating potentials
arising as a result of a sufficiently thick spacer layer between dopants
and electron gas. Quantitatively this means

2kFs� 1.

9.5.3 Linear screening

External, induced and total potential. If an external potential acts
on a two-dimensional electron gas, the induced electron density will it-
self give rise to a potential. The total potential in which the electrons
move can be calculated self-consistently. This method is, in this context,
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also called random phase approximation (RPA). Within this method the
total potential is the sum of the external and the induced Hartree po-
tential:

Vtot(r, z) = Vext(r, z) + Vind(r, z).

In Fourier space this relation reads

Vtot(q, z) = Vext(q, z) + Vind(q, z).

Induced potential from the induced density. While the external
potential is given as created by the distribution of dopants, the induced
potential is obtained as the solution of Poisson’s equation [cf., eq. (7.4)],
i.e.,

Vind(r) = e2
∫
d3r′G(r, r′)nind(r′),

where G(r, r′) is Green’s function (cf., p. 96). Neglecting image charge
effects due to the presence of gate electrodes the well-known solution
reads

G(r, z; r′, z′) =
1

4πεε0
1√

(r − r′)2 + (z − z′)2
(9.9)

with the in-plane Fourier transform

Vind(q, z) = e2
∫
dz′G(q; z, z′)nind(q, z′). (9.10)

The Fourier transform G(q; z, z′) of Green’s function (see AppendixA.3)
is given by

G(q; z, z′) =
1

2εε0q
e−q|z−z′| for q �= 0. (9.11)

Induced potential and external potential. The induced density is
related to the total potential via the polarizability of the two-dimensional
electron gas. As a result

Vind(r, z) = e2
∫
d2r′dz′G(r, z; r′, z′)∫

d2r′′dz′′P (r′, z′; r′′, z′′)Vtot(r′′, z′′).

This leads to the self-consistent equation for the total potential

Vtot(r, z) = Vext(r, z)

+
∫
d2r′dz′G(r, z; r′, z′)

∫
d2r′′dz′′P (r′, z′; r′′, z′′)Vtot(r′′, z′′).

We express this result as

Vext(r, z) =
∫
d2r′dz′ε(r, z; r′, z′)Vtot(r′, z′),

defining Lindhard’s nonlocal dielectric function

ε(r, z; r′, z′) := δ(r−r′)δ(z−z′)−
∫
d2r′′dz′′G(r, z; r′′, z′′)P (r′′, z′′; r′, z′).
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Fig. 9.5 Inverse dielectric function of
a two-dimensional electron gas in the
quantum limit at zero temperature.
The dashed line is the dielectric func-
tion in Thomas–Fermi approximation.

Screening with only one occupied subband: quantum limit. If
only one subband is occupied the expression for Lindhard’s nonlocal
dielectric function simplifies considerably. Using eqs. (9.9) and (9.7) we
obtain an expression for the relation between the expectation values of
the external and the total potential in Fourier space:[

1 − e2

2εε0q
Π00(q, EF, T )F (q)

]
︸ ︷︷ ︸

:=ε(q,EF,T )

〈Vtot(q)〉 = 〈Vext(q)〉

Here we have introduced the form factor

F (q) =
∫
dz′dz |ϕ0(z)|2 e−q|z−z′| |ϕ0(z′)|2

and Lindhard’s dielectric function ε(q, EF, T ) in Fourier space. We ob-
tain the relation

〈Vtot(q)〉 =
〈Vext(q)〉
ε(q, EF, T )

. (9.12)

Figure 9.5 shows the inverse dielectric function ε−1(q, µ, T ) schemati-
cally. The effect of screening is the suppression of Fourier components
with small q, i.e., the long-range parts of the potential in real space.

Thomas–Fermi approximation. The Thomas–Fermi approximation
introduced above leads to a further significant simplification of the di-
electric function. We obtain

εTF(q) = 1 +
2
qa�

B

if the q → 0 limit of the form factor is used. In Fig. 9.5, the dielectric
function in this approximation is shown as the dashed line. The quantity

λTF = πa�
B
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Fig. 9.6 Screened potential of a
charged dopant in Fourier space at tem-
perature T = 0. Only a region around
q = 2kF is plotted. The dashed line
corresponds to the Thomas–Fermi ap-
proximation.

1 q 2kF1.2

V t
ot

(q
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is called the Thomas–Fermi screening length. For two-dimensional elec-
tron gases it is independent of the electron density. We define the
Thomas–Fermi wave vector as

qTF =
2
a�
B

=
2π
λTF

.

9.5.4 Screening a single point charge

As an example of the application of screening theory in two dimensions,
we consider screening of a point charge Ze placed at (x, y, z) = (0, 0, d),
i.e., at a distance d from the plane of a two-dimensional electron gas.
Neglecting image charge effects, the in-plane potential is given by

Vext(r) = − Ze2

4πεε0
1√

r2 − d2
,

with the Fourier transform (see appendixA.3)

Vext(q) = −Ze2

2εε0
1
q
e−qd.

The Fourier transform of the total potential is, at T = 0, given by

Vtot(q) = −Ze2

2εε0
e−qd

q + qTFg(q)
,

where g(q) = Π00(q, EF, 0)/Π00(0, EF, 0). Figure 9.6 shows this potential
around q = 2kF. It can be seen how the Kohn singularity of the dielectric
function is transferred to the total potential.

Long range part of the potential. In order to understand the behav-
ior of the potential in real space we concentrate first on the long range
part. To this end we expand the potential around q = 0 up to first order.
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Fig. 9.7 Coulomb potential of a unity
point charge at a distance of 17 nm
from a two-dimensional electron gas in
a Ga[Al]As heterostructure with and
without screening in Thomas–Fermi
approximation (T = 0).

In this approximation the Kohn singularity does not play a role, and we
are essentially working in the Thomas–Fermi approximation. We obtain

Vtot(q) = −Ze2

2εε0
1
qTF

[
1 − (1 + qTFd)

q

qTF

]
+ O

(
q2
)
.

Transformation back to real space leads to (Stern, 1967)

Vtot(r) = −Ze
2qTF

4πεε0
1 + qTFd

(qTFr)3
+ O

(
r−5
)

f. r → ∞. (9.13)

For large distances from the charged donor, the potential decays as r−3,
i.e., faster than the bare Coulomb potential. In addition, we calculate
the amplitude of the screened potential in real space at r = 0 setting
g(q) = 1 (Thomas–Fermi approximation) for simplicity. We obtain

Vtot(r = 0) = − Ze2

4πεε0

∫ ∞
0

dq qJ0(0)
e−qd

q + qTF

= − Ze2

4πεε0d
[
1 − qTFde

qTFdΓ(0, qTFd)
]
.

Here J0(x) is a Bessel function and Γ(a, x) is the incomplete gamma
function. The amplitude of the potential modulation at r = 0 decreases
with increasing qTFd and tends to zero for d→ ∞. If d is about one third
of a�

B, the amplitude of the screened potential is already about half of
the unscreened potential. Figure 9.7 shows the influence of screening in
Thomas–Fermi approximation on the potential of a positive unit charge
located at a distance of 17 nm from a two-dimensional electron gas in a
Ga[Al]As heterostructure.

Friedel oscillations. Within the Thomas–Fermi approximation, valid
only for 2kFd � 1, we have omitted effects originating from large q
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Fig. 9.8 Potential vFriedel(q) (at T =
0).
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and Kohn’s singularity. The full expression for the screened Coulomb
potential is

Vtot(r) = − Ze2

4πεε0

∫ ∞
0

dq qJ0(qr)
e−qd

q + qTFg(q)︸ ︷︷ ︸
:=vtot(q)

.

For further discussion we split the screened potential into a contribution
VTF obtained within the Thomas–Fermi approximation, and a contribu-
tion VFriedel. In Fourier space this leads to

vtot(q) =
vext

εTF(q)
+ vFriedel(q),

where

vFriedel(q) = qTFe
−qd 1 − g(q)

[q + qTFg(q)](q + qTF)
.

This expression is zero for q < 2kF. At q = 2kF it has the singularity as
shown in Fig. 9.8.

We investigate the asymptotic behavior of vFriedel(r) for large r
(2kFr � 1). In this limit we can use the limiting expression of the
Bessel function in the Fourier integral

J0(qr) =
√

2
πqr

cos
(
qr − π

4

)
+ O

(
1
qr

)
,

leading to a one-dimensional Fourier transform. An asymptotic expres-
sion for the screened potential at large distances is obtained using a
theorem from Fourier transformation theory (see Lighthill, 1964, Chap-
ter 4.3, Theorem 19). In order to apply this theorem we have to inves-
tigate the singularity further. Near q = 2kF the function

√
qvFriedel(q)
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Fig. 9.9 Friedel oscillations in the
screened potential of a point charge
17 nm remote from the two-dimensional
electron gas in a Ga[Al]As heterostruc-
ture, calculated for the temperature
T = 0.

behaves as

√
qvFriedel(q) = qTF

√
2kFe

−2kFd

(2kF + qTF)2
Θ(q − 2kF){√

q − 2kF

kF
+

qTF

2kF + qTF

q − 2kF

kF
+ · · ·

}
.

Transforming the first two terms back to real space leads to

Vtot(r) = −Ze
2qTF

4πεε0
4k2

F

(2kF + qTF)2
e−2kF d

[
sin 2kF r

4k2
F r

2
+

√
8qTF cos(2kF r − π/4)√
π(2kF + qTF)(2kF r)5/2

+ · · ·
]

(9.14)

Kohn’s singularity in the dielectric function leads to an oscillatory be-
havior of the screened potential in real space with a wavelength of λF/2,
called Friedel oscillations. An example is shown in Figs. 9.9 and 9.10
for a Ga[Al]As heterostructure, with the point charge e 17 nm remote
from the electron gas. For the form factor, F (q) = 1 was assumed cor-
responding to an ideal two-dimensional electron gas without extent in
the z-direction. For increasing separation d between charged donor and
electron gas, the amplitude of the Friedel oscillations decreases expo-
nentially. For d = 17nm, for example, the characteristic energy scale
of the oscillations is almost three orders of magnitude smaller than the
amplitude of the Thomas–Fermi potential contribution at r = 0.

Experimentally, Friedel oscillations can be measured, for example, on
metallic surfaces on which a two-dimensional electron gas forms. A suit-
able system is an atomically flat Cu(111) surface. Figure 9.11 shows
standing waves on such a surface with two lattice perturbations (Crom-
mie et al., 1993).
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Fig. 9.10 Friedel oscillations in the
plane. Parameters as for Fig. 9.9.
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Fig. 9.11 Standing waves observed on
a Cu(111) surface as observed with
scanning tunneling microscope spec-
troscopy. Two point defects on the
surface cause Friedel oscillations in the
electron density that have here been
mapped with real space and energy res-
olution (Crommie et al., 1993).

9.5.5 Mean amplitude of potential fluctuations

Now we return to the discussion of the screened potential of a particular
random distribution of donors. Within the Thomas–Fermi approxima-
tion we obtain

Vtot(r, z) =
e2

2εε0

∫
d2q

(2π)2
C(q)
q + qTF

e−q|z+s|eiqr.

The average fluctuation amplitude is therefore

〈
V 2

tot(r, z)
〉

=(
e2

8π2εε0

)2∫
d2q1

∫
d2q2

〈C(q1)C(q2)〉
(q1 + qTF)(q2 + qTF)

e−(q1+q2)|z+s|ei(q1+q2)r.

(9.15)

Here, the brackets 〈. . .〉 denote the average over a large number of dif-
ferent donor distributions. For calculating the correlator 〈C(q1)C(q2)〉
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we transform to real space

〈C(q1)C(q2)〉 =
∫
d2r1

∫
d2r2 〈C(r1)C(r2)〉 e−iq1r1e−iq2r2 .

If the donors are randomly placed in the doping plane, there is no cor-
relation between their positions and we have

〈C(r1)C(r2)〉 = Ndδ(r1 − r2).

As a result
〈C(q1)C(q2)〉 = (2π)2Ndδ(q1 + q2)

and the mean squared amplitude of the fluctuating potential is given by

〈
V 2

tot(r, z)
〉

=
(

e2

4πεε0

)2

Nd

∫
d2q1

1
(q1 + qTF)2

e−2q1|z+s|.

The integration can be performed analytically giving

〈
V 2

tot(r, z)
〉

= 2π
(

e2

4πεε0

)2

Ndf(2qTF|z + s|),

with
f(x) = ex (1 + x) Γ(0, x) − 1.

Here, Γ(a, x) is the incomplete gamma function. Figure 9.12 shows the
function f(x). The mean amplitude of the potential roughness depends
only on the parameter 2qTF|z+s|. The mean squared fluctuation ampli-
tude is, in particular, independent of the electron density. It is therefore
often said that screening in two dimensions is independent of the density.
This statement is only true in the context of linear screening and within
the Thomas–Fermi approximation. It is essentially due to the constant
value of the Thomas–Fermi wave vector qTF. We also note here that
density independent screening does not imply that the scattering rates
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Fig. 9.12 The function f(x) compared

to the approximation 1/x2.
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of electrons (or the electron mobilities) are independent of the electron
densities.

In the limit 2qTF|z+s| � 1 we have f(x) ∼ 1/x2, i.e., with increasing
separation of the doping plane from the electron gas the amplitude of
the spatially fluctuating potential decreases significantly. As a result, a
lower scattering rate and a higher conductivity can be expected.

9.5.6 Nonlinear screening

Within the linear screening approximation, the divergence of
〈
V 2

ext(r, z)
〉

arising in the unscreened case is cured and a finite value is reached for〈
V 2

tot(r, z)
〉
. The linear screening approximation is useful, as long as√

〈V 2
tot(r, z)〉 � EF.

Using the above expression for the mean amplitude of the fluctuating
potential and the approximation f(x) ∼ 1/x2 we obtain the condition

Rc �
2|z + s|√

2π
,

where the quantity

Rc =
√
Nd

n

can be called the nonlinear screening length. Fluctuations with a wave-
length larger than Rc are well screened and can be described within lin-
ear screening theory. Fluctuations on shorter length scales, however, are
badly screened. The theory of nonlinear screening in two-dimensional
electron gases has been developed by Efros (Efros, 1989).

At large electron densities Rc � |z+s| and all significant components
of the unscreened potential are screened within the linear theory. If the
density of the electron gas is reduced, the nonlinear screening length
increases and eventually reaches the range Rc ∼ |z + s|. In this range
the density distribution in the plane becomes very inhomogeneous on the
length scale |z+s|. At even smaller densities, strong density fluctuations
arise with wavelengths between |z + s| and Rs.

Beyond the validity of linear screening, the idea behind the Thomas–
Fermi approximation has still been used. The induced electron density
is obtained by filling the density of states locally from the energy of
the fluctuating potential up to the Fermi energy. Note that, in the
case of a repulsive potential, the total electron density can never be
smaller than zero. For example, if the electron density is more and more
reduced by the application of a negative gate voltage, more and more
potential hills will appear above the Fermi energy. A further reduction
of the electron density leads to the localization of electrons in puddles
enclosed by high potential barriers. The ability of electrons to percolate
through such a system depends strongly on the exact potential landscape
and electron density. A critical electron density nc exists, at which
percolation ceases because there is no connected domain of finite electron
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density extending throughout a given sample. It has been shown using
percolation theoretical considerations (Efros, 1989) that

nc = β

√
Nd

|z + s| ,

where β = 0.11 is a numerical parameter. For a donor density Nd =
1012 cm−2 and a separation |z + s| = 50 nm between electron gas and
doping plane, the critical density is nc = 2.2 × 1010 cm−2.

9.6 Spin–orbit interaction

In the previous considerations we have assumed that the dispersion re-
lation for the electrons in the plane is parabolic, with a curvature given
by the effective mass, and independent of the electron spin. It turns out,
that spin–orbit interaction can modify this simple picture, depending on
the material in which the two-dimensional electron gas is realized.

We have already discussed the two-fold effect of spin–orbit interaction
on the band structure in three-dimensional semiconductors (see pages
30 and 44). On the one hand there is the spin–orbit split-off band
in all diamond or zinc-blende semiconductors, and, on the other, bulk
inversion asymmetry leads to the Dresselhaus contribution to the spin–
orbit interaction which changes the symmetry of the dispersion relation
in a given energy band.

In two-dimensional systems we can distinguish two spin–orbit-related
influences on the dispersion within a given energy band. On the one
hand, as in three dimensions, the lack of inversion symmetry of the
crystal lattice (bulk inversion asymmetry, giving rise to the Dresselhaus
term in the hamiltonian), and on the other hand, the epitaxially grown
structure, can create a confinement potential without spatial inversion
symmetry (Bychkov and Rashba, 1984a; Bychkov and Rashba, 1984b).
In this case we talk about structure inversion asymmetry (SIA, giving
rise to the Rashba term in the hamiltonian).

The hamiltonian for two-dimensional electron gases in zinc blende
heterostructures grown on [100] substrates is in lowest order in k given
by

H = H0 + αR(σxky − σykx) + βD(σxkx − σyky).

Here, σx and σy are the two components of Pauli’s spin matrices in the
plane of the two-dimensional electron gas. The first term H0 describes
the energy of the electrons in the absence of spin–orbit interaction. The
second term is the Rashba term caused by structure inversion asym-
metry. The third term is the Dresselhaus term describing the lack of
inversion symmetry of the crystal structure.

The Dresselhaus term can be derived from the bulk Dresselhaus hamil-
tonian [eq. (3.29)] by taking the expectation value in the z-direction and
keeping only terms linear in k. The Dresselhaus coefficient βD is given
by the band structure parameters of the material and by the thickness
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of the electron gas in the growth direction:

βD = β〈k2
z〉.

Here, 〈k2
z〉 is the expectation value of the square of the wave vector in

the confinement direction, i.e., of the order of (π/W )2, with W being
the width of the potential well. Narrow wells (small W ) result in large
values, wide wells (large W ) smaller ones.

The form of the Rashba term, and its coefficient αR, is related to the
spin–orbit interaction hamiltonian (3.16) which contains an electric field.
As discussed in Winkler 2003, Chapter. 6.3.2, a net electric field in the z-
direction (growth direction) normal to the plane of the two-dimensional
electron gas can arise as a result of the joint action of structure inversion
asymmetry and admixture of valence band states to conduction band
states. Its strength can be modified by the application of an external
electric field Ez normal to the plane of the two-dimensional electron gas
and therefore

αR = α〈Ez〉,
with α being a material-specific constant and 〈Ez〉 being an electric field
averaged in the z-direction. A detailed discussion on how this averaging
has to be performed can again be found in Winkler 2003, Chapter. 6.3.2.
Typical values for electric fields in heterostructures are a few mV/Å.

Values for α and β for a few common materials are given in Table 9.1.
The table shows that in InSb the effects of spin–orbit interaction are
extraordinarily high. Also in InAs, the Rashba effect is even more im-
portant than in other materials. In GaAs, AlAs, CdTe, and ZnSe the
Rashba effect is small compared to the Dresselhaus effect. InAs is a suit-
able material for the investigation of the Rashba effect. In InSb both
effects are comparable.

The action of the spin–orbit interaction on the spin of an electron in
a particular state k can be described by an effective k-dependent spin–
orbit-induced magnetic field BSO(k) which allows the spin–orbit term
in the hamiltonian to be written in the form gµBBSO(k)σ/2. From
eq. (9.6) we find

BSO(k) =
2
gµB

⎛
⎝ αRky + βDkx

−αRkx − βDky

0

⎞
⎠ . (9.16)

This field is oriented in the plane of the electron gas with its specific
direction given by the vector k. While the Rashba field is oriented

GaAs AlAs InAs InSb CdTe ZnSe

α (eÅ2) 5.206 −0.243 117.1 523.0 6.930 1.057
β (eVÅ3) 27.58 18.53 27.18 760.1 43.88 14.29

Table 9.1 Values of Rashba and Dresselhaus coefficients for certain materials (Win-
kler, 2003).
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normal to the direction of motion, the Dresselhaus field has a more
complicated dependence of its orientation on k. The direction of BSO

defines the spin-precession axis if the spin is not in an eigenstate where it
is aligned parallel or antiparallel to BSO. If the direction of propagation
is changed from k to −k, BSO reverses its sign leading to precession in
the opposite direction.

In order to obtain a feeling for the consequences of the two additional
terms on the eigenstates and eigenenergies of the hamiltonian, we di-
agonalize eq. (9.6) neglecting the Dresselhaus term. For H0 we use a
diagonal matrix with the in-plane kinetic energy on the diagonal. We
then find the dispersion

E± =
�

2k2
‖

2m�
± αRk‖,

with k‖ =
√
k2

x + k2
y. These two branches of the dispersion are still

parabolae, but their minima are shifted in k‖ compared to the spin-
degenerate dispersion by ±m�αR/�

2. Figure 9.13 shows the two disper-
sions schematically. The minimum of the dispersion lies along a circle

ky
E(k)

kx

Fig. 9.13 Schematic representation
of the in-plane dispersion taking the
Rashba term into account. The arrows
on circles of constant energy give the
directions of the spin states (Winkler,
2003).

in the kx-ky-plane. The surfaces of constant energy are circles with
different radii reminiscent of a two-subband system. A corresponding
calculation considering only the Dresselhaus term in the hamiltonian
(9.6) gives the same dispersion if αR is replaced by βD [see Fig. 9.14(a)–
(c)]. If Rashba and Dresselhaus terms are of similar importance, the
dispersion relation is strongly modified, as shown in Fig. 9.14(d).

We can estimate the importance of the spin–orbit interaction by com-
paring the spin splitting of the two branches of the dispersion at the
Fermi energy, ∆ESO = 2αR/DkF, with the Fermi energy EF = �

2k2
F/2m

�.
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Fig. 9.14 Schematic presentation of
the dispersion relations in the conduc-
tion band in the presence of spin–orbit
interaction. (a) The case considering ei-
ther only the Rashba or only the Dres-
selhaus term. (b) Fermi circles and spin
orientations for the Rashba term. (c)
Fermi contours and spin orientations
for the Dresselhaus term. (d) Disper-
sion relation if the Rashba and Dressel-
haus terms are of comparable magni-
tude. (e) Fermi contour and spin ori-
entations for comparable Rashba and
Dresselhaus terms. (Reprinted with
permission from Ganichev et al., 2004.
Copyright 2004 by the American Phys-
ical Society.)
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This gives
∆ESO

EF
=

4αR/Dm
�

�2kF
.

For the effect to become important, apart from a big Rashba or Dres-
selhaus coefficient, a big mass and a small electron density (small kF) is
advantageous. As an example, we take the Dresselhaus effect in GaAs
with an electron density ns = 3 × 1015 m−2 and a quantum well width
of 100 Å. We find ∆ESO/EF ≈ 0.07. The Rashba effect in the same
system is, for a (relatively strong) mean field 〈Ez〉 = 10−3 V/Å about
five times smaller.

For each wave vector k a local quantization axis can be found in k-
space, along which the corresponding eigenstate is either ↑ or ↓. The
direction of this axis varies with k such that, upon averaging all states,
the same contributions arise from ↑ and ↓, and no net spin polariza-
tion arises. As a consequence, the magnetic moment vanishes. The
spin orientations along circles of constant energy are shown as arrows
in Fig. 9.13 for the Rashba splitting [see also Fig. 9.14(b)]. In the case
of the Dresselhaus term the spin orientations look completely different,
as shown in Fig. 9.14(c). The spin orientation in the presence of both
contributions is depicted in Fig. 9.14(e) for spins at the Fermi energy.

Experimentally, attempts were made to demonstrate the tunability
of the Rashba parameter αR by applying gate voltages creating electric
fields normal to the plane of the electron gas and measuring beating ef-
fects in the oscillatory magnetoresistance due to two different densities
in the two spin subbands [see, e.g., Das et al. 1989; Luo et al. 1990;
Nitta et al. 1997; Engels et al. 1997; Heida et al. 1998; Hu et al. 1999;
Grundler 2000]. Other measurements (Brosig et al., 1999), however,
have not shown this beating. The importance of Rashba and Dressel-
haus terms can also be measured via a coherent electron interference
effect called weak antilocalization observable at weak magnetic fields
normal to the electron gas (Knap et al., 1996; Miller et al., 2003). Mea-
surements of the spin-galvanic photocurrent (Ganichev et al., 2004) have
permitted the measurement of the ratio αR/βD = 2.15 for an InAs quan-
tum well. Also Raman spectroscopy can provide quantitative informa-
tion about spin–orbit interaction in two-dimensional systems (Jusserand
et al., 1995). The coefficients αR and βD have recently been measured
by a variant of time-resolved Faraday rotation (Meier et al., 2007).

9.7 Summary of characteristic quantities

In the following we summarize the important characteristic quantities
of a two-dimensional electron gas in gated heterostructures.

Electron density. The sheet density ns of electrons is determined by
the applied gate voltage via the field effect. Typical values are 1011 −
1012 cm−2.
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Dispersion relation. The dispersion relation in a GaAs heterostruc-
ture is parabolic for the motion in the plane, i.e.,

Enk = En +
�

2k2

2m�
.

The wave vector k = (kx, ky) is in-plane.

Wave function. Each state (n,k) comes with an (envelope) wave func-
tion

ψnk(x, y, z) = χn(z)ei(kxx+kyy).

The function χn describes the quantization in the z-direction, whereas
the plane waves represent the free in-plane motion.

Density of states. From the parabolic dispersion, a constant density
of states

D2D(E) =
gsgvm

�

2π�2
,

follows for each subband n, where gs describes the degree of spin degen-
eracy (gs = 2 in n-GaAs heterostructures and in Si-MOSFETs) and gv
is the number of degenerate conduction band minima (gv = 1 in GaAs
heterostructures and gv = 2 in Si-MOSFETs).

Quantum limit. A two-dimensional electron gas with only one quan-
tized subband occupied is said to be in the quantum limit. This is the
closest physical realization of a mathematically ideal two-dimensional
system. Often, the term ‘two-dimensional electron gas’ denotes a two-
dimensional electron gas in the quantum limit. In the following, we will
also use it in this sense.

Fermi energy and electron density. The electron density in a two-
dimensional electron gas (in the quantum limit) is related to the Fermi
energy via

ns = D2D · (µ− E0) = D2D · EF,

where µ is the electrochemical potential of the electron gas and E0 is
the quantization energy of the ground state subband. The difference
EF = µ−E0 is called the Fermi energy, in analogy with metallic systems.

Fermi wave vector, Fermi energy and electron density. A Fermi
wave vector kF can be defined via the dispersion relation leading to the
relations

kF =

√
2m�EF

�2
=
√

4πns

gsgv
.

Fermi wavelength. The Fermi wavelength resulting from the general
relation k = 2π/λ is

λF =
2π
kF

=
√
gsgvπ

ns
.

It is of the order of the mean electron separation 1/
√
ns.
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Fermi velocity. The (group) velocity of an electron at the Fermi energy
is given by

vF =
�kF

m�
.

Bohr radius. The Bohr radius is the characteristic length scale of the
Coulomb interaction in the electron gas. It is a material-specific quantity
given by

a�
B =

4πεε0�
2

m�e2
.

Rydberg energy. The Rydberg energy is the characteristic energy
scale of the Coulomb interaction in the electron gas given by

E�
Ry =

e4m�

2(4πεε0)2�2
.

Thomas–Fermi screening length and Thomas–Fermi wave vec-
tor. The Thomas–Fermi screening length and the corresponding wave
vector are, in two-dimensional electron gases, given by

λTF = πa�
B qTF =

2
a�
B

.

independent of the electron density.

Nonlinear screening length. The nonlinear screening length describes
the characteristic length scale for the separation of the homogeneous
electron gas into separate electron puddles upon reducing the density.
It is given by

Rc =
√
Nd

ns
.

Percolation threshold. Below a critical density nc in the electron gas
there is no connected domain extending over the whole macroscopic
sample. This density is given by

nc = 0.11
√
Nd

s
,

where s is the separation between the doping plane (here assumed to be
a δ-doping layer) and the electron gas.

Further reading

• Two-dimensional electron gases: Davies 1998;
Ando et al. 1982.

• Spin–orbit interaction: Winkler 2003.

• Papers: Ando 1982; Stern and Das Sarma 1984.
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Exercises

(9.1) Consider the capacitance between the two-
dimensional electron gas in a heterostructure and
a large area metallic top gate as given by eq. (9.1).
You intend to measure the density of states of the
electron gas as a function of the Fermi energy. How
could you optimize the geometrical design of the
structure for this purpose, and what would your
measurement setup look like?

(9.2) Suppose you intend to measure the density of
states of graphene as a function of Fermi energy by
measuring the capacitance between a single-layer
graphene sheet and a highly doped silicon substrate
with silicon dioxide of thickness d between silicon
and the sheet. Make a suitable sketch of the elec-
trostatic problem. Write down your electrostatic
considerations and demonstrate how the density of
states of graphene can be extracted.

(9.3) Consider a two-dimensional electron gas (2DEG)
sandwiched between a highly doped back gate in
the substrate, and a metallic top gate. The sepa-
ration between the electron gas and the back gate
is dBG, and that between the electron gas and the
top gate is dTG. Draw a sketch of this arrange-
ment. You ground the two-dimensional electron gas
and apply a small low frequency modulated volt-
age between the electron gas and the back gate. If
the electron gas were a perfect metal, no modu-
lated electric field would reach the top gate. Work
out how this situation is different in a real two-

dimensional electron gas with its finite density of
states. How can this setup be used for measuring
the density of states in the two-dimensional elec-
tron gas? Discuss advantages and disadvantages of
this method compared to the measurement of the
density of states via the gate–2DEG capacitance.

(9.4) In this problem, you deepen your understanding of
Friedel oscillations. To this end, consider an elec-
tron gas in the one-dimensional potential

V (x) =

�
0 for x > 0
∞ for x ≤ 0

.

(a) What happens if a particle with energy E hits
this potential barrier from the right? Cal-
culate the transmission and reflection coeffi-
cients and probabilities.

(b) What are the wave functions ψk(x) for x > 0?

(c) Normalize the wave function on a large one-
dimensional volume L so that� L

0

dx |ψk(x)|2 = 1 + O
�

1

kL

�
.

(d) At zero temperature all the states up to kF are
occupied. Calculate the local one-dimensional
electron density at zero temperature.

(e) Sketch the resulting electron density. How
does it depend on kF at large distances from
the barrier?
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10.1 Ohm’s law and current density

Figure 10.1 shows schematically a setup for the measurement of electron
transport in a sample. A current source drives the current I through the
sample. A voltage builds up along the direction of the current flow, which
can be measured using a voltmeter. The basic law of electron transport
is Ohm’s law, found in 1826 by Georg Simon Ohm. It states that the
current I driven through the sample, and the longitudinal voltage drop
U are proportional, i.e.,

U = RI. (10.1)

The proportionality constant R is called electrical resistance and has
dimensions 1Ω = 1 V/A. Its inverse, G = R−1, is called electrical
conductance and has the dimensions 1 S = 1 A/V.

Ohm’s law was extended in 1845 by Gustav Kirchhoff to DC (direct
current) networks of ohmic resistors. Today, we know his two laws as
Kirchhoff’s current law and Kirchhoff’s voltage law. The former states
that the sum of all electrical currents In flowing into a junction is zero:∑

n

In = 0.

U

UH

current I

sample

magnetic
field B

Hall voltage longitudinal
voltage

Fig. 10.1 Schematic view of a resis-
tance measurement. A current source
drives the current I through the sam-
ple. The voltage drop U is measured
along the edge of the sample in the di-
rection of current flow. If a magnetic
field B is applied normal to the current
flow, a Hall voltage UH builds up nor-
mal to the current flow and normal to
the magnetic field direction.
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In its expression, currents flowing into the junction are counted negative,
those flowing away from the junction positive. Nowadays we know that
this law is a direct consequence of the conservation of electric charge
as it is descibed by the continuity equation within Maxwell’s theory of
electromagnetism. Kirchhoff’s voltage law states that the sum of all
voltage drops Um across components within a circuit loop add to zero:∑

m

Um = 0

Within Maxwell’s theory, this loop rule can be derived from Faraday’s
law of induction.

In the following, we will go beyond these macroscopic laws of electric
circuits and discuss the physical background and the microscopic origin
of the electrical resistance. Because samples made of the same material,
but with different geometries (e.g., wires of different lengths), will have
different resistances, this quantity is not an appropriate quantity for the
description of the transport properties of the material. For a homoge-
neous isotropic material, Ohm’s law is therefore frequently written in
the (local) form

j(r) = σE(r), (10.2)

where j(r) is the electrical current density, E(r) is the electric field, and
σ is the electrical conductivity. In a homogeneous conductor, the latter
does not depend on r.

Three-dimensional systems. In a three-dimensional system, σ can
be a 3 × 3 tensor; in the case of an isotropic homogeneous conductor it
reduces to a scalar quantity. The current density j denotes the number
of charges traversing a unit area normal to the current flow within a
time unit. If the sample is a cuboid of length L, width W , and thickness
d, then the current is I = jWd, and the electric field is related to
the voltage drop via E = U/L. Therefore, the conductance is related
to conductivity by G = σWd/L. The specific resistivity ρ = σ−1 is
the inverse of the conductivity. It is related to the resistance via R =
ρL/Wd. In general, the specific resistivity and the conductivity of a
material can be determined if the geometry of the sample is known.

Two-dimensional systems. In homogeneous two-dimensional systems,
such as heterostructures with a two-dimensional electron gas, Ohm’s
phenomenological law remains valid. The current density in two-dimen-
sional systems is, however, defined as j = I/W , where W is the width
of the sample. In two dimensions, the current density therefore has the
units [j] = A/m (instead of A/m2 in three dimensions). Correspond-
ingly, the units of the conductivity are [σ] = Ω−1 (rather than Ω−1m−1

in three dimensions), and those of the specific resistivity are [ρ] = Ω
(rather than Ωm). In anisotropic two-dimensional conductors, or in the
presence of a magnetic field, the conductance and the specific resistivity
are 2 × 2 tensors.
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Diffusive transport regime. Different materials can have the same
specific resistance. In the following, we will see that the specific resis-
tance can be expressed as a function of the density of charge carriers
n participating in electron transport, and a scattering time τ of the
charge carriers. In the diffusive transport regime the scattering of elec-
trons takes place on length scales that are small compared to the size of
the sample.

10.2 Hall effect

With the discovery of the Hall effect in 1879 (Hall, 1879; Hall, 1880),
Edwin Herbert Hall founded the field of magnetotransport phenomena
(also called galvanomagnetic effects) comprising all effects that an exter-
nal homogeneous magnetic field causes in a conducting sample through
which an electric current is driven. Hall found out that a magnetic field
normal to the direction of current flow results in a voltage UH between
two points with their connecting line normal to the magnetic field and
normal to the current flow (Fig. 10.1). Hall found this effect about 20
years prior to the discovery of the electron by Sir Joseph John Thom-
son in 1897. This phenomenon is called Hall effect. The Hall voltage
UH is proportional to the applied magnetic field B and to the current I
through the sample, i.e.,

UH = RHBI. (10.3)

The constant of proportionality RH is called the Hall coefficient. Fig-
ure 10.2 shows the five data points measured by Hall on a thin gold foil.
The horizontal axis is the magnetic field scale, the vertical axis is propor-
tional to the Hall resistance UH/I. Hall found out that the longitudinal
voltage U is independent of the magnetic field strength, in contrast to
the Hall voltage.

Drude model. As with Ohm’s law, the Hall effect can be also described
within the Drude model of electrical conduction which will be discussed
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Fig. 10.2 Original data of E.H. Hall
compiled from his 1879 papers (Hall,
1879; Hall, 1880).



146 Diffusive classical transport in two-dimensional electron gases

in detail in the next section. Within this model, the Hall coefficient RH

of a three-dimensional sample is related to the electron density n:

R3D
H = − 1

n|e|d . (10.4)

Here, d is the sample thickness in the magnetic field direction. The minus
sign originates from the negative charge of the electrons. Thin conduct-
ing films are therefore well suited for Hall measurements. In metals, the
Hall voltage is typically very small, because the electron density is very
large. In contrast, large Hall voltages can be reached in semiconduc-
tors due to the small achievable electron densities. In two-dimensional
electron gases, the density of carriers is a sheet concentration ns with
dimensions m−2 and therefore the thickness d in the above expression is
irrelevant. Therefore, in two-dimensional systems the Hall coefficient is

R2D
H = − 1

ns|e|
. (10.5)

The Hall effect can be incorporated in the tensor representation of the
electrical conductivity σ in eq. (10.2). If the magnetic field is applied in
the z-direction, the Hall effect appears in the matrix elements σxy and
σyx.

10.3 Drude model with magnetic field

From a microscopic point of view, scattering processes give rise to the
appearance of electrical resistance. Possible scattering mechanisms are,
for example, scattering at crystal defects, charged impurities, or lattice
vibrations (phonons). As an example, we consider electrons near the Γ-
point of the GaAs conduction band having the (effective) mass m� and
charge −|e|. We characterize the scattering processes of the electrons
with a mean scattering time τ .

Figure 10.3 shows the diffusive trajectory of an electron if a magnetic
field is applied normal to the plane of electron motion. Between scat-
tering events, the electron moves on circular orbits. After a collision,
the electron has a direction of motion completely uncorrelated with that
before the collision. We describe the situation in the following way.

Fig. 10.3 Example for a diffusive elec-
tron trajectory in a magnetic field.

We assume that an electric field E = (Ex, 0, 0) is applied in the x-
direction and that the magnetic field B = (0, 0, Bz) is in the z-direction,
normal to the average current flow (see Fig. 10.1). We consider the elec-
tronic motion to be quantized in the z-direction due to the confinement
in the heterostructure, but describe the motion in the plane semiclas-
sically. In the plane of the two-dimensional electron gas, the Lorentz
force F = −e(E + v ×B) acts on the electrons and Newton’s equations
describing the electron motion between two collisions are

m� dvx

dt
= −|e|(Ex + vyBz) and m� dvy

dt
= +|e|vxBz.
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Introducing the cyclotron frequency ωc = |e|Bz/m
� and the drift veloc-

ity vD = Ex/Bz these equations can be written as

dvx

dt
= −ωc(vD + vy) and

dvy

dt
= +ωcvx. (10.6)

The solution of the equations of motion is

v(t) =
(

0
−vD

)
−
(
vy(0) + vD
−vx(0)

)
sinωct+

(
vx(0)

vy(0) + vD

)
cosωct.

We have assumed that the last scattering event took place at time t = 0
leaving the electron with the velocity (vx(0), vy(0)). The vectors in front
of the sin and the cos terms are orthogonal to each other. As a conse-
quence, the last two terms describe a circular motion with frequency ωc,
the so-called cyclotron motion (motion on a cyclotron orbit). The first
term describes the drift of the orbit center in the y-direction. This means
that the time-averaged electron motion is in the negative y-direction
normal to the direction of the magnetic and electric fields, despite the
electric field pushing it in the x-direction. This motion is therefore called
E × B-drift.

The cyclotron frequency introduces a time scale into the problem
which will compete with the mean scattering time τ . For ωcτ � 1,
i.e. for small magnetic fields, the electrons cannot complete a cyclotron
orbit without being scattered. In the opposite case ωcτ � 1, i.e. for
large magnetic fields, this is well possible.

Over large time scales t � τ the electron will have a mean drift
velocity in the plane. In order to calculate this drift velocity, we assume
that after each collision, the electron has a velocity of magnitude v0
in a random direction which is uncorrelated to the direction before the
collision. We express this mathematically by introducing the probability
P(ϕ)dϕ that the electron moves in the direction ϕ immediately after a
collision. Our assumption means that the probability distribution for
the direction of the initial velocity v(0) is given by

P(ϕ)dϕ =
dϕ

2π
. (10.7)

In order to calculate the drift velocity, we further need the probability
w dt that an electron is scattered within an infinitesimal time interval
dt. If P (t) is the probability that the electron has not been scattered
until time t after the last collision, we have the rate equation dP (t)/dt =
−wP (t) with the solution P (t) = Ce−wt, where the constant C can be
derived from the initial condition P (0) = 1 to be C = 1. The product
p(t) = P (t)w dt is the probability that the electron scatters within the
time interval [t, t + dt] after the last collision. Therefore, the mean
scattering time is

τ =
∫ ∞

0

dtwe−wtt =
1
w
,

and
p(t)dt = e−t/τ dt

τ
. (10.8)



148 Diffusive classical transport in two-dimensional electron gases

The mean drift velocity is now obtained from eq. (10.6) by multiplying
the velocity v(t) with the probability P(ϕ)dϕ for starting at angle ϕ
and with p(t) dt for undisturbed motion during t and integrating over
all times t ≥ 0 and angles ϕ. Mathematically this means

v̄ =
∫ 2π

0

dϕP(ϕ)
∫ ∞

0

dt p(t)v(t). (10.9)

This procedure gives, for the components of the drift velocity,

v̄x = −vD
ωcτ

1 + ω2
cτ

2
= −Ex

|e|τ/m�

1 + ω2
cτ

2

v̄y = −vD
ω2

cτ
2

1 + ω2
cτ

2
= −vD

(
1 − 1

1 + ω2
cτ

2

)
= −vD + ∆v̄y. (10.10)

Performing the averaging, we have incorporated the effect of scattering
into the description. Obviously, scattering reduces the drift of the cy-
clotron orbit center in the y-direction by ∆v̄y = vD/(1+ω2

cτ
2) = v̄x/ωcτ .

This frictional contribution can be understood in the following way: drift
motion with the velocity −vD leads to a frictional force Fy = m�vD/τ .
Its effect corresponds to an effective electric field Ey = −m�vD/|e|τ .
According to the first equation this has to lead to a change in velocity
∆v̄y = −Ey|e|τ/m�(1 + ω2

cτ
2) which is exactly ∆v̄y = vD/(1 + ω2

cτ
2).

For Bz → 0, v̄y → 0 and v̄x goes to a finite zero field limit governed
by the action of the applied electric field. The proportionality constant
between the drift velocity v̄x at zero magnetic field and the electric field

µ =
|e|τ
m�

(10.11)

is called the electron mobility.
We see from eq. (10.10) that the mean drift velocity at finite magnetic

field is not parallel to the direction of the electric field (x-direction), but
encloses with the x-direction the so-called Hall angle θ obeying

tan θ =
v̄y

v̄x
= ωcτ = µB.

For Bz → 0, the Hall angle goes to zero and the electron drift and
electric field are oriented in the same direction.

The current density can now be calculated from the drift velocity to
be

jx = −ns|e|v̄x =
nse

2τ

m�

1
1 + ω2

cτ
2
Ex

jy = −ns|e|v̄y =
nse

2τ

m�

ωcτ

1 + ω2
cτ

2
Ex.

Figure 10.4 schematically shows the situation in a so-called Hall bar
geometry. The geometry allows current flow only in the x-direction.
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j

E

equipotential
lines

Fig. 10.4 Relative direction of the cur-
rent density vector and the electric field
at finite magnetic field. The two vec-
tors span the Hall angle θ. The equipo-
tential lines normal to the direction of
E show how the classical Hall voltage
comes about.

The vectors j and E enclose the Hall angle θ. The equipotential lines
are not normal to the direction of the current flow. As a result, a finite
Hall voltage is measured between corresponding contacts on opposite
sides of the bar.

At finite magnetic field normal to the plane of the electron gas, the
conductivity is a 2 × 2 tensor. We define the components

σxx(B) =
nse

2τ

m�

1
1 + ω2

cτ
2

(10.12)

σxy(B) =
nse

2τ

m�

ωcτ

1 + ω2
cτ

2

= ωcτσxx =
ns|e|
B

− σxx

ωcτ
. (10.13)

The same calculation performed for an electric field in the y-direction
gives tensor components σyy = σxx and σyx = −σxy and the whole
conductivity tensor is determined. The components σxx and σxy are
plotted as a function of magnetic field in Fig. 10.5. B

ne

1

xx

xy

Fig. 10.5 Drude conductance as a
function of magnetic field, expressed as
µB = ωcτ . At µB = 1, σxx = σxy .

The relation between the current density and the electric field can
now be written as(

jx
jy

)
=
(
σxx −σxy

σxy σxx

)(
Ex

Ey

)
. (10.14)

The tensor of the specific resistivity is obtained by tensor inversion re-
sulting in

ρxx =
σxx

σ2
xx + σ2

xy

=
m�

nse2τ
(10.15)

ρxy =
σxy

σ2
xx + σ2

xy

=
B

|e|ns
. (10.16)

The magnetic field dependence of these two components is plotted in
Fig. 10.6. The resistivity tensor relates the electric field and the current B

ne
1

1

xy

xx

Fig. 10.6 Specific resistivity in the
Drude model as a function of magnetic
field. For µB = 1, ρxx = ρxy .

density via (
Ex

Ey

)
=
(

ρxx ρxy

−ρxy ρxx

)(
jx
jy

)
. (10.17)

As originally observed by Hall, the longitudinal component ρxx of the
specific resistivity is independent of magnetic field. It is in fact deter-
mined by the scattering time τ . The transverse component ρxy, which
is also called the Hall resistivity, is independent of τ , but linear in B.
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A measurement of the two independent components of the resistivity
tensor allows us to determine the density and the mobility (scattering
time) of the electron gas. The electron density is obtained from the
measurement of the Hall resistivity via

ns =
1

|e| dρxy/dB|B=0
(10.18)

and the electron mobility is given by

µ =
dρxy/dB|B=0

ρxx(B = 0)
. (10.19)

The scattering time is then determined from eq. (10.11).
The Hall angle has been made visible in an experiment (Novak et al.,

1998). Thin layers of very weakly volume doped n-GaAs with charge
carrier concentrations of about 1.3× 1015 cm−3 were prepared. Rectan-
gular samples with two 6mm-wide ohmic contacts with a separation of
1.65mm were fabricated. Measurements were performed at a temper-
ature T = 4.2 K. The linear conductance of the samples is very small.
At sufficiently high applied voltages (fields of a few V/cm), an electrical
breakthrough occurs in which neutral donors are ionized by electronic
collisions. Their electrons are then available for electron transport. This
breakthrough occurs within current filaments which have a constant con-
ductivity in their center described by the Drude model. The current car-
rying filaments can be made visible by spatially resolved measurement
of the photoluminescence of the samples. To this end the experimental-
ists illuminated the sample with red LEDs and observed the excitonic
recombination of the electrons and holes with a suitable camera. The
intensity of the excitonic recombination is suppressed by the presence of
free charge carriers in the conducting filaments leading to dark stripes as
shown in Fig. 10.7. If a magnetic field is applied normal to the direction
of the current, the orientation of the filaments changes by the Hall angle
θ.

(a)

(b)

(c)

(d)

(e)

B=0

B

Fig. 10.7 Spatially resolved photolu-
minescence images of an n-GaAs sam-
ple with electric breakthrough. (a) A
dark stripe between the ohmic contacts
indicates a current filament in which
conductance is described by the Drude
model. (b)–(e) With increasing mag-
netic field the direction of the filament
changes. The angle between the origi-
nal direction at B = 0 and the direc-
tion at finite B is the Hall angle. The
applied magnetic fields are B = 64 mT
(b), B = 126mT (c), B = 188mT (d),
B = 251 mT (e). The current through
the sample is 1mA. (Reprinted with
permission from Novak et al., 1998.
Copyright 1998 by the American Phys-
ical Society.)

Crucial for this experiment is that the direction of the electric field
is determined by the boundary conditions at the contacts, while the di-
rection of the current can follow the Hall angle. The geometry of the
sample is therefore an important ingredient. In the following section we
will discuss the influence of sample geometries on the measured resis-
tance.

10.4 Sample geometries

We have seen in the previous section how the conductivity and the
specific resistivity of a two-dimensional electron gas are related to the
material-specific quantities n and τ . Now we will discuss how the specific
resistivity tensor can actually be measured.

The geometry of the sample and the measurement setup may have a
crucial influence on the measured electrical resistance. Suitable sample
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geometries have therefore been developed that allow us to determine the
specific resistivity from the measured resistance reliably and easily. In
principle, the arrangement of contacts and sample edges determines the
current density and electric field distribution in a sample. In the case
of a DC (direct current, i.e., zero or low-frequency) measurement, these
two vector fields are determined from the two Maxwell equations

∇E = 0 (10.20)
∇× E = 0 (10.21)

and Ohm’s law, eq. (10.2). The vector field E is given by the two
eqs. (10.20) and (10.21), and by the boundary condition that field com-
ponents parallel to the edges of ohmic contacts vanish, i.e.,

E‖(r) = 0 for r on the boundary of an ohmic contact.

At dielectric edges of a sample there are no boundary conditions for E.
In order to find the equations for the vector field of the current density,

we use the continuity equation ∂ρ/∂t + ∇j = 0, from which we obtain
in the stationary limit (∂ρ/∂t = 0)

∇j = 0.

If we take the curl of both sides of Ohm’s law and use the Maxwell
equations for the electric field we obtain, for a homogeneous system
with σ being constant in space,

∇× j = ∇× (σE) = σ∇× E = 0.

As with the electric field, the current density has zero divergence and
zero curl. Complementing the boundary conditions for the electric field,
we require at sample edges the current density component normal to the
boundary to vanish, i.e.,

j⊥(r) = 0 for r on the dielectric boundary of the structure.

The conductivity σ does not enter the equations for j and plays a role
only via the boundary conditions. For example, the current density at
the boundary to an ohmic contact is given by

j⊥(r) = σxxE⊥ for r on the edge of an ohmic contact,
j‖(r) = σxyE⊥ for r on the edge of an ohmic contact.

In the following, we will illustrate the consequences of the equations
determining j and E with a few important examples.

Hall bar geometry. If a sample containing a two-dimensional electron
gas is made to have the shape of a long bar with an ohmic contact at
each end [Fig. 10.8(a)], the field lines for j and E are easily found. Both
vector fields are homogeneous and directed parallel to the axis of the bar.
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Fig. 10.8 (a) Two-terminal measure-
ment with a bar geometry. (b) Equiv-
alent circuit with contact resistances
Rcontact and the internal resistances
of the voltage source RiV (typically
< 50 Ω) and of the ammeter RiC

(typically ≤ 10 Ω). (c) Four-terminal
measurement with a bar geometry.
(d) Equivalent circuit with contact re-
sistances Rcontact, the internal resis-
tance of the voltmeter RiV (typically
> 10 MΩ) and the internal resistance of
the current source (typically > 10 MΩ).
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(a) (b)

(c) (d)
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In general, the setup shown schematically, which is called a two-terminal
measurement, will not lead to the measurement of the two-dimensional
electron gas resistance, because the resistances of the electrical contacts,
Rcontact, the internal resistance of the voltage source, RiV, and that of
the ammeter, RiC, are connected in series. According to the equivalent
circuit shown in Fig. 10.8(b) we obtain for the measured resistance R =
U/I = R2DEG + 2Rcontact + RiV + RiC. A significant improvement can
be achieved using the four-terminal arrangement depicted schematically
in Fig. 10.8(c). Two narrow side contacts have been attached to the
bar which leave the current distribution and the electric field essentially
undisturbed, but allow the voltage to be picked up along the electron
gas. In the measurement setup the voltage source has been replaced by
a current source which delivers a well-defined current I independent of
the size of the load resistance. The resistances of the voltage contacts do
not play a role, because no current will flow through the voltmeter due
to its very large internal resistance. As a consequence, the electric field
in the two-dimensional electron gas is given by |E| = U/L, the current
density is |j| = I/W and therefore the specific resistivity takes the value

ρxx =
U

I

W

L
.

If a magnetic field is applied normal to the plane of the two-dimensional
electron gas, the pattern of field lines will be changed as depicted in
Fig. 10.9. Near the current contacts which are equipotential lines of the
electric field, the equipotentials are forced to run parallel to the edge of
the contact, roughly as long as the distance from the contact is less than
the width W of the sample. The field lines of the current density, how-
ever, must be at the Hall angle relative to the direction of the electric
field. Far away from the current contacts (much further than W ) the
edges of the sample force the field lines of j into a direction parallel to
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Fig. 10.9 Equipotential lines for the
electric potential (dashed) and field-
lines for the current density (solid) in a
short bar shaped sample with two metal
contacts (Seeger, 2004).

I

U

UH

Fig. 10.10 Hall bar geometry with
equipotential lines for the electric po-
tential and field lines for the current
density.

the sample edge. The field lines of E, however, must be at the Hall angle
to the current density and therefore to the axis of the bar. This region
will only form if the length of the bar between the current contacts is
much larger than W (Fig. 10.10). As a rule of thumb, the separation of a
voltage probe and a current contact has to be more than 4W . In regions
that are a distance much larger than W from the current contacts, the
proper Hall voltage can be measured normal to the axis of the bar. This
is achieved in the Hall bar depicted in Fig. 10.10 by fabricating pairs of
contacts at opposite sides of the bar. For this case one obtains

ohmic
contacts

Hall bar

Fig. 10.11 Hall bar sample used today
for characterizing two-dimensional elec-
tron gases. The Hall bar is 100 µm wide
and about 1 mm long.

ρxy =
UH

I
.

Figure 10.11 shows the photograph of a structure used today for the
characterization of two-dimensional electron gases. The large areas
of the contacts minimize the contact resistance at low temperatures.
Such structures are well known from transport measurements on three-
dimensional doped semiconductors.
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Fig. 10.12 (a) Corbino geometry for
measuring the conductivity. (b) Elec-
tric field lines and current distribution
in the Corbino geometry.

I

U

E

(a) (b) E j

Corbino geometry. We have seen that a long and narrow Hall bar
structure is crucial for the correct measurement of the resistivity tensor.
Short and wide bars lead to a significant geometrical influence on the
field line pattern (Fig. 10.9). This is very pronounced in the so-called
Corbino geometry depicted in Fig. 10.12 (a). The cylindrical symmetry
of this arrangement requires the electric field lines to point radially out-
wards. The field lines of the current density are logarithmic spirals of
the form ρ = aeϕ/(ωcτ). Figure 10.12 (b) shows the field lines of E and
j in the Corbino geometry. Only the current component flowing in ra-
dial direction is measured, i.e. the component σxx of the conductivity
tensor. The radial current density at the inner contact is jρ = I/(2πri),
and the electric field strength is Eρ = jρ/σxx = I/(2πσxxri) there. The
voltage difference between the inner and the outer contact is given by
U = I/(2πσxx) ln ra/ri. Neglecting possible contact resistances we find

σxx =
I

U

1
2π

ln
ra
ri
. (10.22)

Resistance between two points in the plane. We now consider a
two-dimensional electron gas in a plane (extended to infinity) into which
we inject the current IAB at point rA which will flow to infinitely remote
contacts. The current density will be directed radially away from the
contact due to the cylindrical symmetry of the problem and decay in the
radial direction according to

jρ(ρ) =
IAB

2πρ
.

At zero magnetic field, the electric field will also be directed radially and
decay according to

Eρ(ρ) =
IAB

2πσxxρ
.

The vector fields E and j do not change if the point-like current injector
is replaced by an injecting circular disk.

I
U

A
B

Fig. 10.13 Measurement between two
points in an infinitely extended plane.

We now extend the arrangement by extracting the current at another
point rB as shown in Fig. 10.13. As a result, we have a point-like current
source and a point-like current sink in the plane which can be incorpo-
rated into the equations for the current density as

∇j = IAB[δ(r − rA) − δ(r − rB)]
∇× j = 0.
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The solution of these two equations can be found by introducing a po-
tential function Λ defined via j = −∇Λ. The potential function is de-
termined by the two-dimensional Poisson equation

−∆Λ = IAB[δ(r − rA) − δ(r − rB)]

with the solution
Λ = −IAB

2π
ln
( |r − rA|
|r − rB|

)
.

The electrostatic potential φ in the plane is given by φ = Λ/σxx resulting
in

φ(r) = − IAB

2πσxx
ln
( |r − rA|
|r − rB|

)
. (10.23)

The potential diverges for r → rA, and for r → rB. In the vicinity of
one of the contacts, A or B, the equipotential lines are circles centered
around the contact point. The potential at a small distance δr from
contact A (here, small means δr � |rA − rB|) is (approximately) given
by

φA(δr) = − IAB

2πσxx
ln
(

δr

|rA − rB|

)
.

Instead of the point-like contact, we can therefore also choose a circular
contact with radius δr having this potential. This choice will neither
change the current density pattern nor the equipotentials. In the same
way, for such a small circular contact at rB we obtain the potential

φB(δr) =
IAB

2πσxx
ln
(

δr

|rA − rB|

)
.

As a result, the electric resistance between two such contacts of identical
radius δr � |rA − rB| is given by

RAB =
φA(δr) − φB(δr)

IAB
=

1
πσxx

ln
( |rA − rB|

δr

)
.

Van der Pauw method. The van der Pauw method is employed for
the determination of the charge carrier density and the mobility if no
well-defined Hall bar geometry is available. The method was suggested
in 1958 by L.J. van der Pauw. The author considers a sample that fills
a semi-infinite plane. Four contact points P, Q, R, and S are fabricated
in a line along the edge as depicted in Fig. 10.14. The current IPQ is
injected through contact P and extracted through Q. The voltage is
measured between the contacts R and S.

P Q R S
a b c

I
U

Fig. 10.14 Arrangement of four con-
tacts along the edge of an electron gas
filling a semi-infinite plane.

The electric potential difference between the two points S and R is
given by

∆φRS = φ(rS) − φ(rR) =
IPQ

πσxx
ln
( |rR − rP||rS − rQ|
|rR − rQ||rS − rP|

)
.

This result is obtained from eq. (10.23) by identifying the current IAB/2
with IPQ due to the semi-infinite planar geometry. The four-terminal
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Fig. 10.15 Geometry factor for the van
der Pauw method.
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resistance is then given by

RPQ,RS =
1

πσxx
ln
( |rR − rP||rS − rQ|
|rR − rQ||rS − rP|

)
=

1
πσxx

ln
(a+ b)(b+ c)
b(a+ b+ c)

.

In a similar way we find

RQR,SP =
1

πσxx
ln
( |rS − rQ||rP − rR|
|rS − rR||rP − rQ|

)
=

1
πσxx

ln
(b+ c)(a+ b)

ac
.

From these two equations we obtain the relation

e−πRPQ,RSσxx + e−πRQR,SPσxx = 1.

If the resistances RPQ,RS and RQR,SP are known from measurement, the
conductivity σxx can be determined from this formula. For practical use
we write the equation in the form

ρxx =
1
σxx

=
π

ln 2
RPQ,RS +RQR,SP

2
f

(
RPQ,RS

RQR,SP

)
, (10.24)

where the function f(x) depicted in Fig. 10.15 is implicitly defined by
the equation

x− 1
x+ 1

=
f

ln 2
acosh

[
1
2

exp
(

ln 2
f

)]
.

Using the theory of conformal mapping, van der Pauw was able to
show that eq. (10.24) remains valid for finite samples of arbitrary shape

P

Q

RS

P Q

RS

P Q

RS

(a)

(b)

(c)

Fig. 10.16 Sample geometries for the
van der Pauw method. (a) arbitrary
shape (b) square shape (c) 4-foliolate
sample shape.

if the contacts P, Q, R, and S are sitting along the sample edge. Fig-
ure 10.16 shows examples of such samples schematically. The geometry
in Fig. 10.16(c) minimizes errors arising due to the finite extent of con-
tacts. A clever method of measuring the two resistances RPQ,RS and
RQR,SP at the same time employs two frequencies (Kim et al., 1999).
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Also the Hall coefficient RH can be measured in a sample of arbitrary
geometry. To this end, a magnetic field B is applied normal to the
plane of the electron gas, a current is driven from contact P to R, and
the voltage between Q and S is measured resulting in the resistance
RPR,QS(B). Subsequently one measures RQS,RP(B) and determines the
Hall resistivity from

ρxy(B) =
RPR,QS(B) −RPR,QS(0) +RQS,RP (B) −RQS,RP (0)

2
.

10.5 Conductivity from Boltzmann’s
equation

Within the framework of the Drude model for the electrical conductiv-
ity described in section 10.3, the scattering time τ was introduced as a
heuristic quantity. The dynamics of electrons was described classically,
interactions between electrons were neglected, and scattering processes
were taken into account using an ad hoc statistical average. In this sec-
tion we will show how the electrical conductivity can be calculated within
the framework of the Boltzmann equation. The quantum mechanical na-
ture of electron states will be taken into account by incorporating Fermi
statistics. The description of electron motion between collisions will
still remain semiclassical. We will connect to elementary kinetic theory
by introducing the scattering time heuristically within the relaxation
time approximation. Later, in section 10.7, we extend this approach
by calculating the scattering time in lowest order quantum mechanical
perturbation theory.

Within the description of this section, the current density is given by

j = −|e|
A

∑
nknσ

vn(kn)fn(kn), (10.25)

where the distribution function fn(kn) is the probability density for the
occupation of state (nknσ), and A is a normalization area. The quantum
number n labels the subband states, k is the wave vector of an electron in
the plane of the two-dimensional electron gas, and σ is the spin quantum
number. If there is no current flow through the sample, the distribution
function is identical to the equilibrium Fermi–Dirac distribution. For
simplicity we assume spin degeneracy and a parabolic dispersion

En(kn) = En +
�

2k2
n

2m�
.

In this case the (group) velocity of an electron in subband n is given by

vn(kn) =
�kn

m�
,

and the current density becomes

j = −2|e|�
m�A

∑
nkn

knfn(kn),
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with the factor of two resulting from the spin degeneracy assumption.
The electronic states are given by

|nkn〉 =
1√
A
χn(z)eiknρ,

where ρ describes the in-plane position of an electron. We neglect here
that the wave functions are modified in a magnetic field and restrict our
considerations to ωcτ � 1.

The nonequilibrium distribution function fn(kn) can be determined
using the Boltzmann equation (see, e.g., Ibach and Luth, 1988)

∂fn(kn)
∂t

+
1
�
F∇kn

fn(kn) =
(
∂fn(kn)
∂t

)
coll

. (10.26)

Here we have assumed that the distribution function fn(kn) is indepen-
dent of position (homogeneous electron gas). A very instructive deriva-
tion of the Boltzmann equation approach to conductivity from first prin-
ciples (i.e., from the von Neuman equation of the density matrix) can
be found in Kohn and Luttinger, 1957. In the following, we consider
the stationary case in which ∂fn(kn)/∂t = 0. The force F acting on the
electrons is the Lorentz force F = −|e|(E + v × B).

Relaxation time approximation. For the scattering term on the
right-hand side of the Boltzmann equation we use the empirical form(

∂fn(kn)
∂t

)
coll

= −fn(kn) − f
(0)
n (En(kn))
τn

(10.27)

where we have introduced the scattering time τn again heuristically. If
we start at time zero with some nonequilibrium distribution function,
this scattering term will make sure that the distribution function returns
to the equilibrium distribution within a time span of the order of τn.
Implicit in this Ansatz is the assumption that electrons are not scattered
between subbands. We further assume that the τn do not depend on
the direction of k, but they may depend on the energy via |k|. As a
consequence of the first assumption, the Boltzmann equation

−|e|
�

(E +
�

m�
k × B)∇kf(k) = −f(k) − f (0)(E(k))

τ
(10.28)

can be solved separately for each subband and we have therefore dropped
the subband index n. We are interested in the linear response of the dis-
tribution function to the presence of a small electric field. We linearize
the Boltzmann eq. (10.28) by introducing f(k) = f (0)(E(k)) + g(k),
where g(k) is first order in the electric field E, and f (0)(E(k)) is the equi-
librium Fermi–Dirac distribution. Inserting this expansion in eq. (10.28)
and keeping only terms linear in E we obtain

−|e|�
m�

(kE)
∂f (0)(E(k))
dE(k)

− |e|
m�

(k × B)∇kg(k) = −g(k)
τ

. (10.29)
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The vector operator containing the magnetic field on the left-hand side of
eq. (10.29) can be written as (k×B)∇k = −B(k×∇k) = −B∂/∂ϕ with
ϕ being the angle coordinate of the wave vector k in cylinder coordinates.
We choose ϕ = 0 for k ‖ E. With this result, the linearized Boltzmann
eq. (10.29) reads

−|e|�
m�

(kE)
∂f (0)(E(k))
dE(k)

+ ωc
∂g(k)
∂ϕ

= −g(k)
τ

. (10.30)

This equation can be strongly simplified by introducing the function
ḡ(ϕ) related to g(k) via

g(k) =
∂f (0)(E(k))
dE(k)

�k
|e|τ
m�

Eḡ(ϕ). (10.31)

This corresponds to the idea that the equilibrium Fermi–Dirac distrib-
ution f (0)(E(k)) is at zero magnetic field shifted by a small distance δk
in k-space which corresponds to the drift velocity. With vD = µE =
|e|τE/m� = �δk/m� we find from a Taylor expansion up to first order

f(k) = f (0)(E(k + δk)) = f (0)(E(k)) +
∂f (0)(E)
∂E

�k
|e|τ cosϕ
m�

E.

The second term corresponds to eq. (10.31), if ḡ(ϕ) = cosϕ at zero
magnetic field. Using eq. (10.31), eq. (10.30) simplifies to

cosϕ− ωcτ
∂ḡ(ϕ)
∂ϕ

= ḡ(ϕ). (10.32)

This equation can be solved with the help of the Fourier series expansion
ḡ(ϕ) =

∑
� ḡ

(�) exp(i�ϕ) leading to

δ1� + δ−1�

2
− i�ωcτ ḡ

(�) = ḡ(�). (10.33)

We conclude from this equation that ḡ(�) = 0 for |�| �= 1 and find

ḡ(±1) =
1

2(1 ± iωcτ)
=

1
2
√

1 + ω2
cτ

2
e∓iθ =

1
2

cos θe∓iθ, (10.34)

where θ is the Hall angle obeying tan θ = ωcτ . As a consequence,

ḡ(ϕ) =
cos(ϕ− θ)√

1 + ω2
cτ

2
,

and

ky

kx

Fig. 10.17 Distribution function in k-
space at finite electric and magnetic
field. The distribution function is
shifted from its equilibrium position by
the amount δk = eτ0 cos θ|E|/�. The
direction of the shift is given by the Hall
angle θ for which tan θ = ωcτ .

g(k) =
∂f (0)(E(k))
dE(k)

�k
|e|τ
m�

cos(ϕ− θ)√
1 + ω2

cτ
2
E. (10.35)

The total nonequilibrium distribution function f(k) = f (0)[E(k)]+g(k)
is depicted in Fig. 10.17. Compared to the equilibrium distribution at
E = 0 it is shifted by an amount δk = |e|τ0 cos θ |E| /� in the direction
defined by the Hall angle θ.
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Current density and conductivity. With the above result we obtain,
for the current density in eq. (10.25),

j =
∫
dE

(
−∂f

(0)(E)
dE

)
ns(E)e2τ(E)/m�√

1 + ω2
cτ

2(E)

(
cos θ
sin θ

)
|E|,

where ns(E) is the electron density obtained from occupying states up to
the energy E (at zero temperature). The expressions for the conductivity
tensor components are then

σxx(B, T ) =
∫
dE

(
−∂f

(0)(E)
dE

)
ns(E)e2τ(E)/m�

1 + ω2
cτ

2(E)
(10.36)

σxy(B, T ) =
∫
dE

(
−∂f

(0)(E)
dE

)
ns(E)e2ωcτ

2(E)/m�

1 + ω2
cτ

2(E)
.(10.37)

Equations (10.36) and (10.37) have the structure

σxx(B, T ) =
∫
dE

(
−∂f

(0)(E)
dE

)
σxx(B,E, T = 0) (10.38)

σxy(B, T ) =
∫
dE

(
−∂f

(0)(E)
dE

)
σxy(B,E, T = 0), (10.39)

emphasizing that the finite temperature conductivity can be obtained
from a zero temperature energy-dependent conductivity. However, this
formulation has to be interpreted with great care because the energy-
dependent scattering rate τ−1(E) can implicitly depend on the temper-
ature via the temperature dependence of impurity potential screening,
as we will see later.

An important property of these results is the derivative of the Fermi
function in the integrand of the energy integral. At low temperatures,
for which kBT � EF, this derivative has a very sharp maximum at
E = EF, and the components of the conductivity tensor become

σxx(B,EF, T = 0) =
nse

2τ(EF)
m�

1
1 + ω2

cτ
2(EF)

σxy(B,EF, T = 0) =
nse

2τ(EF)
m�

ωcτ(EF)
1 + ω2

cτ
2(EF)

in agreement with eqs. (10.12) and (10.13). Compared to the much sim-
pler derivation presented earlier we have now learned that, as a conse-
quence of the Pauli principle introduced via the Fermi–Dirac distribution
function, the scattering time τ has to be evaluated at the Fermi energy.
The low-temperature conductivity therefore reflects the scattering prop-
erties of the electron gas at the Fermi edge.

As a final step we determine the components of the specific resistivity
for small magnetic fields, i.e., ωcτ � 1. To this end, we define the
average powers of the scattering time

〈τn〉 =
∫
dE

(
−∂f

(0)(E)
dE

)
E

EF
τn(E). (10.40)
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The elements of the conductivity tensor are then, to first order in B,
given by

σxx(B, T ) =
nse

2 〈τ〉
m�

σxy(B, T ) =
nse

2ωc

〈
τ2
〉

m�
,

and the resulting specific resistivities for B → 0 are

ρxx(B, T ) =
m�

nse2 〈τ〉

ρxy(B, T ) =
B

ns|e|

〈
τ2
〉

〈τ〉2
:=

rH(T )B
ns|e|

.

The expression for the Hall resistivity differs from eq. (10.16) in the
appearance of the temperature-dependent factor rH(T ) =

〈
τ2
〉
/ 〈τ〉2. It

turns out that for sufficiently low temperatures this factor is one and
the Drude expressions in eqs. (10.15) and (10.16) can be used for the
determination of the charge carrier density and the scattering time. For
higher temperatures rH(T ) remains of the order of one.

Mean free path. We are now going to define the important length
scale for elastic impurity scattering in the diffusive transport regime.
Because the relevant electron scattering time is evaluated at the Fermi
energy at low temperatures, the mean free path can be defined as

l = vFτF. (10.41)

This length scale can be compared to other length scales such as the
mean electron separation or the characteristic size of the nanostructure
under consideration. With this definition, the Drude conductivity in
eq. (10.12) evaluated at B = 0 for two-dimensional electron gases in a
spin degenerate conduction band minimum can be expressed as

σ =
e2

h
kFl.

The product kFl is a measure for the ability of scatterers (or the spatially
fluctuating potential) to localize electrons. For kFl � 1 the tendency for
electron localization is weak and one talks about metal-like conduction.
For kFl � 1 electrons localize strongly in the potential minima of the
fluctuating potential. The quantity e2/h ≈ (26 kΩ)−1 is the so-called
conductance quantum.

10.6 Scattering mechanisms

In two-dimensional electron gases, the most important scattering mech-
anisms are
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Fig. 10.18 Influence of various scat-
tering mechanisms on the temperature
dependence of the mobility of a three-
dimensional GaAs sample. (Reprinted
from Sequoia et al., 1976 with permis-
sion from Elsevier.)
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• optical phonon scattering (dominant at high temperatures)

• acoustic phonon scattering (deformation potential scattering)

• piezoelectric scattering originating from acoustic phonons in piezo-
electric semiconductors (e.g., III-V semiconductors or II-VI semi-
conductors, as a result of the lack of bulk inversion symmetry of
the crystal lattice)

• ionized impurity scattering (undesired background doping)

• ionized donor scattering

• scattering from neutral defects or impurities

• alloy scattering in ternary semiconductors, e.g., in AlGaAs het-
erostructures

• surface roughness scattering.

All the above scattering mechanisms can lead to intersubband scattering,
if more than a single subband is occupied. Figure 10.18 shows the in-
fluence of various scattering mechanisms on the temperature-dependent
mobility of a three-dimensional GaAs sample as a reference. At temper-
atures above 100K polar optical phonon scattering is by far the dom-
inant scattering mechanism limiting the mobility. In the intermediate
range between 40 K and 100K, various scattering mechanisms play a
role. Phonon scattering dies out when the temperature is lowered, but
ionized impurity scattering becomes more and more dominant. Below
about 10 K, ionized impurity scattering appears to be the only relevant
scattering mechanism.
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Fig. 10.19 Improvement of the
low-temperature mobilities in remotely
doped Ga[Al]As heterostructures.
(Reprinted with permission from
Pfeiffer et al., 1989. Copyright 1989,
American Institute of Physics.)

The situation is different in some respects, if one compares the three-
dimensional case to that of two-dimensional electron gases. Figure 10.19
shows how the experimentally achievable temperature dependence of
the mobility has changed over the years since 1978 with steady improve-
ment in growth techniques and therefore in material quality. The mo-
bilities of three-dimensional GaAs samples cannot compete with those
of two-dimensional systems as a result of the remote doping technique.
Figure 10.20(a) shows which scattering mechanisms are relevant for the
mobility of electrons in an optimized two-dimensional gas in a Ga[Al]As
heterostructure. As in bulk GaAs, the mobility is mainly determined by
optical phonon scattering at temperatures above 100K. At intermedi-
ate temperatures between 20 K and 40K, various scattering mechanisms
contribute, as they do in the three-dimensional system. However, ion-
ized impurity scattering from remote impurities (dopants) has very little
influence on the mobility owing to the separation of the electron gas from
the doping plane. It is rather the background impurity doping which ap-
pears to limit the low-temperature mobility. Therefore, improved growth
techniques in dedicated MBE systems which lead to an improved mate-
rial quality in terms of lower background impurity levels have enabled
us to achieve mobilities of more than 107 cm2/Vs (see Fig. 10.19).

The mobility of electrons in a heterostructure with remote doping
is crucially influenced by the thickness of the spacer layer between the
electron gas and the two-dimensional electron gas. Figure 10.20(b) shows
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Fig. 10.20 (a) Influence of various scattering mechanisms on the mobility of a GaAs/AlGaAs heterostructure. (Reprinted
with permission from Walukiewicz et al., 1984. Copyright 1984 by the American Physical Society.) (b) Mobilities of electrons
in modulation doped GaAs/AlGaAs heterostructures with varying spacer layer thickness Wsp (Solomon et al., 1984).

the mobilities of samples with different spacer layer thicknesses Wsp

between zero and 30 nm. The influence of Esp is quite significant below
about 50 K. The biggest improvement of the low-temperature mobility
is achieved when Wsp is increased from zero to 10 nm. This increases the
mobility by more than one order of magnitude. BeyondWsp = 10 nm the
mobility increase becomes much weaker, because background impurity
scattering becomes more and more dominant.2
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Fig. 10.21 Mobility of a
GaAs/AlGaAs heterostructure as
a function of the top gate voltage.
Above about −50 mV the second
subband is occupied. Additional
intersubband scattering leads to a
reduction of the mobility. (Reprinted
from Stormer et al. 1982 with
permission from Elsevier.)

The influence of intersubband scattering can be made visible in ex-
periments in which the number of occupied subbands can be controlled.
One option is the use of a top gate voltage which may allow us to increase
the electron density beyond the occupation threshold of the second sub-
band. Another method uses electron gases in which two subbands are
already occupied at zero magnetic field. The higher subband can then be
depopulated by applying a magnetic field in parallel to the electron gas.
Fig. 10.21 shows the resistivity of a modulation-doped heterostructure
in which the the second subband is populated at a top gate voltage of
about −50 mV. The mobility decreases as a result of the intersubband
scattering channel that becomes important above this gate voltage.
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10.7 Quantum treatment of ionized
impurity scattering

In section 10.5 we treated scattering on a heuristic basis by introducing
the relaxation times τn for each subband n. The resulting expressions
for the conductivity tensor components in eq. (10.36) and (10.37) are
compatible with the earlier Drude results, but it remained unclear how
the actual scattering times τn have to be calculated from microscopic
scattering theory. We will study the basic ideas behind the microscopic
determination of the relaxation rates below, using lowest order scattering
at ionized impurities as an example. Higher order contributions, as
well as interference effects, are therefore neglected, but intersubband
scattering processes are taken into account. A very rigorous approach to
this problem starting from first principles is given in Kohn and Luttinger
1957.

The basic ingredient in our approach is the introduction of appro-
priate quantum scattering rates in the collision term of the Boltzmann
eq. (10.26), instead of the empirical expression (10.27):(

∂fn(kn)
∂t

)
coll

=
∑
mk′

m

{Wmn(k′m,kn)[1 − fn(kn)]fm(k′m)

−Wnm(kn,k′m)[1 − fm(k′m)]fn(kn)} (10.42)

Here, the Wnm(kn,k′m) are the quantum scattering rates from state
(nkn) into state (mk′m). In eq. (10.42) the first term in curly brack-
ets describes scattering processes from any state (mk′m) into the state
(nk). This process is only possible if the initial state is occupied (factor
fm(k′m)), and if the final state is unoccupied (factor 1 − fn(kn)). The
second term describes scattering out of the state (nk) into any other
state (mk′m).

Calculation of the elastic scattering rates. The scattering rates
are calculated in first order perturbation theory using Fermi’s golden
rule

Wnm(kn,k′m) =
2π
�

|〈mk′m |V |nkn〉|2 δ(En(kn) − Em(k′m)).

Here we are interested in elastic scattering processes that are dominant
at low temperatures where phonons are essentially frozen out. For these
processes we have the scattering matrix elements

〈mk′m |V |nkn〉 =
1
A

∫
dzd2ρχm(z)e−ik′

mρV (ρ, z)χn(z)eiknρ

=
1
A

∫
dzd2ρχm(z)χn(z)e−i(k′

m−kn)ρV (ρ, z)

:=
1
A
Vmn(k′m − kn).

The plane-wave wave functions in the plane of the electron gas essentially
lead to a two-dimensional Fourier transform of the scattering potential
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in the plane. Diagonal matrix elements Vnn(k′n−kn) describe scattering
within subband n (intrasubband scattering), whereas off-diagonal matrix
elements with n �= m describe intersubband scattering between subbands
n and m. We further assume that the scattering potential V (ρ, z) is the
sum over individual scattering centers with potentials vi(ρ, z) localized
at positions ρi, i.e.,

V (ρ, z) =
∑

i

vi(ρ− ρi, z).

With this assumption, the scattering matrix element can be written as

Vnm(q) =
∑

i

v(i)
nm(q)eiqρi ,

where we have introduced the change in wave vector q = k′m − kn. The
modulus squared of the matrix element is then given by

|〈mk′m |V |nkn〉|2 =
1
A2

∑
ij

v(i)
nm

�
(q)v(j)

nm(q)eiq(ρj−ρi)

=
1
A2

∑
i

∣∣∣v(i)
nm(q)

∣∣∣2
+

1
A2

∑
ij,i�=j

v(i)
nm

�
(q)v(j)

nm(q)eiq(ρj−ρi).

In the last step, we have separated the diagonal contributions i = j from
the off-diagonal contributions i �= j. If we assume that the scattering
centers are randomly placed, i.e., the pair correlation function is con-
stant, the statistical phases in the exponential of the off-diagonal term
will mutually cancel and the term vanishes. The remaining diagonal
term can be written as

|〈mkm |V |nkn〉|2 =
Ni

A2

1
Ni

∑
i

∣∣∣v(i)
nm(q)

∣∣∣2 :=
Ni

A2

∣∣∣v(i)
nm(q)

∣∣∣2,
where Ni is the number of scattering centers within the normalization

area A. We have introduced the averaged Fourier transform
∣∣∣v(i)

nm(q)
∣∣∣2

of the scattering potentials. This average will, of course, depend on the
specific locations ρi of the Ni scattering centers. However, it has been
argued (Kohn and Luttinger, 1957) that, for the purpose of calculating
the scattering rate, an average of this quantity taken over the ensemble
of all possible impurity configurations can be used equivalently, such
that the squared matrix element becomes independent of the specific
impurity configuration in a sample. Denoting this impurity average by〈∣∣∣v(i)

nm(q)
∣∣∣2〉

imp

, we get for the squared matrix element the expression

〈
|〈mkm |V |nkn〉|2

〉
imp

=
Ni

A2

〈∣∣∣v(i)
nm(q)

∣∣∣2〉
imp

.
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This function will often not depend on the direction, but only on the
magnitude of q. In this case we find

|q| =
√

(kn − k′m)2 =
√
k′m

2 + k2
n − 2k′mkn cos(ϕn − ϕ′m),

i.e., the average scattering potential depends only on the energy and the
scattering angle ϕn − ϕ′m. We therefore define〈∣∣∣v(i)

nm(q)
∣∣∣2〉

imp

:= Pnm[En(kn), |ϕn − ϕ′m|].

After all these considerations, assumptions, and simplifications we can
write the scattering rate as

Wnm(kn − k′m)

=
2π
�

Ni

A2
Pnm[En(kn), |ϕn − ϕ′m|]δ(En(kn) − Em(k′m)). (10.43)

Linearized Boltzmann equation. Taking into account the symmetry
Wnm(kn−k′m) = Wmn(k′m−kn) evident from eq. (10.43), the scattering
term, eq. (10.42), simplifies, and we can write the linearized Boltzmann
equation in complete analogy with eq. (10.30) as

− |e|�
m�

(knE)
∂f (0)(En(kn))
dEn(kn)

+ ωc
∂gn(kn)
∂ϕn

=
∑
mkm

Wmn(km − kn) {gm(km) − gn(kn)} . (10.44)

For obtaining the right-hand side, we have used the fact that the scat-
tering processes are elastic, i.e., En(kn) = Em(k′m).

By analogy with eq. (10.31) we now define

gn(kn) :=
∂f (0)(En(kn))
dEn(kn)

�kn
|e|τn(ϕn)

m�
E, (10.45)

where the product τ ḡ(ϕ) appearing in eq. (10.31) has been contracted
into the angle-dependent scattering time τn(ϕ). Using eqs. (10.45) and
(10.43), eq. (10.44) becomes

kn cosϕn − knωc
∂τn(ϕn)
∂ϕn

=
nim

�

2π�3∑
m

∫ 2π

0

dϕ′mPmn[En(kn), |ϕ′m − ϕn|] {knτn(ϕn) − k′mτm(ϕ′m)} ,

(10.46)

where we have introduced the areal density of scatterers ni := Ni/A.
This equation can be solved with the help of the Fourier series expan-
sions τn(ϕn) =

∑
� τ

(�)
n exp(i�ϕn) and Pmn(E,ϕ) =

∑
� P

(�)
mn(E) exp(i�ϕ)



168 Diffusive classical transport in two-dimensional electron gases

which leads to

kn

[
δ1j + δ−1j

2
− iωcτ

(j)
n j

]
=
nim

�

�3

∑
m

{
P (0)

mn[En(kn)]knτ
(j)
n − P (j)

mn[En(kn)]k′mτ
(j)
m

}
, (10.47)

which corresponds to eq. (10.33) in our previous derivation of the dis-
tribution function. We conclude from this equation that τ (j)

n = 0 for
|j| �= 1 and are therefore left with the equation

1
2
kn =

∑
m

{
δmn

[(∑
�

nim
�

�3
P

(0)
�n [En(kn)]

)
± iωc

]
(10.48)

−nim
�

�3
P (±1)

mn [En(kn)]
}
kmτ

(±1)
m . (10.49)

Scattering rate in the single subband case. In the case of a single
occupied subband (quantum limit) we obtain

1
2

=
{
nim

�

�3
P (0)(E) ± iωc −

nim
�

�3
P (1)(E)

}
τ (±1)

with the solution [cf., eq. (10.34)]

τ (±1) =
1
2

τ0
1 ± iωcτ0

=
1
2

τ0e
∓iθ√

1 + ω2
cτ

2
0

=
1
2
τ0 cos θe∓iθ,

where θ is the Hall angle and the zero magnetic field scattering rate is
given by

�

τ0(E)
= ni

m�

2π�2

∫ 2π

0

dϕ

〈∣∣∣v(i)(q)
∣∣∣2〉

imp

(1 − cosϕ). (10.50)

The prefactor m�/2π�
2 in front of the integral is half of the two-dimen-

sional density of states (half, because scattering conserves spin and only
half of the total density of states is therefore available for scattering
into). The nonequilibrium part of the distribution function is identical
to eq. (10.35) with τ → τ0(E). Equation (10.50) is our main result, an
expression for the calculation of the energy-dependent Drude scattering
rate from microscopic scattering theory. It can be used for the calcula-
tion of the conductivity tensor components in eqs. (10.36) and (10.37)
by replacing τ(E) → τ0(E). The scattering potential matrix element
v(i)(q) will typically be the result of a screened ionized impurity po-
tential. Using the results of linear screening theory, eq. (9.12), we can
therefore express the scattering rate as

�

τ0(E)
= ni

m�

2π�2

∫ 2π

0

dϕ

〈 ∣∣v(ext)(q)
∣∣2

ε2(q, EF, T )

〉
imp

(1 − cosϕ). (10.51)

The temperature and density dependence of the dielectric function adds
an interaction-related temperature and density dependence to the con-
ductivity in eqs. (10.36) and (10.37) beyond the derivative of the Fermi
distribution function.
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Fig. 10.22 Density dependence of the
Drude scattering time in a 10 nm thick
GaAs quantum well at T = 1.7K. The
symbols are data points of the sample
before and after illumination with light
from an infrared LED. The solid line is
the result of a model calculation.

Electron density dependence of the scattering time. At low tem-
peratures, where ionized background impurity scattering is dominant,
the average scattering time 〈τ0〉 ≈ τ0(EF) depends on the electron den-
sity. Figure 10.22 shows this dependence as it is observed in a 10 nm
thick GaAs quantum well at a temperature T = 1.7 K. The scatter-
ing time increases with increasing electron density. This behavior can
be explained with eq. (10.50). In the present case of a single occupied
subband

|q| =
√

2k2
F(1 − cosϕ) =

√
4πns(1 − cosϕ).

The average Fourier transform of the scattering potential
〈∣∣v(i)(q)

∣∣2〉
imp

will have a maximum for |q| → 0 and decrease monotonically for in-
creasing q as shown schematically in Fig. 10.23. The angle integration in q

|v(
q)

|2

1/r0 2kF

k'

Fermi circle

k

q

Fig. 10.23 The squared modulus of a
typical scattering matrix element. At
the top right, scattering vectors for a
particular scattering process are shown.
The maximum possible value for q is
2kF.

eq. (10.50) averages over q-values between 0 and 2kF. Scattering angles
close to π, i.e., large q-values (backscattering) get a strong weight. The
value of this angular average decreases with increasing density, i.e., grow-
ing kF, because

〈∣∣v(i)(2kF)
∣∣2〉

imp
decreases. As a result, the scattering

rate decreases and the scattering time increases.

10.8 Einstein relation: conductivity and
diffusion constant

In a phenomenological approach to the conductance, valid in one (d = 1),
two (d = 2), or three d = 3 dimensions, we can regard the total current
in a conductor as the sum of a so-called drift current driven by the
electric field [cf., eq. (10.2)]

jDrift = σE
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and a diffusion current caused by a gradient in the electron density

jDiff = |e|Dd∇n.

Here, D is the diffusion constant in a d-dimensional system (note that
the diffusion constant has dimensions m2/s in d = 1, 2, 3).

In thermodynamic equilibrium, the electrochemical potential µelch is
constant, and the total current in a conductor is zero, i.e.,

σE + |e|Dd∇ns = 0 for ∇µelch = 0. (10.52)

The electrochemical potential is the sum of the chemical potential EF

(i.e., the Fermi energy measured from the minimum of the dispersion
relation), and of the electrostatic potential −|e|φ, i.e., µelch = EF −|e|φ.
As a result we obtain, for zero temperature,

∇µelch = ∇EF + |e|E =
1

Dd(EF)
∇ns + |e|E. (10.53)

Here, Dd(EF) = dns(EF)/dEF is the density of states at the Fermi
energy in a d-dimensional system. If we combine eqs. (10.52) and (10.53)
we obtain the so-called Einstein relation for an electron gas at zero
temperature

σ = e2Dd(EF)Dd, (10.54)

which is a relation between the electric transport problem, characterized
by the conductance σ, and the diffusion problem, characterized by the
diffusion constant Dd. Comparison with eq. (10.12) for B = 0 leads
to the zero magnetic field expression for the diffusion constant in two
dimensions (d = 2)

D2 =
1
2
v2
Fτ =

1
2
l2

τ
. (10.55)

At finite magnetic fields, the diffusion constant in two dimensions, like
the conductivity, becomes a 2× 2 tensor. For ωcτ � 1 we find, with the
help of σxx and the Einstein relation,

Dxx =
1
2
R2

c

τ
, (10.56)

where Rc = �kF/eB is the classical cyclotron radius. In a strong mag-
netic field (Rc � l, i.e., ωcτ � 1), this length scale takes the role of
the mean free path for the electronic motion. Intuitively, this result
makes sense if one realizes that a scattering event will make the center
coordinate of the cyclotron radius jump by some distance between zero
and 2Rc, i.e., by Rc on average. According to this point of view, the
conductance at strong magnetic fields is determined by the diffusion of
the center coordinates of the cyclotron orbits.

10.9 Scattering time and cross-section

Within the phenomenological scattering theory, the scattering time has
a simple relation to the scattering cross-section. As an example, we
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consider scattering of electrons at lattice defects. The differential cross-
section σs(Ω) describes scattering of an electron at a single lattice defect.
If F is the current of the incident electrons and dN is the number of
electrons scattered into the solid angle dΩ around Ω, then

dN = Fσs(Ω) dΩ.

The total scattering cross-section σtot is obtained by integrating over
all solid angles. Intuitively, the total cross-section is the effective area of
the scattering center. If a particle hits this area, it is scattered, otherwise
it is not. If an electron moves with velocity v in an electron gas in which
scatterers exist with a density Ni, the probability for an electron to
scatter within time interval dt is given by

dt

τ
= Niσsvdt.

The relation between total scattering cross-section and scattering rate
is therefore

1
τ

= Niσsv, (10.57)

where Ni is the density of defects and v is the average velocity of elec-
trons. The scattering cross-section σs and the scattering rate 1/τ will
in general depend on the energy of the particle under consideration.
Of crucial importance for the conductivity of two-dimensional electron
gases at low temperatures is the scattering rate at the Fermi energy
τ−1
F = Niσs(EF)vF.

10.10 Conductivity and field effect in
graphene

At the end of this chapter on classical Drude transport we briefly dis-
cuss the conductivity and the field effect in two-dimensional graphene.
A measurement of the conductivity of graphene performed at a tempera-
ture of 1.7 K is shown in Fig. 10.24. The measurement was performed on
a Hall bar structure in four-terminal configuration. The graphene flake
was deposited on a highly doped silicon substrate acting as a back gate.
An oxide barrier of d = 300 nm thickness separated this back gate from
the graphene Hall bar which was patterned with lithographic techniques.

The influence of the back gate on the graphene sheet can be described
using a parallel plate capacitor model with

∆ns(Vbg) =
εε0
|e|d∆Vbg

describing the relation between the change in sheet carrier density ∆ns

and the change in back gate voltage ∆Vbg. Here, ε is the relative di-
electric constant of the oxide. In the measurement, the conductivity is
seen to increase almost linearly to the left and to the right of the so-
called charge neutrality point V D

bg, as the above formula suggests for the
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Fig. 10.24 Conductivity of graphene
measured on a Hall bar structure (see
inset for a schematic drawing) as a
function of the back gate voltage.
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density. At gate voltages Vbg < V D
bg, the Fermi energy is in the valence

band, whereas in the opposite case it is in the conduction band. This
is schematically indicated with the dispersion cones in the figure. The
conductivity σ resembles the v-shaped density of states in graphene (see
Fig. 3.15) except that the conductivity does not vanish at V D

bg, but has
a minimum σmin at a value of about 4e2/h = 0.15 × 10−3 Ω−1. We
anticipate here that the prefactor of four can be seen as a result of the
two-fold spin degeneracy and the two-fold valley degeneracy (K and K′)
in graphene. The remaining value of e2/h is called the conductance
quantum, which is of fundamental importance for quantum transport,
as we will see in later chapters.

Using the Drude–Boltzmann expression σ = ns|e|µ for the conduc-
tivity at zero magnetic field, we have to conclude that the mobility µ
in graphene is almost independent of the charge carrier density ns. An
interesting aspect of the mobility of charge carriers in graphene is the
fact that the linear dispersion relation of graphene at the Fermi energy
does not allow us to define an effective mass. As a consequence, the
relation µ = |e|τ/m�, which is valid in the case of parabolic dispersion
relations, does not apply here. We obtain a different view on the prob-
lem if we consider the Einstein relation (10.54). The linear dependence
of the conductivity to the left and right of V D

bg implies that the diffusion
constant in graphene is also independent on the energy.

A detailed analysis of the Drude–Boltzmann theory of conductivity
for graphene, with its peculiar band structure, reveals more insights.
As a consequence of the two-component wave function describing the
charge carriers in graphene, the scattering matrix elements produce an
additional scattering-angle-dependent factor suppressing backscattering
of carriers (scattering angles of π). The scattering rate can be written



Further reading 173

as [cf., eq. (10.50)]

�

τ0(E)
= ni

E/c�2

2π�2

∫ 2π

0

dϕ

〈∣∣∣v(i)(q)
∣∣∣2〉

imp

1 + cosϕ
2

(1 − cosϕ).

Backscattering is suppressed (1 + cosϕ factor), because the two-compo-
nent states with wave vectors k and −k are orthogonal (they have the
opposite helicity, but we have assumed that scattering conserves the
helicity). We also see that the mass in eq. (10.50) has to be replaced by
the relativistic mass E/c�2 for the case of graphene. Furthermore, the
prefactor in front of the integral resembles one quarter of the graphene
density of states in eq. (3.27). It is only one quarter of the full density of
states because scattering conserves the spin, and intervalley scattering
is not admitted. If we take long-range unscreened Coulomb potentials
as the scattering potentials, the Fourier transform is proportional to
q−1, i.e., the inverse wave vector change during scattering, resulting in
a E−2-dependence of the matrix element on energy. This in turn leads
to τ0(E) ∝ E. Also, in the definition of the mobility, the effective mass
has to be replaced by the relativistic mass E/c�2 such that the energy
dependence cancels, and the mobility becomes independent of density
(Fermi energy), as observed in the experiment.

Although reasons for an energy-independent conductivity can be found,
the details of charge transport and scattering mechanisms in graphene
have remained a topic of research and discussion to date. Also, the
question of why the minimum conductivity arises around 4e2/h is not
completely clear yet. It seems to emerge that as the Fermi energy comes
close to the charge neutrality point, the electronic system consists of a
random network of electron and hole puddles (Martin et al., 2008), but
strong localization cannot occur as a result of pseudorelativistic Klein
tunneling (Katsnelson et al., 2006) and the lack of a band gap.

Further reading

• Drude theory, Boltzmann equation: Shockley 1950;
Seeger 2004; Balkanski and Wallis 2000.

• Papers: Drude 1900a; Drude 1900b; van der Pauw

1958a; van der Pauw 1958b.

• Scattering mechanisms: Ferry 1998; Davies 1998.
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Exercises

(10.1) Consider a block of pure copper of dimension Lx ×
Ly × Lz.

(a) Estimate the density of conduction band elec-
trons in this three-dimensional system.

(b) A current flows in the x-direction and a mag-
netic field B is applied in the z-direction.
What is the Hall resistance of the block?

(c) How small does Lz have to be in order to have
a Hall resistance of the order of e2/h?

(d) Discuss the characteristic differences be-
tween such a thin copper sheet and a two-
dimensional electron gas.

(10.2) The measurement setup depicted below is used
to measure the resistance of a two-dimensional
electron gas in GaAs (m� = 0.067m) at the tem-
perature T = 4.2K. The Hall bar sample and a
10 MΩ resistor are connected in series to a volt-
age source that delivers the voltage U0 = 1 V.

10 M

U

UH

U0=1 V

W

L

B

1 2

3

The total resistance of the sample is small com-
pared to 10 MΩ. A magnetic field B can be ap-
plied normal to the plane of the two-dimensional
electron gas. Between contacts 1 and 2 (separation
L = 100 µm), the voltage U = 10 µV is measured at
zero magnetic field. Between contacts 2 and 3 the
Hall voltage UH = 200µV is measured at B = 1T.
The width of the sample is W = 30 µm.

(a) What is the longitudinal (specific) resistivity
ρxx and the transverse resistivity ρxy of the
electron gas?

(b) Calculate the mobility µ, the scattering time
τ , and the mean free path l of the electron
gas at the Fermi energy from the measured
resistivities.

(10.3) Show that the Einstein relation (10.54) holds for
arbitrary dimensions and dispersions, if D2D is re-
placed by D(EF). Show that, for parabolic disper-
sions, the diffusion constant can be expressed as
D = v2

Fτ/d, if d is the dimensionality of the sys-
tem.

(10.4) Discuss the two subband case starting from
eq. (10.49). Set up a system of two equations for
determining the scattering times τ±1,2.
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11.1 Experimental observation of
conductance quantization

When we discussed the self-consistent calculation of the potential and
the modes in an infinite wire (section 8.1), we saw that the number of
occupied modes can be tuned with the voltage applied between the gate
electrodes and the two-dimensional electron gas. Experimentally, short
wires can be realized in split-gate structures (see Fig. 6.11, and the inset
of Fig. 11.1) placed on top of a Ga[Al]As heterostructure incorporat-
ing a two-dimensional electron gas. If a negative voltage is applied to
the gates, the electron gas below the gates can be depleted and a nar-
row channel remains connecting the two large two-dimensional electron
reservoirs.

In 1988 two experiments by van Wees and co-workers, and Wharam
and co-workers, on the low-temperature conductance of such quantum
point contacts at zero magnetic field showed remarkable results. Fig-
ure 11.1(a) shows the measured resistance as a function of the voltage
applied to the split gate. The measured resistance increases as the volt-
age is decreased, in agreement with the intuition that the width of the
channel decreases. However, the resistance increase shows pronounced
steps once the resistance value exceeds a few kΩ. Detailed investigations
of this behavior showed that the two-dimensional electron gas connecting
the quantum point contact to the external ohmic contacts contributes a
gate-voltage independent series resistance of 400Ω. If this resistance is
subtracted, the resistance plateaus appear at quantized values h/2Ne2,
where N is an integer number. The conductance, determined as the
inverse of the resistance is shown in Fig. 11.1(b). It shows pronounced
plateau values at

G =
2e2

h
N, (11.1)

where N is an integer number. This result implies that the conductance
is quantized in units of twice the conductance quantum

G0 =
e2

h
= 3.8740459 × 10−5 Ω−1. (11.2)

Since its discovery, the quantization of the conductance has been ob-
served in a large number of experiments on samples of vastly differ-
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Fig. 11.1 (a) Resistance of a quantum point contact as a function of the gate voltage. The inset shows a schematic top view of
the split-gate structure. (b) Conductance of the same quantum point contact as a function of gate voltage after subtraction of
a gate voltage independent series resistance of 400 Ω. (Reprinted with permission from van Wees et al., 1988. Copyright 1988
by the American Physical Society.)

Fig. 11.2 Conductance quantization in
a quantum point contact fabricated by
AFM lithography on a p-type GaAs
heterostructure (see inset). The labels
‘pg’, ‘S’, and ‘D’ denote the plunger
gate, the source, and the drain con-
tacts, respectively. The 70 mK curve
is offset by 2e2/h for clarity.
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ent materials. Figure 11.2 shows an example of the effect observed on
a quantum point contact fabricated in a two-dimensional hole gas in
GaAs. Small kinks on the measured curve are most likely the result
of rearrangements of charge in the sample close to the quantum point
contact arising as the gate voltage is swept. The sample shown in the
inset was fabricated by AFM lithography. The experimental conditions
for the observability of the quantization are samples of high quality in
which the electron (or hole) mean free path is very large compared to the
length and width of the channel. In order to observe the quantization,
the width of the channel must be comparable to the Fermi wavelength
of the electrons, and the temperature must be low compared to the
characteristic energy spacing of transverse modes in the channel.
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Fig. 11.3 (a) One-dimensional chan-
nel connected to left and right elec-
tron reservoirs (gray). The electro-
chemical potentials of the reservoirs are
µL and µR. Transverse modes are
schematically drawn within the chan-
nel with arrows indicating their prop-
agation direction. (b) Dispersion re-
lation in the one-dimensional channel.
For each mode n, the parabolic disper-
sion relation has its minimum at energy
En. States with negative kx propagate
from right to left and are fed from the
right reservoir with electrochemical po-
tential µR, while those with negative kx

travel from left to right and are fed from
the left reservoir with electrochemical
potential µL. The gray-shaded energy
interval is given by the applied voltage
between left and right reservoirs (bias
window).

11.2 Current and conductance in an ideal
quantum wire

In order to understand the experimental finding of conductance quanti-
zation, we consider the simple model of a perfect one-dimensional chan-
nel, as produced, for example, in the split-gate device in a Ga[Al]As
heterostructure used for the experiments described above. Such a chan-
nel is schematically depicted in Fig. 11.3(a). In order to simplify the
reasoning, we take the channel to be very long compared to its cross-
sectional area, such that it can be treated in good approximation as
being translationally invariant in the x-direction. Our goal is to find the
current through this ideal wire in response to a voltage applied between
two big electron reservoirs connecting to the wire. The quantum prob-
lem for the states in the wire is separable and we can write the wave
functions in the wire as

ψnk(r) = χn(y, z) · 1√
L
eikxx, (11.3)

where L is a normalization length (very large compared to the relevant
electronic wavelengths), and χn(y, z) are quantized states normal to the
wire direction. These states are called the transverse modes of the wire.
We assume a parabolic energy dispersion along the wire

En(kx) = En +
�

2k2
x

2m�
,

where the En are contributions to the energies arising due to mode
quantization normal to the wire axis. Therefore, the quantum number n
labels the modes of the quantum wire. Positive values of kx denote states
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propagating from left to right, negative kx those traveling from right to
left. This dispersion relation is schematically shown in Fig. 11.3(b).

We now determine an expression for the contribution to the electri-
cal current produced by an electron in a particular state (n, kx). The
quantum mechanical expression for the current density jnkx(r) is

jnkx(r) = − |e|�
2im�

(
ψ�

nkx
(r)∇ψnkx(r) − ψnkx(r)∇ψ�

nkx
(r)
)
.

Inserting the wave function (11.3) leads to

djnkx
(r) = −|e|

L
|χn(y, z)|2 �kx

m�
ex,

where ex is a unit vector in the wire direction. The inverse normalization
volume L is related to the kx-interval dkx = 2π/L between two successive
kx-values leading to

djnkx
(r) = −ex

|e|
2π

|χn(y, z)|2 �kx

m�
dkx. (11.4)

The quantity djnkx
is therefore the infinitesimal contribution of a small

interval dkx to the current density. This equation is equivalent to the
well-known expression j = ρv occurring in electrodynamics or fluid me-
chanics if we identify the charge density to be ρ = −|e|dkx |χn(y, z)|2 /2π
and the expectation value of the velocity in the x-direction

vn(kx) = ex
�kx

m�
= ex〈nkx|

∂H

∂px
|nkx〉 = ex

1
�

∂En(kx)
∂kx

.

If we use the above expression for the velocity, we obtain, for the
current density,

djnkx
(r) = −exgs

|e|
h

|χn(y, z)|2 ∂En(kx)
∂kx

dkx.

Here we have introduced the spin degeneracy factor gs, which takes the
value gs = 2 in the case of GaAs. We convert the small interval dkx into
a small energy interval by using dkx = dE∂kx/∂En(kx), and realize that
the expression ∂kx/∂En(kx) represents the one-dimensional density of
states up to a factor 2π, but it is inversely proportional to the velocity
∂En(kx)/∂kx. We therefore obtain

djnE(r) = ∓exgs
|e|
h

|χn(y, z)|2 dE,

where the energy dependence of the density of states has exactly canceled
the energy dependence of the group velocity. The minus sign is valid for
right-moving states with kx > 0, whereas the positive sign is applicable
for kx < 0. The exact cancelation of group velocity and one-dimensional
density of states leads to the remarkable result that the contribution of
a small energy interval dE to the current density is independent of the
absolute value of the energy. Small group velocities at low energies are



11.2 Current and conductance in an ideal quantum wire 179

exactly compensated by the large density of states at low energies, and
large group velocities at high energies are exactly compensated by the
lower density of states at these higher energies. This exact cancelation
will turn out to be the key to the quantization of the conductance, as
we will see below.

The current contributions dIn(E) of states within a small energy inter-
val are obtained from the previous result by integration over the cross-
section of the wire. Using the fact that the transverse modes χn(y, z)
are normalized, we obtain

dIn(E) = ∓exgs
|e|
h
dE. (11.5)

This contribution to the current is again independent of the energy
around which states are considered, but also independent of the mode
index n. The fundamental proportionality constant |e|/h is the inverse
of the magnetic flux quantum φ0 = h/|e|. Taking into account that
dE/|e| has the units of an electric voltage, we can identify e2/h to be
the fundamental quantum unit of electrical conductance G0 in eq. (11.2).

Electrical current in thermodynamic equilibrium. Starting from
eq. (11.5) we are now able to calculate the total current in the wire
by energy integration. It is now important to notice that right-moving
states (those with positive kx) are occupied via the left electron reservoir
connecting to the wire, whereas left-moving states (negative kx) are
occupied via the right electron reservoir [cf., Figs. 11.3(a) and (b)]. If
the reservoirs are in thermodynamic equilibrium with each other, left-
and right-moving states will both be occupied according to the same
equilibrium Fermi–Dirac distribution function, and the total current is

I
(eq)
tot = gs

|e|
h

(∑
n

∫ ∞
En

dEf(E) −
∑

n

∫ ∞
En

dEf(E)

)
= 0.

The current contributions from left to right and vice versa cancel exactly,
leading to zero total current.

Nonequilibrium currents due to an applied voltage. If the left
and right electron reservoirs are not in thermodynamic equilibrium, for
example because a voltage is applied between them via an external volt-
age source, the distribution functions for left- and right-moving electrons
will differ and the net current is given by

Itot = gs
|e|
h

∑
n

∫ ∞
En

dE [fL(E) − fR(E)] , (11.6)

where the subscripts L and R refer to the left and the right reservoirs.
The distribution functions are given by the Fermi–Dirac distributions

fi(E) =
1

exp
(

E−µi
kBT

)
+ 1

.
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Linear response. Assuming that the applied voltage difference VSD is
small, i.e., µL − µR = |e|VSD � kBT , we can expand

fL(E) − fR(E) =
∂fL(E)
∂µL

(µL − µR) = −∂fL(E)
∂E

|e|VSD. (11.7)

Inserting into eq. (11.6) and performing the energy integration gives

Itot = gs
e2

h

∑
n

fL(En)VSD.

As a consequence, we obtain the quantization of the linear conductance
of an ideal one-dimensional channel

1
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G (2e2/h)

Vg

Fig. 11.4 Conductance as a function of
gate voltage Vg according to eq. (11.8),
assuming that the mode energies shift
down proportional to the gate voltage.
The spin degeneracy has been assumed
to be gs = 2. If the temperature is
significantly lower than the spacing be-
tween the mode energies, the conduc-
tance is quantized (solid line). If 4kBT
is comparable to the mode’s energy
spacing, the quantization is smoothed
out (dashed curve).

G =
Itot
VSD

= gs
e2

h

∑
n

fL(En) (11.8)

The behavior of this expression is shown in Fig. 11.4 for the case that the
mode energies En show a linear dependence on the applied gate voltage.
If the energy En of a particular mode n is well below the Fermi en-
ergy, the Fermi–Dirac distribution in the sum of eq. (11.8) is essentially
one, the mode is occupied, and it contributes an amount gse2/h to the
conductance. In turn, if the energy En is well above the Fermi energy,
the Fermi–Dirac distribution is zero, the mode is not occupied, and it
does not contribute to the conductance. Figure 11.4 resembles the most
striking features of the experimental results in Fig. 11.1(b). If the sep-
aration between the mode energies En is significantly larger than kBT ,
the conductance increases in steps of 2e2/h with each additional occu-
pied mode. The sharpness of the steps is in this ideal model given by
kBT . If the separation between mode energies En is comparable to, or
smaller than 4kBT , the quantized conductance is completely smoothed
out, in agreement with experimental observations. Figure 11.5 shows the
experimental temperature dependence of the conductance of a quantum
point contact. The temperature dependence of the quantization can be
used to estimate the energetic separation of the lateral modes in the
point contact.

In the limit of zero temperature, the conductance becomes

G =
Itot
VSD

= gs
e2

h
N,

where N is the number of occupied modes, in agreement with eq. (11.1).
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Fig. 11.5 Experimentally observed
temperature dependence of the conduc-
tance quantization in a quantum point
contact. (Reprinted with permission
from van Wees et al., 1991. Copyright
1991 by the American Physical Soci-
ety.)

This important result implies that, in an ideal quantum wire with N oc-
cupied modes at zero temperature, each mode contributes one conduc-
tance quantum e2/h to the total conductance. The number of occupied
modes can be estimated by comparing the width of the channel and the
Fermi wavelength of the electrons to be N ≈ 2W/λF.

Resistance and energy dissipation. A remarkable property of the
above result is that the conductance of the ideal channel is finite even
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though there is no scattering inside. From Ohm’s law, however, we
are used to the fact that any finite resistance comes along with energy
dissipation. We therefore have to answer the question of where energy is
dissipated in our system, and how this energy dissipation leads exactly
to the conductance quantum e2/h. We answer these questions with the
help of Fig. 11.6. In this figure we can see that an electron leaving the left

L

R

Fig. 11.6 Energy dissipated by a single
electron that travels without scattering
from source to drain contact through
the wire. The wire itself, located be-
tween the two reservoirs, is omitted in
the drawing for clarity.

contact from an energy below µL leaves a nonequilibrium hole behind.
In addition, the electron constitutes a nonequilibrium charge carrier in
the drain at an energy above µR, after it has traversed the ideal quantum
wire. The electron in the drain, and the hole in the source contact, will
eventually relax to the respective electrochemical potential. The energy
dissipated in the source contact is µL − E and the energy dissipated
in the drain contact amounts to E − µR. As a consequence, the total
energy dissipated by a single electron having traversed the wire without
scattering is (µL−E)+(E−µR) = µL−µR = |e|VSD. Most importantly,
the dissipated energy for one electron is independent of the energy of this
electron. In order to find the total power dissipated in the system due
to all electrons traversing the wire at all energies between µR and µL we
argue as follows: a single electron dissipates a power

dP =
|e|VSD

τ
,

where τ is the time that a single electron needs on average to traverse the
wire. We obtain this time from the electrical current which counts the
number of electrons traversing the wire per unit time. Using eq. (11.5)
we have

dItot = gs
|e|
h
NdE =

|e|
τ

⇒ 1
τ

=
gsNdE

h
,

giving the contribution of the infinitesimal energy interval dE to the
dissipated power

dP =
gsN |e|VSD

h
dE.

We assume zero temperature for simplicity, and integrate this expression
between µR and µL. The resulting total dissipated power is

P =
gsN |e|VSD

h
(µL − µR) =

gsN |e|VSD

h
|e|VSD =

V 2
SD

h/e2gsN
.

The resistance appearing from this power dissipation argument is

Rc =
h

e2
1
gsN

, (11.9)

which corresponds exactly to the quantized conductance that we have
derived before. We conclude that the finite quantized conductance of an
ideal wire without scattering arises due to the power dissipation of the
charge carriers in the source and drain contacts. The resistance Rc is
therefore often called the contact resistance.

In linear transport we can define a characteristic inelastic scattering
length li. Closer than li to the wire (or the quantum point contact),
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there is no equilibrium distribution of charge carriers in the contacts,
whereas at much larger distances the equilibrium distribution is fully
restored.

11.3 Current and transmission: adiabatic
approximation

In the previous discussion we have assumed a translationally invariant
wire. Strictly speaking, this assumption is not compatible with connect-
ing the wire to big reservoirs which breaks translational invariance. In
the experiment, the length of the electron channel is even quite small,
not orders of magnitude bigger than the width. A more realistic de-
scription of conductance quantization has to take these complications
into account. One way to do this is to use the adiabatic approximation
as discussed by Yacoby and Imry 1990. Within this approximation we
assume that the transition from the macroscopic electron reservoirs [gray
regions in Fig. 11.3(a)] into the wire is very smooth on the scale of the
Fermi wavelength. The system is then described with the single-particle
hamiltonian

H = − �
2

2m�
∆ + V (x, y, z).

This hamiltonian is now split into the two parts

Hx = − �
2

2m�

∂2

∂x2

Hyz(x) = − �
2

2m�

(
∂2

∂y2
+

∂2

∂z2

)
+ V (x, y, z),

where the variable x in Hyz(x) is regarded as a parameter. We now
assume that we have solved the eigenvalue problem for Hyz(x) and we
have found the eigenfunctions χ(y, z;x) obeying the equation

Hyz(x)χn(y, z;x) = En(x)χn(y, z;x)

for any particular value of x. We regard the quantum number n as
denoting modes.

Now we can expand the wave function ψ(x, y, z) of the original three-
dimensional eigenvalue problem for the hamiltonian H at each point x
in orthonormalized eigenfunctions χn(y, z;x):

ψ(x, y, z) =
∑

n

ξn(x)χn(y, z;x).

The expansion coefficients ξn(x) will obey an equation that we obtain
by inserting the expansion into the eigenvalue problem for H leading to∑

n

(Hx + En(x))ξn(x)χn(y, z;x) = E
∑

n

ξn(x)χn(y, z;x),
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and projecting into the subspace of a particular mode m. This amounts
to multiplying by χ�

m(y, z;x) and integrating over y and z. The result is∑
n

∫
dydz χ�

m(y, z;x)Hxχn(y, z;x)ξn(x) + Em(x)ξm(x) = Eξm(x).

Calculating the matrix elements of Hx we obtain

− �
2

2m�

∂2ξm(x)
∂x2

+ Em(x)ξm(x) +
∑

n

Knm(x)ξn(x)

+
∑

n

pnm(x)
∂ξn(x)
∂x

= Eξm(x), (11.10)

where

pnm(x) = − �
2

m�

∫
χ�

m(y, z;x)
∂χn(y, z;x)

∂x
dydz

Knm(x) = − �
2

2m�

∫
χ�

m(y, z;x)
∂2

∂x2
χn(y, z;x) dydz.

So far no approximations have been involved and the problem has simply
been rewritten.

The adiabatic approximation neglects terms containing Knm(x) and
pnm(x). This approximation is justified if the wave function χn(y, z;x)

1000 100010

10

y (nm)

x (nm)

Fig. 11.7 Example of a hard-wall
confinement potential in the x-y-plane
forming a quantum point contact.
Electron transport occurs in the x-
direction; gray shaded areas are forbid-
den for electrons.

changes smoothly with x. It leads to the simplified one-dimensional
problem

− �
2

2m�

∂2ξm(x)
∂x2

+ Em(x)ξm(x) = Eξm(x),

in which the electron experiences the effective potential

V eff
m (x) = Em(x).

The effective potential depends on the mode index n, meaning that the
potential barrier seen by an electron traversing the point contact depends
on the transverse mode of its wave function. Figure 11.7 shows an ex-
ample of a hard-wall confinement potential in the x-y-plane. Figure 11.8
shows the corresponding V eff

0 (x). The closer the electron approaches to
x = 0 the narrower is the channel and the larger is V eff

0 (x). In the adi-
abatic approximation, the original quantum wire geometry reduces to a
one-dimensional potential barrier problem.

We now aim at calculating the current in the adiabatic approximation.
To this end, we define the zero of the potential such that for x → ±∞
we have V eff

m (x) → 0. Far away from the point contact we will then have
the asymptotic solutions of the one-dimensional quantum problem
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2

4
6
8

10
V0 (x) (meV)eff

x (nm)

Fig. 11.8 Effective potential barrier
V eff
0 (x) of the quantum point contact

along x in the adiabatic approximation.

ξ+m(x) =
1√
L

{
eikxx + rme

−ikxx for x→ −∞
tme

ikxx for x→ ∞

and
ξ−m(x) =

1√
L

{
e−ikxx + r′me

ikxx for x→ ∞
t′me
−ikxx for x→ −∞.
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In complete analogy with eq. (11.4) we obtain the current density for
right-moving and left-moving states

dj±mkx
(y, z) = −ex

|e|
2π

|χm(y, z;x→ ±∞)|2 �kx

m�
|tm|2 dkx,

where the positive sign is valid for kx > 0, and the negative sign for
kx < 0.

We continue in analogy to the discussion of the perfect one-dimensional
wire and calculate the contribution of a small energy interval dE to the
current. The drift velocity and the one-dimensional density of states
cancel in the same way, and we find

dI±m(E) = ∓exgs
|e|
h

|tm(E)|2 dE,

in analogy with eq. (11.5). Treating a realistic device geometry in the
adiabatic approximation leads to the appearance of the energy-dependent
transmission probability Tm(E) = |tm(E)|2 ≤ 1 reducing the current
contribution of a mode below the value given by eq. (11.5). Figure 11.9
shows the typical form of the transmission T0(E) for the effective poten-
tial in Fig. 11.8.

Building on this result we calculate the total current through the
constriction and find

Itot = gs
|e|
h

∑
n

∫ +∞

−∞
dE Tn(E) [fR(E) − fL(E)]

in analogy with eq. (11.6), but now incorporating the finite energy-
dependent transmission probability Tn(E). In the case of small applied
source–drain voltage we obtain the linear response result for the con-
ductance

G = gs
e2

h

∑
n

∫ +∞

−∞
dE Tn(E)

(
−∂fL(E)

∂E

)
, (11.11)

generalizing eq. (11.8). The energy derivative of the Fermi–Dirac distri-
9 10 11
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Fig. 11.9 Energy-dependent transmis-
sion T0(E) for the energetically lowest
mode.

bution is sharply peaked around the Fermi energy at low temperature.
If the transmission for a certain mode n at the Fermi energy is close
to one, the mode will contribute with one full conductance quantum
gse

2/h. This will happen if the Fermi energy is more than a few kBT
above the maximum of the effective potential V eff

m . However, if the Fermi
energy is well below the maximum of V eff

m , the transmission is close to
zero and the mode does not contribute to the conductance. In this way,
we recover the quantization of the conductance at low temperatures by
treating the quantum point contact in the adiabatic approximation.

We note here that only equilibrium properties of the system close
to the Fermi energy enter the expression for the linear conductance.
The transmission is calculated from wave functions without taking the
applied bias into account. The temperature dependence is given by the
derivative of the equilibrium Fermi–Dirac distribution function. In this
sense, the conductance is an equilibrium property of the system.
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At very low temperatures, the derivative of the Fermi–Dirac distribu-
tion is so sharp that the transmission does not change within a few kBT
around the Fermi energy. In this case, eq. (11.11) can be written as

G = gs
e2

h

∑
n

Tn(EF ).

The smooth increase of the transmission Tn(E) for each mode n leads to
smooth steps in the conductance even in the limit of zero temperature.

Power dissipation in the case of finite transmission. In the case
of transmission one, for all occupied modes, the quantized conductance
is recovered from the above considerations in the adiabatic case. The
argument given for the power dissipation in the ideal wire case can be
easily transferred to the adiabatic case considered here. The finite trans-
mission of a particular mode n will reduce the rate at which an electron
in this mode is transmitted by the factor Tn(EF), or, in other words,
it describes the delay in the transmission of the electron. The result
is a reduction of the dissipated power compared to the ideal wire case,
corresponding to the reduced conductance.

11.4 Saddle point model for the quantum
point contact

The adiabatic approximation was general in the sense that no specific
form of the potential V (x, y, z) was assumed. As a consequence, the
transmission coefficients (transmission amplitudes) tm for the modes la-
beled with the letter m could not be worked out. The saddle point model
of the quantum point contact assumes the potential to be of the form

V (x, y, z) = −1
2
m�ω2

xx
2 +

1
2
m�ω2

yy
2 + V (z).

In this case the hamiltonian governing electron motion is separable. The
solution for the motion in the z-direction is assumed to give quantized
states with energies Ez having energy separations larger than any other
energy scale in the problem. The confinement in the y-direction is
parabolic and gives harmonic oscillator solutions with energies Ey =
�ωy(m + 1/2). The total energy of an electron is E = Ex + Ey + Ez.
The equation of motion for the x-direction is then(

− �
2

2m�
∂2

x − 1
2
m�ω2

xx
2

)
ξ(x) = Exξ(x).

This equation can be rewritten as(
l2x∂

2
x +

x2

l2x
+ ε

)
ξ(x) = 0.

with the normalized energy scale ε = 2Ex/�ωx, and the length scale
l2x = �/m�ωx. Solutions of this equation exist for arbitrary values of
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Ex. They can be written as linear combinations of parabolic cylinder
functions Dν(x), i.e.,

ξ(x) = c1D− 1
2 i(ε−i)[(1 + i)x/lx] + c2D 1

2 i(ε+i)[(−1 + i)x/lx].

The coefficients c1 and c2 can now be chosen in such a way that for x� 0
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Fig. 11.10 Transmission of individual
modes and total transmission in the
saddle point model for the quantum
point contact. (Reprinted with permis-
sion from Buttiker, 1990. Copyright
1990 by the American Physical Soci-
ety.)

there is only a right-moving (transmitted) current, whereas for x � 0
there is an incoming and a reflected current. It has been shown (Miller,
1968; Fertig and Halperin, 1987; Buttiker, 1990) that the transmission
of mode m through the parabolic potential barrier in the x-direction is
then given by

Tm(E) =
1

1 + e−2πεm
, (11.12)

with the energy parameter

εm =
E − �ωy(m+ 1/2) − Ez

�ωx
.

Figure 11.10 shows the transmission of the lowest three modes and the to-
tal transmission. For energies E � �ωy(m+1/2)+Ez, the transmission
is exponentially suppressed. For the energy value E = �ωy(m+1/2)+Ez,
the transmission has the value of 1/2, whereas it tends towards unity for
E � �ωy(m+ 1/2) +Ez. Well-defined plateaus form if the ratio ωy/ωx

is well above one, because the width of the transition region between
plateaus is set by the energy scale �ωx, whereas the energy shift be-
tween neighboring plateaus is determined by �ωy. If the conductance is
calculated according to eq. (11.11), the temperature starts to dominate
the width of the transitions between plateaus as soon as kBT becomes
larger than �ωx. The quantization is severely smeared out at tempera-
tures kBT � �ωy.

The saddle point model for the quantum point contact can also be
solved analytically if a magnetic field in the z-direction is present (Fertig
and Halperin, 1987; Buttiker, 1990). Equation (11.12) remains valid,
but the expression for εm has to be modified in order to account for the
cyclotron energy scale.

11.5 Conductance in the nonadiabatic case

How well does the adiabatic approximation work if it is compared to
an exact calculation? In order to get insight into this question, we look
at a model proposed by Ulreich and Zwerger, 1998. Within this model,
the point contact is described by a harmonic confinement potential. The
confinement energy �ωy is varied along the x-direction from a small value
through a maximum value at the point of the constriction and back down
to the same small value leading to an effective width b(x) of the quantum
point contact. Figure 11.11 shows the geometry and the local density of
states (i.e., the squared wave function modulus) at the Fermi energy
for the adiabatic case (right) and the exact calculation (left). The de-
picted situation corresponds to the transition between the closed point
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Fig. 11.11 (a) Local density of states
in a quantum point contact with a
harmonic confinement potential. The
width of the confinement b(x) varies
with x. Close to the constriction, the
adiabatic approximation (b) differs ap-
preciably from the exact solution (a)
(Ulreich and Zwerger, 1998).

contact and the first plateau at 2e2/h, where the point contact has a
conductance of e2/h, i.e., half the plateau value. Far away from the con-
striction, in the wide parts of the contacts, four modes exist. Very close
to the constriction, the adiabatic solution shows much less fine structure
than the exact solution that takes mixing between adiabatic modes into
account. This mode mixing is caused by off-diagonal matrix elements
pnm(x) and Knm(x) in eq. (11.10). In higher order approximations these
matrix elements can be taken into account perturbatively (Yacoby and
Imry, 1990).

Mode mixing means that there is a certain probability amplitude
tnm(km) that an electron impinging on the quantum point contact in
state (m, km) will be transmitted into state (n, kn). As a result we have
the asymptotic expressions for the wave functions

ψ+
m(r) =

1√
L

{
χm(y, z)eikmx +

∑
n rnmχn(y, z)e−iknx for x→ −∞∑

n tnmχn(y, z)eiknx for x→ +∞

and

ψ−m(x) =
1√
L

{
χm(y, z)e−ikmx +

∑
n r
′
nmχn(y, z)eiknx for x→ +∞∑

n t
′
nmχn(y, z)e−iknx for x→ −∞ .

Following again the previous scheme for calculating the right- and
left-moving currents we find the total linear conductance

G = gs
e2

h

∫ ∞
0

dE

(
−∂fL(E)

∂E

)∑
n,m

Tnm(E), (11.13)

where the transmission probabilities Tnm(E) from mode m into mode n
at energy E are given by

Tnm(E) :=
kn(E)
km(E)

|tnm(E)|2 .

Equation (11.13) can be seen as a general formula for the conductance
of a two-terminal structure with noninteracting electrons, no matter
whether it is a quantum point contact or another structure. The only
ingredient for this expression is the asymptotic form of the wave function
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in the leads. All the details of the potential landscape between the leads
enter into the transmission probabilities Tnm(E). In a quantum point
contact, strong scattering between different modes is detrimental to the
observation of the conductance quantization.

11.6 Nonideal quantum point contact
conductance

The conductance of a quantum point contact measured as a function
of plunger gate voltage does not always show the perfect and smooth
behavior shown in Fig. 11.1(b). For example, the changing gate voltage
can lead to changes in the charge of impurity sites close to the constric-
tion which leads to a change in the constriction potential, and thereby
to a change in the transmission (see, for example, the kinks in the curves
of Fig. 11.2).
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Fig. 11.12 Conductance of a quantum
point contact showing transmission res-
onances. (Reprinted with permission
from van Wees et al., 1991. Copyright
1991 by the American Physical Soci-
ety.)

Other nonideal behavior of the conductance can arise if the trans-
mission of the constriction does not increase monotonically, but shows
a modulation with energy. An example is shown in Fig. 11.12, where
the transmission is modulated at the transition of the conductance from
the first plateau at 2e2/h to the second plateau at 4e2/h in the curves
taken at the lowest three temperatures. Such transmission modulation
can occur if the microscopic potential does not form a smooth saddle
shape, but has local potential minima with bound states through which
electrons can be transmitted resonantly. Another possible reason for
such a modulation of the transmission is coherent backscattering in the
vicinity of the quantum point contact. Nonadiabatic coupling into and
out of the quantum point contact can lead to imperfect quantization of
the conductance visible on the plateaus.

Peculiarities in the conductance steps of quantum point contacts are
frequently most pronounced at the lowest temperatures. In an interme-
diate temperature range, they tend to be smoothed by energy averaging,
as shown in Fig. 11.12, where a decent plateau is visible at 0.975K.

The modulation of the transmission can often be suppressed by a mag-
netic field normal to the plane of the electron gas, as can be seen in the
experimental data in Fig. 11.13. If we assume that coherent backscat-2.1 2 1.9
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Fig. 11.13 Conductance of a quantum
point contact showing the suppression
of transmission resonances by a mag-
netic field. (Reprinted with permission
from van Wees et al., 1991. Copyright
1991 by the American Physical Soci-
ety.)

tering is the origin of the modulated transmission, we can find a charac-
teristic area from the magnetic field scale Bc on which the modulation is
suppressed (this is related to the Aharonov–Bohm phase discussed later
in this book). The result is A = φ0/Bc ∼ 41.4 Tnm2/0.1 T = 414 nm2.
The characteristic length scale

√
A ≈ 20 nm is of the order of half the

Fermi wavelength and strong localization effects may therefore play a
role in the vicinity of the point contact.
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11.7 Self-consistent interaction effects

So far we have limited our considerations to relating the problem of
calculating the conductance to a transmission problem for charge car-
riers. Now we will discuss qualitatively how the electrostatic potential
landscape is changed in response to the current flowing through the
structure.

Self-consistent screening and Landauer’s resistance dipole. As
a starting point we consider the many-body problem for the electronic
system close to the quantum point contact to be solved. This can, for ex-
ample, be achieved by using a self-consistent approach including Hartree
and exchange energies, giving single-particle wave functions ψn(r). In

1 U1 U2 2

Fig. 11.14 Charge dipole developing at
a quantum point contact under the in-
fluence of current flow. (Reprinted with
permission from Christen and Buttiker,
1996. Copyright 1996 by the American
Physical Society.)

this situation, at zero magnetic field, no equilibrium currents will flow.
The current flow through the system can now be regarded as a per-
turbation of this equilibrium situation to be described in first order
perturbation theory. Under the influence of the current flow, the self-
consistent potential of the system will slightly change. This is essentially
due to the fact that charge carriers injected from the source contact and
transmitted to the drain constitute a nonequilibrium contribution to the
carrier density in the drain contact. At the same time these carriers are
missing in the source contact, which also leads to a slight variation from
thermodynamic equilibrium. The result of these self-consistently ad-
justing nonequilibrium carrier densities is a charge dipole schematically
depicted in Fig. 11.14, and called Landauer’s resistivity dipole.

The screened electrostatic potential of this dipole arises as an addi-
tional potential around the quantum point contact. However, the far
field of the dipole potential tends to zero with increasing distance from
the point contact and no electrostatic voltage drop results across the
point contact.

11.8 Diffusive limit: recovering the Drude
conductivity

The question arises as to how far, and under which approximations, the
Landauer–Büttiker expression for the two-terminal conductance, given
in eq. (11.13), is equivalent to the results of the Drude model. In or-
der to clarify this point, we consider a wire with M occupied modes.
The number of modes is related to the Fermi wavelength λF of the
two-dimensional electron gas and the width W of the point contact con-
striction via M = 2W/λF. We further consider only a single scatterer
in the sample with mean transmission T1 per mode at the Fermi energy.
The zero-temperature conductance is then given by

G =
2e2

h
MT1
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and the resistance of the wire is

R =
h

2e2
1

MT1
.

Using the concept of the contact resistance, eq. (11.9), we can split
the total resistance into

R = Rc +
h

2e2
1
M

1 − T1

T1
= Rc +RW.

While the contact resistance arises due to inelastic relaxation in the
contacts in the case of the ideal wire, the second term represents the
pure resistance contribution of the wire itself which we denote by RW.
This resistance tends to zero for T1 → 1 as expected intuitively for
an ideal pure wire; conversely, the wire resistance tends to infinity for
T1 → 0.

We refine this interpretation by extending our considerations to a wire
with two scatterers having average transmission probabilities T1 and T2

with the corresponding reflection probabilities R1 and R2. Assuming
that phase-coherence gets lost on a length scale smaller than the sepa-
ration of the two scatterers, we can write for the total transmission

T = T1T2 + T1R2R1T2 + T1R2R1R2R1T2 + . . .

= T1T2

∞∑
n=0

(R1R2)n =
T1T2

1 −R1R2

=
T1T2

1 − (1 − T1)(1 − T2)
=

T1T2

T1 + T2 − T1T2
.

From this result we obtain

1 − T
T =

T1 + T2 − 2T1T2

T1T2

=
1 − T1

T1
+

1 − T2

T2
.

The quantity (1−Ti)/Ti is additive for an incoherent sequence of several
scatterers in series. For an incoherent addition of N pieces of wire with
one scatterer in each we obtain

1 − T (N)
T (N)

= N

〈
1 − Ti

Ti

〉
with 〈. . .〉 denoting the average over scatterers, and therefore

T (N) =
1

N〈(1 − Ti)/Ti〉 + 1
.

If we express the number of scatterers as N = νL, where ν is the density
of scatterers per unit length, and L is the length of the wire, then we
can write

T (N) =
〈le〉

L+ 〈le〉
(11.14)
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with the new length scale 〈le〉 = (ν〈(1−Ti)/Ti〉)−1. The meaning of this
length scale becomes evident if we assume that Ri = 1 − Ti � 1 and
realize that then 〈le〉 ≈ 1/〈Ri〉ν. The quantity 〈Ri〉ν can be seen as the
average backscattering probability per unit length. The probability pbs

that an electron has not been backscattered after travelling a distance
L therefore obeys the equation

dpbs(L)
dL

= −〈Ri〉νpbs(L)

with the exponentially decaying solution

pbs(L) = e−〈Ri〉νL = e−L/〈le〉.

As we have suggested already by the choice of notation, the quantity
〈le〉 can therefore be seen as a one-dimensional mean free path of the
electron which should be of the order of the elastic mean free path le in
Drude’s theory. With this result, the total resistance of N sections of
wire becomes

Rtot =
h

2e2
1
M

(
1 +

1 − T (N)
T (N)

)
.

Above, we have denoted the second term as being the pure resistance
of the wire, RW. We now take a closer look at this contribution and
replace T (N) by the expression in eq. (11.14) containing the mean free
path 〈le〉. We find T (N)/(1 − T (N)) = L/〈le〉. We further replace M
by 2W/λF = kFW/π (two dimensions) and obtain

RW =
L

W

h

2e2
1
kF

π

〈le〉
.

The pure resistance of the wire appears to be proportional to the length
of the wire and inversely proportional to its width, as we know it for
ohmic resistors. Identifying the elastic mean free path le = 〈le〉/π, the
specific resistivity of the wire is

ρW =
h

e2
1
kFle

and the specific conductivity is

σW =
e2

h
kFle.

These expressions are identical to those known from the Drude model
for the conductivity. The mean free path that we introduced above has
consequences that agree with intuition: if ν is very low, the mean free
path is very large. If the average reflection 〈Ri〉 of a scatterer is very
small, le will be very large. The contact resistance Rc will be negligible
compared to RW, if the wire length is large.

In summary, we can state that the resistance of a one-dimensional
wire with M modes can be regarded as the series connection of the
contact resistance Rc and the pure wire resistance RW. The latter is
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proportional to the length and inversely proportional to the width of the
wire. The specific resistivity of the wire following from the Landauer–
Büttiker description is in agreement with the Drude description, if there
is a sufficient number of scatterers in the wire (diffusive limit) and if
individual scattering segments are combined incoherently.

Further reading

• Landauer–Büttiker formalism: Datta 1997;
Beenakker and van Houten 1991; Imry 2002.

• Papers: van Wees et al. 1988; Wharam et al. 1988;
Landauer 1989; Payne 1989.

Exercises

(11.1) Calculate the transmission T (E) of a rectangular
barrier potential (height V0, width W ) as a func-
tion of the energy of the incident electron. Discuss
T (E) for E < V0 and E > V0. Why is T (E) not
one for all E > V0? What can you learn from this
result for the strongly nonadiabatic transmission
through quantum point contacts?

(11.2) Consider the quantum states in a planar quantum
system of variable width W (x) = ax2/(x2 + 1) + b
(a, b > 0). Calculate the effective one-dimensional
barrier potential V eff

n (x) that an electron in the
lateral mode n (n is the number of nodes in the
y-direction) experiences in the adiabatic approxi-
mation. Sketch this potential for n = 0, 1, 2.

(11.3) Within the Drude model, the conductance GD of
a diffusive wire made from a two-dimensional elec-
tron gas in the quantum limit is given by

GD =
W

L

nse
2τ

m�
,

where W is the width of the wire, L is its length,
ns is the sheet electron density, and τ is the Drude
scattering time. Within the framework of the
Landauer–Büttiker theory, the corresponding con-
ductance can be written as

GLB =
e2

h
MT ,

where M is the number of occupied modes in the
wire, and T is the average transmission per mode.

(a) Estimate the number of modes in the wire,
given the width W and the Fermi wavelength
λF.

(b) Estimate the average transmission T per
mode by comparing GD and GLB. Hint:
rewrite GD in terms of the mean free path
l and the Fermi wavelength λF.

(11.4) Consider a perfectly ballistic very long quantum
wire connected to two big electron reservoirs. The
central piece of the wire is a bit narrower, hosting
only M modes, while the main part of the wire has
N > M modes occupied. Find reasons why we can
attribute the (contact) resistance

Rc =
h

2e2

�
1

M
− 1

N

�

to the central piece of the wire. Hint: consider the
situation assuming the adiabatic approximation to
be valid. See also Landauer 1989 and Payne 1989
for further discussions.
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In chapter 11 we introduced the concept of viewing the conductance of a
nanostructure as being intimately related to the transmission of charge
carriers. The concept was introduced in a very general way and, using
only the saddle point model, one specific example was given, where the
transmission can actually be calculated. Here we will look at ways of
calculating the transmission through structures, where quantum tunnel-
ing is relevant. To get a feeling, we start with an example which is not
of great practical interest, but it can be solved analytically. In the sec-
ond step, we will show how tunneling can be treated using perturbative
methods.

In semiconductor nanostructures, tunneling can occur under different
circumstances. If a tunneling barrier is created in the conduction band
of one particular direct III-V material, for example, in a split-gate de-
vice, and the barrier height is small compared to the separation to other
bands, or band extrema of the material, only conduction band states at
Γ will contribute, and the carriers can be treated as particles with the
effective conduction band mass m�. This is the case we primarily have
in mind during the calculations in this chapter. Complications arise,
if electrons tunnel from material A through material B with a bigger
bandgap into material A. For example, tunneling from GaAs through
an AlAs barrier can involve the states at the X-minimum in AlAs, be-
cause it is lower in energy than the Γ-minimum. Yet another description
is necessary if electrons tunnel from the valence band to the conduction
band (interband tunneling). Again different situations can arise if elec-
trons tunnel from a metal into a semiconductor at a Schottky contact.
The general perturbative treatment of tunneling used below can also be
applied to the calculation of the tunneling current between the metallic
tip of a scanning tunneling microscope and a conducting surface.

12.1 Tunneling through a single
delta-barrier

One of the simplest problems which captures the essence of quantum
tunneling is scattering at a single delta-potential in one dimension. We
consider the potential U(x) = uδ(x) describing a barrier at the origin
(see Fig. 12.1). The wave function to the left of the barrier can then be
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written as
ψL(x) = A1e

ikx +A2e
−ikx,

where k =
√

2mE/�2. To the right of the barrier we have correspond-
ingly

-scatterer

A1

A2

B1

B2

Fig. 12.1 Single delta-potential barrier
scattering electrons waves. The quan-
tities A1, A2, B1, and B2 are the am-
plitudes of the indicated incident and
reflected plane wave states.

ψR(x) = B1e
ikx +B2e

−ikx.

The relation between the amplitudes Ai and Bi is found from the match-
ing conditions at the position of the barrier

ψ(0+) = ψ(0−)

ψ′(0+) − ψ′(0−) =
2mu
�2

ψ(0).

Inserting the above wave functions leads to the transfer matrix Tk of the
barrier which describes the relation between the incoming and outgoing
amplitudes to the left of the scatterer with those right of the scatterer.
It is found to be(

B1

B2

)
=

1
2k

(
2k − iγ −iγ
iγ 2k + iγ

)
︸ ︷︷ ︸

Tk

(
A1

A2

)
,

where γ = 2mu/�2. With α = 1 − iγ/2k and β = iγ/2k we can write
the transfer matrix as(

B1

B2

)
=
(
α β�

β α�

)(
A1

A2

)
. (12.1)

The transmission amplitude t and the reflection amplitude r of the bar-
rier can be obtained by letting A1 = 1, A2 = r, B1 = t, and B2 = 0.
This gives

t = α+ β�r

0 = β + α�r

and therefore

r = − β

α�
= − iγ/2k

1 + iγ/2k

t =
|α|2 − |β|2

α�
=

1
1 + iγ/2k

=
1
α�
.

The transmission probability T = |t|2 shown in Fig. 12.2 depends on the
wave vector k and therefore on the energy of the incident particle. The
expression

T =
1

1 + γ2/4k2

tends to zero for k → 0 and to one for k → ∞. At the characteristic
value kc = γ/2, T = 1/2, i.e., for k � kc the barrier is transparent,
whereas for k � kc it is opaque.

The transmission probability T and the reflection probability R = |r|2
obey the well-known relation

T + R = |t|2 + |r|2 =
1

1 + (γ/2k)2
+

(γ/2k)2

1 + (γ/2k)2
= 1.
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kL

T

=10

Fig. 12.2 Transmission probability T
through a single delta-barrier as a func-
tion of the wave vector k for γ = 10.

12.2 Perturbative treatment of the
tunneling coupling

In the following, we treat the case of weak tunneling coupling that can be
treated perturbatively. Experimental realizations of such weakly coupled
junctions are, for example, the quantum point contact that is almost
pinched off, or tunneling junctions between the metallic tip of a scanning
tunneling microscope and the conducting substrate.

The perturbative treatment of the tunneling coupling goes back to
a paper of Bardeen (Bardeen, 1961), who introduced it for describing
tunneling between metals (superconducting or normal) separated by a
thin oxide tunneling barrier. It is, however, a very general way to de-
scribe tunneling between two materials. Although Bardeen’s original
theory has been made for interacting electronic systems, we will neglect
interactions in the following for simplicity.

Assume that the potential V (r) < 0 describes the tunneling barrier
between two electronic systems. We introduce an (arbitrary) surface
S cutting the barrier normal to the direction of current flow, which
separates the problem into two spatially separate regions that we call
left and right. Definition of this surface implies the definition of two
characteristic functions

θL(r) =
{

1 for r left
0 elsewhere

and
θR(r) =

{
1 for r right
0 elsewhere ,

such that θL(r) + θR(r) = 1. In this way we split the potential into two
contributions

VL(r) = V (r)θL(r) and VR(r) = V (r)θR(r),
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with VR(r) + VL(r) = V (r).
We write the hamilton operators for the two subsystems as

HL = T + VL(r), and HR = T + VR(r),

with T being the kinetic energies of the electrons. The eigenvalue prob-
lems of the two hamiltonians,

HLφµ(r) = Eµφµ(r) and HRϕν(r) = ενϕν(r),

can now be solved separately. The wave functions φµ(r) form a complete
orthonormal basis in space (i.e., not only in the left region!). States with
energies Eµ < 0 will typically decay exponentially within the barrier,
whereas states with E0 > 0 are oscillatory functions also in the right
region. Analogue statements can be made about the ϕν . Pairs of wave
functions ϕν and φµ are not orthogonal to each other, but they possess
a finite spatial overlap.

We are now interested in the electron dynamics described by the total
hamilton operator

H = T + V (r) = T + VL(r) + VR(r).

We assume that initially an electron occupies a particular state φ0(r) in
the left region with an energy E0 < 0 at time t = 0. At later times t > 0
the electronic state will evolve into another state ψ(r, t). We expand
ψ(r, t) in eigenfunctions of HR with time-dependent coefficients aν(t):

ψ(r, t) =
∑

ν

aν(t)ϕν(r)e−iενt/�.

For the expansion coefficients we have the initial condition aν(t = 0) =
〈ϕν |φ0〉, because ψ(r, t = 0) = φ0(r). It is therefore useful to introduce
new coefficients cν(t) defined by

aν(t) = 〈ϕν |φ0〉e−i(E0−εν)t/� + cν(t)

and the initial condition cν(t) = 0. We can now express the wave func-
tion ψ(r, t) with these coefficients as

ψ(r, t) = |φ0 〉 e−iE0t/� +
∑

ν

|ϕν 〉 e−iενt/�cν(t).

The equations for determining the coefficients cν(t) follow from the time-
dependent Schrödinger equation with the hamiltonian H, i.e., from(

i�
∂

∂t
−H

)
ψ(r, t) = 0,

if the above expansion of the wave function is inserted. The result is the
coupled inhomogeneous system of differential equations

i�
∂

∂t
cµ(t) = tµ,0e

−i(E0−εµ)t/� + ∆µcµ(t) +
∑

ν(�=µ)

vµνcν(t)e−i(εν−εµ)t/�
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with the matrix elements

∆µ = 〈ϕµ| H − εµ |ϕµ 〉
tµλ = 〈ϕµ| H − E0 |φλ 〉
vµν = 〈ϕµ| H − εν |ϕν 〉 .

With the transformation

cµ(t) = c̃µ(t)e−i∆µt/�

this system of equations simplifies to

i�
∂

∂t
c̃µ(t) = tµ,0e

−i(E0−εµ−∆µ)t/� +
∑

ν(�=µ)

vµν c̃ν(t)e−i(εν−εµ)t/�.

By integration we obtain the system of integral equations

c̃µ(t) =
i

�
tµ,0e

−i(E0−εµ−∆µ)t/2�
sin [(εµ + ∆µ − E0)t/2�]
−(εµ + ∆µ − E0)/2�

− i

�

∑
ν

vµν

∫ t

0

dt′c̃ν(t′)e−i(εν−εµ)t′/�.

So far we have proceeded without making any approximations.
Now we treat the time evolution of the coefficients c̃(t) using time-

dependent perturbation theory in lowest order, taking the tunneling
coupling matrix elements tµ,0 and vµν as small parameters. In lowest
order we can neglect the second term on the right-hand side which con-
tains the time integral, because it produces terms of higher order in the
matrix elements. In this approximation we have

c̃µ(t) =
i

�
tµ,0e

−i(E0−εµ−∆µ)t/2�
sin [(εµ + ∆µ − E0)t/2�]
−(εµ + ∆µ − E0)/2�

.

The probability that the electron is found in state µ on the right side at
time t is then given by

|c̃µ(t)|2 =
1
�2

|tµ,0|2
sin2 [(εµ + ∆µ − E0)t/2�]

[(εµ + ∆µ − E0)/2�]2
.

We are now interested in the transition rate from the state φ0 on the
left side into the state ϕµ on the right side, i.e., we are interested in the
time derivative

d |c̃µ(t)|2
dt

=
2
�2

|tµ,0|2
sin [(εµ + ∆µ − E0)t/�]

(εµ + ∆µ − E0)/�
.

For large times t, the fraction forming the last factor of this expression
is significantly different from zero only if εµ + ∆µ − E0 is very close to
zero. Using the expressions for the Dirac delta function in Appendix C
we find

Wµ,0 = lim
t→∞

d |c̃µ(t)|2
dt

=
2π
�

|tµ,0|2 δ (εµ + ∆µ − E0) . (12.2)
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This result for the tunneling rate corresponds to Fermi’s golden rule
which is well known from time-dependent perturbation theory. Here the
tunneling matrix element tµ,0 appears in the place of the matrix element
of the potential perturbation. The delta function makes sure that only
elastic tunneling processes take place in this order of perturbation theory.
The matrix element ∆µ describes the energy shift of level µ in the right
contact which is caused by the tunneling coupling to the left contact
(the so-called self-energy shift). The finite tunneling rate through the
barrier leads to a finite lifetime of any state on each side of the barrier
which is characterized by the square of the tunneling matrix element.

12.3 Tunneling current in a noninteracting
system

The tunneling current that arises if a voltage is applied between the two
electronic systems on the left and right sides of the tunneling barrier can
be described using the same ideas that we used within the Landauer–
Büttiker description of transport. The occupation of states on the left
is given by the Fermi–Dirac distribution function fL(E), the occupation
of states on the right by fR(E). The current can then be written as

I = −|e|
∑
µ,ν

{fL(Eµ)Wν,µ[1 − fR(εν)] − fR(εν)Wµ,ν [1 − fL(Eµ)} ,

which describes the difference between the current caused by electrons
moving from left to right and those moving from right to left. This
expression simplifies to

I = −|e|
∑
µ,ν

Wν,µ {fL(Eµ) − fR(εν)} ,

if we use the property that Wµ,ν = Wν,µ as a result of time reversal
symmetry. Inserting the expression for the transition matrix elements,
this leads to

I = −|e|2π
�

∑
µ,ν

|tν,µ|2 δ(Eµ − εν) {fL(Eµ) − fR(εν)} .

It can be rewritten as the integral over contributions of different energies
via

I = −|e|
h

∫
dE (2π)2

∑
µ,ν

|tν,µ|2 δ(E − εν)δ(E − Eµ)

︸ ︷︷ ︸
DT(E)

{fL(E) − fR(E)} ,

where DT(E) is called the tunneling density of states. If in a particular
system all pairs of states (µ, ν) at a given energy E have about the
same transition probability T (E) = |tµ,ν |2, then the tunneling density
of states can be simplified to

DT(E) = (2π)2T (E)DL(E)DR(E),
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where the DL/R(E) are the densities of states in the left/right electron
reservoir.

Tunneling spectroscopy. With the above simplified expression for the
tunneling density of states we obtain the expression for the tunneling
current

I = − (2π)2|e|
h

∫
dET (E)DL(E)DR(E) {fL(E) − fR(E)} .

If the applied voltage VSD = −(µR − µL)/|e| between the left and the
right reservoir is large compared to temperature, we may approximate
the integral by its zero temperature expression

I = − (2π)2|e|
h

∫ µL

µR

dET (E)DL(E)DR(E).

The derivative of the current with respect to VSD is then given by

dI

dVSD
= − (2π)2|e|

h
T (µR + |e|VSD)DL(µR + |e|VSD)DR(µR + |e|VSD).

The derivative of the tunneling current reflects not only the energy de-
pendence of the transmission probability T (E), but also that of the
densities of states in the two reservoirs L and R. If the transmission is
(over a certain energy range) independent of energy, then finite source–
drain bias tunneling spectroscopy can be employed for a measurement
of the joint density of states of the two reservoirs. If, in addition, the
density of states of, say, the left reservoir is energy independent, then
the density of states of the right reservoir can be directly measured. The
latter situation is frequently given in the case of a scanning tunneling
microscope, where a tunneling current flows from the apex of a metallic
tip through a vacuum barrier into the (conducting) surface of interest.
The density of states of the metallic tip may be regarded as constant
over the energy range of interest, and the same can be assumed for the
transmission, which has an exponential dependence on the tip–surface
separation d, i.e., T ∝ exp(−2κd). In this situation, the (local) surface
density of states of the sample under investigation can be measured with
tunneling spectroscopy.

The derivative of I(VSD) can be conveniently measured in practice by
adding a low-frequency alternating voltage V (AC)

SD of small amplitude to
the source–drain voltage V (DC)

SD . The resulting alternating current I(AC)

measured with lock-in techniques and normalized to V
(AC)
SD is then a

good approximation to dI/dVSD.

Small bias measurements. At small bias voltage VSD, we can expand
the difference of the Fermi–Dirac distribution functions according to
eq. (11.7) and obtain the linear response expression for the conductance

G =
|e|2
h

∫
dEDT(E)

(
∂f

∂E

)
. (12.3)
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As a result we can say that the low temperature conductance probes the
tunneling density of states at the Fermi energy.

12.4 Transfer hamiltonian

Often, the perturbative theoretical description of quantum tunneling is
described on the basis of the so-called transfer hamiltonian which couples
the states in the two leads. The hamiltonian for the whole system is then
written in second quantization as

H = HL +Ht +HR,

where HL/R is the hamiltonian of the left/right lead, and the transfer
hamiltonian Ht is in second quantization given by

Ht =
∑
k,κ

(
tκkb

†
κak + t�κka

†
kbκ

)
.

Here b†κ creates an electron in the right lead in state κ, whereas ak deletes
an electron in state k in the left lead. The tκk are the tunneling matrix
elements between the two contacts that we have introduced above. If
Htransfer is treated in lowest order perturbation theory, Fermi’s golden
rule result is recovered.

Further reading

• Landauer–Büttiker formalism: Datta 1997;
Beenakker and van Houten 1991.

• Paper: Bardeen 1961.

Exercises

(12.1) Discuss under which assumptions the Landauer–
Büttiker result for the conductance in eq. (11.13)

can be recovered from eq. (12.3).
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13.1 Generalization of conductance:
conductance matrix

Now we consider the more general case of nanostructures with not just
two, but n contacts. This situation is schematically shown in Fig. 13.1.
In this generalized situation, the linear expansion of the current in terms
of the voltages applied to the reservoirs [i.e., the generalization of Ohm’s
law in eq. (10.2)] leads to the matrix equation⎛

⎜⎜⎜⎜⎜⎝
I1
I2
I3
...
In

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

G11 G12 G13 . . . G1n

G21 G22 G23 . . . G2n

G31 G32 G33 . . . G3n

...
...

...
...

Gn1 Gn2 Gn3 . . . Gnn

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

V1

V2

V3

...
Vn

⎞
⎟⎟⎟⎟⎟⎠ . (13.1)

Here, the matrix of the conductance coefficients Gij is the generalization
of the conductance G. Two very fundamental considerations lead to
relations between the conductance coefficients which have to be obeyed
by all physically acceptable conductance matrices.

1

2
3

4

Fig. 13.1 Semiconductor nanostruc-
ture with four contacts consisting of
perfect wires each connected to a reser-
voir with the electrochemical potential
µi (i = 1, 2, 3, 4). (Reprinted with per-
mission from Buttiker, 1986. Copyright
1986 by the American Physical Soci-
ety.)

Consequence of the conservation of charge. In a transport exper-
iment, electric charge is neither created nor destroyed: the charge is a
conserved quantity. In electrodynamics this fact is often expressed by
writing down the continuity equation ∂ρ

∂t +∇j = 0 where ρ is the charge
density, and j is the electrical current density. In the case of stationary,
time-independent problems, such as conductance measurements at zero
frequency, the time derivative of the charge density is zero. As a conse-
quence, the divergence of the current density must be zero. This implies
that all currents entering and leaving the structure have to sum up to
zero. This is Kirchhoff’s current law that has to be obeyed for arbitrary
applied voltages. Therefore, the conductance coefficients in each column
of the conductance matrix fulfill the sum rule

n∑
i=1

Gij = 0. (13.2)

No transport currents without voltage differences between con-
tacts. The second relation between conductance coefficients is obtained
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from the requirement that no currents will flow into or out of the struc-
ture, if all voltages applied to the contacts are the same. This leads to
the sum rule

n∑
j=1

Gij = 0 (13.3)

for the rows of the conductance matrix.
Using the two above sum rules we can show that the stationary cur-

rents in any nanostructure depend only on voltage differences between
contacts:

Ii = −
∑

j
j �=i

Gij(Vi − Vj) = GiiVi +
∑

j
j �=i

GijVj =
∑

j

GijVj . (13.4)

13.2 Conductance and transmission:
Landauer–Büttiker approach

In the same way as for structures with two contacts, also in the general
case of many terminals the conductance matrix can be related to the
transmission probabilities of quantum states from one contact to the
other. In order to show this, we again assume that the quantum me-
chanical many-particle problem has been solved for the thermodynamic
equilibrium situation (i.e., µ1 = µ2 = µ3 = µ4 = . . .), for example, using
the Hartree approximation. We allow a homogeneous external magnetic
field B to penetrate the structure.

Corresponding to our previous considerations for the quantum point
contact, we write the asymptotic form of the scattering states in the
leads which are assumed to be perfect wires as

ψα
m(r) =

1√
L

{
χα

m(y, z)eikα
mx +

∑
n r

α
nmχ

α
n(y, z)e−ikα

nx for x→ −∞∑
β,n t

βα
nmχ

β
n(y, z)eikβ

nx for x→ +∞

Here, tβα
nm describes the transmission amplitude from mode m in lead α

into mode n in lead β. Correspondingly, rα
nm is the reflection amplitude

from mode m into mode n in the same lead α. The wave functions
χα

m(y, z) are the lateral modes in lead α. These scattering states describe
a scattering experiment in which a particle is incident from mode m of
lead α and scattered into any other mode in any other lead.

The above scattering state represents the current contribution

Iαα = −gs ·
|e|
h

∫
dE [Nα(E) −Rα(E)] · fα(E)

in lead α, where the number of modes at energy E in lead α is

Nα(E) =
∑
m

m∈α

1,



13.3 Linear response: conductance and transmission 203

and the reflection back into lead α is

Rα(E) =
∑
n,m

n,m∈α

kα
n(E)
kα

m(E)
|rα

nm(E)|2 .

In addition, there are currents in lead α that arise from transmission
from other contacts. An arbitrary contact β �= α contributes the current

Iαβ = gs
|e|
h

∫
dETαβ(E) · fβ(E),

where we have defined the transmission Tαβ from lead β into lead α as

Tαβ(E) =
∑

n
n∈α

∑
m

m∈β

kα
n(E)

kβ
m(E)

∣∣tαβ
nm(E)

∣∣2 . (13.5)

The total current flowing in lead α is the incoming current minus the
reflected current minus all the currents transmitted into lead α from
other contacts. This results in

Iα = −gs
|e|
h

∫
dE

{
[Nα(E) −Rα(E)] fα(E)

−
∑

β
β �=α

Tαβ(E)fβ(E)

}
. (13.6)

Thermodynamic equilibrium. In the case fα(E) = fβ(E), i.e., if all
contacts are in thermodynamic equilibrium, no current will flow in the
system and all Iα = 0. It follows that the transmission and reflection
probabilities fulfill the condition

Nα(E) = Rα(E) +
∑

β

Tαβ(E). (13.7)

It is the generalization of the condition that in a system with two single-
moded leads reflection and transmission probabilities add to one (R +
T = 1).

13.3 Linear response: conductance and
transmission

For obtaining the linear response we expand the Fermi distribution func-
tions fβ(E) in eq. (13.6) for small differences µβ − µα. The result is

Iα = gs ·
|e|
h

∑
β

∫
dETαβ(E)

(
∂fα(E)
∂µ

)
(µβ − µα)

=
∑

β

Gαβ ·
(
µα

−|e| −
µβ

−|e|

)
.
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Denoting the voltage differences between contacts α and β as Vα − Vβ ,
we obtain in agreement with eq. (13.4)

Iα = −
∑

β
β �=α

Gαβ · (Vα − Vβ) . (13.8)

Here we have introduced the off-diagonal elements of the conductance
matrix in eq. (13.1)

Gαβ = −gs
e2

h

∫
dETαβ(E)

(
∂fα(E)
∂µ

)
. (13.9)

Equations (13.5), (13.8) and (13.9) are the basis of the Landauer–Büttiker
formalism for the calculation of the electrical conductance from the as-
ymptotic form of the scattering states. These equations contain the
special case of two-terminal structures such as the quantum point con-
tact.

13.4 The transmission matrix

For a sample with n contacts, equation (13.8) can also be written in the
matrix form⎛
⎜⎜⎜⎝

I1
I2
...
In

⎞
⎟⎟⎟⎠ =

e2

h

⎛
⎜⎜⎜⎝

N1 −R1 −T12 . . . −T1n

−T21 N2 −R2 . . . −T2n

...
...

...
−Tn1 −Tn2 . . . Nn −Rn

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

V1

V2

...
Vn

⎞
⎟⎟⎟⎠ .

(13.10)
Here, Nα denotes the number of modes in lead α, and the Rα are the
reflection probabilities. The transmission probabilities are here defined
as

Tαβ = gs

∫
dE Tαβ(E)

(
∂fα(E)
∂µ

)
and according to eq. (13.7)

Nα −Rα =
∑

β,β �=α

Tαβ .

This equation ensures that no current flows when all contacts are at the
same voltage, in complete agreement with eq. (13.3).

If we set the voltage Vα to 1V and all other voltages to zero, charge
conservation [eq. (13.2)] requires

Nα −Rα =
∑

α,α�=β

Tαβ .

When the Landauer–Büttiker formalism is used for calculating cur-
rents and voltages in an experiment, current and voltage contacts have
to be distinguished. For the latter, the net current is zero, because
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the connected voltmeter will have a very high internal resistance. The
measured voltage on such a voltage terminal is then

Vα =
∑

β(�=α)

Tαβ∑
γ(�=α) Tαγ

Vβ , (13.11)

the average of the voltages on all other contacts transmitting into it
weighted by the relative transmission strength.

Also relevant for the application of eq. (13.10) to experimental prob-
lems is the fact that not all rows of this matrix equation are linearly
independent. This is seen, for example, by adding the first n− 1 equa-
tions and using the column sum rules. The resulting equation is equal to
the nth equation multiplied by −1. As a consequence, one equation of
the system can be omitted. This is usually combined with the freedom
of the choice of the voltage zero which allows us to regard one of the n
voltages to be the zero voltage reference. If we chose Vα = 0 and omit
equation α, the problem reduces to a system of n − 1 linear equations
with n− 1 unknown quantities.

13.5 S-matrix and T -matrix

Using the concept of S- and T -matrices, phase-coherent mesoscopic
model systems can be described. Below we will introduce these ma-
trices and show their most important properties.

S-matrix. The S-matrix, or scattering matrix, describes the relation
between the amplitudes of states impinging onto a mesoscopic struc-
ture from contact leads, and the amplitudes of states reflected from, or
transmitted through the structure into contact leads. This is schemati-
cally depicted in Fig. 13.2. The size of the matrix is given by the total

a1
1

b1
1

a1
2

b1
2a2

2

b2
2

a3
3b3

3

Fig. 13.2 Ingoing probability ampli-
tudes aα

n impinging onto a mesoscopic
system and outgoing amplitudes bαn.
The index α labels a particular lead,
n numbers a particular mode in lead α.

number of modes in all leads connecting to the device. For example,
if there are three leads, two of which support only one mode, but one
carries two modes, then the S-matrix will be 4 × 4. The elements of
the S matrix are the quantum mechanical probability amplitudes for
transmission between any pair of modes.

The amplitudes b̃αm of outgoing and ãα
n of incoming waves are linearly

related, i.e.,
b̃αm =

∑
βn,β �=α

tαβ
mnã

β
n +
∑

n

rα
mnã

α
n.

We can write this relation in matrix form by taking the ãα
n as the com-

ponents of a vector A′ and the corresponding b̃αm as the components of
a vector B′, giving

B′ = S̃A′,
where the matrix S̃ contains the transmission and reflection coefficients.
With this definition, the particle current represented by the amplitude
ãα

n is given by
�kα

n

m�
· 1
L

· |ãα
n|

2
.
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A corresponding expression is valid for b̃αn. It is convenient and common
practice to introduce current amplitudes aα

n and bαn which, when squared,
directly give the current. We therefore define

aα
n :=

√
�kα

n

m�
· ãα

n.

Again we take the aα
n to be components of a vector A and the bαn as

components of B. Then the above matrix equation reads

B = S · A

with S being the so-called scattering matrix (S-matrix) having elements

sαβ
nm =

√
kα

n

kβ
m

S̃αβ
nm =

√
kα

n

kβ
m

{
rα
nm for α = β
tαβ
nm for α �= β

.

Using these elements of the S-matrix we can express the transmission
probability Tαβ(E) in eq. (13.5) in the more elegant form

Tαβ(E) =
∑

n
n∈α

∑
m

m∈β

∣∣sαβ
nm(E)

∣∣2 . (13.12)

and the reflection Rα(E) as

Rα(E) =
∑

n
n∈α

∑
m

m∈α

|sαα
nm(E)|2 . (13.13)

Charge conservation and unitarity of the S-matrix. The S-matrix
has a number of useful properties. From the conservation of charge
(Kirchhoff’s current law, continuity equation) which means∑

nα

|bαn|
2 =

∑
nα

|aα
n|

2
,

we find immediately that
S†S = 1,

where (S†)αβ
nm = Sβα

mn
�. The S-matrix is unitary. This means for (αn) =

(βm): ∑
γp

∣∣Sγα
pn

∣∣2 =
∑

γp,γ �=α

kγ
p

kα
n

∣∣tγα
pn

∣∣2 +
∑

p

kα
p

kα
n

∣∣rα
pn

∣∣2 = 1,

and for (αn �= βm) ∑
γp

kγ
p (tγα

pn )�tγβ
pm = 0,

where we have defined tαα
nm = rα

nm.
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Example: S-matrix for a wire with a single mode. As an example,
we consider the simplest case of a system with only a single mode in two
identical leads α and β with kα = kβ . The S-matrix is 2 × 2. The
unitarity requirement for the S-matrix allows a matrix of the general
form

S =

⎛
⎝

√
1
2 − ε · eiδa

√
1
2 + ε · ei(θ+ϕ)√

1
2 + ε · ei(θ−ϕ) −

√
1
2 − ε · ei(2θ−δa)

⎞
⎠ , (13.14)

where −1/2 ≤ ε ≤ 1/2. The parameter ε determines the transmission
and reflection probabilities, whereas δa, θ, and ϕ are scattering phases
relevant for interference phenomena. The matrix elements of the S-
matrix can be identified with the transmission and reflection coefficients:

rα =

√
1
2
− ε · eiδa

rβ = −
√

1
2
− ε · ei(2θ−δa)

tαβ =

√
1
2

+ ε · ei(θ+ϕ)

tβα =

√
1
2

+ ε · ei(θ−ϕ)

Extreme cases are ε = 1/2 (perfect transmission) and ε = −1/2 (total
reflection).

T -matrix. While the concept of the S-matrix is very general, the T -
matrix (transfer matrix) is convenient only for the description of a series
connection of coherent conductors each having two leads. The T -matrix
relates all in- and outgoing amplitudes on one side (L) of the structure
with those on the other side (R). We take the aL

n and bLn to be components
of vector L, and the aR

n and bRn to be components of vector R. Then the
T -matrix of a structure is defined by

R = TL.

The elements of the T -matrix can be expressed in terms of those of the
S-matrix. We show this for a structure in which only a single mode exists
in the left lead (L) and the right lead (R). In this case, the S-matrix is

S =
(

rL tLR

tRL rR

)
,

such that (
bL

bR

)
= S

(
aL

aR

)
.

We solve this matrix equation for the coefficients in the right lead, i.e.,(
bR

aR

)
= T

(
aL

bL

)
,
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and find for the T -Matrix

T =
(

(tLRtRL − rLrR)/tLR rR/tLR

−rL/tLR 1/tLR

)
.

13.6 Time-reversal invariance and
magnetic field

It can be shown that in the presence of a magnetic field B the S-matrix
obeys

S(B) = ST (−B).

In order to prove this relation, we consider Schrödinger’s equation{
[−i�∇ + |e|A(r)]2

2m�
+ V (r)

}
ψ(r;B) = Eψ(r;B).

If we take the conjugate complex of this equation and reverse the direc-
tion of the magnetic field B, we find{

[−i�∇ + |e|A(r)]2

2m�
+ V (r)

}
ψ�(r;−B) = Eψ�(r;−B).

It follows that
ψ�(r;−B) = ψ(r;B),

i.e., if ψ(r;B) solves Schrödinger’s equation for magnetic field B, then
a solution of the problem with magnetic field direction reversed can be
obtained from this equation. We now apply this property to the as-
ymptotic scattering states used in the Landauer–Büttiker description of
electronic transport. Taking the conjugate complex of such a scattering
state, the ingoing amplitudes A become the conjugate complex of the
outgoing scattering states B�. This corresponds to a reversal of the time
direction. Therefore we have

B = S(B)A ⇒ B� = S�(B)A�

and
A� = S(−B)B� ⇒ B� = S−1(−B)A�.

As a result,
S−1(−B) = S†(−B) = S�(B),

where we have used the unitarity of S. It follows that

S(B) = ST (−B), (13.15)

and the matrix elements of the S-matrix obey

sαβ
nm(B) = sβα

mn(−B).

At zero magnetic field, the S-matrix is symmetric, as a result of time-
reversal invariance of the problem, i.e.,

S−1(B = 0) = ST (B = 0).
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From the above symmetry relations for the S-matrix we can deduce
important symmetry relations for the conductance matrix and the trans-
mission probabilities. For the latter we find from using eqs (13.12) and
(13.15)

Tαβ(E,B) = Tβα(E,−B) (13.16)
Nα(E,B) −Rα(E,B) = Nα(E,−B) −Rα(E,−B). (13.17)

As a result of eq. (13.9) we obtain the general symmetry relation

Gαβ(B) = Gβα(−B). (13.18)

This symmetry relation is known as the generalized Onsager relation for
the conductance matrix.

13.7 Four-terminal resistance

As in the case of diffusive Drude transport, driving a current through
the structure between two leads and measuring the voltage between two
other leads avoids the contribution of the resistances of the ohmic con-
tacts to the measurement results. The same is true for mesoscopic sam-
ples. We will therefore discuss the Landauer–Büttiker description of an
arbitrary four-terminal measurement below.

The starting point is an arbitrary mesoscopic device with four contact
leads as depicted in Fig. 13.3. The structure is exposed to a magnetic
field B. Following Buttiker 1986, we consider a current I1 driven from

1 2

34

B

I1 I2

Fig. 13.3 Schematic representation of
a four-terminal mesoscopic device in
which a current I1 flows from contact
1 to 3, and a current I2 flows from con-
tact 2 to 4.

terminal 1 to 3 and a current I2 from 2 to 4. This is a slightly more gen-
eral approach than needed, but it is more symmetric than the standard
four-terminal situation in which, for example, I2 = 0. The currents and
voltages in the four terminals are related via the four equations

I1 =
e2

h
[T12(V1 − V2) + T13(V1 − V3) + T14(V1 − V4)] (13.19)

I2 =
e2

h
[T21(V2 − V1) + T23(V2 − V3) + T24(V2 − V4)] (13.20)

−I1 =
e2

h
[T31(V3 − V1) + T32(V3 − V2) + T34(V3 − V4)] (13.21)

−I2 =
e2

h
[T41(V4 − V1) + T42(V4 − V2) + T43(V4 − V3)].(13.22)

We now wish to express the currents in terms of the three voltage dif-
ferences V1 − V3, V2 − V4, and V3 − V4. This can be accomplished by
realizing that V1 − V2 = (V1 − V3) − (V2 − V4) + (V3 − V4), V1 − V4 =
(V1 − V3) + (V3 − V4), and V2 − V3 = (V2 − V4) − (V3 − V4). Using in
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addition the sum rule (13.3) we obtain

I1 =
e2

h
[(N1 −R1)(V1 − V3) − T12(V2 − V4)

+(T12 + T14)(V3 − V4)] (13.23)

I2 =
e2

h
[(N2 −R2)(V2 − V4) − T21(V1 − V3)

−(T21 + T23)(V3 − V4)] (13.24)

−I1 =
e2

h
[−T31(V1 − V3) − T32(V2 − V4) + (T32 + T34)(V3 − V4)]

(13.25)

−I2 =
e2

h
[−T42(V2 − V4) − T41(V1 − V3) − (T41 + T43)(V3 − V4)].

(13.26)

Summing (13.23) and (13.25), or (13.24) and (13.26), we get, after using
(13.2), the relation

Σ(V3 − V4) = −(T41 + T21)(V1 − V3) + (T12 + T32)(V2 − V4)
(13.27)

where Σ := T12 +T14 +T32 +T34 = T21 +T41 +T23 +T43. If we now insert
eq. (13.27) into eqs (13.23) and (13.24), we obtain a relation between the
two currents I1, I2 and the two voltage differences V1−V3, V2−V4 which
is of the form(

I1
I2

)
=
(

α11 −α12

−α21 α22

)(
V1 − V3

V2 − V4

)
, (13.28)

where

α11 =
e2

h

(N1 −R1)Σ − (T41 + T21)(T12 + T14)
Σ

(13.29)

α12 =
e2

h

T12T34 − T32T14

Σ
(13.30)

α21 =
e2

h

T43T21 − T23T41

Σ
(13.31)

α22 =
e2

h

(N2 −R2)Σ − (T12 + T32)(T21 + T23)
Σ

. (13.32)

As a consequence of the symmetry relations (13.16) and (13.17), we
have the new symmetries Σ(B) = Σ(−B), and αnm(B) = αmn(−B)
(n,m ∈ {0, 1}).

It is now straightforward to derive two- and four-terminal resistances
from eq. (13.28). For example, if we pass the current I1 from contact 1
to 3 and measure the voltage between contacts 2 and 4, then I2 = 0 and
the four-terminal resistance is

R13,24 =
V2 − V4

I1
=

α21

α11α22 − α12α21
.
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If we pass the current I2 from contact 2 to 4 and measure the voltage
between contacts 1 and 3, then I1 = 0 and the four-terminal resistance
is

R24,13 =
V1 − V3

I2
=

α12

α11α22 − α12α21
.

The denominator of both resistance expressions is an even function of
the magnetic field. However, the four-terminal resistance need not be
an even function of the magnetic field, because the numerator does not
have this symmetry. The two four-terminal resistances for which the
roles of current and voltage leads are interchanged have the symmetry
property

R13,24(B) = R24,13(−B).

This symmetry property is found in all four-terminal linear transport
experiments. It implies that, at zero magnetic field, current and volt-
age terminals can be interchanged without changing the measured resis-
tance.

Changing the direction of the current, or that of the voltage, changes
the sign of the measured resistance. For example,

R13,24(B) = −R31,24(B) = −R13,42(B) = R31,42(B).

We now determine the two-terminal resistances from eq. (13.28) and
find

R13,13 =
α22

α11α22 − α12α21

R24,24 =
α11

α11α22 − α12α21
.

The two-terminal resistances of a mesoscopic structure are therefore al-
ways even in magnetic field, i.e.,

R13,13(B) = R13,13(−B)
R24,24(B) = R24,24(−B).

In general, there are six different ways in which a current can be passed
between contacts in a four-terminal geometry. The above treatment cov-
ers two of these cases. The other four cases can be obtained by relabeling
contacts. The general expression for the four-terminal resistance is

Rmn,kl =
Vk − Vl

Im→n
=

h

e2
TlnTkm − TknTlm

D/Σ
,

where the quantity in the denominator,

D = [(N1 −R1)Σ − (T41 + T21)(T12 + T14)]
× [(N2 −R2)Σ − (T12 + T32)(T21 + T23)]

− (T12T34 − T32T14)(T43T21 − T23T41),

is the same for all configurations and even in magnetic field.
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13.8 Ballistic transport experiments in
open systems

The Landauer–Büttiker formalism is, for example, very successful in
describing ballistic transport experiments. These are experiments on
nanostructures with characteristic dimensions much smaller than the
elastic mean free path of the charge carriers. The quantization of the
conductance in a quantum point contact was our first introductory ex-
ample for a ballistic nanostructure having only two terminals. Below
we will describe ballistic experiments on structures with more than two
contacts. Four-terminal structures are of particular relevance for experi-
ments. The systems we will consider here are known as open or strongly
coupled systems. Although small on the scale of the elastic mean free
path, they are strongly coupled to voltage and current contacts through
resistances that are small or of the order of the conductance quantum.
This is in contrast to structures that are only very weakly coupled, for
example, to a source and a drain contact, through tunneling contacts.
Examples of the latter type would be the tunneling contact between
the conductive tip of a scanning tunneling microscope and a conduct-
ing surface, a quantum point contact which is strongly pinched off, or a
quantum dot structure.

Four-terminal measurement of a quantum point contact. As
a first example, we consider again a quantum point contact, but now
measured in a four-terminal setup as shown schematically in Fig. 13.4.1

3

2

Ii

QPC 4 V24

Fig. 13.4 Schematic picture of a four-
terminal setup for measuring the con-
ductance of a quantum point contact.

The current Ii is driven from terminal 1 to 3, the voltage Vc is measured
between contacts 2 and 4. This example shows how we can simplify
situations in which certain transmission functions are much bigger than
others. In our example, the transmissions T12, T21, T34, and T43 can
be expected to be much bigger than those between pairs of contacts
on opposite sides of the QPC. In such cases we can introduce a small
parameter, say ε, which quantifies the order of magnitude of a particular
transmission. We would say, T12, T21, T34, and T43 are of order ε0,
whereas T13, T31, T14, T41, etc. are of order ε1. The case ε = 0 means
that the QPC is fully pinched off.

In the experiment, the injected current Ii is given by the external
current source. We now expand the voltage differences

Vi − Vj = V
(0)
ij + εV

(1)
ij + ε2V

(2)
ij + . . . . (13.33)

With this expansion in mind, we have a fresh look at eqs (13.19)–(13.22).
Considering in eq. (13.20) with I2 = 0 only terms of order ε0, we find
V

(0)
12 = 0, i.e., V1 = V2 in lowest order. In the same way, eq. (13.22) leads

in lowest order to V (0)
34 = 0, i.e., V3 = V4 in lowest order.

We extend our considerations to the order ε1, because we see that
eq. (13.19) is at least of this order. Considering the first order contribu-
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tions in eqs (13.19) and (13.20) we find

Ii =
e2

h
[T (0)

12 V
(1)
12 + (T (1)

13 + T (1)
14 )V (0)

24 ]

0 = −T (0)
21 V

(1)
12 + (T (1)

23 + T (1)
24 )V (0)

24 .

We have added the orders of the respective transmission probabilities as
superscripts for clarity. It is now straightforward to determine V (1)

12 from
the second equation and insert it into the first. As a result we obtain in
this first order approximation the inverse of the four-terminal resistance
of the quantum point contact

1
R13,24

=
Ii

V
(0)
24

=
e2

h

[T12

T21
(T23 + T24) + T13 + T14

]
.

At magnetic field B = 0 we have T12 = T21 and the result simplifies to

1
R13,24

=
e2

h
[T23 + T24 + T13 + T14] .

The sum in square brackets is the total transmission function through
the QPC. It will be dominated by the quantized conductance and there-
fore increase in quantized steps of 2e2/h, given that the material has
a single conduction band minimum (valence band maximum) with spin
degeneracy.

Experimentally, the advantage of this four-terminal setup is that par-
asitic resistances arising at ohmic contacts do not play a role here. Al-
though we have not included these in the above description, a two-
terminal measurement R13,13 would suffer from the addition of these
contact resistances. In contrast, they do not appear in R13,24, because
there is no current flow through the voltage terminals 2 and 4 (I2 = 0)
as a result of the (infinite) internal impedance of the voltmeter.

Magnetic steering. Another simple structure consists of two quantum
point contacts connected in series as schematically depicted in Fig. 13.5.
Using the split-gate electrodes, regions of the two-dimensional electron
gas below can be depleted and the number of modes in the quantum
point contacts can be controlled. Four ohmic contacts connect the struc-
ture to the external world. Contact 1 is the source for quantum point
contact 1 (QPC1), contact 3 is the drain contact of QPC1 and together
with contact 2 at the same time the source of QPC2, contact 4 is the
drain contact of QPC2. In the experiment contact 3 is grounded and
a current Ii is injected from contact 1 via QPC 1 into contact 3. The
measured quantity is the (collector) voltage Vc between contacts 4 and
2. There is a very low resistance connection between contacts 2 and 3.

The analysis of the general four-terminal resistance measurement can
again be applied to this situation. As in the above example, simplifi-
cations arise because the transmission functions Tαβ differ strongly in
magnitude. The quantities T23 and T32 will be of the order ε0, followed



214 Multiterminal systems

Fig. 13.5 Schematic representation of
a setup for a magnetic steering experi-
ment.
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by the transmission functions through one of the QPCs (T12, T21, T13,
T31, T24, T42, T34, T43) which are of the order ε1. The transmissions T14

and T41 involving both QPCs will be of the order ε2. In the experiment,
the injected current Ii is given by the current source, and the voltages
are again expanded in ε according to eq. (13.33).

Inserting this expansion in eq. (13.20) with I2 = 0, we get in lowest
order V (0)

23 = 0, i.e., V2 = V3, as expected from the highly conductive
connection between the two contacts. Equation (13.19) is again at least
of the order ε1. We have to extend our considerations to this order, if we
want to find the two- and four-terminal resistances. From eq. (13.22) we
find in the order ε1 the relation V

(0)
24 = 0, i.e., Vc = 0. From eq. (13.19)

we find in the same order the relation

Ii =
e2

h
[T (1)

12 + T (1)
13 ]V (0)

13

between the current and the voltage between contacts 1 and 3, implying
that the two-terminal resistance is given by

R−1
13,13 =

Ii

V
(0)
13

=
e2

h
[N1 −R1]

which is the resistance of QPC1. From eq. (13.20) we find the first
order contribution V

(1)
23 = T (1)

21 /T (0)
23 V

(0)
13 . It expresses the fact that the

finite transmission from contact 1 to 2 raises the voltage on terminal 2
compared to that on terminal 3 as soon as there is finite current flow
[remember that the voltage on a voltage terminal will always be the
average of the voltages on all other terminals weighted by the relative
transmission from the respective terminal, eq. (13.11)].

Eventually we are interested in the lowest order contribution to Vc =
−V24. In order to obtain it, we have to look at eq. (13.22) in second
order which reads

0 = −T (2)
41 V

(0)
14 − T (1)

42 V
(1)
24 − T (1)

43 V
(1)
34 .
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For simplifying the third term we use V34 = V24 − V23, and for the first
term we employ V14 = V24 + V13 − V23 which leads to V (0)

14 = V
(0)
13 . As

a result we get

V
(1)
24 =

−T (2)
41 V

(0)
13 + T (1)

43 V
(1)
23

T (1)
42 + T (1)

43

.

The voltage V24 is a weighted average of V (0)
13 = V

(0)
12 and V (1)

23 .
Using the above results for V (0)

13 and V (1)
23 we obtain

−Vc = V
(1)
24 = − h

e2
T (2)

41 T (0)
23 − T (1)

43 T (1)
21

T (0)
23 (T (1)

42 + T (1)
43 )(T (1)

12 + T (1)
13 )

Ii,

and we can write for the four-terminal resistance in this approximation

R13,42 =
Vc

Ii
=

h

e2
T41T23 − T43T21

T23(N4 −R4)(N1 −R1)
. (13.34)

The two bracketed expressions in the denominator are the conductances Magnetic field (T)

V c
/I i
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Fig. 13.6 Result of a magnetic steer-
ing experiment. Plotted is the nonlocal
resistance Vc/Ii. (Reprinted with per-
mission from Molenkamp et al., 1990.
Copyright 1990 by the American Phys-
ical Society.)

of the two individual QPCs. The two terms in the numerator split the
resistance into two distinct parts: the first part is strongly sensitive to
the ballistic transmission T41, whereas the second part is the product of
two QPC transmission functions normalized to the large quantity T23.
This second term can be made small compared to the first, if T23 is
made very big (which can be achieved using an appropriate geometry).
The idea of the magnetic steering experiment is now to tune T14 using
a small magnetic field. If the two QPCs are properly aligned, T14 will
be largest at zero magnetic field, whereas it will be strongly suppressed
even at small magnetic fields, where the Lorentz force bends the beam of
ballistic electrons ejected from QPC1 away from the QPC2 opening. The
experimental result is the sharp maximum of R13,42 at zero magnetic
field shown in Fig. 13.6. At finite magnetic fields beyond the peak of
the resistance, the second contribution to the resistance takes over and
produces a small negative value of Vc.

Magnetic focusing. A further example of a ballistic transport experi-
ment with magnetic field is the so-called magnetic focusing experiment.
It is similar to the magnetic steering experiment in that the structure
has four contacts and two quantum point contact constrictions, but here
the two QPCs are placed next to each other as depicted in Fig. 13.7. Cer-
tain values of the magnetic field lead to a cyclotron radius Rc that is an
integer fraction of the separation d of the two slits, i.e.,

Rcn = d⇒ �kF

|e|Bn
n = d⇒ Bn =

�kF

|e|dn with n a positive integer.

The description of the nonlocal resistance with the Landauer–Büttiker
formalism is identical to that of the magnetic steering experiment. If
the magnetic field fulfills the above condition, T41 is maximum. At the
same time, T41 ≈ 0, if the focusing condition is not fulfilled. As in
the magnetic steering geometry the four-terminal resistance is given by
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Fig. 13.7 Schematic setup of a mag-
netic focusing experiment.
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Fig. 13.8 (a) Image of the sample and schematic of the external circuit. (b) Collector voltage measured in a magnetic focusing
geometry as a function of the magnetic field applied perpendicular to the plane of the two-dimensional electron gas. The heights
of the resonances depend only weakly from the opening of the two quantum point contacts. (Reprinted with permission from
Potok et al., 2002. Copyright 2002 by the American Physical Society.)

eq. (13.34). Correspondingly, the voltage Vc will be maximum when-
ever T41 is maximum. We therefore expect equidistant maxima in the
magnetic field dependence of R13,42. Figure 13.8 shows the result of an
experiment. It can be seen that the expected maxima exist. Between
these maxima, the collector voltage Vc is slightly negative, but very small
compared to the value at the maxima. Therefore, the expression of the
resistance in this experiment can be simplified to

R13,42 =
h

e2
T41

(N4 −R4)(N1 −R1)
.

It is interesting to see in Fig. 13.8 that in this sample with very high
mobility, the heights of the maxima do not depend very strongly on the
opening of the quantum point contacts (Potok et al., 2002). In this
experiment, the injected current was I = 1nA, and the height of 5 µV of
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the measured resistance peaks corresponds therefore to a resistance of
about 5 kΩ, or 0.2h/e2. This means that there is the empirical relation

T41 = k(N1 −R1)(N4 −R4) on a focusing peak, (13.35)

with k ≈ 0.2.

Quantum point contact spin filter. Using a quantum point contact,
a spin filter can be realized (Potok et al., 2003). For this purpose, the
focusing geometry can be used as depicted in Fig. 13.8(a). The current
is spin-polarized by the quantum point contact on the left by applying a
strong magnetic field parallel to the electron gas. If we assume that the
spin of electrons tunneling from the emitter E to the basis B is conserved,
a fully spin-polarized current is expected if only one of the two spin states
exists at the Fermi energy in the emitter. If both spin states exist at
the Fermi energy they may have different transmission probabilities to
the base, and the current is partially spin-polarized. On the right side
of the structure there is a quantum point contact (analyzer) exposed
to the same in-plane magnetic field as the emitter. The magnetic field
lifts the degeneracy of the modes of both quantum point contacts, and
conductance plateaus are observed at integer multiples of e2/h (rather
than those at 2e2/h observed at zero in-plane field). This suggests that
the quantum point contacts transmit only one spin direction at gate
voltages where the conductance is below the first conductance plateau,
and therefore act as spin filter devices.

For an analytic description of the setup we use the Landauer–Büttiker
formalism. We define the spin selectivity of the collector quantum point
contact to be

Pc =
G↑33 −G↓33
G↑33 +G↓33

,

and that of the emitter (here it is a quantum point contact, but it could
also be a quantum billiard or a quantum dot)

Pe =
G↑11 −G↓11
G↑11 +G↓11

.

The values of these polarizations range from −1 (only spin-down trans-
mitted), via 0 (both spin orientations transmitted with the same proba-
bility) to +1 (only spin-up transmitted). In an ideal polarizer–analyzer
geometry the output voltage Vc would be given by

Vc ∝
1
2
(1 + PePc) =

G↑11G
↑
33 +G↓11G

↓
33

G11G33
.

Zero voltage is measured if Pe and Pc have the same magnitude but
opposite signs. The maximum voltage is measured if both signs are the
same and the magnitudes are one. If we compare this with the expression
for the nonlocal resistance in a magnetic focusing experiment

Vc

I
=

G31

G11G33
,
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Fig. 13.9 (a) Polarizer–analyzer geom-
etry with a quantum billiard as the
emitter and a quantum point contact
as the analyzer. (b) Magnetic focusing
resonances at zero in-plane field (Folk
et al., 2003).
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we find that an experiment with constant current bias is ideal if

G31 =
h

2e2
α
(
G↑11G

↑
33 +G↓11G

↓
33

)
,

i.e., if G31 can be split into the two spin contributions according to

G
↑/↓
31 =

h

2e2
αG
↑/↓
11 G

↑/↓
33 with G31 = G↑31 +G↓31.

This makes sense if the spin state of the electrons is conserved dur-
ing their trip through the base B from the polarizer to the analyzer,
implying negligible spin-flip scattering and spin–orbit interaction. The
product G↑11G

↑
33, which is equivalent to the product of the corresponding

transmission probabilities, excludes phase-coherent effects in the trans-
mission from 1 to 3, and implies that the two transmission processes are
statistically independent. In this case, the factor α can be interpreted
as the probability that an electron emitted from the polarizer arrives at
the analyzer.

The experiment shown in Fig. 13.8 shows that these conditions are
fulfilled approximately as expressed by eq. (13.35). The heights of res-
onances in the focusing experiment depend at zero magnetic field only
weakly on the opening of the two quantum point contacts. This opens
the way for further experiments in which the polarizing quantum point
contact is replaced by the quantum billiard structure. Such a setup is
depicted in Fig. 13.9(a). Figure 13.9(b) shows the focusing resonances
measured on this structure at zero in-plane field.

Figure 13.10 shows the corresponding measurement results for finite
in-plane field. The billiard was coupled with a conductance of about
2e2/h to the leads such that no spin polarization is expected from the
point contact connecting the emitter to the base. The system is there-
fore open, and mesoscopic fluctuations of the conductance caused by
interference of electronic waves inside the emitter billiard [Fig. 13.10(c)].
Significant fluctuations in the detected polarization signal do not arise
if the emitter is a quantum point contact but only in the case of the
confined emitter. If we compare the spin polarization signal with the
conductance of the billiard [Fig. 13.10(c)], we find no correlation be-
tween the mesoscopic conductance fluctuations and the fluctuations of
the spin polarization.
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Fig. 13.10 (a) Measured collector volt-
age in the case where the emitter was
operated as a quantum point contact
with conductance 2e2/h (solid) com-
pared to the case where the quan-
tum billiard emitter was formed (dash–
dotted). Plotted is the height of a fo-
cusing resonance with an in-plane mag-
netic field of 6 T applied as a func-
tion of the plunger gate voltage of the
emitter. (b) Normalized peak heights
for the case of a spin-selective ana-
lyzer (0.5e2/h, solid curve) compared
to the non spin-selective analyzer (dot-
ted) and for the case of zero in-plane
magnetic field with an analyzer conduc-
tance of 0.5e2/h (dashed) (c) The cor-
responding measurements of the emit-
ter conductance (Folk et al., 2003).
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Four-terminal resistance of a nearly perfect single-mode quan-
tum wire. Consider a quantum wire with only a single mode measured
in the four-terminal mesoscopic Hall bar arrangement depicted schemat-
ically in Fig. 13.11. Experimentally, such a wire with a length of more

1

2 4

3

V4t

Ii

A B C

V2t

Fig. 13.11 Schematic of a mesoscopic
Hall bar consisting of a wire with only
a single mode.

than 1µm has been realized by the cleaved-edge overgrowth method. It
was possible to measure the resistance of this wire in a four-terminal
geometry. The philosophy behind the measurement of a macroscopic
Hall bar is that the voltage drop across the inner two contacts 2 and
4 along the wire are related to the intrinsic resistance of the wire sec-
tion B, while the voltage drop across the outer two contacts 1 (source)
and 3 (drain) contains the contribution of the contact resistances (see
Fig. 13.12). Now let us see how these ideas are modified in the meso-
scopic system.

First we assume that the coupling strength of the two voltage leads to
the wire is very weak. As a consequence, we will treat T13 = T31 (zero
magnetic field) as a large quantity of the order ε0, whereas T12 = T21,
T14 = T41, and T34 = T43 are of order ε1. The transmission T24 = T42 is
of the order ε2. The injected current Ii is given by the external current
source, and the measured voltages are expanded according to eq. (13.33).

Equation (13.19) gives, in the order ε0, for the two-terminal voltage
drop V (0)

13 across the device,

V2t = V
(0)
13 =

h

e2
1
T13

Ii,

implying that the two-terminal resistance is

R
(0)
2t = R

(0)
13,13 =

h

e2
1
T13

,

as if the voltage probes were not attached to the wire.
In the experiment shown in Fig. 13.12 the two-terminal resistance

shows pronounced plateaus in the resistance, resembling conductance
quantization in the wire. The plateaus are not exactly at h/e2n (n in-
teger) because coupling from the two-dimensional electron regions into
the wire, and ohmic contacts, add a series resistance.

In order to find a result for the four-terminal measurement, we need
to investigate eqs (13.19)–(13.22) in the order ε1 assuming I2 = 0. From
eq. (13.20), and using the identity V14 = V34 + V13, we find

V
(0)
34 = − T (1)

14

T (1)
14 + T (1)

34

V
(0)
13 .

Similarly we find from eq. (13.22) with V12 = V13 − V23

V
(0)
23 =

T (1)
12

T (1)
12 + T (1)

23

V
(0)
13 .

In this order, the voltage difference V (0)
24 is therefore

V4t = V
(0)
24 = V

(0)
23 + V

(0)
34 =

(
T (1)

12

T (1)
12 + T (1)

23

− T (1)
14

T (1)
14 + T (1)

34

)
V

(0)
13 .
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Fig. 13.12 Two- (dotted) and four-
terminal (solid) resistance of a ballis-
tic quantum wire fabricated by cleaved
edge overgrowth. The dark gray re-
gions are gate electrodes used to de-
plete the underlying two-dimensional
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It is interesting to see that in a mesoscopic Hall bar the voltage drop V2−
V4 is not necessarily positive, but it may take negative values, depending
on how strongly the two voltage probes couple to the current contacts
1 and 3. This is a direct consequence of eq. (13.11) according to which
the voltage on each terminal is a weighted average of the voltages on
the other terminals transmitting to it. The corresponding four-terminal
resistance is

R
(0)
4t = R13,24 = R

(0)
2t

(
T (1)

12

T (1)
12 + T (1)

23

− T (1)
14

T (1)
14 + T (1)

34

)
.

The two fractions in brackets give, in general, values between zero and
one, such that their difference is bound to the interval [−1; 1]. The two
expressions in the denominators can be identified with the emissivities
N2 − R2 ≈ T12 + T23, and N4 − R4 ≈ T14 + T34 of the two voltage
probes. For the experiments on quantum wires fabricated by cleaved
edge overgrowth it was found that the emissivities are given by 2αT (W ),
where α is a constant and T (W ) is a transmission probability depending
on the width W of the probe. In the experiment discussed here, the
width of the two voltage probes, and hence their emissivities, are the
same.

So far we have not exploited eq. (13.19) in the order ε1. It turns
out that doing this gives a correction of the previous lowest order two-
terminal resistance. This shows us that, in mesoscopic devices, attaching
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voltage probes to a system will always tend to influence the resistance
of the system, unlike the notion in macroscopic Hall bars, where the
attachment of small voltage probes at the edge of the Hall bar does not
have such an influence. To be specific, we find from eq. (13.19) in the
order ε1

V
(1)
13 = − h

e2
Ii

1

T (0)
13

2

(
T (1)

12 T (1)
23

T (1)
12 + T (1)

23

+
T (1)

14 T (1)
34

T (1)
14 + T (1)

34

)

such that

R2t =
h

e2
1

T (0)
13

[
1 − 1

T (0)
13

(
T (1)

12 T (1)
23

T (1)
12 + T (1)

23

+
T (1)

14 T (1)
34

T (1)
14 + T (1)

34

)]
.

The two-terminal resistance in the order ε1 is reduced compared to that
in lowest order. The reason is that, in addition to the direct transmission
T (0)

13 , indirect transmission of electrons from contact 1 to 3 via contact
2, and from 1 to 3 via 4 are now also accounted for. This effectively en-
hances the transmission from contact 1 to 3, thereby reduces the voltage
V13 (negative sign of V (1)

13 ), and lowers the two-terminal resistance.
As mentioned above, in the experiment, the two voltage probes couple

with identical strength 2αT (W ) to the wire, because they are fabricated
to have the same width W . The four-terminal resistance can then be
written as

R
(0)
4t = R13,24 = R

(0)
2t

T (1)
12 − T (1)

14

2αT (W )
.

The experiment shows (see Fig. 13.12) that the difference in the numer-
ator is essentially zero for the gate voltage range between slightly below
−2 V, where the two-dimensional electron gas in region B is depleted,
and almost −4 V, where small resistance fluctuations set in. This differ-
ence can only be zero if the wire segment along gate B does not scatter
electrons, i.e., if there is no intrinsic resistance. As a conclusion, the
quantized resistance observed in Fig. 13.12 for the two-terminal mea-
surement cannot be a result of scattering within the wire, but must be
a result of the current contact regions, in agreement with our previous
interpretation of the quantized conductance as a contact resistance.

It turns out that the strength with which T13 is altered by the presence
of the two voltage probes (the invasiveness of the probes) is proportional
to T (W ). The invasiveness decides whether the four-terminal measure-
ment allows the measurement of the zero intrinsic wire resistance. The
inset of Fig. 13.12 shows data points obtained from a series of devices dif-
fering in the contact width W , and therefore in the invasiveness T (W ).
Plotted is the ratio between the four- and the two-terminal resistance.
It can be seen that only for the smallest values of T , i.e., for the smallest
widths W , does the four-terminal resistance measure the zero intrinsic
wire resistance. As T approaches one, two- and four-terminal resistances
become equal.
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Further reading

• Landauer–Büttiker formalism: Datta 1997;
Beenakker and van Houten 1991.

• ‘Magnetic steering’ and ‘magnetic focusing’:
Beenakker and van Houten 1991.

• Papers: Buttiker 1986; Molenkamp et al. 1990; Po-
tok et al. 2002; Potok et al. 2003; Folk et al. 2003;
de Picciotto et al. 2001.

Exercises

(13.1) We investigate a three-terminal device which is
based on a two-dimensional electron gas in the
quantum limit. A schematic of the sample with
external circuit is depicted below. We neglect
the resistances of the ohmic contacts. The num-
ber of modes in the three ideal leads is Ni (i =
1, 2, 3), the reflection in contact i is Ri, and the
transmission from contact i to contact j is Tji.

mesoscopic
sample

Vbias

V1

V2

V3 = 0

V
I1

I3

I2 = 0

(a) Calculate the relation between V/Vbias and
the Tij within Landauer–Büttiker theory.

(b) Discuss what it means for the transmissions
T21 and T23 if R2 becomes very large. How
large can R2 be at most?

(c) Discuss which voltage V is measured if R2

tends towards its maximum value. Experi-
mentally this could, for example, be achieved
by placing a gate across lead 2 and depleting
the electron gas with a negative voltage.

(d) Show that, in this limit, the conductance
of the structure approaches that of a two-
terminal device.
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14.1 Double-slit interference

Interference of waves of matter is a cornerstone of quantum mechanics
arising from the superposition principle. It plays an important role
in all applications of quantum mechanical theory to real systems. For
example, the existence of the band structure of a solid can be regarded
as an effect of interference of partial electron waves multiply scattered at
the ion cores of the crystal lattice. However, the double slit experiment
is probably one of the oldest and most striking ways to discuss and
discover interference and the wave–particle duality of matter.

Figure 14.1 shows schematically the setup of a double slit experiment.
A coherent monochromatic source of waves of light or matter creates
an outgoing wave that is diffracted by two slits with a width smaller
than the wavelength. Under these conditions an interference pattern is
observed on the observation screen, i.e., the intensity of the impinging
wave varies periodically in space.

A large number of such experiments have been realized in the past
in very different areas of physics. Among them are those using classical
waves such as sound or water waves. Among them is the famous double
slit experiment with light, i.e., photons, that Thomas Young performed
in 1801. At that time the double slit experiment was a key experiment

*source

screen

1

2

T

Fig. 14.1 Schematic setup of a double
slit experiment.



226 Interference effects in nanostructures I

interpreted as a proof for the wave nature of light. With today’s knowl-
edge of quantum mechanics, of course, we interpret this experiment in
a different way: even when the intensity of the incident photon beam is
reduced so much that only a single photon is present at a time in the
apparatus, the interference pattern is formed, if one counts the number
of photons arriving at a particular place on the screen. Here, the impor-
tant step is made from a (real valued) amplitude of a classical wave to
the (complex) probability amplitude of a quantum mechanical particle.
The probability amplitude t1 for transmission through the upper slit
along path γ1 in Fig. 14.1 is described as

t1 = a1e
iθ1 .

Correspondingly, the transmission t2 along path γ2 is

t2 = a2e
iθ2 .

Here, a1 and a2 are positive real numbers between zero and one, the θi

(i = 1, 2) are real-valued transmission phases. According to the rules of
quantum mechanics, the intensity on the observation screen is given by

T = |t1 + t2|2 = a2
1 + a2

2 + 2a1a2 cos δ, with δ = θ1 − θ2. (14.1)

The first two terms of the transmission a2
1 + a2

2 can be interpreted as
the classical transmission probability (i.e., the sum of the two individual
probabilities for transmission through either of the two slits), the last
term 2a1a2 cos δ represents the quantum interference.

In the 20th century the double slit experiment was performed with a
large number of different particles, such as electrons, neutrons, atoms,
and even molecules [C60, so-called bucky balls (Arndt et al., 1999)]. The
first man-designed double slit type of experiments with electrons were
performed by Möllenstedt and Düker, and by Jönsson with the electron
beam of a scanning electron microscope (Möllenstedt and Duker, 1956;
Jönsson, 1961). All these experiments show the expected interference
pattern. However, interference experiments remain of interest in re-
search. The reason is that fundamental phenomena of phase-coherence
and decoherence of quantum particles, and its relation to entanglement
of quantum states can be studied. Furthermore, these phenomena are
of crucial importance for possible applications, such as quantum infor-
mation processing or quantum communication.

14.2 The Aharonov–Bohm phase

If one intends to realize a double slit experiment in a semiconductor
nanostructure, a number of problems arise: in nanostructures, particles
are detected in contacts, i.e., it is difficult to realize an interference
screen. As a way out, the Aharonov–Bohm effect (Aharonov and Bohm,
1959, see also Ehrenberg and Siday, 1949, for an early version of the
effect) depicted schematically in Fig. 14.2 can be used. For this effect to
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T

Fig. 14.2 Schematic setup of an
Aharonov–Bohm experiment.

occur, the two interfering paths have to enclose a magnetic flux φ that
can be described by a vector potential A(r). The transmission phases
are then modified by the presence of the magnetic flux according to

θi(φ) = θi(0) − |e|
�

∫
γi

Ads. (14.2)

As a result, the phase difference,

δ(φ) = δ(0) − |e|
�

∫
γ1−γ2

Ads = δ(0) − 2π
φ

φ0
, (14.3)

depends on the magnetic flux φ, where φ0 = h/|e| is the magnetic flux
quantum. As a consequence, the flux-dependent transmission is

T (φ) = a2
1 + a2

2 + 2a1a2 cos
[
δ(0) − 2π

φ

φ0

]
.

At a fixed position on the interference screen, the transmission has the
property

T (φ+ n · φ0) = T (φ), with n integer.

In this way it is possible to detect the periodic interference pattern with
a spatially fixed detector by changing the magnetic flux. The additional
phase 2πφ/φ0 appearing in the transmission probability is called the
Aharonov–Bohm phase.

e

(a) (b)

Fig. 14.3 Schematic illustration of the
settings for the Aharonov–Bohm ef-
fect and its electromagnetic dual, the
Aharonov–Casher effect. (a) In case of
the Aharonov–Bohm effect a charged
particle (e.g., charge −|e|) is encircling
a magnetic flux tube enclosing the flux
φ. (b) In case of the Aharonov–Casher
effect, an uncharged particle with a
magnetic moment (spin) is encircling a
tube of constant line charge density λ.

Circular motion. The above considerations were quite general. No
constraints were put on the particular geometric shape of the two paths
γ1,2. Now we illustrate the appearance of the Aharonov–Bohm phase
using the specific example of an electron moving on a circular path
around a magnetic flux, as depicted in Fig. 14.3(a). The moving charge
−|e| can be described using the hamiltonian

H =
1

2m
(p + |e|A)2 + V (r),
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where the vector potential A = eϕφ/2πr (eϕ is a unit vector pointing
normal to the radial direction in the plane) and r measures the distance
from the flux tube. The potential V (r) forces the electron into the
circular orbit, motion in the z-direction is assumed to be separable.
Owing to the fact that the charge moves in a region free of magnetic
field (because B = ∇ × A = 0 for r > 0) it does not experience a
Lorentz force. Nevertheless, as the quantum particle moves once around
the flux tube it acquires the Aharonov–Bohm phase

∆ϕAB = −|e|
�

∮
Ads = −|e|

�
φ = −2π

φ

φ0
. (14.4)

This can be seen by writing the above hamiltonian in cylinder coordi-
nates

H = − �
2

2m

[
∂2

∂r2
+

1
r

∂

∂r
− 1
r2

(
i
∂

∂ϕ
− φ

φ0

)2
]

+ V (r).

The one-dimensional hamiltonian for pure angular motion can be ob-
tained by neglecting the radial derivative terms and letting r = r0,
leading to

H =
�

2

2mr20

(
i
∂

∂ϕ
− φ

φ0

)2

.

The eigenvalue problem is solved by the wave function

ψ(ϕ) =
1√
2π
ei�ϕ

with the angular momentum quantum number �, and having the eigenen-
ergy

E� =
�

2

2mr20

(
�+

φ

φ0

)2

. (14.5)

This dispersion relation is parabolic as depicted in Fig. 14.4. The sign
λ = sgn(vG) of the group velocity

vG(�) =
r0
�

∂E�

∂�
=

�

mr0

(
�+

φ

φ0

)
(14.6)

indicates the direction of propagation around the ring. For each energy
4 2 2 4

0

E

E

clockwise counterclockwise
= =

Fig. 14.4 Dispersion relation for the
one-dimensional ring threaded by a
magnetic flux. The two states marked
with a filled circle have the same energy,
but differ in the direction λ of propaga-
tion around the ring.

E of an electron, two states propagating in opposite directions exist,
because according to eq. (14.5)

�+
φ

φ0
= λ

√
2mr20E

�2

with λ = ±1 indicating the direction of propagation.
In the case of an isolated ring [as depicted in Fig. 14.3(a)], the eigen-

functions need to be periodic in ϕ leading to integer angular momen-
tum quantum numbers �. Positive �+ φ/φ0 describe states propagating
counterclockwise around the ring, for negative �+φ/φ0 states propagate
clockwise.
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B
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(b)(a)

cc

c
=

= +1

Fig. 14.5 (a) Schematic illustration
of counterclockwise (‘cc’) and clockwise
(‘c’) transmission around an open ring.
Paths with higher winding numbers, or
reflections at the joints to the contacts
are neglected. (b) Quantum ring geom-
etry used for realizing an Aharonov–
Bohm experiment in a semiconductor
nanostructure. A homogeneous mag-
netic field B is applied normal to the
plane of the electron gas.

If the ring is open to leads attached at ϕ = 0 and ϕ = π, � is not
required to be integer because we are dealing with an open system.
States impinging from one lead onto the ring with a particular energy
E will be transmitted through the ring in one of the two states existing
at this energy. Defining the wave vector k =

√
2mE/�2, we can solve

the energy dispersion for � and find the two states

�(λ) = λkr0 −
φ

φ0
.

These two states propagate with the same magnitude �k/m of their
group velocity in counterclockwise (λ = 1) and clockwise (λ = −1)
directions, respectively, as illustrated in Fig. 14.5(a). We now consider
an incoming electron that has been split by the beam splitter at the
ring entrance into two partial waves each having an amplitude 1/

√
2

and propagating clockwise and counterclockwise, respectively. The two
partial waves meet at the exit, exactly opposite to the entrance. The
wave propagating counterclockwise travels an angle π from the entrance
to the exit and acquires a phase factor t1 = exp[i(kr0−φ/φ0)π]/

√
2. The

wave propagating clockwise travels an angle −π from the entrance to the
exit and acquires a phase factor t2 = exp[i(−kr0−φ/φ0)(−π)]/

√
2. The

probability for the electron to be transmitted from the entrance point
to the exit point within half a revolution around the ring is then given
by

T = |t1 + t2|2 =
1
2

∣∣∣ei(kr0−φ/φ0)π + ei(kr0+φ/φ0)π
∣∣∣2 =

1
2
[1+cos(2πφ/φ0)].

The transmission is modulated by the Aharonov–Bohm phase (14.4). In
this simplified picture, we have neglected any reflection at the entrance to
the ring and assumed that the particles arriving at the exit are perfectly
coupled out.

14.3 Aharonov–Bohm experiments

In principle, an Aharonov–Bohm experiment like that depicted in Fig.
14.2 can be realized in a semiconductor nanostructure based on a two-
dimensional electron gas by using split gates. However, the edges of
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Fig. 14.6 Aharonov–Bohm effect in
the quantum ring structure shown in
Fig. 6.15(a).
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the sample deserve particular attention. In the ideal experiment, par-
tial waves that are scattered between the source and the double slit, or
between the double slit and the detector, can escape the structure side-
ways. In a nanostructure realization, these regions would therefore need
to be connected to ground via ohmic contacts. Doing this, a lot of inten-
sity of the interference pattern is lost. Therefore, more closed structures
such as quantum rings [see Fig. 14.5(b)] have been used for measuring
the Aharonov–Bohm effect. Here, another important difference from
the ideal experiment in Fig. 14.2 is the application of a homogeneous
magnetic field. As a result, the electrons experience a Lorentz force in
addition to acquiring the Aharonov–Bohm phase. The Lorentz force
leads to cyclotron motion of the free electron in the magnetic field. In
the structure depicted in Fig. 14.2, however, the electrons are not free,
but bound to the ring-shaped structure. As a consequence, there is an
interplay between forces caused by the confinement potential, and the
Lorentz force caused by the magnetic field. As a rule of thumb we can
say that Lorentz force effects are negligible as long as the classical cy-
clotron radius of the electron Rc = p/eB = �kF/eB is large compared
to the radius of the ring structure. This is given for sufficiently small
magnetic fields. In this magnetic field range we expect that the transmis-
sion through the structure is mainly modulated by the Aharonov–Bohm
effect for which the relevant magnetic flux is given by

φ = B ·A.

Here, A is the mean area enclosed by the ring structure. Figure 6.15
shows such a structure that has been fabricated by AFM lithography.

The corresponding measurement of the magnetoconductance at a tem-
perature of 1.7 K is shown in Fig. 14.6. It shows a very clear periodic
modulation of the resistance as a function of magnetic field. The most
prominent period ∆B corresponds to the expected h/e-periodic trans-



14.3 Aharonov–Bohm experiments 231

R 1
 (

)

0

0.1

0.2

1 20 3 4 5
B (mT)

0

0.1

0.2

0.3

R
2  (

)
h/2e

Fig. 14.7 Altshuler–Aronov–Spivak
oscillations in a metal cylinder.
(Reprinted with permission from
Sharvin and Sharvin, 1981. Copyright
1981, American Institute of Physics.)

mission with

∆B =
h/e

A
.

In addition, higher harmonics can be seen, e.g., h/2e-periodic oscillations
with

∆B =
h/(2e)
A

.

This is a characteristic property of quantum rings with high quality and
weak decoherence.

Sharvin–Sharvin experiment. The Aharonov–Bohm effect was, for
the first time in a solid structure, observed by Sharvin and Sharvin in
a long magnesium cylinder evaporated on a micrometer-thin quartz fil-
ament (Sharvin and Sharvin, 1981). However, in this structure, only
h/(2e)-periodic oscillations were seen (see Fig. 14.7) as predicted theo-
retically by Altshuler, Aronov, and Spivak (Altshuler et al., 1981). These
h/2e-periodic oscillations are therefore often called Altshuler–Aronov–
Spivak (AAS) oscillations (in contrast to the h/e-periodic Aharonov–
Bohm (AB) oscillations).

h/e-periodic oscillations in metals and semiconductors. The h/e-
periodic Aharonov–Bohm oscillations were first measured in a single
metal ring by R. Webb and co-workers (Webb et al., 1985). The first
measurements in rings based on semiconductor heterostructures were
performed by Timp et al., 1987, Ishibashi et al., 1987, and Ford et al.,
1988.

Origin of higher harmonics. In order to understand the observation
of higher harmonics better, we consider a one-dimensional model and
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Fig. 14.8 Paths considered for the de-
scription of the Aharonov–Bohm ex-
periment in a quantum ring structure.
(a) The electron is reflected at the en-
trance to the ring. (b) The electron
is reflected after having explored the
ring once in a clockwise direction. (c)
The electron is reflected after having
explored the ring once in a counter-
clockwise direction.

(a) (b) (c)

use the Landauer–Büttiker formalism. We write the conductance at
temperature zero as

G =
2e2

h
T (EF) =

2e2

h
[1 −R(EF)] . (14.7)

Here, R is the reflection probability for an electron at the Fermi energy.
If we assume strong coupling of the ring to the leads, i.e., R(EF ) � 1,
we can limit our considerations to the paths depicted schematically in
Fig. 14.8. We therefore obtain

R =
∣∣∣r0 + r1e

i·2πφ/φ0 + r1e
−i·2πφ/φ0 + . . .

∣∣∣2
= |r0|2 + 2|r1|2 + . . . (14.8)

+4 |r0| |r1| cos δ cos
(

2π
φ

φ0

)
+ . . . (14.9)

+2 |r1|2 cos
(

4π
φ

φ0

)
+ . . . (14.10)

Here, δ is the phase that a partial wave accumulates if it runs once
around the ring at zero magnetic field (φ = 0). The contributions to the
reflection can be classified in the following way:

• The first contribution (14.8) is independent of the magnetic flux φ
and therefore also of the magnetic field B. It can be interpreted
as the sum of classical reflection probabilities. We define Rcl =
|r0|2 + 2|r1|2. The magnitude of these reflection probabilities does
depend on the details of the local electrostatic potential within the
ring and the coupling to the leads.

• The second contribution (14.9) is h/e-periodic and represents the
Aharonov–Bohm effect. In this model, the Aharonov–Bohm effect
appears as the interference between a path that is directly reflected
at the entrance to the ring [Fig. 14.8(a)], and a path winding once
around the ring [Fig. 14.8(b) or (c)]. The prefactor cos δ can take
arbitrary values between −1 and +1. This means that at B = 0
there can be a minimum or a maximum of the oscillations depend-
ing on the sign of this prefactor. The prefactor may also depend on
the energy of the electron, because δ depends on energy. This has
important consequences: if we calculate the reflection probability
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at finite temperatures, we essentially average the energy-dependent
reflection over an energy interval of about 4kBT . If δ(E) changes
by more than π in this interval, the averaging procedure results
in a reduction of the oscillation amplitude. Similar arguments are
valid for ensemble averages. If one measured a parallel, or a serial
connection of many Aharonov–Bohm rings, each ring would have
a different value of the phase δ, and the amplitude of Aharonov–
Bohm oscillations is strongly damped by averaging. The same
argument is true beyond the model of a strictly one-dimensional
ring if several radial modes exist in the ring (corresponding to
several paths probing the local potential in different locations).
Each of the modes (or paths) contributes with a different δ, and a
reduction of the Aharonov–Bohm oscillation amplitude results.

• The third contribution (14.10) is h/2e-periodic. These are the
Altshuler–Aronov–Spivak oscillations. They result from the inter-
ference of so-called time-reversed paths propagating clockwise and
counterclockwise, respectively [Fig. 14.8(b) and (c)]. They can also
be seen in the measurements shown in Fig. 14.6. At B = 0 (φ = 0)
these paths always give a positive contribution to the reflection,
i.e., the partial waves interfere constructively in the reflection and
thereby always lower the conductance at B = 0. This contribu-
tion is independent of the phase δ. Therefore, AAS oscillations are
more robust against averaging than the h/e-periodic AB oscilla-
tions. Energy averaging, ensemble averaging, and averaging due
to different radial modes (paths) around the ring do not lead to
such a strong reduction of the AAS oscillation amplitude as seen
for AB oscillations.

All contributions to the reflection have the common property that they
are even in magnetic field, such that G(B) = G(−B). This property is
known as phase-rigidity, meaning that the phase of the AB oscillations
can be 0 or π, that of the AAS oscillations is always 0. It is charac-
teristic for all two-terminal experiments, i.e., for samples with only two
contacts. The phase of the AB oscillations can change as a function of
an experimental parameter, e.g., a gate voltage, or the electron density,
if cos δ goes through zero. The phase of the oscillations will then jump
by π at the point where cos δ = 0. This is shown in Fig. 14.9. It can be
seen that the amplitude of the AB oscillations diminishes to zero due to
a zero of cos δ, but beyond it recovers with the sign of the oscillations
reversed. In contrast, the AAS oscillations always show a maximum at
B = 0.

Limits of this description. In the above model we have neglected
paths winding around the ring more than once (we talk about paths with
higher winding number). They would lead to further higher harmonics
with a period h/(n · e) (n integer). Nevertheless many observations can
be interpreted qualitatively on the basis of our strongly simplified model.
The limits of this description become obvious if we consider the values
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Fig. 14.9 Change of the phase of
Aharonov–Bohm oscillations as a func-
tion of an asymmetrically applied gate
voltage. In the topmost curve a max-
imum can be seen at B = 0, whereas
a minimum is observed at B = 0
in the bottom curve. At the transi-
tion around 35mV the amplitude of
the h/e-periodic oscillations is zero
and only the h/2e-periodic Altshuler–
Aronov–Spivak oscillations can be seen.
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of the transmission for different parameters |r0| and |r1|. To this end we
express |r0| and |r1| by Rcl and ∆Rcl = |r0|2 − 2|r1|2, and we write the
transmission as

T = 1 −Rcl

−
√

2(R2
cl − ∆R2

cl) cos δ cos
(

2π
φ

φ0

)
−1

2
(Rcl−∆Rcl) cos

(
4π

φ

φ0

)
−. . .

The Aharonov–Bohm oscillations are strongest for the case cos δ = ±1
and ∆Rcl = 0. For these extreme parameters we obtain the minimum
for the transmission (φ/φ0 = 0)

Tmin = 1 −
(

3
2

+
√

2
)
Rcl − . . .

Due to the constraint Tmin ≥ 0 our approximation delivers no physically
meaningful results for Rcl > 0.34. In this case, higher harmonics are
required for the description of the transmission.

Temperature dependence. At room temperature Aharonov–Bohm
oscillations are usually not observable. Figure 14.10 shows measurements
of the magnetoresistance of the quantum ring at different temperatures.
Each type of quantum oscillation smooths out at increasing tempera-
tures. This corresponds to our everyday experience that quantum inter-
ference effects can usually not be observed at room temperature. But
why do these oscillations disappear with increasing temperature?
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Fig. 14.10 Temperature dependence
of the magnetoresistance of a quantum
ring.

One influence of temperature on the magnetoconductance is con-
tained in the derivative of the Fermi distribution function that appears
in eq. (13.9) under the energy integral [so far in this chapter we have
treated the conductance at temperature T = 0, cf., eq. (14.7)]. Since the
transmission T (and the reflection R) are functions of the energy, the
conductance represents an average of the transmission over energy in-
tervals of size 4kBT . The h/e-periodic AB oscillations in (14.9) contain
the energy-dependent prefactor cos δ which can be positive or negative
depending on energy. Thermal averaging over large energy intervals
therefore leads to vanishing AB oscillations.

For the h/(2e)-periodic AAS oscillations in (14.10) the situation is
different. There, the prefactor is always positive and it usually depends
only weakly on energy. This contribution to the oscillatory magnetore-
sistance is therefore less sensitive to an increase in temperature.
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Fig. 14.11 Temperature dependence
of the amplitude A of h/e- and h/2e-
periodic oscillations as determined from
a Fourier analysis of the data in
Fig. 14.10.

The temperature dependence of the amplitudes of AB and AAS os-
cillations can be extracted from measurements by Fourier analysis. The
result of such a procedure is shown in Fig. 14.11. One can see that the
h/2e-periodic oscillations decay more rapidly than the h/e-periodic os-
cillations. The reason for this behavior is the decoherence of electron
waves upon traversal of the ring. This effect will be discussed in more
detail in section 14.7.

14.4 Berry’s phase and the adiabatic limit

Magnetic fields in ring structures can give rise to effects in the interfer-
ence of partial waves beyond the Aharonov–Bohm effect if the spin of
the charge carriers is taken into account, for example, through the Zee-
man interaction. It has been proposed that these effects appear if the
magnetic field not only has a component normal to the plane, but also a
radial or tangential component in the plane of the ring (Loss et al., 1990;
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Loss and Goldbart, 1992; Stern, 1992). Such a situation has been called
a ring in a textured magnetic field. As we will see below, the orbital
motion around the ring causes the local spin orientation to deviate from
the local direction of the magnetic field, in stark contrast to the case of a
spin at rest which is oriented either parallel or antiparallel to the exter-
nal field. The latter situation can be recovered in the adiabatic limit in
which the Zeeman interaction dominates over the orbital motion. The
adiabatic limit is of great interest because the phase acquired by the
particle in an interference experiment has a geometric meaning, as we
will see below. It is therefore called geometric phase, or Berry’s phase
(Berry, 1984). Geometric phases are interesting, because they arise from
fundamental quantum mechanical principles and occur in many different
physics contexts (Berry, 1988; Shapere and Wilczek, 1989). The concept
of geometric phases was known before Berry’s seminal paper [see, e.g.,
Schiff, 1949], but Berry realized its relevance for adiabatic dynamics in
quantum mechanics. Experimentally, effects of Berry’s phase have been
demonstrated, for example, for photons (Tomita and Chiao, 1986), and
for neutrons (Bitter and Dubbers, 1987).

In order to discuss an example where Berry’s phase is expected to
occur in an interference experiment using a quantum ring structure, we
consider an electron with mass m in a strictly one-dimensional ring of
radius r0 described by the hamiltonian

H =
�

2

2mr20

(
−i ∂
∂ϕ

+
φ

φ0

)2

+
1
2
gµBBσ.

The first term describes the kinetic energy with the magnetic flux φ =
Bzπr

2
0. The second term is the Zeeman interaction with the g-factor g

and the magnetic field B. We choose it to be given by

B = Bzez +Brer,

where we use a cylindrical coordinate system with er being a unit vector
pointing radially outwards and ez a unit vector in the z-direction. This
situation is shown in Fig. 14.12. The magnetic field B has the magnitude
B =

√
B2

r +B2
z , and it is at an angle α to the z-axis with tanα =

Br/Bz. We note here that as the electron moves around the ring it
experiences a magnetic field of varying orientation.

ez

er

e

Fig. 14.12 Ring (thick circle in a mag-
netic field texture (arrows) with tilt an-
gle α. The local cylindrical coordinate
system at ϕ is indicated by {er, eϕ, ez}.
(Reprinted with permission from Loss
et al., 1990. Copyright 1990 by the
American Physical Society.)

The one-dimensional eigenspinors that solve this problem have the
general form

ψ(ϕ) =
1√
2π
ei�ϕ

(
χ1

χ2e
iϕ

)
. (14.11)

Inserting this expression in the eigenvalue problem we find the matrix
equation(

(λ− 1
2 )2 + βBz − ε βBr

βBr (λ+ 1
2 )2 − βBz − ε

)(
χ1

χ2

)
= 0 (14.12)

for the two spin components, where β = gµBmr
2
0/�

2 and λ = �+φ/φ0 +
1/2. Before we look at the solutions of this eigenvalue problem we have
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Fig. 14.13 Dispersion relations for electrons in a one-dimensional ring subject to a textured magnetic field. The tilt angle α
of the field was chosen to be π/3, the spin orientation at ϕ = 0 for states along the dispersion is indicated by arrows. (a) The
case of zero magnetic field. (b) An avoided crossing appears at finite magnetic fields. (c) The Zeeman splitting dominates the
dispersion.

to realize that it is identical to the Zeeman problem of a spin (at rest) in
a magnetic field except for the additional kinetic energy terms (λ∓1/2)2.
We therefore expand the spinors (χ1, χ2) in eigenspinors of the Zeeman
problem, i.e., (

χ1

χ2

)
= c1

(
cos α

2
sin α

2

)
+ c2

(
− sin α

2
cos α

2

)
. (14.13)

The eigenspinors of the Zeeman problem are always parallel or antipar-
allel to the direction of the magnetic field. The transformed eigenvalue
problem is then(

λ2 + 1
4 + βB − λ cosα− ε λ sinα

λ sinα λ2 + 1
4 − βB + λ cosα− ε

)(
c1
c2

)
= 0. (14.14)

The exact eigenenergies are found from eq. (14.14) to be

ελ,s = λ2 +
1
4

+ s
√
β2B2

r + (λ− βBz)2. (14.15)

Dispersion relations for different parameters βB are depicted in Fig.
14.13. In the case (a) of zero magnetic field, the dispersion consists of
two parabolae displaced by one in the horizontal direction. At finite
fields (b), an avoided crossing appears around λ = 0 which is of the
order of the Zeeman splitting. At even higher fields (c), the Zeeman
splitting starts to dominate the dispersion.

We write the eigenspinors (c1, c2) as(
c1
c2

)
=

(
cos δ

2

sin δ
2

)
, (14.16)
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Fig. 14.14 (a) Tilt angle δ quantify-
ing the deviation of the spin orientation
from the direction of the magnetic field.
The angle was calculated for an orien-
tation α = π/3 of the magnetic field
texture. (b) Representation of ψ(ϕ) on
the Bloch sphere. The spinor lives on
the gray circle parametrized by the an-
gles γ and ϕ.
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and find

cot δ =
βB − λ cosα

λ sinα
≡ x, with sgn(δ) = sgn(λ sinα)s. (14.17)

Inserting eq. (14.16) into eq. (14.13) and further into (14.11) we obtain

ψ(ϕ) =
1√
2π
ei�ϕ

(
χ1

eiϕχ2

)
=

1√
2π
ei�ϕ

(
cos α+δ

2

eiϕ sin α+δ
2

)
. (14.18)

The angle δ describes the deviation of the spin direction from the direc-
tion of the magnetic field. The total angle between the spin orientation
and the z-axis is given by γ = α+δ. The angle δ as a function of |λ|/βB
is depicted in Fig. 14.14(a). We can see that, in general, δ �= 0, π and
therefore the eigenspinors are not parallel or antiparallel to the external
magnetic field. Spin orientations for the various states are indicated as
arrows along with the dispersion relations in Fig. 14.13. Figure 14.14(b)
shows a Bloch sphere representation of ψ(ϕ). The spinor is character-
ized by the points on the gray circle. The angle γ describes the polar
angle of the spinor to the z-axis. As the particle propagates around the
ring, ϕ changes and the spin rotates. For α = 0, γ = 0, π, i.e., the state
is aligned parallel or antiparallel to the z-axis. In this case, no spin
rotation occurs. In the limit |λ|/βB → ∞, the angle δ becomes −α, or
π− α, depending on s, and sgn(λ), and the spin states are aligned with
the z-axis.

Adiabatic limit. Only if |λ|/βB → 0, will δ = 0,±π and the eigen-
spinors rotate around the ring parallel or antiparallel to the external
magnetic field. This case is called the adiabatic limit.

In the adiabatic limit for s = +1, δ → 0, and the spinor

ψ+(ϕ) =
1√
2π
ei�ϕ

(
cos α

2
eiϕ sin α

2

)
(14.19)

is aligned parallel to the magnetic field. In the adiabatic limit for s = −1,
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δ → ±π, and the spinor

ψ−(ϕ) =
1√
2π
ei�ϕ

(
cos π−α

2

ei(ϕ+π) sin π−α
2

)
is aligned antiparallel to the magnetic field for all angles ϕ.

Interference in the adiabatic limit. In order to see Berry’s phase
appearing in the interference of partial waves, we approximate the dis-
persion relation (14.15) in the adiabatic limit by expanding to first order
in the small parameter |λ|/βB and obtain

ε
(ad)
λ,s = ελ,s =

(
λ− 1

2
s cosα

)2

+
1
4

sin2 α+ sβB.

The dispersion is in the adiabatic limit approximated by two parabolae
vertically offset in energy by the Zeeman splitting 2βB, and horizontally
by cosα, as shown in Fig. 14.15. The latter term will turn into Berry’s
geometrical phase in the interference, as we will see below.

20 10 10 20

ss

Fig. 14.15 Dispersion ε
(ad)
λ,s as a func-

tion of λ for α = π/3 and βB = 200. At
a particular energy ε, an electron can
propagate in four distinct states. The
spin orientation of these states at ϕ = 0
is indicated by arrows.

In order to find the transmission probability through the ring we now
argue in analogy to the previous discussion of the Aharonov–Bohm ef-
fect. If the system is an isolated ring, the eigenspinors have to be periodic
in ϕ and therefore � is bound to be an integer number.

If the ring is open to leads attached at ϕ = 0 and ϕ = π, � is not
required to be integer. An electron at energy ε can have the four angular
momentum values

�(τ)
s = τksr0 −

φ

φ0
− 1

2
(1 − s cosα), (14.20)

where τ = ±1, s = ±1, and

ksr0 =

√
ε− 1

4
sin2 α− sβB.

These four states are indicated in Fig. 14.15. Note that the group veloc-
ity of a particular state is given by vG = τ�ks/m.

States of a particular spin entering the ring from a lead at ϕ = 0
at a particular energy ε are split into two partial waves propagating in
different directions. For example, an electron entering the ring at ϕ = 0
in the spin-state (14.19), i.e., (cos(α/2), sin(α/2)) (we call it s = +1 ≡↑
for convenience) can traverse the ring in a clockwise direction (τ = 1),
or in a counterclockwise direction (τ = −1). The corresponding pair
of �-states is indicated in Fig. 14.15 by filled circles. The transmission
amplitude for ending up in the ↑-state is in the first case

t
(+1)
↑↑ =

1
2
ei�

(+1)
+1 π

(
cos
(

α
2

)
sin
(

α
2

)
eiπ

)(
cos
(

α
2

)
sin
(

α
2

) ) =
1
2
ei�

(+1)
+1 π cosα,

and in the second case

t
(−1)
↑↑ =

1
2
e−i�

(−1)
+1 π

(
cos
(

α
2

)
sin
(

α
2

)
e−iπ

)(
cos
(

α
2

)
sin
(

α
2

) ) =
1
2
e−i�

(−1)
+1 π cosα.
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The total transmission probability for an electron entering in the ↑-state
to leave in the same spin state is therefore

T↑↑ =
1
4

cos2 α
∣∣∣ei�

(+1)
+1 π + e−i�

(−1)
+1 π

∣∣∣2 = cos2 α cos2
(�(+1)

+1 + �
(−1)
+1 )π

2
.

The factor (�(+1)
+1 + �

(−1)
+1 )/2 appearing in the phase of the second cosine

is the arithmetic mean of the two interfering �-values. Because they
lie at the same energy but at opposite wings of the same parabola (cf.
Fig. 14.15), the mean value is the �-value, where the parabola has its
minimum, i.e., at � = −φ/φ0 − (1 − cosα)/2.

In a similar way we find the transmission probability for an elec-
tron entering in the ↑-state to leave in the orthogonal ↓-state (sin(α/2),
− cos(α/2))

T↓↑ = sin2 α cos2
(�(+1)

+1 + �
(−1)
+1 )π

2
,

for an electron in the ↓-state to leave in the ↑-state

T↑↓ = cos2 α cos2
(�(+1)
−1 + �

(−1)
−1 )π

2
,

and for an electron in the ↓-state to leave in the same state

T↓↓ = sin2 α cos2
(�(+1)
−1 + �

(−1)
−1 )π

2
.

In the latter two expressions, the term (�(+1)
−1 + �

(−1)
−1 )/2 can again be

read in principle from Fig. 14.15 to be the position of the minimum at
� = −φ/φ0 − (1 + cosα). The total transmission is then given by the
sum of these four transmission channels, i.e., by

T = T↑↑ + T↓↓ + T↓↑ + T↑↓

= cos2
(�(+1)

+1 + �
(−1)
+1 )π

2
+ cos2

(�(+1)
−1 + �

(−1)
−1 )π

2
(14.21)

= 1 +
1
2

{
cos
[
2π

φ

φ0
+ π(1 − cosα)

]
+ cos

[
2π

φ

φ0
− π(1 − cosα)

]}
= 1 + cos [π(1 − cosα)] cos

[
2π

φ

φ0

]
. (14.22)

The transmission is modulated by the phase factor

∆ϕB = π(1 − cosα) (14.23)

in addition to the Aharonov–Bohm phase. It is called Berry’s phase.
The value of Berry’s phase has the following interpretation. As the
spin moves around the ring it experiences a magnetic field that rotates
around the z-axis. The rotating magnetic field vector spans a solid angle
2π(1 − cosα). In our example, Berry’s phase is exactly half this solid
angle, i.e., it has a very simple geometric meaning. For this reason,
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Berry’s phase is often called a geometric phase. It contains geometric
information about parameter space history.

An experimental consequence of Berry’s phase in an Aharonov–Bohm
type of experiment would be an amplitude modulation in the oscillatory
magnetoconductance. This can be seen by realizing that in an experi-
ment where Bz is varied, while Br remains constant, the angle α, and
thereby Berry’s phase, changes. A node of the Aharonov–Bohm oscil-
lations would be expected at α = π/3, or Br =

√
3Bz, because there,

in eq. (14.22) the prefactor containing Berry’s phase vanishes. This is
illustrated in Fig. 14.16 assuming a radius r0 = 500 nm and an in-plane
radial field Br = 100 mT.

0.1

1

2
T

Bz (mT)0

Br = 100 mT

Fig. 14.16 Amplitude modulation of
Aharonov–Bohm oscillations arising ac-
cording to eq. (14.22) as a result of an
in-plane radial magnetic field Br =
100 mT in a ring with radius 500 nm.

Spin in a rotating magnetic field. The above-mentioned geomet-
ric meaning appears in a related problem, where we consider the time
evolution of a spin in a rotating magnetic field

B(t) = B(sinα cosω0t, sinα sinω0t, cosα).

This situation is schematically depicted in Fig. 14.17. The spin evolution
is governed by the hamiltonian

H(t) =
1
2
gµBB(t)σ =

1
2
gµBB

(
cosα sinαe−iω0t

sinαeiω0t − cosα

)
.

Before we tackle the time-dependent problem, we regard the time t as a
parameter and determine the eigenstates and eigenvalues of H(t). Using
the Ansatz [note the similarity to eq. (14.11)]

ψ(t) =
(

χ1

χ2e
iω0t

)
we obtain the equation

z

B
2 cos

Fig. 14.17 The magnetic field vector
revolves around the z-axis at constant
angular velocity ω0 while the angle α
remains constant. By its motion it
spans a solid angle 2π(1 − cosα).

1
2
gµBB

(
cosα sinα
sinα − cosα

)(
χ1

χ2

)
= E

(
χ1

χ2

)
for a spin in a static magnetic field at tilt angle α to the z-axis. As a
result we obtain the two eigenvectors of H(t) given by

ψ+(t) =
(

cos α
2

sin α
2 e

iω0t

)
, ψ−(t) =

(
− sin α

2
cos α

2 e
iω0t

)
with time-independent energies E± = ±gµBB/2.

We now return to the time-dependent problem. If the external mag-
netic field rotates slow enough, the spin can adiabatically follow the field.
We therefore expand the solution of

i�∂tψ(t) = H(t)ψ(t)

in the adiabatic eigenstates, i.e.,

ψ(t) = c1(t)ψ+(t) + c2(t)ψ−(t),
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and obtain the equation for the coefficients

i�∂t

(
c1
c2

)
=

1
2

�ω0

(
1 + βB − cosα sinα

sinα 1 − βB + cosα

)(
c1
c2

)
,

where β = gµB/�ω0. Note that the effective hamiltonian matrix on
the right-hand side is now time-independent. We now let (c1, c2) =
(A1, A2) exp(−iEt/�) and obtain(

1 + βB − cosα− ε sinα
sinα 1 − βB + cosα− ε

)(
A1

A2

)
= 0,

with ε = 2E/�ω0. There is a striking similarity to the eigenvalue prob-
lem in eq. (14.14). Indeed, the problems become identical for λ = 1, if
we absorb the energy offset 1/4 in ε. We can therefore directly read the
eigenenergies ε, and the eigenspinors (A1, A2) from the previous prob-
lem of the ring in a textured magnetic field. We can also state that
the adiabatic limit is reached for βB → ∞, i.e., when the energy �ω0

is very small compared to the Zeeman splitting gµBB. This is equiva-
lent to saying that a superposition of up- and downspin (with respect to
the magnetic field direction at a particular time) oscillates a very large
number of times within the period of the rotation of the magnetic field.
In the adiabatic limit, the energy eigenvalues are given by

ε(ad)
s = sβB + 1 − s cosα.

Assume that the spin starts at t = 0 in a state where it is aligned with
the magnetic field. The adiabatic time evolution of the state is then
given by

ψ(t) = e−i[gµBBt/2�+ω0t(1−cos α)/2]

(
cos α

2
sin α

2 e
iω0t

)
.

At time t = 0 the state is

ψ(0) =
(

cos α
2

sin α
2

)
.

After a time period T = 2π/ω0 of one full revolution of the magnetic
field vector, the state has changed into

ψ(t) = e−i[πgµBB/�ω0+π(1−cos α)]

(
cos α

2
sin α

2

)
,

i.e., it has acquired a dynamic phase ∆ϕD = πgµBB/�ω0 given by the
state’s energy and the elapsed time and the geometric phase ∆ϕB from
eq. (14.23) given by half the solid angle spanned by the rotating mag-
netic field vector. A similar argument for a state starting antiparallel
to the magnetic field leads to the same dynamic and geometric phases
multiplied with −1.



14.5 Aharonov–Casher phase and spin–orbit interaction induced phase effects 243

Experiments. The experimental observation of Berry’s phase in semi-
conducting ring structures has proven to be challenging, and has re-
mained an open problem until today. Attempts have been made to
realize the required magnetic field texture by placing a small magnetic
disk in the center of ring structures (Jacobs and Giordano, 1998; Ye
et al., 1999). Other attempts exploit the spin–orbit interaction rele-
vant in semiconductors, such as InAs, or p-GaAs. We will discuss these
attempts in the following section.

14.5 Aharonov–Casher phase and
spin–orbit interaction induced phase
effects

Aharonov and Casher have pointed out that an electromagnetic dual to
the Aharonov–Bohm effect exists (Aharonov and Casher, 1984). It is
realized when a neutral particle with magnetic moment (spin) encircles
a line of charge (charge density λ) creating a radial electric field, as
depicted in Fig. 14.3(b). In this case, circular motion of the magnetic
moment µ also leads to the accumulation of a quantum phase, the so-
called Aharonov–Casher phase (the existence of this phase effect was,
however, pointed out earlier, in Anandan, 1982). Early attempts to
measure this effect were performed with neutrons (Cimmino et al., 1989).

The effect can be understood by considering the relativistic trans-
formation of the electric field into the moving reference frame of the
neutral particle. The magnetic moment experiences a magnetic field
B = c−2v×E brought about by this transformation, and changes its ori-
entation under the influence of this field. The analogy to the Aharonov–
Bohm phase becomes obvious when we write down the canonical mo-
mentum of the particle in the electric field E. It is given by

p = mv +
1
c
µ × E

showing a similar form to the canonical momentum p = mv + qA of a
particle with charge q in the presence of a magnetic vector potential A.
The line charge creates an electric field E = erλ/2πε0r0 at distance r0,
where er is a unit vector pointing in a radial direction. The Aharonov–
Casher phase is then given by

∆ϕAC =
1
c

∮
µ × Eds =

µzλ

cε0
.

As in the case of the Aharonov–Bohm phase, the Aharonov–Casher
phase is independent of the radius r0 of the orbit.

Although the original setting envisioned by Aharonov and Casher can-
not be easily realized in semiconductor nanostructures because electrons
and holes are charged particles, the notion of the Aharonov–Casher phase
has in the literature of recent years been sometimes extended to the case
of charged particles with spin moving in arbitrarily oriented electric fields
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in solids. Compared to the case of a neutral particle, the presence of
the charge leads to a correction of the magnetic field experienced by the
particle by a factor of 1/2, the so-called Thomas factor. Allowing for
arbitrary electric field orientation makes the situation equivalent to the
presence of spin–orbit interaction in a solid. Using this rather extended
notion of the Aharonov–Casher phase, any influence of spin–orbit inter-
action on electron (or hole) interference can be seen as a manifestation
of this phase. Rather than stretching the meaning of the Aharonov–
Casher phase far beyond the original context, we prefer to call such
effects spin–orbit interaction induced in the following.

In order to get to the roots of spin–orbit interaction induced phase
effects, we consider the circular motion of an electron in the presence
of Rashba spin–orbit interaction (see section 9.6). The ultimate goal is
to find the transmission (in lowest order) through an open two-terminal
ring including the interference effects arising from clockwise and coun-
terclockwise partial waves, in full analogy with the previous discussion
of the Aharonov–Bohm effect. We will discuss the problem in two steps.
In the first step we discuss the case where no external magnetic field
(or flux) is applied. In the second step such an additional magnetic
field is included and an interplay between Aharonov–Bohm effect, Zee-
man splitting and spin–orbit interaction gives rise to qualitatively new
behavior of the system.

Step I: Circular motion without magnetic field. The two-dimen-
sional electronic motion in the presence of Rashba spin–orbit interaction
can be described by the hamiltonian [cf., eq. (9.6)]

H =
p2

2m
+
α

�
σ(p × E) + V (r),

where E is oriented in the positive z-direction and describes the average
electric field experienced by the electrons, V (r) is the radial confinement
potential, and the motion in the z-direction has been assumed to be
separable. In cylindrical coordinates this hamiltonian reads

H = − �
2

2m

[
∂2

∂r2
+

1
r

∂

∂r

]
+ V (r) − �

2

2mr2
∂2

∂ϕ2

− iαR

[
(σx sinϕ− σy cosϕ)

∂

∂r
+ (σx cosϕ+ σy sinϕ)

1
r

∂

∂ϕ

]
,

with αR = α〈Ez〉. Care has to be taken to find the correct form of
the hamiltonian for a strictly one-dimensional ring. The conventional
procedure of neglecting the radial derivatives and letting r = r0 fails
here (Meijer et al., 2002). The correct form of the one-dimensional
hamiltonian is

H = − �
2

2mr20

∂2

∂ϕ2

− iαR

r0

[
−1

2
(σx sinϕ− σy cosϕ) + (σx cosϕ+ σy sinϕ)

∂

∂ϕ

]
. (14.24)
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Fig. 14.18 (a) Cross-sectional view
of a ring with an electron propagat-
ing in the counterclockwise direction.
The effective Rashba field and the spin
orientation are indicated. (b) Dis-
persion relation for an electron on a
one-dimensional ring in the presence
of Rashba spin–orbit interaction. The
dotted line is defined by � = −1/2.
Open and closed circles indicate pairs
of interfering angular momentum states
propagating all at the same energy.
The arrows indicate the spin orienta-
tion for ϕ = 0 in the x-z plane of the
Bloch sphere.

Here we introduce the parameter QR = 2mαRr0/�
2 which character-

izes the relative strength of the spin–orbit interaction effects. They are
absent for QR = 0 and very strong for QR � 1.

Inserting the spinor (14.11) into the one-dimensional eigenvalue prob-
lem gives the following equation for the amplitudes χ1,2 (Frustaglia and
Richter, 2004):(

(λ− 1
2 )2 − ε QRλ

QRλ (λ+ 1
2 )2 − ε

)(
χ1

χ2

)
= 0, (14.25)

where the eigenenergy is E = �
2ε/2mr20, and λ = �+1/2. This equation

is identical to eq. (14.12) for the ring in a textured magnetic field, if we
let Bz = 0, and if we identify

Br = QRλ/β ≡ BR

to be the effective radial magnetic field, also called the Rashba field BR.
This makes it clear that the problem of the ring with Rashba interaction
is very similar to the problem of the ring in a textured magnetic field.
However, an important difference is that the radial field component is
created dynamically by the motion of the electron. It is therefore pro-
portional to the angular momentum of the electron via λ = � + 1/2.
For � > −1/2 the field points radially outwards, while for � < −1/2 the
field points radially inwards. However, since we have no field compo-
nent along z, the angle α between the total magnetic field vector and
the z-axis is sgn(λ)π/2, independent of the magnitude of the angular
momentum. The eigenspinors are generally not aligned with the direc-
tion of the Rashba field. This situation is schematically depicted in
Fig. 14.18(a) which shows a cross-sectional view through the ring with
the Rashba field and the spin orientation for an electron with positive
angular momentum. In the limit QR → ∞, implying either r0 going to
infinity (motion along a straight line), or the Rashba coefficient αR going
to infinity (very strong spin–orbit interaction), the spin is aligned with
the Rashba field. This is the adiabatic limit, because the spin follows
the field adiabatically when the state propagates around the ring.
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Inserting Bz = 0 and Br = BR in eq. (14.15) gives the exact eigenen-
ergies

ε�,s =

[
�+

Φ(τ,s)
SO

2π

]2

+
1
4
(1 − f2), (14.26)

where the spin–orbit induced phase Φ(τ,s)
SO is given by

Φ(τ,s)
SO = π [1 + sτf ]

with τ = sgn(�+ 1/2) = ±1, f =
√

1 +Q2
R, and s = ±1 identifying the

two spin eigenstates. The two spin branches of the dispersion (s = ±1)
are schematically shown in Fig. 14.18(b). They touch at � = −1/2 at
the energy E = �

2/8mr20. Equation (14.26) is similar to the dispersion
relation of the Aharonov–Bohm ring (14.5) with the Aharonov–Bohm
flux φ/φ0 replaced by Φ(τ,s)

SO . The dispersion is essentially composed of
two parabolae shifted in � by different amounts. The two minima of the
dispersion parabolae occur at � = −1/2±

√
1 +Q2

R/2. For zero Rashba
spin–orbit interaction, one minimum is at � = 0, and the other is at
� = −1. For very large QR, the minima occur at approximately ±QR.
The sign of the group velocity given by eq. (14.6) gives the direction of
propagation of the states. States � for which ∂E/∂� > 0 (< 0) propagate
counterclockwise (clockwise) around the ring. At any particular energy
E, four states form two pairs travelling in clockwise or counterclockwise
direction, respectively.

The eigenspinors are given by eq. (14.18) with cot δ = sgn(λ)QR and
sgn(δ) = sgn(λ)s. As a result, the angle γ = π/2 + δ between the spin
and the z-axis does not depend on the magnitude of λ (or �), but only
on its sign. An incoming beam spin-polarized at the angle γ can always
be split in two counterpropagating partial waves. A derivation of the
transmission along the lines that were followed in section 14.4 leads in
analogy to eq. (14.21) to

T = cos2
(�(+1)

+1 + �
(−1)
−1 )π

2
+ cos2

(�(+1)
−1 + �

(−1)
+1 )π

2

with

�(τ)
s = τkr0 −

Φ(τ,s)
SO

2π
.

Inserting these angular momentum values into the expression for the
2 4 6 8

1

2

0

T

QR

Fig. 14.19 Modulation of the trans-
mission probability T as a function of
the Rashba spin–orbit interaction para-
meter QR.

transmission gives the final result

T = 1 − cos
(
π
√

1 +Q2
R

)
.

The transmission is modulated by the strength QR of the spin–orbit in-
teraction as shown in Fig. 14.19. Tuning the Rashba interaction strength
αR changes QR. As a consequence, the interference can be tuned from
destructive to constructive and vice versa.
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Fig. 14.20 (a) Cross-sectional view of
a ring with an electron propagating in
the counterclockwise direction. The ef-
fective Rashba field BR and the exter-
nally applied field Bz add to the total
effective magnetic field which is at an
angle α to the z-axis. The spin ori-
entation differs from the direction of
the total magnetic field and encloses
an angle γ with the z-axis. (b) Dis-
persion relation for an electron on a
one-dimensional ring in the presence
of Rashba spin–orbit interaction and a
perpendicular magnetic field. The ar-
rows indicate the direction of the spin
at ϕ = 0. The dispersion was calcu-
lated for QR = 1 and βBz = 0.5.

Step II: Circular motion with magnetic field. In experiments on
ring structures, magnetic fields normal to the plane of the ring are usu-
ally applied in order to see Aharonov–Bohm type of oscillations. The
field has two distinct effects: it introduces an Aharonov–Bohm phase
in the orbital motion of the electron, and it leads to a Zeeman effect of
the electron spin. The previous model of the one-dimensional ring can
be extended to incorporate both effects (Frustaglia and Richter, 2004).
The hamiltonian (14.24) is extended to

H =
�

2

2mr20

(
−i ∂
∂ϕ

+
φ

φ0

)2

+
1
2
gµBBσz

+
αR

r0

[
i

2
(σx sinϕ− σy cosϕ) + (σx cosϕ+ σy sinϕ)

(
−i ∂
∂ϕ

+
φ

φ0

)]
.

Inserting the one-dimensional eigenspinors (14.11) leads to the matrix
equation(

(λ− 1
2 )2 + βBz − ε QRλ
QRλ (λ+ 1

2 )2 − βBz − ε

)(
χ1

χ2

)
= 0, (14.27)

where εZ = mr20gµBB/�
2, λ = � + φ/φ0 + 1/2, and β = gµBmr

2
0/�

2.
Comparing with eq. (14.12) for the ring with Zeeman interaction in a
textured magnetic field shows that the spin is here moving in a super-
position of the angular momentum-dependent Rashba field

BR =
QR

β
(�+

φ

φ0
+

1
2
),

and the external field Bz normal to the plane of the ring. This situation
is schematically depicted in Fig. 14.20(a). The total magnetic field is at
the angle α to the z-axis with

tanα =
BR

Bz
=
QR(�+ φ

φ0
+ 1

2 )

βBz
.
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The eigenvalue solutions of the above problem are [cf., eq (14.15)]

ελ,s = λ2 +
1
4

+ s

√
Q2

Rλ
2 + (λ− βBz)

2
, (14.28)

where s = ±1 denotes the two spin states. An example of this dispersion
relation is depicted in Fig. 14.20(b). The Aharonov–Bohm effect enters
the dispersion merely as a shift of the dispersion along �, not visible in
the plot vs. λ. The Zeeman effect leads to the Zeeman gap 2βBz at λ = 0
removing the degeneracy arising at Bz = 0. As in the previous discussion
without external magnetic field, the spin is given by eq. (14.18). It is
usually not aligned with the total magnetic field. The spin orientation at
ϕ = 0 is indicated for the states in the dispersion shown in Fig. 14.20(b).

For the angle δ describing the deviation of the spin direction from the
total effective magnetic field we obtain from eq. (14.17)

cot δ =
1
QR

(
βBz

λ
− 1

2

)2

+QR − 1
4QR

with sgn(δ) = s.

The angle δ depends on the parameters βBz/λ and QR. Figure 14.21
shows a plot as a function of βBz/λ. The angle α is included for com-
parison. The angle δ, i.e., the deviation of the spin orientation from the
effective magnetic field direction α, has a maximum for βBz/λ = 1/2.
For large positive or negative βBz/λ, δ tends to zero, meaning that the
adiabatic limit is reached. If the angle α is close to 0 or ±π/2, where
δ is close to zero, then the Rashba interaction is of negligible influence
in the adiabatic limit. If, however, δ is close to zero, where α differs
appreciably from zero or ±π, then an interesting adiabatic regime is
reached, similar to the case of the ring in a magnetic field texture. In
this case, Berry phase effects would be expected in an Aharonov–Bohm
interference experiment.

4 2 2 4

/2

/2

Bz

s = 1

s = 1

Fig. 14.21 The angle δ as a function
of βBz/λ calculated for QR = 1 and
s = ±1. The angle α is plotted as a
reference.

The interference effects appearing in the transmission T through the
open ring cannot be discussed as easily as in the previous examples. The
reason is that the energy dispersion in eq. (14.28) cannot be solved ana-
lytically for λ. However, we can see from Fig. 14.20(b) that an electron
at a given energy will again have the possibility of propagating along
four distinct channels (two clockwise and two counterclockwise) around
the ring. In contrast to the case of Bz = 0 discussed before, the spin
orientation of a particular �-state will now depend on the magnitude of
�, and there are no pairs of mutually aligned spins for clockwise and
counterclockwise propagation at the same energy. The state of an in-
coming electron with a certain spin orientation will therefore propagate
around the ring in a superposition of the available clockwise (or coun-
terclockwise) states and a number of interference terms arises leading to
beating-like patterns in Aharonov–Bohm oscillations. A more detailed
discussion can be found in Molnar et al., 2004, Frustaglia and Richter,
2004, and Aeberhard et al., 2005.
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Fig. 14.22 Resistance of a quan-
tum ring structure realized with AFM
lithography on the basis of a two-
dimensional hole gas in GaAs. The
resistance is measured between source
(S) and drain (D) as a function of the
magnetic field B applied normal to the
plane of the ring. (Reprinted with per-
mission from Grbic et al., 2007. Copy-
right 2007 by the American Physical
Society.)

14.6 Experiments on spin–orbit
interaction induced phase effects in
rings

The unambiguous identification of spin–orbit interaction induced phase
effects in ring structures is still an open and challenging experimental
task. Initial experimental work has been done on n-type AlSb/InAs/AlSb
quantum well structures with single two-terminal rings between 1 and
2 µm diameter and a mean free path of about 1 µm (Morpurgo et al.,
1998), where the Rashba term is believed to be dominant. Further work
was performed on Rashba-dominated n-InGaAs-based ring structures of
similar size and mean free path (Nitta et al., 1999; Nitta et al., 2000;
Nitta et al., 2002), and on arrays of rings (Bergsten et al., 2006). In all
these experiments, a magnetic field was applied normal to the plane of
the ring leading to periodic Aharonov–Bohm type of oscillations of the
conductance as a function of magnetic flux enclosed by the ring. Aver-
aged Fourier spectra of these oscillations (Meijer et al., 2004) were used
in most of the experiments for identifying side bands of the main h/e
Aharonov–Bohm peak. These side bands were interpreted as evidence
for the influence of spin–orbit induced phase effects. Ring structures
fabricated from HgTe/HgCdTe quantum wells have also been studied
(Konig et al., 2006). Beating-like patterns in the raw Aharonov–Bohm
modulated magnetoconductance of an InAs ring were observed as well
(Yang et al., 2004).

As an alternative to n-type systems with strong spin–orbit interaction,
ring structures based on p-type GaAs material have been investigated
(Yau et al., 2002; Habib et al., 2007; Grbic et al., 2007). Generally,
spin–orbit interaction effects are expected to be more pronounced in the
valence than in the conduction band. Figure 14.22 shows the measure-
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ment of the oscillatory magnetoresistance of a quantum ring realized
with AFM lithography on the basis of a two-dimensional hole gas (Gr-
bic et al., 2007). The oscillations are superimposed on a slowly varying
background. Although there is a beating-like pattern in the oscillations,
it is not straightforward to identify spin–orbit related effects unambigu-
ously in the raw data, because even conventional n-type GaAs samples,
where spin–orbit effects are expected to be not important, can show
similar beating effects.

14.7 Decoherence

Decoherence is a general phenomenon describing the way that the phase
difference ∆ϕ = ϕ(r, t) − ϕ(r′, t′) between an electron wave at position
r and time t and the same wave at position r′ and time t′ gets lost, if
the time-difference |t− t′| becomes too large. This phenomenon plays
an important role if one tries to understand the transition from the
quantum to the classical description of nature, because it implies the
loss of interference phenomena which do not occur in classical mechanics.
There are two very basic ways to understand decoherence. On the one
hand, decoherence of a quantum system can be seen as the result of
entanglement between the states of this system and its environment
(or ‘bath’). On the other hand, it can be seen as the interaction of
the system with a fluctuating potential (or field) that is created by the
environment. This fluctuating field leads to statistical, i.e., random,
phase changes of the system’s wave function and therefore the phase
information important for the observation of interference is lost.

14.7.1 Decoherence by entanglement with the
environment

As a model system showing decoherence, we consider a quantum ring
that is very weakly coupled to a bath of quantum particles with many
degrees of freedom. In our example, this bath is given by all the electrons
populating states in the ring in thermodynamic equilibrium, and we con-
sider their interaction with a single (nonequilibrium) electron injected
from one of the contacts. In general, the bath could also be a system
of photons or phonons, but it turns out that, in low-temperature ex-
periments (below 4.2 K), the interactions with the photonic or phononic
environment can often be neglected.

The states of the injected electron in the ring are described by the
orthonormal basis functions ϕn(x), where n is a set of quantum numbers
allowing us to distinguish states in the left and the right arm of the
interferometer. For the sake of simplicity, we use the labels n = � (left
arm of the ring) and n = r (right arm of the ring). The coordinates
x describe the position of the electron. The states of the environment,
i.e., of the system of all other electrons in the ring, are described in the
orthonormal basis χα(η) with quantum numbers α and coordinates η.
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We assume that at time zero the system is the product state

ψ(t = 0) = [ϕ�(x) + ϕr(x)]χ0(η).

If the total state of the electron plus environment is described by such a
product wave function, we say that the two systems are not entangled.
Over time the system will evolve and the wave function at time t will
have the general form

ψ(t) =
∑
nα

cnα(t)ϕn(x)χα(η),

which is no longer the product of a state of the system and the environ-
ment. In this case we talk about an entangled state meaning that the
system and the environment are entangled. Using this wave function we
find for the probability density

|ψ(t)|2 =
∑

nα,mβ

cnα(t)c�mβ(t)ϕn(x)ϕ�
m(x)χα(η)χ�

β(η)

=
∑
nα

|cnα(t)|2 |ϕn(x)|2 |χα(η)|2

+
∑

nα,mβ

′
cnα(t)c�mβ(t)ϕn(x)ϕ�

m(x)χα(η)χ�
β(η).

Here the primed sum implies summation over indices nα �= mβ only,
meaning that this term contains the interference effects. The coefficients
cnα depend on the time t. If we calculate the expectation value of an
operator acting only on the states of the injected electron, such as the
operator of the current density in the ring, ĵ(x), we integrate out the
coordinates η of all other equilibrium carriers. The interference term
turns into

∑
nα,mβ

′
cnαc

�
mβϕn(x)ϕ�

m(x)
∫
dηχα(η)χ�

β(η)

=
∑

nα,mβ

′
cnαc

�
mβϕn(x)ϕ�

m(x)δαβ

=
∑
n,m

′
(∑

α

cnαc
�
mα

)
ϕn(x)ϕ�

m(x).

The products cnαc
�
mβ are the elements of the density matrix of the total

system. The sum over the environment states α in the last line reduces
the density matrix to that of the injected electron. We can write this
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Fig. 14.23 Illustration of decoherence.
The environment is represented by the
smileys. Depending on the path of the
electrons the resulting state of the envi-
ronment differs. The environment mea-
sures the path of the electron and the
interference disappears. env,r t

env, t

sum as

∑
α

cnαc
�
mα

=
∑
α

∫
dxdηψ�(x, η, t)ϕn(x)χα(η) ·

∫
dxdηψ(x, η, t)ϕ�

m(x)χ�
α(η)

=
∑
α

∫
dηχ̃�

n(η, t)χα(η) ·
∫
dηχ̃m(η, t)χ�

α(η)

=
∫
dηχ̃�

n(η, t)χ̃m(η, t).

Here we have performed the integration over x in the total wave function
and thereby introduced effective wave functions χ̃n(η, t) of the environ-
ment. Now we can write the interference term as

ϕ�(x)ϕ�
r(x)

∫
dηχ̃�

l (η, t)χ̃r(η, t) + c.c.

If we interpret χ�(η) as the ‘wave function’ of the environment for the
case that the injected electron moves through the left arm and corre-
spondingly for χr(η), the interference term vanishes exactly if these two
wave functions are orthogonal. In this case, the environment can distin-
guish which path the electron has taken. It is as if the environment had
made a measurement on the electron and obtained information about
its path. This case is schematically depicted in Fig. 14.23. The opposite
extreme case arises if both wave functions of the environment are iden-
tical, such that the overlap integral is one. In this case, the environment
has not acquired any information about the path of the electron and
interference is not spoiled.

As a general rule we can therefore state that interference is always
lost (or impaired) if information about the electron’s path is acquired
by the environment, i.e., if the path of the electron is ‘measured’ by the
environment. It is important to realize that it is irrelevant whether or not
this information is received by a human observer consciously performing
a measurement.
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14.7.2 Decoherence by motion in a fluctuating
environment

We obtain a complementary view on decoherence if we consider the
action of the environment on the injected electron. The environment
being, for example, a bath of moving electrons, creates an interaction
potential that fluctuates statistically in time and acts on the injected
electron. The strength of the fluctuations will be stronger with increas-
ing temperature because the random motion of the bath electrons will
be more energetic. The fluctuating potential acts directly on the phase
of the electron wave. In order to see how this phase change comes about,
consider the time-dependent perturbation V (t) acting on a system with
the total hamiltonian

H = H0 + V (t),

where H0 is time-independent. Let ψ0(x, t) be a solution of the time-
dependent Schrödinger equation

i�∂tψ0 = H0ψ0.

We now try solutions of the full hamiltonian H, using a wave function
of the form

ψ = ψ0e
iϕ(t)

and find for the left-hand side of Schrödinger’s equation

i�∂tψ = (i�∂tψ0 − �ψ0∂tϕ(t)) eiϕ(t) = (H0ψ0 − �ψ0∂tϕ(t)) eiϕ(t),

and for the right-hand side

Hψ = (H0ψ0 + V (t)ψ0) eiϕ(t).

We see that

−�∂tϕ(t) = V (t), such that ϕ(t) = −1
�

∫ t

dt′V (t′).

If a wave packet with the expectation value for the position x(t) moves
in a static potential V (x), the additional phase is, in the semiclassical
approximation, given by

ϕ = −1
�

∫
V [x(t)]dt.

If the potential is not static, but created dynamically by the environ-
ment, V (x) becomes an operator with a certain expectation value and
an uncertainty. As a result, the phase of a partial wave also acquires
an uncertainty. The influence of the environment on the partial waves
consists of the factor

〈eiϕ〉 =
∫
P (ϕ)eiϕdϕ, (14.29)
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where P (ϕ) is a probability distribution for the appearance of a particu-
lar phase ϕ. It can be shown that this phase factor is identical with the
overlap of the two environment states defined above (Stern et al., 1990):

〈eiϕ〉 =
∫
dηχ̃�

l (η, t)χ̃r(η, t).

We can obtain a little more insight into the phase averaging described
by eq. (14.29) if we assume that the total phase difference between two
interfering paths is the sum of a large number of statistically independent
contributions. According to the central limit theorem, the probability
distribution P (ϕ) is then a gaussian distribution, i.e.,

P (ϕ) =
1√

2π〈δϕ2〉
exp
(
− (ϕ− ϕ0)2

2〈δϕ2〉

)
.

The phase ϕ0 is the average phase difference that is accumulated and the
phase uncertainty 〈δϕ2〉 describes the width of the distribution. Within
these assumptions the integral in eq. (14.29) can be solved giving

〈eiϕ〉 = eiϕ0e−〈δϕ2〉,

i.e., a suppression of the amplitude of the interfering phase factor
exp(iϕ0) by the presence of the phase uncertainty. The latter is ap-
proximately given by the expression (Stern et al., 1990)

〈δϕ2〉 ≈ 1
�2

∫ t0

0

dt

∫ t0

0

dt′〈V (t)V (t′)〉, (14.30)

where V (t) represents the time-dependent potential that the electron
experiences along its path between time zero (wave is split in two partial
waves) and time t0 (partial waves are brought to interference). The
correlator of the potential depends only on the time difference t − t′,
and usually it decays on the scale of a correlation time tc that we have
assumed to be much smaller than t0 by using the central limit theorem.
Assuming an exponential decay, the phase uncertainty would look like

〈δϕ2〉 ≈ 〈V 2〉 tct0
�2

,

an expression which exhibits typical properties of phase uncertainty: it
increases with the time t0 which the electron spends in the interferom-
eter, and it is proportional to the mean fluctuation amplitude 〈V 2〉 of
the interaction potential. This proportionality makes it clear that we
can view the effect of decoherence as the influence of noise, or fluctu-
ations, that exist in the environment, coupling to the system in which
interference takes place.

Suppose the interfering electron propagates through an Aharonov–
Bohm ring at the Fermi energy of a Fermi sea formed by all the other
electrons in the ring. We can regard this electron as being coupled to
the thermal bath formed by this Fermi sea via the Coulomb interac-
tion between electrons. Local and temporal fluctuations in the electron
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density will lead to a net electric potential that fluctuates in time and
space, and statistically alters the phase of the interfering electron along
its path. According to the Nyquist formula (fluctuation–dissipation the-
orem), for sufficiently high temperatures the characteristic amplitude of
the fluctuation will be proportional to temperature, and therefore

〈δϕ2〉 ∝ kBT

�
t0.

In the opposite limit of low temperatures the phase uncertainty and
therefore the decoherence are exponentially suppressed.

In general, the details of the correlator entering eq. (14.30) depend on
the specific system under investigation. Relevant input are the geometry
and dimensionality of the system, the nature of the interaction, and
often the temperature. Frequently, a (temperature-dependent) phase
coherence time τϕ(T ) is introduced via the relation

1
2
〈δϕ2〉 =

t0
τϕ(T )

.

In an ideal quantum ring, the injected electron moves ballistically with
the Fermi velocity vF = �kF/m

�. Therefore, we can define a phase-
coherence length

lϕ(T ) = vF τϕ(T ) (14.31)

and the decay of the phase information can be written as a function of
the traveled distance L, which is the circumference of the ring, according
to

1
2
〈δϕ2〉 =

L

lϕ(T )
.

If we consider decoherence in the expression for the conductance of the
quantum ring, each interference term, i.e., (14.9) and (14.10), obtains a
new prefactor which dampens the oscillation amplitude. For example,
the h/e-periodic Aharonov–Bohm oscillations decay according to∫ +∞

−∞
dϕ

1√
2π〈δϕ2〉

exp
(
− (ϕ− δ)2

2〈δϕ2〉

)
cosϕ = e−L/lϕ(T ) cos δ.

The complete result for the reflection probability is

R = r20 + 2r21 + . . .

+4 |r0| |r1| e−L/lϕ(T ) cos δ cos
(

2π
φ

φ0

)
+ . . .

+2 |r1|2 e−2L/lϕ(T ) cos
(

4π
φ

φ0

)
+ . . .

Figure 14.11 shows the amplitude of h/e- and h/2e-periodic oscillations
as a function of temperature. The logarithmic plot makes clear that in
this experiment the amplitudes are indeed proportional to e−αT , where
α is a constant depending on the oscillation period, as expected for de-
coherence from coupling to a thermal bath. Because the h/2e-periodic
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oscillations have an effective path length twice as long as those with the
h/e period, we expect αh/e = αh/(2e)/2. However, the h/e-periodic os-
cillations are strongly affected by averaging over the energy (derivative
of the Fermi function in the expression for the conductance), whereas the
h/2e oscillations are not. Therefore, in the experiment αh/e > αh/(2e)/2.
The h/e-periodic Aharonov–Bohm oscillations are therefore not so well
suited for a determination of the phase-coherence time, and it is prefer-
able to use the decay of the h/2e-periodic Altshuler–Aronov–Spivak os-
cillations for the determination of τϕ. In our example, we find

lϕ(T ) ∝ T−1 ⇒ 1
τϕ

∝ T,

i.e., the decoherence rate increases linearly with temperature as expected
for a thermal bath.

14.8 Conductance fluctuations in
mesoscopic samples

The Aharonov–Bohm effect is the basis for the understanding of mag-
netoconductance fluctuations occurring also in singly connected meso-
scopic samples. This phenomenon occurs in ballistic systems, where the
elastic mean free path le is larger than the system size L, i.e., le � L, or
in diffusive systems with le � L. In both cases, the phenomenon arises
only if the phase-coherence length lϕ is larger than the system size L,
i.e., if lϕ � L. Typical values lϕ > 1 µm can be reached in experiments
below 1 K in high quality samples.

Ballistic conductance fluctuations. We start the discussion with
the ballistic variant. Fig. 14.24 shows schematically a mesoscopic sam-
ple with two contacts. The conductance of the sample is given by the
transmission between the two contacts. According to the rules of quan-
tum mechanics (Feynman et al., 2006) the transmission probability is
the square of the sum of many complex-valued transmission amplitudes
of different paths between the two contacts. Two such paths, γ1 and γ2

are indicated schematically in the figure. Many pairs of these paths have

contact 1

contact 2

2

1

Fig. 14.24 Mesoscopic sample with
two contacts. The paths γ1 and γ2
are two of many paths contributing to
the total transmission from contact 1 to
contact 2, and thereby to the conduc-
tance.

a common starting and end point. They therefore enclose a certain area.
In a small magnetic field (we again require Rc � L), such pairs lead to
interference terms in the total transmission having an Aharonov–Bohm
period corresponding to the enclosed area. Therefore the conductance
in a magnetic field contains an interference contribution

Gint =
∑
mn

|tm| |tn| cos(θm − θn) cos(2πeBAmn/h),

where Amn is the area enclosed by the paths m and n. Although the
statistical distribution of the areas Amn and of the phase differences
θm − θn leads to averaging where interference contributions cancel each
other, averaging is not complete in a sufficiently small sample. Even
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Fig. 14.25 Measurement of ballistic
conductance fluctuations in a sample
consisting of 25 mesoscopic squares,
coupled via quantum point contacts.
Current is driven from source (S)
to drain (D). The sample was pat-
terned using AFM lithography on a
two-dimensional electron gas in the
Ga[Al]As material system.

at zero magnetic field, fluctuations can be observed as a function of
the electron density in the structure, because the phase differences of
paths depend on the Fermi velocity, which can usually be tuned using
gate voltages. These ballistic conductance fluctuations (BCF) disappear
with increasing temperature as a result of thermal averaging and deco-
herence, in complete analogy to the disappearance of Aharonov–Bohm
oscillations in ring structures. The ballistic effect can be observed if the
elastic mean free path le is large compared to the sample size L as long
as the sample size L is not much larger than the phase coherence length
lϕ.

Figure 14.25 shows an example for ballistic conductance fluctuations
in the sample that is shown as an inset in the upper right corner. The
source contact is at the top left, the drain contact at the bottom right.
Electrons move ballistically in the 1 µm × 1 µm squares which are con-
nected by narrow constrictions. The fluctuations appear as a function
of magnetic field and are completely stable and reproducible in time.

Universal conductance fluctuations. The same effect also arises in
diffusive systems, where the electronic motion is strongly influenced by
elastic scattering. In such systems, however, the relation between the
phase coherence length lϕ and the coherence time τϕ is no longer given
by eq. (14.31), but by the relation

lϕ =
√
Dτϕ.

Here, D = vFle/2 is the diffusion constant for two-dimensional systems.
In diffusive systems, the effect is known as universal conductance fluctu-
ations (UCF), because it is theoretically predicted that for temperatures
T → 0 the amplitude of the fluctuations is of the order of the conduc-
tance quantum e2/h, if the phase-coherence length lϕ is larger, or of
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Fig. 14.26 Calculated conductance of
a diffusive quantum wire containing a
random array of 600 scatterers, as the
position of a single impurity in the mid-
dle of the wire is changed. The fluc-
tuations of the conductance ∆g are of
the order of e2/h, ḡ is the average con-
ductance. (Reprinted with permission
from Cahay et al., 1988. Copyright
1988 by the American Physical Soci-
ety.)
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the order of the system size (Altshuler, 1985; Lee and Stone, 1985; Lee,
1986). This fluctuation amplitude is independent of the sample size and
the strength of the disorder, a fact that made people call the fluctuations
universal.

In diffusive systems, the fluctuations arise if the impurity configuration
in the sample is changed. Figure 14.26 shows the calculated conductance
of a fully coherent quantum wire with 30 modes in which 600 scattering
sites have been distributed randomly (Cahay et al., 1988). Along the
horizontal axis, a single impurity in the middle of the wire is shifted. As a
result, the calculated conductance is seen to fluctuate with an amplitude
of the order of e2/h. The characteristic length scale over which a shift
causes a conductance change of this order of magnitude is the Fermi
wavelength of the electrons.

The magnitude of the fluctuations at zero temperature can be under-
stood with the following argument (Lee, 1986): the conductance of a
two-terminal device is in general given by eq. (11.13) which has the zero
temperature limit

G =
e2

h

∑
n,m

Tnm(EF) =
e2

h

[
N −

∑
n,m

Rnm(EF)

]
,

where the sum is extended over the number N of occupied modes (here
we assume that each spin orientation counts as one mode). The average
conductance is then

〈G〉 =
e2

h

[
N −

〈∑
n,m

Rnm(EF)

〉]
=
e2

h
N [1 −N〈Rnm(EF)〉] . (14.32)

The magnitude of fluctuations due to varying disorder configuration is

VarG = 〈(G− 〈G〉)2〉 =
(
e2

h

)2

Var

[∑
n,m

Rnm(EF)

]
.
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Here we have to determine the variance of the sum ofN2 quantities Rnm.
If we assume that these quantities are uncorrelated, then, according to
the central limit theorem,

VarG =
(
e2

h

)2

N2Var [Rnm(EF)] .

The variance of the reflection probabilities Rnm = |rnm|2 is now deter-
mined in the following way: each reflection amplitude rnm is composed
of a large number of different probability amplitude contributions Ai

(i is an integer index) involving distinct paths or scattering sequences
within the sample. An example of two such paths A1 and A2 is shown
in Fig. 14.27. More specifically, this leads to

A1

A2
W

L

Fig. 14.27 Schematic sketch of a
strongly disordered sample of width
W and length L. Two specific paths
contributing to the reflection proba-
bility with probability amplitudes A1

and A2 are shown as solid and dashed
lines. They differ in their scattering se-
quences.

Rnm =

∣∣∣∣∣∑
i

Ai

∣∣∣∣∣
2

=
∑
ij

AiA
�
j .

In order to calculate the required variance we need 〈R2
nm〉 and 〈Rnm〉2.

The former is found from

〈R2
nm〉 =

∑
ijkl

〈AiA
�
jAkA

�
l 〉.

We now assume the phases of different paths to be completely random,
such that most paths cancel each other. However, pairs of paths with
i = j and k = l, or i = l and j = k give the contribution

〈R2
nm〉 =

∑
ijkl

〈|Ai|2〉〈|Ak|2〉(δijδkl + δilδjk) = 2
∑
ik

〈|Ai|2〉〈|Ak|2〉.

On the other hand, based on the same random phase argument we find

〈Rnm〉2 =
∑
ik

〈|Ai|2〉〈|Ak|2〉 =
1
2
〈R2

nm〉,

and therefore obtain

VarG =
(
e2

h

)2

N2〈Rnm〉2. (14.33)

The remaining problem is therefore to estimate the mean reflection
〈Rnm〉. We do this using the Drude result for the conductance which is

〈G〉 =
W

L

nse
2τ

m
=
W

L

e2

h
kFle =

e2

h

W

λF/2
πle
L
.

If we now realize that in a channel of width W the second fraction is
about the number of modes N , we have

〈G〉 =
e2

h
N
πle
L
.
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Comparing this expression with eq. (14.32), we find the estimate

〈Rnm〉 =
1
N

(
1 − πle

L

)
≈ 1
N
,

because le/L � 1 in a diffusive sample. Inserting this estimate into
eq. (14.33) leads to

VarG ≈
(
e2

h

)2

, or ∆G =
√

VarG ≈ e2

h
.

The relative magnitude of the fluctuations is

∆G
〈G〉 =

∆R
〈R〉 ≈ 1

N

L

πle
=

L

W

1
kFle

,

implying that the relative magnitude of the fluctuations increases with
the length of the channel, i.e., no self-averaging occurs as long as L ≤ lϕ.
In high mobility samples with kFle � 1 the oscillations will be very
small, whereas they appear to be strong in lower mobility samples.

The exact result of Lee and Stone, 1985, for the magnitude of the
fluctuations is

∆G =
gsgv
2
β−1/2C

e2

h
,

where C is a geometry-dependent constant of order unity, β = 1 at zero
magnetic field and β = 2 at a finite magnetic field breaking time-reversal
symmetry, and the factors gs and gv are spin and valley degeneracy
factors, respectively. A table with relevant results for C can be found in
Beenakker and van Houten, 1991.

At finite temperature, the conductance fluctuations are reduced in
amplitude for two reasons: first, the finite phase-coherence length lϕ(T )
leads to averaging of independently fluctuating segments of a sample,
and second, the smearing of the Fermi distribution function results in
energy averaging. Let us, for example, consider the effect of the finite-
phase coherence length in a case where W < lϕ < L. Then we can
consider L/Lϕ segments of the channel fluctuating independently. If the
average resistance of one segment of length lϕ is R0, then we find

∆G =
∆R
〈R〉2 =

∆R0

√
L/lϕ

〈R0〉2(L/lϕ)2
≈ e2

h

(
lϕ
L

)3/2

.

In order to take energy averaging at finite temperature into account
we define a correlation energy Ec related to the phase coherence length
lϕ. If we consider two paths propagating at energies differing by Ec as
uncorrelated if their phase difference ∆ϕ = Ecτϕ/� ≈ 1, we are led to
the correlation energy

Ec =
�D

l2ϕ
.

Comparing this correlation energy to the thermal broadening of the
Fermi distribution function gives the number of independently fluctuat-
ing energy channels that contribute to the conductance. In contrast to
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the previous argument, where independently fluctuating segments were
connected in series, here the channels are contributing in parallel. The
fluctuation amplitude is therefore further reduced and becomes

∆G ≈ e2

h

(
lϕ
L

)3/2(
kBT

Ec

)−1/2

=
e2

h

(
lϕ
L

)3/2
lT
lϕ

for lϕ � lT,

where we have introduced the thermal length l2T = �D/kBT . We see
here that increasing temperature will reduce the amplitude of the fluc-
tuations. However, it also becomes clear that the phase-coherence length
lϕ can be estimated from the magnitude of the fluctuations. A very use-
ful interpolation formula given in Beenakker and van Houten, 1988a,
is

∆G =
gsgv
2
β−1/2

√
12
e2

h

(
lϕ
L

)3/2
[
1 +

9
2π

(
lϕ
lT

)2
]−1/2

.

As in the ballistic case, the fluctuations of the conductance can be
studied experimentally as a function of magnetic field, and similar fluc-
tuations will be found on a characteristic correlation field scale ∆Bc.
This field scale can be determined from measured data from the full
width at half maximum of the autocorrelation function of the fluctua-
tions. The theory for conductance fluctuations in a magnetic field has
been worked out by Lee et al., 1987. The basic idea is that a change of
the magnetic field by ∆Bc is equivalent to the measurement of a sam-
ple with a different impurity configuration. It is found that (Lee et al.,
1987)

∆Bc = C
Φ0

Wlϕ
,

where Φ0 = h/e is the magnetic flux quantum, and C is a prefactor
of order unity which increases from 0.42 for lϕ � lT to 0.95 for lϕ �
lT (Beenakker and van Houten, 1988a). The correlation field provides
another experimental way of estimating the phase-coherence length lϕ.
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Fig. 14.28 Measured magnetoresis-
tance of a 260 nm wide heavily doped
quantum wire in GaAs at temperatures
T = 4.2K, 11.8 K, 17.7 K, and 30 K.
(Reprinted from Taylor et al., 1988
with permission from Elsevier.)
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Figure 14.28 shows an example of the magnetoresistance measured
on a strongly disordered quantum wire in GaAs with W = 260 nm.
The fluctuations become weaker with increasing temperature, but some
persist up to T = 30 K.

Classical conductance fluctuations. Fluctuations of the classical
conductance are in most cases negligibly small. In this context, classi-
cal means that the phase-coherence length lϕ is smaller than the elastic
mean free path le. For example, in a narrow wire of length L, the con-
ductance may then be seen as the incoherent series addition of the large
number L/le of independently fluctuating segments. Classical fluctua-
tions in the resistance will then, according to the central limit theorem,
scale with the wire length according to (le/L)1/2.

Further reading

• Aharonov–Bohm effect: Beenakker and van Houten
1991; Datta 1997; Imry 2002.

• Decoherence: Imry 2002.

• Interferometry with electrons in semiconductor
nanostructures: Gefen 2002.

• Probability amplitudes in quantum mechanics:
Feynman et al. 2006

• Papers: Aharonov and Bohm 1959; Berry 1984;
Stern et al. 1990.

Exercises

(14.1) Diffusive electron motion in the quantum regime,
where the phase-coherence length lϕ is much larger
than the elastic mean free path le, can be de-
scribed successfully within a semiclassical approach
if the Fermi wavelength λF is much smaller than le.
Within this approach, the classical trajectories of
single electrons are determined first. In a second
step, one considers wave propagation along these
classical trajectories which adds the quantum as-
pect to the problem and allows for interference. In
this spirit we consider the two-dimensional diffu-
sive motion of classical electrons in more detail. It
is governed by the diffusion equation

∂tC(r, t) = D∆C(r, t),

with the diffusion constant D. The quantity
C(r, t)dr is the probability that the diffusing par-

ticle is found in a small region dr of space around
the position r, after travelling for a time t.

(a) Suppose that, at t = 0, the particle starts
at r = 0, i.e., C(r, 0) = δ(r). Solve the
diffusion equation for this initial condition.
Hint: Transform the equation from real space
into Fourier space and then solve the time-
dependent first-order linear differential equa-
tion.

(b) Now consider only trajectories that start at
the origin and end up at a particular location
A, a distance L from the origin. What is the
distribution of travel times for these trajecto-
ries? Show that the most likely time that an
electron has spent diffusing, before it reached
A, is given by tdiff = L2/4D.
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(c) Calculate the most likely trajectory length
Ldiff of electrons diffusing from the origin to
A. How does Ldiff compare to the length L
of the ballistic trajectory? Hint: physical
meaning is achieved by expressing the diffu-
sion constant in terms of the elastic mean free
path le.

(d) Now we make the transition from particle dif-
fusion to waves. What is the most likely phase
ϕdiff that an electron wave acquires along the
classical diffusive path from the origin to A?
(Neglect possible phase shifts due to the scat-
tering events.) Show that ϕdiff can be ex-

pressed as

ϕdiff =
1

2

EF

ETh
,

and determine an expression for the energy
scale ETh. This energy scale is called the
Thouless energy (you will learn more about
it in the next chapter).

(e) Assume that ETh does not change if the Fermi
energy changes by a small amount. How much
does the energy of an electron near the Fermi
energy need to change, such that ϕdiff changes
by π/2? Discuss, in what respect ETh can be
called a (phase) correlation energy.
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15.1 Weak localization effect

In the previous chapter we looked into the physics of electron interfer-
ence. Initially we considered idealized ballistic ring geometries, but later
we extended our considerations to conductance fluctuations in diffusive
systems. Most importantly, the phase-coherence length lϕ entered our
physical picture of semiconductor nanostructures, and we discussed the
basics of decoherence. Diffusive systems were found to exhibit mani-
festations of electron interference in the mesoscopic regime, i.e., if the
sample size L was not much larger than lϕ. In this chapter we are going
to extend the discussion of interference effects to large diffusive systems,
where L� lϕ.

Within the Drude model, quantum mechanical scattering at individual
impurities is considered, but the coherent motion between scattering
events and multiple scattering are neglected. In the 1980s scattering
theories were developed in which phase-coherent multiple scattering was
taken into account systematically. It was found that these processes led
to enhanced backscattering of electrons and thereby to a logarithmic
increase of the resistance. This effect is called weak localization and can
be traced back to the constructive interference of time-reversed Feynman
paths of electrons (Bergmann, 1983).

Figure 15.1 shows an example of two time-reversed paths. Each of the
two partial waves returns after multiple scattering to the starting point,
but the loop is traveled by them in opposite directions. If we denote the
complex quantum mechanical amplitudes of the two paths by A+ and
A−, the probability of return to the starting point is given by∣∣A+ +A−

∣∣2 =
∣∣A+
∣∣2 +

∣∣A−∣∣2 +A+A−� +A+�
A−.

Here, the first two terms on the right-hand side are the so-called clas-
sical contributions to backscattering which are contained in the Drude–
Boltzmann theory. The last two terms are interferences which are ne-
glected in the incoherent approximation of Drude–Boltzmann, but of
crucial importance for the weak localization correction. It is important
to note that, at zero magnetic field, time-reversal symmetry requires
A+ = A− ≡ A. The classical contribution to the return probability is
then given by

Pcl = 2 |A|2 ,
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whereas the quantum mechanical return probability is enhanced by a
factor of two as a result of the interference term, and we obtain

Pqm = 4 |A|2 .

In this sense we talk about enhanced backscattering, and of weak local-
ization, as a result of quantum interference.

Fig. 15.1 Time-reversed paths in a dif-
fusive two-dimensional sample. At zero
magnetic field the interference of such
paths is always constructive.

We have seen that the interference correction to the classical return
probability is equal to the classical return probability. Therefore we
can semiquantitatively describe the weak localization correction to the
conductivity at zero magnetic field by considering the classical diffusion
of electrons (Khmel’nitskii, 1984). Here we restrict the discussion to the
two-dimensional case. Let C(r)d2r be the classical probability that a
diffusing particle returns to the volume element d2r around its starting
point after time t. From the solution of the classical diffusion equation
we find

C(t) =
1

4πDt
for time scales on which the electron has travelled distances larger than
an elastic mean free path. If we form semiclassical wave packets from the
occupied electronic states in the system, we cannot localize an electron
better than on the scale of λF. We are therefore interested in the return
probability into the area λ2

F = vF∆tλF = h∆t/m� which is given by

h

m�

∆t
4πDt

.

In order to obtain the total classical return probability for travel times
between τe and τϕ (longer diffusive paths cannot interfere) we have to
sum this expression over time intervals ∆t. Performing an integral in-
stead of the sum we obtain the classical return probability

pret =
h

m�

∫ τϕ

τe

dt

4πDt
=

�

2m�D
ln
τϕ
τe
.

As a brief aside we can show that cutting the time integral more smoothly
gives essentially the same result, as long as τϕ � τe. For example,

pret =
h

m�

∫ ∞
0

dt

4πDt
(1 − e−t/τe)e−t/τϕ =

�

2m�D
ln
(

1 +
τϕ
τe

)
≈ �

2m�D
ln
τϕ
τe
.

Taking into account that in two dimensions D = v2
Fτe/2, the prefactor

can be rewritten as 1/kFle. The normalized quantum correction of the
Drude conductivity is proportional to pret, i.e.,

δσqm

σ
≈ −pret = − 1

kFle
ln
τϕ
τe
. (15.1)

This is a logarithmic quantum correction to the classical Drude conduc-
tivity, which is negative, i.e., it reduces the conductivity, as a result of
the weak localization caused by the constructive interference of time-
reversed paths.
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15.2 Decoherence in two dimensions at
low temperatures

We discussed the general ideas behind decoherence in section 14.7. Here
we are specifically interested in decoherence mechanisms in two-dimen-
sional electron gases at low temperatures. A two-dimensional electron
gas exists in a crystal lattice in which lattice vibrations can be excited.
The interaction of electrons and phonons are inelastic and impair the
phase coherence of the electrons. Experiments aimed at quantum prop-
erties are typically performed at low temperatures below 4.2K (liquid
He), because lattice vibrations are frozen out. At such low temperatures
electron–electron interactions are found to dominate the decoherence of
electron waves. A single electron is surrounded by a sea of other elec-
trons. The random motion of the latter creates an electromagnetic field
randomly fluctuating in time (photons) which can scatter the electron.
Elastic scattering processes, such as, for example, scattering at static
spatial potential fluctuations conserve the phase coherence of the elec-
trons.

Decoherence is described using the decoherence rate 1/τϕ. It usually
depends on temperature T and often follows a power law,

�

τϕ
∝ (kBT )p.

For the particular decoherence rate of electrons in two-dimensional elec-
tron gases at low temperatures, a number of authors (Altshuler and
Aronov, 1985; Chakravarty and Schmid, 1986; Imry, 2002) have found
the equation

�

τϕ
= kBT

e2/�

σ
ln
kBT

�/τϕ

σ�e2/�

≈ kBT
e2/�

σ
ln

σ

e2/�
. (15.2)

It has the general form
x = −1

a
lnx

with x = �/τϕkBT and a = σ/(e2/�), with the solution x = f(a) which
has to be determined numerically. The solution of this equation is shown
in Fig. 15.2. The decoherence rate can then be written as

�

τϕ
= kBT f

(
σ

e2/�

)
. (15.3)

It can be seen that at a given temperature T the decoherence rate
decreases with increasing conductivity σ. For a GaAs heterostructure
with an electron density n = 3×1015 m−2 and mobility µ = 106 cm2/Vs
we find σ/(e2/�) = 197. From Fig. 15.2 we read f(197) ≈ 0.02. At a
typical temperature of a 3He cryostat of 300 mK this gives a coherence
time τϕ = 1.3 ns, compared to an elastic scattering time τe = 38 ps.
For the same density, but a mobility of µ = 5 × 104 cm2/Vs we find
f(a) = 0.2 and therefore at 300 mK τϕ = 127 ps compared to τe = 2 ps.
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Fig. 15.2 The function f(a). It de-
termines the ratio of �/τϕ and kBT , if
the parameter a, given by σ/(e2/�), is
known.
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The phase coherence time is much larger than the Drude scattering time
at sufficiently low temperatures.

During the phase coherence time τϕ electrons therefore move diffu-
sively and we can define the phase coherence length

lϕ =
√
Ddτϕ,

where Dd is the diffusion constant in d dimensions. For the two above
examples we find lϕ = 37 µm and lϕ = 2.6µm, respectively.

15.3 Temperature-dependence of the
conductivity

Experimentally the weak localization effect in the absence of a magnetic
field can be measured via the temperature dependence of the conduc-
tance or the resistance of a sample, because the phase coherence length
lϕ depends on temperature. Nevertheless we have to take into account
that both the Drude conductivity and interaction effects contribute with
their own temperature dependence. However, these effects are relatively
weak in thin metallic films.

Figure 15.3 shows the measured temperature-dependent resistance of
a AuPd film with a thickness of only a few nanometers. The resistance
increases logarithmically with decreasing temperature. This behavior
can be explained with the help of eqs. (15.1) and (15.3). Combining the
two gives

δσ

σ
=

1
kFle

ln
(
kBT

f(kFle/2π)
�/τe

)
.
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Fig. 15.3 Temperature dependence of
the resistance of a thin metal film be-
tween 300mK and 2.5 K. The resistance
increases logarithmically with decreas-
ing temperature. (Reprinted with per-
mission from Dolan and Osheroff, 1979.
Copyright 1979 by the American Phys-
ical Society.)

15.4 Suppression of weak localization in a
magnetic field

The microscopic picture of phase coherent backscattering leading to
weak localization is a good starting point for understanding the magneto-
conductivity. The magnetic field influences the phases of the amplitudes
A+ and A− by adding an Aharonov–Bohm phase. The Aharonov–Bohm
phase and its effects in ring-shaped nanostructures were discussed in
chapter 14. Here we recall that the magnetic field acts on the phases of
the amplitudes such that

A±(B) = Ae±iϕAB ,

[cf. eqs (14.2) and (14.3)], where the Aharonov–Bohm phase ϕAB is given
by

ϕAB = 2π
BS

h/e
,

with S being the area enclosed by the two counterpropagating paths.
This leads to∣∣A+(B) +A−(B)

∣∣2 = 2 |A|2 + 2 |A|2 cos
(

4π
BS

h/e

)
.

The magnetic field leads to an h/2e-periodic modulation of the quantum
interference correction of the backscattering probability. The interfer-
ence term describes an effect related to the h/2e-periodic Altshuler–
Aronov–Spivak oscillations which were discussed in chapter 14. In a
macroscopic diffusive sample many pairs of time-reversed paths enclos-
ing different areas will occur and we may introduce a probability density
distribution P (S)dS denoting the relative contribution of areas of size S
to the total conductivity. As a result we can expect that the oscillatory
contribution of individual time-reversed paths averages out completely
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at finite magnetic fields. Close to zero field, however, all these oscilla-
tions have the same phase (maximum backscattering, the cosine has its
maximum atB = 0 for all paths) and a minimum in the conductivity sur-
vives the averaging procedure. The result is a magnetic-field-dependent
quantum correction δσ(B) of the conductance which has the form

δσqm(B)
σ

= − 1
kFle

∫
dSP (S, lϕ) cos

(
4π
BS

h/e

)
. (15.4)

This is the Fourier cosine transform of the function P (S, lϕ). It leads
to a minimum of the conductance at B = 0 in macroscopic samples.
The expression of δσqm/σ at zero magnetic field is exactly that given in
eq. (15.1).

The smallest areas S contributing to backscattering are of the order
of l2e , whereas the largest are of the order l2ϕ. The sharpness (i.e., the
curvature) of the conductance minimum at B = 0 will be determined
by the phase coherence length lϕ, because the largest areas lead to the
contributions with the smallest periods. Looking at eq. (15.1) we may
identify the quantity Dt with an effective area S and write heuristically
for the probability distribution

P (S, lϕ)dS ∝ 1
S

(
1 − e−S/l2e

)
e−S/l2ϕdS. (15.5)

Inserting this expression in eq. (15.4) and performing the integration over
areas leads to typical magnetoresistance corrections of the shape shown
in Fig. 15.4 (note that δρ/ρ = −δσ/σ).

(B)

B

Fig. 15.4 Magnetoresistance correc-
tion calculated from eq. (15.4) for dif-
ferent ratios lϕ/le. Large values of this
ratio lead to sharper maxima at zero
field.

The accurate quantitative theory of the weak localization effect has
been worked out using diagrammatic methods (Mahan, 2000) that are
beyond the scope of this book. The result for the magnetic-field-depen-
dent correction of the Drude conductance is

δσ(B)−δσ(0) =
e2

2π2�

[
Ψ
(

1
2

+
τB
2τϕ

)
− Ψ

(
1
2

+
τB
2τe

)
+ ln

(
τϕ
τe

)]
.

(15.6)

Here, τB = �/(2eDB) and Ψ(x) is the digamma function. This relation
is correct for W,L� τϕ � τe.

Figure 15.5 shows a measurement of the effect as it is seen in a p-
doped SiGe quantum well structure. The reduction of the conductivity
at zero magnetic field corresponds to an enhancement of the resistivity.
With increasing magnetic field the weak localization effect is suppressed.
Beyond a magnetic field scale of B = h/(2el2e) it has disappeared com-
pletely. At elevated magnetic fields and low temperatures, Shubnikov–de
Haas oscillations are visible (see chapter 16). With increasing temper-
ature the width of the peak increases and its height decreases, because
the ratio lϕ/le decreases.

The weak localization effect disappears with increasing temperature,
because lϕ becomes smaller than le. The quantum correction is quenched
as soon as lϕ ≈ le. In samples of very high mobility, lϕ < le at all tem-
peratures that are accessible by experiment (i.e., down to about 5 mK),
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Fig. 15.5 Weak localization effect at
different temperatures, measured in a
two-dimensional hole gas residing in a
SiGe quantum well. (Reprinted with
permission from Senz et al., 2000a.
Copyright 2000 by the American Phys-
ical Society.)
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Fig. 15.6 Fit of the weak localization
correction formula (15.6) to the mea-
sured data at different temperatures.
From these fits, the phase coherence
time τϕ can be determined. (Reprinted
with permission from Senz et al., 2000b.
Copyright 2000 by the American Phys-
ical Society.)

and the effect can therefore not be observed. The sample for which
the data are shown in Fig. 15.5 has a mobility of about 7000 cm2/Vs.
The parameter σ/(e2/�) is 1.2 and f(1.2) = 0.53. From the condi-
tion τϕ � τe we obtain with eq. (15.3) T � 3.3 K which can be easily
achieved in the experiment. If the theoretical prediction (15.6) is fitted
to the data, as shown in Fig. 15.6, the temperature-dependent phase co-
herence time τϕ(T ) can be extracted from the experiment. Figure 15.7
shows the linear temperature dependence which is expected according to
eq. (15.3). The saturation at the lowest temperatures is probably due to
the fact that the electron temperature is slightly higher than the lattice
temperature. The prefactor f(a) from eq. (15.3) is in this experiment
about a factor of six larger than predicted theoretically. This deviation
is relatively large. Typically deviations of about a factor 2 are found.
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Weak localization in three- and one-dimensional systems. The
weak localization effect can not only occur in two-dimensional systems,
but also in one or three dimensions. In three-dimensional systems the
diffusive return probability is smaller than in two dimensions and the
relative effect is weaker, but it can be observed, for example, in diffusive
metallic conductors. In one-dimensional systems, where lϕ > W the ef-
fect is much stronger than in two dimensions. The magnetic field depen-
dence of the magnetoconductance has been calculated to be (Beenakker
and van Houten, 1988b)
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Fig. 15.7 Temperature-dependent
phase coherence time as determined
from the weak localization measure-
ments. (Reprinted with permission
from Senz et al., 2000a. Copyright
2000 by the American Physical
Society.)

δG(B) = −2e2

h

1
L

(
1

Dτϕ
+

1
DτB

)−1/2

,

where τB = 3�
2/(e2W 2DB2), D is the diffusion constant, and W and L

are the width and the length of the sample, respectively.

15.5 Validity range of the
Drude–Boltzmann theory

In chapter 10 we discussed the semiclassical description of electron trans-
port in the framework of the Drude–Boltzmann model without caring
about the range of validity of this description. We found the expression

σxx =
ne2τe
m�

=
2e2

h

EF

�/τe
=
e2

h
kFle

for the conductivity at zero magnetic field and low temperature, where
τe is the elastic scattering time and le is the elastic mean free path. We
calculated the elastic scattering time quantum mechanically from first
order perturbation theory (Fermi’s golden rule). This approximation
will be appropriate if

�/τe � EF.

This energy criterion is equivalent to the Ioffe–Regel criterion,

kFle � 1.

It means that the mean free path le of the electrons is large compared
to the Fermi wavelength λF = 2π/kF. If le becomes comparable with
λF, the wave functions tend to localize. In the case

kFle < 1

we talk about strong localization. The influence of increasing potential
fluctuations (or scattering) on the quantum states has been studied us-
ing a variety of models. Indeed, our previous discussion (section 15.1)
of the weak localization effect reflects the influence of coherent scatter-
ing on the conductivity. The important result of all these theories is
that potential fluctuations tend to localize the wave functions as shown
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F

Fig. 15.8 Schematic representation of
a wave function that is localized by spa-
tial fluctuations of a potential. The
wave function oscillates on the scale of
the Fermi wavelength λF, but is local-
ized by an envelope which decays expo-
nentially from the region of localization
and has a characteristic extent ξ.

schematically in Fig. 15.8. This means that there is a new length scale
ξ called the localization length. Strong potential fluctuations lead to a
small localization length. In the extreme case ξ becomes comparable to
the Fermi wave length λF. Electrons are then localized around a single
impurity site. At low temperatures, hopping transport will occur where
electrons hop from one site to another either by thermal activation or
by quantum tunneling. Weak potential fluctuations lead to a large lo-
calization length ξ � λF. Recently the question has arisen whether
there might be quantum phase transition in two-dimensional electronic
systems as a function of the strength of the fluctuating potential, such
that below a critical strength all states are extended, but above it all
states are localized. In the following we will discuss the basic physics
background of this question without entering the current discussion of
the topic. We will find that this discussion gives us a view on the weak
localization effect, complementary to the microscopic picture elaborated
earlier. Historically, the scaling approach to be discussed below triggered
all the theoretical developments that eventually led to the microscopic
picture that we discussed first for pedagogical reasons.

15.6 Thouless energy

The expression of the Drude conductivity can be written in the form of
the zero-temperature Einstein relation (10.54)

σxx =
ne2τe
m�

= e2Dd(EF)Dd,

if we introduce the diffusion constant Dd = v2
Fτe/d and the density of

states at the Fermi energy EF, Dd(EF) in d-dimensions (d = 1, 2, 3).
We now ask for the conductance G(L) of a cubic (d = 3, square d = 2,
stretch d = 1) piece of material with side length L which is much bigger
than the mean free path le of the electrons. We obtain

G(L) = σxx
Ld−1

L
=
e2

�
(Dd(EF)Ld)

�Dd

L2
. (15.7)

In this expression, the quantity Dd(EF)Ld := 1/∆ is the number of
quantum states at the Fermi energy per unit energy interval, and we
can introduce a typical energy level spacing ∆. The quantity �Dd/L

2
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Fig. 15.9 Schematic representation of
two blocks A and B of material with ex-
tent L, coupled through a thin (rough)
tunneling barrier. In each of the two
blocks of material the mean level spac-
ing is given by ∆.

eU

L

L

A

B

has the dimension of energy. It is called the Thouless energy (Thouless,
1977)

ETh =
�Dd

L2
. (15.8)

The physical meaning of the Thouless energy becomes clear if we realize
that Dd/L

2 = 1/τTh is the inverse of a time scale τTh telling us how long
an electron needs in order to explore the area L2 diffusively, or in other
words, at what average rate the diffusing electron reaches the boundary
of the square. The Thouless energy corresponds to this time scale via
Heisenberg’s uncertainty relation. In the picture of wave functions it tells
us how sensitive the energy of a particular wave function is to a change
in the boundary conditions at the square boundary. It is intuitively
clear that a strongly localized state will hardly change when the sample
conditions at the sample edge are changed (ETh small), whereas an
extended state will change strongly (ETh large).

The conductance of the square of material can therefore be written as

G(L) =
e2

�

ETh(L)
∆(L)

, (15.9)

i.e. the conductance is equal to the conductance quantum times the
number of energy levels within the energy interval ETh. The dimension-
less conductance g(L) = G(L)/(2e2/h) is frequently called the Thouless
number. In the range of validity of the Drude–Boltzmann theory we
have g(L) � 1, i.e., ∆(L) � ETh(L). In the regime of strong localiza-
tion g(L) � 1 and, correspondingly, ETh � ∆. We can estimate the
localization length via the condition g(ξ) ≈ 1, if an expression for g(L)
is known.

Another approach to clarify the meaning of the Thouless energy (Imry,
2002) considers two square pieces of material A and B that are separated
by a thin tunneling barrier as shown schematically in Fig. 15.9. We
assume that the barrier is rough, such that the momentum along the
barrier is not conserved for tunneling processes and consequently every
state in A couples to every other state in B with similar strength. We
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express this coupling by an average squared matrix element t2. The
tunneling rate for an electron from a certain state in A into any state in
B is then given by Fermi’s golden rule as

1
τ

=
2π
�
t2Dd(EF).

If we apply a small voltage U across the tunneling barrier, eDd(EF)LdU
states contribute to the tunneling current, which decay with the typical
time constant τ from A to B. The tunneling current is therefore I =
e2DdL

dU/τ and the conductance is

G(L) =
e2Dd(EF)Ld

τ
=
e2

�
(Dd(EF)Ld)

�

τ
.

Comparing with eqs (15.7) and (15.8) leads us to identify

ETh =
�

τ
= 2πt2Dd(EF) = 2π

t2/Ld

∆
.

In the limiting case of weak tunneling coupling, t2/Ld � ∆, the Thouless
energy is simply the lifetime broadening of an energy level. In this case
every level stays essentially localized in its own block. If the coupling
strength is stronger, and even stronger than ∆, the localization of states
disappears and the states become more and more extended over both
blocks of material. In this limit one can see ETh as the characteristic
energy scale over which states of the two material blocks admix to form
a particular state of the coupled system. We can then say that states
within the interval ETh are correlated. Sometimes the Thouless energy
is therefore called the correlation energy.

We briefly summarize the results of the above discussion: The ra-
tio ETh/∆ of two energy scales, i.e., the sensitivity of changes in the
boundary condition divided by the mean level spacing, is a dimension-
less measure of the coupling of two quantum systems and is equal to
the dimensionless conductivity g(L). For g(L) � 1 neighboring blocks
of material are strongly coupled and the states are extended over both.
For g(L) � 1 the two blocks are essentially decoupled and the states are
localized in either one or the other of the two. The size of the localization
length ξ can therefore be estimated from g(ξ) ≈ 1.

15.7 Scaling theory of localization

The conductance of a macroscopic disordered sample can usually be cal-
culated neither analytically nor numerically. The goal of the scaling the-
ory of localization is the calculation of the conductance of a macroscopic
sample. The basic idea is the following: the sample is considered to be
divided in smaller blocks of material with side length L � l for which,
for example, a numerical calculation of G(L) is possible (Fig. 15.10).
The conductance of the macroscopic sample is then deduced from that
of the small cube by subsequent doubling of the cube’s side length. This
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Fig. 15.10 Basic idea of the scaling
theory. A macroscopic sample is con-
sidered to be divided into smaller cubes
for which the conductance can be cal-
culated. Using the scaling function, the
conductance of the macroscopic sam-
ple can be determined from the con-
ductance of the small cube. (a) three-
dimensional case, (b) two-dimensional
case, (c) one-dimensional case.

L L L

(a) (b) (c)

procedure can be applied in one-, two-, or three-dimensions. The im-
portant ingredient for this to work is that the conductance G(2L) of a
piece of material with side length 2L depends only on the conductance
G(L). Mathematically this is expressed by the relation

d ln g
d lnL

= β(g)

for the dimensionless conductivity g, where β(g) is called the scaling
function, and g = ETh/∆ is called the scaling parameter.

How can we see that it is reasonable to use g as the only scaling para-
meter? Assuming that we have solved Schrödinger’s eigenvalue problem
for two material blocks of size L such that the energy levels and wave
functions are known, we find the solutions for the combined system by
matching the wave functions at the boundaries where the two blocks
touch. States of the two blocks will mix to form extended states if
there are many levels in an energy interval ETh in both blocks, i.e., if
ETh/∆ � 1. In turn, states of the two blocks will hardly mix if there
are few states within ETh, i.e., if ETh/∆ � 1. Therefore it is reasonable
to assume that g(2L) is essentially given by ETh/∆ = g(L).

The question is now, how the scaling function β(g) can be determined.
In order to get a feeling for this function, we consider a few well-known
limiting cases. If g � 1 we are in the limit of the Drude–Boltzmann
theory and have

g(L) =
h

2e2
σLd−2, (15.10)

where d = 1, 2, 3 is the dimensionality of the conductor, and σ is the
specific conductivity. In this limit we find

lim
g→∞β(g) = d− 2,

i.e., β tends to a constant in all dimensions.
On the other hand, it is known that the conductance depends expo-

nentially on the sample size in the regime of strong localization, i.e.,

g(L) = g0e
−L/ξ.

This leads to
lim
g→0

β(g) = −L
ξ

= ln
g

g0
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d = 3
d = 2

d = 1

ln g
ln gc

1

1

(g)

Fig. 15.11 Scaling function β(g) and
its limiting cases plotted versus ln g for
one-, two-, and three-dimensional sys-
tems.

in all dimensions.
From these two examples we can see that the scaling function β de-

pends in both limiting cases only on g. Scaling theory assumes that
between these two limiting cases, the scaling function β does also de-
pend only on the one scaling parameter g. In Fig. 15.11 the scaling
function is schematically shown as a function of ln g as was suggested in
Abrahams et al., 1979.

We now discuss qualitatively what the suggested functional form of
β(g) means for systems of different dimensions. Suppose we have calcu-
lated g(L) for a small system of size L. We then obtain the dimensionless
conductance g(Lm) of the macroscopic system of size Lm from solving
the integral equation∫ ln g(Lm)

ln g(L)

d ln g
β(g)

=
∫ ln Lm

ln L

d lnL = ln
Lm

L
. (15.11)

For a one-dimensional system, β(g) < 0 for all values of g. This means
that g(Lm) < g(L), no matter from which value g(L) we start. The scal-
ing theory therefore predicts that macroscopic one-dimensional systems
are always insulators, because for arbitrary Lm, g(Lm) can become ar-
bitrarily small.

The situation is different in the case of a three-dimensional system.
For certain values of g(L) > gc, β is a positive number, whereas for
g(L) < gc it is negative (Fig. 15.11). This means that the conductance
of a macroscopic three-dimensional system can become very large with
increasing system size, if g(L) is bigger than gc. We call this metallic
behavior. On the other hand, the conductance can become arbitrarily
small, if g(L) < gc, and we call it an insulator. In three-dimensional
systems there is a metal–insulator transition as a function of the strength
of potential fluctuations in the sample.
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The case of the two-dimensional system is very interesting because
the limit of β is zero for g → ∞. It is therefore very important to
find out whether β is positive or negative for large g. In the first case,
we would expect a metal–insulator transition even in two-dimensional
systems, whereas in the second case, all macroscopic two-dimensional
systems would be insulating. Abrahams et al., 1979, suggested a result
that was later proven to be correct. According to this theory, the scaling
function in two dimensions has, for large g, the asymptotic form

β(g) = −g0
g
,

where g0 ≈ 1. The prediction is therefore that in two dimensions, β(g) <
0, i.e., all macroscopic systems are insulators and there is no metal–
insulator transition in two dimensions. Using eq. (15.11) we find

g(Lm) = g(L) − ln
Lm

L
.

The logarithmic term makes the result different from the Drude–Boltz-
mann limit (15.10) for d = 2. In fact this term reminds us of the
logarithmic correction of the Drude conductivity found as a result of
enhanced coherent backscattering [cf., eq. (15.1)]. If we insert eq. (15.10)
for g(L) we obtain

G(Lm) = σ − 2e2

h
ln
Lm

L
. (15.12)

In two-dimensional systems there is a logarithmic correction to the
Drude–Boltzmann conductivity with its origin in the quantum diffusion
of electrons. The above equation can, however, only be used as long as
the logarithmic term is small compared to the Drude–Boltzmann σ.

From the above considerations we can estimate the localization length
ξ for a two-dimensional system using the relation g(ξ) ≈ 1. We obtain

ξ ≈ lee
kF le/2. (15.13)

Here we have assumed that kFle � 1, and we have set L ≈ le which gives
only a small error, because of the logarithm. We see that the localization
length grows exponentially with kFle. If we consider a high-mobility
electron gas with a density n = 3 × 1015 m−2 and a low-temperature
mobility µ = 106 cm2/Vs, we find kFle = 1241 and le = 9 µm. This leads
to ξ ≈ 2×10264 m which is an astronomically large length scale. In turn,
for an electron gas with the same density, but a mobility µ = 104 cm2/Vs,
we find kFle = 12.4, le = 90 nm and ξ ≈ 44 µm. For even smaller
mobilities, the regime of strong localization is quickly reached.

What is now the significance of the phase coherence length for the lo-
calization of electrons in two-dimensional electron gases? Obviously the
quantum mechanical conductance can only be scaled up to the coherence
length lϕ. Above this length scale the quantum description breaks down
and the conductances are scaled according to classical laws. However,
classically the conductance G in two dimensions does not change when
the system size is doubled. The reason is that the conductances of two
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blocks of material attached in parallel will add doubling the conductance,
for the subsequent connection in series, however, the resistances have to
be added and the conductance is again reduced by the same factor of
two. Using eq. (15.12) we therefore find for the quantum mechanical
conductance σqm (in contrast to the Drude conductance σ)

δσqm(T )
σ

= − 1
kFle

ln
lϕ(T )
le

. (15.14)

The coherent quantum diffusion of electrons leads to a logarithmic cor-
rection of the classical Drude conductivity. This result reproduces our
earlier finding expressed in eq. (15.1).

15.8 Length scales and their significance

In the Drude–Boltzmann theory the Fermi wavelength λF, and the elas-
tic mean free path le are of importance. Furthermore we have now
introduced the localization length ξ and the phase-coherence length lϕ.
In general, if we study electronic transport phenomena, we have to com-
pare these length scales with the (lateral) system size L. We can classify
transport phenomena by relating all these length scales.

The weak localization regime. If the elastic mean free path le in a
two-dimensional system is large compared to the Fermi wavelength λF,
according to eq. (15.13) ξ � le. If furthermore lϕ � le, but lϕ � ξ, then
the logarithmic correction of the Drude conductance is important and
eq. (15.14) is relevant. This is called the weak localization regime. The
hierarchy of length scales is given by L, ξ � lϕ � le > λF. The electron
motion is governed by quantum diffusion. This case arises only at low
temperatures, because there, lϕ(T ) is sufficiently large. If lϕ, le � λF,
the electron motion is called semiclassical meaning that the electrons
follow essentially classical trajectories, but carry quantum phase infor-
mation which makes them susceptible to interference. Also the case
λF ≈ le is in the range of weak localization, but here the electron motion
is no longer semiclassical, but rather follows the rules of true quantum
diffusion.

Diffusive classical transport. If L, ξ � le ≥ lϕ � λF, the loga-
rithmic quantum correction to the conductivity does not play a role,
the electron motion is classically diffusive, and the conductivity is well
described by the Drude model. This scenario applies, for example, at
elevated temperatures where the phase coherence length lϕ(T ) is small.
This case also occurs in extremely pure two-dimensional electron gases
having mean free paths at the lowest temperatures that are comparable
or larger than lϕ.

Quantum regime of strong localization. The relations ξ ≈ le ≈ λF

describe the regime of strong localization of an electron gas. At low tem-
peratures lϕ > ξ, le, λF and transport is coherent. The diffusive Drude
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model is not appropriate here, but hopping transport occurs between
localization sites. Also, in this regime of electron transport, interference
corrections of the conductivity can arise, originating from the interfer-
ence of alternative hopping paths.

The regime of classical strong localization. Also, in the regime
of the strong localization, quantum interference becomes irrelevant if
lϕ ≤ ξ. We can then talk about incoherent hopping transport, classical
localization, and classical percolation.

Mesoscopic systems. The regimes of electronic transport identified
above are valid for two-dimensional electron gases where the system size
L is much larger than any other length scale. Now we consider systems in
which the system size is comparable or even smaller than relevant length
scales of electron transport. Such systems are called mesoscopic systems.
The dimensionality of a mesoscopic system is defined by comparing the
phase coherence length lϕ with the system size. For example, if the
width W of a Hall bar is smaller than lϕ, but its length L larger, then
we talk about a one-dimensional mesoscopic system. For L,W > lϕ the
mesoscopic system is called two-dimensional; if L,W < lϕ it is called
zero-dimensional.

Diffusive mesoscopic systems. If in a one- or zero-dimensional meso-
scopic system, the system size L,W � le, we call electron transport in
this mesoscopic system diffusive.

Ballistic mesoscopic systems. If in turn in a one- or zero-dimensional
system W,L� le, then we talk about ballistic electron transport. Scat-
tering of electrons at sample boundaries dominates in this case over
scattering at spatial potential fluctuations.

Quasi-ballistic systems. The regime between diffusive and ballistic
mesoscopic systems is sometimes called quasi-ballistic. In this regime,
for example, W < le, but L > le.

15.9 Weak antilocalization and spin–orbit
interaction

In the presence of strong spin–orbit interaction (SOI), as it is found, for
example, in n-InAs, n-InSb, or in p-GaAs the phase-coherent backscat-
tering is altered in a very interesting way. As the partial waves travel
along diffusive closed loops, the spin is rotated under the influence of
the SOI. It was shown in Hikami et al., 1980, that SOI can reverse the
sign of the weak localization correction to the conductivity compared to
the case in which SOI is absent, and that the magnitude of the correc-
tion is reduced by a factor of 1/2. In order to understand this effect at
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least qualitatively, we follow the reasoning of Bergmann 1982. Essen-
tially we have to generalize the considerations made for phase-coherent
backscattering without spin by including the spin degree of freedom.
Spin–orbit interaction can lead to spin rotation during scattering and
between scattering events. A way to visualize this effect is to regard
the spin as diffusing on the Bloch sphere as shown in Fig. 15.12. If the

x
y

z

S SS

Fig. 15.12 Spin diffusion on the Bloch
sphere. (Reprinted from Bergmann,
1982 with permission from Elsevier.)

partial wave starts the path in a particular spin state |s 〉, it will arrive
after one clockwise revolution around the loop (see Fig. 15.1) in a state

|s′〉 = R |s〉 ,

where the rotation operator R is the product of a large number of small
rotations occurring subsequently, i.e.,

R = Rn . . . R2R1.

If we consider the partial wave propagating along the time-reversed path,
the sequence of the rotations is reversed, but the rotation angle of each
individual section of the path is also inverted. Therefore, after one
counterclockwise revolution around the same loop it will arrive in the
state

|s′′〉 = R̃ |s〉 ,
where

R̃ = R̃1R̃2 . . . R̃n,

with RiR̃i = 1 meaning that R̃i = R−1
i . In general, the rotation operator

for a spin can be written in matrix form as

R(α, β, γ) =
(

cos α
2 e

i(β+γ)/2 i sin α
2 e
−i(β−γ)/2

i sin α
2 e

i(β−γ)/2 cos α
2 e
−i(β+γ)/2

)
,

where α, β, γ are the Euler angles. This matrix has the property that
the inverse rotation

R−1
i (αi, βi, γi) = R̃i(αi, βi, γi) = RT

i (−αi,−βi,−γi) = R†i (αi, βi, γi),

meaning that it is unitary. It is straightforward to show that R (and R̃)
are unitary if all the Ri are unitary.

Interference of the two time-reversed paths requires us to calculate

(〈s′| + 〈s′′| ) (|s′〉 + |s′′〉 ) = 2 + 〈s′|s′′〉 + 〈s′′|s′〉 .

For the interference contribution, we find

〈s′′|s′〉 =
〈
R̃s |Rs

〉
=
〈
R†s |Rs

〉
=
〈
s
∣∣R2
∣∣ s〉 .

We can introduce a characteristic time scale τSO describing the ran-
domization of the spin direction in time due to SOI. For times t � τSO

the spin orientation has not changed significantly, whereas for times
t� τSO the spin orientation is completely randomized.
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In the case of weak spin–orbit interaction, τSO � τϕ, the spin will stay
essentially polarized in the same direction throughout the evolution, R
becomes the unity matrix in good approximation, because all angles
are close to zero, and as a result quantum backscattering is enhanced
by a factor of two compared to the classical backscattering probability.
This reproduces the case of weak localization that we considered in the
previous section.

More interesting is the case of strong spin–orbit interaction, τSO � τϕ,
where the spin polarization gets completely randomized as the electron
travels along a typical path. However, on the time-reversed path the
spin experiences exactly the opposite rotation. In this case we have to
calculate the expectation value of R2. The square of the rotation matrix
is given by

R2(α, β, γ) =
(

cos2 α
2 e

i(β+γ) − sin2 α
2

i
2 sinαe−iβ

(
1 + ei(β+γ)

)
i
2 sinαe−iγ

(
1 + ei(β+γ)

)
cos2 α

2 e
−i(β+γ) − sin2 α

2

)
.

If the spinor |s〉 = (a, b) we find

〈s′|s′′〉 = cos2
α

2

(
ei(β+γ)|a|2 + e−i(β+γ)|b|2

)
− sin2 α

2

+
i

2
sinα

[
ab�
(
e−iβ + eiγ

)
+ a�b

(
eiβ + e−iγ

)]
.

If we average this interference term over many pairs of time-reversed
paths in a diffusive sample (this amounts to averaging over all possible
angles α, β, γ), all terms in the above expression will average out, except
the term − sin2 α/2 which gives an average contribution of −1/2. We
therefore conclude that strong spin–orbit scattering leads to

(〈s′| + 〈s′′| ) (|s′〉 + |s′′〉 ) = 2 − 1
2
− 1

2
= 1.

This implies that strong spin–orbit interaction reduces the quantum
backscattering probability to one half of the classical backscattering
probability, because destructive interference dominates.

Low-field magnetoresistance. The magnetoresistance in the pres-
ence of spin–orbit scattering can be described in the same spirit as
before if we introduce the action of τSO into the expression for the prob-
ability distribution (15.5) of areas. Introducing the additional factor
(Chakravarty and Schmid, 1986)

1
2

(
3e−4S/3l2SO − 1

)
,

with lSO = DτSO, into the function P (S, lϕ) in eq. (15.5) has the de-
sired effect: for areas S � l2SO the spin is completely randomized and
the above factor is −1/2. In the opposite case, S � l2SO, the spin is
not rotated and the above factor is one. Therefore, depending on the
area S this factor switches from the usual weak localization behavior
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Fig. 15.13 Magnetoresistance correction calculated from eq. (15.4) for different strengths of the spin–orbit interaction. (a)
lSO/le = 30, (b) lSO/le = 3, (c) lSO/le = 1. In each subfigure, three curves are shown for the parameters lϕ/le = 5, lϕ/le = 2.5,
and lϕ/le = 1.5.

(small areas) to the weak antilocalization behavior. Therefore we use in
eq. (15.4) the expression

P (S, lϕ)dS ∝ 1
4πS

1
2

(
3e−4S/3l2SO − 1

)(
1 − e−S/l2e

)
e−S/l2ϕdS

for calculating the correction to the conductivity.
The result of such a calculation is shown in Fig. 15.13. It can be seen

that a weak localization maximum in the magnetoresistance is recovered
for lSO > lϕ > le in Fig. 15.13(a). In the opposite case of lSO = le < lϕ
a weak antilocalization minimum is found [Fig. 15.13(c)]. In the inter-
mediate case, where le < lSO < lϕ, the weak localization peak develops
an antilocalization dip at small fields [Fig. 15.13(b)]. In all cases, the
phase coherence length lϕ determines the region of strongest curvature
on a field scale Bϕ = φ0/l

2
ϕ around zero field, whereas the elastic mean

free path le determines the width of the maximum by the magnetic field
scale Be = φ0/l

2
e . The spin–orbit length lSO introduces an additional

field scale BSO = φ0/l
2
SO which marks the turnover from weak antilocal-

ization to weak localization in Fig. 15.13(b).

Spin–scattering mechanisms. So far we have introduced the spin–
orbit scattering time τSO and the corresponding spin–orbit scattering
length lSO heuristically without discussing the underlying physical spin-
relaxation mechanisms. In the following we will give a brief discussion
of the most relevant mechanism. The so-called D’yakonov–Perel mecha-
nism (D’yakonov and Perel, 1971), also called skew scattering, is believed
to be dominant in most III-V semiconductors lacking inversion symme-
try and low-dimensional structures fabricated from these materials (with
the exception of narrow band gap materials with large separation of the
spin–orbit split-off band from the valence band maximum, like InSb). It
is caused by the following scenario: The effective magnetic field (9.16)
that the spin of an electron experiences depends on the wave vector k of
the orbital state. If an electron has scattered at an impurity from one
k-state at the Fermi surface to another, it will be subject to a spin–orbit-
induced magnetic field with different orientation and magnitude. This
means that after each scattering event the spin rotates around a different
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precession axis with a different angular velocity. Within the typical time
span τe between two elastic scattering events, the spin will precess by
the typical angle δϕ = ω̄Lτe, where ω̄L is the typical Larmor frequency.
In typical materials the precession angle δϕ(τe) � 1 for electrons in the
conduction band. After a large number of random scattering events, the
spin orientation will have performed a random walk on the Bloch sphere
and the correlation between the initial spin orientation and the final spin
orientation is lost. To be more specific, after a time t � τe, a number
t/τe steps of the random walk have occurred and the orientation will
have acquired an average spread 〈δϕ2(t)〉 = δϕ2(τe)t/τe = ω̄2

Lτet. We
now estimate the spin–orbit scattering rate as the average time it takes
for the spread of the phase to become of the order 1. This leads to

1
τSO

= ω̄2
Lτe.

The spin–orbit relaxation rate is proportional to the scattering time.
This implies that increasing disorder (smaller τe) leads to larger spin–
orbit time τSO, which is a bit counterintuitive. On the other hand,
stronger spin–orbit interaction would lead to a larger value of the typi-
cal ω̄L and therefore to a larger spin-relaxation rate, as expected. The
D’yakonov–Perel mechanism assumes that the scattering event itself
does not alter the spin orientation.

Other spin-relaxation mechanisms are the Bir–Aronov–Pikus mecha-
nism, the hyperfine interaction, and the Elliott–Yafet mechanism (El-
liott, 1954). The Bir–Aronov–Pikus mechanism is important in p-doped
semiconductors. The electron–hole exchange interaction causes fluctuat-
ing local magnetic fields that act on spin states. The hyperfine interac-
tion is relevant in semiconductors in which the constituents of the nuclei
possess a nonzero magnetic moment. Spin-flip scattering of electrons at
nuclei can randomize the spin. The Elliott–Yafet mechanism assumes
that the spin polarization is unaltered between elastic scattering events,
but spin-rotation occurs during impurity scattering events, complemen-
tary to the Dyakonov–Perel mechanism. An in-depth discussion of all
these spin relaxation mechanisms is beyond the scope of this book, but
an excellent discussion can be found, for example, in Zutic et al., 2004.

Experimental observation of the weak antilocalization effect.
For the observation of the weak antilocalization effect, diffusive sam-
ples with sufficiently strong spin–orbit interaction are required. For
example, electron gases in InAs or InGaAs are well suited for such ex-
periments. Electron mobilities well below 10 m2/Vs help to see an ap-
preciable effect. Figure 15.14 shows a measurement performed on an
AlxGa1−xAs/InxGa1−xAs/GaAs 13 nm pseudomorphic quantum well.
The weak antilocalization enhancement of the zero field conductivity is
seen to coexist with a weak localization reduction of the conductivity
which becomes dominant at |B| > 5 mT. Theoretical curves fit the exper-
imentally acquired data quite well in the range of applicability (between
the two dotted vertical lines).
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Fig. 15.14 Measurement of the weak
antilocalization effect in an InGaAs
quantum well with a two-dimensional
electron gas (density 1.34 × 1012 cm−2,
µ = 1.94 m2/Vs). Circles indicate the
measured points, all lines are theoret-
ical fits. (Reprinted with permission
from Knap et al., 1996. Copyright 1996
by the American Physical Society.)

Fig. 15.15 shows a set of measurements performed on four different
In0.52Al0.48As/In0.53Ga0.47As quantum well samples where the strength
of the spin–orbit interaction was increased from bottom to top by chang-
ing the inversion asymmetry of the quantum well through varying the
remote doping profile. The sample that led to the lowest curve did
not exhibit a weak antilocalization minimum at zero magnetic field, but
rather a weak localization maximum, and increasing spin–orbit interac-
tion strength leads to the development of a zero-field minimum which
dominates over the weak localization maximum completely in the top-
most trace.

The spin–orbit interaction is also very important in the valence band

R x
x(

B)
 (

)
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3 2 1 0 1 2 3

Fig. 15.15 Crossover from
weak localization (bottom) to
weak antilocalization (top) in
In0.52Al0.48As/In0.53Ga0.47As
quantum well samples with differ-
ing spin–orbit interaction strength.
Typical mobilities are 5m2/Vs at
densities 1 × 1012 cm−2. (Nitta and
Koga, 2003. With kind permission
from Springer Science and Business
Media.)

at the Γ-point, where it already leads to a splitting of the six-fold
degenerate dispersion of hole states into a four-fold degenerate heavy
hole/light hole band, and the spin–orbit split-off band in the bulk band
structure of III-V semiconductors. Confinement to two-dimensions splits
the degeneracy of heavy and light hole states such that, in low-density
hole gases, only the two-fold degenerate heavy hole states are occu-
pied. The in-plane dispersion of these heavy hole states is again split
by the presence of spin–orbit interaction leading to two spin-split heavy
hole dispersion branches (Winkler, 2003). As a consequence, a weak
antilocalization effect does also occur, for example, in p-type GaAs two-
dimensional hole gases.
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Further reading

• Weak localization: Beenakker and van Houten
1991.

• Spin–orbit interaction and weak antilocalization:
Winkler 2003.

• Papers: Bergmann 1984; Chakravarty and Schmid
1986; Knap et al. 1996; Zutic et al. 2004; Fabian
and Sarma 1999.

Exercises

(15.1) The lowest temperatures reached in transport ex-
periments are of the order of 10mK. Consider two
Ga[Al]As heterostructures with identical electron
densities ns = 3 × 1015 m−2, but different mobili-
ties of µ1 = 3m2/Vs and µ2 = 100 m2/Vs cooled
to this temperature.

(a) Calculate the mean free paths l1 and l2 in
the two systems. Estimate the localization
lengths ξ1 and ξ2, and the phase-coherence
lengths lϕ1 and lϕ2. Can the weak localization
phenomenon be observed in both samples?

(b) Estimate how big a mesoscopic structure fab-
ricated from one of these wafers can be in or-
der to to have ballistic transport. Is it pos-
sible to realize a diffusive mesoscopic system
with the high mobility sample?

(15.2) Assume that the scaling function β(g) in two
dimensions has the form depicted. Discuss

the existence of a quantum phase transition in
this case. What is the physical meaning of
the two dimensionless conductances gc1 and gc2?

d = 2

(g)

1

1

ln g
ln gc1ln gc2
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16.1 Shubnikov–de Haas effect

In chapter 10 the quantization of states under the influence of the ex-
ternal magnetic field was neglected. Such an approach is appropriate
for small magnetic fields for which ωcτ � 1. With increasing magnetic
field the quantization of states leads to an oscillatory magnetoresistance
that is seen if either the electron density or the magnetic field strength
is changed. In two-dimensional electron gases this effect was measured
for the first time by Fowler et al., 1966. They investigated silicon MOS
structures in a Corbino geometry. The resulting conductance, measured
at a constant magnetic field of 3.3 T normal to the electron gas as a func-
tion of the top gate voltage which changes the electron concentration, is
shown in Fig. 16.1. The general trend is that the conductance increases
with increasing gate voltage (electron density). At the same time, the
oscillation amplitude increases while the oscillations are periodic in the
gate voltage.

Figure 16.2 shows a measurement in which the magnetic field is swept.
It was performed on a two-dimensional electron gas in a GaAs quantum
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Fig. 16.1 Shubnikov–de Haas oscilla-
tions in σxx, measured on a Si MOS
structure in Corbino geometry at a
temperature of 1.34K and in a mag-
netic field of 3.3 T. (Reprinted with per-
mission from Fowler et al., 1966. Copy-
right 1966 by the American Physical
Society.)
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Fig. 16.2 Shubnikov–de Haas oscil-
lations in the longitudinal resistivity
(bottom) and the Hall resistivity (top)
of a two-dimensional electron gas in a
10 nm wide GaAs quantum well. The
measurement was performed at the
temperature T = 1.7K.
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well of 10 nm width in which a single subband was occupied. A Hall bar
structure allowed the simultaneous measurement of the resistivity tensor
components ρxx and ρxy. For magnetic fields B < 0.5 T, the longitudinal
resistivity is almost constant and the Hall resistivity increases linearly,
as expected from the Drude model. For larger magnetic fields, both
quantities oscillate around the classical magnetoresistivity. The period
of the oscillations increases with increasing magnetic field. A detailed
analysis shows that the oscillations are periodic in 1/B.

The effect described above is known from the conductance of metallic
samples as the Shubnikov–de Haas effect. It was discovered by L. Shub-
nikov and W.J. de Haas on three-dimensional bismuth samples around
1930 (Shubnikov and de Haas, 1930a,b,c,d). Their original measure-
ments are shown in Fig. 16.3.

16.1.1 Electron in a perpendicular magnetic field

In order to understand the origin of the Shubnikov–de Haas effect, we
have to quantize the classical cyclotron motion. In a first intuitive step
we will do this by applying the Bohr–Sommerfeld quantization scheme.
In a second step, we will solve Schrödinger’s equation for the electron in
a magnetic field.0 1 2 3 B (T)
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CURVE 1. 14.15 K MAX.
              2. 20.43 K MAX.
              3. 14.15 K MIN.

1.
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3.

Fig. 16.3 Shubnikov–de Haas oscil-
lations in the Hall coefficient of bis-
muth, measured at the temperature
T = 14.15 K. (Shubnikov and de Haas,
1930a. Courtesy of the Leiden Institute
of Physics.)

Bohr–Sommerfeld quantization. We can quantize the classical cy-
clotron motion by realizing that the electron behaves like a wave. The
wave will propagate around a circle and interfere with itself. The self-
interference is constructive and a quantized orbit forms if the acquired
phase is an integer multiple of 2π, otherwise interference is destructive
and no quantum state exists.

We describe the homogeneous magnetic field B = (0, 0, B) with the
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vector potential A = (−By/2, Bx/2, 0). The strength of the vector
potential is BRc/2 along circles of radius Rc around the origin. The
radius of the classical cyclotron orbit, Rc, is related to the velocity v
of the electron via Rc = v/ωc = mv/eB. The classical momentum of
a particle with charge −|e| in a magnetic field is p = mv − |e|A. The
term mv is called the kinetic momentum, −|e|A is the momentum of
the field.

Using the de Broglie relation mv = �k, we can express the classical
cyclotron radius as Rc = �k/eB. Like the classical momentum, the
quantum phase acquired by the electron during one revolution of length
2πRc around the cyclotron orbit consists of two parts. The first, called
dynamic phase, is given by

∆ϕd = 2πkRc = 4π
φ

φ0
,

where we have introduced the magnetic flux through the area πR2
c of

the circular orbit, given by φ = BπR2
c , and the magnetic flux quantum

φ0 = h/e. The second contribution is the Aharonov–Bohm phase (14.4).
It is determined from the integral of the vector potential A along the
circular path taken by the electron, i.e.,

∆ϕAB = −|e|
�

∮
Ads = −|e|

�

BRc

2
2πRc = −2π

φ

φ0
.

The Bohr–Sommerfeld quantization of the electron motion therefore
leads to the condition

∆ϕ = ∆ϕd + ∆ϕAB = 2π
φ

φ0
= 2πn,

with n being a positive integer. This condition states that the magnetic
flux enclosed by the electronic orbit is quantized in units of the flux
quantum φ0. As a consequence, the radius of possible cyclotron orbits
at a given magnetic field is quantized and given by

l(n)
c =

√
2nlc,

where the magnetic length lc =
√

�/eB is the characteristic length scale
of the cyclotron motion at a given magnetic field. This quantization of
the classical cyclotron orbits is visualized in Fig. 16.4. The energy of the
electron is quantized according to

x

y

n = 1

n = 5

0

Fig. 16.4 Quantized cyclotron orbits in
real space. The smallest orbit encloses
one single flux quantum φ0.

En =
1
2
mω2

c l
(n)
c

2
= �ωcn, (16.1)

indicating that the cyclotron energy �ωc is the relevant energy scale of
the problem. The energy levels form a ladder with constant spacing like
those of the harmonic oscillator. The energy spectrum of an electron
in a magnetic field resembles that of a harmonic oscillator with the
characteristic frequency ωc determined by the magnetic field.
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Solution of Schrödinger’s equation. Although the Bohr–Sommer-
feld quantization gives the characteristic length scale lc and the charac-
teristic energy scale �ωc and highlights the effect of the Aharonov–Bohm
contribution to the electronic phase, an exact solution of Schrödinger’s
equation is instructive. The effective mass hamiltonian for a parabolic
band reads

H =
(p + |e|A)2

2m�
+ V (z),

where V (z) is the confinement potential in the growth direction which
may be caused by a heterointerface and remote doping, or by a quan-
tum well potential. For simplicity we choose the vector potential A =
(−By, 0, 0) describing the magnetic field B = (0, 0, B) oriented in the
z-direction. This hamiltonian can be separated into

Hz = − �
2

2m�

∂2

∂z2
+ V (z),

depending only on the z-coordinate, but not on magnetic field, and

Hxy =
(px − |e|Bzy)2 + p2

y

2m�
,

which is independent of the confinement potential, but contains the mag-
netic field. The eigenvalue problem in the z-direction leads to bound
states which are independent of the magnetic field. In a two-dimensional
electron gas in the quantum limit, only the lowest of these states will be
occupied.

In the plane, the problem is solved using the Ansatz

ψ(x, y) = eikxxη(y),

leading to the eigenvalue problem[
p2

y

2m�
+

1
2
m�ω2

c

(
y − �kx

|e|Bz

)2
]
ηkx

(y) = Eηkx
(y), (16.2)

where we have introduced the cyclotron frequency ωc = |e|B/m�. This
is the equation of a one-dimensional quantum mechanical harmonic os-
cillator with the kx-dependent center coordinate

y0 =
�kx

|e|B .

As a result, the quantized energy states are given by

En = �ωc

(
n+

1
2

)
,

independent of kx. Quantum states with different quantum numbers
kx but the same quantum number n are energetically degenerate. All
the states of different kx but the same n form the so-called Landau-
level. Compared to the quantized energies obtained from the Bohr–
Sommerfeld quantization, the exact result requires the replacement n→
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Fig. 16.5 Energy levels for electrons
in a magnetic field. The energy of the
Landau levels increases linearly with
the magnetic field resulting in a fan-
like diagram. The slope of each Lan-
dau level line depends on the quantum
number n. At fixed electron density in
the electron gas, the Fermi energy os-
cillates as a function of the filling factor
(dashed line).

n+1/2 in eq. (16.1), i.e., the Bohr–Sommerfeld result is only correct for
large quantum numbers n, when the addition of 1/2 is irrelevant.

The energy of a given Landau level increases linearly with the mag-
netic field B. This leads to the so-called Landau fan which is the energy
diagram depicted in Fig. 16.5.

The degeneracy of a Landau level is given by the requirement that
the center coordinate y0 = �kx/eB has to be within the width W of the
structure, i.e., 0 ≤ �kx/eB ≤ W . For a two-dimensional electron gas
of length L, the density of kx-states is L/2π. As a result, meaningful
kx-values obey the relation 0 ≤ kxL/2π ≤ eB/hA, where A = WL is
the sample area. The number nL of allowed kx states per unit area is
therefore

nL =
|e|B
h

.

If an electron gas has the electron density ns, the number ν = ns/nL

tells us how many Landau levels are occupied at a given magnetic field
at zero temperature. Therefore, ν = hns/|e|B is called the filling factor
corresponding to the magnetic field B. At a fixed electron density ns,
the Fermi level of the electron gas oscillates as a function of B, i.e., with
filling factor ν in a 1/B-periodic fashion as shown in Fig. 16.5. The spin
of the electrons was neglected in the above consideration. If the Zeeman
splitting g�µBB is negligible compared to the Landau level splitting �ωc,
each Landau level hosts 2nL electrons per unit area and the Fermi energy
jumps between Landau levels at even values of ν (see Fig. 16.5).

If we take the Zeeman splitting of electronic levels into account, the
Zeeman energy adds to the Landau level energy and we obtain the spec-
trum

E±n = �ωc

(
n+

1
2

)
± 1

2
g�µBBz.

The factor g� can depend strongly on the magnetic field, because it may
be renormalized by exchange interaction effects in the two-dimensional
electron gas.

In our present model, the density of states in a magnetic field is given
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by

D2D(E,B) =
|e|B
h

∑
n,σ=±

δ
(
E − E(σ)

n

)
.

How can we understand the transition from the discrete, strongly de-
generate density of states in a magnetic field to the continuous, constant
density of states at B = 0? At small magnetic fields, the number of oc-
cupied Landau levels is large and given by ν = EF/�ωc. The number
of states per spin-degenerate Landau level is 2|e|B/h. The density of
occupied states at low magnetic fields is therefore given by

ns =
2|e|B
h

EF

�ωc
=

m�

π�2
EF.

This means that, in the limit of B → 0, the Landau levels decrease their
separation such that they eventually form the constant two-dimensional
density of states. The energetic broadening of Landau levels to be dis-
cussed below contributes to the disappearance of the discrete density of
states peaks.

16.1.2 Quantum treatment of E× B-drift

In the classical treatment of electron motion in chapter 10 we considered
an electric field in the plane of the electron gas in addition to the per-
pendicular magnetic field, which led to the so-called E × B-drift. We
will now present the solution of the corresponding quantum mechanical
problem. We introduce the electric field E = (0, E, 0) described by the
electrostatic potential V (y) = |e|Ey. It is only relevant for the equa-
tion of motion in the y-direction and adds to the hamiltonian of the
eigenvalue problem in eq. (16.2) giving

E

y

n = 0

n = 4

h c

Fig. 16.6 Real space representation
of the Landau level spectrum in the
presence of an electric field in the y-
direction. The slope of the Landau lev-
els is given by −eE, and their spacing
is �ωc.

[
p2

y

2m�
+

1
2
m�ω2

c

(
y − �kx +m�vD

|e|Bz

)2

−�kx +m�vD
|e|Bz

|e|Ey +
1
2
m�v2

D

]
ηkx

(y)

= Eηkx
(y). (16.3)

Here, vD = E/B is the classical drift velocity of the electrons which
corresponds to a quantum mechanical group velocity for electrons as we
will show below. The above equation is again solved with the harmonic
oscillator eigenfunctions, but the center coordinate is modified to

ỹ0 =
�kx +m�vD

|e|B ,

and the wave function of state (n, kx) is

ψnkx
(x, y) =

1√
2nn!π1/2

Hn[(y − ỹ0)/lc]e−(y−ỹ0)
2/2l2c

1√
L
eikxx, (16.4)
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where lc =
√

�/eB is the magnetic length introduced before. The energy
of state (n, kx) is given by

En(kx) = �ωc

(
n+

1
2

)
+ |e|Ey ỹ0 +

1
2
m�v2

D. (16.5)

This result can be interpreted as follows: compared to the energy spec-
trum without an electric field, the cyclotron states have additional po-
tential energy |e|Ey ỹ0 resulting from the position of the wave function
in the electrostatic potential, and the additional kinetic energy m�v2

D/2
resulting from drift motion in the x-direction. The previous degeneracy
of Landau levels has been completely lifted by the electric field. Owing
to the close relation between kx and ỹ0, the energy spectrum can be rep-
resented in real space as a tilted ladder of states as depicted in Fig. 16.6.

E

D(E)

h c

g* B

Fig. 16.7 Density of states for elec-
trons in a magnetic field. The Lan-
dau levels are broadened by scatter-
ing at spatial potential fluctuations of
the electron gas. The density of states
peaks have an energetic separation of
�ωc. In addition, the electron spin
leads to a Zeeman splitting of Landau
levels.

The group velocity of electrons in a certain Landau level is given by

1
�

∂En(kx)
∂kx

= vD

corresponding to the classical result. The expectation value of the mo-
mentum in the y-direction is zero. This has an interesting implication
for the tensor of the conductivity. It means that the longitudinal con-
ductivity σxx = 0 (along the direction of E), whereas σxy = |e|nsvD/E =
|e|ns/B. Tensor inversion gives ρxx = 0 and ρxy = B/|e|ns, i.e., the clas-
sical Hall resistance. We see in this example that in a magnetic field,
σxx and ρxx can be zero at the same time, if the Hall conductivity σxy

and the Hall resistivity ρxy remain finite.
Of course, this view of the conductivity in a magnetic field neglects

completely the effect of scattering which is crucial for a proper under-
standing of electrical resistance in a magnetic field. This will be consid-
ered in the following discussion of the Shubnikov–de Haas effect and the
quantum Hall effect.

16.1.3 Landau level broadening by scattering

Spatial potential fluctuations as they are at low temperatures, for ex-
ample created by the random arrangement of charged dopants, lift the
degeneracy of the states of a Landau level. This effect can be seen as the
influence of scattering at potential fluctuations limiting the lifetime of an
electron in a certain quantum state. Possible scattering processes include
intra- and inter-Landau-level scattering. As a result, the ideal delta-
shaped density of states peaks are broadened as depicted in Fig. 16.7.

Short range scattering potentials. In the case of short-range scat-
tering potentials with a mean scattering rate between states of 1/τq,
the time–energy uncertainty relation suggests an energetic Landau level
broadening by �/τq. At low magnetic fields, we may estimate the scat-
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tering rate by

�

τq(E)
= ni

m�

2π�2

∫ 2π

0

dϕ

〈∣∣∣v(i)(q)
∣∣∣2〉

imp

. (16.6)

Note that the factor in front of the integral is half the two-dimensional
density of states (half, because scattering conserves the spin, so only
half the density of states is available to scatter into). In contrast to
the Drude scattering time in eq. (10.50) in which backscattering has an
enhanced weight, for the lifetime broadening of k-states the scattering
angle is not relevant.

The determination of the lifetime of quantum states at arbitrary mag-
netic fields is problematic due to an interdependence of the scattering
rate and the density of states. A large density of states at the Fermi
energy leads to an enhanced scattering rate because, according to first
order perturbation theory [cf., eq. (16.6)],

1
τq(E)

=
2π
�
niv2D(E), (16.7)

where v2 is an angle and impurity ensemble averaged squared scattering
matrix element and D(E) is the density of states at energy E (of one
particular spin species). On the other hand, the peak density of states
depends on the scattering rate τ−1

q . A large scattering rate results in
strong broadening of Landau levels, but this decreases the peak density
of states, because the integrated density of states must remain equal to
the Landau level degeneracy nL.

In order to illustrate this interdependency, let us neglect inter-Landau-
level scattering and assume that the lifetime broadening leads to a
lorentzian density of states

D(E) =
nL

π

�/2τq
(E − E0)2 + (�/2τq)2

(16.8)

for a single Landau level with full width at half maximum �/τq. Inserting
this expression into eq. (16.7) gives

1 = niv2nL
1

(E − E0)2 + (�/2τq)2
.

It follows that
(E − E0)2 + (�/2τq)2 = niv2nL

and therefore
�/2τq =

√
niv2nL − (E − E0)2.

Inserting these two expressions into eq. (16.8) we find the elliptic density(E E0)/

D(E)

1 10

Fig. 16.8 Elliptic density of states of a
Landau level as obtained from the self-
consistent Born approximation.

of states (see Fig. 16.8)

D(E) =
nL

πΓ

√
1 −
(
E − E0

Γ

)2
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for a single Landau level with the characteristic Landau level broadening

Γ =
√

1
2π

�ωc
�

τ0
, (16.9)

and τ−1
0 = (π/�)niv2D2D is the zero magnetic field quantum scattering

rate. Essentially the same result for the density of states and the level
broadening has been obtained by Ando for short range scatterers within
the self-consistent Born approximation (Ando et al., 1982). Within this
model, the Landau level broadening increases proportional to

√
B and

Γ is independent of the Landau level quantum number n. This model
illustrates the interdependence of the scattering rate and the density
of states, but leads to an unphysical behavior of the density of states
in the tails of the Landau level. Another approach (Gerhardts, 1975;
Gerhardts, 1976) has led to gaussian broadening of Landau levels (see
Fig. 16.9)

D(E) = nL

√
2
πΓ2

exp
(
−2

(E − E0)2

Γ2

)
.

D(E)

1 0 1
(E E0)/

Fig. 16.9 Landau level density of
states with gaussian broadening (solid
line) and with semielliptic broadening
(dashed line).

Long-range scattering potentials. An intuitive picture of Landau
level broadening can also be found in the case of long-range scattering
potentials. The energy of the Landau levels follows the local variations
of the disorder potential adiabatically and the density of states is broad-
ened like the distribution function of the potential fluctuations. Again,
the broadening is independent of the Landau level quantum number n.

Low magnetic field oscillations of the density of states. We will
now develop a description of the density of states in a magnetic field
which is suitable for further calculations at low magnetic fields, where
many Landau levels are occupied (�ωc � EF). If an individual Landau
level with quantum number n has the density of states nLLn[E−�ωc(n+
1/2)] the total spin-degenerate density of states can be written as

D2D(E,B) = 2nL

∑
n

Ln (E − �ωc(n+ 1/2)) .

Figure 16.10 shows such a density of states, where Ln has been assumed

D(E)

E

h c

h/ q

Fig. 16.10 Density of states of a two-
dimensional electron gas as a function
of energy at finite magnetic fields (solid
line). It is composed of the sum of
a number of individual Landau levels
with separation �ωc and width �/τq
(dashed lines). The zero magnetic field
density of states is the dash-dotted line.

to be a lorentzian with �/τq being the full width at half maximum in-
dependent of n. The sum over Landau levels leads to an oscillatory
behavior as a function of energy. If we assume that the Landau level
density of states is independent of the Landau level quantum number
n, i.e., Ln(E) ≡ L(E), the expression for the density of states can be
rewritten using Poisson’s summation formula

∞∑
n=0

f(n+ 1/2) =
∫ ∞

0

f(x)dx+ 2
∞∑

s=1

(−1)s

∫ ∞
0

f(x) cos(2πxs)dx.
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We have

1
2nL

D2D(E,B) =
∑

n

L (E − �ωc(n+ 1/2))

=
∫ ∞

0

L(E − �ωcx)dx+ 2
∞∑

s=1

(−1)s

∫ ∞
0

L(E − �ωcx) cos(2πxs)dx

=
1

�ωc

[∫ E

−∞
L(ξ)dξ + 2

∞∑
s=1

(−1)s

∫ E

−∞
L(ξ) cos(2πs(E − ξ)/�ωc)dξ

]
.

For energies E � �/τ we can replace the upper integration limit by +∞
which leads to

D2D(E,B) =
m�

π�2

[
1 +

∆D
D

]
. (16.10)

The first term in the square brackets is the contribution of the constant
two-dimensional density of states at zero magnetic field. The second
term is a sum over oscillatory contributions to the density of states
given by

∆D
D = 2

∞∑
s=1

(−1)s

∫ ∞
−∞

L(ξ) cos(2πs(E − ξ)/�ωc)dξ

= 2
∞∑

s=1

(−1)s cos(2πsE/�ωc)
∫ ∞
−∞

L(ξ) cos(2πsξ/�ωc)dξ

+2
∞∑

s=1

(−1)s sin(2πsE/�ωc)
∫ ∞
−∞

L(ξ) sin(2πsξ/�ωc).

If the Landau levels are symmetrically broadened, i.e., if L(ξ) = L(−ξ),
the sin-terms vanish for symmetry reasons and we obtain

∆D
D = 2

∞∑
s=1

(−1)sL̃

(
2πs
�ωc

)
cos(2πsE/(�ωc)), (16.11)

where L̃(x) is the Fourier cosine transform of L(E). For example, the
lorentzian density of states in eq. (16.8) has the Fourier cosine transform

L̃(2πs/(�ωc)) = e−πs/(ωcτq).

As a result, the amplitude of the density of states modulation increases
exponentially with increasing magnetic field, whereas it is exponentially
suppressed for decreasing B. This exponential factor that accounts for
the effect of the finite Landau level width on the density of states oscilla-
tions is known as the Dingle factor (Dingle, 1952). It is the reason that
at small magnetic fields, ωcτ � 1, it is sufficient to consider the first
term with s = 1 and the density of states has the harmonic variation

∆D
D = −2L̃

(
2π
�ωc

)
cos
(

2π
E

�ωc

)
.
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At a constant energy, e.g., at the Fermi energy, the density of states
varies periodically in 1/B. The amplitude of the modulation increases
with increasing magnetic field as a result of the increase of L̃ (2π/�ωc).

From the above discussion we can conclude that the modulation of
the density of states can be observed more easily in samples with high
mobilities than in those with low mobilities. High mobility samples
show effects originating from the oscillatory density of states, such as
Shubnikov–de Haas oscillations, even at lower magnetic fields.

16.1.4 Magnetocapacitance measurements

In chapter 9 we calculated the capacitance between the two-dimensional
electron gas in a heterostructure and a top gate [cf., eq. (9.1)]:

1
C/A

=
s+ d

εε0
+

1
e2
dE0(ns)
dns

+
1
e2
dEF(ns)
dns

.

The first term describes the geometric capacitance of a parallel plate
capacitor with separation s + d of the plates, the second term is pro-
portional to the distance from the heterointerface to the center of mass
of the wave function, and the third term contains the inverse, so-called
thermodynamic density of states. We can therefore write

1
C/A

=
s+ d+ γ〈z〉

εε0
+

1

e2D(th)
2D (EF, B)

,

where 〈z〉 is the center of mass of the wave function, γ is a numerical
constant, and D(th)

2D (EF, B) = dns/dEF is the thermodynamic density
of states at the Fermi level. The geometric contribution to the capaci-
tance and 〈z〉 do not depend on the magnetic field. The magnetic-field-
dependent thermodynamic density of states can therefore be directly
determined from a measurement of the capacitance.

In order to illustrate the meaning of the term thermodynamic density
of states, we calculate

dns

dEF
=

d

dEF

∫ ∞
0

dED(E,B)f (0)(E) =
∫ ∞

0

dED(E,B)
df (0)(E)
dEF

.

The derivative of the Fermi–Dirac distribution with respect to the Fermi
energy is the same as the negative derivative with respect to the energy
appearing in the equations for the Drude conductivity in eqs (10.38) and
(10.39). For the density of states we can use eqs (16.10) and (16.11). As
a result we obtain integrals of the form∫ ∞

−∞
dE cos

(
2πs

E

�ωc

)(
−∂f

(0)(E)
∂E

)

=
1
2

cos
(

2πsEF

�ωc

)∫ ∞
−∞

dη
cos
(

4πskBT
�ωc

η
)

cosh2 η

= − cos
(

2πsEF

�ωc

)
Xs

sinhXs
, (16.12)
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Fig. 16.11 (a) Thermodynamic den-
sity of states at constant energy for
low magnetic fields. The oscillations
are periodic in 1/B. Damping at low
fields is due to the Dingle factor and
to the temperature-dependent damp-
ing term in eq. (16.13). (b) Thermo-
dynamic density of states at constant
energy for high magnetic fields (solid
line). The oscillations are periodic in
1/B. Terms in eq. (16.13) with s > 1
are relevant. The thick dashed lines in-
dicate the contributions of the individ-
ual Landau levels. The thin dashed line
at low fields is the constant zero field
density of states.

D(th)(B)

B

(a) (b)
D(th)(B)

B

where Xs = 2π2skBT/�ωc. The lower bound of the integration can be
set to −∞ as long as kBT � EF. The density of states oscillations are
smeared by the derivative of the Fermi–Dirac distribution function. At
a given magnetic field, increasing temperature T reduces the oscillation
amplitude by the factor Xs/ sinhXs = XscschXs and the thermody-
namic density of states becomes

dns

dEF
=

m�

π�2

[
1 + 2

∞∑
s=1

(−1)sL̃

(
2πs
�ωc

)
Xs

sinhXs
cos
(

2πsEF

�ωc

)]
.

(16.13)
A plot of the low-magnetic-field thermodynamic density of states is
shown in Fig. 16.11(a). At higher magnetic fields, the 1/B-periodicity is
more visible [see Fig. 16.11(b)]. At the same time, the density of states
does not exhibit the damped oscillator behavior characteristic for s = 1,
but higher order terms with s > 1 are of significant importance.
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Fig. 16.12 (a) Measured and calcu-
lated capacitance of a GaAs/AlGaAs
heterostructure in a magnetic field ap-
plied normal to the plane of the two-
dimensional electron gas. (b) The ex-
tracted density of states (measured:
solid line, calculated: dashed line). The
calculation is based on Landau levels
with gaussian broadening. (Reprinted
with permission from Smith et al.,
1985. Copyright 1985 by the American
Physical Society.)

The first measurements of this type were on two-dimensional electron
gases in silicon MOSFETs performed by Kaplit and Zemel, 1968. An
experimental difficulty of this method is that the electron gas has to
be charged with a current flowing through the electron gas magneto-
resistance. The problem can be described by a distributed R-C circuit.
Resistive effects can be minimized if the frequency of the measurement
is kept as small as possible. Figure 16.12 shows the measured magneto-
capacitance of a GaAs/AlGaAs heterostructure and the extracted den-
sity of states in comparison to a calculation based on Landau levels with
gaussian broadening (Smith et al., 1985).

16.1.5 Oscillatory magnetoresistance and Hall
resistance

The actual calculation of the longitudinal and transverse conductivities
in the low-magnetic-field Shubnikov–de Haas regime are rather complex.
Calculations are, for example, found in Ando et al. 1982; Isihara and
Smrčka 1986; Laikhtman and Altshuler 1994. Their results can be de-
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rived by using plausibility arguments based on the incorporation of the
oscillatory density of states given by eq. (16.11) into the Drude conduc-
tivity tensor components in eqs (10.36) and (10.37). We assume that
the Landau levels have a lorenzian density of states and keep only the
lowest order s = 1 contribution in eq. (16.11). In this low-magnetic-field
approximation we have

∆D
D = −2 exp

(
− π

ωcτq

)
cos(2πE/(�ωc)),

and we can treat this quantity as a small perturbation. We can argue
that the energy-dependent scattering rate is proportional to the density
of states according to eq. (16.7) which leads to

1
τ(E)

=
1

τ0(E)

(
1 +

∆D
D

)
⇒ τ(E) = τ0(E)

(
1 − ∆D

D

)
,

where τ−1
0 (E) is the zero-magnetic-field scattering rate. Inserting this

expansion into the Drude result in eqs (10.36) and (10.37), and keeping
only terms linear in ∆D/D gives

σxx(E) =
ne2τ0/m

�

1 + ω2
cτ

2
0

[
1 − 1 − ω2

cτ
2
0

1 + ω2
cτ

2
0

∆D(E)
D

]

σxy(E) =
ne2ωcτ

2
0 /m

�

1 + ω2
cτ

2
0

[
1 − 2

1 + ω2
cτ

2
0

∆D(E)
D

]
.

Thermal averaging with the derivative of the Fermi–Dirac distribution
function according to eq. (10.36), where we neglect the energy depen-
dence of τ0, leads to integrals of the form (16.12) and produces, in
agreement with Laikhtman and Altshuler, 1994,

σxx(B, T ) =
ne2τ0/m

�

1 + ω2
cτ

2
0[

1 + 2
1 − ω2

cτ
2
0

1 + ω2
cτ

2
0

e−π/ωcτq
2π2kBT/�ωc

sinh(2π2kBT/�ωc)
cos
(

2π
hn

2eB

)]
(16.14)

σxy(B, T ) =
ne2ωcτ

2
0 /m

�

1 + ω2
cτ

2
0[

1 +
4

1 + ω2
cτ

2
0

e−π/ωcτq
2π2kBT/�ωc

sinh(2π2kBT/�ωc)
cos
(

2π
hn

2eB

)]
. (16.15)

The relation EF/�ωc = hn/2|e|B was used here in order to rewrite the
argument of the oscillating factor. We emphasize here that τ0 has to be
interpreted as a zero-magnetic-field transport scattering time, whereas
τq is the lifetime of the quantum states. For long-range scattering po-
tentials, for which the above formulae are relevant, the ratio τ0/τq can
be of the order of 10 or more. For short-range scattering potentials the
ratio τ0/τq ≈ 1. In this case, the prefactors in front of the oscillating
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quantum correction may take a form different from the one given here
(see Ando et al., 1982; Isihara and Smrčka, 1986).

The corresponding result for ρxx is obtained from eqs (16.14) and
(16.15) by tensor inversion, where again only terms linear in ∆D/D
are kept,

ρxx(B, T ) =
m�

ne2τ0[
1 − 2e−π/ωcτq

2π2kBT/�ωc

sinh(2π2kBT/�ωc)
cos
(

2π
hn

2eB

)]
. (16.16)

The interpretation of this result is straightforward. The prefactor is
the magnetic-field-independent classical Drude resistivity around which
the magnetoresistance oscillates in a 1/B-periodic fashion. The term in
square brackets corresponds to the low-magnetic-field thermodynamic
density of states for Landau levels with lorentzian broadening plotted
in Fig. 16.11(a). Minima in the longitudinal resistivity arise as a result
of minima in the density of states at the Fermi energy. The oscillatory
magnetoresistivity in Fig. 16.2 therefore reflects at low magnetic fields
the density of states at the Fermi energy. The exponential Dingle factor
accounts for the finite lifetime broadening of the Landau levels. The
temperature-dependent factor reduces the amplitude of the oscillations
as a result of energy averaging over kBT around the Fermi energy. The
Fermi energy itself appears as a constant here, although we know that
it oscillates with magnetic field (see Fig. 16.5). This approximation is
only justified at low magnetic fields, where ∆D/D is so small that these
oscillations can be neglected.

The resistivity component ρxy resulting from eqs (16.14) and (16.15)
does not have oscillatory components in this approximation valid for
long-range scattering potentials. This may be different in the case of
short-range scatterers (see Ando et al., 1982; Isihara and Smrčka, 1986),
where oscillating contributions to ρxy appear in lowest order. An ex-
perimental investigation of the latter can be found in Coleridge et al.,
1989.

Electron density determination. From measurements of the Shub-
nikov–de Haas oscillations the density of a two-dimensional electron gas
can be determined. Minima of the magnetoresistance in eq. (16.16) occur
for hn/2|e|B = i + 1/2, where i is an integer number. As shown in
Fig. 16.13, plotting the measured values of B−1

i = 2|e|i/hn vs. the index
i gives a straight line with the slope given by 2|e|/hn. Alternatively,
this slope can be extracted from the separation of neighboring minima
in 1/B according to

∆
(

1
B

)
=

1
Bi+1

− 1
Bi

=
2|e|
hn

= 0.48 × 1015 m−2

T
1
n
.

Determination of τq. The quantum lifetime τq can be determined
from Shubnikov–de Haas oscillations at sufficiently low temperatures,
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Fig. 16.13 Electron density determi-
nation from Shubnikov–de Haas mea-
surements. The indices of magneto-
resistance minima are plotted on the
horizontal axis, the corresponding val-
ues of 1/B are plotted on the vertical
axis. The slope of the line 2|e|/hn de-
termines the electron density.

where the τq-dependent Dingle term dominates over the thermal ampli-
tude reduction. According to eq. (16.16) the envelope of the oscillations
is given by

∆ρxx

ρ̄xx
= ±2e−π/(ωcτq) 2π2kBT/(�ωc)

sinh 2π2kBT/(�ωc)
:= ±2e−π/(ωcτq)f(B, T ).

(16.17)
Plotting the quantity

ln
(

∆ρxx

ρ̄xx

1
f(B, T )

)
= −πm

�

|e|τq
1
B

+ const.

versus 1/B one can extract τq from the slope of the resulting straight
line. The function f(B, T ) is depicted in Fig. 16.14.
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Fig. 16.14 Temperature-dependent
factor 2π2kBT/�ωc sinh[2π2kBT/�ωc]
plotted versus �ωc/(kBT ).

Effective mass determination. From measurements of the tempera-
ture dependence of the Shubnikov–de Haas oscillations the factor f(B, T )
can be measured. The only parameter which is unknown in this para-
meter is the effective mass m� appearing in ωc. The mass can therefore
be determined by comparing the experimentally determined function
f(B, T ) with plots of this function for different masses.

16.2 Electron localization at high
magnetic fields

After the discussion of the low-magnetic-field behavior of the magneto-
resistance ρxx we now return to a discussion of the nature of the states
at high magnetic fields. In the discussion in section 16.1.3 the influence
of impurity scattering on the density of states was taken into account
only in the lowest order of scattering theory. Furthermore, we have
completely neglected the fact that screening of the impurity potentials
depends on the density of states at the Fermi energy. While these ap-
proximations are reasonable at low magnetic fields, where kBT, �/τq ≤
�ωc � EF, in the high field limit localization of electrons due to an in-
terplay between the random background potential and interactions takes
place.

The localization of states manifests itself experimentally in a vanish-
ing magnetoconductivity σxx when the Fermi energy lies in the vicinity
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Fig. 16.15 Measurement of σxx in a
two-dimensional electron gas induced
in a Si-MOS structure by the applica-
tion of a gate voltage VG at T = 1.4K,
B = 14 T and for a source–drain elec-
tric field ESD = 0.08 V/cm. In certain
regions of VG, σxx vanishes. (Reprinted
from Kawaji and Wakabayashi, 1976
with permission from Elsevier.)
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of a density of states minimum between adjacent Landau levels. This
effect was already known several years before the discovery of the quan-
tum Hall effect. Measurements of σxx performed at a constant magnetic
field of 14 T as a function of the electron density tuned via the top gate
voltage are shown in Fig. 16.15. They were performed on a Corbino
geometry [cf., eq. (10.22)] fabricated on silicon MOS wafers by Kawaji
and Wakabayashi. It can be clearly seen that σxx vanishes at certain
gate voltages VG. The peaks of σxx between these zeros correspond
to peaks in the density of states at the Fermi energy. The increas-
ing peak height with increasing electron density (increasing VG) can
be qualitatively understood with the following argument. The conduc-
tance is given by the Einstein relation (10.54) and the diffusion constant
at high magnetic field by eq. (10.56). Because in quantizing magnetic
fields the classical cyclotron radius Rc corresponds to the characteristic
length scale of the highest occupied Landau level (index N) given by√

(2N + 1)l2c , the diffusion constant becomes D = (2N + 1)h/2|e|Bτ .
The peak density of states is, e.g., in the case of a lorentzian given by
Dpeak = 2τ |e|B/πh� [cf., eq. (16.8)] and therefore the peak conductivity
becomes σpeak

xx ∝ e2/h(N+1/2). With increasing VG the quantum num-
ber N of the highest occupied Landau level increases one by one and
therefore the height of the peaks in σxx increases.

It turns out that in the gate voltage regions, where σxx vanishes,
the Hall conductivity σxy remains finite. As a consequence of tensor
inversion this implies that ρxx = 0 where σxx = 0. This result is not
very intuitive. We have argued above that localization of states leads
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to a vanishing conductivity characteristic for an insulator. However, an
insulator (at zero magnetic field) would have ρxx → ∞. In turn, we
would call a material with ρxx = 0 a perfect conductor, and expect (at
zero field) an infinite conductivity (σxx → ∞). We see that our intuition
is misleading when it comes to high magnetic fields, where the tensor
inversion implies ρxx = 0 = σxx, if ρxy and σxy remain finite.

E

D(E) h c

ext ext ext
loc loc loc

Fig. 16.16 Schematic representation of
the density of states D(E) of Landau
levels broadened by disorder as a func-
tion of energy E. In the gray shaded
regions labeled ‘loc’, the states are lo-
calized, whereas in the white regions la-
beled ‘ext’ the states are extended. A
mobility edge arises at the transition
between extended and localized states.

Localization by spatial potential fluctuations. As was mentioned
above, the nature of quantum states is strongly affected by a spatially
varying potential. If interactions are neglected, the result is the so-
called Anderson localization in a magnetic field. Figure 16.17 shows
the modulus of wave functions in the lowest Landau level calculated
numerically. A statistical distribution of δ-scatterers was assumed in
the plane. We can see that the states in the tails of the broadened
density of states are strongly localized [Fig. 16.17(a), (b), (e)]. States
in the center of the peaked density of states are extended [Fig. 16.17(c),
(d)]. This situation is schematically depicted in the density of states
diagram in Fig. 16.16.

If the Fermi energy lies in the tails of the density of states distribution
we would expect an exponentially suppressed conductivity, i.e., σxx → 0
for temperature T → 0. If the Fermi energy lies close to a maximum
of the density of states, a finite conductivity results. The energies in
Fig. 16.16 at which the nature of the states changes from localized to
extended or vice versa, define a so-called mobility edge.

Localization of electrons also arises in the case of long-range potential
fluctuations, if the classical cyclotron radius becomes small compared to

(b)(a)

(d)(c)

(e)

Fig. 16.17 Modulus of normalized
wave functions corresponding to differ-
ent energies in the lowest Landau level
calculated for a random distribution
of δ-scatterers. Wave functions in (a)
and (b) are energetically well below the
maximum of the density of states, (c)
and (d) are near the density of states
maximum, (e) is above the maximum
(Aoki, 1977).
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Fig. 16.18 (a) Long-range statistical
potential created from a superposition
of randomly placed gaussian functions
of width b = 2lc. Regions of low poten-
tial are dark, those of high potential are
light. (b)–(d) Modulus of selected char-
acteristic wave functions, (b) at low en-
ergy in the tail of the density of states,
(c) at medium energies, but still local-
ized along equipotential lines, (d) in the
vicinity of the density of states maxi-
mum, where the wave function is ex-
tended along equipotential lines repre-
senting a percolation network for elec-
trons. (Reprinted from Kramer et al.,
2005 with permission from Elsevier.)

(a)

(c)

(b)

(d)

the characteristic length scale of the fluctuations. In this case, cyclotron
orbits drift normal to the magnetic field direction (i.e., in the plane) and
normal to the electric field, i.e., along equipotential lines (E × B-drift).
Equipotential lines at the Fermi energy will form closed contour lines
around maxima and minima of the potential landscape. In a classical
picture, electrons on drifting cyclotron orbits can therefore be trapped
on trajectories encircling potential maxima or minima in the sample.
Seen from a quantum mechanical viewpoint, the electron wave functions
have maxima of their probability density distribution along equipoten-
tial lines. Figure 16.18 shows calculated wave functions in a long-range
fluctuating potential. At energies in the tail of the density of states,
the states are localized in minima of the potential [Fig.16.18(b)]. At
higher energies, (c), the states become more extended, but the probabil-
ity amplitude is nonzero only along equipotential lines. It can be shown
rigorously that this is always the case in the limit of sufficiently high
magnetic fields and smooth potentials (see, e.g., Kramer et al., 2005).
In the center of a Landau level, near the maximum in the density of
states, there are percolating states that can be extended throughout the
whole sample (d). The saddle points in the potential play an important
role for this percolation because wave functions can branch there.

Localization in the presence of electron–electron interaction
So far we have completely neglected the interaction between electrons.
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(a) (b)

(c) (d)

Fig. 16.19 Electron density for differ-
ent strengths of the interaction poten-
tial. The interaction decreases from (a)
to (d). (d) is the case of a noninter-
acting electron gas, (a) shows a charge
density distribution reminiscent of a
Wigner crystal, while (b) and (c) could
be called a Wigner glass or an amor-
phous Wigner crystal (Aoki, 1979).

Including it leads to a rich variety of possible ground states at high
magnetic fields. The interplay between spatial potential fluctuations
and Coulomb interaction is an active research area even today, not only
at high but also at zero magnetic field. In section 16.4 we will discuss
the fractional quantum Hall effect in which interactions play a dominant
role. Here we show numerical results obtained before the discovery of the
quantum Hall effect. The interaction is included in the self-consistent
Hartree–Fock approximation and it is assumed that the magnetic field
is big enough to avoid mixing between states of neighboring Landau
levels. The impurity potential is again created by randomly placed δ-
scatterers in the plane. Figure 16.19 shows the total electron density
for different ratios between the interaction strength and the scattering
potentials. With increasing interaction strength the system evolves from
an Anderson insulator via an amorphous Wigner crystal to a Wigner
crystal.

16.3 The integer quantum Hall effect

The integer quantum Hall effect arises in the Hall conductivity or Hall
resistivity of a two-dimensional electron gas at high magnetic field. In
the previous sections we acquired the knowledge that was necessary to
understand the Shubnikov–de Haas oscillations in ρxx, and we have ob-
tained some insight into the phenomenon of vanishing ρxx and σxx at
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Fig. 16.20 Measurement of the longi-
tudinal resistivity and the Hall resistiv-
ity of a two-dimensional electron gas
in a GaAs/AlGaAs heterostructure as
a function of the magnetic field. The
measurement temperature was T =
100mK.
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high magnetic fields which we have attributed to the occurrence of lo-
calized states at the Fermi energy in the tails of the Landau levels. The
quantum Hall effect is closely related to the zeros in ρxx, but it had
not been anticipated theoretically before its discovery in 1980, almost
exactly 100 years after the discovery of the classical Hall effect, by Klaus
von Klitzing (von Klitzing et al., 1980).

16.3.1 Phenomenology of the quantum Hall effect

If the Hall effect is measured at low temperatures (i.e., below 4.2 K) in
a two-dimensional electron (or hole) gas in the quantum limit patterned
into a Hall bar geometry, the Hall resistance shows a remarkable step-
like increase at high fields as depicted in Fig. 16.20. The effect is found
to exhibit a very high precision independent of the material in which the
two-dimensional system is realized. For example, the relative difference
in the plateau values between GaAs and Si systems was found to be
smaller than 3.5×10−10. At small magnetic fields below about 1.5 T, the
Hall resistivity shows the linear increase with magnetic field expected
from the classical Drude model. At higher fields, oscillatory behavior
sets in, which develops into the formation of well-pronounced plateaus
in the Hall resistance. The plateau values of the resistivity are with a
relative accuracy of 10−8 given by the relation

ρplateau
xy =

h

ie2
, (16.18)

where i is an integer number. The constantRK = h/e2 = 25 812.807449 Ω
is called the von Klitzing constant, or the resistance quantum. The ratio
between experimental plateau values at i = 1, 3, 4, 6, 8 and that at i = 2,
i.e., the average ratio 〈iρplateau

xy (i)/2ρplateau
xy (2)〉 was found to be integer

within a relative accuracy of the order of 10−10.
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In the magnetic field regions where plateaus occur in ρxy, the longitu-
dinal magnetoresistance ρxx shows well-pronounced zeros (see Fig. 16.20),
i.e.,

ρplateau
xx ≈ 0, (16.19)

which is the effect attributed above to the localization of states. The
two equations (16.18) and (16.19) characterize the quantum Hall effect.

It was found that the precision of the quantization does not depend on
the width of the Hall bars used for a large range of bar widthsW between
10 µm and 100µm within a relative accuracy of the order of 10−9. It is
also independent of the device mobility within the relative accuracy of
the order of 10−9 between µ = 130 000 cm2/Vs and 1.3 × 106 cm2/Vs,
and independent of the employed fabrication process. The effect has
therefore been used internationally as a standard for electrical resistance
since 1990. Owing to the relation between the resistance quantum RK

and the fine structure constant α,

RK =
h

e2
=
µ0c

2α
,

it can also be seen as an extremely precise method to measure the fine
structure constant, which complements the usual method of measuring
the anomalous magnetic moment of the electron.

Extrapolating the linear classical Hall resistance to high magnetic
fields, it crosses the quantum Hall plateaus in ρxy at fields

Bi =
nsh

i|e| .

This means that the plateaus in ρxy and the minima in ρxx are periodic
in 1/B and occur whenever ν = ns/nL = i. The integer number i counts
the number of occupied Landau levels and therefore reflects the filling
factor ν. Plateaus in ρxy occur whenever the filling factor ν is close to
an integer number i.

If we use eqs. (16.19) and (16.18) for calculating the components of
the conductivity tensor from eqs. (10.15) and (10.16) we find

σplateau
xx = 0 (16.20)

σplateau
xy = i

e2

h
,

i.e., there is also a quantized plateau value in σxy and σxx vanishes
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Fig. 16.21 Measurement of the quan-
tum Hall effect in Rxy , and the corre-
sponding longitudinal resistance Rxx as
a function of the electron density which
is changed via the voltage Vg on the top
gate of a Si MOSFET. (Reprinted with
permission from von Klitzing et al.,
1980. Copyright 1980 by the American
Physical Society.)

there. With the Hall conductivity, the Hall conductance is also quan-
tized according to Gxy = σxy = ie2/h. The constant e2/h is called the
conductance quantum.

The quantum Hall effect can also be seen at constant magnetic field,
when the electron density is changed, e.g., with a top gate voltage. Fig-
ure 16.21 shows the original measurement from the publication of Klaus
von Klitzing. The labels n = 0, 1, 2 indicate the Landau level quantum
number. Owing to the twofold spin degeneracy and the twofold valley
degeneracy in silicon inversion layers, each Landau level hosts 4nL states.
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Fig. 16.22 (a) Arrhenius plots of the
conductivity of two samples at the fill-
ing factors ν = 1 and 3 for various
densities (and therefore various mag-
netic fields). (Reprinted with permis-
sion from Usher et al., 1990. Copyright
1990 by the American Physical Soci-
ety.) (b) Arrhenius plots of ∆ρxy =
|ρxy − h/2e2| for different filling fac-
tors ν < 2. (Reprinted with permission
from Wei et al., 1985. Copyright 1985
by the American Physical Society.)
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The third Rxx-minimum from the left corresponds to filling factor ν = 4
and therefore corresponds to one fully occupied Landau level. The spin
degeneracy at the field of 18T is lifted by the Zeeman splitting. Also
the orbital degeneracy is split by a small energy gap leading to the ad-
ditional minima in Rxx. At high density, the minima due to the small
spin and valley splitting disappear.

Thermal activation of resistance minima and Hall plateaus.
The width of the ρxy-plateaus and of the ρxx-minima decreases with
increasing temperature. Also the resistivity values at the minima in ρxx

and σxx depend on temperature. The temperature dependence of the
conductance at integer filling factor ν = i turns out to exhibit activated
behavior over a wide temperature range (typically from a few kelvin up
to a few tens of a kelvin) following the Arrhenius law

σxx = σ0 exp
(
− ∆xx

2kBT

)
, (16.21)

where ∆xx is the activation energy from the Fermi energy to the nearest
unoccupied extended state near the center of the next higher Landau
level (cf., Fig. 16.16). Figure 16.22(a) shows the result of an experiment
on two Ga[Al]As heterostructures for the filling factors ν = 1 and 3 at
different electron densities. The Arrhenius plots show that the minimum
conductivity is quite well described by eq. (16.21) over a certain temper-
ature range. At the measured odd filling factors the activation energy ∆
extracted from the slopes of the fits corresponds to half the spin splitting
g�µBB (g� is the g-factor of the host material, in this case GaAs with
g� = −0.44) between the highest occupied and the lowest unoccupied
Landau levels. The data, however, give a much higher g-factor, namely,
|g��| = 7.3. The origin of this extreme enhancement of the g-factor is the
exchange interaction which favors spins to align in parallel. A stronger
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Zeeman splitting increases the degree of spin polarization and therefore
lowers the total energy of the system.

At very low temperatures (typically below 1 kelvin, see Fig. 16.20)
where the resistivity is exponentially suppressed according to eq. (16.21),
the activated description breaks down and transport arises due to hop-
ping of electrons between localized sites in the sample, as described by
other exponential laws (Briggs et al., 1983).

Also, the Hall resistance ρxy shows activated behavior of the form

∆ρxy(T,B) =
∣∣∣∣ρxy(T,B) − h

ie2

∣∣∣∣ = ρ0 exp
(
− ∆xy

2kBT

)
,

where i is again an integer, if the plateau value is measured at a filling
factor slightly away from the integer filling factor ν = i. Arrhenius plots
of ∆ρxy(T ) for i = 2 are shown in Fig. 16.22(b) as they were measured on
InGaAs/InP heterostructures. With increasing difference of the filling
factor from the integer value ν, the temperature dependence becomes
weaker, i.e., the activation energy becomes smaller. This means that
there is one point between two neighboring integer filling factors, at
which the temperature dependence of ∆ρxy is close to zero.

Conditions for the observation. The quantum Hall effect is only ob-
served in two-dimensional systems, e.g., two-dimensional electron or hole
gases as they are realized in semiconductor heterostructures and quan-
tum wells, but also in graphene layers. The effect is very pronounced if
at large magnetic field the Landau level separation �ωc is large compared
to the Landau level broadening, i.e., if

ωcτq � 1.

High quality samples are therefore a crucial prerequisite. The clear ob-
servation of the effect is further possible at temperatures, where the
thermal broadening kBT of oscillations in the magnetotransport coeffi-
cients is smaller than the Landau gap �ωc. This means

�ωc > kBT.

16.3.2 Bulk models for the quantum Hall effect

The discovery of the quantum Hall effect has triggered a large variety
of theoretical approaches attempting to reveal the physics behind the
effect and to unravel the microscopic details of the quantum Hall state.
Models considering noninteracting electrons in a perpendicular magnetic
field turn out to be a good starting point. We have already seen that, at
high magnetic fields, Landau levels are broadened and localized states
exist in the tails of the Landau level density of states, whereas extended
states exist near the density of states maximum (see Fig.16.16). At mag-
netic fields (or electron densities) where the Fermi energy lies in regions
of localized states (i.e., near integer filling factors ν), the longitudinal
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conductivity σxx [eq. (16.20)] goes to zero, as observed, for example, in
Corbino geometries.

The quantization of the Hall conductance (resistance) occurs under
the same conditions as the zeros in σxx and ρxx. Naively one could argue
that localized electrons do not contribute to transport and therefore
do not appear in the Hall resistance. Then, since ωcτ � 1, σxy =
nmobile|e|/B, where nmobile is the density of nonlocalized charge carriers.
This reasoning is, however, not in agreement with the experiment. Aoki
and Ando discussed the influence of localization on the Hall effect (Aoki
and Ando, 1981) and found that σxy does not change if the Fermi energy
is in a region of localized states. They could establish the constant
value of σxy = ie2/h only for the case in which neighboring Landau
levels do not overlap, i.e., at very high magnetic fields. In this case, i
turns out to be the number of Landau levels with their extended states
below the Fermi energy. The physical argument for their finding is
as follows: A localized state does indeed not contribute to the Hall
conductance. However, extended states are influenced by the localization
because all the states within a Landau level have to be orthogonal to
each other. As a consequence, the extended states will have an enhanced
drift velocity which exactly compensates the reduced number of mobile
charge carriers. This argument is valid for systems that are infinitely
extended in a plane. One therefore talks about ‘bulk models’ for the
quantum Hall effect. The boundaries of a realistic Hall bar sample do
not play a role in this description.

16.3.3 Models considering the sample edges

Real Hall bars have a finite size, and the nature of states at the edges of
a sample has a profound influence on the quantum Hall effect. This was
recognized by Halperin shortly after the discovery of the effect (Halperin,
1982). In order to describe states at the sample edge at high magnetic
fields we introduce a confinement potential in the y-direction. Equa-
tion (16.2) is then changed to[

p2
y

2m�
+

1
2
m�ω2

c

(
y − �kx

|e|Bz

)2

+ V (y)

]
ηnkx(y) = Enηnkx(y).

The influence of V (y) on the states will depend on the detailed shape
and strength of this potential. We can get some insight into the prob-
lem by assuming that it can be considered as a weak perturbation. The
matrix element of this perturbation with the wave functions of the har-
monic oscillator gives, at sufficiently high magnetic fields and slowly (on
the length scale of the wave function extent) increasing V (y), the value
〈V (y)〉 = V [y0(kx)]. The eigenenergies are therefore given by

En(kx) = �ωc

(
n+

1
2

)
+ V [�kx/(|e|Bz)].

The potential at the sample edge lifts the Landau level degeneracy and
leads to an energy dispersion En(kx) implying a finite group velocity of
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the states given by

vx =
1
�

∂V

∂kx
=
∂V (y)
∂y

∣∣∣∣
y=�kx/(eB)

1
|e|B ,

which is directed along equipotential lines in the x-direction. The result
is identical with the E × B drift that has lead to vDrift = ∇V (r) ×
B/|e|B2. It is also equivalent to Fig. 16.18(c) and (d) where wave func-
tions in the interior of the sample are extended along equipotential lines.

(a)

(b)

(c)
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Fig. 16.23 Edge states in the quan-
tum Hall regime in different represen-
tations. (a) Semiclassical electron mo-
tion: in the interior of the sample
electrons are localized. They encircle
individual maxima or minima of the
potential along equipotential lines. At
opposing edges of the sample, the states
propagate in opposite directions (edge
states). (b) Cross-sectional view along
a line cut through (a) in the x-direction
showing the energies of the Landau
level states as a function of the orbit
center. (c) Dispersion relation of the
lowest three Landau levels. The edge
states of the lowest Landau level are
closest to the sample edge, higher Lan-
dau levels form edge states further into
the bulk (Beenakker and van Houten,
1991).

Figure 16.23(a) shows the motion of electrons at a constant energy in
a sample with a spatially inhomogeneous potential within the Hall bar
and a confinement potential defining the sample edge. In the interior
of the sample, the electrons are localized and encircle local extremal
points of the potential. At the right edge of the sample, spatially sep-
arate channels called edge states are formed moving upwards. At the
left sample edge, edge states move downwards. Figure 16.23(b) shows a
cross-sectional view of the states along a line in the x-direction marked in
(a) by two arrows. The energy of each state is plotted as a function of the
center coordinate of the wave function. Figure 16.23(c) shows the same
dispersion relation, but the center coordinate has now been translated
into the quantum number k. Edge states relevant for the conductance
are at the intersections of the Fermi energy with the dispersions of the
Landau levels.

Even if the Fermi energy lies between two Landau levels in the inte-
rior of the sample where all states are localized at integer filling factor
ν, extended edge states exist at the sample boundary. All edge states
at a particular sample edge have electrons moving in the same direc-
tion. Electrons moving in opposite directions are spatially completely
separated. As a consequence, backscattering is completely suppressed in
the vicinity of integer filling factors. Voltage contacts on the same side
of the Hall bar are connected via the edge states that constitute ideal
dissipationless one-dimensional connections. This is the reason why the
longitudinal voltage, and with it the longitudinal resistance, vanishes
near integer filling factors. In contrast, contacts at opposite edges of
the sample are electronically completely separated such that the Hall
voltage can build up.

In contrast, at half integer filling factors, the Fermi energy coincides
with the energy of percolating states in the interior of the sample,
backscattering is possible, and ρxx is finite. The edge states for the
highest Landau level have disappeared.

This scenario, and the presence of edge states in particular, forms the
basis of the description of the quantum Hall effect in the formalism of
Landauer and Büttiker to be discussed below.

16.3.4 Landauer–Büttiker picture

The quantization of the Hall conductivity in two-dimensional systems
implies the quantization of the Hall conductance Gxy = σxy = e2/h · ν,
which has the same form as the conductance quantization in a quantum
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Fig. 16.24 Basic setting which al-
lows the description of the quantum
Hall effect in the framework of the
Landauer–Büttiker formalism. Quan-
tum Hall edge channels play the role of
one-dimensional chiral modes connect-
ing neighboring ohmic contacts. States
in the interior of the Hall bar are lo-
calized. At integer filling factors, edge
channels at opposite edges travelling in
opposite directions are completely de-
coupled. The measurement configu-
rations for two-terminal measurements
along the entire Hall bar, and for four-
terminal measurements of the longitu-
dinal and the transverse resistance are
indicated.
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point contact. In section 16.3.3 we have seen that there exist extended
states at the edge of the sample, even if the Fermi level lies exactly in-
between two Landau levels in the bulk (integer filling factor) where all
states are localized. All edge channels at a particular edge constitute a
current running in the same direction. The edge channels at opposite
edges are spatially well separated. This leads to suppressed coupling
between edge channels propagating in opposite directions which is most
effective at integer filling factors. Near half-integer filling factors states in
the bulk become delocalized and tend to couple edge channels propagat-
ing in opposite directions. This situation is the basis for the description
of the quantum Hall effect in the framework of the Landauer–Büttiker
theory of transport which we are now going to discuss.

Figure 16.24 shows the basic picture behind the application of the
Landauer–Büttiker theory to the quantum Hall effect. Close to integer
filling factors ν states in the bulk of the Hall bar are localized. However,
the edge states connect contacts which are neighbors in clockwise direc-
tion. The transmission of an edge state from one contact to the next in
clockwise direction is perfect (T = 1) because there is no backscattering
between states travelling in opposite directions. All other transmissions
are zero. The perfect transmission of edge channels is justified, because
even if an electron scatters from its particular kx-state into another kx-
state, it continues to propagate in the same direction. The reason is that
the overlap and therefore the scattering matrix element is only nonzero
for states with small differences in kx (remember that kx is related to
the center coordinate of the harmonic oscillator wave function in the y-
direction). For this scenario, the transmission matrix in eq. (13.10) can
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be written as⎛
⎜⎜⎜⎜⎜⎜⎝

I1
I2
I3
I4
I5
I6

⎞
⎟⎟⎟⎟⎟⎟⎠ =

e2

h

⎛
⎜⎜⎜⎜⎜⎜⎝

ν 0 0 0 0 −ν
−ν ν 0 0 0 0
0 −ν ν 0 0 0
0 0 −ν ν 0 0
0 0 0 −ν ν 0
0 0 0 0 −ν ν

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

V1

V2

V3

V4

V5

V6

⎞
⎟⎟⎟⎟⎟⎟⎠ .

In the experiment we drive the current from contact 1 to 4, all other
contacts carry no net current, because they are solely used for mea-
surements of the voltage. This means that I1 = I, I4 = −I and I2 =
I3 = I5 = I6 = 0. From the above matrix equation we therefore find
immediately

V3 = V2 = V1 and V6 = V5 = V4.

This means that all contacts on a particular side of the Hall bar are
at the same voltage. The value of this potential is determined by the
current contact from which the edge channels originate. Using these
relations we find for the current

I =
e2

h
ν(V4 − V1).

This relation is the complete analogue to the quantum point contact.
We immediately obtain the two-terminal resistance

R2t = R14,14 =
V4 − V1

I
=

h

e2
1
ν
.

Here Rij,kl denotes the resistance between contact i and j with current
driven from k to l. The Hall resistance is given by

RH = R26,14 =
V2 − V6

I
=

h

e2
1
ν
,

which corresponds exactly to the observed quantized values of the Hall
plateaus. The longitudinal resistance is

RL = R65,14 =
V6 − V5

I
= 0,

again in agreement with the experiment.
We can see that our assumptions about the transmissions between

the contacts based on the edge channel picture lead to the correct re-
sults for the Hall resistance and the longitudinal resistance. We can
now turn the argument around and claim that the observed resistance
quantization indicates that the transmissions between the contacts have
exactly the values assumed in our model. However, this description does
not clarify how the system realizes these values microscopically. In par-
ticular, we can ask how the current is distributed within the Hall bar
on a microscopic scale. This question is still under experimental and
theoretical investigation.
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Fig. 16.25 Hall bar in a situation
where the Fermi energy is at a den-
sity of states maximum. The innermost
quantum Hall edge channel percolates
through the sample. In this way states
in the interior of the Hall bar are no
longer localized. Edge channels travel-
ling in opposite directions can couple in
the bulk.
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How can we, within this description, interpret the maxima in the
longitudinal resistance measured as a function of density or magnetic
field, and how can we understand the transitions between Hall plateaus?
We can discuss the question again using the picture of edge channels.
If the Fermi level coincides with the maximum in the density of states,
all states at the Fermi level are extended and they percolate in the
plane within the Hall bar as shown in Fig. 16.18(d). This percolation
allows electrons to make their way from one edge of the bar to the other
and thereby reverse their direction of motion. Figure 16.25 shows this
situation schematically. It means that there is a finite probability that
electrons are reflected back into the contact of their origin, and so not
all elements of the tranmission matrix assumed to be zero in the above
description vanish in this case. As a result the quantization of the Hall
resistance disappears and the longitudinal resistance assumes a finite
value.

An experiment strongly supporting the Landauer–Büttiker picture
of the quantum Hall effect and the transitions between quantum Hall
plateaus was made using a scanning tunneling microscopy study of a
two-dimensional electron gas at high magnetic fields and a tempera-
ture of 300mK. The two-dimensional electron gas was induced on an
n-InSb(110) surface on which a hundredth of a monolayer of Cs atoms
was deposited. Tip-induced band bending was minimized. This particu-
lar material is most suitable for such a study, because the small effective
mass of 0.014 free electron masses sets a large cyclotron energy scale,
and the large g-factor of about −51 leads to a large spin-splitting. The
measured quantity is the differential conductance dI/dV as a function
of tip position on the surface at fixed applied tip–sample voltage and
magnetic field. This quantity is a measure of the local density of states
at the surface. The tip–sample voltage is used to select the energy
within the lowest Landau level at which the local density of states is
determined. A magnetic field B = 12 T sets the cyclotron energy scale
and the filling factor. Figure 16.26(h) shows a spatially averaged dI/dV
curve as a function of the tip–sample voltage. The peak in the curve re-
sembles the density of states of the lowest (spin-resolved) Landau level.
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Fig. 16.26 Local density of states measured in the lowest spin-resolved Landau level of an InSb two-dimensional electron
gas by scanning tunneling spectroscopy at a magnetic field B = 12 T. See text for details. (Reprinted with permission from
Hashimoto et al., 2008. Copyright 2008 by the American Physical Society.)

The local density of states measured at certain points along this curve
is shown in Figs. 16.26(a)–(g). In the tails on both sides of the density
of states maximum (a,g), the states tend to localize in real space along
equipotential lines of the underlying disorder potential. The width of
these loops is comparable with the cyclotron length lc ≈ 7.4 nm. In
regions around the density of states maximum (c–e) the states form a
random network which facilitates electron transport between edges of
the sample. The local density of states filaments either branch or form
tunneling connections at or near saddle points of the potential. As the
energy is increased from (a) to (b), loops marked by arrows increase in
size, indicating that these loops encircle minima of the potential land-
scape. In contrast, loops in the high energy tail tend to shrink in size
as the energy is increased because these states encircle maxima of the
potential landscape. Figure 16.26(i) is the result of a calculation of the
local density of states at the Landau level center at the same field and
doping density as in the experiment, showing qualitative agreement with
the experiment. Figure 16.26(j) shows an extended state at the Landau
level center measured on a larger length scale.

Example: toy model for Hall cross with backscattering. In order
to study the transition between Hall plateaus in more detail we consider
a simple model for a Hall cross with four contacts. The transmission
matrix is a 4 × 4 matrix of the form (13.10) with 16 elements. The
current conservation sum rule requires that all elements add to zero in
each column, i.e., we have the four equations

Nα −Rα =
∑

α(�=β)

Tαβ .

If the same voltage is applied to all four contacts, we expect that there
is no current flow (thermodynamic equilibrium). This leads to the sum
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rule for the rows of the matrix

Nα −Rα =
∑

β(�=α)

Tαβ .

Because only seven of these eight sum rule equations are linearly in-
dependent, they reduce the number of independent parameters from
sixteen to nine. We choose these nine parameters to be T21, T31, T41,
T32, T42, T43, T41, T13, T14 and find

N1 −R1 = T21 + T31 + T41

N2 −R2 = T32 + T42 + T21 −A13 −A14

N3 −R3 = T31 + T32 + T43 −A14 −A24

N4 −R4 = T41 + T42 + T43

−T12 = −T21 +A13 +A14

−T23 = −T32 +A13 +A14 +A24

−T34 = −T43 +A14 +A24,

where we have defined A13 := T13 − T31, A14 := T14 − T41, and A24 :=
T24−T42. Up to this point our description is general and no approxima-
tions have been made beyond those implicit in the Landauer–Büttiker
theory.

In order to keep our model simple, we now approximate T21 = T32 =
T43 = T14 ≡ Tcc (‘counterclockwise transmission’), T41 = T34 = T23 =
T12 ≡ Tc (‘clockwise transmission’), and T13 = T24 = T31 = T42 ≡ Ts

(‘straight transmission’). We then obtain the transmission matrix⎛
⎜⎜⎝

Tcc + Ts + Tc −Tc −Ts −Tcc

−Tcc Tcc + Ts + Tc −Tc −Ts

−Ts −Tcc Tcc + Ts + Tc −Tc

−Tc −Ts −Tcc Tcc + Ts + Tc

⎞
⎟⎟⎠ .

These approximations imply the symmetry that in terms of scattering,
all contacts are equivalent. In this way, the problem reduces to the three
parameters Tcc, Tc, and Ts. Within this model we find the Hall resistance

Rxy =
Tcc − Tc

(Tc + Ts)2 + (Tcc + Ts)2

and the longitudinal resistance

Rxx =
Tcc + Tc + 2Ts

(Tc + Ts)2 + (Tcc + Ts)2
.

Since counterclockwise scattering Tcc corresponds to the direction of
the edge channels, we set

Tcc(E,B) =
∑

n

g[E − �ωc(B)(n+ 1/2)],

where ωc = eB/m� is the cyclotron frequency. The function g(E) is a
smooth step function going to zero for E → −∞ and to one for E → ∞
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(see Fig. 16.27). The transmission Tcc counts the number of occupied
Landau levels by counting the edge states existing at the Fermi energy,
similar to the quantum point contact, where the number of modes below
the Fermi energy are counted.
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Fig. 16.27 Example for the functions
g(E) and h(E) of the quantum Hall ef-
fect toy model.

The other two parameters describe scattering channels that are only
relevant if extended bulk states exist. According to the percolation the-
ory for electrons in a spatially fluctuating potential (e.g., by Aoki and
Ando, see section 16.2) this is only the case if the Fermi energy is close
to the density of states maximum of a Landau level. In our model we
therefore let

Tc(E,B) = Ts(E,B) =
∑

n

h[E − �ωc(n+ 1/2)],

where the function h(E) has a sharp maximum at E = 0 and goes to
zero for |E| → ∞ (see Fig. 16.27). This function reflects the energetic
behavior of the percolation of states from one edge to another through
the bulk of the sample. Tc and Ts therefore probe the localization length
ξ of the states in the highest occupied Landau level at the Fermi energy.
If ξ is larger than the size of the Hall cross, Ts and Tc are nonzero, and
if ξ is smaller, Ts and Tc vanish.

In our toy model, the two functions g(E) and h(E) have to obey
the condition g(E) + 2h(E) ≤ 1 in order to make sure that the diagonal
elements of the transmission matrix increase monotonously. Figure 16.27
shows what these functions will typically look like.

Figure 16.28 shows Rxy as a function of the magnetic field as calcu-
lated with the above model. The model shows nicely that within the
Landauer–Büttiker formalism, ideas of bulk theories and edge state the-
ories can be incorporated at the same time. The concerted action of
the localization of electrons in the bulk, as well as the perfect trans-
mission of electrons at the edge of the sample leads to the quantum
Hall effect. However, the Landauer–Büttiker formalism does not answer
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Fig. 16.28 Hall resistance calculated
with the toy model described in the
text. The material parameters are
those of GaAs with a Fermi energy of
15 meV.
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the question how the particular shape of the magnetic-field-dependent
transmissions comes about microscopically, i.e., which wave functions
have to be used for the description of the electrons, where exactly the
currents flow in the Hall bar, and how the potential is distributed in the
sample. Quantum mechanical percolation theories try to answer these
questions about the microscopic origin of the quantum Hall effect.

16.3.5 Self-consistent screening in edge channels

All the above models neglected the interaction between the electrons.
It has been shown that states drifting in perpendicular electric and
magnetic fields either in the bulk, or at edges, are strongly affected
by screening effects (Chklovskii et al., 1992). The situation is schemati-
cally depicted in Fig. 16.29. The self-consistent potential does not change
smoothly, but rather in step-like increments. This peculiar shape of the
potential is created by the strongly oscillating local density of states.
The electron density also does not change smoothly, but in step-like
decrements. As a result, so-called compressible and incompressible re-
gions are formed.

In Fig. 16.29(a) the potential at the edge of a sample is schematically
depicted together with the Landau level dispersion for a noninteracting
system. The local electron density near the edge behaves as depicted in
(b). At positions where a Landau level that is below the Fermi energy in
the interior of the sample reaches the Fermi energy, the density jumps
sharply by the Landau level degeneracy nL = |e|B/h. In a quantum
mechanical picture, the width of the jump is of the order of the extent of
the corresponding wave function, i.e., on the scale of lc =

√
�/|e|B. This

behavior is strongly modified in the self-consistent treatment as shown
in Fig. 16.29(c) and (d). At places where the Landau level dispersion
crosses the Fermi energy, the local density of states at the Fermi energy is

Fig. 16.29 Structure of edge states
in the integer quantum Hall regime
assuming spin degeneracy. (a) Adia-
batic increase of Landau levels at the
edge of a sample in the picture of non-
interacting electrons. (b) The corre-
sponding electron density for this case.
(c) Potential and Landau level disper-
sion at the sample edge in the self-
consistent screening model. (d) The
corresponding self-consistent electron
density. (Reprinted with permission
from Chklovskii et al., 1992. Copyright
1992 by the American Physical Soci-
ety.)
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high and the potential gradient can be well screened. As a consequence,
the potential increase is flattened out and the electron density changes
by nL slowly and steadily over a quite large distance. These stripes are
called compressible, because the electrochemical potential can change
continuously when the electron density is increased (the compressibility
κ is given by κ−1 = n2∂µelch/∂n). Between neighboring compressible
stripes, the local electron density is constant, because the number of
occupied Landau levels does not change. The self-consistent potential
changes by about �ωc. These stripes between the compressible stripes
are called incompressible because the electrochemical potential would
jump here upon an increase of the electron density. Figure 16.29(d)
shows that in the incompressible regions the electron density is constant.

Following Lier and Gerhardts, 1994, the separation of the incompress-
ible stripe with integer local filling factor νloc from the edge is given by

yνloc =
d0

1 −
(

νloc
νbulk

)2 ,

where νbulk is the filling factor in the interior of the sample. The length
scale d0 measures the width of the depletion region at the sample edge.
It depends on the sample fabrication and on the electron density ns

in the two-dimensional electron gas. With increasing magnetic field,
the incompressible stripes move away from the sample edge until they
meet in the center of the Hall bar with the corresponding stripe from
the opposite sample edge and are eventually depleted. The width of
incompressible stripes is given by

aνloc =
4yνloc

ν

√
νloca�

B

πd0
.

The width of the incompressible regions increases with increasing mag-
netic field. Stripes that are further away from the sample edge (larger
νloc) have a larger width than those close to the edge. Typical length
scales are of the order of 100 nm.

This model of self-consistent edge channels describes an equilibrium
property of the electronic system. If only small voltages are applied, this
picture should not change significantly. The distribution of the equilib-
rium currents in the self-consistent edge channel picture were calculated
in Geller and Vignale, 1995. They found

jx(y) =
�

2m�

⎡
⎣(2[ν] + 1) +

1

µB
∂µxc

ch(y)

∂y

⎤
⎦ ∂n(y)

∂y
+

n(y)
m�ωc

∂Uxc
H (y)
∂y

.

Here, µxc
ch(y) is an exchange energy contribution to the chemical po-

tential, and Uxc
H is the self-consistent potential containing Hartree- and

exchange interaction effects. The first term in the equation is propor-
tional to the gradient of the electron density and therefore describes the
current density in the region of a compressible stripe. The second term
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is proportional to the gradient of the local potential and therefore de-
scribes the current density in the incompressible regions. Because these
two terms differ in sign, and the prefactors are positive, the local currents
in compressible and incompressible stripes flow in opposite directions,
as indicated schematically in Fig. 16.29(d).
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Fig. 16.30 De Haas–van Alphen oscil-
lations of the magnetization of a two-
dimensional electron gas in a Ga[Al]As
sample. (Reprinted with permission
from Schwarz et al., 2002. Copyright
2002 by the American Physical Soci-
ety.)

The current in the compressible stripes leads to a diamagnetic effect,
because the current that circulates at the sample edge creates a magnetic
field counteracting the external field in the interior of the sample. In con-
trast, the current in the incompressible stripes leads to a paramagnetic
effect. As compressible and incompressible regions are disappearing suc-
cessively with increasing magnetic field, the whole magnetic moment of
the electron gas oscillates periodic in 1/B around zero (Bremme et al.,
1999). This is the de Haas–van Alphen effect, a 1/B-periodic oscillation
of the magnetization of a two-dimensional electron gas in a high magnetic
field. Figure 16.30 shows the result of the corresponding measurement
of the magnetization.

16.3.6 Quantum Hall effect in graphene

At the end of our discussion of the integer quantum Hall effect we take
a little detour and discuss the quantum Hall effect in graphene. The dif-
ference between this material and conventional semiconductor materials
is the gapless linear dispersion relation near the K and K′ points of the
first Brillouin zone which replaces the parabolic dispersion relation that
we have discussed so far. Correspondingly, the wave functions near the
K and K′ points are described by a two-component vector, resembling
the two basis atoms in the primitive cell. The details of this description
were described on pages 23 and 40. Graphene possesses a two-fold spin
and a two-fold valley degeneracy. According to our previous discussion,
quantum Hall plateaus would be expected at σxy = 4ie2/h with i be-
ing an integer number. The first measurements of the quantum Hall
effect in graphene were reported in Novoselov et al., 2005 and Zhang
et al., 2005. Figure 16.31 shows the result of a measurement on a Hall
bar structure. Surprisingly, the plateaus do not appear at the expected
integer multiples of 4e2/h, but at half integer values.

In order to understand this behavior, we have to investigate the Lan-
dau level structure of the graphene material (see also Ando, 2005). To
this end we start from eq. (3.26) and make the transition to the analogue
of the effective mass equations derived for parabolic bands in chapter 4.
In a magnetic field perpendicular to the plane of the sheet we replace
q = −i∇ by −i∇ + (e/�)A. We choose for the vector potential

A = (−yB, 0, 0).
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Fig. 16.31 Quantum Hall effect and
longitudinal resistance measured on a
graphene Hall bar at a temperature of
1.7 K.

The envelope functions are then described by the equation

�c

(
0 −i∂x − y/l2c − ∂y

−i∂x − y/l2c + ∂y 0

)(
Aq(r)
Bq(r)

)
= E

(
Aq(r)
Bq(r)

)
.

Letting (
Aq(r)
Bq(r)

)
= eiqxx

(
Aq(y)
Bq(y)

)
and ε = E/�c we obtain(

0 qx − y/l2c − ∂y

qx − y/l2c + ∂y 0

)(
Aq(y)
Bq(y)

)
= ε

(
Aq(y)
Bq(y)

)
.

We decouple this system of equations by multiplying both sides of one
equation by ε and inserting it into the other and vice versa. This leads
from

(qx − y/l2c − ∂y)Bq(y) = εAq(y)
(qx − y/l2c + ∂y)Aq(y) = εBq(y)

to

(qx − y/l2c − ∂y)(qx − y/l2c + ∂y)Aq(y) = ε2Aq(y)
(qx − y/l2c + ∂y)(qx − y/l2c − ∂y)Bq(y) = ε2Bq(y).

Further simplifications give[
−∂2

y + (qx − y/l2c)
2
]
Aq(y) = (ε2 − 1/l2c)Aq(y)[

−∂2
y + (qx − y/l2c)

2
]
Bq(y) = (ε2 + 1/l2c)Bq(y).
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These are harmonic oscillator equations with solutions for the energies

E = ±
√

2e�c2B(nA + 1) for nA = 0, 1, 2, . . .

E = ±
√

2e�c2BnB for nB = 0, 1, 2, . . .

It is interesting to note that the lowest Landau level occurs at energy
E = 0, but only solutions for one pseudospin exist, i.e., the other compo-
nent is zero. All higher Landau levels are composed of states with both
pseudospins mixed. The states of the Landau levels are the usual har-
monic oscillator wave functions displaced by qxl

2
c in the plane. Note,

however, that two pseudospin wave functions occurring at the same
energy have different Landau level quantum numbers. The Landau
level degeneracy is, as in any other two-dimensional system, given by
nL = eB/h. It is straightforward to verify that doing the same analysis
at K′ leads to the same results, but with the roles of lattice sites A
and B interchanged. Each Landau level state can therefore be occupied
with four electrons, i.e., two opposite spins and two opposite valleys.
Therefore all Landau levels at the same energy can take 4nL electrons.

The Landau level at zero energy is a special property of the graphene
band structure. It leads to the resistance maximum at zero charge carrier
density in Fig. 16.31. The half integer filling factors at the plateaus can
be understood from the following argument: If we consider the Landau-
levels to be symmetrically broadened by disorder, half of its states belong
to the valence band, and half to the conduction band. Starting from
the charge neutrality point we will have the first plateau, when the zero
energy Landau level is completely filled, i.e., when we have 2nL electrons
in the conduction band (rather than 4nL). This fact leads to the shift
of the first plateau from 4e2/h to 2e2/h, and any higher plateaus will
correspondingly appear at quantized values

σxy =
4e2

h

(
i− 1

2

)
for integer i. For other aspects of the zero-energy Landau level involving
Berry’s phase we refer the reader to the review Ando, 2005.

Another interesting aspect of the quantum Hall effect in graphene
is the absolute energy spacings at experimentally achievable magnetic
fields. For example, at a magnetic field B = 10 T, the energy separation
between the first and the zero energy Landau level is given by ∆E10 =
115 meV which is more than four times the thermal energy kBT at room
temperature. This huge energy scale has made the observation of the
quantum Hall effect at room temperature possible (Novoselov et al.,
2007).

16.4 Fractional quantum Hall effect

16.4.1 Experimental observation

In 1982, soon after the discovery of the integer quantum Hall effect
in a silicon MOS structure, Tsui et al., 1982, found plateaus in the
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Fig. 16.32 Measurement of the frac-
tional quantum Hall effect in a
GaAs/AlGaAs heterostructure at the
temperature T = 100mK. The num-
bers in the figure indicate the filling fac-
tors. (Reprinted with permission from
Willett et al., 1987. Copyright 1987 by
the American Physical Society.)

Hall resistance beyond the integer quantum Hall effect that occurred at
fractional filling factors.

Figure 16.32 shows the result of a measurement of the fractional quan-
tum Hall effect. The phenomenon can only be observed in samples with
very high mobility [typically more than 106 cm2/Vs]. The theory of the
fractional quantum Hall effect was strongly influenced by the ideas of
Laughlin (Laughlin, 1983), who considered interactions between elec-
trons to be crucial for the occurrence of the effect. Tsui, Störmer, and
Laughlin were awarded the Nobel prize for physics in 1998 for the ex-
perimental discovery and its theoretical description.

Phenomenology of the fractional quantum Hall effect. Phenom-
enologically, the fractional quantum Hall effect is very similar to the
integer effect. The plateaus in the Hall resistance occur at values

ρplateau
xy =

h

e2
· 1
p/q

,

where q and p are both integers, but q is bound to be odd in (almost) all
cases (see below for so-called even denominator fractions). At the same
magnetic fields where plateaus exist in ρxy, the longitudinal resistivity
ρxy shows minima that approach zero at sufficiently low temperatures
(see ν = p/q = 2/5 or 2/3 in Fig. 16.32). The resistivity values of ρxx

in the minima were found to exhibit an exponential temperature depen-
dence, i.e., ρxx(T ) ∝ exp(−∆p/q/kBT ) as in the integer quantum Hall
effect, indicating the formation of electronic ground states separated
from the lowest excitations by an energy gap ∆p/q � �ωc. It is com-
monly believed that this energy gap is a result of electronic correlations
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brought about by the Coulomb interaction leading to a rich substructure
within each Landau level.

The fractional quantum Hall effect can only be observed if the scale
of the disorder potential in the two-dimensional electron gas, and the
temperature, are smaller than the energy scale ∆p/q. Nevertheless, small
disorder is generally believed to be crucial for the observation, because
it serves to localize quasiparticles and brings about finite-width Hall
plateaus similar to the integer quantum Hall effect.

16.4.2 Laughlin’s theory

In the range of filling factors ν < 1 all electrons are in the lowest spin-
polarized Landau level, i.e., all spins are oriented in parallel. In this high
magnetic field range, no other Landau levels play a role, and the kinetic
energy is the same for all electrons and therefore an irrelevant constant.
As a consequence, the Coulomb interaction between electrons becomes
dominant for the dynamics of the electrons. Bob Laughlin published a
theory of the fractional quantum Hall effect in 1983 (Laughlin, 1983) in
which he suggested the many-body ground state wave function for filling
factor ν = 1/m (m > 0 is an odd number)

ψ1/m =
∏
j<k

(zj − zk)me−
�

l |zl|2/4. (16.22)

Here, zj = xj + iyj is the position of the jth electron in complex no-
tation. The exponential factors in this wave function correspond to
the ground state wave function of noninteracting electrons in a mag-
netic field. The prefactor (Laughlin–Jastrow factor) creates nodes in
the wave function for the case that two electron positions coincide. This
incorporates spatial correlations between the electrons minimizing their
Coulomb interaction. The number m has to be odd, in order to ensure
that the wave function changes sign when two particles are interchanged.
We can visualize how this wave function works in principle by keeping
all electron coordinates zj in eq. (16.22) with j > 0 fixed and plotting
the resulting wave function as a function of z0. Figure 16.33 shows an
example for filling factor ν = 1/3. In (a) the squared modulus of the
resulting wave function is plotted on a logarithmic color scale (printed
here in grayscale). The probability density for an electron vanishes at
those locations where the other electrons sit. In (b) the phase of the
wave function is shown. If the free electron travels on a closed path
around one of the fixed electrons, it changes its phase by 2π/ν, i.e., by
6π in our case of ν = 1/3. This is equivalent to the Aharonov–Bohm
phase acquired if an electron encircles three magnetic flux quanta. We
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Fig. 16.33 (a) Conditional probability
density for an electron with coordinates
z0 = (x+iy)/lc, if the coordinates of all
other electrons are fixed. (b) The phase
of the corresponding wave function.

therefore talk about composite particles where three flux quanta are at-
tached to each electron. The nodes in the wave function corresponding
to the singularity points of the phase are called vortices. An impor-
tant consequence of Laughlin’s theory is the insight that quasiparticle
excitations of the system at filling factor ν = 1/m carry the fractional
charge qeff = −|e|/m. In this picture, the quantization of Gxy occurs
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at integer filling factors of the conductance quantum −|e|qeff/h. Much
as for the integer quantum Hall effect, together with Gxx ≈ 0 we obtain
the quantized Hall resistivities h/(eqeff ) · 1/νeff .

16.4.3 New quasiparticles: composite fermions

The understanding of the analogy between the fractional and the integer
quantum Hall effect has made big progress with the introduction of
new quasiparticles, the so-called composite fermions (overviews are, for
example, found in Jain 2000; Heinonen 1998).

Phenomenologically we observe a striking similarity of the ρxx-oscil-
lations left and right of ν = 1/2 with Shubnikov–de Haas oscillations
around zero magnetic field. The same similarity is found for the Hall
resistance ρxy around ν = 1/2 and around zero magnetic field. This
similarity has motivated the idea of describing the fractional quantum
Hall effect around filling factor ν = 1/2 as the integer quantum Hall
effect of new quasiparticles for which the effective magnetic field Beff

vanishes at ν = 1/2.
In this picture the magnetic field at filling factor ν = 1/2 is eliminated

from the description, by attaching two magnetic flux quanta φ0 = h/|e|
to each electron (Jain, 1989). This is based on the fact that at filling
factor ν = 1/2 the number of flux quanta per unit area is exactly twice
the number of electrons per unit area, i.e.,

n =
B1/2

2h/|e| .

The new quasiparticle, called a composite fermion, incorporates the ex-
ternal magnetic field and eliminates it from the description of the qua-
siparticles at filling factor 1/2.

At magnetic fields B �= B1/2, the composite fermions experience the
effective field

Beff = B −B1/2.

Landau levels for composite fermions result with a Landau level split-
ting (energy gap) given by �ωeff

c and the degeneracy factor eBeff/h.
Correspondingly there is an integer quantum Hall effect for composite Table 16.1 Correspondence between

fractional filling factors ν for electrons
and integer filling factors νeff for com-
posite fermions. Negative filling factors
correspond to negative magnetic field
values.

νeff ν

1 1/3
−1 1
2 2/5

−2 2/3
3 3/7

−3 3/5

fermions at integer effective filling factors

νeff =
n

|e|Beff/h
.

From this equation we find the relation between νeff and the filling factor
ν for electron Landau levels:

ν =
νeff

1 + 2νeff
.

Inserting integer values for νeff we obtain the fractional values of ν as
shown in Table 16.1. The plateaus in ρxy and minima in ρxx at these
fractional values of filling factors can therefore be interpreted as the
integer quantum Hall effect of composite fermions at the filling factor
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νeff . The series in Table 16.1 can be arbitrarily continued. In particu-
lar, all fractional filling factors have integer numerators and odd integer
denominators.

The ground state wave function at filling factor ν is in this picture
given by

ψν =
∏
j<k

(zj − zk)2φνeff . (16.23)

Here, zj = xj +iyj is the position of the jth electron in complex notation
and the φνeff are Slater determinants of single-particle wave functions of
noninteracting electrons at filling factor νeff . In the wave function ψν

the factor
∏

j<k(zj − zk)2 makes sure that each electron sees a node in
the wave function at the position of each other electron. This implies
that the electrons avoid each other and the probability of finding two
electrons at the same place is zero. In this way the Coulomb energy is
minimized. The Slater determinant makes sure that the wave function
is antisymmetric under the exchange of two electrons.

If the jth electron encircles the kth, an additional phase 2 × 2π is
created. Therefore, a node in the wave function is equivalent to two flux
quanta (cf., the discussion of Laughlin’s wave function). How does it
happen that the equation of motion for composite fermions does not con-
tain the external magnetic field B, but the effective field Beff? In order
to answer this question we consider a closed path enclosing the area A.
If we move an electron counterclockwise along the path it accumulates
the Aharonov–Bohm phase ∆ϕAB = −2πBA/(h/|e|). At the same time,
the number of nodes within the area A is equal to nA leading to a phase
∆ϕnodes = 2×2πnA. The total phase ∆ϕ = −2πBA/(h/|e|)+4πnA can
be interpreted as the Aharonov–Bohm phase in the effective magnetic
field Beff = B−B1/2. This means that Beff is the relevant magnetic field
for the motion of the composite fermion. Instead of talking about nodes
of the wave function we can visualize composite fermions as electrons
with two attached flux quanta.

At the filling factor ν = 1/3 (νeff = 1) the wave function (16.23) is

ψ1/3 =
∏
j<k

(zj − zk)2φνeff=1

=
∏
j<k

(zj − zk)2

⎡
⎣∏

j<k

(zj − zk)e−
�

l |zl|2/4

⎤
⎦

=
∏
j<k

(zj − zk)3e−
�

l |zl|2/4,

i.e., it reproduces Laughlin’s wave function (16.22). In the picture of
composite fermions it is interpreted as the wave function for a completely
filled composite fermion Landau level.

In lowest order, interactions between composite fermions are neglected
and the picture of noninteracting quasiparticles in the effective magnetic
field Beff is used. At Beff = 0, i.e. at ν = 1/2 (νeff = ∞) the composite
fermions form a Fermi sea up to the Fermi energy Eeff

F = 2EF. The
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factor 2 results from the lifted spin degeneracy at ν > 1. At Beff �= 0
composite fermion Landau levels form which lead to plateaus in the Hall
resistance and minima in the longitudinal resistance.

A comparison of exact diagonalization calculations of the problem
with up to 12 electrons, and the ground state energies of the composite
fermion model at various filling factors, show that the wave function
(16.23) reproduces the exact ground state energy typically within 0.1%.
This shows that this wave function is an excellent approximation for the
problem.

The wave function (16.23) describes the correlated electronic system
also very well at magnetic fields at which no fractional quantum Hall
state exists. In particular this is true for magnetic fields around B1/2.
For example, magnetic focusing experiments have demonstrated that
composite fermions have a semiclassical cyclotron radius

Reff
c =

�keff
F

|e|Beff
.

As a result of the spin polarization, keff
F =

√
4πn. In addition, the exper-

iment shows that composite fermions carry the charge −|e|. As a result,
the theory gives a coherent description of the dynamics of electrons be-
tween ν = 1 and ν = 1/3 in the picture of noninteracting composite
fermions.

So far we have assumed that all spins at high magnetic fields are
aligned in parallel. There are experiments at smaller fields showing
that composite fermions carry a spin 1/2 like electrons. The Zeeman
splitting between composite fermion Landau levels of opposite spin ori-
entation has been measured in a tilted magnetic field (Melinte et al.,
1999; Kukushkin et al., 1999).

An effective mass of composite fermions arises purely from interac-
tion effects, because the kinetic energy of the electrons is irrelevant.
It is therefore not at all related to the effective mass of electrons at
the Γ-minimum or with the free electron mass. The composite fermion
mass was measured, for example, in cyclotron resonance experiments
(Kukushkin et al., 2002). The effective mass absorbs the main part
of the Coulomb interaction between the electrons. It can, however, be
shown that a small interaction remains between composite fermions.

16.4.4 Composite fermions in higher Landau levels

Above we have discussed composite fermions in the lowest spin-polarized
Landau level. Figure 16.34 shows a measurement of the longitudinal re-
sistivity of a very high quality (µ = 12 × 106 cm2/Vs) Ga[Al]As het-
erostructure in the range of filling factors around ν = 3/2, where the
Fermi energy lies in the second Landau level. A sequence of fractional
filling factor minima are observed at ν = 4/3, 7/5, 10/7, 13/9, 14/9,
11/7, 8/5, and 5/3, resembling the formation of ground states with en-
ergy gaps.

It turns out that the composite fermion description remains valid at
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Fig. 16.34 Measurement of the frac-
tional structure of the second Landau
level around filling factor ν = 3/2
in a GaAs/AlGaAs heterostructure at
the temperature T = 30 mK. Measure-
ment courtesy of Ch. Charpentier, U.
Gasser, K. Ensslin, ETH Zurich; High
mobility wafer: Werner Wegscheider,
University of Regensburg.
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filling factors 2 ≥ ν ≥ 1. For example, at filling factor ν = 3/2, the
lowest Landau level is completely filled, whereas the second Landau
level is exactly half filled. We can now attach two flux quanta to each of
the electrons in the half-filled Landau levels. These composite fermions
will then move in an effective magnetic field Beff = 0 at filling factor
ν = 3/2. At this filling factor, the density of composite fermions is only
one third of the total electron concentration. If the magnetic field is
slightly increased from ν = 3/2, the composite fermion density decreases,
as more and more electrons can be accommodated in the lowest Landau
level. It can be shown that the effective magnetic field seen by theseTable 16.2 Correspondence between

fractional filling factors ν for electrons
and integer filling factors νeff for com-
posite fermions in the second Landau
level. Negative filling factors corre-
spond to negative effective magnetic
field values.

νeff ν

1 4/3
−1 2
2 7/5

−2 5/3
3 10/7

−3 8/5

composite fermions is given by

Beff = 3(B −B3/2).

As a consequence, the relation between filling factor and effective filling
factor of composite fermion Landau levels is

νeff =
ν − 1
3 − 2ν

⇔ ν =
3νeff + 1
2νeff + 1

.

This leads to the fractional filling factors shown in Table 16.2. They are
in agreement with the filling factors at which minima in the longitudinal
resistivity are observed in Fig. 16.34.

16.4.5 Even denominator fractional quantum Hall
states

The achievement of ever increasing mobilities in two-dimensional elec-
tron gases formed in Ga[Al]As heterostructures, and of lower and lower
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temperatures at which transport experiments were performed, allowed
the observation of gapped ground states with smaller and smaller ac-
tivation energies ∆p/q. In 1987 a quantized Hall plateau at the even
denominator filling factor ν = 5/2 was experimentally found (Willett
et al., 1987). Later experiments demonstrated a very precise quanti-
zation of the Hall resistance at T = 4 mK to within 2 ppm, and an
activation energy gap ∆5/2 of about 110 mK in a sample with a mo-
bility of 17 × 106 cm2/Vs (Pan et al., 1999). The results from these
measurements are shown in Fig. 16.35. The additional odd denominator
fractional quantum Hall states with clear plateaus at ν = 7/3, and 8/3
correspond to states of noninteracting composite fermions with effective
filling factors

R x
x
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)

R x
y

(e
2 /

h)
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Fig. 16.35 Measurement of the frac-
tional structure of the third Landau
level around filling factor ν = 5/2 in
a GaAs/AlGaAs heterostructure at the
temperature T = 4mK. (Reprinted
with permission from Pan et al., 1999.
Copyright 1999 by the American Phys-
ical Society.)

νeff =
ν − 2
5 − 2ν

⇔ ν =
5νeff + 2
2νeff + 1

,

living in an effective magnetic field

Beff = 5(B −B5/2).

It has been argued that with the residual interaction between composite
fermions, possibilities for novel composite fermion phases arise, such as
superconductivity or a Wigner crystal. Currently, the most likely candi-
date for the ν = 5/2 ground state is a state in which composite fermions
in the third Landau level pair up similar to the formation of Cooper
pairs in the BCS theory of superconductivity. In this picture, the state
is seen as a BCS-like ground state of bosonic composite fermion pairs.
An interesting aspect of the states at ν = 5/2 is that the quasiparticle
excitations above the ground state are neither bosons nor fermions, but
particles known as nonabelian anyons. For this reason, the 5/2-state is
discussed theoretically as a possible candidate for the realization of fault-
tolerant topological quantum computation [see, e.g., Nayak et al., 2008].
Experiments on this state are very demanding because of the required
ultra-high-mobility samples, and the low electronic temperature.

16.4.6 Edge channel picture

A theory of edge channels for the regime of the fractional quantum Hall
effect has been developed in Beenakker, 1990 and MacDonald, 1990. It
allows the application of the Landauer–Büttiker formalism to the frac-
tional quantum Hall effect.

The basic idea is that, as the electron density tends to zero towards the
sample edge, there are regions where the electron gas has local fractional
filling factors of 1/3, 2/3, etc. If the potential gradient in these regions is
small (i.e., the change of the potential is much smaller than the fractional
energy gap over a length scale of the magnetic length), then the energy
of the electron gas in these regions is lowered and the fractional energy
gap can form. The gap formation is associated with the formation of a
spatially extended region of constant filling factor, i.e., an incompressible
stripe along the edge. Assume there is a stripe with ν = 1/3 closer to
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the edge, and ν = 1 in the bulk of the sample. Increasing the chemical
potential slightly by ∆µ will lead to an additional electron density

∆n =
δn

δµ

∣∣∣∣
φ=const.

∆µ = − δn

δφ

∣∣∣∣
µ=const.

∆µ

in the regions between constant filling factors. This additional charge
moves along lines of constant potential, i.e., between the channels of
constant filling factor, with drift velocity

vd = − 1
|e|B

∂φ

∂x

and gives a current density

j = −|e|∆nvd = −|e| δn
δφ

∣∣∣∣
µ=const.

∆µ
1

|e|B
∂φ

∂x
= −|e|

h
∆µ

∂ν

∂x
.

The corresponding current is obtained by integrating over x to be

I = −|e|
h

∆µ∆ν,

where ∆ν is the difference between the filling factor regions enclosing
the current carrying region, in our example ∆ν = 1 − 1/3 = 2/3. The
conductance of such an edge current can therefore be written as

G =
e2

h
∆ν.

For edge channels in the regime of the integer quantum Hall effect we
always have ∆ν = 1 and Büttiker’s original edge channel picture for
the integer quantum Hall effect is recovered. In our example, we get a
conductance of G = 2e2/3h.

16.5 The electronic Mach–Zehnder
interferometer

In this chapter we have been looking at the physics of the quantum
Hall effect. The formation of edge channels was one of the important
concepts for its understanding. The edge states can be seen as the ana-
logues to the one-dimensional modes in an ideal quantum point contact
constriction without backscattering. The suppression of backscattering
in the quantum Hall regime has been found to be very robust, because
counterpropagating edge channels are separated in real space by macro-
scopic distances. Edge states can be seen as unidirectional electron wave
guides in which electron waves propagate coherently as laser light would
propagate in an optical fiber. Therefore, concepts from optics can be
transferred to semiconductor nanostructure by exploiting this analogy.
One particular example is the electronic Mach–Zehnder interferometer.
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Interferometry in optics has brought about a number of setups for the
observation of interference effects. The ring geometry can be seen as the
electronic version of a double-slit experiment. The Fabry–Perot inter-
ferometer is another example which can be seen as having an electronic
relative, as we will see in a later chapter on quantum dot structures.
Here we will show, as another example of the realization of interference
in nanostructures, the electronic version of the Mach–Zehnder interfer-
ometer. The basic principle of this interferometer is shown in Fig. 16.36.
Coherent monochromatic light is sent from a source S towards a beam
splitter. At the beam splitter the light has a transmission amplitude t1
for straight transmission, and a reflection amplitude r1 for reflection in
the direction normal to the incident beam. In order to conserve the flux,
these two amplitudes obey the relation |r1|2 + |t1|2 = 1. Both partial
waves will then further propagate to a mirror where they are reflected
towards the same second beam splitter, where they are made to inter-
fere. The total transmission amplitude for a photon to be transmitted
into the observation direction A is given by

S

A

B

mirror

mirror

beam
splitter 1

beam
splitter 2

Fig. 16.36 Schematic setup of a Mach–
Zehnder interferometer. The photon
source is denoted as S; A and B are de-
tectors.

tA = r1e
iϕαr2 + t1e

iϕβ t′2

(again we have |r2|2 + |t2|2 = 1 and |r′2|2 + |t′2|2 = 1), whereas the
amplitude for transmission into direction B is

tB = r1e
iϕαt2 + t1e

iϕβr′2.

The phases ϕα/β depend on the optical path length of paths α and β. We
observe that in general, r1 and t1 are complex numbers, but their phases
can be absorbed in the phases ϕα/β for simplifying further calculations.
The primed transmission and reflection amplitudes occur because there
are two beams from different directions incident on the second beam
splitter. We will denote the phase angles of the respective amplitudes
as θr, θt, θ′r, and θ′t. The corresponding transmission probabilities are
then given by

TA = |r1r2|2 + |t1t2|2 + 2|r1t1r2t2| cos(ϕα − ϕβ + θr − θ′t)
TB = |r1t2|2 + |t1r2|2 + 2|r1t1t2r2| cos(ϕα − ϕβ + θt − θ′r).

Describing a single beam splitter with an S-matrix of the form (13.14),
we find θt − θ′r = θr − θ′t + π leading to

TA = |r1r2|2 + |t1t2|2 + 2|r1t1r2t2| cos(ϕα − ϕβ + θr − θ′t)
TB = |r1t2|2 + |t1r2|2 − 2|r1t1t2r2| cos(ϕα − ϕβ + θr − θ′t).

The two transmission probabilities oscillate as a function of the phase
difference ϕα − ϕβ which can be changed, for example, by changing the
optical path length in one of the interferometer arms. The oscillations of
the two transmissions will always show a phase difference of π, making
sure that TA + TB = 1. This expresses the fact that no photon is lost in
the ideal interferometer.
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Fig. 16.37 (a) Scanning electron mi-
croscope image of the electronic Mach–
Zehnder interferometer realized on the
basis of a two-dimensional electron gas
in Ga[Al]As. (b) Observed interference
pattern (see text for details) (Ji et al.,
2003. Reprinted by permission from
Macmillan Publishers Ltd. Copyright
2003.)
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The electronic Mach–Zehnder interferometer has been realized in a
sample fabricated from a two-dimensional electron gas in Ga[Al]As (Ji
et al., 2003). A scanning electron microscope picture of the correspond-
ing sample is shown in Fig. 16.37(a); a schematic view is presented in
Fig. 16.38. Edge states in the quantum Hall regime at filling factor ν = 1
propagating along the sample edges play the role of the light beams in
the optical interferometer. Two quantum point contacts are used as
beam splitters for quantum Hall edge states by tuning their transmis-
sions |t1|2 and |t2|2 to 1/2. The interference patterns were observed at
an electronic temperature of 20 mK by applying a voltage between the
source S and the drain contacts (A, B) and measuring the transmitted
electrons as the currents IA and IB. A gate placed near the edge of the

2DEG
S A

B
split
gate

split
gate

= 1

Fig. 16.38 Schematic view of the
electronic Mach–Zehnder interferome-
ter. Ohmic contacts are indicated in
dark grey.

sample in one interferometer arm allowed the area enclosed by the two
interfering paths to be changed by ∆A, and thereby change the enclosed
magnetic flux. This leads to a change of the phase difference ϕα − ϕβ

by the amount eB∆A/h. The resulting interference pattern in IA and
IB is depicted in Fig. 16.37(b). As expected, there is a phase difference
of π between the oscillations of the two currents.

Further reading

• Quantum Hall effects: Beenakker and van Houten
1991; Datta 1997; Prange and Girvin 1988;
Chakraborty and Pietilainen 1995; Heinonen 1998.

• Papers: von Klitzing et al. 1980; Tsui et al. 1982;
Jain 2000.

• Nobel lecture: Stormer 1999.
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Exercises

(16.1) In the figure below you see the magnetic-
field-dependent longitudinal resistivity ρxx and
the Hall resistivity ρxy of a two-dimensional
electron gas at the temperature T = 2.3 K.

0 1 20

1

2

3

Magnetic field B (T)

xx
,

xy
 (k

)

xy

xx × 5

(a) Determine the sheet electron density from the
Hall effect.

(b) Determine the sheet electron density from the
Shubnikov–de Haas oscillations, and compare
the resulting value with that determined from
the Hall effect.

(c) What is the mobility of the electrons in this
sample?

(d) Use the measurement data to estimate the
magnetic field at which µB = ωcτ = 1.
What can you directly read from this mag-
netic field?

(16.2) In the discussion of the Drude model, in eq. (10.50)
we introduced the Drude scattering time

�

τ0(E)
= ni

m�

2π�2

� 2π

0

dϕ

����v(i)(q)
���2
�

imp

(1−cosϕ),

whereas in the discussion of the Landau level broad-
ening we used the quantum lifetime in eq. (16.6),

�

τq(E)
= ni

m�

2π�2

� 2π

0

dϕ

����v(i)(q)
���2
�

imp

,

where |q| =
�

2k2
F(1 − cosϕ).

(a) Discuss the differences between these two
scattering times and their physical meaning.

(b) Show that for short-range scattering poten-
tials the ratio τ0(EF)/τq(EF) ≈ 1. How does
this ratio change for long-range scattering po-
tentials?

(16.3) In this problem you consider the degeneracy of Lan-
dau levels in a two-dimensional electron gas with a
magnetic field applied perpendicular to the plane.
Let the sheet electron density of the electron gas
be ns.

(a) Calculate the magnetic field for which there
is exactly one magnetic flux quantum h/e per
electron. Show that this magnetic field corre-
sponds to filling factor ν = 1.

(b) Applying a magnetic field does not change the
sheet density ns in the electron gas. Calcu-
late the degeneracy of a Landau level by as-
suming that the two-dimensional density of
states at zero magnetic field ‘contracts’ into
Landau levels at finite magnetic field. Hint:
neglect the Zeeman splitting of Landau levels,
but take spin degeneracy into account.

(16.4) Consider a two-dimensional electron gas in Hall bar
geometry in a magnetic field perpendicular to the
plane of the electron gas at Landau level filling fac-
tor ν = 2. A suitable voltage applied to the metal-
lic top gate shown in gray can be used to reflect
individual edge channels as indicated in the figure
below. Current is driven from contacts 1 to 4; all
other contacts are used for voltage measurements.
Compare the two-terminal resistance R14,14, the
two longitudinal resistances R14,23 and R14,65, and
the two Hall resistances R14,26 and R14,35 for the
cases depicted in Figures (a)–(c) and the generic
case, when the gate is not energized.
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(a)

(b)

(c)

(16.5) In this problem you reconsider your understanding
of the fractional quantum Hall effect.

(a) What are the experimental boundary con-
ditions for the observation of the fractional
quantum Hall effect? Discuss measurement
temperature, electron mobility, and the mag-
netic field strength.

(b) Determine the elastic mean free path for elec-
trons in a sample with the mobility µ =
30× 106 cm2/Vs. What are the consequences
of the result for the experiment?

(c) Why do the filling factor fractions at which
the fractional quantum Hall effect occurs have
almost exclusively odd denominators?

(d) Discuss in which cases ‘composite fermions’ or
‘composite bosons’ are more appropriate de-
scriptions of the physics at particular filling
factors.

(e) Do interaction effects have any importance for
the integer quantum Hall effect?

(f) Which experiments may be used to prove the
existence of a Fermi surface for quasiparti-
cles?

(16.6) Consider a very high mobility two-dimensional elec-
tron gas subject to a strong magnetic field normal
to the plane driving the system into a region of fill-
ing factor ν < 1. The electronic system is assumed

to be fully spin-polarized. In this problem we con-
sider the joint motion of two interacting electrons
which is governed by the hamiltonian

H =

2

i=1

[pi + |e|A(ri)]
2

2m�
+

e2

4πεε0|r1 − r2|
.

You will now work on a plausibility argument as
to why fractional filling factors with odd denomi-
nators lead to states with reduced energy.

(a) Show that the hamiltonian can be written as
the sum of a part describing the center of mass
motion and a part describing the relative mo-
tion of the two electrons. The center of mass
coordinate is R = (r1+r2)/2, and the relative
coordinate is r = r1 − r2. What is the energy
spectrum of the center of mass hamiltonian?

(b) Express the hamiltonian of the relative mo-
tion in cylindrical coordinates and introduce
a relative angular momentum quantum num-
ber m. Discuss the physical meaning of this
relative angular momentum quantum number
for the motion of the particles.

(c) What implication does the symmetry of the
fermionic two-particle wave function upon
particle exchange have for the possible rela-
tive angular momentum values, given that the
two electrons have the same spin?

(d) Although we cannot solve the radial equation
analytically, an estimate for the average sep-
aration ρ̄ of the two electrons can be made
by inspection of the hamiltonian. Justify the
result

ρ̄ = 2lc |m|,
where lc = �/eB is the magnetic length.

(e) A minimum for the energy of an interacting
two-dimensional electron gas in a magnetic
field is expected, when the average electronic
separation

ρ̃ =
2

πns

given by the two-dimensional electron density
ns is commensurate with ρ̄. At which frac-
tional filling factors is this commensurability
condition fulfilled? What are the three largest
possible filling factors?
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In previous chapters we have seen that electron–electron interaction ef-
fects can have observable consequences. Examples were: screening ef-
fects in the two-dimensional electron gas leading to Friedel oscillations
of the density (section 9.5), the self-consistent reconstruction of edge
channels in the quantum Hall regime (section 16.3.5), and the fractional
quantum Hall effect (section 16.4). In this chapter we discuss the effects
of electron–electron interaction in low-field magnetotransport proper-
ties. This theory is relevant for the diffusive transport of electrons in
two-dimensional systems, because the scattering potentials seen by an
individual electron moving through the electron gas are screened by the
sea of the other electrons in the system. The efficiency of this screening
depends on temperature and therefore leads to a temperature depen-
dence of the Drude conductivity. We will see that this temperature
dependence is directly related to the occurrence of Friedel oscillations
around a scattering center. Multiple scattering at scattering centers and
Friedel oscillations will then—similar to the weak localization effect—
lead to a logarithmic quantum correction of the Drude conductivity.

17.1 Influence of screening on the Drude
conductivity

When we calculated the conductivity from Boltzmann’s equation we
found the expression (10.36) which we write here for zero magnetic field
in the form

σxx(T ) =
ne2

m�

∫
dE

EF

Eτ0(E)
4kBT cosh2[(E − µ)/2kBT ]

. (17.1)

This expression corresponds to the Drude conductivity σxx = ne2〈τ〉/m�,
if we use the definition

〈τ〉 =
∫

dE

EF

Eτ0(E)
4kBT cosh2[(E − µ)/2kBT ]

(17.2)

for the mean scattering time. For impurity scattering, the energy-
dependent scattering time is determined by Fermi’s golden rule result
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(10.51) according to which

�

τ0(E)
= ni

m�

2π�2

∫ 2π

0

dϕ

〈 ∣∣∣v(i)
ext(q)

∣∣∣2
ε2(q, µ, T )

〉
imp

(1 − cosϕ). (17.3)

Writing the results of the Drude theory in this way, we can see that
the temperature dependence of the conductivity is caused by different
sources. It results from the energy averaging in eq. (17.1), and it is also
influenced by the explicit temperature dependence of Lindhards dielec-
tric function which has its origin in a similar energy averaging procedure
in eq. (9.8). The energy averaging is weighted by the cosh−2-derivative
of the Fermi function symmetrically around the chemical potential µ.
The latter itself depends on temperature via

µ(T ) = kBT ln
(
eEF /kBT − 1

)
,

which again has consequences for the energy averaging. This effect is,
however, weak for the degenerate case with kBT � EF considered here,
and will therefore be neglected.

The result of the energy averaging depends on the curvature at E = µ
of the remaining integrand because the derivative of the Fermi function
is symmetric around µ. The polarization function Π(q, µ, T ) entering the
dielectric constant is at this energy convex, i.e., Π(q, µ, T ) decreases with
increasing temperature (see Fig. 9.4). As a result the value of the dielec-
tric function decreases with increasing temperature for the q-values of
interest, i.e., the scattering rate increases and the conductivity decreases
with increasing temperature. This behavior is called metallic, because
dσ/dT < 0 is typical of metals at low temperatures (phonons).

The behavior of the integrand Eτ0(E) in eq. (17.1) is different: τ0(E)
typically grows with E (see the discussion about the denisty dependence
of the scattering rate on page 169), therefore Eτ0(E) is concave, and the
average scattering time has the tendency to increase with temperature.
As a result we find dσ/dT > 0, i.e., the behavior is called insulating. The
total temperature dependence of the conductivity at low temperatures is
therefore determined by a competition between temperature-dependent
screening and the energy averaging of the scattering time. Materials in
which large angle scattering dominates, e.g., those with charged impuri-
ties close to the electron gas, will exhibit a strong influence of screening
on the temperature dependence, because ε(q, µ, T ) changes with tem-
perature mostly at q ≈ 2kF . In contrast, samples with dominant small

C

A

B

Fig. 17.1 Scattering of electrons at
Friedel oscillations forming around a
single impurity. Interference between
paths A and B is always constructive
leading to an enhancement of backscat-
tering. (Reprinted with permission
from Zala et al., 2001. Copyright 2001
by the American Physical Society.)

angle scattering, such as high quality heterostructures with remote dop-
ing, will be dominated by the temperature dependence resulting from
energy averaging of the scattering time.

We have seen that temperature-dependent screening can lead to a
metallic temperature dependence of the conductivity in two-dimensional
electron gases. Microscopically this effect can be interpreted as a con-
sequence of scattering at Friedel oscillations arising around a single im-
purity (Zala et al., 2001). The process is schematically depicted in
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Fig. 17.1. Paths A and B interfere always constructively, thereby in-
creasing backscattering compared to the classical result, because the
Friedel-oscillations have a wavelength of exactly λF/2.

Following our discussion of Friedel oscillations in section 9.5 we can
express the scattering potential as the sum of a Thomas–Fermi contribu-
tion VTF(q) and the temperature-dependent contribution Vfriedel(q, µ, T )
of the Friedel oscillations. The total scattering rate can then be written
as

�

τ(E)
= ni

m�

2π�2

∫ 2π

0

dϕ |VTF(q) + Vfriedel(q, µ, T )|2 (1 − cosϕ).

When we square the sum of the two Fourier transformed potentials,
q/2kF10

2VTF(q)Vfriedel(q)

Fig. 17.2 Matrix element of the in-
terference term of scattering at the
Thomas–Fermi screened potential and
the Friedel oscillations.

we obtain the Thomas–Fermi contribution |VTF(q)|2, the interference
term 2VTF(q)Vfriedel(q), which describes the interfering paths A and B
introduced in Fig. 17.2, and the contribution |Vfriedel(q, µ, T )|2 describing
scattering at Friedel oscillations alone. This last term will be small and
therefore negligible, considering the fact that the Friedel oscillations are
small compared to the Thomas–Fermi contribution. We are therefore
interested in the interference term which is shown in Fig. 17.2 for T = 0.
For energies E < EF, we have q < 2kF, and the matrix element is
zero. Therefore, there is no contribution to the scattering rate for these
energies. In contrast, for energies E ≥ EF there is a finite contribution.
Figure 17.3 shows the corresponding energy-dependent scattering rate.
It can be shown that the total scattering rate at T = 0 and close to
E = EF is then given by

�

τ
=

�

τ0(E)
+K

E − EF

EF
Θ(E − EF ),

where Θ(E) is the Heaviside step function and K is a constant. This E/EF10

1/ int(E)

Fig. 17.3 Energy dependence of the
scattering rate for scattering at Friedel
oscillations in lowest (first) order.

additional energy dependence of the scattering time results after energy
averaging with the derivative of the Fermi function in eq. (17.2) in a
linear temperature dependence of the conductivity. In this line of rea-
soning, we have, however, neglected the fact that the amplitude of the
Friedel oscillations also depends on temperature. Taking this effect into
account as well, the temperature dependence remains linear and acquires
the form (Gold and Dolgopolov, 1986)

σxx(T ) =
ne2〈τ(T = 0)〉

m�

(
1 − C

kBT

EF
+ · · ·

)
, (17.4)

where C is a constant that depends on the specific scattering mecha-
nism. In this sense, the temperature dependence of the conductivity
at low temperatures is an interplay of interactions and interference, if
temperature-dependent screening dominates.

Of course, this metallic temperature dependence competes with the ef-
fect of weak localization. At sufficiently low temperatures the localizing
effects take over. This is shown in Fig. 17.4 for a p-SiGe two-dimensional
hole gas. At the highest magnetic fields where weak localization effects
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Fig. 17.4 Temperature and magnetic
field dependence of a two-dimensional
hole gas in a p-SiGe quantum well for
two different charge carrier concentra-
tions. The data show the interplay be-
tween temperature-dependent screen-
ing and weak localization. (Reprinted
with permission from Senz et al., 2000b.
Copyright 2000 by the American Phys-
ical Society.)
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are suppressed, the conductance increases for both charge carrier con-
centrations. At the magnetic field B = 0, however, the weak localization
maximum acts more and more strongly against the metallic behavior as
the temperature is lowered.

17.2 Quantum corrections of the Drude
conductivity

With the microscopic picture of temperature-dependent screening as
scattering at Friedel oscillations of single scattering sites, it is obvious
to ask, whether multiple scattering at impurity sites and Friedel oscilla-
tions can also have an influence on the conductance at low temperatures.
The theoretical answer to this question was given in the 1980s within a
diagrammatic theory for low temperatures kBT � �/τ (Altshuler and
Aronov, 1985). The intuitive picture shown in Fig. 17.5 was developed
later (Zala et al., 2001). As in the case of the weak localization, a loga-
rithmic correction for the conductivity results:

δσI = − e2

πh

(
1 +

3
4
F̃σ

)
ln
(

�/τ

kBT

)
for kBT � �/τ (17.5)

Here, F̃σ is an interaction parameter. With decreasing temperature the
C

A
B

Fig. 17.5 Multiple scattering of elec-
trons at impurity sites and at Friedel
oscillations. (Reprinted with permis-
sion from Zala et al., 2001. Copyright
2001 by the American Physical Soci-
ety.)

conductance decreases, i.e., this interaction correction to the conductiv-
ity helps to localize the electronic system for T → 0. All the different
corrections to the Drude conductivity—weak localization, temperature-
dependent screening, and interaction correction—are at low tempera-
tures additive in first order.

Experimentally one can distinguish the logarithmic interaction cor-
rection from the weak localization correction via their magnetic field
dependencies. The interaction corrections do not depend on magnetic
fields if these are sufficiently small, whereas the weak localization effects
are suppressed by small fields. Another possibility for distinguishing the
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Fig. 17.6 The different contributions
to the conductivity of a p-SiGe sam-
ple at low temperatures. The Drude
conductivity including temperature-
dependent screening is indicated with
black squares. Adding the logarithmic
interaction correction one obtains the
filled circles. Further addition of the
weak localization correction leads to
the black diamonds, i.e., the measured
conductivity. (Reprinted with permis-
sion from Senz et al., 2000b. Copyright
2000 by the American Physical Soci-
ety.)

two is the measurement of the Hall resistivity. The weak localization
effect does not alter the Drude result for the Hall effect. In contrast,
the interaction correction leads to a temperature dependence of the Hall
slope (for experimental details, see, e.g., Glew et al., 1981, or Senz et al.,
2000b). Figure 17.6 shows the different contributions to the conductance
of a p-SiGe sample.

Further reading

• Papers: Glew et al. 1981; Zala et al. 2001; Senz
et al. 2000b.

Exercises

(17.1) In this exercise you reconsider your understanding
of interaction effects in two-dimensional electron
gases.

(a) Name at least three effects of electron–
electron interactions in two-dimensional elec-
tron transport that you have learned about so
far in this book.

(b) Discuss qualitatively what role interaction ef-

fects could play in transitions from the weakly
localized to the strongly localized regimes.

(c) What property do electrons in a heterostruc-
ture need to have for multiple scattering from
impurities and Friedel oscillations to be par-
ticularly important? What other quantum
corrections to the conductivity will arise un-
der these circumstances?
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18.1 Coulomb-blockade effect in quantum
dots

In the nanostructures that we have been discussing so far in this book,
the electron–electron interaction has played a minor role and could be
taken into account perturbatively, if necessary. In this chapter we are
going to discuss the physics of quantum dots. In these systems, Coulomb
interactions can play a dominant role compared to other energy scales.
In particular, we will discuss the Coulomb blockade effect, which is one of
the fundamental transport phenomena in semiconductor nanostructures.
Quantum dots also differ from other nanostructures discussed earlier,
because they are very weakly coupled to their environment, i.e., to source
and drain leads, or to lattice vibrations and thermal electromagnetic
radiation at low temperatures. These structures confine electrons or
holes in regions of space small enough to make their quantum mechanical
energy levels observable.

18.1.1 Phenomenology

The top left inset of Fig. 18.1 shows an image taken with a scanning elec-
tron microscope of a quantum dot structure defined with the split-gate
technique. The two outer pairs of gates are used to deplete the electron
gas under the surface and to form quantum point contacts. These two
quantum point contacts are connected in series. Between them there are
two further gate electrodes, the so-called plunger gates. These allow us
to tune the electron density in the region between the quantum point
contacts. In the experiment a small voltage of the order of 10 µV is
applied for linear conductance measurements at a temperature of about
100 mK between the source and the drain contact which are formed by
the two-dimensional electron gas outside the dot structure. The voltage
results in a current through the quantum dot which can be controlled
with the plunger gates. At such small source–drain voltages VSD the
current I is linearly related to this voltage and therefore the linear con-
ductance is given by G = I/VSD. If larger source–drain voltages are
applied the I(VSD) curves become nonlinear and one often measures not
only I(VSD), but also the differential conductance dI/dVSD as a func-
tion of a constant VSD. This is achieved by superimposing a small (e.g.,
10 µV) low-frequency (e.g., between 10 and 30 Hz) alternating δVSD and
monitoring the resulting alternating current component δI. The differ-
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Fig. 18.1 Quantum dot linear con-
ductance as a function of the plunger
gate voltage. Inset: split gate struc-
ture used to define the quantum dot.
The conductance is measured by apply-
ing a small voltage between source (S)
and drain (D), and recording the source
drain current. (Reprinted with per-
mission from Lindemann et al., 2002.
Copyright 2002 by the American Phys-
ical Society.)
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ential conductance is then given by dI/dVSD = δI/δVSD.

Conductance resonances. The measured curve in Fig. 18.1 shows the
linear conductance (the measured current divided by the applied voltage)
of this quantum dot as a function of the plunger gate voltage. The
quantum dot conductance shows sharp resonances. Between them the
current is zero within measurement accuracy. We will see below that the
Coulomb interaction between electrons in the quantum dot is crucial
for the understanding of this measurement. Therefore it is called the
Coulomb blockade effect.

Nonlinear current–voltage characteristics. The Coulomb blockade
effect also manifests itself in measurements of nonlinear I(VSD) charac-
teristics of quantum dots. Figure 18.2 shows two I(VSD) curves, one of
which (‘on resonance’) was measured at the plunger gate voltage of a
conductance peak in Fig. 18.1, the other one in a valley between two
conductance resonances (‘off resonance’). The trace taken on a conduc-
tance resonance increases linearly with the bias voltage in the region
|VSD| < 4kBT . In contrast, the current measured between resonances
is suppressed for source–drain voltages that are significantly larger than
4kBT , rising only at very large applied bias voltages. In regions of sup-
pressed current in Figs. 18.1 and 18.2 the quantum dot is said to be in
the Coulomb blockade.

Coulomb blockade diamonds. The measurements of the differential
conductance dI/dVSD as a function of the plunger gate Vpg and as a
function of the source–drain voltage VSD can be combined resulting in the
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Fig. 18.2 Measured I(VSD) trace of
a quantum dot on a conductance res-
onance (solid line) and off resonance
(dashed line). In the latter case the cur-
rent is suppressed at low VSD (Coulomb
blockade).

measurement of the so-called Coulomb blockade diamonds. Figure 18.3
shows the result of such a measurement in the Vpg − VSD plane. The
differential conductance is represented by the gray scale, where black
represents zero and white finite positive values.

The bright spots along the line VSD = 0 are the conductance peaks
of linear transport, as depicted in Fig. 18.1. Between these conductance
peaks there are diamond shaped black regions in which electron trans-
port is completely suppressed as a result of the Coulomb-blockade effect.
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Fig. 18.3 Coulomb blockade diamonds
measured on a quantum dot real-
ized on a parabolic quantum well.
The grayscale represents the differen-
tial conductance dI/dVSD with zero en-
coded in black. Numbers 1–4 label
zero source–drain voltage conductance
peaks. One particular diamond is high-
lighted with a dotted boundary, the
horizontal dotted line indicates VSD =
0. (Reprinted with permission from
Lindemann et al., 2002. Copyright
2002 by the American Physical Soci-
ety.)
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18.1.2 Experiments demonstrating the
quantization of charge on the quantum dot

The importance of the Coulomb interaction and the quantization of
charge in units of −|e| in quantum dots can be demonstrated in experi-
ments in which an additional quantum point contact is fabricated close
to the dot without direct tunneling coupling between the dot and the
additional point contact, but only capacitive coupling. As an alternative
to the additional quantum point contact, a second quantum dot can be
used. These additional devices serve as sensors of the charge residing
on the quantum dot. The basic idea is that additional charge sucked
into the quantum dot using the plunger gate will change the potential
landscape in the environment around the dot. This change can be de-
tected with the additional device. It turns out that the change is not
continuous like the change of charge on a macroscopic capacitor, but
occurs in steps of one elementary charge −|e|. Therefore these experi-
ments establish the quantization of charge on the dot and demonstrate
the possibility of controlling individual electrons in quantum dot devices.

Measurement of charge quantization in a quantum dot using
a quantum point contact. At low temperatures, a split-gate defined
quantum point contact shows quantized conductance as a function of the
voltage applied to the split-gate. At the transition between quantized
conductance plateaus (e.g., at a conductance value of about e2/h), the
conductance is very sensitive to small changes of the gate voltage, or
other local electrostatic potentials. The arrangement depicted schemat-
ically in the inset of Fig. 18.4 allows us to observe the stepwise charging
of the quantum dot with single electrons using the quantum point con-
tact as a charge detector. The schematic picture shows a top view onto
gates (gray) which were patterned on top of a Ga[Al]As heterostruc-
ture. The quantum dot is defined by depleting the electron gas under
the gates. The detector quantum point contact forms at a distance of
about 300 nm from the quantum dot center. There is no tunneling cou-
pling between this quantum point contact and the quantum dot. The
coupling between the two devices is purely capacitive. The measured
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Fig. 18.4 (a) Right axis: Quantum dot
conductance (dash-dotted) as a func-
tion of the plunger gate voltage Vpg

showing conductance resonances. Left
axis: Resistance of the quantum point
contact detector as a function of the
same plunger gate voltage. Inset: split
gate structure used for defining the de-
vices. (b) Detector signal where the de-
pendence of the detector sensitivity on
the plunger gate voltage has been cali-
brated out. (Reprinted with permission
from Field et al., 1993. Copyright 1993
by the American Physical Society.)

curve in Fig. 18.4(a) shows the conductance of the quantum dot with a
series of conductance resonances (right axis). The other curve belonging
to the left axis shows the resistance of the quantum point contact. This
resistance shows rapid increases whenever the quantum dot conductance
goes through a resonance (see dashed lines). This demonstrates that the
electrostatic potential in the quantum dot changes stepwise, whenever
a quantum −|e| of charge is added to the quantum dot, i.e., whenever
a single electron is added. Adding charge to the dot is related to cur-
rent flow into the dot. The curve in Fig. 18.4(b) is the signal of the
detector that corresponds to the curve in (a), but the vertical axis has
been calibrated to represent the electrostatic potential in the quantum
dot. The calibration emphasizes the oscillatory change of the potential.
The potential rises with increasing plunger gate voltage. However, each
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added electron lowers the potential again as a result of its own charge.
Current through the quantum dot is not really necessary for the ob-

servation of the quantized charge. It is sufficient if the quantum dot is
connected via a tunneling contact to a single electron reservoir. Increas-
ing the plunger gate voltage will then allow one electron after the other
to be added to the quantum dot. If the bandwidth of the quantum point
contact detector circuit is made sufficiently fast, i.e., larger than the tun-
neling rate, single electron hopping between the quantum dot and the
lead can be observed in real time (Schleser et al., 2004). A typical time
trace of such a measurement is shown in Fig. 18.5. Whenever an elec-

50 100 150 2000
t (ms)

I (arb. units)

Fig. 18.5 Current through a detec-
tor quantum point contact switching in
time as a result of charging and dis-
charging of a nearby quantum dot with
a single electron.

tron hops into the dot the quantum point contact current jumps down.
When the electron hops out again, the original current value is restored.
Since electron hopping is a quantum mechanical tunneling process, it
occurs randomly in time. The time that the electron spends inside the
quantum dot has an exponentially decaying distribution function.

Dependence of the charge quantization on the tunneling cou-
pling. Figure 18.1 shows the reaction of the quantum dot conductance
when the plunger gate voltage is changed. At the steep slopes of a con-
ductance resonance, the conductance is extremely sensitive to very small
changes of the applied voltage. This property can be exploited for using
a quantum dot as a charge detector which measures small changes in
the charge state of its neighborhood. Figure 18.6 shows an experimental
arrangement in which a quantum dot (Box) is placed next to a quantum
dot charge detector (Elect). The detector is tuned to the steep slope of a
conductance resonance using the plunger gate voltage Ve. The number of

1 m

BoxElect VpgVe

Fig. 18.6 Scanning electron micro-
graph of a circuit in which one quantum
dot (Elect) is employed as a charge de-
tector for the charge state of the neigh-
boring quantum dot (Box). The struc-
ture is realized on a two-dimensional
electron gas, bright regions represent
metallic electrodes on the sample sur-
face. (Reprinted with permission from
Duncan et al., 1999. Copyright 1999,
American Institute of Physics.)

electrons in the dot to be measured is varied with the plunger gate Vpg.
The result of this measurement is shown in Fig. 18.7 for varying coupling
strengths between the ‘Box’ and its leads. For the weakest coupling (a)
charge quantization is very well expressed which appears as the series of
very sharp steps in the detector current. With increasing coupling the
steps smear out more and more until they have disappeared completely
once the coupling conductance has reached a value of about twice the
conductance quantum 2e2/h. This result shows that the charge on the
quantum dot ‘box’ is only quantized if the tunneling resistance to source
and drain far exceeds half the resistance quantum h/2e2.

18.1.3 Energy scales

The Coulomb blockade effect in quantum dots is characterized by an
interplay of several energy scales which we will estimate in the following.
Coulomb blockade in the strict sense arises only if the Coulomb energy
dominates over all other energy scales.

Coulomb energy. The size of the Coulomb interaction energy between
electrons on a quantum dot island can be estimated by determining its
capacitive charging energy. For the sake of the argument we choose a
quantum dot made from a two-dimensional electron gas. We regard it as



346 Quantum dots

Fig. 18.7 Charge quantization in a
quantum dot as a function of the tun-
neling coupling to source and drain.
The strength of the coupling is in-
creased from (a) to (f). (Reprinted with
permission from Duncan et al., 1999.
Copyright 1999, American Institute of
Physics.)
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a metallic disc of radius r carrying the charge −|e|N which is embedded
in a homogeneous dielectric material with relative dielectric constant ε.
The self-capacitance C of such a disc is C = 8εε0r. Inserting ε = 13 and
r = 100 nm gives C = 92 aF. The electrostatic energy of the island with
N electrons is then

Eelstat(N) =
e2N2

2C
=

e2N2

16εε0r
=
π

2
E�

Ry

a�
B

r
N2.

We see that the electrostatic energy of the island is proportional to the
square of the number of electrons on the island and inversely propor-
tional to the size of the island.

Assume that there are already N electrons on the island and we would
like to add another electron. The charging energy required is

Ec(N+1) = Eelstat(N+1)−Eelstat(N) =
e2

C
(N+1/2) ≈ e2

C
N =

e2

8εε0r
N.

(18.1)
Here we have assumed N � 1. This energy scale is proportional to the
electron number and inversely proportional to the island size.

Traditionally, however, in quantum dot physics the term charging en-
ergy is used for the difference

∆Ec = Ec(N + 1) −Ec(N) =
e2

C
=

e2

8εε0r
. (18.2)

Taking the above numerical values the characteristic energy scale for
charging the island is therefore given by ∆Ec = e2/C ≈ 1.7 meV, corre-
sponding to a temperature of about 19K.

Confinement energy. We compare the charging energy scale with the
confinement energy of quantum states on the island. Assuming again
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a quantum dot realized in a two-dimensional electron gas with Fermi
energy EF we can estimate the number of electrons on the island to be

N = πr2
m�

π�2
EF.

This is the dot area πr2 multiplied with the two-dimensional density
of states m�/π�

2 times the Fermi energy EF. The total energy of this
system can be estimated to be

Econf(N) =
∫ EF

0

Eπr2
m�

π�2
dE = πr2

m�

2π�2
E2

F

=
�

2

2m�r2
N2 = E�

Ry

(
a�
B

r

)2

N2,

where we have expressed the Fermi energy with the help of the above
equation as the electron number. We can see that the confinement en-
ergy is also proportional to the square of the electron number, but it
scales inversely proportional to the square of the quantum dot size. We
mention here that this result is only valid for systems with a parabolic
dispersion relation, because the latter determines the expression for the
density of states. For example, the same type of argument leads to 1/r
scaling of the confinement energy in graphene quantum dots because
the dispersion relation E(k) is linear in |k| near the relevant K- and
K ′-points forming the corners of the first Brillouin zone in graphene.

Continuing the discussion of dots in materials with parabolic disper-
sion relation we find the energy

ε(N + 1) = Econf(N + 1) −Econf(N) = 2ERy

(
a�
B

r

)2

N (18.3)

for adding an additional electron onto a dot already containing N elec-
trons.

The mean spacing between successive energy levels is then given by

∆ = ε(N + 1) − ε(N) = 2ERy

(
a�
B

r

)2

. (18.4)

This energy scale is often called the single-particle level spacing. Assum-
ing a dot radius of 100 nm in a two-dimensional electron gas in GaAs,
we obtain an energy of about 110µeV which is about an order of magni-
tude smaller than the corresponding charging energy scale in the same
system.

Alternatively the single-particle level spacing can be estimated using
the model of a quantum mechanical harmonic oscillator for the quantized
states in the quantum dot. The ground state of such an oscillator has
the spatial extent 2r =

√
�/(m�ω0), where ω0 is the frequency of the

oscillator. As a result we find the characteristic energy scale ∆ = �ω0 =
�

2/(4m�r2). For a quantum dot in GaAs with m� = 0.067m0 and r =
100 nm we obtain about 30 µeV which is of the same order of magnitude
as the above result.
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Fig. 18.8 Comparison of Coulomb-
and quantization energy in quantum
dots. Small dots are dominated by
the spatial quantization of states; larger
dots are dominated by the Coulomb in-
teraction. System size r
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Comparison of Coulomb energy and quantization energy. A
comparison of the Coulomb energy and the quantization energy shows
that the ratio between the two depends only on the island size (see, e.g.,
Bryant, 1987, or Brandes et al., 1993). The situation is graphically il-
lustrated in Fig. 18.8. If r � a�

B, the total energy of the quantum dot is
dominated by the interaction energy. In contrast, if r � a�

B, the quan-
tization energy is dominant. The crossover between these two regimes
is close to the Bohr radius a�

B. In GaAs it is at about a�
B = 10 nm.

For larger islands, like those fabricated by lateral confinement from two-
dimensional electron gases in n-GaAs we see that the Coulomb energy
is dominant over the quantization energy. This means that we can ex-
pect that even in a fully quantum mechanical treatment of such dots,
interaction effects will be dominant.

The situation is different, for example, in self-assembled InAs quantum
dots. In InAs we have a�

B = 30 nm. Typical dots have a size of 20 nm,
i.e., the quantization energy will dominate over the interaction energy.

Source-drain coupling. The quantization of the particle numberN on
the island is crucial for the observation of the Coulomb blockade effect.
The following consideration supports the observation that the coupling
strength of the island to source and drain contacts is the important
parameter. Charging the island with an additional charge takes the
time ∆t = RtC which is the RC-time constant of the quantum dot. If
we wish to resolve the charging energy ∆Ec = e2/C the system will
respect Heisenberg’s uncertainty relation ∆Ec∆t > h which leads to the
condition

Rt >
h

e2
,

in agreement with the experiment discussed above. This result means
that the tunneling resistance Rt of the quantum dot has to be signifi-
cantly larger than the resistance quantum h/e2 implying that the quan-
tum point contacts coupling the system to source and drain have to be
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deep in the tunneling regime. The result also implies that the uncer-
tainty relation allows the measurement of the charging energy whenever
the tunneling coupling is weak enough to quantize the electron number
on the island.

Temperature. Another condition for the observation of the Coulomb
blockade effect is that the temperature is small compared to the charging
energy, i.e.,

kBT � e2

C
.

In order to fulfill this condition in an experiment, the island must be
sufficiently small such that the island capacitance is small. In contrast,
macroscopic islands will have kBT � e2/C for all experimentally acces-
sible temperatures, because the capacitance C is very large.

If the temperature is also small compared to the single-particle level
spacing, i.e., if

kBT < ∆,

typically only one quantized energy level contributes to electron trans-
port on a conductance resonance. This is called the single-level transport
regime.

If we compare the tunneling coupling Γ of dot states with the temper-
ature scale, we can distinguish the following two scenarios. In the case
kBT � Γ the conductance resonances will be thermally broadened. In
the opposite case of kBT � Γ, the resonances will be broadened by the
tunneling coupling.

18.1.4 Qualitative description

Conductance resonances. On a qualitative level the Coulomb block-
ade effect can be described in a very intuitive and yet very general way.
In a first step we try to understand the occurrence of conductance reso-
nances as a function of plunger gate voltage, as shown in Fig. 18.1. For
this purpose we consider the schematic drawing in Fig. 18.9(a). The
quantum dot is coupled to a source and drain contact via tunneling
barriers. The plunger gate allows us to tune the quantum mechanical
energy states in the quantum dot via capacitive coupling. Talking about
the quantum mechanical energy states in the quantum dot (which are in
most cases hard to work out), we introduce the following notation. As
the quantum dot is an almost isolated system, its number of electrons
is an integer N . Each N -electron quantum dot will have a ground state
(the state with lowest energy), and a sequence of excited states that we
label by integer numbers n for convenience. A particular quantum state
(N,n) is therefore characterized by the energy E

(n)
N . We choose n = 0

for the ground state and label the states such that En+1
N ≥ E

(n)
N for each

n. Energy spectra for three different electron numbers on the quantum
dot are schematically shown in Fig. 18.10.

It turns out that each energy E
(n)
N also depends on the voltage Vpg

applied between the plunger gate and the quantum dot. In sufficiently
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Fig. 18.9 (a) Schematic representation of a quantum dot system with source and drain contacts and a plunger gate. (b) Energy
level structure of the system in the Coulomb blockade. (c) Position of the energy levels that allows a current to flow between
source and drain if a very small bias voltage is applied.

small ranges of plunger gate voltages around a specific value V (0)
pg , we

can expand

E
(n)
N (Vpg) = E

(n)
N (V (0)

pg ) − |e|Nαpg∆Vpg, (18.5)

where the constant αpg is called the lever arm of the plunger gate, and
∆Vpg = Vpg − V

(0)
pg . In experiments it is found that αpg is in most cases

only a very weak function of both N and n such that this dependence
can usually be neglected.

Figure 18.9(b) shows the energetic situation in the three subsystems
source, drain, and dot. At low temperature the electronic levels in the
source (drain) contact are filled from the bottom of the conduction band

E

NN0 1 N0 N0 1
EN0 1

(0)
EN0

(0)
EN0

(1)

N0

Fig. 18.10 Typical energy spectra of
a quantum dot with N0 − 1, N0, and
N0 + 1 electrons.

up to the electrochemical potential µS (µD). In the quantum dot we
can also define an electrochemical potential. It describes the energy
necessary to add an electron to the dot, given that it is both initially
and after the addition in its ground state. For example, if we consider a
quantum dot with N−1 electrons initially, we define the electrochemical
potential for adding the Nth electron as (see also Fig. 18.10)

µN (Vpg) = E
(0)
N (Vpg) − E

(0)
N−1(Vpg). (18.6)

This energy difference will contain contributions from the electron–elec-
tron interaction in the quantum dot, but it may also contain contribu-
tions from the confinement energy. Following our simple estimate of
the quantum dot energy scales in eqs (18.1) and (18.3) we may identify
µN ≈ Ec + ε(N), where we have neglected any plunger gate voltage de-
pendence. However, this is merely a crude estimate, whereas our model
relying on the electrochemical potential definition in eq. (18.6) is much
more general. The important message is that—similar to an atom—
there is a finite amount of energy needed to add an electron to the
quantum dot.

The plunger gate voltage allows us to shift the levels µN (Vpg) in en-
ergy. Combining eqs (18.5) and (18.6) we find for the voltage dependence



18.1 Coulomb-blockade effect in quantum dots 351

of the electrochemical potential in the quantum dot the linear relation

µN (Vpg) = µN (V (0)
pg ) − |e|αpg∆Vpg (18.7)

which is independent of the electron number N .
Using the plunger gate voltage we can tune the quantum dot elec-

trochemical potentials into the position shown in Fig. 18.9(c), where we
have

µS ≈ µN+1(Vpg) ≈ µD.

In this case, the energy gain µS from removing an electron from the
source contact is exactly equal to µN+1(Vpg), the energy required to
add an electron to the dot. Once the electron is in the dot, the energy
gain µN+1(Vpg) for removing it again is exactly equal to the energy
µD required to add it to the drain contact. Therefore, elastic electron
transport through the quantum dot is possible and the conductance
measurement shows a large current (conductance peak, cf., Fig. 18.1)
at the respective plunger gate voltages. However, electrons can only
tunnel one after another through the dot, because the energy difference
E

(0)
N+2(Vpg)−E(0)

N (Vpg) to add two electrons to the dot at the same time
is significantly higher than the energy for a single electron. We therefore
talk about sequential single-electron tunneling.

The situation of the current blockade is shown in Fig. 18.9(b). At this
plunger gate voltage the dot is filled with N + 1 electrons. In order to
fill the (N + 2)th electron more energy is required than the energy gain
from removing an electron from the source contact, i.e.,

µN+2(Vpg) > µS, µD.

The current flow is therefore blocked and we talk about Coulomb block-
ade. This situation corresponds to the Vpg regions of suppressed current
in Fig. 18.1.

We now want to work out the separation of conductance peaks in
plunger gate voltage. To this end we assume that at the Nth con-
ductance resonance µS = µD = µN (V (0)

pg ) and at the next resonance
µS = µD = µN+1(V

(0)
pg +∆Vpg) = µN+1(V

(0)
pg )− |e|αpg∆Vpg. Taking the

difference between the two equations we find for the separation ∆Vpg of
neighboring conductance resonances

∆Vpg =
µN+1(V

(0)
pg ) − µN (V (0)

pg )
|e|αpg

.

Coulomb blockade diamonds. The measurement of Coulomb block-
ade diamonds, as shown in Fig. 18.3, can be immediately understood on
the basis of the above terminology and the empirical finding expressed by
eq. (18.5). A diamond measurement corresponds to taking many plunger
gate sweeps at various source–drain voltages. Applying a finite source–
drain voltage VSD to a quantum dot corresponds to opening a so-called
bias window, which denotes the energetic region between µS and µD, as
shown as the light gray region in Fig. 18.11. The width of this energy



352 Quantum dots

N 1

N

S

D

(b)

N 1

N 1

N

S

D

(c)

N 1

NS

D

(a)

N 1

e VSD

Fig. 18.11 Schematic representation of a quantum dot system with finite applied bias for various plunger gate voltages. The
energy region in light gray represents the so-called bias window. Arrows indicate electron transfer. (a) Current onset for
µS = µN (Vpg). (b) Situation with µS > µN (Vpg) > µD (region of current flow). (c) Current onset at µD = µN (Vpg).

window is given by µS −µD = −|e|VSD. At finite VSD a current can flow
as a result of electron transfer between source and drain (see arrows in
Fig. 18.11), as long as

µS ≥ µN (Vpg) ≥ µD.

Increasing the plunger gate voltage, the current will rise from zero to a
finite value when µS = µN (V (0)

pg ) [Fig. 18.11(a)]. The current will then
remain until µD = µN (V (0)

pg + ∆Vpg) = µN (V (0)
pg )− |e|αpg∆Vpg, where it

drops to zero again [see Fig. 18.11(c)]. The width in plunger gate voltage
of the current-carrying situation is obtained from the difference of the
two above equations to be

|∆Vpg| =
|VSD|
αpg

. (18.8)

In other words, there is a finite plunger gate voltage range allowing a
current to flow, the size of which increases proportionally to the source–
drain voltage. This equation defines triangular regions emerging from
the zero source–drain voltage conductance resonances that extend to
finite source–drain voltage as shown in Fig. 18.12. The constant of pro-

VSD

Vpg(c)
(b)

(a)

{

Vpg
VSD

pg

N
SN

D

Fig. 18.12 Schematic Coulomb block-
ade diamonds. Current can flow in the
light gray triangular-shaped regions.
Black lines indicate alignment between
one of the electrochemical potentials in
the leads (µS or µD) with the elec-
trochemical potential µN in the dot.
The points labeled (a)–(c) refer to the
situations represented schematically in
Fig. 18.11. The encircled point marks
the situation where µN+1(VSD) = µS

and µN (Vpg) = µD.

portionality is the inverse lever arm α−1
pg . As a consequence, the inverse

lever arm can be read directly from Coulomb blockade diamond mea-
surements (see Fig. 18.12).

As the triangles of current flow increase in ∆Vpg with increasing VSD,
corresponding triangles emerging from neighboring conductance reso-
nances will intersect. Of particular interest are intersection points where
µN (Vpg) = µD and simultaneously µN+1(VSD) = µS. At this point,
which is encircled in Fig. 18.12, we have

−|e|VSD = µN+1(Vpg) − µN (Vpg).

It therefore provides us with an energy calibration for the transport
measurements. An estimate of this energy difference and an insight into
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its meaning can be obtained from eqs (18.2) and (18.4) which lead to

µN+1(Vpg) − µN (Vpg) ≈
e2

C
+ ∆,

where the first term represents the charging energy (which often dom-
inates), and the second term represents the single-particle excitation
energy.

The boundaries of the gray triangles in Fig. 18.12 (black lines) lead
to peaks in measurements of the differential conductance dI/dVSD. The
intersection points needed for the energy calibration can therefore be
best determined from measurements of this quantity.

Excited state spectroscopy. So far we have been concerned only
about elastic (i.e., energy conserving) electron transfer through the quan-
tum dot involving quantum dot ground states, i.e., transitions (N −
1, 0) → (N, 0) → (N − 1, 0). In analogy to these ground state transi-
tions we can also consider elastic transitions involving excited quantum
dot states, such as (N − 1, 0) → (N, 1) → (N − 1, 0), or more generally
(N − 1,m) → (N,n) → (N − 1,m). The energy required for adding
an electron to the quantum dot which is initially in the excited N − 1
electron state m and ends up in the N electron state n is given by

µ
(n,m)
N (Vpg) = E

(n)
N (Vpg) − E

(m)
N−1(Vpg). (18.9)

All µ(n,0)
N with n > 0 are larger than the electrochemical potential

µN ≡ µ
(0,0)
N , whereas all µ(0,m)

N with m > 0 are smaller. As a conse-
quence, each ground state transmission channel contributing to electron
transport is surrounded by a bunch of excited state transmission chan-
nels as indicated in Fig. 18.13. With the help of eq. (18.5) and the defi-

S

D

e VSDN

N
(0,1)

N
(1,0)

Fig. 18.13 Schematic representation of
a quantum dot at finite source–drain
voltage. In addition to the ground state
transition µN , two excited state tran-
sitions are indicated as dashed lines.
The upper one, µ

(1,0)
N is in the trans-

port window and therefore contributes
to electron transport through the dot.

nition of µ(n,m)
N in eq. (18.9) we find for the gate voltage dependence of

excited state transitions

µ
(n,m)
N (Vpg) = µ

(n,m)
N (V (0)

pg ) − |e|αpg∆Vpg,

which shows that excited state transitions are shifted by the plunger
gate parallel to ground state transitions [cf., eq. (18.7)].

The transmission channels involving excited states can contribute to
electron transfer through the dot if they are within the bias window
and if µN is in the bias window. The reason for the latter condition
is the following: if µN is below µD in Fig. 18.13, the dot will start any
energy transfer from its lowest energy state E

(0)
N , and the µ

(n,m)
N are

not relevant, but rather the µ(n,m)
N+1 . On the other hand, if µN is above

µS in Fig. 18.13, the dot will start any electron transfer from its lowest
energy state E(0)

N−1 and therefore transitions starting from excited N −1
electron states are usually not relevant.

We now consider the consequences of the presence of excited states for
Coulomb diamond measurements. For simplicity we assume, that only
the excited transition µ

(1,0)
N is relevant. As the plunger gate voltage is
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increased, µN will approach µS, and a current step (step 1) will occur at
µN = µS (see the point labeled (1) in Fig. 18.14). Another step in the
current is expected when µ(1,0)

N = µS (step 2). We will see later that this
can be a step up or down depending on the tunneling coupling of the
corresponding states to source and drain. A third step of the current,
down to zero, will occur at even higher plunger gate voltage, where
µN = µD (step 3). The separation in plunger gate voltage of steps 1
and 3 are given by eq. (18.8). The separation in plunger gate voltage of
steps 1 and 2 are given by

VSD

Vpg(3)(1)
(2)

N S N D
N D
(1,0)

N S
(1,0)

Fig. 18.14 Schematic Coulomb block-
ade diamonds with an excited state.
Current can flow in the light gray trian-
gular shaped regions. Black lines indi-
cate alignment between one of the elec-
trochemical potentials in the leads (µS

or µD) with a transition µ
(n,m)
N in the

dot. The points labeled (1)–(3) refer
to the three current steps introduced in
the text.

∆Vpg =
µ

(1,0)
N (V (0)

pg ) − µN (V (0)
pg )

|e|αpg
=
E

(1)
N (V (0)

pg ) − E
(0)
N (V (0)

pg )
|e|αpg

.

The energy difference in the numerator of the last expression is the
excitation energy of the N -electron system. The simplest estimate would
identify this excitation energy with the single-particle excitation energy
∆ from eq. (18.4). Coulomb blockade measurements can therefore be
used for excited state spectroscopy.

In measurements of the differential conductance, excited states appear
as lines outside the diamonds where the current flow is Coulomb block-
aded. This can be seen in Fig. 18.15 which shows a measurement of the
differential conductance dI/dVSD taken on a quantum dot fabricated by
AFM lithography with a small electron number between N = 1 and 3.
Lines representing electron transfers involving excited dot states can be
seen outside the Coulomb-blockaded diamond shaped regions.

18.2 Quantum dot states

18.2.1 Overview

The more rigorous theoretical description of the Coulomb blockade ef-
fect can be split in two separate steps: In the first step the states of
the isolated island are described using the general hamiltonian (8.1) of
the closed system which neglects the tunneling coupling to source and
drain. In the second step the tunneling coupling of quantum dot states
is introduced as a small perturbation, and the current is calculated.

5 0 594

76

VSD (mV)

V p
g (

m
V

)

N = 1

N = 2

N = 3

dI/dV
SD  (10

2e 2/h)

0.3

0

0.3

TT

SS

Fig. 18.15 Measured Coulomb block-
ade diamonds with excited states. The
gray scale represents the differential
conductance dI/dVSD. Lines of states
appear digitized as a result of the finite
resolution in Vpg and VSD. Note that
the two axes are here interchanged com-
pared to Fig. 18.14. Transitions labeled
S and T involve the singlet ground state
and the triplet excited states of the two-
electron system (quantum dot helium).

The exact diagonalization of the hamiltonian (8.1) is generally not
possible if the quantum dot contains a large number (say, more than 10)
electrons. In particular, the Coulomb interaction is responsible for the
fact that the problem is hard to solve.

The hamiltonianHN in (8.1) is the sum of the single-particle operators

h(r) = − �
2

2m�
∆ − e

∫
V

dV ′ρion(r′)G(r, r′) +
e2

2
G(r, r) − e

∑
i

φiαi(r)

and the two-particle operators

V (r, r′) = e2G(r, r′),
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and we can write

HN =
N∑

n=1

h(rn) +
N∑

n=1

n−1∑
m=1

V (rm, rn). (18.10)

Different approximations for solving the many-particle problem have
been used in the literature. Of particular importance for many-electron
quantum dots are the capacitance model, the constant-interaction model,
and the Hartree or the Hartree–Fock approximations which often lead to
intuitive results because the system can be described with single-particle
wave functions. States in quantum dots with few electrons (less than
10) can also be calculated using the configuration interaction method
(sometimes also called ‘exact diagonalization’). In the following we will
give an overview of these methods starting with the simplest and most
intuitive capacitance model, the results of which are identical to the
constant interaction model.

18.2.2 Capacitance model

We describe the quantum dot as a metallic island with a discrete energy
spectrum. In this description the interaction part of the hamiltonian
(18.10), i.e., interaction effects of the electrons between each other and
with the gate electrodes, are represented by a capacitance matrix. The
charges on the individual metallic objects are then related to the elec-
trostatic potentials by the equation

Qi =
n∑

j=0

CijVj +Q
(0)
i . (18.11)

Here the indices i = 1, 2, 3, . . . , n denote the gate electrodes; the quan-
tum dot island has the index i = 0. The charges Q(0)

i reside on the
gates and the dot if all Vi = 0. The potential of the island is, however,
unknown in general, but its charge is known to be an integer multiple
of the elementary charge. We can therefore write

V0(Q0) =
Q0 −Q

(0)
0

CΣ
−

n∑
j=1

C0j

CΣ
Vj ,

where CΣ ≡ C00 = −
∑n

i=1 C0i > 0. The electrostatic energy needed to
add N additional electrons to the quantum dot is given by

Eelstat(N) =
∫ Q

(0)
0 −|e|N

Q
(0)
0

dQ0V0(Q0) =
e2N2

2CΣ
+ |e|N

n∑
j=1

C0j

CΣ
Vj .

The remaining part of the hamiltonian (18.10) which has not been
replaced by the capacitive description contains only single-particle oper-
ators and can therefore be seen as a quantum mechanical single-particle
problem. If we assume that the solution of this single-particle problem
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Fig. 18.16 Oscillations of the electro-
static potential in a quantum dot with
gate voltage. The jumps are caused by
individual electrons being added to the
quantum dot.
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gives energy levels ε(0)n , the total energy of the island with N additional
electrons is

E(N) =
N∑

n=1

ε(0)n +
e2N2

2CΣ
+ |e|N

n∑
i=1

C0i

CΣ
(Vi − V

(0)
i ). (18.12)

Here we have included the term |e|N∑n
i=1

C0i

CΣ
V

(0)
i in the quantization

energy. In this model the electrochemical potential of the quantum dot
is

µN = E(N) − E(N − 1)

= ε
(0)
N +

e2

CΣ

(
N − 1

2

)
+ |e|

n∑
i=1

C0j

CΣ
(Vi − V

(0)
i ). (18.13)

For large electron numbers N we have N−1/2 ≈ N−1 and we will later
see that we have exactly produced the expression (18.26) of the constant
interaction model to be discussed later, provided that we identify the
charging energy with Vc = e2/CΣ and the lever arm of gate i with
αi = −C0i/CΣ.

The physical interpretation of the expression for the electrochemical
potential of the quantum dot is the following: The energy ε

(0)
N is the

chemical potential needed to add the Nth electron to the quantum dot.
The remaining contribution

e2

CΣ

(
N − 1

2

)
+ |e|

n∑
i=1

C0j

CΣ
(Vi − V

(0)
i ),

consisting of the charging energy term and the gate-voltage-dependent
term is the electrostatic potential. It shows a zigzag behavior as elec-
trons are added to the island within increasing gate voltages as depicted
in Fig. 18.16, because as long as µN is larger than the electrochemical
potential in the source and drain contact (µs), N remains constant and
the electrostatic potential changes linearly with the gate voltage. At
values of the gate voltages where µN = µs, the charge of the quantum
jumps by one electronic charge and the electrostatic potential jumps
upwards by e2/CΣ. This jump in the electrostatic potential has been
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measured in the experiment shown in Fig. 18.4 where a quantum point
contact detector was used to sense the charge in the quantum dot.

Separation of conductance peaks in plunger gate voltage. Ac-
cording to the qualitative model of the Coulomb blockade effect in
Fig. 18.9(b) and (c) we expect (at negligibly small source–drain volt-
age) a conductance peak, if µN+1 = µS = µD. Within the constant
interaction model we obtain from this relation the values of the plunger
gate at which conductance peaks occur:

Vpg(N + 1) =
1

eαpg

(
εN+1 + Vc ·N − |e|

∑
i

′
αiVi − µS

)
. (18.14)

The primed sum excludes summation over the plunger gate index. The
separation of two neighboring conductance peaks in gate voltage is then

∆Vpg = Vpg(N + 1) − Vpg(N) =
1

|e|αpg
(εN+1 − εN + Vc) ,

i.e., the sum of the charging energy and the single-particle level separa-
tion.

Boundaries of Coulomb blockade diamonds. Using the capaci-
tance model, the equations of the Coulomb blockade diamond bound-
aries can be determined for various biasing conditions. In the quali-
tative description of section 18.1.4 we have considered only the shift of
the quantum dot electrochemical potential with plunger gate voltage at
fixed source–drain voltage [eq. (18.7)]. Here we will confirm and com-
plement these earlier results on the basis of the capacitance model of
quantum dots. Using eq. (18.13), the capacitive action of the source and
drain contact can be taken into account in addition to the plunger gate
voltage. For calculating the Coulomb blockade diamond boundaries, we
assume that the voltage −fVSD is applied to the drain and (1−f)VSD to
source. The quantity f is a constant with 0 ≤ f ≤ 1 which we introduce
here for the following reason: if we choose f = 0, the drain contact is
the reference potential of the circuit to which all applied voltages refer,
and the full source–drain voltage is applied to the source. For f = 1/2,
however, the voltage is antisymmetrically applied to source and drain,
i.e., −VSD/2 to drain and +VSD/2 to source, and the reference point for
all voltages is exactly between the two. These two situations are typi-
cally realized in experiments, but lead to slightly different results, as we
will see below. We further determine in the experiment a plunger gate
voltage V (0)

pg for which, at zero source–drain voltage, we define

µN (V (0)
pg ) = ε

(0)
N +

e2

CΣ

(
N − 1

2

)
− eαpgV

(0)
pg = µS/D = 0.

In the following we use ∆Vpg = Vpg−V (0)
pg and ∆N+1 = ε

(0)
N+1−ε

(0)
N . The

four Coulomb blockade diamond boundaries are given by the four linear
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equations µN = µS, µN = µD, µN+1 = µS, and µN+1 = µD. These
equations lead to the linear boundary equations

∆Vpg = − 1
αpg

[αS(1 − f) − αDf + (1 − f)]︸ ︷︷ ︸
m1

Vbias (18.15)

∆Vpg = − 1
αpg

[αS(1 − f) − αDf − f ]︸ ︷︷ ︸
m2

Vbias (18.16)

∆Vpg =
1

eαpg

(
∆N+1 +

e2

CΣ

)
− 1
αpg

[αS(1 − f) − αDf + (1 − f)]Vbias (18.17)

∆Vpg =
1

eαpg

(
∆N+1 +

e2

CΣ

)
− 1
αpg

[αS(1 − f) − αDf − f ]Vbias. (18.18)

Lever arms from diamond measurements. Equations (18.15) and
(18.17), as well as (18.16) and (18.18) describe pairs of lines with the
same slope but offset relative to each other by a certain amount. The
magnitude of the difference of slopes, ∆m = m1 −m2, gives

|∆m| =
1
αpg

, (18.19)

i.e., the lever arm of the plunger gate, independent of the value of f .
The lever arms αS and αD can be determined from diamond measure-

ments as well. If the source–drain voltage is applied such that f = 0 one
finds

1
αS

=
m1

m2
− 1 (drain grounded),

and if it is applied such that f = 1 one obtains

1
αD

=
m2

m1
− 1 (source grounded).

In the case of f = 1/2, only the difference

αS − αD =
m1 +m2

m1 −m2
(antisymmetricVSD)

can be determined. In particular, if m1 = −m2, both lever arms are the
same and the capacitive coupling of source and drain to the dot is the
same.
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Charging energy and single-particle level spacing from dia-
monds. Furthermore the sum of the charging energy and the single-
particle level spacing can be read from diamonds. The two boundary
lines (18.15) and (18.18) intersect at

Vbias =
1
e

(
∆N+1 +

e2

CΣ

)
, (18.20)

regardless of the value of f . In Fig. 18.3 the value of this sum is between
0.7 and 1 meV, depending on the specific diamond; in Fig. 18.15 it is
beyond the boundaries of the plot at about 6meV.

18.2.3 Approximations for the single-particle
spectrum

The hamiltonian with the expectation value ε(0)n does not contain any
electron–electron interaction. The electrons move in a confinement po-
tential which is entirely determined by the gate-induced potentials and
by the potentials of the fixed charges in the system. A popular approx-
imation for the single-particle spectrum ε

(0)
n is the Fock–Darwin spec-

trum (Fock, 1928; Darwin, 1930) describing the motion of an electron
in a two-dimensional isotropic harmonic oscillator subject to a magnetic
field normal to the plane. The corresponding hamiltonian is

H =
(p + |e|A)2

2m�
+

1
2
m�ω2

0r
2.

As a result of the cylindrical symmetry of the confinement potential,
angular momentum is a good quantum number and states can be clas-
sified according to the number n of nodes of the wave function in radial
direction and the angular momentum quantum number l. The resulting
energy spectrum

En,l = �Ω (2n+ |l| + 1) − 1
2

�ωcl, (18.21)

where Ω = (ω2
0 + (ωc/2)2)1/2 and ωc = eB/m� is shown in Fig. 18.17.
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Fig. 18.17 Fock–Darwin spectrum cal-
culated for a confinement energy �ω0 =
3meV. Each state can be occupied with
spin up and spin down.

At zero magnetic field there is a ladder of states with increasing de-
generacy, allowing us to define an s-shell (l = 0) taking two electrons of
opposite spin, a p-shell (l = ±1) taking another four electrons, and so
on. The numbers written in the gaps between these states indicate the
total number of electrons that a system would have when all the shells
below the number are completely filled. We will see later that shell fill-
ing has indeed been observed in small quantum dots with cylindrical
symmetry. A finite magnetic field splits the states that are degenerate
at zero field. In the limit of very large magnetic field, all states with
n = 0 and l > 0 tend asymptotically towards the lowest Landau level of
a two-dimensional system without confinement. The states with n = 1
and l > 0, and the state n = 0, l = −1, tend towards the second Lan-
dau level, and so on. Since the number of electrons in a quantum dot
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is fixed when the magnetic field is changed, the highest occupied state
changes with magnetic field as levels cross (see dashed line in Fig. 18.17).
This will lead to characteristic kinks in conductance peak positions as a
function of magnetic field.

This model is close to reality only for small electron numbers (for
which the Hartree–Fock approximation is often not very good), because
there the confinement potential can be expanded around its minimum
up to second order leading to the harmonic oscillator potential. At
small electron numbers the deviations from the isotropic parabolic ap-
proximation are typically small and can be considered, for example, by
perturbation theory. A more refined single-particle model for small elec-
tron numbers is the anisotropic harmonic oscillator in a magnetic field
which can also be solved analytically (Schuh, 1985). For very large
quantum dots, the electrons in the dot screen the confinement potential
and a hard-wall confinement is in many cases superior to the parabolic
approximations.

18.2.4 Energy level spectroscopy in a
perpendicular magnetic field

Equation (18.14) gives the plunger gate voltages at which conductance
resonances occur. The expression contains energy levels εN of the quan-
tum dot. If measurements are made as a function of a magnetic field,
conductance peaks shift in gate voltage. In many cases it is justified to
assume that the charging energy e2/CΣ and the lever arms αi are inde-
pendent of the magnetic field. The shifts of conductance peak positions
will then represent the magnetic field dependence of the single-particle
energy levels, εN (B). Magnetotransport spectroscopy of energy levels is
therefore a powerful tool to measure and identify single-particle energy
levels in quantum dots.

Typically the energy spectra of quantum dots with many interact-
ing electrons are complicated and hard to understand. The reason is
that quantum dots, in contrast to atoms, usually do not have a highly
symmetric confinement potential. As a result, statistical descriptions of
energy levels have been used to describe statistical properties of con-
ductance peak spacings and peak heights. They are known as random
matrix theory (Beenakker, 1997; Alhassid, 2000; Aleiner et al., 2002). A
quantitative understanding of individual energy levels and their behavior
in a magnetic field is only possible, if

(1) the number of electrons is very small (typically smaller than 10)
(2) the symmetry of the quantum dot is optimized.

Both conditions have been impressively fulfilled in so-called vertical
quantum dots as they are depicted in Fig. 18.18. The material contains
a In0.05Ga0.95As/AlGaAs quantum well with highly doped layers above
and below the well. Vertical pillars with a diameter of about 500 nm
are fabricated by etching. Subsequently, a gate electrode is evaporated
at the base of the pillars which serves as the plunger gate. It has been
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Fig. 18.18 Vertical quantum dots. (a)
Cross section through a structure. (b)
Energy level scheme. (c) Electron
microscope images of quantum dots
with different symmetry (Kouwenhoven
et al., 2001).

shown that in these structures the electron number can be increased
from zero, one by one, to a finite number N . This is shown in Fig. 18.19.
As a result of the rotational symmetry of the cylindrical quantum dots
there is a shell structure similar to the one found in three-dimensional
atoms. The confinement potential can approximately be described with
the Fock–Darwin single-particle spectrum. These structures have there-
fore been called artificial atoms. The shell structure of the spectrum
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Fig. 18.20 (a) Measured magnetic field
dispersion of conductance peaks in an
artificial atom. (b) Fock–Darwin spec-
trum with a constant charging energy
of 2 meV added between states of suc-
cessive electron number (Kouwenhoven
et al., 2001).
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can be extracted from the separations between neighboring conductance
peaks. When a second electron is filled into the lowest s-state, only the
charging energy has to be supplied. With this electron, the s-shell is
completely filled. The third electron has to be put into a level with p-
symmetry, i.e., the charging energy and the single-particle level spacing
between s- and p-shell has to be supplied. The p-level is two-fold de-
generate due to spatial symmetry, and two-fold degenerate due to spin,
i.e., there is a four-fold degeneracy. As a consequence, only the charging
energy has to be supplied for further filling up to the sixth electron [see
Fig. 18.19(b)]. Only charging the seventh electron costs an energy that
is larger by the single-particle levels spacing to the d-level.

Figure 18.20(a) shows the measured magnetic field dependence of the
conductance peak positions in this artificial atom. For comparison, the
Fock–Darwin spectrum is shown in (b), where a constant charging en-
ergy of 2 meV has been added between successive states with increasing
electron number. The agreement between the two spectra is not perfect,
but this very simple model can reproduce many details of the measure-
ment. Effects beyond the simple model occur because it neglects the
exchange and correlation energies.

Quantum dots based on two-dimensional electron gases can be defined
using lateral gates on the surface of a heterostructure. It turns out that
lateral few-electron dots are not easy to fabricate. The reason is that
in very small geometries the plunger gates have a significant electrosta-Magnetic field (T)
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Fig. 18.21 Measured magnetic field
dispersion of the conductance peaks in
the few-electron lateral quantum dot
depicted in the lower inset. The bottom
inset shows the separation of neigh-
boring conductance peaks vs. electron
number showing the absence of clear
shell filling. (Reprinted with permis-
sion from Ciorga et al., 2000. Copy-
right 2000 by the American Physical
Society.)

tic influence on the quantum point contacts coupling the dot to source
and drain contacts. When the electron number is reduced, the tunnel-
ing contacts are in many geometries pinched off (current unmeasurably
small), before the last quantized state has been depleted. However, in
recent years an optimized gate geometry has been developed (Ciorga
et al., 2000) and extensively used, which allows us to define few-electron
lateral dots. The structure, together with the magnetic field dependence
of the conductance peak positions, is shown in Fig. 18.21. In contrast to
the measurements performed on the highly symmetric vertical quantum
dots, these spectra can be interpreted only using detailed model calcu-
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lations that take the kidney-shaped confinement potential into account.
In special cases in can be possible to analyze spectra of lateral quan-

tum dots with many electrons in detail without having to resort to sta-
tistical techniques. Here we discuss the particular case of a ring-shaped
quantum dot which exhibits the cylindrical symmetry of the vertical
quantum dots discussed before (Fuhrer et al., 2001). We showed this
ring structure in Fig. 6.15 where we discussed the AFM lithography tech-
nique. If the quantum point contacts connecting the ring to source and
drain are in the tunneling regime, the ring is Coulomb blockaded. How-
ever, the transmission through the ring remains periodically modulated
by an Aharonov–Bohm flux penetrating the ring. The reason is that
the isolated ring exhibits an energy spectrum that is periodic in the flux
quantum h/e. Figure 18.22(a) shows the measured energy spectrum of
the ring as a function of the magnetic field. A constant charging en-
ergy of 190 µeV has been subtracted between neighboring conductance
peaks. Most prominent are those states that perform a pronounced
zigzag motion as a function of the magnetic field. This behavior reflects
the motion of states in a perfect one-dimensional ring [see Fig. 18.22(b)
and cf. eq. (14.5)]. As in artificial atoms, an angular momentum quan-
tum number can be assigned to the different sections of the zigzag line.
Different radial modes lead to families of zigzag states differing in slope
(different angular momentum quantum numbers). States with a weak
magnetic field dispersion arise because the source and drain contacts
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Fig. 18.22 (a) Measured magnetic field dispersion of the conductance resonances in a quantum ring. A constant charging energy
of 190 µeV has been subtracted between neighboring states. (b) Calculated spectrum of an ideal one-dimensional quantum ring
(Fuhrer et al., 2001).
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break the symmetry of the ring and lead to states of mixed positive and
negative angular momentum.

18.2.5 Spectroscopy of states using gate-induced
electric fields

In some cases the nature and location of single-particle states can be
obtained by determining the lever arms of different gate electrodes on
these states. Essentially geometric arguments decide on the behavior of
the state: if, for example, a particular state is localized near a partic-
ular gate A, but further away from other gates, then the lever arm αA

will be significantly larger than all other lever arms. In Fig. 18.23 we
again take the example of the quantum ring. It turns out that some
states are localized in one of the two ring arms, whereas other states are
extended around the whole ring [see Fig. 18.23(b)]. If a more positive
gate voltage is applied on one side of the ring than on the other, as
indicated by ‘+’ and ‘−’ in Fig. 18.23(a), the energy level of an extended
state will be shifted very little, whereas the energy of a localized state
is strongly shifted. In this way, the two classes of states can be distin-
guished through the different slopes in a plot of peak positions in the
parameter plane of the two gate voltages, as shown in Fig. 18.23(c). The
localized states exhibit a strong shift from the bottom left to the top
right (dotted), whereas the extended states shift only weakly (solid).

extended

localized

s  left right
    symmetric

a  asymmetric

(a) (b)

En
er

gy
 (m

eV
)

B = 77 mT

Asymmetry (meV)
0 +110

0.2

0.4

0.6

0.8

s
a1

2
3

9

8
7
6

5
4

(c)

Fig. 18.23 (a) Schematic drawing of the quantum ring. (b) The extended and localized states of the ring. (c) Measured
dependence of the conductance peak positions in a quantum ring on asymmetrically applied gate voltages. The asymmetry
is the difference between the left and right gate voltages. A constant charging energy of 190 µeV between states has been
subtracted. Flat states (solid lines) are extended around the ring, steep states (dashed lines) are localized in one arm of the
ring. Dash-dotted lines indicate the positions of parametric charge rearrangements. (Reprinted with permission from Fuhrer
et al., 2003. Copyright 2003 by the American Physical Society.)
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18.2.6 Spectroscopy of spin states in a parallel
magnetic field

Spin states of lateral quantum dots based on two-dimensional electron
gases can be identified using a parallel magnetic field. This orientation
of the field is necessary because in a magnetic field perpendicular to
the plane of the electron gas the strong orbital shifts of energy levels
mask the much smaller shifts due to Zeeman splitting of levels. In a
parallel magnetic field B the only orbital effect is a diamagnetic shift of
energy levels which is proportional to B2, and which is the same for all
states. The linear magnetic field splitting due to the Zeeman effect is
superimposed as a linear contribution with a sign that depends on the
spin orientation of the tunneling electron. For single-particle levels we
can therefore write

ε(B‖) = γB2
‖ + sgµBB‖,

where the coefficient γ can be determined experimentally from the para-
bolic diamagnetic shift. Further, µB is Bohr’s magneton, g is the Landé
factor for electrons in the respective semiconductor material (e.g., g =
−0.44 in GaAs) and s = ±1/2 is the spin quantum number along the
direction of the magnetic field. Figure 18.24(b) shows an example for
the Zeeman splitting of levels in the ring structure discussed earlier,
now in an experiment in which the coefficient γ is very small and the
Zeeman splitting can be directly seen in the raw data. The two neigh-
boring conductance peaks arise from tunneling through the same orbital
state. This state is first occupied with spin down and then with spin
up. Figure 18.24(a) shows the dispersion of the same two conductance
resonances in a perpendicular magnetic field on a much smaller field
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Fig. 18.24 (a) Dispersion of a spin
pair in a perpendicular magnetic field.
(b) Zeeman splitting of the same spin
pair in a parallel magnetic field. (Ihn
et al., 2003. With kind permission of
Springer Science and Business Media.)
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scale. The parallel motion of both states indicates that they have the
same orbital wave function.

18.2.7 Two electrons in a parabolic confinement:
quantum dot helium

While the single-particle approximations together with the capacitive
model for the interactions give a reasonable qualitative description of
quantum dot physics, it is of great interest to study the interaction
effects in more detail. In order to expose the problem we will discuss
the simplest possible case here, which are two interacting electrons in a
parabolic confinement potential. As the hamiltonian of the two-electron
quantum dot we consider

H =
2∑

i=1

{
[pi − eA(ri)]

2

2m�
+

1
2
m�
[
ω2

0(x2
i + y2

i ) + ω2
zz

2
i

]}

+
e2

4πεε0|r1 − r2|
+ g�(s1 + s2)B.

We assume the magnetic field to be normal to the plane of the electron
gas, i.e., B = (0, 0, B), and choose the vector potential in the symmetric
gauge A = B/2(−y, x, 0).

In general, two-electron problems are already quite involved as a result
of the Coulomb interaction term. However, this particular hamiltonian
separates into the energy of the center of mass motion and that of the
relative motion if we introduce the center of mass and relative coordi-
nates

R =
1
2
(r1 + r2)

r = r1 − r2.

We obtain a hamiltonian of the form (cf., Merkt et al., 1991, Wagner
et al., 1992)

H = Hcm +Hr +HZ

where Hcm describes the center of mass motion, Hr the relative motion,
and HZ the Zeeman splitting. This separation of the hamiltonian is a
peculiar property of the parabolic confinement potential. More compli-
cated confinement potentials do not allow for such a separation. More
specifically, the three parts of the total hamiltonian are

Hcm =
[P − e�A(R)]2

2M�
+

1
2
M�
[
ω2

0(X2 + Y 2) + ω2
zZ

2
]

Hr =
[p − e′A(r)]2

2µ
+

1
2
µ
[
ω2

0(x2 + y2) + ω2
zz

2
]

+
e2

4πεε0
√
x2 + y2 + z2

HZ = g�(s1 + s2)B.
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In the center of mass hamiltonian, the total mass M� = 2m� and the
total electronic charge e� = 2e enters. The relative motion is governed
by the reduced mass µ = m�/2 and the reduced charge e′ = e/2. Due
to the separation of the hamiltonian into the three parts, we can write
the total wave function of the system and the energy, respectively,

Ψ(r1, r2) = Φ(R)ψ(r)χ(s1, s2)
E = Ecm + Er + EZ.

This separation implies that excitations of the system can be classified
to be either center of mass excitations, spin excitations, or excitations
of the relative motion. The benefit of this separation is that we are now
dealing with three separate problems which are much easier to solve.
These three problems will be discussed in the following.

Center of mass motion. The center of mass hamiltonian represents a
harmonic oscillator with different confinement in the plane and in the z-
direction with a magnetic field applied in the z-direction. The solutions
are the Fock–Darwin states and the Fock–Darwin energy spectrum (see
Fig. 18.17) such that [cf., eq. (18.21)]

ECM = �Ω (2N + |M | + 1) +
�ωc

2
M + �ωz

(
Nz +

1
2

)
,

where

Ω :=

√
ω2

0 +
(ωc

2

)2

, (18.22)

andM is the angular momentum quantum number for the center of mass
motion, N is its radial quantum number, and Nz is the quantum number
for motion in the z-direction. The frequency ωc = eB/m� = e�B/M is
the cyclotron frequency.

The wave function of the center of mass motion is a product of the
z-dependent wave function Φz and an in-plane wave function Φin-plane.
The latter is given by

Φin-plane(R) =
1
L0

√
N !

π(N + |M |)!e
iMϕ

(
R

L0

)|M |
L
|M |
N (R2/L2

0)e
−R2/L2

0

with R being the length of the in-plane component of the vector R, the
generalized Laguerre polynomials Lν

n (Abramowitz and Stegun, 1984)
and the length scale

L0 =

√
2�

MΩ
.

The part of the wave function describing the center of mass motion in
the z-direction is the eigenfunction of the harmonic oscillator.

Zeeman hamiltonian. The spin hamiltonian HZ has the familiar sin-
glet

|S〉 =
1√
2

(| ↑↓〉 − |↓↑〉 )
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and triplet states

|T−1〉 = | ↓↓〉
|T0〉 =

1√
2

(| ↑↓〉 + | ↓↑〉 )

|T1〉 = | ↑↑〉

as solutions. In the magnetic field the triplet states split into three
branches with spacing g�µBSzB, where Sz = 0,±1. The energies are

EZ = g�µBSzB.

Since the total two-particle wave function must be antisymmetric with
respect to a particle exchange and the center of mass wave function is
symmetric, the antisymmetric spin singlet state will be only compati-
ble with antisymmetric wave function of the relative motion while the
symmetric triplet sate wave functions require an antisymmetric wave
function of the relative motion.

Relative motion. After having found analytic solutions for the center
of mass motion and the spin dynamics, the remaining challenge is the
hamiltonian of the relative motion which contains the Coulomb repulsion
between electrons. Owing to the axial symmetry of the problem this
hamiltonian can conveniently be expressed in cylinder coordinates:

Hr = − �
2

2µ
∆ +

�e′B
2µi

∂

∂ϕ
+
e′2B2

8µ
ρ2 +

1
2
µ
[
ω2

0ρ
2 + ω2

zz
2
]

+
e2

4πεε0
√
ρ2 + z2

= − �
2

2µ

[
1
ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

∂2

∂z2

]
+
e′2B2

8µ
ρ2 +

1
2
µ
[
ω2

0ρ
2 + ω2

zz
2
]

− �
2

2µ
1
ρ2

∂2

∂ϕ2
+

�e′B
2µi

∂

∂ϕ
+

e2

4πεε0
√
ρ2 + z2

.

As a consequence of the axial symmetry, the angle dependence is de-
scribed by the eigenfunctions of the z-components of angular momentum
with quantum number m, i.e.,

ψ(r) =
1√
2π
eimϕum(ρ, z). (18.23)

At this point we can state that due to the requirement that the total
wave function Ψ(r1, s1; r2, s2) must be antisymmetric when the two par-
ticles are interchanged (particle interchange means ϕ → ϕ + π), states
with even relative angular momentum m are spin singlet states, whereas
states with odd m are spin triplet states.

Inserting this wave function, the hamiltonian for finding the function
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u(ρ, z) is then

Hr = − �
2

2µ

[
1
ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

∂2

∂z2

]
+

1
2
µ
[
Ω2ρ2 + ω2

zz
2
]

+
�

2

2µ
m2

ρ2
+

�ωcm

2
+

e2

4πεε0
√
ρ2 + z2

.

Here we have introduced the cyclotron frequency ωc = eB/m� = e′B/µ
which replaces the magnetic field strength B, and the effective confine-
ment frequency Ω =

√
ω2

0 + ω2
c/4 already introduced in eq. (18.22).

The problem of the relative motion has now been simplified to a two-
dimensional partial differential equation, where the radial and vertical
coordinates are still coupled via the three-dimensional Coulomb interac-
tion. Although we will not be able to find an analytic solution for this
problem, further insight is gained by looking for characteristic length
and energy scales of the system. Therefore we now introduce dimen-
sionless coordinates and energies. The characteristic unit of length is
the extent of the ground state wave function of a harmonic oscillator of
mass m� with confinement frequency Ω. This length is given by

l0 =

√
�

m�Ω
.

The new relative coordinates are therefore ρ′ = ρ/l0 and z′ = z/l0. In-
serting them in the hamiltonian (and immediately omitting the primes)
gives

Hr = �Ω
{
−
[
1
ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

∂2

∂z2

]
+

1
4

[
ρ2 +

ω2
z

Ω2
z2

]
+
m2

ρ2

}

+
�ωcm

2
+

e2

4πεε0l0
√
ρ2 + z2

.

We now normalize the energy of the radial motion using the character-
istic energy scale �Ω and define

εr =
1

�Ω

(
Er −

1
2

�ωcm

)
and the dimensionless interaction parameter

λ :=
e2/4πεε0l0

�Ω
=

√
2E�

Ry

�Ω

which is the ratio of the Coulomb energy and the effective harmonic
confinement energy. At zero magnetic field this parameter is sometimes
called the Wigner parameter. The parameter λ is proportional to l0
and therefore decreases with 1/

√
B at large magnetic fields, i.e., when

ωc � ω0. Figure 18.25(a) shows the magnetic field dependence of λ
for GaAs, assuming values of �ω0 between 1meV and 5 meV in steps of
1 meV.
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Fig. 18.25 (a) Values of the parameter
λ as a function of magnetic field B for
GaAs. The confinement energies �ω0

are between 1 meV and 5 meV in steps
of 1 meV. (b) Values of the parameter
k as a function of magnetic field B for
GaAs. The confinement energies �ω0

are between 1 meV and 5 meV in steps
of 1 meV. The confinement in the z-
direction is �ωz = 20 meV.
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In addition, we define the parameter describing the three-dimension-
ality of the problem via

k :=
ωz

Ω
.

The geometry parameter k decreases with magnetic field because at
ωc � ω0 the frequency Ω ∝ B and therefore k ∝ 1/B [see Fig. 18.25(b)].
This means that the problem becomes increasingly three-dimensional in
character as the magnetic field increases.

With these new parameters the eigenvalue problem becomes{
−
[
1
ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

∂2

∂z2

]
+

1
4
[
ρ2 + k2z2

]
+
m2

ρ2

+
λ√

ρ2 + z2

}
u(ρ, z) = εru(ρ, z). (18.24)

We can see that the motions in ρ and z are not separable due to the
Coulomb repulsion term. The whole problem depends on the two para-
meters λ (interaction) and k (geometry).

The motion in the z-direction in eq. 18.24 can be taken into ac-
count approximately by replacing the pure Coulomb interaction with a
Coulomb interaction averaged over the z-motion, assuming that ωz � ω0

(strong confinement in the z-direction). The resulting equation for the
radial motion is (cf., Nazmitdinov et al. 2002) using our dimensionless
quantities{

−1
ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

1
4
ρ2 +

m2

ρ2

+
2
π

λ√
ρ2 + ∆z2

0

K

(
∆z2

0

ρ2 + ∆z2
0

)}
u(ρ) = ε̃ru(ρ),

where K(x) is the complete elliptic integral of the first kind (cf.,
Abramowitz and Stegun, 1984), ∆z2

0 = 4jzΩ/ωz, jz = nz + 1/2 is the
semiclassically quantized action variable for motion in the z-direction,
and

ε̃r = εr −
ωz

Ω
jz.

The second term represents the energy of harmonic oscillatory motion
in the z-direction. For the lowest energy state we have nz = 0 and
jz = 1/2.
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Fig. 18.26 Numerically calculated ad-
dition spectrum for quantum dot he-
lium with a parabolic confinement po-
tential. Only excitations of the rela-
tive motion are taken into account here.
For the center of mass motion and the
relative motion in the z-direction the
ground state is assumed.

This approximate form of the problem demonstrates the way in which
the effective thickness of the quantum dot ∆z0 enters the modified
Coulomb interaction. For ωz → ∞ we have ∆z2

0 → 0 and, because
K(0) = π/2, we recover the bare Coulomb interaction λ/ρ. The fi-
nite thickness essentially reduces the Coulomb interaction strength for
electron–electron separations below ∆z0 and leaves it unchanged for
larger distances. The interaction still diverges as ρ→ 0.

The remaining problem depends only on the radial coordinate ρ of the
relative motion. The problem can therefore be solved numerically with
little effort. Figure 18.26 shows the addition spectrum that has been
calculated for the confinement parameters given in the figure, neglecting
the Zeeman splitting. It can be seen that the ground state of quantum
dot helium is a spin singlet (S = 0) with relative angular momentum
m = 0. Increasing magnetic field forces the two electrons to move closer
together thereby increasing the ground state energy. At a magnetic field
of about 4.3 T, a singlet–triplet crossing occurs and the triplet state
(S = 1,m = −1) becomes the ground state for higher magnetic fields. At
zero magnetic field there is a degeneracy of the first excited triplet states
due to the cylindrical symmetry of the problem. States withm = ±1 and
Sz = 0,±1 have the same energy. The orbital degeneracy may be lifted
in systems where the confinement potential in the plane deviates from
the isotropic shape assumed here. In the Coulomb diamonds of Fig. 18.15
tunneling through the singlet ground state (labeled S) and the triplet
excited state (labeled T) is observed. In the symmetric case considered
here, the finite relative angular momentum of the two electrons leads
to net magnetic moments with opposite signs for the two states with
m = ±1. This moment is responsible for the splitting of the degenerate
states with magnetic field. The state with its magnetic moment parallel
to the field (m = −1) will lower its energy, whereas the other state
(m = +1) increases in energy. However, the spin degeneracy for the
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triplet state remains, if we neglect the Zeeman interaction.
Indeed the measured excited state spectrum of quantum dot helium

in a magnetic field including the singlet–triplet transition of the ground
state can be brought into very good agreement with the calculated en-
ergy spectrum. Figure 18.27 shows such a measured spectrum exhibiting
the singlet ground state with its energy increase in a magnetic field, the
triplet excited states and the singlet–triplet crossing at finite magnetic
field (encircled). In addition, a higher excited singlet state with angular
momentum m = −2 can be seen.
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B (T)
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T T
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Fig. 18.27 Measured excitation spec-
trum of quantum dot helium in a mag-
netic field. The plotted quantity is
dI/dVpg. The data was taken at finite
source–drain voltage VSD = 2.5mV.
The lowest singlet state with relative
angular momentum m = 0 is labeled
‘S0’, the triplet excited state is ‘T’, and
the next higher singlet excited state
with m = −2 is ‘S2’. The singlet–
triplet splitting occurring around 4 T is
encircled. (Reprinted with permission
from Ellenberger et al., 2006. Copy-
right 2006 by the American Physical
Society.)

18.2.8 Hartree and Hartree–Fock approximations

After having seen that even the two-electron problem can be rather
tedious to solve, even in the simplest case of a harmonic confinement
potential, we are now ready to appreciate the value of various very pow-
erful approximations that lead to single-particle wave functions in the
case of many interacting electrons.

Hartree approximation. Within the Hartree approximation the wave
functions of the N -electron system are written as a product of (initially
unknown) orthonormalized single-particle wave functions

ψN =
N∏

n=1

ϕn(rn, {φi}).

The ϕn(rn, {φi}) have to be determined self-consistently from the Hartree
equation (8.12). The total energy of the N -electron system is then given
by

EH =
N∑

n=1

εn +
N∑

n=1

n−1∑
m=1

Cmn,

where

εn ≡ 〈n |h(rn)|n〉 =
∫
d3rϕ�

n(r, {φi})h(r)ϕn(r, {φi})

and

Cmn ≡ 〈mn |V (rm, rn)|mn〉 =∫
d3r

∫
d3r′ |ϕm(r, {φi})|2 V (r, r′) |ϕn(r′, {φi})|2 .

Before we interpret this result, we consider the same problem in the
Hartree–Fock approximation.

Hartree–Fock approximation. The Hartree–Fock approximation
takes into account that wave functions of fermions have to change sign
if two arbitrary particles are exchanged. This symmetry requirement is
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fulfilled by taking the total wave function to be a Slater determinant of
single-particle wave functions, i.e.,

ψN =
1√
N !

∣∣∣∣∣∣∣
ϕ1(x1, {φi}) · · · ϕN (x1, {φi})

...
...

ϕ1(xN , {φi}) · · · ϕN (xN , {φi})

∣∣∣∣∣∣∣ .
Here the coordinates xi represent the spatial coordinate ri and the spin
coordinate si (z-component of the electron spin). The single-particle
wave functions have to be determined self-consistently from the Hartree–
Fock equation. Assuming that this has been done, we obtain for the total
energy of the N -electron system

EHF =
N∑

n=1

εn +
N∑

n=1

n−1∑
m=1

Cmn −
N∑

n=1

n−1∑
m=1

Xmn.

In comparison to the Hartree approximation there is an additional inter-
action term called the exchange interaction. The corresponding matrix
elements are

Xmn = 〈mn |V (rm, rn)|nm〉 = δsnsm
×∫

d3r

∫
d3r′ϕ�

m(r, {φi})ϕ�
n(r′, {φi})V (r, r′)ϕm(r′, {φi})ϕn(r, {φi}).

Their values depend on the spins of the two states n and m.
The Hartree–Fock approximation does not always deliver solutions

that are eigenvectors of the total spin S2 of the system, but they are
always eigenstates of the z-component of the total spin Sz =

∑
i si. For

example, if we consider a system with three electrons, we would expect
states with the six possible spin configurations S = 1/2, Sz = ±1/2, and
S = 3/2, Sz = ±3/2,±1/2. The Hartree–Fock approximation allows
only four, namely, Sz = ±1/2,±3/2. For the states with Sz = ±3/2
also the total spin S = 3/2 is a good quantum number. However, for
the states with Sz = ±1/2 it is not a good quantum number because
the total spin could be either S = 1/2 or S = 3/2. In the case of even
electron number, the Hartree–Fock state in which all the lowest energy
states are occupied with spin pairs is an eigenstate with S = 0 and
Sz = 0.

Koopman’s theorem. We now ask what energy is gained if a single
electron is removed from theN -electron system. This could, for example,
happen as the result of a tunneling process into the source or drain
contact. In order to find this energy, we would have to solve the self-
consistent problem for the N - and the N − 1-electron system, and then
determine the difference of their energies. Koopman’s theorem states
that, for large numbers N , we can safely make the approximation that
the removal of the Nth electron does not alter the other wave functions
ϕn(r, {φi}) for n �= N . In essence this implies that we can neglect the
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self-consistent electron rearrangement that may take place. With this
approximation the energy gain is given by

µN = εN +
N−1∑
m=1

CmN −
N−1∑
m=1

XmN .

At the same time this is the energy that we require in order to add
the Nth electron to the N − 1-electron system. We therefore call µN

the electrochemical potential of the quantum dot with N − 1 electrons.
The first term in µN depends on the electrostatic potentials of the gate
electrodes, i.e., on the applied gate voltages. The second term is the
so-called charging energy of the quantum dot (C being the abbreviation
for charging energy) which one can already obtain from the Hartree
approximation. We write the charging energy

VH(N) =
N−1∑
m=1

CmN .

The third term describes the exchange interaction (X stands for ex-
change energy). We can write it as

V ↑/↓xc (N) =
N−1∑
m=1

XmN ,

depending on the spin of the Nth electron. The contribution of the
exchange energy is always negative. It creates a tendency towards spin
alignment.

Gate lever arms. The single-particle energies εn are in the Hartree–
Fock approximation determined for given electrostatic potentials φi of
the gate electrodes. We can now ask how much the energies εn change,
if the gate voltages are changed by small amounts. If we denote with
ε
(0)
n the single-particle energies for the particular values φ(0)

i of gate
potentials, then

ε(0)n =
〈
n

∣∣∣∣− �
2

2m�
∆ − e

∫
V

dV ′ρion(r′)G(r, r′)

+
e2

2
G(r, r) − e

∑
i

φ
(0)
i αi(r)

∣∣∣∣∣n
〉
,

and we can write

εn = ε(0)n − e
∑

i

(φi − φ
(0)
i ) 〈n |αi(r)|n〉 .

The wave functions will not change appreciably for small changes of the
gate voltages, and the energies εn shift linearly with the gate voltages.
The quantity 〈n |αi(r)|n〉 is called the lever arm of gate i acting on state
n. If we insert the definition of the lever arms in the equation for the
electrochemical potential of the quantum dot, we obtain

µN = ε
(0)
N − e

∑
i

(φi − φ
(0)
i ) 〈n |αi(r)|n〉 + VH(N) − V ↑/↓xc (N). (18.25)
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What is the spin of the Nth electron? The fact that the matrix
elements of the exchange interaction Xmn depend on the spins of the
states m and n is of crucial importance for the total spin of the quantum
dot ground state. We ask now whether it is energetically favorable to fill
an additional electron with spin down (↓) or spin up (↑). Let us assume,
we fill a ↓-electron into the level εk. The required energy is

µ↓N = εk +
∑

m occ.

Cmk −
∑

m occ.

Xm,k↓.

Correspondingly, the energy for filling an ↑-electron into the level εn is

µ↑N = εn +
∑

m occ.

Cmn −
∑

m occ.

Xm,n↑.

In the case µ↑N < µ↓N the Nth electron will occupy the ↑-state, in the
other case the ↓-state. An interesting situation occurs if the levels εk and
εn are energetically degenerate and the charging energies

∑
m occ. Cmk

and
∑

m occ. Cmn are also the same. In this case the difference of the
exchange interactions

ξ =
∑

m occ.

Xm,k↓ −
∑

m occ.

Xm,n↑

decides about the spin of the Nth electron.
In atoms this situation is, for example, known as partial p-shell filling.

If there is already an electron in the px-orbital, the next electron can
be filled either in the py- or the pz-orbital with either spin ↑ or ↓. The
single-particle energies and the charging energies are the same for both
alternatives. However, the exchange interaction gives preference to par-
allel spins in the orbitals px and py (or pz). The exchange interaction
leads in this way to one of Hund’s rules according to which degenerate
levels will be filled first with single electrons (as a result of the Hartree
energy) and parallel spins (as a result of the exchange interaction).

18.2.9 Constant interaction model

The already relatively complex self-consistent description of quantum
dots can be further simplified if the following assumptions are made:

(1) The exchange interaction is small and can be neglected.
(2) The Hartree energy increases monotonously with N and we can

write

VH(N) = (N − 1) · 1
N − 1

N−1∑
m=1

CmN︸ ︷︷ ︸
c(N)

.

The charging energy per electron, c(N), will fluctuate in quantum
dots with large electron number (typically N > 100) with increas-
ing N around a constant average Vc, such that c(N) = Vc+∆c(N).
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It has been found that in quantum dots with large electron number
∆c is typically small and therefore

VH(N) = (N − 1)Vc

is a good approximation. The proportionality to the electron num-
ber is consistent with the fact that the Hartree potential contains
the electron density in the dot which has a normalized spatial
distribution that does not change appreciably if a single electron
is added to more than 100 electrons already present (Koopman’s
theorem).

(3) It turns out that, in limited intervals of gate voltages, the lever
arms of relevant states are independent of the index n of the states.
As a consequence, a constant gate lever arm αi can be defined
which is independent of n.

Considering only the contribution to the Hartree energy which is pro-
portional to N , neglecting the exchange interaction and assuming state-
independent lever arms results in the so-called constant interaction model.

Taking these approximations in the Hartree–Fock model of the quan-
tum dot, we obtain the electrochemical potential in the constant inter-
actions model

µN = ε
(0)
N − e

∑
i

αi(φi − φ
(0)
i ) + (N − 1)Vc, (18.26)

where the quantities Vc (charging energy) and αi (lever arms of the
gates) are constants. The single-particle energies εn may be derived
from a model potential of noninteracting electrons.

The constant interactions are based on a number of severe approxi-
mations. Nevertheless it has proven to form a useful basis for capturing
the underlying physics of many of the observed effects.

18.2.10 Configuration interaction, exact
diagonalization

The configuration interaction method, also called exact diagonalization,
requires a lot of computer power for calculating quantum states and
can therefore only be applied for relatively small electron numbers (up
to around 10). We choose a basis of single-particle states, such as the
Fock–Darwin states of the two-dimensional harmonic oscillator in the
perpendicular magnetic field. For the calculation of theN -particle eigen-
states we form N -particle Slater determinants |φi〉 (the so-called config-
urations) which obey the symmetry requirement for fermionic systems
upon particle exchange. If the calculation is based on a finite number of
n > N single-particle wave functions, we obtain(

n
N

)
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N -particle wave functions. The hamiltonian can then be written and
diagonalized in matrix form with elements Hij = 〈φi |H|φj〉. The re-
sulting eigenstates are linear combinations of Slater determinants, i.e,
they have the form

ψ =
∑

i

ci |φi〉 .

The advantage of this approach compared to the Hartree or Hartree–
Fock methods is that correlation effects between electrons can be cor-
rectly described. These correlations are more important the more Slater
determinants contribute to a particular state, i.e., the broader the distri-
bution of the |ci|2 plotted as a function of the index i. The disadvantage
of the method is the large numerical effort. The accuracy of the calcu-
lations can be checked by inspecting changes of the calculated spectra
as the number of single-particle basis states is changed.

18.3 Electronic transport through
quantum dots

So far we have discussed the states of completely isolated quantum dots
without considering the weak tunneling coupling to source and drain
contacts quantitatively. We ascribed the current flow qualitatively to
an alignment between electrochemical potentials in the source, the dot,
and the drain contact. In the following we will consider the tunneling
transport through quantum dots quantitatively.

18.3.1 Resonant tunneling

Electron transport through quantum dot structures is closely related to
the resonant tunneling phenomenon. In order to discuss those prop-
erties of a resonant tunneling structure that are relevant for quantum
dots, we consider one-dimensional model systems in which noninteract-
ing particles are scattered at a double barrier structure. They offer the
advantage that they expose the involved physics without complications
due to higher dimensionality.

tL, rL tR, rR

tL tR

tL rR rL tL

tL rR tL

1

Fig. 18.28 Schematic of interfering
paths reflected back and forth between
two semitransparent mirrors, which are
in quantum dot physics replaced by the
tunneling barriers coupling the dot to
source and drain.

Feynman-paths and resonant tunneling. The resonant tunneling
problem in one dimension can, in full analogy to a Fabry–Perot interfer-
ometer in optics, be described as the interference of partial waves (see
Fig. 18.28). In a quantum dot the electron waves play the role of the
partial waves of light in the optical interferometer, and the role of the
semitransparent mirrors is played by the tunneling barriers connecting
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the dot to source and drain contacts. In this picture the total transmis-
sion amplitude is

t = tLλtR + tLλrRλrLλtR + tLλrRλrLλrRλrLλtR + · · ·

= tLλtR

∞∑
n=0

(rRλ2rL)n

=
tLλtR

1 − rLλ2rR
.

This result corresponds to eq. (18.30) that will later be obtained from
the double delta barrier problem.

For further discussion of this result we wish to transform it to a dif-
ferent form. The expression in the denominator of the transmission can
be written as 1−|rL||rr| exp(iθ), where θ = arg(rL)+arg(rR)+2 arg(λ)
is the phase that an electron accumulates on a round trip between the
barriers. Also the numerator of the expression for the transmission con-
tains a factor exp(iθ/2), and we write it as |tL||tR| exp(iθ/2+ iα), where
α = arg(tL) + arg(tR) − arg(rL)/2 − arg(rR)/2. Then the transmission
amplitude is given as

t =
|tL||tR|ei(θ/2+α)

1 − |rL||rR|eiθ
=

|tL||tR|eiα

e−iθ/2 − |rL||rR|eiθ/2

=
|tL||tR|

1 − |rL||rR|
eiα

cos(θ/2) − i 1+|rL||rR|
1−|rL||rR| sin(θ/2)

.

Introducing the weakly energy-dependent coupling strength

γ =
1 − |rL||rR|
1 + |rL||rR|

< 1

we obtain for the transmission

t =
|tL||tR|eiα

1 − |rL||rR|
1

cos(θ/2) − iγ−1 sin(θ/2)
. (18.27)

As the considered energy is increased, the angle θ increases and the
denominator D = cos(θ/2) − iγ−1 sin(θ/2) describes an elliptic curve
in the complex plane, extending between [−1,+1] along the real axis
and [−γ−1,+γ−1] along the imaginary axis as plotted in Fig. 18.29. The

1 +1

Im(D)

Re(D)

1

D

(E)/2

1

Fig. 18.29 Value of the denominatorD
in the expression for the resonant trans-
mission amplitude following an ellipse
with increasing angle θ.

magnitude of the transmission (18.27) is maximum when the magnitude
of D is minimum, i.e., resonances occur for θ = 2πp, where p is an
integer. At resonance, the magnitude of the second factor in (18.27) is
always one because there, (sin θ/2) = 0, and cos(θ/2) = ±1. Therefore
the prefactor is the amplitude of the resonances.

Lorentz approximation. We now consider a very important implica-
tion of this result called the Lorentz approximation. It is an approxima-
tion for the transmission t(E) near a resonance, given that |tL|, |tR| are
much smaller than one implying that rL and rR are close to one.
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To this end we realize that close to a resonance at energy Ep, we can
expand

θ(E) ≈ 2πp+
dθ(E)
dE

∣∣∣∣
E=Ep

(E − Ep).

Since the second term is small by definition, we have close to a resonance
cos[θ(E)/2] ≈ ±1 (plus sign for even p, minus for odd), and

sin[θ(E)/2] ≈ sin

[
πp+

1
2
dθ(E)
dE

∣∣∣∣
E=Ep

(E − Ep)

]

≈ ±1
2
dθ(E)
dE

∣∣∣∣
E=Ep

(E − Ep),

where the plus sign refers to even p, and the minus sign to odd p. With
the resonance line width Γp defined by

1
Γp

=
1
4γ

dθ(E)
dE

∣∣∣∣
E=Ep

and introducing this approximation into the expression for the transmis-
sion amplitude (18.27) we obtain

t = ± |tL||tR|eiα

1 − |rL||rR|
1

1 − i(E − Ep)/(Γp/2)

:=
t0

1 − i(E − Ep)/(Γp/2)
. (18.28)

This expression is the transmission amplitude in the Lorentz approx-
imation. Comparing the denominator of this expression with the de-
nominator D depicted in Fig. 18.29, we realize that the approximation
is better the more extended the ellipse is along the imaginary axis, i.e.,
the smaller γ. This quantity, however, becomes smaller the larger the
reflection at the two barriers, i.e., the smaller is their transmission. This
makes clear that the Lorentz approximation is valid for |tL|, |tR| � 1,
and therefore TL, TR � 1.

For symmetric barriers, i.e., |rL| = |rR|, and |tL| = |tR|, we have
t0 = ±1, and therefore

tsymm = ± 1
1 − i(E − Ep)/(Γp/2)

,

because |tL/R|2 = 1 − |rL/R|2. The magnitude of the transmission is for
symmetric barriers on the resonance (E = Ep) equal to one.

E

T(E)

Ep

p

|t0|2

Fig. 18.30 Transmission probability
for a lorentzian resonance. The reso-
nance is centered around the energy Ep,
has a width of 2Γ and an amplitude of
|t0|2.

The transmission probability for asymmetric barriers is a lorentzian

T =
|t0|2

1 + (E − Ep)2/(Γp/2)2
,

as depicted in Fig. 18.30.
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If we have a closer look at the amplitude |t0|2 of the resonance and
again use the fact that TL/R = |tL/R|2 = 1 − |rL/R|2 we can write

|t0|2 =
TLTR

(1 −
√

(1 − TL)(1 − TR))2
.

If we make—in the spirit of the Lorentz approximation—the assumption
that TL, TR � 1, we can expand the denominator and find

|t0|2 =
4TLTR

(TL + TR)2
.

For a given average transmission T ≡ (TL + TR)/2, this amplitude has
a maximum as a function of TL − TR at the symmetry point TL = TR.
This result tells us that conductance resonances show their maximum
amplitude if the tunneling coupling to the source and drain barriers is
symmetric.

Further insight about the resonance line width can be obtained by
inspecting γ for the case TL, TR � 1. We find

γ =
1 − |rL||rR|
1 + |rL||rR|

≈ TR + TL

4
.

As a consequence, the quantity Γp contains additive contributions of the
two barriers because

Γp = 4γ

(
dθ(E)
dE

∣∣∣∣
E=Ep

)−1

≈ (TR + TL)

(
dθ(E)
dE

∣∣∣∣
E=Ep

)−1

= Γ(L)
p + Γ(R)

p ,

where

Γ(L/R)
p := TL/R(E)

(
∂θ(E)
∂E

∣∣∣∣
E=Ep

)−1

.

With these results we can finally write the transmission for a sequence
of resonances in the Lorentz approximation as

T =
∑

p

Γ(L)
p Γ(R)

p

Γ(L)
p + Γ(R)

p

Γp

(Γp/2)2 + (E − Ep)2

:=
∑

p

ΓL(p)ΓR(p)
ΓL(p) + ΓR(p)

Lp[E − Ep], (18.29)

where Γp = Γ(L)
p + Γ(R)

p . In this approximation, the energy dependence
of the ΓL/R is usually neglected.

According to the approximations that we made for arriving at the
Lorentz approximation, the resulting expression for the transmission
is only valid near the resonances in the case of weak tunneling cou-
pling. The total tunneling coupling is now described by the two para-
meters Γ(L/R)

p which are the rates with which a particle would tunnel
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out of the potential well. We can see this if we consider the defini-
tion of θ = 2 arg(λ) + arg(rL) + arg(rR) and assume a typical behavior
arg(λ) = kL, where k is the wave vector between the barriers and L
is the barrier separation. The derivative ∂θ/∂E contains the contribu-
tion 2L(∂E/∂k)−1. The partial derivative of the energy with respect to
the wave vector is (up to a factor �) equal to the group velocity of the
electron. The distance 2L between the barriers divided by this velocity
is the mean time interval between collisions of the electron with one of
the barriers. This means that the electron attempts to tunnel out of the
potential well with a rate

ν =
1

2L
1
�

∂E

∂k
.

However, each attempt is only successful with the probability TL/R such
that ΓL/R/� = νTL/R is the tunneling rate through the left (right) bar-
rier. In this discussion we have neglected the (typically weak) energy
dependence of the reflection coefficients rL and rR.

More complicated models for resonant tunneling with islands of higher
dimensionality or more realistic tunneling barriers show conceptually the
same behavior. However, such models are usually more tedious to solve
because the Schrödinger equation has to be solved in three dimensions
for a given quantum dot potential. The tunneling coupling can often
only be considered approximately in a perturbative treatment. Often
the transfer hamiltonian approach is used for this purpose.

Coherent tunneling through two delta scatterers. After having
seen the concept of resonant tunneling in analogy to a Fabry–Perot in-
terferometer, we consider resonant tunneling within an analytically solv-
able problem consisting of two δ-potentials. The scattering potential is
given by U(x) =

∑2
i=1 Uiδ(x− xi). The two barriers enclose a region of

length L = |x1 − x2| in which particles can move freely. The model is
schematically depicted in Fig. 18.31.

Transmission of the double barrier structure. When we look for
the transmission of the double barrier structure we can build on the

-scatterer

A1

L

-scatterer

A2

B1

B2

C1

C2

D1

D2
Fig. 18.31 One-dimensional scattering
potential consisting of two δ-potentials
having a separation L. The quan-
tities A1, A2, B1, B2, . . . are the am-
plitudes of the right- and left-moving
plane waves that are solutions of the
scattering potential.
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single-barrier result discussed in section 12.1. We know the wave func-
tions in the three regions to the left of the first barrier, between the two
barriers, and to the right of the second barrier:

ψL(x) = a1e
ikx + a2e

−ikx

ψZ(x) = b1e
ikx + b2e

−ikx

ψR(x) = c2e
ikx + c2e

−ikx

We define the amplitudes of the wave functions to the left and right of the
individual barriers as A1 = a1e

ikx1 , A2 = a2e
−ikx2 , B1 = b1e

ikx1 , B2 =
b2e
−ikx1 , C1 = b1e

ikx2 , C2 = b2e
−ikx2 , D1 = c1e

ikx2 , andD2 = c2e
−ikx2 .

Then we can write the boundary conditions at the two scatterers as

A1 +A2 = B1 +B2

ik(B1 −B2) − ik(A1 −A2) = γ(A1 +A2)
C1 + C2 = D1 +D2

ik(D1 −D2) − ik(C1 − C2) = γ′(C1 + C2).

The first pair of equations is identical with the boundary conditions
of the single barrier (see section 12.1). The second pair has the same
structure as the first and we can write(

B1

B2

)
= Tk

(
A1

A2

)
(
D1

D2

)
= T ′k

(
C1

C2

)
,

where the matrix elements of T ′k, the transfer matrix of the second bar-
rier, are determined by γ′. Propagation of waves between the two scat-
terers is described by the equation(

C1

C2

)
=
(
eikL 0
0 e−ikL

)
︸ ︷︷ ︸

Pk

(
B1

B2

)
,

with the propagator Pk. In order to simplify the notation we define
λ := eikL.

Using the matrices Tk, T ′k, and Pk we can write the transmission
problem as

D = TkPkT
′
kA := MkA,

where Mk is the total transfer matrix of the system. In order to calculate
the matrix Mk we first determine the product

TkPk =
(
α β�

β α�

)(
λ 0
0 λ�

)
=
(
αλ β�λ�

βλ α�λ�

)
,

and find

Mk = TkPkT
′
k =

(
αλ β�λ�

βλ α�λ�

)(
α′ β′�

β′ α′�

)
=
(
αλα′ + β�λ�β′ αλβ′� + β�λ�α′�

βλα′ + α�λ�β′ βλβ′� + α�λ�α′�

)
.
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This matrix has the same structure as the transfer matrix for the single
barrier in eq. (12.1), i.e.,(

D1

D2

)
=
(

c1e
ikx2

c2e
−ikx2

)
=
(
µ ν�

ν µ�

)(
A1

A2

)

=
(
µ ν�

ν µ�

)(
a1e

ikx1

a2e
−ikx1

)
.

In order to calculate the transmission amplitude we let a1 = 1, a2 = r,
c1 = t, and c2 = 0 and obtain(

teikx2

0

)
=
(
µ ν�

ν µ�

)(
eikx1

re−ikx1

)
.

It follows that

r = − ν

µ�
e2ikx1

t =
|µ|2 − |ν|2

µ�
e−ikL.

In order to find our final result, we express µ and ν by the transmission
coefficients of the single barriers. This leads to

µ =
1 + fr�

Lr
�
R(λ�)2

t�Lλ
�t�R

=
1 − r�

Lr
�
R(λ�)2

t�Lλ
�t�R

ν = −
rL

(
1 + f−1 rLrR

|rL|2 λ
2
)

tLλtR
= −

rL

(
1 − rLrR

|rL|2 λ
2
)

tLλtR
,

where we have used the relation

f =
t�LrL
tLr�

L

= − (1 + iγ/2k)
(1 − iγ/2k)

iγ/2k/(1 + iγ/2k)
iγ/2k/(1 − iγ/2k)

= −1.

With these relations it can be shown that |µ|2 − |ν|2 = 1. This is a
general result of time-reversal symmetry. The transmission coefficient
of the whole structure is therefore e−ikL/µ� leading to

t =
tLtR

1 − rLrRλ2
=

tLtR
1 − |rL||rR|eiθ

, (18.30)

where θ = 2kL + arg(rL) + arg(rR) is the phase that the partial wave
picks up on a round trip between the barriers with two reflections. The
transmission probability of the double barrier structure is therefore

T =
TLTR

1 + RLRR − 2
√
RLRR cos θ

. (18.31)

For the reflection coefficient we find

r =
1
r�
L

|rL|2 − |rL||rR|eiθ

1 − |rL||rR|eiθ
e2ikx1 ,
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and the reflection probability is

R =
RL + RR − 2

√
RLRR cos θ

1 + RLRR − 2
√
RLRR cos θ

.

It can be verified also that in this case, as for the single barrier, T +R =
1.

The total transmission has a maximum at those energies where θ =
2πn (n integer), because the transmission and reflection probabilities of
the single barriers depend only weakly on energy.

Figure 18.32(a) shows the transmission for identical barriers with γL =
γ′L = 10. Transmission resonances indicate the occurrence of resonant
tunneling. The resonances arise at particular values of kL, i.e., at partic-
ular energies. The value of the transmission is one at these resonances.
With increasing energy the resonance widths increase and, as a result,
the background transmission between the resonances increases steadily
with energy. This is related to the fact that the transmission of the
individual barriers increases with increasing energy (see Fig. 12.2). As
a consequence, an electron placed at time t = 0 between the barriers
will tunnel within a time span ∆t into one of the two leads. The finite
probability of finding an electron between the barriers leads according
to the time–energy uncertainty relation ∆E∆t > h to a level broadening
∆E ∼ h/∆t between the barriers and therefore to the broadening of the
transmission resonances.

Density of states between the barriers. Within the same model we
can calculate the wave functions ψk(x) in the region between the two
δ-scatterers. The quantity

ρk = 2
∫ L

0

dx |ψk(x)|2 /(2π)

is the density of states on this ‘island’. The factor of 2 in front of the in-
tegral accounts for the fact that scattering states impinging from the left
and from the right contribute to the density of states. Figure 18.32(b)
shows the density of states for γL = 1. It exhibits maxima at the same
values of kL, i.e., at the same energies as the transmission. With in-
creasing energy the peaks in the density of states broaden and their
amplitude is reduced, in contrast to the amplitude of the transmission
resonances. These peaks in the density of states resemble the discrete
energy spectrum of a system with opaque barriers (quantum well). In-
deed, the peaks in the density of states become sharper if the strength
of the δ-scatterers increases, or if the energy of the incident particle
decreases. The width of the density of states peaks depend again on
the lifetime of a particle between the barriers, according to Heisenberg’s
uncertainty relation.

Number of particles between the barriers. If we fill the quantum
states of this one-dimensional noninteracting system with fermions up
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Fig. 18.32 Transmission T (a), density
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cles N (c) calculated for the double δ-
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to a given Fermi wave vector kF, we obtain a the number of particles N
on the island from

N =
∫ kF

0

ρkdk.

This number of particles N is shown in Fig. 18.32(c) as a function of
kFL. Steps can be seen at integer numbers of N leading to a monotonic
and continuous increase with energy. The steps are more pronounced
at small energies (small kL) and tend to wash out at larger energies. It
turns out that the steps are very pronounced as long as the transmission
of the individual barriers is much smaller than one (cf., Fig. 12.2). In
the opposite case, when the transmission of the individual barriers is
close to one (1 − T � 1), the steps disappear completely. The step-
like character of this function is the more pronounced the larger γ, i.e.,
the weaker the tunneling coupling of the island to the leads. This one-
dimensional model of an island shows that the number of particles on
the island is quantized if it is weakly tunneling coupled to the leads.
This quantization is crucial for the Coulomb blockade effect, although
the latter involves strong interactions between electrons on the island.

This result can also be expressed using the conductance G of a single
barrier. The number of particles on an island is quantized only if the tun-
neling coupling through the individual barriers leads to a single-barrier
conductance G � e2/h. Otherwise, the quantization of the particle
number on the island breaks down. This result is in agreement with the
experimental findings shown in Fig. 18.7.

Resonant tunneling current at small bias voltage

Using the Landauer–Büttiker theory, the conductance G of a resonant
tunneling structure can be determined for small source–drain voltage
USD and finite temperature. In the Lorentz approximation (18.29) we
obtain

G =
e2

h

∑
p

Γ(L)
p Γ(R)

p

Γ(L)
p + Γ(R)

p

∫
dELp(E − Ep)

(
∂f

∂E

)
. (18.32)

Here we assume that the sum over the resonant levels p includes the
two spin orientations. Again we would like to emphasize here that the
presented theory does not contain any interaction effects between elec-
trons on the island. It can therefore not describe the Coulomb block-
ade phenomenon. The expression given above is nevertheless similar
to measurements in the Coulomb blockade. The current exhibits sharp
lorentzian resonances if the temperature kBT is small compared to the
width Γp. If kBT � Γp, then the resonance is thermally broadened. In
this situation the conductance is given by

G =
e2

h

1
4kBT

∑
p

Γ(L)
p Γ(R)

p

Γ(L)
p + Γ(R)

p

1
cosh2[(Ep − EF)/2kBT ]

. (18.33)
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The expression can be regarded as the sum of individual transmission
channels, each contributing an amount

Gp =
e2

h

1
4kBT

Γ(L)
p Γ(R)

p

Γ(L)
p + Γ(R)

p

1
cosh2[(Ep − EF)/2kBT ]

(18.34)

to the total conductance.

18.3.2 Sequential tunneling

For resonant tunneling the coherence of contributing paths in the Feyn-
man description was essential. We will now turn our attention to a
model for tunneling transport through quantum dots in which only the
existence and occupation of discrete states is important. We will set up a
rate equation which describes the occupation statistics of the states. In
this rate equation approach, the interaction between electrons in the dot
can be introduced seamlessly. The approach is based on a perturbation
treatment of the tunneling coupling. Its validity is therefore limited to
the situation where the tunneling coupling is by far the smallest energy
scale in the problem. Using the rate equation approach for the descrip-
tion of electron transport through quantum dots has been introduced
in Averin et al., 1991, and in Beenakker, 1991. Particular examples for
its use and important special cases can, for example, be found in Bonet
et al., 2002.

Theoretical treatment

System hamiltonian and notation. We describe the system of source
and drain lead, and quantum dot by the hamiltonian

H = H0 +H(1) = HS +HD +Hd +H(1),

where HS and HD describe noninteracting electrons in the source and
drain lead, respectively, Hd describes the electron motion in the (inter-
acting) quantum dot, and H(1) is the tunneling coupling between the
leads and the dot. The operator H0 is the sum of the lead and dot
hamiltonians which we assume to be diagonalized.

In the following, single-particle states in the leads are labeled with
the Greek letters Λλ where Λ = S (source) or Λ = D (drain) states in
the dot with the Greek letter δ. Many-body states of the contacts are
labeled �, �′, . . . together with S/D, those in the dot d, d′, . . .. States of
the whole system are labeled, for example, n = (S�,D�′, d).

Perturbation expansion in the tunneling coupling. We describe
states of the system with the density matrix ρ, because we are dealing
with a many-body system with the leads acting as thermodynamic baths.
The dynamics is then governed by the von Neumann equation i�∂tρ(t) =
[H, ρ(t)] which we transform into the interaction picture in which each
operator A is transformed according to

A(t) = eiH(0)t/�Ae−iH(0)t/�.
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The resulting von Neumann equation in the interaction picture is

i�∂tρ(t) = [H(1)(t), ρ(t)]. (18.35)

This equation is naturally suited for a perturbation expansion of ρ(t).
For this purpose we decompose the density matrix into the sum

ρ(t) =
∑

i

ρ(i)(t) (18.36)

with corrections of order i. If we insert this expansion into eq. (18.35)
and treat H(1)(t) as a first-order term, we can collect terms of increasing
order on both sides of the equation and find for the ith order the recursive
relation

i�∂tρ
(i)(t) =

{
0 for i = 0[
H(1)(t), ρ(i−1)(t)

]
for i > 0

. (18.37)

The lowest-order density matrix is therefore stationary.

The tunneling hamiltonian. We now specify the tunneling hamil-
tonian in second quantization

H(1) = H
(1)
S +H

(1)
D =

∑
δλ

Λ=S,D

(
t
(Λ)
δλ d

†
δaΛλ + t

(Λ)�
δλ dδa

†
Λλ

)
, (18.38)

where d†δ (dδ) create (annihilate) a particle in state δ in the dot, and
a†Λλ (aΛλ) create (annihilate) a particle in state λ in lead Λ. The tun-
neling coupling to each lead can be decomposed into a tunneling-in and
a tunneling-out process, i.e.,

H
(1)
Λ = H

(in)
Λ +H

(out)
Λ (18.39)

with
H

(in)
Λ =

∑
δλ

t
(Λ)
δλ d

†
δaΛλ and H

(out)
Λ =

∑
δλ

t
(Λ)�
δλ dδa

†
Λλ.

We note here that H(in)
Λ = H

(out)†
Λ .

An expression for the current. The operator of the current is cal-
culated from the operator of the change of charge in the source lead in
time, i.e., from

I(t) = −|e|∂tNS(t),

where the number operator NS(t) =
∑

λ a
†
Sλ(t)aSλ(t). Its time evolution

is governed by Heisenberg’s equation

∂tNS(t) =
i

�
[H(t), NS(t)] =

i

�
[H(1)

S (t), NS(t)]. (18.40)

Here, we have used the fact that the number operator of the source lead
commutes with the whole hamiltonian, except H(1)

S . We can work out



18.3 Electronic transport through quantum dots 389

the commutator required in eq. (18.40) by looking at the matrix elements
of the involved operators. The matrix elements of the number operator
are given by NS,nm(t) = δnmnS,n, where nS,n is the number of electrons
in the source lead in the system state n. The required commutator has
matrix elements[

H
(1)
S (t), NS(t)

]
nm

= eiωnmtH
(1)
S,nm (nS,m − nS,n)

= eiωnmt
(
H

(in)
S,nm −H

(out)
S,nm

)
,

and we therefore obtain for the desired commutator the operator expres-
sion

[
H

(1)
S (t), NS(t)

]
= H

(in)
S (t) −H

(out)
S (t).

The operator for the current is then given by the intuitive expression

I(t) = −|e| i
�

(
H

(in)
S (t) −H

(out)
S (t)

)
.

The expectation value for the current is

〈I(t)〉 = −|e| 〈∂tNS(t)〉 = −|e| i
�
trace

{[
H

(in)
S (t) −H

(out)
S (t)

]
ρ(t)
}
.

The perturbation expansion of the density matrix (18.36) will give a
corresponding perturbation expansion of the expectation value of the
current

〈I(t)〉 =
∞∑

i=0

〈
I(i)(t)

〉
with

〈
I(0)(t)

〉
= 0 (absence of equilibrium currents) and〈

I(i)(t)
〉

= −|e| i
�
trace

{[
H

(in)
S (t) −H

(out)
S (t)

]
ρ(i)(t)

}
. (18.41)

The current is therefore the sum of corrections of higher order in the
time evolution of the density matrix.

Density matrix in first order. With eqs (18.37) and (18.41) we have
the basis for the calculation of the current in first order in the tunneling
coupling. For the first-order correction of the equilibrium density matrix
we find according to eq. (18.37)

i�∂tρ
(1)(t) = [H(1)(t), ρ(0)(t)] = eiH(0)t/�[H(1), ρ(0)]e−iH(0)t/�. (18.42)

For making further progress we need to specify ρ(0). We assume an
equilibrium thermal density matrix

ρ(0) = ρ(S) ⊗ ρ(D) ⊗ ρ(d)

with ρ
(Λ)
�,�′ = δ�,�′p

(Λ)
� , and ρ

(d)
d,d′ = δd,d′pd. The p(Λ)

� (pd) are thermal
equilibrium probabilities for states (Λ�) and (d) in the leads and dot,
respectively.
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If m, n, and k denote states of the entire system under the influence
of H(0), the commutator in eq. (18.42) has matrix elements

[H(1), ρ(0)]mn =
∑

k

(
H

(1)
mkρ

(0)
kn − ρ

(0)
mkH

(1)
kn

)
= H(1)

mn (pn − pm) ,

where we have abbreviated pn = p
(S)
� p

(D)
�′ pd, and pm = p

(S)
�′′ p

(D)
�′′′ pd′ . With

this result, eq. (18.42) becomes

i�∂tρ
(1)
mn(t) = eiωmntH(1)

mn(pn − pm)

with ωmn = Emn/� = (Em − En)/�. Time integration leads to

ρ(1)
mn(t) = −g(Emn, t)H(1)

mn(pn − pm). (18.43)

At this point we have defined the function

g(Enm, t) :=
eiωnmt − 1
Enm

= 2ieiωnmt/2 sin(Enmt/2�)
Enm

. (18.44)

The function has a finite value it/� at Enm = 0 and oscillates as a
function of energy. The oscillation amplitude decays with energy as
1/Enm and it has the symmetry property that g(Enm, t) = −g�(Emn, t).

Tunneling current in first order. In order to evaluate the current
in first order according to eq. (18.41) we write it out in matrix notation,
insert the density matrix in first order from eq. (18.43), and obtain

〈
I(1)(t)

〉
= −|e| i

�

{∑
mn

g(Enm, t)[H
(in)
S,nm −H

(out)
S,nm]H(1)

mn(pn − pm)

}
.

(18.45)
The product of the expression in square brackets with H(1)

mn can be fur-
ther simplified considering the properties of the tunneling hamiltonian
(18.38):

[H(in)
S,nm −H

(out)
S,nm]H(1)

mn = H
(in)
S,nmH

(out)
S,mn −H

(out)
S,nmH

(in)
S,mn

=
∣∣∣H(in)

S,nm

∣∣∣2 − ∣∣∣H(out)
S,nm

∣∣∣2 (18.46)

The first matrix element squared represents a tunneling-in rate, the sec-
ond a tunneling-out rate. Only one of the two can be nonzero for a given
pair of states (nm).

Realizing that the diagonal terms in the sum over (mn) are zero, we
can simplify the expression for the current by transforming eq. (18.45)
as
∑

mn fnm =
∑

mn(fnm + fmn)/2 into

〈
I(1)(t)

〉
=

|e|
�

{∑
mn

sinωnmt

Enm

[∣∣∣H(in)
S,nm

∣∣∣2 − ∣∣∣H(out)
S,nm

∣∣∣2] (pn − pm)

}

=
2|e|
�

∑
mn

sin(Enmt/�)
Enm

[∣∣∣H(out)
S,mn

∣∣∣2 − ∣∣∣H(in)
S,mn

∣∣∣2] pn (18.47)
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The interpretation of this expression for the current is as follows: Start-
ing from state n, which is found with probability pn, the system evolves
into state m under the influence of the tunneling hamiltonian which
transfers an electron from the source lead into the dot or from the dot
into the source lead. The sign of the contribution to the tunneling cur-
rent depends on the direction of tunneling. The time-dependent pref-
actor decays rapidly as the energy difference Enm increases and in the
limit of large times it becomes a delta function. In this limit of large
times t we therefore have〈

I(1)
〉

= |e|2π
�

∑
mn

δ(Enm)
[∣∣∣H(out)

S,mn

∣∣∣2 − ∣∣∣H(in)
S,mn

∣∣∣2] pn, (18.48)

expressing the fact that tunneling conserves the total energy of the sys-
tem. The tunneling-out term in this expression is given by

∑
mn

δ(Enm)
∣∣∣H(out)

S,mn

∣∣∣2 pn =

∑
dd′

pd

∑
δλ

∣∣∣t(S)
δλ

∣∣∣2 |〈d′| dδ |d〉 |2 δ(µdd′ − ελ)
∑
��′

∣∣∣〈�′| a†S,λ |�〉
∣∣∣2 p(S)

�

and the tunneling-in term is

∑
mn

δ(Enm)
∣∣∣H(in)

S,mn

∣∣∣2 pn =

∑
dd′

pd

∑
δλ

∣∣∣t(S)
δλ

∣∣∣2 ∣∣∣〈d′| d†δ |d〉 ∣∣∣2 δ(µd′d − ελ)
∑
��′

|〈�′| aS,λ |�〉 |2 p(S)
� .

The last matrix elements on the right-hand side can be further simplified,
because the leads are noninteracting. We find∑

��′
|〈�| aSλ |�′〉 |2 p(S)

�′ = fS(ελ),
∑
��′

∣∣∣〈�| a†Sλ |�′〉
∣∣∣2 p(S)

�′ = 1 − fS(ελ),

∑
��′

|〈�| aSλ |�′〉 |2 p(S)
� = 1 − fS(ελ),

∑
��′

∣∣∣〈�| a†Sλ |�′〉
∣∣∣2 p(S)

� = fS(ελ),

where fS(ελ) is the Fermi–Dirac equilibrium distribution function in the
source lead, evaluated at the energy ελ of state λ. Inserting all the above
results into eq. (18.48) gives〈

I(1)
〉

= −|e|
∑
dd′

pd

[
Γ(S)

dd′fS(µd′d) − Γ(S)
d′d(1 − fS(µdd′))

]
(18.49)

with the tunneling rates for lead Λ defined as

Γ(Λ)
dd′ =

2π
�

∑
δλ

|〈d| dδ |d′〉 |2
∣∣∣t(Λ)

δλ

∣∣∣2 δ(|µdd′ | − ελ). (18.50)

The rate Γ(Λ)
dd′ is nonzero only for pairs of dot states (d, d′) for which the

electron number Nd = Nd′ −1. Equation (18.49) together with the rates



392 Quantum dots

(18.50) are the central result for the current. The expressions for the
rates look very similar to the standard Fermi’s golden rule, but there
is an additional matrix element measuring the overlap between state d′,
say, an N -electron state with an electron added in state δ, and the N+1-
electron state d. Suppose, for example, that state d and (d′ + electron in
state δ) have orthogonal spin components. In such a case, tunneling-in
would be completely suppressed, although energy might be conserved
and the tunneling matrix element be nonzero. Tunneling-in and -out
therefore occurs with particular rates that ensure energy conservation
and spin conservation. Equation (18.49) tells us that the total current
is the result of a competition between tunneling-in from the source into
the dot and tunneling-out from the dot into the source contact. Every
dot state d can contribute to a tunneling current provided it is occupied
(factor pd), and provided the target state in the lead is empty (tunneling-
out) or occupied (tunneling-in).

Rate equations for the occupation statistics. The above calcu-
lation of the tunneling current through a quantum dot leaves us with
the open question of how to determine the dot occupation factors pd.
We will now show that these can be obtained as the stationary solution
of a rate equation for the reduced density matrix of the quantum dot.
Treating the system in 0th order does not give such a rate equation, as
is evident from eq. (18.37). It turns out that tracing out the lead states
in the first-order result in eq. (18.43) does not give the rate equation
either. In order to derive the rate equation we have to calculate the
second-order correction to the density matrix of the whole system, and
then trace out the states of the leads. The second order correction to
the density matrix is found from eq. (18.37) to be

i�∂tρ
(2)(t) = [H(1)(t), ρ(1)(t)].

Going again to matrix notation in eigenstates of the unperturbed hamil-
tonian H(0) this equation becomes

i�∂tρ
(2)
mn(t) =

∑
k

[
eiωmktH

(1)
mkρ

(1)
kn (t) − ρ

(1)
mk(t)H(1)

kn e
iωknt

]
.

Inserting the result eq. (18.43) for the first-order correction we obtain

i�∂tρ
(2)
mn(t) = −

∑
k

H
(1)
mkH

(1)
kn

[(
eiωmnt − eiωmkt

) pn − pk

Ekn

−
(
eiωmnt − eiωknt

) pk − pm

Emk

]
,

and after time integration

ρ(2)
mn(t) =

∑
k

H
(1)
mkH

(1)
kn

{
[g(Emn, t) − g(Emk, t)]

pn − pk

Ekn

− [g(Emn, t) − g(Ekn, t])
pk − pm

Emk

}
. (18.51)
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We use the notation |m〉 = |�′τ ′d′〉 and |n〉 = |�τd〉 , where � and �′

denote states in the source, whereas τ and τ ′ denote states in the drain
contact. We can trace out the states �, �′, and τ , τ ′ of the contacts in
eq. (18.51) and obtain the reduced density matrix of the dot

ρ
(2)
d,d′d(t) =

∑
�τk

H
(1)
�τd′,kH

(1)
k,�τd

[
(g(µd′d, t) − g(E�τd′,k, t))

p�τd − pk

Ek,�τd

− (g(µd′d, t) − g(Ek,�τd, t))
pk − p�τd′

E�τd′,k

]
with the time derivative

∂tρ
(2)
d,d′d(t) =

i

�

∑
�τk

H
(1)
�τd′,kH

(1)
k,�τd

[(
eiωd′dt − eiω�τd′,kt

) p�τd − pk

Ek,�τd

−
(
eiωd′dt − eiωk,�τdt

) pk − p�τd′

E�τd′,k

]
.

The diagonal elements of the reduced density matrix obey the equations

∂tρ
(2)
d,dd(t) = −2

�

∑
�τk

∣∣∣H(1)
�τd,k

∣∣∣2 (p�τd − pk)
sin(Ek,�τdt/�)

Ek,�τd
.

On long time scales t/� → ∞ this equation goes into Fermi’s golden rule
result

∂tρ
(2)
d,dd(t) =

2π
�

∑
�τ

�′τ ′d′

∣∣∣H(1)
�τd,�′τ ′d′

∣∣∣2 δ(E�′τ ′d′,�τd)(p�′τ ′d′ − p�τd).

This equation is equivalent to the rate equation

∂tpd(t) =
∑
d′

[
W (d, d′) −

∑
d′′

W (d′′, d)δdd′

]
pd′ , (18.52)

where pd(t) ≡ ρ
(2)
d,dd(t), and the

W (d, d′) =
2π
�

∑
�τ

�′τ ′

∣∣∣H(1)
�τd,�′τ ′d′

∣∣∣2 δ(E�′τ ′,�τ − µdd′)p�′pτ ′

are the transition rates from state d′ to d, or d to d′, respectively. It just
remains to evaluate these transition rates further using eq. (18.38) in
the same fashion as in the case of the tunneling current in lowest order.
The square of the tunneling matrix element is∣∣∣H(1)

n,m

∣∣∣2 =
∣∣HS

nm

∣∣2 +
∣∣HD

nm

∣∣2
=

∣∣HS,in
nm

∣∣2 +
∣∣HS,out

nm

∣∣2 +
∣∣HD,in

nm

∣∣2 +
∣∣HD,out

nm

∣∣2
and after some more algebra we arrive at

W (d, d′) = Γ(S)
d′dfS(µdd′) + Γ(S)

dd′ [1 − fS(µd′d)]

+Γ(D)
d′d fD(µdd′) + Γ(D)

dd′ [1 − fD(µd′d)] , (18.53)
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where we have used the definition of the tunneling rates from eq. (18.50).
Equations (18.52) and (18.53) are the main results that allow the de-

termination of the population of quantum dot states. Their interpreta-
tion is as follows. If the quantum dot under consideration is in a state
d′ with N electrons, it can decay into a state d with N − 1 electrons, if
an electron tunnels from the dot into the source, or the drain reservoir
[second and fourth term in eq. (18.53)]. It may alternatively decay into
a state d with N + 1 electrons, if an electron tunnels from one of the
reservoirs into the dot [first and third term in eq.(18.53)]. For each of
these transitions there exists a transition rate W (d, d′) from the initial
state d′ into the final state d.

We can find a stationary probability pd which describes the probability
that the quantum dot is found in a particular state d. The probabilities
pd are determined by the rate equation (18.52), where we set ∂tpd(t) = 0
in order to obtain the stationary solutions, i.e.,

0 =
∑
d′

[
W (d, d′) −

∑
d′′

W (d′′, d)δdd′

]
pd′ . (18.54)

The expression in square brackets forms a matrix with determinant zero.
Therefore the additional requirement that the probability distribution
pd be normalized, i.e., ∑

d

pd = 1, (18.55)

is needed to produce a unique solution together with the above rate
equations (18.54).

Summary. The above eqs (18.54) and (18.55) lead to a stationary dis-
tribution function describing the occupation of quantum dot states which
is not the well-known Fermi–Dirac distribution for a gas of free noninter-
acting fermions. The required transition rates are defined in eq. (18.53)
which can be evaluated with the help of the definition (18.50). Hav-
ing the dot occupation distribution, the current can be calculated from
eq. (18.49).

Example: System with two quantum dot states

As the simplest example, we consider a quantum dot in which only two
ground states differing by one in electron number are relevant for the
electronic transport. This situation is given if the temperature is much
smaller than the lowest excitations of the quantum dot above the two
involved ground states, and, of course, smaller than the charging energy.
We denote the energies of the two ground states with Ed(1) and Ed(2),
with Ed(2) > Ed(1). Further, let N1 = N − 1 and N2 = N . From the
rate equation (18.54) and the normalization condition (18.55) we find
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the occupation probabilities of the two states

p1 =
W (1, 2)

W (2, 1) +W (1, 2)

p2 =
W (2, 1)

W (2, 1) +W (1, 2)
.

Inserting the expressions (18.53) for the rates, and realizing that the Γ∆
12

are the only nonzero rates, leads to

p1 =
Γ(S)

12 [1 − fS(µN )] + Γ(D)
12 [1 − fD(µN )]

Γ(S)
12 + ΓD

12

p2 =
Γ(S)

12 fS(µN ) + Γ(D)
12 fD(µN )

Γ(S)
12 + ΓD

12

,

where the Fermi functions have to be evaluated at the energy µN =
E(2) − E(1). A special case arises if no bias voltage is applied between
source and drain. In this case fS = fD ≡ f , and we obtain

p1 = 1 − f

p2 = f.

This result tells us that the occupation of the state with one excess elec-
tron on the dot goes to zero sharply, as soon as µN is shifted above the
electrochemical potentials (Fermi energies) in the contacts, e.g., by the
application of a plunger gate voltage. At the same time, the occupation
probability of the state with zero excess electrons on the dot rises.

The current given by eq. (18.49) is the difference of two contributions,
the current created by an electron tunneling from the dot into the source,
and the current created by the opposite process, i.e.,

I = +|e|
{
p2Γ

(S)
12 [1 − fS(µN )] − p1Γ

(S)
12 fS(µN )

}
.

Inserting the expressions for the occupation probabilities we obtain

I = −|e|
h

Γ(S)
12 Γ(D)

12

Γ(S)
12 + Γ(D)

12

[fS(µN ) − fD(µN )] . (18.56)

At zero source–drain voltage we have µS = µD and therefore also fS(µN )
= fD(µN ), and the current is zero. Figure 18.33 shows two I(VSD) curves
calculated according to eq. (18.56). It was assumed that µS = eVSD/2,
µD = −eVSD/2, and µN = |e|(αS−αD)VSD/2−|e|αGVG+const. A char-
acteristic property of the curve in the Coulomb blockade (off resonance)
is the exponential suppression of the current for small source–drain volt-
ages. In contrast, on a conductance resonance (on resonance), the trace
is linear for small source–drain voltages. Comparison with the measured
curve in Fig. 18.2 shows that the characteristic behavior of the measure-
ment is quite well represented by our simple model. In the following we
will derive the special case of linear transport from eq. (18.56).
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Fig. 18.33 Current–voltage character-
istics of a quantum dot in the Coulomb
blockade regime (off resonance) and on
a conductance peak (on resonance), cal-
culated according to eq. (18.56).
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For small source–drain voltages (linear response) we can, for example,
Taylor-expand fS up to first order:

fS(µN ) = fD(µN ) +
dfD(µN )
dµD

∣∣∣∣
µS=µD

(µS − µD)

= fD(µN ) − |e|VSD

4kBT cosh2[(µN − µD)/2kBT ]
.

The current is then given by

I =
e2

h

Γ(S)
12 Γ(D)

12

Γ(S)
12 + Γ(D)

12

1
4kBT cosh2[(µN − µD)/2kBT ]

VSD

and the conductance is

G = G0 cosh−2[(µN − µD)/2kBT ]

with

G0 =
e2

h

Γ(S)
12 Γ(D)

12

Γ(S)
12 + Γ(D)

12

1
4kBT

.

This result gives us insights into several experimental findings. A peak
in the linear conductance will always be found as a function of gate
voltages whenever the electrochemical potential µN in the quantum dot
µN = µD (cf., Fig. 18.9). This resonance condition can be controlled
through the gate voltages as described by eq. (18.25). We can therefore

G
G0

kBT

pg(Vpg Vres)

Fig. 18.34 Shape of a conductance res-
onance according to eq. (18.57) in the
single-level tunneling regime, if the tun-
neling coupling is much smaller than
temperature.

write the function describing a conductance resonance as

G =
G0

cosh2[αpg(Vpg − Vres)/2kBT ]
. (18.57)

The peak is thermally broadened, and decays exponentially with increas-
ing distance from the maximum, as shown in Fig.18.34. From the width
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of such a resonance the electron temperature can be experimentally de-
termined. Within the above model, the height of conductance peaks
decays in inverse proportion to the temperature. We can write for the
prefactor G0 giving the height of the resonance

G0 =

(
h

e2
4kBT

Γ(S)
12

+
h

e2
4kBT

Γ(D)
12

)−1

:= (RS +RD)−1
,

i.e., it can be interpreted as adding the two tunneling resistances RS and
RD in series.

Remarkable about the result for the conductance in eq. (18.57) is the
fact that it corresponds exactly to the expression for the resonant tun-
neling current for one transmission channel in eq. (18.34). It therefore
turns out to be an interesting question as to whether the current through
a quantum dot is resonant and coherent, or sequential and incoherent.
This question cannot be answered with measurements of the Coulomb
blockade effect alone. Interference measurements have to be designed,
where quantum dots are embedded in ring geometries. Such measure-
ments have shown that a part of the current through a quantum dot can
indeed be coherent.

If the simple two-state model discussed above is applicable, we talk
about the single-level transport regime. If we take a value of 30µeV for
the typical single-particle level spacing, it requires experiments at tem-
peratures well below 300mK to reach the single-level transport regime.

Figure 18.35(a) shows measured conductance peaks of a quantum dot
fabricated from a GaAs/AlGaAs heterostructure. At small plunger gate
voltage (Vpg ≈ 282.5 mV), eq. (18.57) gives an excellent fit [Fig. 18.35(b)].
At larger plunger gate voltages, a convolution of a lorentzian resonance
with the derivative of the Fermi–Dirac distribution gives a very good fit
[Fig. 18.35(c)].

280 285 290 295 300

10 1

10 2

10 3

10 4

10 5

G
 (e

2 /
h)

Vpg (mV)

(a)
10 1

10 2

10 3

10 4

10 5

G
 (e

2 /
h)

(b)

282.5 282.9
Vpg (mV) Vpg (mV)

10 1

10 2

10 3

10 4

10 5

G
 (e

2 /
h)

(c)

291.0 292.2

Fig. 18.35 (a) Coulomb blockade measurements made on a quantum dot in a GaAs/AlGaAs heterostructure. (b) Fit
of a particular conductance resonance at small plunger gate voltage with the thermally broadened function in eq. (18.57).
(c) At larger plunger gate voltages where the source and drain tunneling coupling is stronger, a fit with a thermally broadened
lorentzian is better than eq. (18.57). (Reprinted with permission from Foxman et al., 1993. Copyright 1993 by the American
Physical Society.)
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Beyond the single level transport regime

Experimentally, situations can arise where the reduction of the problem
to two dot states, i.e., one electrochemical potential µN , is not possible.
This is the case, for example, if excitations of the quantum dot are very
close in energy to the ground states. As a result, the shapes of conduc-
tance resonances in linear response can become more complicated and,
beyond the energy difference µN between ground states, other energy
differences µ(n,m)

N occur [cf., eq.(18.9)].
In systems beyond the single-level transport regime, the shape of con-

ductance resonances can be calculated on the basis of the rate equation
(18.54) and the equation for the current (18.49). Analytic results can
be obtained for certain limiting cases if the constant interaction model
for the quantum dot is used (Beenakker, 1991). The main assumption is
that the energy level broadening Γ caused by the tunneling coupling to
source and drain contacts is much smaller than the thermal energy kBT ,
i.e., Γ � kBT . It turns out that the conductance is the sum over contri-
butions of individual transport channels with a given electron number
N in the dot, where transport takes place through the single-particle
level p:

G =
∑
N

∑
p

GN,p.

The contribution of the energy level εp to the conductance of the dot
with N electrons is given by

GN,p =
e2

kBT

Γ(S)
p Γ(D)

p

Γ(S)
p + Γ(D)

p

Feq(εp, N) [1 − f(µN )] ,

where the Γ(S)
p and Γ(D)

p describe the tunneling coupling of the energy
level εp to source (S) and drain (D). The function f(E) is the Fermi–
Dirac distribution in the source (drain) contact. The function Feq(εp, N)
represents the statistical probability that the energy level εp of the N -
electron dot is thermally occupied.

At sufficiently low temperatures, kBT � Vc, only one particular elec-
tron number N contributes to electron transport. Furthermore if kBT
is smaller than the separation of neighboring energy levels εp, only one
single-particle energy level εp contributes. This is the case of the single-
level transport regime introduced above. For this very important special
case the above formula for the conductance simplifies to eq. (18.57).

18.3.3 Higher order tunneling processes:
cotunneling

Figure 18.36(b) shows dI/dVSD diamond measurements obtained from
a GaAs quantum dot fabricated by AFM lithography. A number of
excited quantum dot states can be seen outside the diamonds. The
sum of charging energy and single-particle level spacing is about 2meV,
indicating that the dot is quite small. Typical single-particle level spac-
ings are around 200µeV. Within the diamonds, structure can be seen
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Fig. 18.36 (a) AFM image of the
quantum dot sample used for the mea-
surement of the differential conduc-
tance in (b). (b) Measurements of
dI/dVSD in the plane of plunger gate
and source–drain voltage. A number
of excited states can be seen outside
the Coulomb blockade diamonds. In-
side the diamonds, the signatures of in-
elastic cotunneling and elastic cotun-
neling through excited states can be
seen (white arrows). (Reprinted with
permission from Schleser et al., 2005.
Copyright 2005 by the American Phys-
ical Society.)

in dI/dVSD which cannot be explained within the models of electron
transport through quantum dots discussed so far. The corresponding
so-called cotunneling processes will be discussed in the following.

Figure 18.37 shows a schematic Coulomb blockade diamond with en-
ergy schemes for different transport processes. Processes 1 to 4 can be
described within the sequential elastic tunneling picture discussed ear-
lier. Beyond that we distinguish elastic cotunneling processes (process
5) and inelastic cotunneling processes (process 6).

In an elastic cotunneling process, an electron tunnels from source to
drain via a virtual intermediate nonresonant state in the dot. Although
this virtual state is higher in energy than the electron’s energy in the
source and drain contact, the total process is energy-conserving, and the
dot is found in its ground state before and after the electron transfer.
In an inelastic cotunneling process, two electrons tunnel in a correlated
fashion and the electron is left in an excited state (or it starts from an
excited state and ends up in the ground state). All these processes occur
at finite source–drain voltages.

Elastic cotunneling. Elastic cotunneling (processes 5 in Fig. 18.37)
dominates the conductance between conductance resonances if the tun-
neling coupling is sufficiently strong such that first-order tunneling is no
longer a good approximation. As an example of the physics involved,
we consider the quantum mechanical transition amplitude for tunneling
from source to drain for the case of tunneling via the virtual states µN

and µN+1, as depicted in Fig. 18.38.
In lowest order they are given by the sum of the two alternative

processes (a) and (b)

N+1

N+1

N

(a)

(b)

N

l r

l r

Fig. 18.38 Two tunneling processes
contributing to elastic cotunneling.tτ� =

t��dtτd

ετ − µN
+

t��d′tτd′

µN+1 − ε�
,

where � numbers a state in the source contact, τ a state in the drain, and
d and d′ are the two intermediate dot states relating to µN and µN+1,
respectively. According to Fermi’s golden rule and the condition that
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the initial state of the electron in the source contact has to be occupied
whereas the final state in the drain has to be empty, the total tunneling
rate is given by

WD←S =
2π
�

∑
�τ

|tτ�|2 δ(ετ − ε�)fS(ε�)[1 − fD(ετ )].

The summation goes over all states in the source and drain contact. The
tunneling rate is a sum of three terms, one of which is an interference
term, because the tunneling amplitude is the sum of two terms. As-
suming that the tunneling rates are independent of energy over a small
source–drain voltage interval, we obtain at zero temperature

WDS =
2π
�

[
ΓS(N)ΓD(N)

(µD − µN )(µS − µN )
+

ΓS(N + 1)ΓD(N + 1)
(µD − µN+1)(µS − µN+1)

]
eVSD

+
ln
(

µN+1−µD
µD−µN

)
− ln

(
µN+1−µS
µS−µN

)
(µN+1 − µN )(µS − µD)

.
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Fig. 18.37 Schematic Coulomb blockade diamond together with the energy diagram of selected tunneling processes of first
and second order (cotunneling). (1) Sequential tunneling with source–drain voltage close to zero (linear response). (2) Plunger
gate voltage reduced and source–drain voltage increased such that µN+1 = µS. This condition is fulfilled along the line
labeled correspondingly. (3) Starting from (1) the plunger gate voltage and the source–drain voltage were increased such that
µN+1 = µD. This condition is fulfilled along the line labeled correspondingly. (4) We went from (1) along the line µN+1 = µS

to larger source–drain voltage until an excited state transition µ
(m,n)
N became just possible, such that two transport channels

are in the bias window. (5) Two elastic cotunneling processes using virtual intermediate states of the quantum dot. The second
process can be regarded as the hole analogue to the first. Such processes are possible everywhere within the diamond. (6)
Inelastic cotunneling process where the quantum dot is left in an excited state and the tunneling electron loses the same amount

of energy (left-hand diagram). The required energy is therefore supplied by the applied voltage, i.e., µ
(m,n)
N − µN = eVSD.

This condition defines the borderline between light and dark gray regions in the diamond. At the diamond edge this line ends,
where an excited state line continues outside the diamond. Such inelastic processes are possible in the dark gray regions of the
diamond. The right-hand diagram shows a process in which the tunneling electron acquires energy from the previously excited
dot. These processes are possible everywhere in the diamond.
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From this rate we obtain the contribution of elastic cotunneling to the
current from

Iel = eWDS .

The above considerations are valid if no excited quantum dot states
provide additional elastic cotunneling channels. For the case that the
mean single-particle level spacing ∆ in quantum dots is very small, the
conductance was calculated in Averin and Nazarov, 1990, to be

Gel =
�GSGD∆

4πe2

(
1
Ee

+
1
Eh

)
.

Here, Ee = µN+1−EF is the separation of the next unoccupied (N+1)-
electron ground state from the Fermi energy in the contacts, whereas
Eh = EF − µN . The energy scale ∆ is the mean single-particle level
spacing in the quantum dot for a given spin orientation. For a two-
dimensional dot it can be estimated via ∆ ≈ 2π�

2/m�A, where A is the
quantum dot area. The conductances GS and GD are the conductances
of the tunneling barriers connecting the dot to the source and drain con-
tacts. The contribution of elastic cotunneling will therefore be stronger
the larger the coupling of the dot is to source and drain.

Inelastic cotunneling Inelastic cotunneling (process 6, left-hand dia-
gram in Fig. 18.37) is relevant at finite bias voltages. The final state of
the quantum dot is higher by the excitation energy ∆ than the initial
state. This energy difference is supplied by the bias voltage. Therefore
the process sets in, if eVSD ≥ ∆. Beyond this source–drain voltage, the
current increases linearly with the applied voltage, i.e., dI/dVSD ≡ Ginel

is constant. Therefore there is a step (the inelastic onset) when one
measures dI/dVSD as a function of VSD.

The measurement in Fig. 18.36(b) shows such steps in the differential
conductance within the diamonds (arrows) which are a result of inelas-
tic cotunneling processes. At the diamond boundaries each inelastic
cotunneling onset meets a line of an excited state existing outside the
diamonds. This is exactly the excited state that plays a role for the
inelastic cotunneling transition.

The transition rates in the regime of inelastic cotunneling are calcu-
lated, like those for elastic cotunneling, using Fermi’s golden rule. The
amplitude of the tunneling process is

tτ� =
t��dtτd′

ετ − µN
+

t��d′tτd

µN+1 − ε�
,

where � labels a state in the source contact and τ a state in the drain.
The states d and d′ label the two quantum dot states involved. This is
the superposition of the two processes depicted in Fig. 18.39. The total
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Fig. 18.39 Two processes contributing
to inelastic cotunneling.

tunneling rate is then given by

WD←S =
2π
�

∑
�τ

|tτ�|2 δ(ετ − ε� + ∆)fS(ε�)[1 − fD(ετ )].
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Fig. 18.40 Cotunneling through the
excited triplet state of quantum dot he-
lium. (Reprinted with permission from
Zumbuhl et al., 2004. Copyright 2004
by the American Physical Society.)
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This tunneling rate will enter a rate equation used to calculate the oc-
cupation of the dot states. This is the case because the inelastic process
populates, e.g., excited dot states, and therefore leads to a change of the
occupation statistics of the dot. In addition to the inelastic cotunneling
rate, decay rates also have to be taken into account that describe the
decay of the excited state into the ground state by the emission of en-
ergy. (An example of such a calculation can be found in Wegewijs and
Nazarov, 2001.)

The contribution of inelastic cotunneling to the conductance (i.e., the
height of the cotunneling onset) has been calculated by Averin and
Nazarov for the case where the single-particle level spacing ∆ in the
dot is much smaller than the charging energy. Their result is

Ginel =
�GSGDπ

3e2
(kBT )2

(
1
Ee

+
1
Eh

)2

.

The broadening of the step depends either on temperature, or on the
intrinsic life time Γinel of the excited dot state. If Γinel � kBT , the
step has a width Γinel. If Γinel � kBT , then the thermal broadening
dominates and the step has the shape (Lambe and Jaklevic, 1968; Kogan
et al., 2004)

dI

dVSD
= Gel +Ginel

[
F

(
eVSD + ∆
kBT

)
+ F

(
−eVSD − ∆

kBT

)]
,

where
F (x) =

1 + (x− 1)ex

(ex − 1)2
.

It turns out that the excited dot state reached by cotunneling has typi-
cally a larger life time than the corresponding excited state outside the
Coulomb blockaded diamond. This finding can be exploited for doing
excited state spectroscopy with enhanced precision (Franceschi et al.,
2001). The method was, for example, used in Zumbuhl et al., 2004,
for measuring the singlet–triplet transition of quantum dot helium in
a magnetic field. Figure 18.40 shows the differential conductance of a
quantum dot with one (N = 1) or two (N = 2) electrons. The excited
triplet state can be seen outside the diamond. Within the N = 2 di-
amond there is a very clear cotunneling onset in the direction of VSD

related to the triplet state.
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18.3.4 Tunneling with spin-flip: the Kondo effect in
quantum dots

The Kondo effect has been known for a long time from measurements of
the conductance of metals with magnetic impurities. At low tempera-
tures particular metals follow different scenarios (see Fig. 18.41). While
the resistance of normal metals without magnetic impurities tends to-
wards a residual resistance given by the concentration of nonmagnetic
impurities, the resistance of superconducting materials makes a very
sharp transition to zero at the critical temperature. The resistance of
metals with magnetic impurities, however, shows a logarithmic increase
of the resistance as the temperature is lowered.

superconductornormal
conductor

metal with
magnetic
impurities

temperature

re
si

st
an

ce

Fig. 18.41 Typical behavior of the re-
sistance of a superconducting metal, a
normal metal, and a metal with mag-
netic impurities as a function of tem-
perature.

This increase in due to the Kondo effect. Conduction electrons scatter
at the magnetic impurities and suffer (like the impurities) a spin-flip. It
turns out that the spin-flip scattering cannot be treated in perturba-
tion theory, but certain (Feynman) diagrams have to be summed up to
infinite order. This effectively leads to a coherent screening of the lo-
calized impurity spin by the spin of the surrounding conduction band
electrons (Kondo cloud). Crucial for this effect is the exchange interac-
tion between the localized magnetic moment and the conduction band
electrons. The correlated many-particle state of conduction band elec-
trons and impurity spin is effectively a spin singlet which has an energy
which is lowered by the energy scale kBTK. The temperature TK is
called the Kondo temperature. The effect is named after J. Kondo who
developed the theory to explain the anomalous temperature-dependent
resistance (Kondo, 1964; Kondo, 1969). The starting point of this theory
is the so-called Anderson impurity hamiltonian.

The Kondo effect in quantum dots differs from the one in metals,
because in quantum dots the important processes are those in which
electrons are transmitted through the dot while suffering a spin-flip,
whereas in metals it is spin-flip scattering that is important. The Kondo
effect was predicted for tunneling through localized states at the end of
the 1980s (Jones et al., 1988; Glazman and Raikh, 1988; Ng and Lee,
1988).

The Kondo effect occurs in quantum dots if a spin-degenerate state
exists which is occupied with a single unpaired electron, as schematically
shown in Fig. 18.42. For the discussion we suppose that the unpaired
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Fig. 18.42 Lowest order cotunneling
process contributing to the Kondo ef-
fect. (a) Initial state and cotunneling
processes. (b) Final state after the cor-
related tunneling event.

electron initially has spin down. The lowest order cotunneling process
contributing to the Kondo effect is shown in Fig. 18.42(a). First, the
electron tunnels from the dot into the drain contact gaining the energy
ετ −µN . In a correlated step an electron with the opposite spin tunnels
from the source contact into the quantum dot losing the energy ε� −µN .
If ετ = ε�, then the correlated process conserves energy, but the quantum
dot has reversed the direction of its unpaired spin [Fig. 18.42(b)]. Sum-
ming all processes of even higher order, the tunneling density of states
develops a sharp resonance at the Fermi energy of source and drain, as
shown in Fig. 18.43.

This peak in the tunneling density of states at the Fermi energy leads
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to an enhanced current in the Coulomb blockade at zero source–drain
voltage. The effect becomes visible in the diamonds as a zero-bias
anomaly. The first experiments on quantum dots where this effect was
demonstrated were published in Goldhaber-Gordon et al., 1998. Fig-
ure 18.44(a) shows a corresponding measurement by Schmid et al., 2000.
The zero-bias anomaly is the dark stripe of enhanced conductance at zero
source–drain voltage.

The characteristic temperature scale of the Kondo effect, the Kondo

N+1

S D

N

Fig. 18.43 Tunneling density of states
for the Kondo effect exhibiting a sharp
peak at the Fermi energy of the source
and drain reservoirs.

temperature TK is given by

kBTK =
1
2

√
ΓUeπε0(ε0+U)/ΓU . (18.58)

Here ε0 = µS/D−µN is the energetic separation of the Fermi energy in the
contacts, and the spin-degenerate N -electron transition, U = µN+1−µN

is the addition energy for the next electron, and Γ = ΓS +ΓD is the cou-
pling of the dot to the leads. The Kondo effect can only be observed
for temperatures T < TK. The temperature dependence of the effect
is shown in Fig. 18.44(b) and (c). The amplitude of the Kondo peak
at zero source-drain voltage decreases dramatically with increasing tem-
perature. Equation (18.58) shows that the Kondo temperature is higher
the larger the tunneling coupling Γ of the dot to the leads. Therefore the
Kondo effect is mainly observed in the strong coupling regime in which
the Coulomb blockade diamonds are already strongly smeared. Further-
more, the Kondo temperature increases as one of the two ground state
transitions µN and µN+1 is tuned closer to the Fermi energies in the con-
tacts, and as a consequence the amplitude of the Kondo peak increases
[cf., Fig. 18.45(b)]. A further condition for the observation of the Kondo
effect is that the mean spacing ∆ between excited quantum dot states is
larger than the tunneling coupling Γ. This condition requires dots that
are small in size.
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Fig. 18.44 (a) Differential conductance dI/dVSD of a quantum dot as a function of the source–drain voltage VSD and the
gate voltage VG. The Kondo resonances can be seen as dark stripes of enhanced differential conductance at zero source–drain
voltage. (b) Cross sections through the diamonds in the middle between the two upper conductance peaks visible in (a) for
different temperatures. (c) The same for the valley between the two lower conductance peaks. (Reprinted with permission from
Schmid et al., 2000. Copyright 2000 by the American Physical Society.)
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Fig. 18.45 Temperature dependence
of the Kondo peak. (a) Gate volt-
age dependence of the conductance at
zero source–drain voltage. (b) Kondo
temperature as a function of gate volt-
age. (c) Scaling of the peak amplitude
according to eq. (18.59) (van der Wiel
et al., 2000).
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Fig. 18.46 Temperature dependence
of the Kondo peak amplitude. The
maximum amplitude (unitary limit) is
almost reached (van der Wiel et al.,
2000).
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The temperature dependence of the Kondo peak follows the (empiri-
cal) scaling law (van der Wiel et al., 2000)

G(T )
G0

=

[
1 +
(
21/s − 1

)( T

TK

)2
]−s

. (18.59)

Here, s ≈ 0.2 for a system with spin 1/2 and G0 = 2e2/h. According
to this law, the maximum height of the Kondo peak is G0. This limit
was indeed verified experimentally (van der Wiel et al., 2000), as shown
in Fig. 18.46. Another representation of the same data in Fig. 18.45(c)
shows scaling according to eq. (18.59). The dependence of the Kondo
temperature on the gate voltage mentioned above has been plotted in
Fig. 18.45(b).

The Kondo effect has given rise to a vast amount of research, both
experimentally and theoretically. In particular, a variant with integer
spin has been found (Sasaki et al., 2000; Pustilnik et al., 2001), and
there exists an orbital version of the Kondo effect that does not involve
spin at all.

Further reading

• Books about quantum dots: Jacak et al. 1998;
Chakraborty 1999.

• Books containing quantum dot physics: Grabert
and Devoret 1992; Ferry 1998; Datta 1997; Ando
et al. 1998; Heinzel 2007.

• Most important review of electronic transport:

Kouwenhoven et al. 1997.

• Further reviews: Kastner 1992; von Klitzing 1996;
Reimann 2002.

• Reviews of random matrix theory: Beenakker 1997;
Alhassid 2000; Aleiner et al. 2002.

• Paper: Kouwenhoven et al. 2001.
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Exercises

(18.1) A single electron is trapped in a potential box
of typical size 200 nm. Estimate the electrostatic
charging energy required to add a second electron
to the well. Compare this energy with the typical
single-particle level splitting in the box. How do
your results depend on the relative dielectric con-
stant of the material in which the box is realized?

(18.2) Consider the following three quantum dot systems:

(a) A lateral quantum dot fabricated from a two-
dimensional electron gas in a Ga[Al]As het-
erostructure [see inset of Fig. 18.1]. The dot
with electronic size 300 nm × 300 nm is de-
fined using metallic gate electrodes.

(b) A vertical quantum dot based on a 10 nm
wide AlGaAs/InGaAs/AlGaAs quantum well
structure with highly doped contacts above
and below the quantum well. The quan-
tum dot is defined by etching vertical cylinder
structures with a diameter of about 0.5 µm.
The electronic diameter of the quantum dot
is about 100 nm. Such a dot is shown in
Fig. 18.18.

(c) A self-assembled InAs quantum dot with a
lateral diameter of 15 nm and a height of 3 nm.

(d) A quantum dot formed between the two
metallic contacts of a carbon nanotube. The
two contacts allow tunneling coupling into the
tube, and their separation is 1 µm. The diam-
eter of the nanotube is 2 nm.

Estimate for these four systems the charging en-
ergy and the single-particle level spacing. Compare
these two energy scales for each system, and com-
pare energy scales between systems. Discuss which
of these four systems could allow the observation
of Coulomb blockade at room temperature. Hint:
The effective mass in the nanotube can be taken to
be m� = 0.06m.

(18.3) The figure below shows a scanning force microscope
image of the surface of a Ga[Al]As heterostructure
in which a four-terminal quantum dot has been
defined by local anodic oxidation (Leturcq et al.,
2004). The quantum dot is connected to external
ohmic contacts. For simplicity we pinch off the

connection to terminal 4 such that only three ter-
minals remain relevant. We describe the strength
of the coupling between the dot and the three
leads by tunneling rates Γi � kBT (i = 1, 2, 3).

(a) Set up the rate equations for the occupation of
a single quantum dot level (neglect any other
levels).

(b) Convince yourself that the system is conve-
niently described in the linear response regime
by a 3 × 3 conductance matrix.

(c) Relate the occupation probabilities from the
rate equations with the three currents I1, I2,
and I3.

(d) Solve the rate equations and calculate the el-
ements of the conductance matrix in linear
response.

(e) Under what condition would you observe con-
ductance resonances in the three currents?
Do the resonances occur in all currents at the
same energy of the quantum dot level?

(f) Which parameter determines the width of the
resonances. What is their functional form
when measured as a function of the plunger
gate voltage PG?
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Individual quantum dots can be mutually coupled by making their sep-
aration very small. Usually two contributions to the coupling have to
be considered: On the one hand, the electrostatic interaction between
the electrons of neighboring dots leads to a mutual influence on the en-
ergy spectra. This type of coupling is often called capacitive coupling.
On the other hand, tunneling coupling may arise between neighboring
quantum dots leading to a splitting of resonant energy levels.

Figure 19.1(a) shows the conductance measured on a double quantum
dot structure of the type shown in Fig. 19.2(b). Conductance resonances
show characteristic kinks, and they follow one of two characteristic slopes
in the plane of the two plunger gate voltages. The corresponding sample
depicted in Fig.19.1(b) is based on a shallow two-dimensional electron
gas which is laterally patterned by AFM lithography. In the following
we will discuss how the hexagon-shaped regions enclosed by conductance
resonances and forming a honeycomb pattern come about, and what
their meaning is.

Figure 19.2 shows schematically different arrangements of two quan-
tum dots. They may be either connected in series (a), or they are con-
nected in parallel (b, c) between a source and a drain contact. Plunger
gates 2 and 3 allow us to control the number of electrons in the two quan-
tum dots. As a consequence of the smallness of the structure, additional
capacitances have to be considered beyond those indicated between the
gates and the dots. For example, gate 2 will also act on dot 1, and gate 3
will tune dot 0.
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Fig. 19.1 (a) Conductance of the par-
allel double quantum dot system de-
picted in (b). The conductance reso-
nances are measured in the plane of the
two plunger gates and enclose hexagon-
shaped regions, one of which is indi-
cated with a white dashed line. The
two quantum dots are weakly coupled
by tunneling.
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Fig. 19.2 Schematic arrangement of typical double quantum dot structures. (a) Two dots connected in series and placed
between a source and a drain contact. (b) Two dots connected in parallel between the same pair of source and drain contacts.
(c) Two dots connected in parallel with each dot having a separate pair of source and drain contacts.

19.1 Capacitance model

In order to obtain insight into the states of a double dot system, we
consider only electrostatic coupling between the quantum dots. The re-
alization of a system which is of type (c) in Fig. 19.2 is shown in Fig. 19.3.
Within the capacitance model we express the coupling between the dots
and the metallic electrodes of the system by a capacitance matrix. The
general expression for the charge Qi on the ith electrode is given by
eq. (18.11) which we repeat here for convenience:

Qi =
n∑

j=0

Cijφj +Q
(0)
i .

Fig. 19.3 Double dot system with
purely capacitive coupling between the
dots. (a) Scanning electron microscope
image of the structure. The gate la-
beled VG1 is the plunger gate of the
left dot, that labeled VG2 is the plunger
gate of the right dot. An etched trench
which does not allow tunneling sepa-
rates the two dots. A metallic bridge
from one dot to the other across the
trench strengthens the capacitive cou-
pling. (b) Schematic illustration show-
ing how the metallic bridge enhances
the capacitive coupling between the
dots. (Reprinted from Chan et al., 2003
with permission from Elsevier.)
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For the two coupled quantum dots we use the indices i = 0, 1. The
electrostatic potentials φ0,1 of the dots are unknown, but we consider
the charges Q0,1 to be known. Using the equations above we can express
the dot potentials φ0,1 as a function of the other gate potentials and the
charges Q0,1. We introduce the abbreviation

A0 = Q0 −Q
(0)
0 −

n∑
j=2

C0jφj

A1 = Q1 −Q
(0)
1 −

n∑
j=2

C1jφj

and find the relation(
A0

A1

)
=
(
C00 C01

C10 C11

)(
φ0

φ1

)
,

which can be inverted to give(
φ0(Q0, Q1)
φ1(Q0, Q1)

)
=

1
C00C11 − C01C10

(
C11 −C01

−C10 C00

)(
A0

A1

)
.

The total electrostatic energy of the double dot system is then calculated
in complete analogy to the single dot case from

Eelstat(N0, N1) =
∫ Q

(0)
0 −eN0

Q
(0)
0

φ0(Q0, Q1 = 0)dQ0

+
∫ Q

(0)
1 −eN1

Q
(0)
1

φ1(Q0 = Q
(0)
0 − eN0, Q1)dQ1.

The result of the integration with the potentials given above is

Eelstat(N0, N1) =
e2N2

0

2CΣ0
+
e2N2

1

2CΣ1
+
e2N0N1

C̃01

− eN0

n∑
j=2

α0jφj − eN1

n∑
j=2

α1jφj ,

where

CΣ0 = C00

(
1 − C10C01

C00C11

)
> 0,

CΣ1 = C11

(
1 − C10C01

C00C11

)
> 0,

C̃01 =
C00C11 − C01C10

−C01
> 0,

α0j =
C01C1j − C11C0j

C00C11 − C01C10
> 0,

α1j =
C10C0j − C00C1j

C00C11 − C01C10
> 0.
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In order to obtain the total energy of the double quantum dot system
in our simple model, we add to the total electrostatic energy of the two
quantum dots the quantization energies of the levels in the two dots and
neglect tunneling coupling between them. We obtain

E(N0, N1) =
N0∑

n=0

ε(0)n +
e2N2

0

2CΣ0
− eN0

n∑
j=2

α0jφj

︸ ︷︷ ︸
Dot 0

+
N1∑

n=0

ε(1)n +
e2N2

1

2CΣ1
− eN1

n∑
j=2

α1jφj

︸ ︷︷ ︸
Dot 1

+
e2N0N1

C̃01︸ ︷︷ ︸
INT

.

Comparing with the total energy of a single quantum dot in eq. (18.12)
we are led to the following interpretation: the total energy of the cou-
pled system is the sum of the energies of the individual dots plus an
electrostatic coupling energy (INT) containing the product N0N1 and
the mutual capacitance C̃01.

As in the case of a single quantum dot we can ask for the energy
required to add a single electron to dot 0 (dot 1) while keeping the charge
in dot 1 (dot 0) constant at the value N1 (N0). We call this quantity the
electrochemical potential of dot 0 (dot 1). It is given by

µ
(0)
N0

(N1) = ε
(0)
N0

+
e2

CΣ0

(
N0 −

1
2

)
− e

n∑
j=2

α0jφj +
e2

C̃01

N1

µ
(0)
N1

(N0) = ε
(1)
N1

+
e2

CΣ1

(
N1 −

1
2

)
− e

n∑
j=2

α1jφj +
e2

C̃01

N0.

For example, if we do tunneling spectroscopy of the µ(0)
N0

, the energy of
these levels depends on the charge state of dot 1. An additional electron
in dot 1 shifts the whole addition spectrum in dot 0 up in energy. In
turn, the same is true for the spectrum of dot 1.

A special situation arises when at certain gate voltages µ(0)
N0

= µ
(1)
N1

. In
this case, the two dots are in resonance, and an electron can be shifted
from one dot to the other without energy cost. If the tunneling coupling
between the dots is sufficiently strong, the two resonant levels are further
split. This tunneling splitting will be discussed later.

Charge stability diagram. Now we investigate the details of the so-
called charge stability diagram of the double dot system. In a typical
experiment (cf., Fig. 19.3) the charge on each of the two quantum dots
is tuned with a separate plunger gate while all other gate voltages stay
constant. The two tuned plunger gate voltages—we call them φ2 for
dot 0 and φ3 for dot 1 (see Fig. 19.2)—span a two-dimensional parameter
plane. In each point of this plane, i.e., for each pair of parameters
(φ2, φ3), there is a charge state (N0, N1) which is the ground state of
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Table 19.1 Transitions from the stable region (N0, N1) to other charge
states in the parameter plane, and the corresponding conditions.

transition condition equation

(N0, N1) → (N0 + 1, N1) µS/D = µ
(0)
N0+1(N1) (19.1)

(N0, N1) → (N0, N1 + 1) µS/D = µ
(1)
N1+1(N0) (19.2)

(N0, N1) → (N0 − 1, N1) µS/D = µ
(0)
N0

(N1) (19.3)

(N0, N1) → (N0, N1 − 1) µS/D = µ
(1)
N1

(N0) (19.4)

(N0, N1) → (N0 + 1, N1 − 1) µ
(0)
N0+1(N1) = µ

(1)
N1

(N0 + 1) (19.5)

(N0, N1) → (N0 − 1, N1 + 1) µ
(0)
N0

(N1) = µ
(1)
N1+1(N0 − 1) (19.6)

the double dot system. Usually, neighboring points in the parameter
plane will belong to the same ground state. Regions in the parameter
plane belonging to the same charge ground state (N0, N1) are called
charge stability regions. We will now find out which geometrical shape
the charge stability regions have in the parameter plane. The charge in
the double dot system is stable whenever the electrochemical potentials
µS = µD in the source and drain leads are not resonant with one of
the two electrochemical potentials in the double dot. Boundaries of the
charge stability region (N0, N1) are therefore reached if one of the six
conditions is fulfilled given in Table 19.1. The six conditions in the right
column of the table result in six linear equations in the parameter plane.
These six boundary lines enclose a hexagonal area within which the state
(N0, N1) is stable. The six equations are

∆φ3 = −α02

α03
∆φ2 +

1
eα03

[
ε
(0)
N0+1 − ε

(0)
N0

+
e2

CΣ0

]
(19.1)

∆φ3 = −α12

α13
∆φ2 +

1
eα13

[
ε
(1)
N1+1 − ε

(1)
N1

+
e2

CΣ1

]
(19.2)

∆φ3 = −α02

α03
∆φ2 (19.3)

∆φ3 = −α12

α13
∆φ2 (19.4)

∆φ3 =
α12 − α02

α03 − α13
∆φ2

+
1

e(α03 − α13)

[
ε
(0)
N0+1 − ε

(0)
N0

+
e2

CΣ0
− e2

C̃01

]
(19.5)

∆φ3 =
α12 − α02

α03 − α13
∆φ2

− 1
e(α03 − α13)

[
ε
(1)
N1+1 − ε

(1)
N1

+
e2

CΣ1
− e2

C̃01

]
(19.6)

Here we measure the voltages ∆φ2 and ∆φ3 from the zero point indicated
in Fig. 19.4. We find the following properties of the hexagon boundaries:
the lines (19.1) and (19.3) are parallel, like the lines (19.2) and (19.4),
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Fig. 19.4 Honeycomb pattern repre-
senting the charge stability diagram of
a double quantum dot system in the ca-
pacitance model. Numbers (19.x) refer
to the equation for the diamond bound-
ary. Filled circles mark triple points,
where three charge states coexist.

3

2

(N
0 ,N

1 )
(N0+1,N1)

(N0,N1 1)

(N0 1,N1)

(N0, N1+1)

(N
0 1,N

1 +1)

(N
0 +1,N

1 1)

0

0
(19.3)

(19.1)
(19.2)

(19.4) (19.5)

(19.6)

(N0 1,N1 1)

A

B

and (19.5) and (19.6). The slopes of the lines (19.1–19.4) are ratios
of lever arms of the two gates acting on the two dots. These slopes
are always negative. The slopes of the two lines (19.5) and (19.6) are
usually positive. Figure 19.4 shows the typical shape of such hexagons
and how they form a honeycomb pattern in the parameter plane. Such
plots are called charge stability diagrams. In this diagram we can find
diagonal lines from the top left to the bottom right along which the total
charge N0 +N1 of the double dot system remains constant. Along these
lines, the asymmetry (or polarization) between the two dots changes
and is proportional to N0 − N1. If we follow diagonal lines from the
bottom left to the top right, only the total number of electrons N0 +N1

is changed, but not the asymmetry N0 − N1. The six corners of each
hexagon of stable charge are called triple points, because at these points,
three charge states coexist. For example, in Fig. 19.4, at the triple point
∆φ2 = ∆φ3 = 0 (point B), the three charge states (N0−1, N1), (N0, N1−
1), and (N0, N1) coexist. Triple points are particularly important for
quantum dots connected in series because these are the only points in
parameter space where an electron can be transported from source to
drain resonantly.

Using the charge stability diagram of a double dot system we can
now understand the results of the transport experiment made on the
capacitively coupled quantum dots in Fig. 19.3 which are depicted in
Fig. 19.5. In (a) the current through dot 1 is plotted in the parameter
plane of the two plunger gates. The bright lines of enhanced current
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Fig. 19.5 Transport measurements through the two parallel quantum dots shown in Fig. 19.3 which are only capacitively
coupled. (a) Conductance resonances in dot 1 as a function of the two plunger gate voltages. (b) Conductance resonances in
dot 2 as a function of the same plunger gate voltages. (c) Superposition of the two measurements (a) and (b) resulting in the
hexagon pattern of the capacitance model. (Reprinted from Chan et al., 2003 with permission from Elsevier.)

are the conductance peaks of dot 1. Their finite slope is due to the fact
that plunger gate 2 also couples to dot 1 and shifts the energy levels.
Discontinuities in conductance resonance lines do always occur when an
additional electron is charged onto dot 2. The mutual capacitive coupling
C̃01 of the two dots results in a shift of the spectrum of dot 1, whenever
an additional charge appears on dot 2. The same analysis applies to
Fig. 19.5(b), if the roles of dot 1 and dot 2 are interchanged. In (c) the
superposition of the two measurements shown in (a) and (b) is shown.
We can see the hexagon pattern characteristic for the double dot system.

19.2 Finite tunneling coupling

In the presence of a small tunneling coupling between the two dots, the
charge stability diagram derived above changes only in the vicinity of the
triple points where states of the two dots are degenerate. The tunneling
coupling removes this degeneracy, and symmetric and antisymmetric
states are formed.

In the following we describe the situation for the triple points labeled
A and B in Fig. 19.4 assuming N0 = N1 = 1. In this case, at the triple
point A the three charge states (0, 0), (1, 0), and (0, 1) coexist. The
energy of the state (0, 0) with no electrons in the double dot system
is taken to be E0 = 0. For the one-electron situation, we regard the
tunneling coupled double dot system as a single dot which can be called
a quantum dot molecule, in which only two energy levels are relevant
(one state of dot 1 and one of dot 2). The hamiltonian for one electron
may then be taken to be

H =
(
ε0(φ2, φ3) γ01

γ�
01 ε1(φ2, φ3)

)
,
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where the tunneling coupling is described by the matrix element γ01.
The energies ε0,1(φ2, φ3) are the energy levels of the system at zero
tunneling coupling. They are tunable by the plunger gate voltages via
the linear relations

ε0(φ2, φ3) = const.− eα02∆φ2 − eα03∆φ3

ε1(φ2, φ3) = const.− eα12∆φ2 − eα13∆φ3.

Diagonalizing the above hamiltonian gives the two one-electron energy
eigenvalues

E± =
ε0 + ε1

2
± 1

2

√
(ε0 − ε1)2 + 4 |γ01|2 = ε± 1

2

√
δ2 + 4|γ01|2.

The quantity δ = ε0 − ε1 is called the detuning of the two quantum dot
states, and ε = (ε1 + ε2)/2 is the mean energy. These two quantities
define a new rotated coordinate system in the plane of the two plunger
gates as indicated in Fig. 19.6. The ground state energy E1 of the one-

(N0, N1) (N0+1, N1)

(N0, N1+1) (N0+1, N1+1)

A
B

2

1

3

2

Fig. 19.6 Charge stability diagram of
tunneling coupled quantum dots near
the two triple points A and B. The tun-
neling coupling rounds the sharp kinks
in the boundary lines of the hexagons.
The figure contains the two arrows
along which the total energy ε and the
detuning δ change.

electron quantum dot molecule is E1 = E−, because the state E− is
always lower in energy than E+.

The energy of the two-electron system is given by

E2 = 2ε(φ2, φ3) +
e2

C̃01

.

The boundary lines of the hexagons near the triple points A and B are
given by the electrochemical potentials of the quantum dot molecule,
namely by

µ1 = E1 − E0 = ε− 1
2

√
δ2 + 4 |γ01|2

near triple point A, and by

µ2 = E2 − E1 = ε+
1
2

√
δ2 + 4 |γ01|2 +

e2

C̃01

near triple point B. We can see that for zero detuning δ between the two
dots (ε0 = ε1), the separation between the two triple points reflects the
sum of the capacitive coupling energy e2/C̃01 and the tunnel coupling
splitting 2γ01. In the charge stability diagram this leads to the behavior
depicted in Fig. 19.6. The sharp kinks observed at A and B without
tunneling coupling become rounded. An experimental example where
such a rounding of conductance resonances occurs near two triple points
is shown in Fig. 19.7. In the extreme case of very strong coupling, the

10 15

40

20

Vpg1 (mV)

V p
g2

(m
V

)

0

3

G
 (0.01 e 2/h)(N0, N1) (N0+1,

N1)

(N0, N1+1) (N0+1,
N1+1)

Fig. 19.7 Avoided crossing of two
resonances in a double quantum dot
measured in the configuration (b) of
Fig. 19.2. The separation of the two
triple points which is given by the ca-
pacitive coupling is further increased by
the finite tunneling coupling between
the dots.

system no longer behaves like a double dot system, or a quantum dot
molecule with electrons residing predominantly in one of the two dots,
but like a single big quantum dot. The boundary lines between charge
states (N0 + 1, N1) and (N0, N1 + 1) become increasingly irrelevant,
because charges tend to be more and more shared between the two
dots in large portions of the regions of stable charge. The boundary
lines between states of distinct total charge of the system, however, still
remain meaningful, but they stretch out to become almost straight lines
running from the top left to the bottom right in the charge stability
diagram. This will be further illustrated with experimental results in a
later section.
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19.3 Spin excitations in two-electron
double dots

Spin states in double quantum dot systems have turned out to be of
interest for quantum information processing to be discussed in a later
chapter. We therefore discuss basic spin physics of one and two electrons
in the double quantum dot system here. If there is only a single electron
in one of the two dots, the spin behaves as in the single quantum dot case.
Spin-up and spin-down states are degenerate at zero magnetic field. At
finite magnetic field the Zeeman splitting lifts the spin degeneracy.

The situation becomes more interesting for the case of two electrons.
There are three charge states compatible with two electrons, namely,
(2, 0), (0, 2), and (1, 1). The two cases with two electrons in a single dot
will favor singlet ground states which we label (2, 0)S and (0, 2)S. The
excited triplet states are in these two cases significantly higher in energy
(for example, in lateral GaAs quantum dots the singlet–triplet splitting
can be of the order of 1meV or higher). The triplet states are degenerate
at zero magnetic field, but a finite field lifts the degeneracy via the
Zeeman effect and the three states T+, T0, and T− can be distinguished.

In the case in which each dot holds one electron, the singlet–triplet
splitting at zero magnetic field is usually negligibly small, as long as
the two dots are only weakly coupled. At finite magnetic field, the T−
state is shifted down in energy and becomes the ground state below the
T0 and S states which stay degenerate. The T+ state is even higher in
energy at finite magnetic fields.

19.3.1 The effect of the tunneling coupling

Tunneling coupling between the dots leads to an avoided crossing of
states with compatible spins as shown in Fig. 19.8. For example, at
the boundary between the (0, 2) and the (1, 1) hexagon in the charge
stability diagram, the state (0, 2)S is degenerate with (1, 1)S and (1, 1)T
(this denotes all three triplet states degenerate at zero magnetic field).
A finite tunneling coupling will lead to an avoided crossing of (0, 2)S and

E
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Fig. 19.8 (a) Energies of spin states
close to the boundary between the (1, 1)
and the (0, 2) hexagon at zero mag-
netic field as a function of detuning δ.
Singlet states are represented by solid
lines, triplet states are dashed. (b) The
same for finite magnetic field, where the
triplet states are Zeeman split.
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(1, 1)S [Fig. 19.8(a)] because both spin states are singlet. The overlap
integral of (0, 2)S and (1, 1)T, however, is zero because the two spin states
are orthogonal, and there is no avoided crossing. At finite magnetic fields
the triplet states will be Zeeman split and the situation changes to that
shown in Fig. 19.8(b).

19.3.2 The effect of the hyperfine interaction

The spatial probability distributions of electrons confined in quantum
dots are extended over many lattice constants of the host crystal. Each
electron can therefore interact with the spins of a large number (typically
106) of nuclei. For example in GaAs, the element Ga comes in two
stable isotopes, 69Ga and 71Ga, which both have a nuclear spin 3/2, but
different magnetic moments. In addition, As occurs naturally only as
75As and has nuclear spin 3/2. The hyperfine interaction of an electron

Table 19.2 Magnetic properties of some
nuclei important for semiconductors.

natural
Isotope abundance I µ/µN

12C 98.9% 0
13C 1.1% 1/2 0.70
14N 99.6% 1 0.40
15N 0.4% 1/2 −0.28
27Al 100% 5/2 3.64
31P 100% 1/2 1.13
74Ge 36.3% 0
72Ge 27.5% 0
70Ge 20.8% 0
73Ge 7.7% 9/2 −0.88
76Ge 7.6% 0
28Si 92.2% 0
29Si 4.7% 1/2 −0.56
30Si 3.1% 0
69Ga 60.1% 3/2 2.02
71Ga 39.9% 3/2 2.56
75As 100% 3/2 1.44
115In 95.7% 9/2 5.54
113In 4.3% 9/2 5.53
121Sb 57.2% 5/2 3.36
123Sb 42.8% 7/2 2.55

at position r with the nuclear spins at positions Ri is described by the
Fermi contact hyperfine interaction hamiltonian

HHF =
8π
3
µ0

4π
g0µB

∑
i

�γN,iIi ⊗ Sδ(r − Ri),

where µ0 is the permeability of vacuum, g0 = 2.0023 is the g-factor of
the free electron, µB is Bohr’s magneton, and S and Ii are the operators
for the electron spin and nuclear spin, respectively. The quantity γN,i is
the gyromagnetic ratio of the nuclei. More detailed background about
this hamiltonian is found in Slichter, 1963.

If we assume the electronic wave function to be a product of orbital
and spin component, i.e., |ψ(r) 〉⊗|χ〉 , we can express the Fermi contact
hyperfine interaction in terms of a pure spin hamiltonian as

HHF =
∑

i

AiIi ⊗ S,

where
Ai =

8π
3
µ0

4π
g0µB�γN,i|ψ(Ri)|2

varies in space, i.e., with index i of the nucleus. The product of the spin
operators can be written as

Ii ⊗ S =
1
2

(S+ ⊗ I− + S− ⊗ I+) + Sz ⊗ Iz

with S± = Sx ± Sy and similar for I±. The first term describes spin-
transfer processes between the electronic system and the nucleus. For
example, a spin flip in the electronic system leads to an inverse spin
flip of the nucleus. The second expression is equivalent to an effective
magnetic field in the z-direction caused by the nucleus which acts on the
electron and causes an additional Zeeman splitting (on top of a Zeeman
splitting due to an external magnetic field in the z-direction).

Indeed, the action of the nuclear spins can in good approximation be
described by a classical magnetic field called the Overhauser field. An
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electron in a state ψ(r) experiences an effective Overhauser field (see,
e.g., Zutic et al., 2004)

BN =
1

g�µB

〈∑
i

AiIi

〉
.

Spatial variations of this effective magnetic field lead to different preces-
sion velocities of electronic spins in two neighboring quantum dots, and
therefore to an uncontrolled shift of their relative phase. This effect can
be described by the effective spin hamiltonian

H =
1
2
g�µB(BN1σ1 + BN2σ2),

where BN1 and BN2 are the effective nuclear magnetic fields seen by the
electrons in the two dots. If we write the operator part in brackets of the
hamiltonian in matrix form using the basis functions (| ↑↓〉 − |↓↑〉 )/

√
2

((1, 1)S), | ↑↑〉 ((1, 1)T+), (| ↑↓〉 + | ↓↑〉 )/
√

2 ((1, 1)T0), | ↓↓〉 ((1, 1)T−),
we find⎛

⎜⎜⎝
0 ∆x − i∆y ∆z −∆x − i∆y

∆x + i∆y −Σz Σx + iΣy 0
∆z Σx − iΣy 0 Σx + iΣy

−∆x + i∆y 0 Σx − iΣy Σz

⎞
⎟⎟⎠ ,

where ∆i = B1i−B2i, and Σi = (B1i−B2i)/
√

2 (i = x, y, z). In Fig. 19.9

B

E

Fig. 19.9 Energy spectrum of a dou-
ble quantum dot system with one elec-
tron in each dot as a function of ex-
ternal magnetic field B and small nu-
clear magnetic field differences ∆i (i =
x, y, z).

we plot a typical spectrum of this hamiltonian as a function of a magnetic
field B applied in the z-direction and small components ∆i. It can be
seen that differences in the nuclear magnetic field between the two dots
couple the spin singlet state to all three triplet states. If a finite external
magnetic field much larger than the effective nuclear field is applied
in the z-direction, the coupling between the triplet states (1, 1)T± ≡
|↑↑〉 , | ↓↓〉 and the singlet state will become irrelevant because these
states differ appreciably in energy (Zeeman splitting). However, the
(1, 1)T0 state will still mix with the singlet state. These two states will
be split in energy by g�µB∆Bz and combine to the new eigenstates | ↑↓〉
and | ↓↑〉 .

The maximum effective nuclear magnetic field arises if all nuclear spins
are aligned. In GaAs this results in a maximum nuclear field Bmax = 5 T.
For randomly oriented spins, the effective nuclear magnetic field scales
with 1/

√
N , where N is the number of nuclear spins seen by the electron.

Assuming N ≈ 106, a typical value for the effective nuclear magnetic
field in GaAs quantum dots is about 5 mT. The time evolution of the
nuclear spin system turns out to be very slow compared to the electronic
motion and the electronic spin precession. For more details on spins in
few-electron quantum dot, Hanson et al., 2007, is an excellent reference.
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19.4 Electron transport

19.4.1 Two quantum dots connected in parallel

The virtue of structures in which the two quantum dots are connected
in parallel between a source and a drain contact is that the currents
through the two parallel paths essentially add, and current can flow with
either of the two, or both dots in resonance with the source and drain
electrochemical potential. This leads to conductance measurements as
a function of the two dots’ plunger gates as shown in Fig. 19.1, or in
Fig. 19.5. Similar structures have been investigated in Holleitner et al.,
2001, and Sigrist et al., 2006.

Early experiments in which two quantum dots were connected in par-
allel with finite tunneling coupling between them were performed in
Hofmann et al., 1995. They observed and correctly interpreted the first
hexagon patterned charge stability diagram. Quantum dots connected
in parallel with mutual tunneling coupling can also be realized by ver-
tical stacking. An implementation using a structure based on parallel
quantum wells with separate in-plane contacts was realized in Wilhelm
and Weis, 2000, an alternative with lateral coupling between the dots,
but vertically stacked contacts was demonstrated in Hatano et al., 2004.

19.4.2 Two quantum dots connected in series

Electron transport through quantum dots connected in series is different
from both transport through single dots and transport through parallel
dots. Figure 19.10 shows a structure in which two dots are connected in
series. Electron transport in lowest order and at low source–drain bias

(a)

(b)

1 m

n1 n2

Vg1 Vg2

Vg3 Vg4

Vp1 Vp2 Vp3

Vp1 Vp2 Vp3

Fig. 19.10 Double dot structure fab-
ricated by electron beam lithography
on a Ga[Al]As heterostructure contain-
ing a two-dimensional electron gas. (a)
Scanning electron micrograph of the
double dot system. The white regions
are metallic top gates. (b) Schematic
drawing of the structure. The quantum
dots are represented by circles (Liver-
more et al., 1996).

is only possible at triple points of the charge stability diagram, where the
electrochemical potentials of both dots are degenerate and aligned with
the electrochemical potential of source and drain. This is schematically
illustrated in Fig. 19.11. At the triple points (1) two energy levels in the
dot are aligned with each other and with the electrochemical potential
in the leads. An electron can be transferred from the source contact
through both dots to the drain contact elastically. The situation is
different at points (2) or (3), where the energy level in only one of the
quantum dots is aligned with the electrochemical potential in one lead,
whereas the other dot is in the Coulomb blockade. In this situation
electron transfer from source to drain is exponentially suppressed in
the case of weak tunneling coupling between the dots and between dots
and leads. However, a cotunneling current may flow when the coupling
between the dots and between the dots and the leads is increased.

Figure 19.12 shows the measured current in a serial double dot system
in the parameter plane of the two plunger gates. The coupling between
the two dots increases from (a) to (f) by increasing the gate voltage Vp2.
For the weaker coupling (a), transport occurs only at triple points. How-
ever, the two neighboring triple points schematically shown in Fig. 19.11
are not resolved here, but pairs of triple points lead to the speckles of
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Fig. 19.11 (a) Part of a charge stabil-
ity diagram. The energy level scheme of
the double dot system is shown in (b)
for the points marked with filled circles.
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Fig. 19.12 Current through a double
dot system with the dots connected in
series between a source and a drain con-
tact. The grayscale is logarithmic. The
coupling between the dots is given by
(a) 0.44e2/h, (b) 0.8e2/h, (c) 1.3e2/h,
(d) 1.56e2/h, (e) 1.92e2/h (Livermore
et al., 1996).
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current flow. If the coupling between the dots is increased, the quantum
dot molecule regime is reached. Correspondingly, the strict suppression
of the current between the triple points is gradually lifted, and in (d) the
hexagon pattern shown schematically in Fig. 19.4 and in measurements
of parallel dots in Fig. 19.1 can be easily recognized. The kinks at the
triple points are rounded by the coupling. In such a quantum dot mole-
cule, electronic states are delocalized between the dots, and electrons
are shared by both dots. In the extreme case shown in (f), the system
appears to be a single Coulomb-blockaded quantum dot.

Spin blockade. When an electron tunnels through a potential barrier,
its spin is usually conserved. In situations where the initial and the
final state of the system have orthogonal spin configurations, the transi-
tion is forbidden and the tunneling current is strongly suppressed. This
situation is called spin blockade.

Spin blockade can occur in single quantum dot systems with strong
electron–electron interaction (Weinmann and Hausler, 1994; Weinmann
et al., 1995; Tanaka and Akera, 2006). For example, if the ground state
of the N -electron system before tunneling has spin zero, and the ground
state of the (N + 1)-electron system after tunneling has spin 3/2, the
addition of a single electron has to be accompanied by another spin-flip in
the quantum dot. The tunneling transition may therefore be suppressed
as a consequence of the fact that the initial spin 1/2 state (spin 0 of
the dot electrons + spin 1/2 of the tunneling electron) is orthogonal
to the final spin 3/2 state of the dot electrons. A different variant of
spin-blockade physics in single quantum dots has been investigated in a
regime where spin-polarized quantum Hall edge states exist in the leads
and in the quantum dot (Imamura et al., 1998; Ciorga et al., 2000).

Here we will discuss the spin-blockade effect in double quantum dot
systems (Ono et al., 2002). The effect has been very clearly observed in
double quantum dots with electron numbers below three (Johnson et al.,
2005), but it can also occur in dots with larger electron numbers, if closed
shells are present. Figure 19.13 shows the charge stability diagram for
a double quantum dot system with up to two electrons per dot. In

(0,0)

(0,1)

(0,2)

(1,0) (2,0)

(1,1)

(a)

(b)
(1,2)

(2,1)

(2,2)
3

2

Fig. 19.13 Honeycomb pattern repre-
senting the charge stability diagram of
a double quantum dot system for small
electron numbers. Filled circles mark
triple points, where three charge states
coexist. At the encircled pair of triplet
points labeled (a), single-electron or
single-hole transport takes place at fi-
nite bias. At the encircled pair or
triplet points labeled (b), one electron
occupies the right dot already. De-
pending on the direction of the applied
source–drain voltage, spin blockade can
occur.

order to appreciate the spin-blockade effect we will concentrate on the
two pairs of triple points labeled (a) and (b) in the figure.

The spin-blockade effect is observed at finite source–drain voltage.
Figure 19.14(a) shows the charge stability diagram close to the pair of
triple points labeled (a) in Fig. 19.13 for a finite source–drain voltage
applied to the double dot system. Stable charge states exist only in
the unshaded regions as labeled in the figure. In the light gray regions
the two adjacent charge states coexist (e.g., (0, 0) and (0, 1) in the left-
most light gray region). In the diamond-shaped dark gray regions, three
charge states coexist (for example, (0,0), (0,1), (1,0) in the lower dia-
mond). Such a triplet of states can be combined to form a transport cycle
in which an electron is transferred from one contact to the other through
the double quantum dot system [e.g., (0, 0) → (1, 0) → (0, 1) → (0, 0)].
The two triangles forming such a diamond differ in the relative energy of
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Fig. 19.14 Charge stability diagram of
a double quantum dot system for small
electron numbers under finite source–
drain voltage. In the dark gray re-
gions a full transport cycle is accessi-
ble. Fig. (a) corresponds to the pair of
triple points labeled (a) in Fig. 19.13,
whereas (b) corresponds to the pair of
triple points labeled (b) in the same fig-
ure. The axis labeled δ in (a) is called
the detuning axis between the states
(0, 1) and (1, 0). The axis labeled ε is
an energy axis. In this direction the de-
tuning is unchanged, but the energies
of the two states are tuned relative to
the electrochemical potentials in source
and drain.

the two states connected by a charge transfer from one dot to the other.
For example, in the lower triangle, the state (1, 0) is lower in energy than
the state (0, 1) as shown in scheme 3 of Fig. 19.15, whereas the opposite
applies in the upper triangle (scheme 2 of Fig. 19.15). In case 2, (inelas-
tic) transport can only take place if the electrochemical potential in the
left (source) contact is higher than in the right (drain), whereas in case
3, the opposite is the case. Along the line where the two triangles touch,
the two dot levels are aligned (which may lead to a level splitting due
to finite tunneling coupling) as shown in Fig. 19.15, case 1, and elastic
tunneling is possible. Figure 19.14(a) shows a coordinate system with
axes labeled δ and ε. The δ-axis is called the detuning axis as the sum
of the energies of the two dot states remains constant when the system
state is changed along this direction, whereas the level separation (the
detuning) between the two changes. The ε-axis is called the total energy
axis because the detuning remains unchanged when the system state is
changed along this direction, whereas the sum of the energies of the two
dot states is altered.

For double quantum dots connected in series between source and
drain, transport will only occur within one of the two dark gray triangles,
depending of the polarity of the source–drain voltage. Figure 19.16(a)

1

2

3

dot 0 dot 1

Fig. 19.15 Level alignment for electron
transport in the finite bias triangles of
Fig. 19.14. In scheme 1, the two levels
are resonant, and a negative source–
drain voltage is applied. In scheme 2,
the two levels are negatively detuned
(δ < 0), and inelastic transport is possi-
ble at negative source–drain voltage. In
scheme 3, the two levels are positively
detuned, and transport is possible at
positive source–drain voltage.

and (c) show the result of a measurement taken at this pair of triple
points for forward (a) and reverse (b) source–drain voltage. In this mea-
surement the source–drain voltage was chosen to be so large that the
two triangles originating from the two triple points overlap. Along the
line of zero detuning, where elastic tunneling is possible, the current
is enhanced compared to the rest of the triangle. This is the scenario
without the spin-blockade effect.

We now turn to the scenario depicted in Fig. 19.14(b) in which the
right quantum dot already holds one electron. The ground state of the
(0, 2) state will be a spin singlet state (S) [(| ↑↓〉 − |↓↑〉 )/

√
2] with the

(0,2) spin-triplet excited states (T) being inaccessibly high in energy.
However, the two spin states for the occupation numbers (1, 1) are es-
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Fig. 19.16 Current through a double
dot system at finite source–drain volt-
age. (a) and (c): Current through the
double quantum dot system at positive
(a) and negative (b) source–drain volt-
age for one excess electron tunneling
through the empty system. (b) and (d):
Current through the double quantum
dot system at positive (b) and nega-
tive (d) source–drain voltage for one ex-
cess electron tunneling through the sys-
tem already holding one electron in the
second dot. In (d) the current is sup-
pressed as a result of the spin-blockade
effect. (Reprinted with permission from
Johnson et al., 2005. Copyright 2005
by the American Physical Society.)
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Fig. 19.17 Charge stability diagram
and corresponding energy diagrams of
a double quantum dot system for small
electron numbers under finite source–
drain voltage around a single triple-
point. In the dark grey regions a full
transport cycle is accessible.
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sentially degenerate because the exchange interaction between the two
electrons residing in different dots is suppressed by the central tunnel-
ing barrier. The energy level situation is the same as that depicted in
Fig. 19.8(a). In the experiment, a finite magnetic field of 0.1 T defines a
spin quantization axis without lifting this degeneracy appreciably. Fig-
ure 19.17 shows a magnification of the charge stability diagram around
this particular triple point and the corresponding energy level schemes
at the corners of the diamond shaped region.

At positive source–drain voltage (Fig. 19.18, scheme 2), the transport
cycle is (0, 1) → (0, 2)S → (1, 1)S → (0, 1). It conserves the spin of the
tunneling electron and current can flow, as observed in the measurement
shown in Fig. 19.16(b). The situation is remarkably different for the op-
posite source–drain voltage polarity (scheme 1 in Fig. 19.18). Here, the
tunneling electron can enter the left dot to form either the (1, 1)S state,
or the (1, 1)T state, because they are at the same energy. In the first
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case, the transport cycle will be (0, 1) → (1, 1)S → (0, 2)S → (0, 1) which
conserves spin and therefore allows the electron to transfer. However,
at some point an electron will enter the triplet state in the left dot,
and the transport cycle (0, 1) → (1, 1)T → (0, 2)S → (0, 1) violates spin
conservation in the transition (1, 1)T → (0, 2)S. As a consequence, the
electron cannot be transferred. It is stuck in the first dot because the
finite applied source–drain voltage also prohibits tunneling back to the
source contact. Remaining in the left dot, it inhibits any other elec-
trons from entering the left dot owing to the Coulomb blockade effect.
This is the spin-blockade situation which is experimentally observed in
Fig. 19.16(d) as a suppression of the current in the two triangles at pos-
itive source–drain voltage. The spin-blockade is lifted in the experiment

1

2

(1,1)S

(1,1)T

(0,2)S

(0,2)T

(0,2)S

(0,2)T

(1,1)S

(1,1)T

Fig. 19.18 Level alignment for electron
transport in the finite bias triangles
of Fig. 19.14(b). In scheme 1, the two
levels are negatively detuned (δ < 0)
and inelastic transport is blocked by
singlet–triplet spin blockade at negative
source–drain voltage. In scheme 3, the
two levels are positively detuned and
transport is possible at positive source–
drain voltage.

at the edges of the triangles, where the (1, 1)T states are aligned with the
electrochemical potential in the source contact because there an electron
stuck in the triplet state can tunnel back to the lead and be replaced
by an electron in the singlet state. Lifting the spin-blockade situation
within the triangles requires a spin-flip process which can be mediated
by hyperfine interaction with nuclear spins, or by spin–orbit interaction.
The spin-blockade phenomenon can be exploited for the manipulation
of individual spins in applications where the electron spin is used as the
implementation of a qubit.

Further reading

• Review: van der Wiel et al. 2003.

• Review of hyperfine interaction in double quantum

dots: Hanson et al. 2007.

• Papers: Livermore et al. 1996; Johnson et al. 2005.

Exercises

(19.1) We consider a double quantum dot structure real-
ized in an InAs (εr = 15, electron density around
1018 cm−3 ) nanowire (see the scanning electron mi-
croscope figure (a) below). In a purely classical
description in which the influence of discrete quan-
tum states is not taken into account, the double
dot is modeled as a network of tunneling resistors
and capacitors. The source–drain current ISD has
been measured at VSD = 140 µV and T = 30mK
as a function of the left (VGL) and right (VGR) top-
gates. The double quantum dot behavior can be

identified by the characteristic honeycomb pattern
of the charge-stability diagram seen in figure (b).

(a) Estimate the capacitances CGL between left
gate and left dot, and CGR between right gate
and right dot, and the total capacitances CΣ

for the two dots from the capacitive model
and the measurement data.

(b) The lever arms of the gates were measured to
be αL = 0.46, and αR = 0.41. With these
values, it is possible to estimate the charging
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energies of the left and the right quantum dot.
How big are they?

(c) Assume the dots to be spherical, and estimate
the radii of the two dots and the number of
electrons in the dots.
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20.1 Classification of noise

Certain physical processes within a conductor cause noise to appear in
the current flow through the conductor. It turns out that some of these
processes are inevitably related to the transport of electronic charges
such that they cannot be avoided in principle. While the discontinuous
emission of photons was investigated by Campbell in 1909 (Campbell,
1909a; Campbell, 1909b), first attempts to understand current noise
were made in 1918 by Walter Schottky on vacuum tubes (Schottky,
1918). In order to find the origins of current noise in these tubes, all
other sources of time-dependent current fluctuations in the remaining
circuit had to be eliminated. This first experimental step poses the
biggest experimental difficulty today, if one intends to investigate noise
in semiconductor nanostructures. Schottky distinguished two types of
noise:

• thermal noise. This contribution is often also called Johnson–
Nyquist noise, after the experimentalist M.B. Johnson and the
theoretician H. Nyquist, who studied thermal noise in detail (John-
son, 1927; Nyquist, 1928). Today we know that thermal noise is
present in all electronic conductors at finite temperature. It does
not require a finite mean current to flow through the conductor,
but appears as soon as the two sides of the conductor are con-
nected. It is therefore an equilibrium phenomenon.

• shot noise. Shot noise arises because the electronic charge is trans-
ported in quantized portions. Typically these portions have the
size of the elementary charge |e|, but a few notable exceptions
exist, e.g., Cooper-pairs in superconductors (2|e|), or fractionally
charged quasiparticles in the fractional quantum Hall effect (e.g.,
|e|/3). Shot noise arises only if a finite mean current is driven
through a conductor and is therefore a nonequilibrium phenom-
enon. Shot noise does not occur in all conductors. For example, in
macroscopic metallic conductors shot noise is suppressed because
the sample size exceeds the inelastic electronic mean free path by
orders of magnitude. Individual segments of the material fluctuate
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independently and the mean noise amplitude is strongly reduced
by averaging. In mesoscopic samples, where the extent of the sam-
ple is smaller or comparable to the inelastic mean free path, shot
noise is of importance. This is true for diffusive as well as for
ballistic systems.

In addition to these two types of time-dependent current fluctuations,
the so-called random telegraph noise frequently arises in mesoscopic sys-
tems. In the simplest case it manifests itself as a random switching of
the current in time between two discrete values. The discrete jumps in
the current can be explained as discrete jumps of the electrical resistance
(or conductance) of the sample. It arises sometimes from thermally ac-
tivated charging and discharging of single discrete charge traps in the
vicinity of a current path. We have seen a random telegraph noise sig-
nal in Fig. 18.5 in the current of a quantum point contact that is able to
detect the statistical charge fluctuations on a quantum dot in real time.
We will come back to this example later in this chapter.

Another type of current noise is the so-called 1/f -noise, or flicker
noise. It got its name from the 1/f -dependence of the noise current’s
power spectral density. It arises, for example, in commercially avail-
able carbon resistors, or in semiconductor transistors such as the Si-
MOSFET. It is typically relevant at frequencies below about 10 kHz.
The 1/f -noise is also a nonequilibrium phenomenon because it requires
a finite mean current to flow through the sample. A superposition of
many individual noise sources leading to random telegraph noise on dif-
ferent time scales can be the origin of 1/f -noise.

20.2 Characterization of noise

When we considered the conductance or the resistance, we implicitly
investigated the average current 〈I〉. Fluctuations of the current in time
around this average

∆I(t) = I(t) − 〈I〉
are called the noise current, or simply the noise.

I(t)

C( t)

i( )

S( )

FT

FT

Conv. Prod.

Fig. 20.1 Functions used to character-
ize electronic noise, and the relation be-
tween them.

In order to characterize noise, a number of functions are used. These
functions and their mutual relation will be introduced below. Figure 20.1
gives an overview where the different functions and their interrelations
are represented graphically. On the top left is the noise current ∆I(t)
introduced above. Convolution (Conv.) of the current with itself leads to
the autocorrelation function C(∆t). The Fourier transform (FT) of the
autocorrelation function gives the spectral density S(ω). The latter can
also be obtained from the squared modulus of the Fourier transformed
noise current i(ω).

The autocorrelation function. The autocorrelation function is de-
fined as

C(∆t) = 〈∆I(t)∆I(t+ ∆t)〉 = 〈∆I(0)∆I(∆t)〉. (20.1)
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It has the units [A2], is a real-valued function, and does not depend on
the time t explicitly, because ∆I(t) is a random function. At time delay
∆t = 0 it is identical to the mean fluctuation amplitude of the current,
i.e.,

C(0) = 〈∆I2(t)〉 > 0.

The quantity
√
C(0) is called the mean current noise. It is measured in

[A].
For large time delays ∆t the correlation function decays, i.e.,

lim
∆t→∞

C(∆t) = 0.

This expresses the fact that the value of the current noise at a certain
instant is completely uncorrelated to a value far in the past (or in the
future). It can be shown that, in general, the correlation function has
the properties |C(∆t)| ≤ C(0), and C(∆t) = C(−∆t). Often, the corre-
lation function decays approximately exponentially according to

C(∆t) = C(0)e−|∆t|/τc =
〈
∆I2

〉
e−|∆t|/τc (20.2)

where τ is the characteristic decay constant, also called the correlation
time. Such a decay is schematically shown in Fig. 20.2.

C( t)

t

Fig. 20.2 Exponential decay of the au-
tocorrelation function C(∆t).Spectral density. The Fourier transform of the correlation function is

the spectral density, i.e.,

S̃(ω) =
∫ +∞

−∞
dtC(t)e−iωt = 2

∫ +∞

0

dtC(t) cos(ωt), (20.3)

C(t) =
1
2π

∫ +∞

−∞
dωS̃(ω)eiωt =

1
π

∫ +∞

0

dωS̃(ω) cos(ωt). (20.4)

The spectral density is measured in units [A2/Hz]. It is real valued and
symmetric in ω. In apparatus measuring the spectral density of a signal,
it is usually not S̃(ω), which is also defined for ω < 0, that is displayed,
but rather

S(ν) = 2S̃(2πν), (20.5)

where ν = ω/2π is the frequency. The reason is that then, the mean
noise current can be expressed as

〈∆I〉2 = C(0) =
1
2π

∫ +∞

−∞
dωS̃(ω) =

∫ +∞

0

dνS(ν), (20.6)

i.e., by the frequency integral of the measured spectral density. In the
following, we will always use this measurement-related spectral density
definition.

If the spectral density is a constant S0 over a large frequency range, we
talk about white noise. Thermal noise and shot noise can be classified
as white noise, whereas 1/f -noise is not white noise.
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Spectral density of an exponentially decaying correlation func-
tion. If the correlation function C(∆t) decays exponentially with |∆t|
[see eq. (20.2)], the spectral density is, according to eqs (20.3) and (20.5),
given by

S(ν) = 4
∫ ∞

0

dtC(0)e−t/τc cos(2πνt)

=
4C(0)τc

1 + (2πντc)2
:=

S0

1 + (2πντc)2
. (20.7)

This function is depicted in Fig. 20.3. It is apparent that the correlation
time τc leads to first order low-pass cut-off of the spectral density at
the bandwidth ∆ν = 1/2πτc. For ν � ∆ν the noise is white with the

5 4 3 2 1 1 2
log( )

0

log[S( )]

white noise region

Fig. 20.3 Double logarithmic plot of
the frequency-dependent noise spectral
density for a system with an expo-
nential autocorrelation function. The
range of frequencies, where the noise
spectral density is independent of fre-
quency (white noise) is indicated in
gray.

constant spectral density S0 = 4C(0)τc.

Wiener–Khinchin relations. The spectral density can be related to
the Fourier components of the noise current. To this end we transform,
in the definition of the correlation function (20.1), the noise currents
into the frequency domain

∆I(t) =
1
2π

∫
dωi(ω)eiωt,

and obtain for the correlation function

C(∆t) =
1
2π

∫ ∞
−∞

dω
〈
|i(ω)|2

〉
eiω∆t.

Comparing with eq. (20.4) and using eq. (20.5) the spectral density of
the current noise is therefore given by

S(ν) = 2〈|i(2πν)|2〉, (20.8)

i.e., by the averaged squared modulus of the Fourier spectrum of the
noise current. Note that the average 〈|i(ω)|2〉 has units [A2/Hz], whereas
|i(ω)|2 has units [A2s2]. This is because the averaging procedure involves
a frequency integration. It is given by

〈
|i(ω)|2

〉
= lim

T→∞

∫
dω′

2π
i(ω)i�(ω′)

sin[(ω − ω′)T ]
(ω − ω′)T

.

The factor sinx/x in the integrand becomes extremely sharp in the limit
of large times and therefore essentially only ω′ = ω contributes to the
frequency integral.

Probability density distribution of the noise amplitude. So far
we have characterized the current noise in the time- and frequency-
domain. Another function that is used to characterize noise is the prob-
ability density distribution of the noise current amplitude. Imagine that
we measure the noise current at discrete points tn (n integer) in time.
We further split the current axis in discrete intervals of width δI. For a
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given noise current I(t) we can then determine a probability distribution
for the noise current being in an interval δI around a specific value I.
In the limit of very small intervals δI we obtain a probability density
p(I)dI.

A typical probability density is the gaussian distribution with a certain
width around a mean value. In this case we talk about gaussian noise.
Vernon D. Landon realized in 1941 that, in electronics, noise signals
originating from different sources cannot be distinguished by any known
test procedure. Motivated by this observation he was able to show that
the joint action of many independent small noise sources with arbitrary
distribution functions will always result in a gaussian probability density
distribution. This result is closely related to the central limit theorem.
In this way nature produces, in many cases, gaussian noise.

The probability density distribution of the noise amplitude gives no
information about the correlation function of the current. In the case
of a constant spectral density (white noise) with a gaussian amplitude
distribution we talk about gaussian white noise.

20.3 Filtering and bandwidth limitation

Usually, current (or other measured signals) are acquired with apparatus
allowing only frequency components within a certain frequency interval
to pass. The measurement device acts as a frequency filter and limits
the bandwidth of the measurement. Bandwidth limitation usually leads
to noise reduction. Below we will discuss how filtering and bandwidth
limitation act on the measured signal and the measured noise power
spectral density.

General considerations. A filter often acts on a time-dependent sig-
nal in real time. The filter is characterized by a time-dependent pulse
response function g(t) acting on the measured signal Iin(t), producing
an output signal Iout(t) according to

Iout(t) =
∫ ∞
−∞

dt′Iin(t′)g(t− t′).

An example would be the filter function

g(t) =
{

1/t0 for 0 ≤ t ≤ t0
0 elsewhere

which describes data averaging over a fixed time span t0. The filter func-
tion guarantees also that the current noise ∆I is transformed according
to

∆Iout(t) =
∫ ∞
−∞

dt′∆Iin(t′)g(t− t′).

In order to obtain the power spectral density of the filtered data, we
Fourier transform this equation into the frequency domain and obtain

iout(ω) = iin(ω)g(ω),
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where g(ω) is the Fourier transform of the pulse response function g(t).
The power spectral density of the output signal is, according to eq. (20.8),
given by

Sout(ν) = 2〈|iout(2πν)|2〉 = 2〈|iin(2πν)|2〉|g(2πν)|2

= Sin(ν)|g(2πν)|2. (20.9)

The action of the filter on the measured spectral density is therefore the
product of the input spectral density and the squared magnitude of the
filter response function in the frequency domain.

Filter bandwidth. The bandwidth ∆νBW of a filter is usually defined
as the width of the filter function |g(2πν)|2 at half the maximum value
(between the −3dB points). For filters that have their maximum value
at zero frequency the bandwidth is the frequency at which the response
function has decayed to half of the maximum value (−3 dB point).

Example I: averaging over finite time span. If we continue the
discussion of the above time averaging filter function we find the Fourier
transform

|g(ω)|2 =
sin2(ωt0/2)
(ωt0/2)2

.

This filter function decays with increasing frequency on the scale 2/t0.
The oscillating numerator has zeros at frequencies ν = n/t0 (n integer).
It therefore has the property to block these frequencies completely. If
we assume that Sin(ν) = S0 for frequencies ν below and much beyond
1/t0 (white noise), then the output noise is, according to (20.6), given
by

〈∆I〉2 =
S0

πt0

∫ ∞
0

dx
sin2 x

x2
=
S0

2t0
:= S0∆ν,

where we call
∆ν =

1
2t0

(20.10)

the equivalent noise bandwidth of the filter. It describes the width of a
fictitious rectangular filter in the frequency domain such that the noise
power in this rectangular band is equal to the actual output power. The
above result has the well-known implication that reducing the measure-
ment bandwidth by increasing t0 reduces the output noise. According to
our above definition, this filter has a bandwidth of ∆νBW = 1.39/πt0 =
0.88∆ν.

Example II: First-order low-pass filter. If white noise is measured
with apparatus having a first-order low-pass characteristic, the pulse
response function in real time is given by

g(t) =
{
τ−1e−t/τ for t ≥ 0
0 elsewhere

,
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where τ is the correlation time. For the Fourier transform we find

|g(ω)|2 =
1

1 + (ωτ)2
,

and therefore ∆νBW = 1/2πτ is the bandwidth of the filter. At high
frequencies, the filter cuts off proportional to ω−2 corresponding to a
damping of 6 dB/octave. If we assume that we filter a white noise
spectrum with spectral density S(ν) = S0, the measured current noise
is, according to (20.6), given by

〈∆I〉2 =
∫ +∞

0

dν
S0

1 + (ν/∆νBW)2
= S0

π∆νBW

2
:= S0∆ν. (20.11)

The equivalent noise bandwidth is here ∆ν = ∆νBWπ/2.

Example III: first order low-pass acting on noise with exponen-
tial correlation function. As a further example we calculate the noise
in a measurement where the ammeter shows a first-order low-pass char-
acteristic with bandwidth ∆νBW, and the correlation function of the
input spectral density has an exponential decay with correlation time
τc (equivalent to a low-pass bandwidth ∆νc = 1/2πτc) leading to the
spectral density S(ν) of eq. (20.7). The measured noise will then be

〈
∆I2

〉
=
∫ ∞

0

dνS(ν)
1

1 + (ν/∆ν)2
=

S0

1 + ∆νBW/∆νc
π∆νBW

2
. (20.12)

In the case of ∆νBW � ∆νc we recover the result of eq. (20.11)〈
∆I2

〉
∆ν

= S0∆ν (20.13)

with the equivalent noise bandwidth ∆ν = π∆νBW/2.
It is also of practical interest to regard the input spectral density

S(ν) as the output of a first stage low-pass filter with bandwidth ∆νc.
Together with the additional low-pass filter this corresponds to a two-
stage low-pass filter. We obtain a so-called second-order low-pass filter in
the case where both stages have the same bandwidth, e.g., ∆νc = ∆νBW.
The equivalent noise bandwidth of this second-order low-pass can be
read to be ∆ν = π∆νBW/4. In fact, it is easy to verify that using even
more low-pass filtering stages reduces the equivalent noise bandwidth
even more. Equivalent noise bandwidths for low-pass filters of certain
orders n are tabulated in Table 20.1 (final column).

Table 20.1 Delay times of the step re-
sponse, and equivalent noise bandwidths
for low-pass filters of order n, time con-
stant τ and bandwidth ∆ν = 1/2πτ . The
second to third column gives delay times to
reach the indicated percentage of the full
step height in units of τ . The final column
is the equivalent noise bandwidth in units
of ∆νBW of the first order low-pass.

n 50% 90% 98% ∆ν/∆νBW

1 0.69 2.30 3.91 π/2
2 1.68 3.89 5.83 π/4
3 2.67 5.32 7.52 3π/16
4 3.67 6.68 9.08 5π/32Step response time and equivalent noise bandwidth of higher

order low-pass filters. The price to pay for the noise reduction with
low-pass filters of increasing order is an increase of the effective corre-
lation time, i.e., a slower response in the time-domain. This can, for
example, be seen in the step response. Assume the input current is
characterized by a unit step at time zero. How long does it take for the
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output signal to reach the value of one? For a first-order low-pass filter
we find the step response

Iout(t) = 1 − e−t/τ .

This means that the output value of one is never reached and our original
question does not make much sense. However, we can ask how long it
takes for the output signal to reach a certain percentage of the full step
height, such as 50%, or 90%. The corresponding delay times in units of
τ for three percentages are given in Table 20.1.

20.4 Thermal noise

After having discussed quantities characterizing noise, and the action of
noise filtering techniques, we turn our attention to fundamental physical
origins of noise. We start with a discussion of thermal noise.

Johnson–Nyquist noise of a resistor. We consider a resistor with
resistance R where both sides are shorted, for example, via an (ideal)
ammeter, as depicted in Fig 20.4. For the sake of simplicity we assume
it to consist of a rectangular piece of material with cross-sectional area
A and length L. We assume the system to be in thermodynamic equi-

A

L

I

Fig. 20.4 Piece of material with cross-
sectional area A and length L acting as
a resistor.

librium with its environment, characterized by a constant temperature
T . In the statistical average, the same amount of electrons will move
in the x- and in the −x-direction, and the net current is exactly zero.
During short time intervals, however, it can accidentally happen that a
few more electrons move in one direction than in the other. This leads to
a short-term current in one direction which averages to zero with short-
term currents in the other direction over long times. These short-term
statistical fluctuations of the current originate from the thermal motion
of the electrons.

In order to describe this setting mathematically, we first calculate the
current contribution in the +x-direction of an individual electron. From
the current density jx = −|e|nvx for a system with electron density n
we deduce, for a single electron, a current contribution

I1(t) =
−|e|vx(t)

L
.

Since the average current 〈I1(t)〉 for a shorted resistor is zero, the cor-
relation function of the current of a single electron is given by

C1(∆t) = 〈I1(t)I1(t+ ∆t)〉 =
e2

L2
〈vx(t)vx(t+ ∆t)〉 .

The velocity correlation function in a resistor characterized by a Drude
scattering time τ is given by 〈vx(t)vx(t+ ∆t)〉 = 〈v2

x(0)〉 exp(−∆t/τ).
Considering the motion of all N electrons in the resistor as being inde-
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pendent we therefore obtain the correlation function

C(∆t) = NC1(∆t) =
Ne2

L2

〈
v2

x(0)
〉
e−∆t/τ

=
ne2τ

m�

A

L

m�
〈
v2

x(0)
〉

τ
e−∆t/τ = G

m�
〈
v2

x

〉
τ

e−∆t/τ ,

where we have used the Drude expression for the conductivity, and G =
1/R is the conductance.

The crucial step is now to incorporate the relation between the average
kinetic energy of an electron and the temperature of the system. Ac-
cording to the equipartition theorem of thermodynamics, each classical
degree of freedom possesses a mean energy of kBT/2 in thermodynamic
equilibrium. For our case this means that m�

〈
v2

x

〉
/2 = kBT/2. As a

result we find
C(∆t) = GkBT

1
τ
e−∆t/τ .

This is an exponential correlation function as introduced in eq. (20.2),
where the scattering time τ plays the role of the correlation time. We
can therefore use eq. (20.7) to find the thermal noise spectral density

S(ν) =
4GkBT

1 + (2πντ)2
. (20.14)

For frequencies ν � 1/2πτ the spectral density describes white noise
with S0 = 4GkBT and the noise within a frequency band ∆ν is

S0∆ν = 4GkBT∆ν.

This equation is known as the Johnson–Nyquist formula for thermal
noise.

The existence of thermal noise implies that every physical measure-
ment will suffer from noise. Each sample with a finite electrical resistance
will produce the corresponding thermal noise. In Table 20.2 we list the
spectral density S0 for a series of different resistors at room temperature.

Table 20.2 Spectral den-
sity S0 = 4GkBT of the
current noise of ohmic re-
sistors at room tempera-
ture.

R (Ω) S0 (A2/Hz)

1 1.63 × 10−20

103 1.63 × 10−23

106 1.63 × 10−26

Relation with the fluctuation–dissipation theorem. The thermal
noise is a direct consequence of the relation between the fluctuations of
thermodynamic quantities (here: the current), and the linear response
functions (here: the conductivity). This relation is known in thermody-
namics as the fluctuation–dissipation theorem.

What information about the resistor can we obtain from the measure-
ment of the thermal noise of its resistance? If the temperature of the
environment is known, the measurement of thermal noise does not give
information beyond the value of the resistor itself, and is therefore less
interesting than shot noise, as we will see below. However, if the resis-
tance is known (and it is easy to measure it), the thermal noise can be
used for operating a resistor as a primary thermometer, or for measuring
the electronic temperature (which may differ, for example at liquid He
temperatures, from the temperature of the crystal lattice).
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20.5 Shot noise

While the thermal noise does not give access to any other system proper-
ties than the conductance, this is not true for measurements of the shot
noise. The latter is sometimes also called excess noise. It contains infor-
mation about the temporal correlations of the electrons which are not
contained in the average current and therefore not in the conductance.
In general, shot noise may contain

• information about the charge of particles that contribute to the
current,

• information about the statistics obeyed by the particles contribut-
ing to the current (Fermi–Dirac statistics or Bose–Einstein statis-
tics),

• information about interactions causing correlations between par-
ticles, and

• information about the transmission T (which can also be obtained
from conductance measurements).

20.5.1 Shot noise of a vacuum tube

As a first example for a system in which shot noise arises we consider a
vacuum tube [see Fig. 20.5(a)], in which thermally excited electrons are
emitted from the hot cathode, and sucked away by a large electric field.
The tunneling barrier is characterized by a transmission T (E) depending
on the energy of the impinging electron [see Fig. 20.5(b)]. Well below the
top of the barrier the transmission is exponentially suppressed, whereas
far above the barrier it is essentially one. Close to the top of the barrier
the transmission exhibits a sharp step from values T (E) � 1 to T (E) ≈
1. The work function W of the cathode material is of the order of
5 eV, the cathode temperature is of the order of 2000◦C corresponding
to a thermal energy kBT ≈ 190 meV. The occupation fK(E) of states
in the cathode is given by the Fermi–Dirac distribution function. Since
kBT �W the occupation probability close to the barrier top, where the

Fig. 20.5 (a) Schematic diagram of
a vacuum tube with a hot cathode
(K) and an anode (A). (b) Schematic
diagram thermally activated tunneling
from the anode of the diode into the
vacuum.

vacuum tube

|e|

cathode vacuum
E

x

T(E)

(a) (b)

K A
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transmission becomes appreciable, is very small and well described by
the Boltzmann distribution. The states on the vacuum side of the barrier
can be considered to be unoccupied because any tunneling electron is
immediately sucked away. Thermionic emission of electrons from the
cathode is determined by the interplay between the sharp step of the
transmission function at the barrier top, and the exponential tail of the
Boltzmann distribution. As a result, the product fK(E)T (E) shows a
marked maximum near the top of the barrier, but even there the value
fK(W )T (W ) � 1 (we choose the cathode Fermi energy as the energy
zero). This is the characteristic situation for thermionic emission of
electrons. The number of cathode states at this energy is proportional
to the density of states D(W ).

Electron transmission as a probabilistic experiment. We now de-
scribe the electron emission process from the cathode as a probabilistic
experiment. Assume that within an observation time t0, N ∝ D(W )
attempts were possible for electrons to hit the barrier. The statistics of
whether such a potential attempt leads to a tunneling electron or not
depends on the probability p = fK(W )T (W ). The situation for an in-
dividual potential attempt is the same as in a probabilistic experiment
with two possible outcomes, such as tossing a coin. Here, the two out-

0 10 20 300

0.1

N = 30
p = 0.3P

(n
)

n

Fig. 20.6 Binomial distribution for
N = 30 and p = 0.3. The vertical thick
dashed line indicates the position of the
expectation value 〈n〉 = Np = 9. The
two thinner vertical dotted lines indi-
cate the width 2σ ≈ 5 of the distribu-
tion.

comes are, (1) an attempt is successful (probability p) and an electron
is transmitted, or (2) an attempt is unsuccessful (probability 1− p) and
no electron is transmitted. The probability that out of the N attempts,
n electrons are transmitted, is then given by the binomial distribution

P (n) =
(
N
n

)
pn(1 − p)1−n =

N !
n!(N − n)!

pn(1 − p)N−n, (20.15)

which is shown in Fig. 20.6 for the particular case of N = 30 and p = 0.3.
The distribution has the property that the expectation value 〈n〉 = Np,
and the variance of the distribution is σ2 = 〈(n− 〈n〉)2〉 = Np(1 − p).

In the limit of p � 1 the binomial distribution can be well approxi-
mated by the Poisson distribution

P (n) =
µn

n!
e−µ, (20.16)

with the mean value µ ≡ 〈n〉 = Np and the variance σ2 = µ = Np.
An example of the Poisson distribution function is shown in Fig. 20.7
for parameters N = 30 and p = 0.05, where it is already a reason-
able approximation for the binomial distribution. Because in our exam-

0 10 20 300

0.1

0.2

n

P(
n) N = 30

p = 0.05

Fig. 20.7 Poisson distribution function
for parameters N = 30 and p = 0.05.

ple the probability p � 1 at relevant energies around W , the Poisson
distribution in eq. (20.16) can be seen as the counting statistics of the
transmitted electrons.

Average current and classical shot noise. With the Poisson distri-
bution function, the mean electrical current is calculated to be

I = −|e| 〈n〉
t0

= −|e|N
t0

p.
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It could be measured in a way in which the transmitted electrons are
repeatedly counted over a time span t0 on the anode side. The average
of the number of counts is then determined from the measured counting
statistics which we have assumed to be poissonian. The time span t0
plays the role of an integration time, or equivalently, ∆ν = 1/2t0 is the
bandwidth of the measurement apparatus [cf., eq. (20.10)].

The shot noise is revealed if we consider the temporal fluctuations in
the number of transmitted electrons which is related to the width of the
distribution function in Fig. 20.7. According to the results of probability
theory, the average of these fluctuations is given by

(∆n)2 =
〈
(n− 〈n〉)2

〉
= µ = Np.

Correspondingly, the mean fluctuations of the electrical current are

〈
∆I2

〉
t0

=
〈
I2
〉
− 〈I〉2 =

e2(∆n)2

t20
=
e2

t20
Np =

|e|
t0

|〈I〉| = 2|e| |〈I〉|∆ν.

We therefore find the spectral density of the shot noise

S0 = 2|e| |〈I〉| . (20.17)

This relation is known as the classical shot noise formula, or the Schottky
formula. It expresses the fact that current flow in the vacuum tube under
the conditions outlined above is inevitably causing current noise which
increases proportional to the magnitude of the current.

20.5.2 Landauer’s wave packet approach

We have seen that shot noise is a nonequilibrium phenomenon which
arises because charge is transported in discrete elementary portions,
usually of the elementary charge |e|, through a conductor. The effect is
similar to the noise of rain drops impinging randomly on a plane surface.
Shot noise emphasizes the particle character of the quantum mechanical
charge carriers. The quantum description that comes closest to the par-
ticle character uses wave packets that can be constructed, for example,
from plain wave states. In order to demonstrate such a construction of
wave packets we choose a one-dimensional example.

Decomposition of plane wave states into a train of wave packets
in one dimension. Following the approach of Martin and Landauer,
1992, we decompose the current contribution of incident plane wave
states in an energy interval ∆E of a one-dimensional channel into wave
packets. The energy interval ∆E is chosen to be reasonably small such
that, for example, the transmission of the structure or the involved Fermi
distribution functions do not change appreciably over this energy inter-
val. The wave packets moving in the positive x-direction are constructed
from plane waves

ψ(x, t) =

√
m�

�k
ei(kx−Et/�).
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We assume a parabolic dispersion relation E(k) = �
2k2/2m�, and k =√

2m�E/�2. The prefactor ensures that each wave contributes the same
unit particle flux density in the x-direction. The wave packet n is formed
by a superposition of states in the energy interval [E − ∆E,E + ∆E]
according to

ψn(x, t) =
1√

2h∆E

∫ E+∆E

E−∆E

dE′
√

m�

�k(E′)
eik(E′)x−iE′(t+nτ)/�,

where τ = h/2∆E, and n is an integer. A single wave packet is depicted
in Fig. 20.8. It moves with the group velocity vg = �k/m�. All these x

vg
x 2

Fig. 20.8 Wave packet composed of
plane wave states within an energy in-
terval 2∆E.

wave packets form an orthonormal basis of states for this energy interval.
Orthonormality is seen by calculating∫

dxψ�
n(x, t)ψm(x, t) =

1
2h∆E

∫ E+∆E

E−∆E

dE′
√

m�

�k(E′)

∫ E+∆E

E−∆E

dE′′
√

m�

�k(E′′)

×
∫
dxei(k(E′′)−k(E′))x−i(E′′−E′)t/�−i(E′′m−E′n)τ/�.

The integration over x can be performed and leads to 2πδ(k(E′)−k(E′′)).
The integration over E′′ can be performed after transformation into an
integration over k′′. This eventually leads to∫

dxψ�
n(x, t)ψm(x, t) =

1
2∆E

∫ E+∆E

E−∆E

dE′e−iE′(m−n)τ/�.

It is evident from this result that for m = n∫
dxψ�

n(x, t)ψn(x, t) =
1

2∆E

∫ E+∆E

E−∆E

dE′ = 1,

and for m �= n∫
dxψ�

n(x, t)ψm(x, t) =
e−iE(m−n)τ/�

∆E(m− n)τ/�
sin [∆E(m− n)τ/�] .

Inserting the expression for τ we obtain for the case m �= n∫
dxψ�

n(x, t)ψm(x, t) =
e−iπE(m−n)/∆E

2π(m− n)
sin [π(m− n)] = 0,

because m− n is an integer number.
This example shows that we can describe the set of states in the en- x

x 2
n x 2

n+1 x 2
n 1 x 2

Fig. 20.9 Pulse train of wave packets
each carrying a maximum of two elec-
trons.

ergy interval [E−∆E,E+∆E] traveling in the positive x-direction not
only using a set of plane wave states, but also using a pulse train made
of wave packets traveling in this direction. Wave packets in the train
have equidistant spacing in time (τ) and space (vgτ). The series of wave
packets with all integer numbers n forms a pulse train as depicted in
Fig. 20.9. Neighboring wave packets will overlap, but they are orthogo-
nal. Owing to the Pauli principle each packet can be occupied only with
two electrons (spin up and down).
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From wave packets to current pulses. Following Martin and Lan-
dauer, 1992, we now make the conceptual step from wave packets (wave
functions) to current pulses. Although this step neglects interference
terms arising from the fermionic statistics of the electrons, and may
lead to problems in some cases, it illustrates the basic ideas behind shot
noise in a very intuitive way. In this picture, wave packet n corresponds
to a current pulse j(t− nτ). The total current of a stream of electrons
at a specific energy E can be written as

I(t) =
∑

n

j(t− nτ)gn,

where gn = 0, 1, depending on whether the wave packet is occupied or
not. This is the basic idea behind Landauer’s wave packet approach.

20.5.3 Noise of a partially occupied monoenergetic
stream of fermions

An example where the noise is governed by binomial statistics is that
of a single one-dimensional channel of electrons propagating at energies
around E in one direction. In order to calculate the noise in such a
stream, we write the noise component of the current as

∆I(t) =
∑

n

j(t− nτ)(gn − 〈gn〉),

where gn = 0, 1 indicating an occupied, or an empty current pulse (wave
packet). We assume that the average 〈gn〉, i.e., the average fraction
of occupied wave packets, is equal to a given probability p which is
between zero and one. We now calculate the spectral noise density
using eq. (20.8). To this end, we determine the Fourier transform of the
current fluctuations to be

i(ω) =
∑

n

(gn − 〈gn〉)
∫
dt j(t− nτ)e−iωt = j(ω)

∑
n

(gn − 〈gn〉)e−iωnτ .

The spectral density is then found to be

S(ν) = 2〈|i(2πν)|2〉

= 2|j(2πν)|2
〈∑

n,n′
(gn − 〈gn〉)(gn′ − 〈gn〉)e−i2πν(n−n′)τ

〉

= 2
|j(2πν)|2

τ
〈(gn − 〈gn〉)2〉.

We are interested here in low frequencies for which 2πντ � 1. We can
therefore replace j(2πν) → j(0) = −|e|. The required average can be
worked out as follows:

〈(gn − 〈gn〉)2〉 = 〈g2
n〉 − 〈gn〉2 = 12 · p+ 02 · (1 − p) − p2 = p(1 − p).
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This factor is the variance of the binomial distribution (20.15). Inserting
these result gives the spectral density

S(ν) =
2e2

h
p(1 − p)∆E = 2|e||∆I(E)|(1 − p), (20.18)

where ∆I = e2p∆E/h is the current associated with the stream of fermi-
ons. This result tells us that the shot noise of such a stream of fermions
is symmetric around the value p = 1/2, where the noise is maximum.
The shot noise decays to zero as p → 0, or p → 1. Such a stream of
fermions with 0 < p < 1 is called partitioned.

20.5.4 Zero temperature shot noise with binomial
distribution

A practical application of the above result arises if tunneling of electrons
in a nanostructure at very low temperature is considered. An example
would be the quantum point contact with a conductance anywhere be-
low the first conductance plateau (lowest mode starts to transmit). If
a voltage VSD is applied between source and drain of a quantum point
contact structure which is much larger than temperature kBT , then elec-
trons can tunnel through the barrier only within the energy window (bias
window) |e|VSD, as a direct consequence of the Pauli principle. Temper-
ature smearing can be neglected. Using the uncertainty relation we can
estimate the rate of electrons hitting the barrier to be τ−1 = eVSD/h.
Within a time interval t0 there are therefore N = eV t0/h attempts to
tunnel. At zero temperature there are no fluctuations of this number,
because each wave packet is, according to the Pauli principle, occupied
with exactly one electron. The probability that a particular attempt
to tunnel is successful is given by the transmission probability T which
can take arbitrary values between zero and one. Behind the tunneling
barrier the stream of electrons is partitioned with p = T . According to
eq. (20.18) the spectral density of the noise is then given by

S(ν) =
2e2

h
T (1 − T )|e|VSD = 2|e||〈I〉|(1 − T ). (20.19)

It differs by the factor (1 − T ) from the classical result of Poisson sta-
tistics. However, in the limit T � 1, both results are identical, because
1 − T ≈ 1.

The ratio of the spectral densities S(ν)/SSchottky(ν) is called the Fano
factor:

F =
S(ν)

SSchottky(ν)
.

In our example, F = 1−T is smaller than one, meaning that the quan-
tum mechanical shot noise at large transmission probabilities T is sup-
pressed compared to the classical shot noise. If the transmission T → 1,
the quantum shot noise even goes to zero, like the Fano factor.
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20.6 General expression for the noise in
mesoscopic systems

In order to derive a general expression for the noise in noninteracting
mesoscopic systems with an arbitrary number of transmission channels,
and at arbitrary source–drain voltages and temperatures, we assume
that

• the noise of individual transmission channels is additive, i.e., their
noise is statistically independent,

• the noise of individual energy intervals is additive (i.e., statistically
independent), and

• the two spin orientations fluctuate independently from each other.

We imagine a pulse train of wave packets of energy E to impinge from
the source contact on the mesoscopic system under consideration. The
fraction of packets that are occupied in the incoming pulse train is given
by the Fermi–Dirac distribution function fS(E) in the source. At the
same time, there will be a pulse train of wave packets at the drain side
moving towards the mesoscopic system under consideration. For these
states, the fraction of occupied packets is given by fD(E). As pointed
out by Martin and Landauer, 1992, it is convenient to construct the
wave packets on both sides in such a way that they are synchronized.
This makes sure that a transmitted wave packet from the source maps
into the same state as a reflected wave packet from the drain.

Each occupied wave packet propagating in the structure constitutes a
current pulse j(t− nτ). If we were to measure the current by counting
the current pulses traversing an imaginary plane in, say, the drain con-
tact, we would find a pulse pattern similar to that depicted in Fig. 20.10.
Positive pulses originate from wave packets moving in the source–drain
direction, negative pulses to those moving in the drain–source direc-
tion. The total time-dependent current at the specific energy E could
be written as

∆I(t) =
∑

n

j(t− nτ)gn. (20.20)

Following the analysis of Martin and Landauer, 1992, there are six pos-
sible pulse histories:

(1) Two corresponding occupied wave packets are incident from the

Fig. 20.10 Time-dependent current in
a mesoscopic structure. The current
pulses are individual electrons that are
transmitted. A positive pulse means
that an electron has moved from source
to drain, a negative pulse indicates the
opposite direction of motion.

t

I(t)
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source and the drain at the same time. The probability for this to
occur is fSfD. In this case, no net current results, i.e., gn = 0.

(2) Two corresponding unoccupied wave packets are incident from the
source and the drain at the same time. The probability for this to
occur is (1 − fS)(1 − fD). Also in this case, no net current results
(gn = 0).

(3) Two corresponding occupied wave packets are incident from the
source and the drain at the same time with the one on the source
side occupied and that on the drain side empty. In this case, the
electron can be transmitted. The probability for this to occur
is pDS = fST (1 − fD). In this case, a positive current pulse is
measured (gn = 1).

(4) Two corresponding occupied wave packets are incident from the
source and the drain at the same time with the one on the source
side occupied and that on the drain side empty. However, the
electron is reflected. The probability for this to occur is fS(1 −
T )(1 − fD). In this case, the current is zero (gn = 0).

(5) Two corresponding occupied wave packets are incident from the
source and the drain at the same time with the one on the drain
side occupied and that on the source side empty. In this case, the
electron can be transmitted as well. The probability for this to
occur is pSD = (1 − fS)TfD. In this case, a negative current pulse
is measured (gn = −1).

(6) Two corresponding occupied wave packets are incident from the
source and the drain at the same time with the one on the drain
side occupied and that on the source side empty. However, the
electron is reflected. The probability for this to occur is fD(1 −
T )(1 − fS). In this case, the current is zero (gn = 0).

Average current. Equation (20.20) together with the above analysis
allows us to calculate the average current at energy E through the meso-
scopic device. We find

〈∆I〉 = −|e|〈gn〉
τ

= −|e|(pDS − pSD)
τ

= −|e|
h
T (E)[fS(E) − fD(E)]∆E

in full agreement with the Landauer–Büttiker theory of conductance.
Integrating over the energy gives the familiar expression for the total
current

〈I〉 = −|e|
h

∫
dE T (E)[fS(E) − fD(E)].

Current noise. We continue with the calculation of the current fluc-
tuations at energy E given by

δI(t) =
∑

n

j(t− nτ)gn +
|e|
τ

〈gn〉 .
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The spectral density dS(E;ω) at the energy E is obtained from the mean
square of the Fourier transformed current fluctuations at this energy (cf.
20.8) and it is found that

dS(E;ω) =
2e2

τ

(〈
g2

n

〉
− 〈gn〉2

)
.

The averages of the gn are calculated as above. After integration over the
energy, and summation over spin and transmission channels, we obtain
the total spectral density

S̃(ω) =
2e2

h

∑
n

∫ ∞
0

dE
{

[fS(1 − fD) + fD(1 − fS)] Tn − [fS − fD]2 T 2
n

}
.

(20.21)
This expression contains the contribution of the thermal noise as well
as that of the shot noise. There are a number of equivalent forms of
this expression that occur in the literature, of which we quote only one,
which is particularly nice to interpret:

S̃(ω) =
2e2

h

∑
n

∫ ∞
0

dE
{
[fS − fD]2Tn(1 − Tn)

−kBT [dfS/dE + dfD/dE]Tn} .

It separates the noise of two sources: one is proportional to kBT and
goes towards the thermal equilibrium noise if no source–drain voltage is
applied. The other term vanishes in thermodynamic equilibrium, but it
survives at kBT = 0, if the source–drain voltage is nonzero. This is the
shot noise term.

Thermal noise. We first discuss the spectral density for the case of
zero source–drain voltage, i.e., fS = fD ≡ f . This is the case of thermo-
dynamic equilibrium. The spectral density becomes

S̃(ω) =
4e2

h

∑
n

∫ ∞
0

dEf(1 − f)Tn.

Using the property of the Fermi–Dirac distribution f(1 − f) =
−kBTdf/dE and the Landauer–Büttiker expression for the conductance,
we obtain

S̃(ω) =
4kBTe

2

h

∑
n

∫ ∞
0

dETn(E)
(
−df(E)

dE

)
= 4kBTG.

This expression is identical to the thermal noise formula (20.14), except
for the finite bandwidth cut-off.

Shot noise. In order to extract the shot noise contribution to the spec-
tral density, we consider the case of strong forward bias, as it is applied
to a vacuum diode. In this case fD = 0 and we obtain from eq. (20.21)

S̃(ω) =
2e2

h

∑
n

∫ ∞
0

dE
{
fSTn(1 − Tn) + fS(1 − fS)T 2

n

}
.
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The distribution function fS will be exponentially small at relevant en-
ergies, such that 1 − fS ≈ 1. This leads to

S̃(ω) =
2e2

h

∑
n

∫ ∞
0

dE
{
fSTn(1 − Tn) + fST 2

n

}
.

In the case of classical transmission over the top of the barrier (work
function W ), we have T = 1 for electrons above the barrier and T = 0
for electrons below. As a result we obtain the classical Schottky formula

S̃(ω) =
2e2

h

∑
n

∫ ∞
W

dEfS = 2e|I|.

In the quantum case with Tn � 1 we also find the Schottky formula

S̃(ω) =
2e2

h

∑
n

∫ ∞
0

dEfS(E)Tn(E) = 2e|I|.

Beyond these very special conditions of the vacuum tube, we consider
the shot noise at zero temperature. We then have

S̃(ω) =
2e2

h

∑
n

∫ µ+eVSD

µ

dETn(E)[1 − Tn(E)].

If we neglect the energy dependence of the transmission we obtain the
well-known mesoscopic shot noise formula

S̃(ω) = 2eVSD
e2

h

∑
n

Tn(EF)[1 − Tn(EF).

This expression simplifies in the limit of small transmission Tn � 1 to
the Schottky formula. It is remarkable that a transmission channel with
Tn = 1 does not contribute to the shot noise. The same is also valid for
the case of Tn = 0. For arbitrary values of the transmission between zero
and one, the shot noise is suppressed compared to the Schottky formula
by the factors (1−Tn). The Fano factor is in this general case given by

F =
∑

n Tn(1 − Tn)∑
n Tn

. (20.22)

20.7 Experiments on shot noise in
mesoscopic systems

20.7.1 Shot noise in open mesoscopic systems

Shot noise in quantum point contacts. The suppression of the shot
noise in mesoscopic conductors below the classical Schottky value can,
for example, be observed in quantum point contacts. Figure 20.11 shows
the comparison of the calculated and the measured shot noise in such
a system. The measurement was performed at a temperature of 0.4K
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Fig. 20.11 (a) Shot noise calculated
for a quantum point contact (solid
line) in comparison to the conductance
(dashed). For the calculation, the sad-
dle potential model with ωy = 3ωx was
used. (De Jong and Beenakker, 1997.
With kind permission of Springer Sci-
ence and Business Media.) (b) Mea-
sured shot noise of a quantum point
contact (solid line) in comparison to
the measured conductance (dashed) at
a temperature of T = 0.4 K. Courtesy
of M. Reznikov and M. Heiblum, data
similar to Reznikov et al., 1995.
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(similar to Reznikov et al. 1995). Similar experiments were, for ex-
ample, performed in Kumar et al., 1996, and Liu et al., 1996. It can
be seen that the conductance (dashed line) increases in the step-like
fashion discussed before. The shot noise (solid line) oscillates with min-
ima appearing at gate voltages where the conductance shows plateaus,
and maxima where the conductance increase is steepest between two
quantized steps. However, in the measurement, the shot noise is not
completely suppressed on plateaus, in contrast to the theoretical calcu-
lation, and the shot noise peaks appear to be broader, showing that the
saddle point approximation is not adequate for the description of the
second and third conductance step in this example.

Shot noise in chaotic quantum billiards. Shot noise was also stud-
ied in coherent ballistic quantum structures with chaotic classical dy-
namics, so-called chaotic quantum billiards (Oberholzer et al., 2002).
The key significance of these experiments is that they give evidence for
the quantum nature of scattering in these structures. The reason is that
a quantum wave packet entering a chaotic billiard will follow a classical
trajectory, but at the same time the wave packet will spread. If the dwell
time τdwell of the wave packet in the billiard is larger than the Ehrenfest
time

τE = α−1 ln
L

λF
,

where L is the characteristic size of the billiard, and α is a quantity
related to the classical chaotic dynamics, then the wave packet has com-
pletely spread over the size of the billiard, and the correspondence prin-
ciple between the quantum dynamics of the wave packet and the classical
trajectory breaks down. The Fano factor has been predicted to follow
(Agam et al., 2000)

F =
1
4

exp(−τE/τdwell)

giving a Fano factor F = 1/4 in the extreme quantum limit τdwell � τE.
This value was observed in Oberholzer et al., 2002.
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Shot noise in diffusive metallic wires. Another particularity of
quantum shot noise arises in mesoscopic diffusive metallic wires. In
contrast to macroscopic metallic systems which show no shot noise, co-
herent mesoscopic wires do. The reason is that in macroscopic sys-
tems of characteristic size L the shot noise of L/lϕ � 1 independently
fluctuating segments averages out, whereas in systems with L < lϕ
this self-averaging is ineffective. Measurements of mesoscopic diffusive
wires give a Fano factor F = 1/3 (Steinbach et al., 1996; Henny et al.,
1999) as predicted by theory (Beenakker and Buttiker, 1992; Nagaev,
1992). The reason for the suppressed shot noise is the fact that the
probability distribution of the Tn in eq. (20.22) in diffusive system is
p(Tn) ∝ T −1(1−T )−1/2. This is a surprising result, because it predicts
large probabilities for closed channels with very small Tn, large proba-
bilities for open channels with Tn close to one, and only a very small
probability for intermediate values of the transmission. The transmis-
sion channels therefore separate in a family of closed channels and a
family of open channels. The significant fraction of open transmission
channels leads to the Fano factor of 1/3.

Composite fermion charge from shot noise experiments. The
classical shot noise formula of Schottky, eq. (20.17), predicts a propor-
tionality between the shot noise power and the charge of the carriers re-
sponsible for electronic transport. Theory predicted a fractional charge
for excitations in fractional quantum Hall minima. It was therefore an
experimental challenge to provide experimental evidence for the frac-
tional charge of quasiparticles via shot noise measurements. In these
experiments, split gates are used to bring counterpropagating fractional
edge channels, e.g., at filling factor ν = 1/3 into tunneling distance. If
the charge transfer is given by |e|/3, the charge of the Laughlin’s frac-
tional quasiparticles, the shot noise should be suppressed compared to
the case where a charge |e| is transferred. This suppression was indeed
observed in experiments (Saminadayar et al., 1997; de Picciotto et al.,
1997).

20.7.2 Shot noise and full counting statistics in
quantum dots

Shot noise measurements in systems with very small transmission, such
as quantum dots, are even more challenging than open systems, due to
the small value of the transmission. Measurements based on conven-
tional techniques were performed in Birk et al., 1995. However, a very
precise and new route of shot noise measurements on quantum dots uses
the capability of quantum point contacts capacitively coupled to the
quantum dot to detect the tunneling of individual electrons into and
out of the dot.

Time-resolved noise measurements with quantum point contact charge
detectors started with tuning up the bandwidth of conventional low-
frequency setups (Schleser et al., 2004). Using such setups, bandwidths
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of up to 30–40 kHz have been reported in the literature (Elzerman et al.,
2004; Gustavsson et al., 2006), limiting the time resolution to the order
of ten microseconds.

At fixed gate voltages, the charge detector witnesses electrons tun-
neling into and out of the quantum dot in real time. This manifests
itself in random switching of the detector conductance between two dis-
tinct levels, called random telegraph noise, as shown in Fig. 18.5. When
the conductance switches downwards, an electron has entered the dot,
if it switches upwards, an electron has left the dot. If the quantum
dot is in the single-level transport regime, the time-separations between
tunneling-in and tunneling-out events follow the exponential decay laws

pin/out(t)dt = Γin/oute
−Γin/outtdt

with characteristic tunneling-in and tunneling-out rates Γin/out. This
decay law has been confirmed experimentally (Schleser et al., 2004; Gus-
tavsson et al., 2006; MacLean et al., 2007).

S D

Vdot

Fig. 20.12 Schematic energy diagram
of the quantum dot showing the situa-
tion Vdot 	 kBT .

In the shot noise regime, where the source drain voltage Vdot � kBT ,
but only a single quantum state is in the bias window (see Fig. 20.12),
the rates Γin/out obtained from a time trace can be interpreted directly
as the tunneling rates ΓS and ΓD (Gustavsson et al., 2006). In this case,
the electron tunneling into the dot will always originate from the source
contact, and it will always tunnel out to the drain.

On the next level, correlations between subsequent tunneling-in and
tunneling-out events at Vdot � kBT can be considered. For example, if
we assume that such pairs of subsequent in/out events (in the following
we call the pair an event for simplicity) are statistically independent, we
find the statistical distribution

pe(t)dt = dt

∫ t

0

dt′pin(t′)pout(t− t′)

=
ΓinΓout

Γin − Γout

(
e−Γint − e−Γoutt

)
dt.

Figure 20.13 shows measurements of this distribution function for two
different coupling asymmetries a = (Γin−Γout)/(Γin +Γout). For almost
symmetric coupling (a = 0.07) of the dot to the source and drain lead,
there is a pronounced suppression of the distribution for small times.
This is a direct consequence of the correlation between subsequently
tunneling electrons brought about by the Coulomb blockade effect. The
second electron has to wait with tunneling in until the first electron has
tunneled out of the dot. This suppression becomes narrower in time for

0 0.5 1 1.5

p e
(t)

 (a
rb

. u
ni

ts
) a = 0.90

a = 0.07

t (1/ in + 1/ out)

Fig. 20.13 Distribution pe(t) of times
needed for one electron to traverse the
quantum dot. Symbols are measured
data points, solid lines are predictions
of theory. The two distributions corre-
sponding to different coupling asymme-
tries a (see text) are plotted on different
vertical scales for clarity.

strongly asymmetric coupling (a = 0.90), because the system approaches
the limit of a single barrier device in which no Coulomb blockade exists.

An alternative way of analyzing time-resolved single-electron tunnel-
ing traces, such as that shown in Fig. 18.5, is to look at full count-
ing statistics. In order to do this analysis, a time trace of length T
is divided into a reasonably large number of shorter segments of equal
length ∆T . A histogram is then plotted for the distribution of the
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Fig. 20.14 Histogram of the full count-
ing statistics of a quantum dot. The
solid line is the theoretical prediction
for the given rates Γin and Γout.

number N of events found in the segments (an event is, for example,
a down-switch of IQPC). An example of such a histogram, similar
to those reported in Gustavsson et al., 2006, is shown in Fig. 20.14.
The mean value (first moment) 〈N〉 calculated with this histogram
gives the mean current Idot = e〈N〉/∆T through the quantum dot.
However, the width of the histogram, characterized by its second cen-
tral moment (variance) 〈(N − 〈N〉)2〉 is a measure of the fluctuations
〈∆I2〉 = e2〈(N − 〈N〉)2〉/∆T of the quantum dot current, meaning its
shot noise. The shot noise for quantum dots has been calculated in
Davies et al., 1992, and later discussed in the framework of full count-
ing statistics (Bagrets and Nazarov, 2003). While the shot noise of
a single barrier device is expected to follow poissonian statistics with
〈N〉 = 〈(N − 〈N〉)2〉 (the mean equals the variance), for quantum dots
the shot noise is expected to be suppressed as a result of the Coulomb-
interaction-mediated correlations between tunneling electrons (see also
the suppression of the distribution in Fig. 20.13 at short times). From
Fig. 20.14 a variance 〈(N − 〈N〉)2〉 ≈ 3 can be estimated, compared to
a mean 〈N〉 ≈ 6, implying a reduction of the width by the Fano factor
F = 1/2 compared to the poissonian case. Given the histogram shown
in Fig. 20.14, even higher central moments, such as the skewness (3rd
central moment) or the kurtosis (4th central moment) can be experi-
mentally determined.

The full counting statistics can be found theoretically from a master
equation approach. For example, in the single-level transport regime,
the quantum dot system may be described by a two-state system with
state 0 denoting zero, state 1 denoting one excess electron in the dot. We
measure the current by counting the numberN of electrons that transmit
through the dot–drain barrier. We consider the case Vdot � kBT as
depicted in Fig. 20.12(c), such that tunneling-in is only possible from
the source (rate ΓS), and tunneling-out only through the drain (rate
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ΓD). The master equation is then given by

dp0(t|N)/dt = −ΓSp0(t|N) + ΓDp1(t|N − 1)
dp1(t|N)/dt = −ΓDp1(t|N) + ΓSp0(t|N).

Here, pn(t|N) is the probability that at time t, the system is found in
state n, given that N electrons have been transferred into the drain lead
since t = 0. At t = 0 we have the initial conditions p0(t = 0|N = 0) = 1
and pn(t = 0|N �= 0) = 0. The rate equation can be solved using the
discrete Fourier transform pn(t|χ) =

∑
N pn(t|N) exp(iNχ), where χ is

called the counting field. We find the linear differential equation

d

dt

(
p0(t|χ)
p1(t|χ)

)
=
(

−ΓS ΓDe
iχ

ΓS −ΓD

)(
p0(t|χ)
p1(t|χ)

)
,

which has the general solution pn(t|χ) =
∑1

j=0 cnj exp[λj(χ)t] with the
λj(χ) being the eigenvalues of the coefficient matrix. For times t large
compared to the correlation time (ΓS + ΓD)−1 (Machlup, 1954), the
solution is governed by the eigenvalue with the smallest negative real
part (say, λ0) giving the slowest decay. The full counting statistics, i.e.,
the probability that N electrons have been transferred through the dot
after time ∆T is given by

PN (∆T ) =
1∑

n=0

pn(∆T |N) =
1
2π

∫
dχe−iNχ

1∑
n=0

pn(∆T |χ).

The logarithm of its Fourier transform is the cumulant generating func-
tion S(χ), which has the large ∆T limit S∆T (χ) = λ0(χ)∆T . The mean
current is given by the first cumulant 〈N〉 = −idS/dχ|χ=0, and the shot
noise by the second cumulant 〈(N − 〈N〉)2〉 = −d2S/dχ2|χ=0. The re-
sulting full counting statistics, which has been worked out in Bagrets and
Nazarov, 2003, is plotted as a solid line in Fig. 20.14, and shows excellent
agreement with the measured histogram. Finite bandwidth corrections
(Naaman and Aumentado, 2006) have been taken into account. More
details about the analysis of full counting statistics data can be found
in the review by Gustavsson et al., 2007, and in the overview article
Gustavsson et al., 2008.

Further reading

• Easy reading: Beenakker and Schonenberger 2003;
Belzig 2005.

• Reviews: De Jong and Beenakker 1997; Blanter

and Buttiker 2000; Martin 2005.

• Book: Nazarov 2003.
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Exercises

(20.1) You tune a quantum point contact in GaAs at
the temperature T = 1.7K to the conductance
G = e2/h, i.e., to the transition between complete
pinch-off and the first conductance plateau.

(a) Calculate the spectral density of the thermal
noise.

(b) What is the lowest voltage that you would
have to apply at least to the quantum point
contact in order to have the shot noise domi-
nate over the thermal noise (assume the trans-
mission to be energy-independent)? What is
the current through the point contact under
these conditions?

(c) Compare the spectral density of the thermal
noise of the point contact with that of the
5 kΩ ohmic contacts through which the point
contact is connected to the external circuit.

(d) Discuss what further noise sources you have
to consider if you intend to measure the noise
of the point contact.

(20.2) Consider a quantum dot coupled to a quantum
point contact charge detector. The quantum dot is
very weakly coupled to its source and drain leads
such that electrons tunneling into and out of the
quantum dot can be counted in real time using
the quantum point contact. With a source–drain
voltage VSD applied to the quantum dot (|e|VSD �
kBT ), but only a single energy level in the transport
window (|e|VSD � ∆) the following measurement
of the quantum point contact current was made:

time (ms)10 20 30 40

N

N+1

6

4

2

I Q
PC

 (n
A

)

in out

(a) What is the statistical probability density dis-
tribution for the times τin and τout?

(b) Estimate the tunneling rates ΓS and ΓD from
the data.

(c) What is the time-averaged occupation proba-
bility of the energy level in the dot, given the
data?

(d) Estimate the average tunneling current
through the quantum dot from the data.

(20.3) From shot noise measurements, information about
correlations between particles can be obtained. In
this exercise a scattering experiment with a half-
transparent beam splitter is investigated, such as
that realized if a single quantum Hall edge chan-
nel impinges onto a quantum point contact tuned
to transmission 1/2. The schematic setup shown in
the figure consists of two particle sources 1 and 2, a
beam splitter and two detectors 3 and 4. A particle
emitted by source 1 or 2 will be transmitted with
equal probability to detector 3 or 4.

1 4

3

2

If two identical particles are emitted simultaneously
by the two sources, we have to treat a two-particle
scattering problem. Two-particle fermion- and bo-
son states will have to obey different symmetry
upon particle exchange. We look at the probabili-
ties p(1, 1) of detecting an event in both detectors,
p(2, 0) of two events in detector 3, or p(0, 2) of two
events in detector 4.
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(a) Show that for fermions (electrons) p(2, 0) = 0,
p(1, 1) = 1, and p(0, 2) = 0.

(b) Show that, in contrast, for bosons (e.g., pho-
tons), p(2, 0) = 1/2, p(1, 1) = 0, and p(0, 2) =
1/2.

(20.4) Noise measurements provide more information
about a mesoscopic system than measurements of
the current. This can be impressively seen in the
experiment Neder et al., 2007b. In this problem
you will show that current measurements in the
geometry investigated in this paper do not show
an Aharonov–Bohm interference effect, whereas the
interference can be seen in noise correlation mea-
surements on two contacts of the structure. A
schematic of the investigated structure is depicted
below.

S2 D4

D1

S1D2

A

B

C

D

3

D3

2

4

1

Electrons are injected from two independent ohmic
contacts S1 and S2 into one-dimensional quan-
tum Hall edge channels. Quantum point contacts
(QPCs) A, B, C, D act as beam splitters for the
incoming electron wave. Assume that incoming
amplitudes (A1, A2) and outgoing amplitudes (B1,
B2) at each beam splitter are related by the scat-
tering matrix

�
B1

B2

�
=

1√
2

�
i 1
1 i

��
A1

A2

�
,

which is assumed to be the same for all four QPCs.
Between the beam splitters, the electron wave func-
tion accumulates phases ϕ1, ϕ2, ϕ3, and ϕ4, as indi-
cated in the figure. Current can be measured using
ohmic contacts D1, D2, D3, D4.

(a) Find reasons why no Aharonov–Bohm effect
can be observed in the current at D1, D2, D3,
or D4, if electrons are only injected from S1
into the structure.

(b) Write down the expressions for the two outgo-
ing single-particle wave functions at the four
detector contacts D1, D2, D3, D4, assuming
that single electrons are injected from either
S1 or from S2.

(c) Form the correctly antisymmetrized fermionic
wave function for two electrons injected simul-
taneously at S1 and S2.

(d) How does the probability of detecting corre-
lated electrons at D2 and D4 depend on the
four phases ϕ1, ϕ2, ϕ3, and ϕ4?

(e) Find reasons why a measurement of the cor-
related noise measured between contacts D2
and D4 would be sensitive to small changes
of the magnetic field via the Aharonov–Bohm
phase.
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21.1 The Fano effect

The Fano effect is a phenomenon that arises in many areas of physics.
It is caused by the interference of a resonant coherent scattering channel
of a particle with a nonresonant continuum channel. We will discuss
the meaning of this general description below. The more familiar reso-
nant scattering phenomenon was described in Breit and Wigner, 1936,
considering neutrons scattering at atoms, and the interference of a Breit–
Wigner resonance with a nonresonant scattering channel was discussed
later by Feshbach, Peaslee, and Weisskopf (Feshbach et al., 1947). They
found that interference with the nonresonant scattering channel leads to
a characteristic change in the resonance lineshape, which was described
in 1961 by Ugo Fano in connection with resonant scattering of photons
and atoms (Fano, 1961). It has to be mentioned, however, that Fano
had already presented his theory leading to the asymmetric lineshapes
in a paper published in 1935 (Fano, 1935).

In experiments on semiconductors the Fano effect arises, for exam-
ple, in Raman scattering (Cerdeira et al., 1973), in optical absorption
in quantum wells (Maschke et al., 1991; Faist et al., 1997), and in meso-
scopic transport through one-dimensional channels with resonances (see,
e.g., Chu and Sorbello, 1989; McEuen et al., 1990). A very comprehen-
sive theoretical description can be found in Nockel and Stone, 1994.

One of the simplest geometries in which the Fano effect has been ob-
served in mesoscopic transport is a quantum dot coherently side-coupled
to a one-dimensional channel (quantum point contact). Such a structure
based on a two-dimensional electron gas in a Ga[Al]As heterostructure
is shown in the inset of Fig. 21.1. If the conductance of the point contact
is measured as a function of the plunger gate voltage Vg by applying a
voltage between source and drain, the resonances of the quantum dot
can be seen as shown in Fig. 21.1. The line shape of these resonances is
very different from the sharp symmetric peaks usually observed in the
Coulomb blockade regime.

The essence of the Fano effect in this structure can be discussed with-
out considering the Coulomb interaction among electrons in the struc-
ture. Since the quantum dot has no ‘exit’, but is only coupled via one
single opening to the channel, we consider the one-dimensional total
reflection at a resonator in the picture of interfering Feynman paths as
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Fig. 21.1 Fano resonances in the con-
ductance of a quantum point contact
with side-coupled quantum dot, mea-
sured as a function of the plunger gate
voltage Vg. Inset: Structure showing
the arrangement of gate electrodes on
the sample surface which allows the for-
mation of the conducting channel with
side-coupled quantum dot. (Reprinted
with permission from Johnson et al.,
2004. Copyright 2004 by the American
Physical Society.)
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schematically shown in Fig. 21.2. The reflected amplitude can be written
as

rres = r + tλrtλ

[ ∞∑
n=0

(r′λrtλ)n

]
t = r +

tλrtλt

1 − r′λrtλ
.

Here λ describes the propagation between the barrier connecting the dot
with the channel and the barrier where total reflection takes place. The
quantity rt is the amplitude of total reflection, and r, r′, and t are the
reflection and transmission coefficients of the barrier. For simplicity we
consider only this one-dimensional resonator and write the amplitudes
as

r =
√
Reiα, r′ = −

√
Reiγ , t =

√
1 −Rei(α+γ)/2,

rt = eiδ, λ = eiβ .

Here, the α, β, γ, and δ are phases and R is the reflection probability of

r, t, r’ rt

Fig. 21.2 Schematic illustration show-
ing a square potential minimum cou-
pled to a continuum of states to the left
via a thin tunneling barrier with reflec-
tion coefficients r and r′, and transmis-
sion coefficient t. Propagation within
the potential well leads to phase accu-
mulation described by λ. At the po-
tential step to the right, particles are
totally reflected as described by the re-
flection amplitude rt.

the barrier coupling the dot to the channel. The larger R is, the weaker
is the dot coupled to the channel. Introducing these amplitudes in the
Feynman path result, we obtain

rres = eiα

√
R+ eiθD

1 +
√
ReiθD

,

where ΘD = γ + 2β + δ is the phase accumulated by an electron on a
round trip between the barriers. It is straightforward to show that the
magnitude of the numerator and of the denominator in this expression
is the same, i.e., |rres|2 = 1, as expected for total reflection. We are
therefore only interested in the phase angle ϕ = arg(rres). In order to
determine ϕ, we introduce the coupling parameter γ := (1 −

√
R)/(1 +√

R) (i.e.,
√
R = (1 − γ)/(1 + γ)) and find

rres = eiα cos(θD/2) + iγ sin(θD/2)
cos(θD/2) − iγ sin(θD/2)

.
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From this expression, we read

tan[(ϕ− α)/2] = γ tan(θD/2),

which creates the nonlinear map between ϕ and θD shown in Fig. 21.3.
Resonances occur for θD = (2p + 1)π ≡ θp, where p is an integer. Near

1 2 3 4

1

2

3

4

D

Fig. 21.3 Phase ϕ of the reflection co-
efficient of a cavity as a function of the
round trip phase θD within the cavity,
assuming α = 0.

resonance the numerator and denominator of rres can be expanded to
first order in θD − θp giving

rres = −eiα 1 + i(θ − θp)/2γ
1 − i(θ − θp)/2γ

.

The relation to energy is established via

θ − θp

2γ
=

1
2γ

dθ(E)
dE

∣∣∣∣
E=Ep

(E − Ep) =
E − Ep

Γp
= ε

with
1
Γp

=
1
2γ

dθ(E)
dE

∣∣∣∣
E=Ep

.

As a result we obtain, near resonance,

rres = −eiα 1 + iε

1 − iε
= eiϕ, with ϕ = α+ π + 2ϑ, where tan(ϑ) = ε.

Returning to the problem of the cavity coupled to the channel, we can
see that there are the two alternative paths depicted in Fig. 21.4: either
the electron is directly transmitted through the channel, or it also visits
the quantum dot during the course of the transmission. In the Feynman
path description of the total transmission coefficient we can write this
as

tW = td + b1rresb2.

The amplitude td describes the direct transmission from source to drain,
b1 is the amplitude for the transmission from the source contact into the
dot, and b2 that for transmission from the dot into the drain.

td rres

b1

b2

source

drain

dot

Fig. 21.4 Schematic illustration show-
ing the interference of two alternative
paths: the direct transmission with am-
plitude td and the resonant transmis-
sion with amplitue b1rresb2.

For the calculation of the transmission probability of the wire close to
a resonance of the dot we write

tW = |td| + f0e
2i(φF+ϑ),

where f0 = |b1||b2|, 2φF = α + π − arg(td), and we have omitted an
irrelevant overall phase factor. The angle 2φF can be seen as the phase
difference between the resonant and the nonresonant path excluding the
resonant behavior of the dot.

As in conventional two-path interference problems the transmission
probability is then

TW = |tW|2 = t2d + f2
0 + 2tdf0 cos[2(φF + ϑ)]

= (td − f0)2 + 2tdf0 {1 + cos[2(φF + ϑ)]}
= (td − f0)2 + 4tdf0 cos2(φF + ϑ)

= (td − f0)2 +
4tdf0

1 + tan2(φF + ϑ)
.
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Fig. 21.5 Linie shapes of Fano reso-
nances for different Fano parameters q. 5 50
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Further application of addition theorems and some algebra lead to the
relation

1
1 + tan2(ϕF + ϑ)

=
(− cotφF + tanϑ)2

(1 + cot2 φF)(1 + tan2 ϑ)
.

We now define the so-called Fano parameter q = − cotφF = tan[(α −
arg(td))/2], insert tanϑ = ε and obtain the Fano formula

TW = (td − f0)2 +
4tdf0
1 + q2

(q + ε)2

1 + ε2
. (21.1)

The shape of the transmission resonance depends on the Fano parameter
q which describes the phase difference between the direct and the reso-
nant path. Figure 21.5 shows line shapes for different Fano parameters
assuming that td = f0 = 1/2. For q = 0 an antiresonance is seen with
completely suppressed transmission on resonance. If q → ±∞ a Breit–
Wigner resonance with transmission one on resonance is recovered. For
q = ±1 a completely asymmetric lineshape results. In this case, the
direct and the resonant path interfere constructively on one side and
destructively on the other side of the resonance.

It can be shown that in systems with time-reversal symmetry (like
our example), the Fano parameter q is a real number (Nockel and Stone,
1994; Clerk et al., 2001). For real q the probability T vanishes for ε = −q.

Fano resonances can also arise in the transmission through a single
quantum dot, if the tunneling coupling to the leads is strong. It turns
out that different quantum dot states can couple with very different
strengths to the leads. The resonant path would then be the transmis-
sion through a weakly coupled level of the quantum dot which is sharply
defined in energy. The nonresonant path is the transmission through
a very strongly coupled and therefore energetically strongly broadened
quantum dot level which acts as a ‘continuum’. Figure 21.6 shows such
resonances in the conductance through a quantum dot.



21.1 The Fano effect 457

0.25

0.20

0.15

0.10

0.05

0.00

G
 (e

2 /
h)

100 80 60 40
VG (mV)

Fig. 21.6 Fano resonances in the
conductance through a quantum dot.
(Reprinted with permission from Gores
et al., 2000. Copyright 2000 by the
American Physical Society.)
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Fig. 21.7 (a) Schematic illustration of
the experimental setup where an elec-
tron injected from the source contact
interferes via the two alternative paths
‘Arm’ and ‘QD’. (b) The scanning elec-
tron micrograph of the sample surface
shows the arrangement of the top gates
and the edges of the wet-chemically
etched mesa edges. (Reprinted with
permission from Kobayashi et al., 2002.
Copyright 2002 by the American Phys-
ical Society.)

Another variant of the Fano effect is observed in quantum ring struc-
tures, where a quantum dot is embedded in one arm of the ring. Fig-
ure 21.7 shows such a structure. The Fano effect arises if the Breit–
Wigner resonance in the transmission through the quantum dot inter-
feres with the direct transmission through the second arm (reference
arm) of the interferometer. In the experiment shown here, it was possi-
ble to switch the transmission through the reference arm on and off using
a gate electrode. The measurement of the resonances in these two cases
(Fig. 21.8) shows how the additional interference with the transmission
through the reference arm acts on the resonance lineshape.
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Fig. 21.8 (a) Comparison between con-
ductances of the system with and with-
out reference arm.When the reference
arm transmits, the previous Coulomb-
blockade resonances develop into Fano
resonances. (b) Fits of the Fano-line
shape to the measured data, and corre-
sponding Fano parameters. (Reprinted
with permission from Kobayashi et al.,
2002. Copyright 2002 by the American
Physical Society.)
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21.2 Measurements of the transmission
phase

Basic concept. The measurement of the conductance of a mesoscopic
system is, following the spirit of the Landauer–Büttiker formalism, a
measurement of the transmission probability T . We can measure this
quantity as a function of some system parameter, such as a gate voltage.
The probability T is given by the squared magnitude of a complex-valued
probability amplitude t, i.e., T = |t|2. The probability amplitude t can
be expressed by a pair of numbers, for example, by the magnitude a = |t|
and the phase θ = arg(t), each having its own dependence on the system
parameter. The conductance measured, for example, as a function of
the gate voltage, can be seen as a measurement of the gate voltage
dependence of a, but that of the phase θ can usually not be retrieved. It
is therefore of interest to design experiments in which the dependence of
θ on some system parameter can also be measured, because this would
yield additional information about the system under investigation.

From previous discussions of interference phenomena we have learned
that it is only the relative phase, i.e., the difference of the phases of
two alternative processes 1 and 2 that comes into play in interference
[cf., eq.(14.1)]. One could therefore try to measure the voltage (VG)
dependence (say) of the transmission amplitude and phase through a



21.2 Measurements of the transmission phase 459

mesoscopic system in an interference experiment in which only one of
the two alternative transport paths depends on the voltage while the
other is voltage independent. On a conceptual level, such a measurement
would give

T (VG) = |t1(VG) + t2|2 = a2
1(VG) + a2

2 + 2a1(VG)a2 cos[θ1(VG) − θ2].

We see that it is still not possible in general to separate the terms con-
taining the transmission phase θ1(VG) and those containing the trans-
mission amplitude a1(VG) from a measurement of T (VG).

We therefore need some second parameter which acts on the interfer-
ence term only without affecting the amplitudes a1 and a2. What comes
to our rescue here is the Aharonov–Bohm effect. If we can arrange the
two alternative transmission paths in such a way that they enclose a
magnetic flux φ, and if we can make sure that the magnetic field gen-
erating this flux does not influence the amplitudes a1 and a2, then we
obtain the transmission

T (VG, φ) = a2
1(VG) + a2

2 + 2a1(VG)a2 cos[θ1(VG) − θ2 + φ/φ0], (21.2)

with φ0 = h/e being the magnetic flux quantum.
The concept introduced above was realized in Schuster et al., 1997, in

an attempt to measure the transmission phase of a quantum dot. The
significance of this experiment is first of all that it gives evidence for
coherent transmission through a quantum dot. In addition, it demon-
strates that the concept of the phase measurement outlined above works

source

collector

dot

Fig. 21.9 Scanning electron micro-
graph of the sample used for the trans-
mission phase measurement. A voltage
is applied between the source contact
and ground. The voltage between the
collector contact and ground is mea-
sured. (Schuster et al., 1997. Reprinted
by permission from Macmillan Publish-
ers Ltd, copyright 1997.)

in principle. The quantum dot is a suitable system for such an experi-
ment, because the transmission amplitude a1 through a dot of charac-
teristic size L changes only at the magnetic field scale ∆B = φ0/L

2.
If the Aharonov–Bohm interferometer is made much larger than L, the
Aharonov–Bohm oscillations will occur at a field scale much smaller than
∆B.

Figure 21.9 shows the sample used for the corresponding measurement.
The metallic gates are used to deplete the two-dimensional electron gas
residing below the surface. The quantum dot is embedded in one path
of the two-path interferometer indicated by the arrows. In the experi-
ment, a voltage is applied between the source contact and the grounded
base regions. The collector voltage is measured. At the measurement
temperature of 80 mK electrons travel ballistically and phase-coherently
throughout the whole structure. The analysis in the framework of the
Landauer–Büttiker theory leads to the collector voltage

Vc =
Tcs

Nc −Rc
Vs,

which is proportional to the source–collector transmission Tcs given by
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Fig. 21.10 Calculated magnitude and
phase of the resonant transmission
through a single energy level in the
Lorentz approximation.

eq. (21.2).
Before we look at the experimental results, we use eq. (18.28) to obtain

an expectation for the magnitude a1 and the phase θ1 of the transmis-
sion through a quantum dot. Figure 21.10 shows the evolution of the
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Fig. 21.11 (a) Collector voltage Vc measured as a function of the plunger gate voltage VG of the quantum dot. (b) Aharonov–
Bohm oscillations of Vc measured as a function of magnetic field. The Aharonov–Bohm period is indicated by vertical dashed
lines. (c) Amplitude and phase extracted for one particular resonance. (Schuster et al., 1997. Reprinted by permission from
Macmillan Publishers Ltd, copyright 1997.)

magnitude of the transmission, and the transmission phase as a func-
tion of the energy difference from resonance E−Eres, normalized to the
transmission broadening Γ. We see that the magnitude of the transmis-
sion amplitude resembles the peak-shaped structure that is also seen in
the transmission probability in Fig. 18.30. The phase shows a gradual
increase by π with the steepest slope at resonance. This is what we hope
to observe in the experiment.

Experimental measurement of the transmission phase of a quan-
tum dot. The measurement procedure will now be as follows: First the
collector voltage is measured as a function of the plunger gate voltage
VG of the quantum dot as shown in Fig. 21.11(a). A series of conduc-
tance resonances are observed. Between the resonances the current does
not drop to zero, because the reference arm is always open and gives
rise to a finite collector voltage, even if the dot is completely Coulomb
blockaded. Then measurements at fixed VG deliver the φ-dependence of
T . We observe the oscillatory modulation due to the cosine interference
term, as shown in Fig. 21.11(b) for the four different VG indicated in (a).
This allows us to determine the phase difference θ1(VG)−θ2 at φ = 0 on
an absolute scale. Repeating such measurements for a set of gate volt-
ages VG, we can observe the evolution of θ1(VG) relative to θ2, which is
as close as we can get to the measurement of θ1(VG). The result of this
procedure is depicted in Fig. 21.11(c). At the same time, the simulta-
neous measurement of the magnetic field averaged contribution to the
conductance |a1|1 + |a2|2 and the Aharonov–Bohm oscillation amplitude
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Fig. 21.12 (a) Collector voltage Vc

at zero magnetic field as a function of
the quantum dot plunger gate voltage
VG. (b) Amplitude of the Aharonov–
Bohm oscillation as a function of VG.
(c) Phase of the Aharonov–Bohm os-
cillation at zero magnetic field as a
function of VG. (Schuster et al., 1997.
Reprinted by permission from Macmil-
lan Publishers Ltd, copyright 1997.)

2|a1||a2| allows us to determine |a1(VG)| which is also shown in (c). We
see that the transmission amplitude follows a lorentzian line shape, and
the phase shows a smooth increment of π as the resonance is traversed,
as expected for a lorentzian resonance [cf., Fig. 21.10].

Figure 21.12 shows the result of this measurement procedure for a
series of resonances. The increase of the transmission phase by π is con-
sistently observed for each resonance. However, there are unexpected
jumps of the phase by −π between resonances, also called phase lapses,
which have given rise to a lot of discussion in recent years about their
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origin. In the simple model of lorentzian resonances, subsequent reso-
nances should simply accumulate the phase. According to eq. (18.28),
the transmission amplitudes of subsequent resonances have alternating
sign, which means that their phases are shifted by π relative to each
other. This results in a steady step-like increase of the transmission
phase over many resonances, in contrast to the experimental results. It
has been claimed that this type of observed behavior is universal for
many-electron quantum dots. More recent experiments on few-electron
quantum dots, however, have shown a steady increase of the phase with-
out phase lapses (Avinun–Kalish et al., 2005).

21.3 Controlled decoherence experiments

What are we aiming at? We discussed in section 14.7 how decoher-
ence of quantum states comes about in principle. Usually decoherence
in a quantum system is caused by some kind of environment with many
degrees of freedom that are not well controlled. Fluctuations in the en-
vironment couple back into the system and lead to the randomization
of the phase, a process that we call decoherence. We have seen that
the thermal bath of electrons can lead to the decoherence of individual
interfering electrons. Alternatively, the environment may be represented
by a phonon system in the host crystal which gradually destroys phase
coherence at increasing temperature, or by a photon bath coupling to
the electrons. However, all these mechanisms can be greatly suppressed
at low temperatures, i.e., if we do experiments in a dilution refrigerator
below a temperature of 100 mK, say.

On the other hand, we have shown in previous chapters of this book,
how well-controllable quantum systems can nowadays be fabricated and
investigated. An obvious question to ask is therefore whether we can
use advanced fabrication techniques to design experiments where the
environment is tailored in such a way that its previously uncontrolled
back-action can be controlled by experimental parameters.

This question touches fundamental issues of measurement in quantum
mechanics. We all know that, in the paradigmatic double-slit interfer-
ence experiment, the interference vanishes if we invent means to measure
which of the two slits the particle took, i.e., if we extract which-path in-
formation (Feynman et al., 2006). Uncontrolled decoherence caused by
an environment can be interpreted as a measurement process that the
environment performs on the system (although no experimentalist can
ever retrieve the acquired information from the environment). As a con-
sequence, the quest to control decoherence experimentally requires us to
design well-controllable coupled interferometer–detector setups.

Throughout this book we have discussed a number of electronic in-
terferometers with optical analogues. The first one was the Aharonov–
Bohm interferometer in chapter 14, which can be seen as the analogue
of the optical double slit interferometer. The second one was the elec-
tronic Mach–Zehnder interferometer in section 16.5, and the third was
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the quantum dot system which is the electronic version of the Fabry–
Perot interferometer (section 18.3.1). How can we design which-path
detectors for these interferometers that would allow us to study and
control the process of decoherence?

Principle of operation of interferometer–detector arrangements.
This question has been tackled by three experiments involving the three
interferometer types discussed above, and using a quantum point con-
tact detector for sensing charge capacitively (Buks et al., 1998; Sprinzak
et al., 2000; Neder et al., 2007a).

In all these experiments, the detector is a quantum point contact tuned
to the transition region between complete pinch-off and the first plateau.
The schematic setup of the interferometer–detector arrangement that we
are interested in here is shown in Fig. 21.13. The interferometer allows

a1

a2

interferometer

ti
ri
1

detector

Fig. 21.13 Schematic interferometer–
detector arrangement as it is considered
in the text.

an electron to pass through two alternative paths with probability am-
plitudes a1 and a2 that are brought back to interference at the exit of the
interferometer. The detector consists of a potential barrier onto which
detector electrons impinge. The electron may be either transmitted or
reflected with amplitudes ti or ri respectively. The index i ∈ {1, 2}
makes the connection to the interferometer, because the transmission
and reflection amplitudes may depend on whether the interferometer
electron takes the upper or the lower path.

If we consider the injection of one electron in the interferometer in-
teracting with one simultaneously injected electron in the detector, we
have the four possible outcomes of the experiment listed in Table 21.1.
In the spirit of section 14.7 we can write the entangled state between the
detector and the interferometer as

Table 21.1

system detector
electron electron

slit 1 reflected
slit 1 transmitted
slit 2 reflected
slit 2 transmitted

ψ(x, η) = a1ϕ1(x)[r1χr(η) + t1χt(η)] + a2ϕ2(x)[r2χr(η) + t2χt(η)],

where the wave functions ϕ1/2 describe the states of the system electron
going through slit 1 or 2, respectively, and the wavefunctions χr/t de-
scribe the states of the detector electron being reflected or transmitted.
In the following we assume the two detector states to be orthogonal, i.e.,
perfectly distinguishable. The a1, a2, t1, t2, r1, and r2 are the corre-
sponding probability amplitudes for the processes in the system and the
detector. They obey the relations |a1|2 + |a2|2 = 1, |t1|2 + |r1|2 = 1, and
|t2|2 + |r2|2 = 1. Taking the magnitude squared of this wave function
and integrating out the detector variable η, we find

|ψ(x, η)|2 = |a1|2|ϕ1(x)|2 + |a2|2|ϕ2(x)|2

+ a1a
�
2ϕ1(x)ϕ�

2(x)(r1r
�
2 + t1t

�
2) + c.c.

Here the two terms to the right of the equal sign in the first line are the
classical contributions, whereas the second line describes quantum inter-
ference. From this expression we identify the transmission probability
Ti through the interferometer to be

Ti = |a1|2 + |a2|2 + [a1a
�
2(r1r

�
2 + t1t

�
2) + c.c.].
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We see here that if r1 = r2, and t1 = t2, meaning that the detector
cannot distinguish which of the two slits the system electron takes, the
decoherence-free interference term is recovered. If this is not the case,
the expression r1r�

2 + t1t
�
2 describes the decoherence caused by the elec-

tron in the quantum point contact detector (Averin and Sukhorukov,
2005). Decoherence can arise, if r1 and r2 (t1 and t2) differ in magni-
tude, or in phase, or in both. These are the ways in which the detector
can in principle acquire information about the path that the interferom-
eter electron took. We also note that the classical contribution to the
transmission is not affected by the presence of the detector.

In the next step we introduce magnitude and phase of the amplitudes
explicitly and write

Ti = |a1|2 + |a2|2 + |a1||a2|[ei(ϕ+δ)(|r1||r2|ei∆θr + |t1||t2|ei∆θt) + c.c.],

where ϕ = 2πφ/φ0 is the Aharonov–Bohm phase that electrons acquire
in the interferometer, δ is the phase difference of the two alternative
paths at zero magnetic field, and ∆θr/t are the changes in the reflec-
tion/transmission phases for the detector electron depending on which
path the electron in the interferometer takes. This expression for the
transmission can be rewritten in the form

Ti = |a1|2 + |a2|2 + 2|a1||a2|A cos(2πφ/φ0 + δ̃), (21.3)

with the decoherence factor A given by

A2 = (|r1||r2| + |t1||t2|)2 − 4|r1||r2||t1||t2| sin2 ∆θr − ∆θt
2

.

The factor A will always obey 0 ≤ A ≤ 1. In order to get more insight
into this expression, we write ti =

√
Ti, |ri| =

√
Ri =

√
1 − Ti (i = 1, 2),

T ≡ T1 = T2 + ∆T , and γ = sin[(∆θr − ∆θt)/2] and obtain

A2 =
(√

(1 − T )(1 − T + ∆T ) +
√
T (T − ∆T )

)2

− 4
√

(1 − T )(1 − T + ∆T )T (T − ∆T )γ2.

Again we see that the detector can obtain information about the path
of the electron in the interferometer in two distinct ways: (1) its trans-
mission depends on which path the electron takes (first term), and (2)
its phases ∆θr − ∆θt depend on which path the electron takes (second
term). As an example, we plot in Fig. 21.14 the factor A for the case
of T = 1/2, i.e., where the quantum point contact is most sensitive for
charge detection.
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Fig. 21.14 Decoherence factor A as a
function of ∆T for T = 1/2 and a num-
ber of values for γ.

Let us analyze the expression for A by expanding it for small ∆T , i.e.,
for weak interferometer–detector interaction. It yields

A2 = 1 − 4T (1 − T )γ2 + 2(1 − 2T )∆Tγ2 − (1 − 2γ2)∆T 2

4T (1 − T )
. (21.4)

There is, in lowest order, an interference oscillation amplitude reduction
related to the shot noise in the detector [factor T (1−T )] acting back on
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the interferometer when retrieving which-path information from phase
changes in the detector (via γ). If, by coincidence or design, no such
phase changes are present (γ = 0), then the first dephasing term is of
second order in ∆T (Buks et al., 1998).

Many detector electrons. So far we have only considered a single
electron in the detector quantum point contact. However, it turns out
that the relevant quantity is the number of detector electrons interact-
ing with the electron in the interferometer during its passage from the
entrance to the exit of the interferometer, i.e., its dwell time τi. If we
consider electron states in the quantum point contact to be represented
by a stream of wave packets, then there is the attempt frequency 2eV/h
(factor 2 by assuming spin degeneracy) at which electrons in the detec-
tor probe the tunneling barrier of the quantum point contact, if V is
the voltage applied between its source and drain. Therefore the number
of electrons in the detector sensing which-path information of a single
electron in the interferometer is N = 2eV τi/h. The decoherence factor
A in eq. (21.3) then has to be replaced by AN (Averin and Sukhorukov,
2005; Neder et al., 2007a). If N � 1, decoherence becomes irrelevant,
as the detector is not able to extract significant information about the
interferometer.

Decoherence rate. We can introduce the measurement-induced deco-
herence rate τ−1

ϕ by equating exp(−τi/τϕ) = AN and obtain

1
τϕ

= −|e|V
h

lnA2.

In the weak coupling limit where ∆T is small, we may only consider the
first two terms in the expansion (21.4) and obtain the decoherence rate

1
τϕ

= −eV
h

ln(1 − 4T (1 − T )γ2)

which simplifies for small γ2 to

1
τϕ

=
eV

h
4T (1 − T )γ2.

Using eq. (20.19) for the zero temperature shot noise of a quantum point
contact we find the decoherence rate to be directly proportional to the
noise power spectral density

�

τϕ
=
γ2

π

h

e2
S̃(ν),

and the parameter Rc = hγ2/πe2 can be interpreted as the coupling
impedance between the interferometer and the detector with γ being
a dimensionless coupling parameter. Through the above considerations
we have now seen how a number of different topics of this book, namely
interference, decoherence, and shot noise, are closely related and merge
into a consistent picture of decoherence by measurement.
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Fig. 21.15 (a) Schematic setup in which an Aharonov–Bohm interferometer is coupled capacitively to a quantum point contact
detector. (b) Schematic setup in which a double quantum dot interferometer is coupled capacitively to a partitioned quantum
Hall edge state. (c) Schematic setup in which a Mach–Zehnder interferometer is capacitively coupled to a partitioned quantum
Hall edge state.

Experiments. Figure 21.15 shows schematically the three mesoscopic
arrangements that have been used in experiments to demonstrate con-
trolled decoherence. In the experiment of Buks et al., 1998, shown in
(a), an Aharonov–Bohm double slit interferometer with a quantum dot
embedded in one arm has been coupled to a quantum point contact de-
tector. The quantum dot has been introduced in one arm in order to
increase the dwell time of interferometer electrons in the lower arm and
allow for a longer interaction time. During this interaction time many
electrons pass the quantum point contact detector thereby enhancing
the strength of the decoherence. Nevertheless, the setup stayed in the
regime of very weak coupling. The visibility of Aharonov–Bohm oscilla-
tions was reduced by 0.3% at most as a result of detector operation.

The most recent experiment reported in Neder et al., 2007a, is shown
in Fig. 21.15(c). It operates in the quantum Hall regime and uses the
electronic Mach–Zehnder interferometer discussed in section 16.5. While
the filling factor ν = 1 edge channel is used in the Mach–Zehnder inter-
ferometer, a ν = 2 edge channel is partially occupied (partitioned) along
one arm of the interferometer and therefore creates shot noise capable
of dephasing the interferometer. Coupling between electrons in the two
edge channels is via the electrostatic Coulomb interaction. Although
this experiment is very interesting we will not further discuss it here, as
details of the experiment are still under debate and investigation. We
refer the interested reader to the original papers.

Instead we will have a closer look at the experiment reported in Sprin-
zak et al., 2000, shown schematically in Fig. 21.15(b). In this experiment
the interferometer consists of a double quantum dot system. We have
seen in section 18.3.1 that a single quantum dot can be regarded as the
electronic version of a Fabry–Perot interferometer. The same is true in
principle for double quantum dots, but the sum over interfering paths
cannot easily be performed as in the single dot case. However, it has
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been shown experimentally that double quantum dot resonances are not
broadened by the thermal smearing of the Fermi–Dirac occupation func-
tion in the leads but rather by their intrinsic decay rate Γi (Livermore
et al., 1996). This allows us to observe the increase in the resonance
width caused by decoherence. The detector in this experiment is a par-
titioned quantum Hall edge channel. The partitioning is achieved by
sending the edge channel through a distant quantum point contact with
tunable transmission. There is no direct Coulomb interaction between
the double quantum dot and this quantum point contact. The presence
of the electron in the interferometer is merely sensed by a phase change
of the edge channel state in the vicinity of the double dot. Therefore, this
experiment realizes the interesting case ∆T = 0 with finite γ, because
an electron in the edge channel cannot be backscattered. Of course, it
is not possible in this setup to read out the detector phase information
through a conductance measurement. In order to do that one would have
to perform a Mach–Zehnder-like edge channel interference experiment,
which is not done here. The decohering effect of the shot noise in the
partitioned edge channel is rather measured as an increase of the full-
width-at-half-maximum contour, and as the decrease of the peak height
of a double quantum dot conductance resonance. More specifically the
contour area and the peak height are determined at a triple point in the
plane of the two double quantum dot plunger gates.

Figure 21.16(a) shows the conductance of the double quantum dot
interferometer as a function of the two plunger gate voltages Vpg1 and
Vpg2. We see the familiar charge stability diagram with its hexagon
pattern. A single triple point is magnified in (b).

Figures 21.16(c) and (d) show the main results of the experiment. The
area A of the full-width-at-half-maximum contour line of the resonance
shown in (b), which is taken as a measure of τ−1

ϕ , exhibits a pronounced
maximum around the edge channel partitioning Td = 1/2, as expected
from the Td(1−Td)-dependence of the shot noise power spectral density.
The inset demonstrates that this area increases roughly linearly with
the voltage Vd applied to the partitioning quantum point contact, as
expected. In a similar fashion, the height of the triple point conductance
peak shown in (d) is minimum, where A is maximum. This behavior is
interpreted as convincing evidence for shot-noise-induced decoherence of
the double quantum dot interferometer.



Further reading 467

(c)

(d)

(a)

(b)

Vpg1

V p
g2

Vpg1

V p
g2

(b)

T = 70 mKTd = 0.7

0 1 2 3
Vd (mV)

1.0
0.8
0.6

A

Vd = 2 mV

Vd = 0 mV

1.0

0.9

0.8

0.7

0.6

0.5

A
re

a
A 

of
 F

W
H

M
 c

on
to

ur
 (m

V
2 )

Vd = 0 mV

Vd = 2 mV

Transmission probability Td

Pe
ak

 h
ei

gh
t (

e2
/h

)

0.16

0.15

0.14

0.13

0.12

0.11

0.10
0.0 0.2 0.4 0.6 0.8 1.0

Fig. 21.16 (a) Charge stability diagram of the double quantum dot as a function of the two plunger gate voltages Vpg1 and
Vpg2 showing the familiar hexagon pattern. The grayscale represents the linear conductance through the double quantum dot.
A single triple point is marked with a white rectangle indicating the zoom shown in (b), where the contour line from which
the area A is determined can be discerned. (c) Area A of the full-width-at-half-maximum contour as a function of detector
partitioning Td. The inset shows the evolution of the area A as a function of voltage applied to the quantum point contact.
(d) Conductance peak height at the triple point as a function of detector partitioning Td. (Reprinted with permission from
Sprinzak et al., 2000. Copyright 2000 by the American Physical Society.)

Further reading

• Papers Fano effect: Fano 1961; Gores et al. 2000;
Johnson et al. 2004; Kobayashi et al. 2002.

• Papers transmission phase measurements: Schuster

et al. 1997.

• Papers controlled dephasing: Buks et al. 1998;
Sprinzak et al. 2000; Neder et al. 2007a.



468 Exercises

Exercises

(21.1) The interference in the interferometer–detector
arrangement is reduced by the factor r1r

�
2 + t1t

�
2.

Discuss the physical meaning and the implications
of two extreme cases:

(a) r1 = r�
2 , and t1 = t�2.

(b) r1 = 0, and r2 = 1.

(21.2) Reconsider the general interferometer–detector

arrangement depicted in Fig. 21.13. Starting from
the entangled state between the two subsystems,
take its magnitude squared and integrate out the
interferometer variable x. Discuss the meaning and
the physical implications of the classical and inter-
ference contributions of the result. Think of an ex-
perimental arrangement in which the interference
contribution can be measured.
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In this chapter we set out to touch a huge field of research which has also
been the driving force between a number of beautiful transport exper-
iments on semiconductor nanostructures in recent years. However, the
topic is extremely broad, such that we can only give a short overview
with selected examples. The chapter is divided into three sections of
which only the last section is really related to quantum information and
related experiments. The first two sections are a little detour into the
field of classical information and its relation to physics that the author
felt necessary to include, because most physics curricula do not incor-
porate the notion of information and its relation to physical systems. A
reader who is only interested in the physics of semiconductor nanostruc-
tures can proceed directly to the last section of this chapter.

Information processing is a very general term comprising many differ-
ent situations. One of them is analog information transmission, such as
the radio-frequency transmission of the news from the radio station to
our homes via electromagnetic waves. Similar is the digital information
transmission such as that from my keyboard to the main board of my
computer. In the language of information processing, these two situ-
ations would be called communication (although ordinary people may
prefer to call it a one-way data transmission). Another type of analog
information processing is the conversion of a current signal measured in
an electrical circuit to an output voltage in a current–voltage converter.
This type of information processing may be called an analog calculation,
as the output voltage is essentially the input current multiplied by the
feedback resistor. More complex circuits performing analog calculations
may result in analog computing. On the other hand, logic circuits per-
form logic operations on digital input signals. This would be called a
digital calculation, or in a more complex context, digital computation.
In many instances, mixtures of analog and digital information process-
ing work together. If I speak into my mobile phone, my voice reaches
the microphone as an analog pressure variation, the microphone trans-
lates it into a time-dependent voltage, and this electronic signal is then
digitized, and so on.

It is important to realize at this point that information processing of
any kind is always based on physical systems and physical processes. As
time evolves, the physical system evolves according to physics laws and,
during this evolution, what we perceive as information is transformed,
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and sometimes lost. Information must therefore be recognized as a char-
acteristic quantity related to physical systems. As Landauer phrased it:
‘information is physical’.

Because most of our daily experience is (even for us experimental
physicists) governed by the laws of classical physics, man-made infor-
mation processing devices have so far been based on these classical laws,
and we therefore talk about classical information processing. As the
size of electronic devices used for information processing shrinks down
to the mesoscopic- or nano-scale, or perhaps even down to the atomic
scale, and the intensity of radiation used for information transmission
decreases more and more thanks to more sensitive receivers, it is natural
to ask whether the quantum laws governing this world bring about any
changes in the way we can process information. Can we still send a
radio program by sending a very dilute stream of single photons? Can
we still do calculations and computations with individual electrons, or
spins? Nature herself has certainly brought about means of information
processing that are closer to these ideas, for example, by encoding the
genetic information in DNA molecules and finding smart ways of process-
ing this information. Thoughts along these lines have led scientists to
work out a novel theory for information processing which has been called
quantum information processing, and in the meantime experimentalists
have started to put some of these concepts into practice.

Because the notion of information is so far missing from the basic
education of many (if not most) physicists, we will try to discuss this
topic in some detail below, always emphasizing the close relation between
information processing and its physical implementation.

22.1 Classical information theory

22.1.1 Uncertainty and information

The notion of classical information can be derived by considering proba-
bilistic experiments and their statistical distribution functions (Shannon,
1948). It is directly related to the notion of uncertainty. Although the
following considerations may seem to be quite abstract and remote from
the physical world, we emphasize that Shannon was led to his theory of
information by considering physical implementations of the communica-
tion of his time.

We consider a probabilistic experiment such as, for example, throwing
dice, or drawing a card in a card game. Before the experiment, we do not
know its result. There is an uncertainty about the outcome. We describe
this uncertainty by assigning a probability distribution to the possible
outcomes of the experiment. Assume there are Ω possible outcomes that
can all occur with the same probability p = 1/Ω. The larger the number
Ω of possible outcomes, the bigger is the uncertainty Ubefore about the
outcome of the experiment. After the experiment we know the result
and our uncertainty has disappeared. We denote this with Uafter = 0.
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We now define the obtained information ∆I as

∆I = Ubefore − Uafter.

Viewed in this way, the information and the uncertainties are real
numbers. But how do we define the uncertainty before or after the
experiment? The uncertainty before the experiment is larger the larger
Ω, i.e., the smaller p is. One possibility would therefore be to define the
uncertainty to be proportional to Ω = 1/p.

However, such a definition is not in agreement with our intuition about
uncertainty. If we conduct, for example, two similar experiments having
Ω outcomes each, we would expect the uncertainty to be twice as high
as for a single experiment. But the total number of possible outcomes
of the double experiment is Ω2. Therefore it is more intuitive to define
the obtained information as the logarithm of the number of possible
outcomes, i.e.,

Ubefore = k ln Ω = −k ln p, (22.1)

where k is a constant that can be used to define the units of uncertainty
and information. Equation (22.1) is also known as the Hartley function,
or Hartley entropy (Hartley, 1928). After the experiment Ω = 1, i.e., we
know the result. For this case, our definition leads us to Uafter = 0. In
the case of two possible outcomes (e.g., 0 and 1) we call the uncertainty
to be ‘1 bit’,1 i.e.,

k ln 2 = 1 bit.

This defines the constant to be k = 1/ ln 2 bit and we can write

U = log2 Ω bit = − log2 p bit.

As an alternative, sometimes the unit ‘1 digit’ is used for the quantity
information. This corresponds to the case of ten possible outcomes such
that each result can be labeled with one of the digits 0 . . . 9. Therefore Table 22.1 Conversion between com-

monly used bit and digit numbers.

bits digits

1 0.30
3.32 1
6.64 2
8 2.41

9.97 3
10 3.01
12 3.61

13.3 4
16 4.82

16.6 5
19.9 6
20 6.02

1 digit = k ln 10 = k ln 2 log2 10 ≈ 3.322 bit.

Table 22.1 shows the relation between commonly used bit numbers and
digits.

The above definition (22.1) of the uncertainty is valid for the special
case that all outcomes of our experiment have the same probability. How
do we generalize the definition for Ω possible outcomes with possibly
different probabilities p1, p2, p3, . . . , pΩ? The probabilities obey the sum
rule

Ω∑
n=1

pn = 1.

In order to find the generalized definition of the uncertainty we consider
a simple example: we place N0 � 1 cards with the number 0, and

1The notion of the ‘bit’ was introduced by J.W. Tukey and is an abbreviation of
‘binary digit’.
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N1 � 1 cards with the number 1 in an arbitrary sequence face down
in a row of length N = N0 + N1 � 1. How much information do we
gain if we turn the cards in the row and uncover the numbers. The
number of possible outcomes corresponds to the number of possibilities
to distribute N0 zeros on N places, i.e.,

Ω =
N !

N0!(N −N0)!
=

N !
N0!N1!

.

The information gain, i.e., the uncertainty before learning the sequence
is according to our definition

Ubefore = k ln Ω = k (lnN ! − lnN0! − lnN1!) .

For sufficiently large N0 and N1 we can approximate the right-hand side
using Stirling’s formula lnN ! ≈ N(lnN − 1) and we obtain after a little
algebra

Ubefore = k ln Ω ≈ −kN
[
N0

N
ln
N0

N
+
N1

N
ln
N1

N

]
.

If we denote the relative frequencies p0 = N0/N and p1 = N1/N , we
obtain the mean uncertainty per card

Ubefore

N
≈ −k [p0 ln p0 + p1 ln p1] = − [p0 log2 p0 + p1 log2 p1] bit.

The generalization of this example to cards with more than two differ-
ent numbers is completely analogous. We assume that each card carries
a number between 0 and n− 1. The number 0 ≤ i < n occurs Ni times
and the number of cards is N =

∑n−1
i=0 Ni. The number of possible

sequences is then

Ω =
N !∏n−1

i=0 Ni!
and the uncertainty is

Ubefore = k

(
lnN ! −

n−1∑
i=0

lnNi!

)
.

Using Stirling’s formula we obtain

Ubefore ≈ −kN
n−1∑
i=0

Ni

N
ln
Ni

N
,

and the mean uncertainty per card is

Ubefore

N
≈ −k

n−1∑
i=0

pi ln pi = −
n−1∑
i=0

pi log2 pi bit.

This formula was first used by C.E. Shannon as a definition for the
uncertainty (Shannon, 1948), i.e.,

H({pi}) ≡
U

N
= −

n−1∑
i=0

pi log2 pi bit. (22.2)
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This quantity is called Shannon entropy. It is a function of the prob-
ability distribution {pi}, i.e., one can always calculate it for any given
probability distribution. In the case of constant pi = 1/n and N = 1
we again obtain our initial definition (22.1). Equation (22.2) can be in-
terpreted as follows: the quantity − log2 pi is the information gain when
symbol i is uncovered. If this symbol arisesNi times within the sequence,
we gain the information −Ni log2 pi from these symbols and the total
information from the sequence is −∑iNi log2 pi. Because for long se-
quences Ni/N ≈ pi, we have for the total information −N

∑
i pi log2 pi,

and for the average information per symbol −
∑

i pi log2 pi.
We mentioned at the beginning of this chapter that we often describe

our uncertainty by assigning a probability distribution {pi}. The Shan-
non entropy characterizes this set of numbers by distilling a single num-
ber out of it. We will see in the examples below that this single number
has a certain significance.

Example: Entropy of the binomial distribution. As an appli-
cation example of the above considerations, we calculate the Shannon
entropy of the binomial distribution

pk =
n!

k!(n− k)!
pk(1 − p)n−k,

which has the expectation value µ = 〈k〉 = np and the variance σ2 =
〈(k − µ)2〉 = np(1 − p). Inserting the distribution into the definition
(22.2) results in

H = log2(
√

2πeσ) + O(n−1). (22.3)

For sufficiently large n, the entropy of the binomial distribution is there-
fore given by the standard deviation σ. In this limit the binomial distri-
bution becomes the Gauss distribution with the mean value µ and the
standard deviation σ. The broader this distribution is, the bigger is the
uncertainty about the value of k.

22.1.2 What is a classical bit?

In the above discussion we have introduced the bit as a kind of unit
of measurement for the Shannon entropy. One bit of information is
obtained as the answer to a yes/no-question. Expressing this answer in
numbers, we could use 0 and 1. Binary numbers can be represented by
strings of zeros and ones. One position in such a string is called a bit.

Following the discussion of Mermin (Mermin, 2007) the state of a bit
can, in analogy to quantum mechanics, be described by two state vectors
in Dirac notation, e.g., |0〉 , and |1〉 . Sequences of bits (bit registers) may
then be described as tensor products of the state vectors of individual
bits. For example, the sequence 0101 would be written as

|0〉 ⊗ |1〉 ⊗ |0〉 ⊗ |1〉 ≡ |0101〉 .
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When we manipulate bits during a calculation, the vector notation

|0〉 =
(

1
0

)
and |1〉 =

(
0
1

)

can be very useful because operations can then be represented by mul-
tiplying matrices and vectors. This notation is related to the Pauli
notation of two-component wave functions.

If we write a string of zeros and ones on a piece of paper, the bit be-
comes physical reality. It is common practice to use the term ‘bit’ also
for the physical system that represents zero or one. In general, such a
physical bit must have two clearly distinguishable states which can be
determined by a read-out measurement. In case of the bit string written
with a pencil on a piece of paper, we can perform the read-out measure-
ment with our naked eyes. In more involved implementations of physical
bits, the read-out measurement uses some technical apparatus. One nice
example is bits implemented on our computer hard discs as regions in
which the material is magnetized in a particular direction. The read-out
measurement is performed by a read head scanning the surface and de-
tecting the direction of the magnetization by measuring the resistance
of a special material showing the so-called giant magnetoresistance.

Classical bits can be read many times without changing their states
significantly by the reading process. Information is not lost during the
reading process. Classical bits can also be copied or reproduced a large
number of times. Of course, degradation of the information may occur
in real physical systems, but it occurs after large numbers of reading or
copying processes.

The two states of classical physical bits (sometimes called ‘Cbits’)
can be distinguished by measuring a macroscopic state variable, such
as magnetization, or a voltage. A vast number of different microscopic
states of the bit would give the same value for the macroscopic state vari-
able. The time evolution of classical physical bits is therefore naturally
described with the laws of statistical mechanics and thermodynamics.
We will therefore have a closer look at the relation between information
and thermodynamics a bit later.

In present day computers, information storage, transmission, and
processing requires, in an abstract physics language, two things:

(1) A phase space on which statistical ensembles are defined. The
state of a particular system at a given time is a point in phase
space. This phase space can be discrete, or continuous.

(2) A probability distribution defined on the phase space describing
our uncertainty about the state of the system.

Typically physical bits are not in thermodynamic equilibrium with
their surrounding. The physical interaction processes decide, for exam-
ple, about the permanence of the stored data. If the data storage device
approaches a state of thermodynamic equilibrium with its surrounding,
the stored information is inevitably lost.



22.1 Classical information theory 475

Also data transmission is achieved using physical methods and sys-
tems. The easiest way to transmit information is by physically trans-
porting a memory device. Often electromagnetic waves are used for in-
formation transmission, but in other cases we use massive objects (think
about this book that you may have carried from the bookstore to your
home), or sound waves (your speech). It is therefore generally believed
that information cannot be transmitted faster than the speed of light.

22.1.3 Shannon entropy and data compression

The Shannon entropy has an important meaning beyond quantifying
uncertainty. It tells us how many physical bit-resources we need in order
to store the stream of data of a data source. As a simple example, we
consider a source producing the four symbols 1, 2, 3, and 4. In order
to save the information contained in a stream of these four symbols, we
could use two bits. We assume here that the source produces the four
symbols with different probabilities. For example, let p1 = 1/2, p2 =
1/4, and p3 = p4 = 1/8. In this case we can reduce the number of bits
needed to store a stream of data by using for the frequent symbol 1 fewer
bits than for the more rarely occurring symbols 3 and 4. One possibility
for encoding the symbols in a chain of bits is given in Table 22.2. Given Table 22.2 Encoding of the sequence

of numbers 1 . . . 4.

1 0
2 10
3 110
4 111

a very long sequence of the four symbols the mean number of bits per
symbol is given by 1/2 · 1 + 1/4 · 2 + 1/8 · 3 + 1/8 · 3 = 7/4 bits, i.e.,
less than two. Most interestingly, this result coincides exactly with the
Shannon entropy:

H(1/2, 1/4, 1/8, 1/8) =

−
(

1
2

log2

1
2

+
1
4

log2

1
4

+
1
8

log2

1
8

+
1
8

log2

1
8

)
= 7/4.

It can be shown that the Shannon entropy quantifies how many bits
are required at least for storing a stream of data. An encoding that uses
exactly this number of bits realizes the maximum possible data compres-
sion (in the limit of very long data streams). Any further compression
would lead to loss of data.

22.1.4 Information processing: loss of information
and noise

n 
in

pu
ts

m
 outputs

logical
operation

(time evolution)

X Y

Fig. 22.1 Schematic representation of
a communication process, or a logical
operation having n inputs represented
by the variable X, and m outputs, rep-
resented by the variable Y .

Logical elements from which machines for information processing are
made can be treated like a communication process. Both may have n
inputs andm outputs, as shown in Fig. 22.1. As physicists, we can regard
any kind of time evolution of a physical system as a communication or
information processing channel. In this case, the input signal would be
the initial state of the physical system (e.g., a calculator), the output
signal would be its final state.

Choosing a slightly more abstract example, we may consider an input
signal X consisting of five bits. Then, there are 25 = 32 different input
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signals (values ofX). Each input signal creates with a certain probability
an output signal Y . If we take, for example, the output to have 4 bits,
then there are 24 = 16 different output signals. The probability, that a
particular input signal x turns into the output signal y is described by
the conditional probability p(y|x). It describes the probability to find
the output signal y, given that the input signal is x. The conditional
probability obeys the sum rule∑

y

p(y|x) = 1, (22.4)

because each possible input signal creates an output signal. The con-
ditional probabilities p(y|x) can be represented as an m × n-matrix
P (Y |X). The probability distributions for the output states can be
obtained from

p(Y ) = P (Y |X)p(X). (22.5)

Relating the physical processes (time evolution of the physical system)
occurring in information processing to this matrix of conditional proba-
bilities makes the link between physics and information theory.

Example I: digital communication channel. A digital communica-
tion channel transmits a stream of bits from a data source to a receiver.
This can, for example, be implemented by sending light pulses down an
optical fiber, or by sending electromagnetic voltage pulses along a coax-
ial cable. Another example could be data storage: the data source writes
a stream of bits into the magnetic layer of a magnetic tape. The receiver
reads the data from this medium, perhaps many years, or even decades
later. All implementations of this kind will have one input (n = 21 = 2),
and one output (m = 2). The matrix of the conditional probabilities is

P (Y |X) =
(
p(0|0) p(0|1)
p(1|0) p(1|1)

)
.

An ideal communication channel would have p(0|0) = p(1|1) = 1, and
V00

 Received voltage (V)

Probability

< V2>

Fig. 22.2 Voltage distribution mea-
sured by the receiver if the source is in
the state 0 (solid line), or one (dashed
line). The thin vertical line discrimi-
nates in the interpretation of the mea-
surement between the zero and the one
state.

p(0|1) = p(1|0) = 0, leading to a 2 × 2 unity matrix, and meaning that
the information is perfectly transmitted (or, in case of the magnetic tape,
stored without data loss). Such a case, where all elements of P (Y |X)
are either zero or one, is called deterministic. However, any physical
implementation of a communication channel will suffer from some kind
of noise. If we choose to represent the two states of a bit with two values
of a voltage (say, 0 ≡ 0 V, 1 ≡ V0), the voltage source will always be
noisy. In the best case, this will only be the thermal noise. Furthermore,
the receiver, a voltmeter, will suffer from its own input noise. To be even
more specific, assume that the total noise seen by the voltmeter has a
gaussian distribution of width 〈∆V 2〉1/2 (the average voltage noise). The
ratio V 2

0 /〈∆V 2〉 ≡ S/N is called the signal-to-noise ratio. Setting the
voltage source to 0 V would lead to the distribution of measured voltages
shown in Fig. 22.2 as a solid line. Likewise, setting the voltage source to
V0 would lead to the dashed line. In a typical experimental situation, the
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voltage noise 〈∆V 2〉 is proportional to the bandwidth ∆f of the system.
In order to infer the state of the sender from a single measurement,
the receiver needs to use a criterion, which measured voltage will be
interpreted as a zero, and which will be interpreted as a one. We may
choose the rule that any measured voltage V ≥ V0/2 is interpreted as
a one, and V < V0/2 is interpreted as a zero. Obviously, there is a
chance that the measurement will be interpreted in the wrong way, i.e.,
that the source sends a 0, but the reciever interprets it as 1, and vice
versa. Because in this example the situation is symmetric, we have α =
p(0|1) = p(1|0) �= 0. The chance α to make a wrong interpretation can
be obtained by integrating the dashed gaussian distribution from −∞
to V0/2. The result depends on the signal-to-noise ratio S/N as shown
in Fig. 22.3. The corresponding matrix describing the data transmission

1 2 3 4 50

0.5

(S/N) 1/2

Fig. 22.3 Error probability of a noisy
communication channel for the case of
symmetric gaussian noise on the zero
and one states.

would be (
p(0|0) p(0|1)
p(1|0) p(1|1)

)
=
(

1 − α α
α 1 − α

)
.

This situation is not deterministic, but it is called probabilistic.

Example II: logical AND gate. The logical AND gate has two inputs
(n = 22 = 4) and one output (m = 2). The matrix of the conditional
probabilities for an ideal gate without noise is(

p[0|(00)] p[0|(01)] p[0|(10)] p[0|(11)]
p[1|(00)] p[1|(01)] p[1|(10)] p[1|(11)]

)
=
(

1 1 1 0
0 0 0 1

)
.

The gate can be called deterministic, because each input state leads
to exactly one well-defined output state. A realistic AND gate will, of
course, also suffer from noise, and the zeros in the above matrix would
be replaced by the appropriate error quantities that may be obtained
from an experimental analysis of the physical system. From the ones in
the matrix these error quantities will have to be subtracted in order to
fulfill eq. (22.4).

Derived entropies. We are now prepared to introduce a number of
entropy quantities related to the Shannon entropy defined in eq. (22.2)
that are useful for the description of communication and information
processing. These are the conditional entropies, the mutual informa-
tion, and the joint entropy. These quantities are schematically repre-
sented in Fig. 22.4. They will be defined below and their meaning will
be illustrated in the remainder of this section.

Conditional entropy and picking up information (noise) from
the environment. In a realistic (probabilistic) situation the matrix
elements of P (Y |X) will not all be exactly zero or one, but rather show
small deviations from these values. In such a case, the uncertainty about
the output state for a given input state x is in analogy to the Shannon
entropy given by

Ux = −
∑

y

p(y|x) log2 p(y|x).
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Fig. 22.4 Schematic illustration of
the different entropies used in the
field of communication and information
processing. Physically, communication
(or data processing) corresponds to the
time evolution of a physical system in
‘information space’ from the solid cir-
cle into the dashed circle. Information
from the input may be lost due to the
data processing, and additional uncer-
tainty is introduced due to noise in the
physical processing apparatus.

Uncertainty
about input
state: H(X)

Uncertainty
about output
state: H(Y)

Transmitted (mutual)
information

I(X:Y)

Information lost
into environment

(conditional entropy)

H(X|Y) H(Y|X)

Information acquired
from environment

(conditional entropy)

Joint entropy
(all gray shaded regions)

H(X,Y)

If all conditional probabilities p(y|x) were either zero or one (determin-
istic case) this uncertainty would be zero. If we average this uncertainty
over all possible input states x, we obtain a measure of the noise N of
the gate for a given probability distribution of the input states:

H(Y |X) =
∑

x

p(x)Ux = −
∑
x,y

p(x, y) log2 p(y|x) = N .

Here we have introduced the joint probability p(x, y) = p(x)p(y|x) that
the output shows y and the input is x. The noise spoiling information
processing is described by the conditional entropy H(Y |X), as shown in
Fig. 22.4, in analogy to the notion of the conditional probabilities p(y|x)
entering it. It describes the information added to the output by the noisy
environment, an information we are not interested in when we process
the information originating from the source. Alternatively, it may be
seen as the additional effort needed to reveal the original information
H(X), e.g., by using error detection and error correction schemes. From
the definition it follows that H(Y |X) = N = 0 for any deterministic
system.

Example I: probabilistic communication channel. We can apply
the concept of the conditional entropy quantifying the noise to our previ-

0.2 0.4 0.6 0.8 1

0.2
0.4
0.6
0.8

1
(bit)

(S/N) 1/2

Fig. 22.5 Noise N of the communica-
tion channel with symmetric noise in
bits per sent bit as a function of the
signal-to-noise ratio S/N .

ous paradigmatic example of a communication channel with symmetric
noise. In this case, the conditional entropy will depend on the signal-to-
noise ratio S/N of the situation with the gaussian distributions shown in
Fig. 22.2. The amount N of useless information about the environment
added due to the noise per bit sent is shown in Fig. 22.5, where we have
assumed that the source generates the states zero and one with equal
probability 1/2. When the signal-to-noise ratio is large, essentially no
such information is acquired. When the signal-to-noise level approaches
0, i.e., the separation between the two levels, the environmental noise
essentially dominates, and the state of the transmitted bit cannot be
identified.
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Example II: logical AND gate with noise. As a second example, we
consider the model of an AND gate with noise. Consider the conditional
probability matrix(

p[0|(00)] p[0|(01)] p[0|(10)] p[0|(11)]
p[1|(00)] p[1|(01)] p[1|(10)] p[1|(11)]

)
=
(

1 − ε 1 1 0
ε 0 0 1

)
.

We assume that all input states occur with the same probability p(x) =
0.25. The noise is then given by

H(Y |X) = N = −0.25(1 − ε) log2(1 − ε) − 0.25ε log2 ε.

The value of this function is plotted in Fig. 22.6 as a function of ε. The
noise has a maximum value of 1/4 bit, when ε = 1/2. For ε → 1 the

0.2 0.4 0.6 0.8 1

0.05
0.1
0.15
0.2
0.25

Fig. 22.6 Noise N (ε) of the AND gate
with noise parameter ε.

noise reduces, because our possibility to infer an output state for a given
input state increases again, but the functionality of the AND gate is not
maintained. For ε = 1, the input (0, 0) will produce the output 1 with
certainty.

Conditional entropy and losing information into the environ-
ment. Beyond noise in a physical system, there are ways of losing (or
discarding) information in information processing. We can unravel this,
if we investigate the inverse question, namely, what uncertainty we have
about the state at the input, if a particular output state y is found. In
analogy to the Shannon entropy this is given by

Uy = −
∑

x

p(x|y) log2 p(x|y).

The information loss L is now defined as the uncertainty about the
input state averaged over all output states with their probability distri-
bution, i.e., as

H(X|Y ) = L = −
∑

y

p(y)
∑

x

p(x|y) log2 p(x|y) = −
∑
x,y

p(x, y) log2 p(x|y).

This is again a conditional entropy (see Fig. 22.4). The probabilities for
the output states are given by eq. (22.5). Furthermore, the conditional
probabilities obey Bayes’ theorem

p(x, y) = p(y)p(x|y) = p(x)p(y|x). (22.6)

Using these two relations we can express the information loss as a func-
tion of the probability distribution p(x) of the input states and the
conditional probabilities p(y|x) describing the gate:

L = −
∑
x,y

p(x)p(y|x) log2

p(x)p(y|x)∑
ξ p(ξ)p(y|ξ)

,

where
∑

ξ sums over input states.
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Example I: probabilistic communication channel. If we assume
that the source produces zeros and ones with equal probability 1/2, then
the information loss L is exactly equal to the noise N . However, if the
source does not produce zeros and ones with equal probability, then
L �= N , as shown in Fig. 22.7. This allows the following interpretation.
The loss of information L cannot become larger than the entropy H(X)
of the source. The transmitted information (to be exactly defined below)
is the difference between H(X) and L (see Fig. 22.4). Added to this
transmitted information is the noise which represents information about
the physical environment creating it. This part of the entropy of the
received distribution H(Y ) is useless in terms of information processing.
However, the information L lost into the environment cannot be bigger
than the entropy of the source.

0.2 0.4 0.6 0.8 1

0.2
0.4
0.6
0.8

1

Cond. entropy
(bit)

L
H(X)

(S/N) 1/2

Fig. 22.7 Noise N and information loss
L of the noisy communication channel
assuming that the source produces ze-
ros with a probability of 0.9 and ones
with a probability of 0.1. The entropy
of this input probability distribution
(entropy H(X) of the source) is shown
as a thin horizontal line.

Example II: logical AND gate (without noise). The ideal noise-
less AND gate leaves us with a quite large uncertainty about the input
state, if the output reads y = 0, because there are three possible input
states leading to this result. However, if the output reads y = 1, we
know with certainty that the input must be x = (11). Assume the four
input states of a deterministic AND gate all occur with the same prob-
ability p(x) = 0.25. Then, the probabilities of the two output states are
p(0) = 0.75 and p(1) = 0.25. With these we calculate for the information
loss L = 0.75 log2 3 ≈ 1.189 bit. This information loss is a consequence
of the fact that the input consists of two bits, whereas at the output
we have reduced the maximum possible information content to 1 bit.
Some of the information is therefore dissipated into the environment of
the physical system during the operation. This process again comple-
ments the addition of information to the output from the environment
quantified by N .

Mutual information, transmitted information. Before we know
the output state, we are uncertain about the input state according to
the Shannon entropy

Uin = H(X) = −
∑

x

p(x) log2 p(x).

The information gain about the input state that we obtain from reading
the output state can be called the transmitted information M given by

I(X : Y ) = M = H(X) −H(X|Y ) =
∑
x,y

p(x)p(y|x) log2

p(y|x)∑
ξ p(ξ)p(y|ξ)

.

This quantity, also called mutual information I(X : Y ), is shown in
Fig. 22.4. Following the previous discussion, it is the part of the in-
formation at the output that is useful for information processing. The
mutual information measures the correlation between the input and the
output states. It is a more general measure of correlations than Pear-
son’s linear correlation coefficient given by the normalized covariance
which is frequently used in data analysis.
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If we denote the uncertainty about the output with

Uout = −
∑

y

p(y) log2 p(y),

we can show by using the above definitions that

I(X : Y ) = M = Uin − L = Uout −N = I(Y : X).

Example I: probabilistic communication channel. The mutual in-
formation transmitted in our example of the noisy communication chan-
nel is shown in Fig. 22.8. It is extremely close to one bit if the signal-

0.2 0.4 0.6 0.8 1

0.2
0.4
0.6
0.8

1
I(X :Y )
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c2(X,Y )

Fig. 22.8 Solid line: Mutual informa-
tion of a noisy communication channel
assuming that the source produces ze-
ros and ones with equal probabilities of
1/2. The dashed line gives the square of
Pearson’s linear correlation coefficient
c(X,Y ) for the same situation for com-
parison.

to-noise ratio (S/N) is sufficiently large, meaning that the receiver can
discern the two states easily. When the signal-to-noise ratio becomes
comparable to one or even bigger, the transmitted information goes to
zero and most of the information in H(Y ) originates from the noisy en-
vironment. The figure also shows the square of the linear correlation
coefficient for comparison. Although its qualitative behavior is (at least
in this example) similar to that of the mutual information, it differs
quantitatively showing that it is a measure for correlation different from
the mutual information. This example teaches us that to communicate
means to establish correlations between a sender and a receiver.

Example II: logical AND gate (without noise). In the above
case of the ideal AND gate, we have Uin = 2 bit (if all p(x) = 0.25),
L ≈ 1.189 bit, and therefore I(X : Y ) = M ≈ 0.811 bit. Here, the
mutual information is below one bit because we dump some of the in-
put information in the physical environment. The value is even below
one bit, because the probability distribution p(y) deviates from an even
distribution.

Joint entropy. In accordance with the intuitive Fig. 22.4 we define the
joint entropy

H(X,Y ) =
∑
x,y

p(x, y) log2 p(x, y).

It gives the information that we gain on the average if we learn at the
same time that the input state takes the value x and the output state
takes the value y. It can be represented as (cf., Fig.22.4)

H(X,Y ) = H(X) +H(Y |X) = H(Y ) +H(X|Y )
= H(X|Y ) +H(Y |X) + I(X : Y )

= H(X) +H(Y ) − I(X : Y ). (22.7)

These relations for the entropies are analogous to Bayes theorem (22.6)
for probabilities. The joint entropy can be seen as the sum of all in-
formation involved in a certain information processing step, comprising
the information lost into the environment, the (useless) information ac-
quired from the environment, and the transmitted information. It can
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be bigger than the entropy H(X) of the source, and bigger than the
entropy H(Y ) of the received signal.

A special situation arises when X and Y are mutually independent.
This is a situation which is not desirable in communication, because it
implies that there is no information transmitted. In other contexts, how-
ever, this may be a reasonable assumption, for example, if we consider
two (classical) physical systems which are completely uncorrelated. In
such cases, the joint probability is given by

p(x, y) = p(x)p(y).

Comparing to Bayes’ theorem (22.6), statistical independence implies
that p(y|x) = p(y), and p(x|y) = p(x). It also implies that the joint
entropy is the sum of the two subsystems’ entropies,

H(X,Y ) = H(X) +H(Y ).

Comparing with eq. (22.7) statistical independence also means that
I(X : Y ) = 0, expressing the fact that there are no correlations be-
tween the two systems.

Relative entropy. We now make a brief detour into the field of hy-
pothesis testing in order to define the relative entropy. Suppose you
have a coin and you wish to decide whether the coin is fair or not. The
hypothesis H0, i.e., fair implies that heads and tails have equal prob-
abilities 1/2. In order to derive a quantitative measure on which your
decision between the hypotheses can be based, we have to specify the hy-
pothesis H1 that the coin is unfair, by giving values for the probabilities
of heads and tails. Assume we choose them to be 2/5 and 3/5, respec-
tively. However, the exact values do not play an important role here (we
could also have chosen, say, 7/15 and 8/15. We will decide between the
two hypotheses by tossing the coin n times, obtaining the data set D.
It is now reasonable to base our decision on the ratio of the conditional
probability that H0 is true, given D, and the conditional probability
that H1 is true, given the same dataset D, i.e., on p(H0|D)/p(H1|D)
called the odds ratio. If its value is larger than one, we would prefer H0

over H1, if it is smaller than one, we prefer H1 over H0. The choice
of the threshold 1 for our decision seems to be the natural choice, but
in principle, we could make an arbitrary choice. According to Bayes’
theorem (22.6) we can write for this ratio

p(H0|D)
p(H1|D)

=
p(H0)
p(H1)

p(D|H0)
p(D|H1)

.

The probabilities p(H0) and p(H1) describe our knowledge about the
fairness of the coin before the experiment. Because we are unbiased, we
have no preference for either of the two, so we set p(H0) = p(H1). The
ratio p(D|H0)/p(D|H1) is called the likelihood ratio because it describes
the ratio of the likelihoods that we obtain the data set D provided that
one of the two hypotheses is true. It is now important to notice that
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the dataset D consists of a sequence of independent tosses, such that the
odds ratio can be written as

p(D|H0)
p(D|H1)

=
n∏

k=1

p(Dk|H0)
p(Dk|H1)

,

where each Dk can be either head (h) or tail (t). It is now convenient
to base our decision on the logarithm of the odds ratio

log2

p(H0|D)
p(H1|D)

=
n∑

k=1

log2

p(Dk|H0)
p(Dk|H1)

,

because in this form the contributions of different tosses on the right add
up. We would now prefer H0 over H1 if this logarithm gives positive
values, whereas we prefer H1 over H0 if it yields negative values. If our
dataset contains nh heads and nt tails, we can rewrite this sum as

log2

p(H0|D)
p(H1|D)

=
∑
i=h,t

log2

pni(ti|H0)
pni(ti|H1)

= n
∑
i=h,t

ni

n
log2

p(ti|H0)
p(ti|H1)

,

where ti is either (h) or (t), and p(ti|Hj) is the likelihood that a single
toss gives the result ti, provided that the hypothesis Hj is true.

For large numbers n, the probability p(ti|H0) will be the best estimate
for the relative frequency ni/n, if we assume that H0 is correct. We
therefore obtain as the best estimate for the logarithm of the odds ratio

log2

p(H0|D)
p(H1|D)

= n
∑
i=h,t

p(ti|H0) log2

p(ti|H0)
p(ti|H1)

.

The probability that we accept H1 based on the dataset D, although H0

is correct, is now

p(wrong decision) ∝ 2−nH(H0||H1),

where

H(H0||H1) =
∑
i=h,t

p(ti|H0) log2

p(ti|H0)
p(ti|H1)

.

This quantity is called the relative entropy between the probability dis-
tributions p(ti|H0) and p(ti|H1). It tells us how easily we can distinguish
the two distributions after n tosses by giving the rate at which the prob-
ability of making a wrong decision decays. If the relative entropy is
large, we can correctly identify the right hypothesis after a relatively
small number of tosses. If it is small, it is hard to distinguish them, and
we have to toss a large number of times. If we had chosen the two prob-
ability density distributions to be exactly the same, then the relative
entropy would assume the value zero.
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Relative entropy and mutual information. We obtain more insight
into the meaning of the mutual information, if we consider its relation
to the relative entropy. For this purpose we first remember that from
any joint probability distribution p(x, y) we can obtain the probabilities
p(x) and p(y) by marginalization, i.e., by

p(x) =
∑

y

p(x, y) and p(y) =
∑

x

p(x, y).

We can therefore write the mutual information as

I(X : Y ) = H(X) +H(Y ) −H(X,Y )

= −
∑

x

p(x) log2 p(x) −
∑

y

p(y) log2 p(y) +
∑
x,y

p(x, y) log2 p(x, y)

= −
∑
x,y

p(x, y) log2 p(x) −
∑
x,y

p(x, y) log2 p(y) +
∑
x,y

p(x, y) log2 p(x, y)

=
∑
x,y

p(x, y) log2

p(x, y)
p(x)p(y)

.

The last expression is the relative entropy telling us how well we can
distinguish the probability distribution p(x, y) from p(x)p(y) which as-
sumes X and Y to be statistically independent. This again supports the
idea that the mutual information is a measure of the mutual dependence,
or the correlation of two systems.

22.1.5 Sampling theorem

In analog communication systems, the transmission of information is
limited by the bandwidth. The sampling theorem (again due to Shannon)
is an important ingredient that we have to use if we want to find out how
much information can be transmitted through a noisy communication
channel. Consider a time-dependent signal V (t) (for example, a time-
dependent voltage) that we transmit from a sender to a receiver. The
transmission channel (for example, the coaxial cable connecting sender
and receiver) will have a certain bandwidth f0 making sure that the
transmitted signal does not contain any frequencies f > f0. Now here
is the sampling theorem:

If a signal does not contain any frequencies f > f0, then the signal is
uniquely determined by its values at discrete points in time if the time
separation of these points is smaller than ∆t = 1/2f0.

This is a remarkable statement, as it tells us that a continuous signal
can be completely described by a series of discrete values as shown in
Fig. 22.9. In order to get some insight into the proof of this theorem we
look at the Fourier transform of the signal V (t) which is given by

V (f) =
∫ ∞
−∞

dt V (t)e−2πift.

The assumption about the bandwidth limitation of the signal implies
that V (f) = 0 for |f | > f0. If we sample the signal at time intervals
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t

V(t)

Fig. 22.9 Visualization of Shannon’s
sampling theorem. The bandwidth lim-
ited continuous signal V (t) can be ex-
actly recovered from the precise knowl-
edge of a number of equally spaced dis-
crete data points.

∆t = 1/2f0, we obtain the discrete data points vn = V (n∆t). We now
introduce the sampled function

Vs(t) =
∞∑

n=−∞
V (t)δ(t− n∆t)∆t =

∞∑
k=−∞

V (t)e2πikfst,

where fs = 2f0 = 1/∆t is called the sampling frequency or sampling
rate. The sampled function Vs(t) is completely known to the receiver,
because it acquires all the vn. It is now straightforward to show that the
Fourier transform Vs(f) of the sampled function is related to the Fourier
transform V (f) by

Vs(f) =
∞∑

k=−∞
V (f − kfs).

However, due to the limitation of V (f) in bandwidth, terms for different
k in the above sum do not overlap. The Fourier transform of the sam-
pled function is therefore simply a repeated copy of the V (f) shifted by
integer multiples of fs in frequency. This means that the receiver can
recover V (f) from the knowledge of Vs(f) using

V (f) = Vs(f)H(f),

where H(f) = 1 for |f | < f0, and H(f) = 0 elsewhere. Reconstruction
of the time-dependent signal requires that we transform this equation
back into the time domain. This leads to a convolution of the inverse
Fourier transforms of Vs(f) and H(f). The latter is given by

H(t) =
sin(πt/∆t)

πt
,

leading to

V (t) =
∫ ∞
−∞

dt′Vs(t′)H(t− t′) =
∞∑

n=−∞
vn

sin[π(t− n∆t)/∆t]
π(t− n∆t)/∆t

.
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In principle, the receiver has reconstructed the signal in the time domain
completely, after performing this summation.

A few words of caution are due here concerning the practical imple-
mentation of the sampling theorem. Real communication channels may
show a bandwidth limitation similar to a low-pass filter. The frequency
response of such a filter is, although very small compared to one, not
exactly zero beyond the filter bandwidth. The above reconstruction of
the signal is therefore better the larger the sampling rate. In practical
cases, f0 is therefore taken to be, for example, 30% larger than the band-
width of the low-pass. Another practical limitation of the reconstruction
procedure is that it requires, in principle, the summation over an infi-
nite number of sampled values, whereas in practice, we sample signals
over a limited time interval and therefore obtain only a finite number
of samples (see, e.g., Pawlak, 1994). This problem is, however, not so
severe because H(t) decays quickly in time for |t| → ∞. Moreover, a
continuous signal defined on a limited time interval does, in principle,
not have a bandwidth-limited Fourier spectrum. This practical problem
is again not critical because the high-frequency Fourier components of
a time-limited signal will be very small. Therefore we can state that
the sampling theorem is mathematically exact, but its practical imple-
mentation is always an approximation of the ideal mathematical setting.
Further insights into this topic can be obtained from Slepian, 1976. Nev-
ertheless, the theorem has proven to be of great practical importance in
signal processing and image processing. In physicist’s labs the theorem
is of great use whenever a measurement is performed producing samples
of a continuous measurement signal.

22.1.6 Capacitance of a noisy communication
channel

In the case of a probabilistic (noisy) communication channel, which we
have intensely studied above, the mutual information I(X : Y ) tells us
how much useful information is received, if 1 bit of information is sent. If
we want the receiver to receive a message of n bits, we have to introduce
some redundancy in the message. This means that we send a certain
number of m bits in order to make sure that mI(X : Y ) = n. The
rate fs at which we can sample the bits is, according to the sampling
theorem, given by the bandwidth f0 of the system, i.e., by

fs = 2f0.

Sampling with a higher rate than fs gives us more information than we
need to reconstruct the incoming signal, and sampling with a smaller
rate means that we lose information about the input signal. On the
other hand, the bandwidth f0 determines the signal-to-noise ratio in the
transmission. Usually we have

S

N
=

V 2
0

〈∆V 2〉 =
V 2

0

S0f0
,
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where S0 is the spectral density of the voltage noise assumed to be
constant here (white noise). The larger the bandwidth f0, the smaller
is the signal-to-noise ratio. However, we have also seen that the signal-
to-noise ratio enters the mutual information, i.e, we have

I(X : Y ) = I (S/N) = I

(
V 2

0

S0f0

)
.

The rate ri at which the receiver obtains useful information from the
sender is therefore given by

ri = 2f0I (X : Y ) .

This is one form of Shannon’s noisy channel capacitance theorem. It
implies that if a message is sent at a rate rs it will be corrupted, and
error correcting schemes have to be applied. Such schemes require us to
introduce redundancy into the information sent, which will effectively
reduce the rate of the sent information. If the rate is lowered below ri,
then error correction schemes can be applied in order to reduce the error
arbitrarily close to zero. The theorem does, however, not tell us what
such an error correction scheme will look like.

Error correction. The simplest error correction scheme would be the
repeated transmission of each bit. If, for example, each bit is sent three
times, the receiver could decide for the majority, i.e., 110 would be
interpreted as 1, whereas 010 as 0.

A different version of the noisy channel capacitance. We arrive at
a slightly different version of the above noisy channel capacitance, if we
consider the measurement process of a continuous function of time, such
as a time-varying voltage V (t). Imagine, for example, that such a signal
is created during your measurement on an unknown sample in the lab.
Before the measurement you may have an idea about the (gaussian) noise
level 〈∆V 2〉 that your measurement setup produces at its bandwidth f0.
In fact, 〈∆V 2〉 = S0f0, where S0 is the power spectral density of the
noise. In addition, you will perhaps have a rough idea about the voltages
you will expect in your measurement, allowing you to identify a gaussian
distribution of width V0 describing the range of expected voltage values.
Because the signal and the noise can be expected to be uncorrelated,
the two gaussian distributions will simply multiply and give you again
a gaussian distribution of width

√
V 2

0 + 〈∆V 2〉 describing the expected
variation of your input signal. This knowledge allows you not only to
choose a proper voltage range on your voltmeter, but also quantifies your
uncertainty about the measurement result. According to eq. (22.3) the
uncertainty about the result of a single measurement value is given by

H =
1
2

log2

[
2πe(V 2

0 + 〈∆V 2〉)
]
.

According to the same formula, the information loss resulting from the
noise is given by

L =
1
2

log2(2πe〈∆V 2〉).
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The information gained about the sample of interest is the transmitted,
or mutual information

I = H − L = log2

√
V 2

0 + 〈∆V 2〉
〈∆V 2〉 .

This number answers the question as to how many bits of information we
gain about the sample when we take a single measurement point. If the
voltage to be measured varies in time, the rate ri of acquired information
is given by the information per data point times the number of data
points acquired within a second. The latter is given by the sampling
theorem to be 2f0, and we obtain

ri = 2f0 log2

√
1 +

S

N
. (22.8)

The rate ri of bits per second that we acquire during a measurement is
fully determined by the bandwidth f0 of our measurement apparatus,
and the signal-to-noise ratio S/N . This is why these two quantities are
of such crucial importance in experimental physics labs. Error correction
is usually achieved by measuring each data point of a curve many times
and averaging the results (another way of looking at this is interpreting
the averaging process as a reduction of the bandwidth and the noise).
Equation (22.8) is the celebrated version of the noisy channel capacitance
theorem that Shannon derived in his theory of communication.

22.2 Thermodynamics and information

We would now like to return to the question of how these theoretical
concepts of information are related to the physical world and physical
processes used for information processing and storage.

22.2.1 Information entropy and physical entropy

Mathematical similarities. The formulation of the theory of infor-
mation processing is based on probability theory. The same applies to
the notion of entropy used in physics. Both concepts are inherently sta-
tistical in nature and applicable only to statistical ensembles, but not to
the individual members of the ensembles. In 1872, long before the no-
tion of information became mathematically defined, Ludwig Boltzmann
recognized that the problems of the kinetic theory of gases are at the
same time problems of probability theory. Boltzmann’s H-function

H =
∑

i

pi ln pi,

where the pi denotes probabilities that particles of a gas are found in a
particular state i, has the same form as the negative Shannon entropy
(22.2). At the same time Boltzmann’s H-theorem

dH

dt
≤ 0
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is closely linked to the second law of thermodynamics according to which
the physical entropy of an isolated system will always increase if the
system starts out of equilibrium and evolves in time. In thermodynamic
equilibrium, the entropy reaches its maximum. These statistical ideas
were further developed by J.W. Gibbs, M. Planck, J. von Neumann, and
others, in the early 20th century.

The modern theory of statistical mechanics describes the entropy of
a physical system as

S = −kB

∑
i

pi ln pi,

where the pi denotes the probabilities that the system is at equilibrium
found in the microscopic state i. If all the microscopic states have the
same probability p = 1/Ω, as assumed for the microcanonical ensemble,
the entropy reduces to [cf., eq. (22.1)]

S = kB ln Ω,

where Ω is the number of available microscopic states. The physical
entropy can be interpreted as a quantitative measure of our uncertainty
about the microscopic state of the system given that the macroscopic
state is known. The macroscopic state is described by macroscopic state
variables, such as the total energy of the system, the volume that it
occupies, and the number of particles in the system. The entropy is a
special quantity in statistical mechanics, because it cannot be interpreted
as the average of a microscopic property of the system. In contrast, for
example, temperature can be defined as the average kinetic energy of the
individual molecules in an ideal gas. Entropy is an extrinsic quantity,
like the volume and the number of particles.

The definitions of Shannon’s entropy and the physical entropy differ
in two details: the definition of the physical entropy uses natural loga-
rithms rather than logarithms to the base two, and there is Boltzmann’s
constant kB that defines the units of the physical entropy to be J/K, in
agreement with the historically earlier classical theory of thermodynam-
ics by Clausius. In fact, both differences could be eliminated if we chose
to measure temperature in units of energy. This would be, for example,
consistent with the kinetic theory of ideal gases, where the temperature
is a measure of the average kinetic energy per gas particle.

Relation between physical entropy and information entropy.
We have seen above that there are strong mathematical similarities be-
tween the concept of information entropy, as introduced by Shannon,
and the physical entropy in statistical mechanics. The question, whether
there is a deeper relationship between the two, or even whether both de-
scribe the same thing, has created a vast amount of research activities
over more than 100 years, and a broad agreement on the answer has
not emerged yet. A detailed discussion of this topic is certainly much
beyond the scope of this book. We will therefore only try to convey
briefly a flavor of the many interesting aspects involved.
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The first operational use of physical entropy was made by Rudolf
Clausius in 1867 (Clausius, 1867), who defined the quantity mathemat-
ically, and stated the second law of thermodynamics. In 1871, James
Clerk Maxwell published his book ‘Theory of Heat’, where he discussed
the implications of the second law, and suggested a thought experiment
in which a ‘being with sharpened faculties’ would be able to observe
individual molecules in a thermally isolated bath which is split into two
subsystems A and B that are initially at thermodynamic equilibrium.
By observing the molecules and intelligently opening a shutter between
the two subsystems, the being can allow the faster molecules from A into
B, and the slower ones from B into A thereby heating B as compared to
A ‘without expenditure of work’, and in contradiction to the second law.
The whole process indeed lowers the total entropy of the joint system,
and work could be extracted when the two subsystems are allowed to
equilibrate. This thought experiment later became known as Maxwell’s
demon problem. Since then, researchers have tried to ‘exorcize’ the de-
mon and to save the second law of thermodynamics. For example, it
became clear that a proper treatment has to specify, how the demon
measures the motion of the molecules and whether it has to invest en-
ergy in order to do that, and how this would affect the entropy balance.
Some workers have tried to ask which role the intelligence of the demon
plays for the entropy balance. In his seminal paper Leo Szilard (Szilard,
1929) made a connection between the information acquisition by the
demon and the decrease of entropy in the system by suggesting what
we now call ‘Szilard’s engine’. Later work focused on the fact that the
demon may need a binary memory for storing the information about the
molecules. Adopting the idea that physical entropy and information en-
tropy might be one and the same thing would again save the second law.
At some point the demon will need to erase the gathered information
from his memory. Landauer showed in 1961 (Landauer, 1961) that the
erasure of a bit of information will at least need the energy kBT ln 2, and
at the same time increase the physical entropy of the environment by
kB ln 2. Similar ideas were independently put forward by Oliver Penrose
in his 1970 book Foundations of Statistical Mechanics, and Landauer’s
principle, as we call it today, has been proven to be correct in the classi-
cal context by a number of other workers more recently, but work is still
in progress investigating its validity under extreme quantum conditions.
Slightly further on, we will discuss Landauer’s principle in more detail.

Information storage in thermodynamic systems. Machines used
for classical information processing, such as transistors, operational am-
plifiers, digital circuits, computers, or even our brain, are thermody-
namic systems. The same applies to data storage devices, such as stones
on which ancient cultures carved their laws, magnetic tapes, computer
hard drives, compact discs, and again our brains.

We give a very simple example which shows how information can be
stored in a thermodynamic system. When we have tossed a fair coin
with the same probability 1/2 for head or tail, before we look at the
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outcome we have an uncertainty about the microscopic state of the coin
Ubefore = log2 Ω Bit ∼ 1023 Bit. After looking at the result, i.e., after
measuring whether head or tail is on top, the number of microscopic
states compatible with our acquired information is Ω/2. Our uncertainty
about the microscopic state of the coin is now Uafter = log2(Ω/2) Bit.
By measuring, we have therefore gained the information

∆I = log2 Ω Bit − log2

Ω
2

Bit = log2 2 Bit = 1 Bit.

Alternatively we can say that the information of 1 bit is stored in the
orientation of the coin.

A different example for storing information in a thermodynamic sys-
tem by entropy reduction was given in Feynman, 1996. Information is
stored by compressing gas contained in a box of volume V isothermally
to the volume V/2. Compression into one half of the container corre-
sponds to the state 0, into the other half to 1. The stored information
is

∆I = k ln
V

V/2
= 1 Bit

and the physical entropy is reduced by

∆S = −kB ln 2.

The second law of thermodynamics predicts that the physical entropy
will increase in time. The gas, for example, will diffuse relatively quickly
once the piston used for compression is removed, in order to fill the
volume V evenly. The stored information has been lost, and the physical
entropy of the system has increased. The time scale over which this
happens has to be calculated with microscopic models; it is not given
by the second law. If we save information on a magnetic tape using
magnetic domains magnetized in a particular direction, the information
remains almost unaltered for decades. These large time scales are crucial
for storing information with high reliability.

Conceptional parallels between communication and the mea-
surement process. When we discussed the notion of information en-
tropy and its derivatives before, we used a (noisy) communication process
as an illustrative example. It has been pointed out that the logical
structure of communication is the same as that for making measure-
ments in physics (see e.g., Rothstein, 1951). This analogy is illustrated
in Fig. 22.10. The physical system of interest for a measurement corre-
sponds to the information source of communication theory. In the latter
case, this could be somebody feeling the urgent wish to tell a remote per-
son something very important. The physicist performing a measurement
on the system decides on a particular measurable property, and designs
an appropriate measuring apparatus that converts the physical quantity
to be measured into another quantity that can be easily transmitted. In
communication systems, a corresponding apparatus is used in which any
message originating from the source can be encoded and transmitted into
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Fig. 22.10 Analogy between communi-
cation and a measurement process. La-
bels in normal text correspond to con-
cepts of communication theory, italic
labels to concepts of the measurement
process in physics (Rothstein, 1951).
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the transmission channel. In our case, this might be a mobile phone that
can be used to convert speech containing the information into an elec-
tromagnetic wave that can be transmitted through space (the channel).
In both cases, noise may degrade the signal as it is transmitted through
the channel and reduce the mutual entropy. Eventually the signal will be
received, decoded, and displayed. In the communication system this will
eventually be the mobile phone of the receiving person which decodes
the incoming electromagnetic signals and transforms them into sound
waves again. In modern measurement systems the receiver may eventu-
ally be an analog-to-digital converter card in a computer system, which
allows us to display the measured value. Eventually the message will
be received by the destination, i.e., the person listening to the sounds
coming out of his mobile phone, who tries to understand what is being
said. Equivalently, in physical laboratories there will be an observer,
i.e., a physicist reading the measured value and trying to make sense of
it. This analogy between communication and measurements in physics
shows that it can be very useful for a physicists to care about the results
of information theory and the practical implementations of information
processing.

22.2.2 Energy dissipation during bit erasure:
Landauer’s principle

Using the second law of thermodynamics, Landauer has shown that
the erasure of a logical bit in a computer dissipates at least the energy
kT ln 2. In order to show this, we consider the physical state of a bit in
an (isolated) computer. The bit may have either the logical value 0 or 1,
represented by macroscopically distinct states of a thermodynamic sys-
tem. If we assume that we do not know the logical state of this system,
it carries the information entropy 1 bit. In thermodynamic language,
the bit system may be in either of two macroscopic states, i.e., it fills
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a phase space volume of, say, 2n possible microscopic states and has a
thermodynamic entropy of S(0)

bit = −kB ln(2n). Independent of the state
of this bit, the remaining computer system may be in one of a large
number N of microscopic states. For example, the different vibrational
states of the atoms in solid material, and the positions and momenta of
gas atoms within the computer contribute to N . The thermodynamic
entropy of the computer (except the bit) is therefore S(0)

comp = −kB lnN .
The number of physical microscopic states of the total system (the bit
plus the remaining system) is therefore 2nN , and the total thermody-
namic entropy is the sum of the entropies of the two subsystems. This
state space is depicted schematically in Fig. 22.11(top).
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Fig. 22.11 Phase space of the states
of a computer with one physical bit in
some state (top), and with the same bit
erased, i.e., in a well-defined state 0.
Conservation of phase space volume by
the Liouville-equation the phase space
occupied by the computer increases by
a factor of two when the bit is erased.

Erasing the bit means finding a physical process that allows us to set
the bit to logical zero, no matter what its logical (or physical) state
was initially. If we choose a procedure involving only the reversible
laws of classical physics, the time evolution of the whole system is given
by the Liouville equation which conserves the phase space volume in
time. In our example the conservation of phase space volume implies
that no matter how the bit erasure is achieved, after the erasure the
phase space volume of the whole system has to be 2nN . Because the
number of logical states accessible for the erased bit has reduced to one,
the number of possible physical microscopic states of the bit is now n,
and its thermodynamic entropy has reduced to S(1)

bit = −kB lnn, i.e., the
entropy has decreased by ∆Sbit = −kB ln 2. The remaining computer
system must therefore fill the phase space of volume 2N as shown in
Fig. 22.11(bottom). This corresponds to an increase of the entropy of the
remaining computer system by ∆Scomp = kB ln 2. We can see from these
considerations that the entropy of the whole system remains constant.

Now assume that the computer system (excluding the bit) acts as a
heat bath of temperature T . The increase of its entropy means that its
energy has increased by

∆E = T∆S = kBT ln 2.

This statement is called Landauer’s principle (Landauer, 1961; Lan-
dauer, 1993): Erasing a logical bit of information represented by a phys-
ical system means the dissipation of the energy kBT ln 2 corresponding
to the entropy increase kB ln 2 caused by the erasure.

This value of energy expenditure is commonly referred to as the prin-
cipal lower limit of energy dissipation in computing. We can see from
the above line of argument that it is no problem to dissipate more en-
ergy during bit erasure, e.g., by choosing an irreversible physical process
which requires an extension of Liouville’s equation.

Modern computer machines operate at power dissipation levels orders
of magnitude above Landauer’s limit.

22.2.3 Boolean logic

The information theory described above is based on bits with the two
states zero and one. Information is encoded in chains of bits (registers).
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The information is processed using logical operations taking bits as the
input and producing bits as the output. Present-day computers use
boolean logic.2 In boolean logic we distinguish operations acting on
single input bits and those acting on two input bits.

Single-bit operations. There are two operations acting on single bits.
This are the functions IDENTITY and NOT. The action of logical op-
erations can be represented in the form of truth tables without referring
to the physical implementation of the logic element. For the NOT op-
eration with the input bit i and the output bit j the truth table is
shown in Table 22.3. Mathematically we can write IDENTITYx = xTable 22.3 Truth table of the logical

NOT operation.

i j

0 1
1 0

and NOTx = 1 − x, where x = 0, 1. The truth table of a logical opera-
tion tells us which elements of the transition matrix p(j|i) are zero and
which are one.

Alternatively, we can use the vector notation for classical bits intro-
duced in section 22.1.2. The identity operation can then be represented
by the identity matrix

IDENTITY ≡
(

1 0
0 1

)
, (22.9)

and the NOT operation is represented by Pauli’s σx matrix

NOT ≡ σx =
(

0 1
1 0

)
. (22.10)

Two-bit operations. Two-bit operations (like the logical AND thatTable 22.4 Truth table of the logical
AND operation.

ij k

00 0
01 0
10 0
11 1

we have discussed earlier when introducing the notion of information-
related quantities) map the values of two input bits i and j onto one
output bit k. There are four possible combinations of the input bits: 00,
01, 10 and 11. The truth table of the AND operation (mathematically:
iANDj = ij) is shown in Table 22.4.

The first column of this table is the same for all two-bit operations.
The second column consists of four bit values. As a consequence, 24 =
16 different two-bit operations with two input and one output bit are
conceivable. Regarding the second column of the truth table as a binary
number, we can label each possible two-bit operation with this number
ranging from 0 to 15. The AND operation has the number 0001 = 1.
The logical OR (mathematically: xORy = x + y − xy) with the truth
table shown in Table 22.5 has the number 0111 = 7. The operationTable 22.5 Truth table of the logical

OR operation.

ij k

00 0
01 1
10 1
11 1

NAND (mathematically: xNANDy = 1 − xy) produces 1110 = 14, the
function XOR 0110 = 6, NOR is 1000 = 8, and EQUALS is 1001 = 9.

All possible logical one- and two-bit operations can be realized us-
ing only the operations NOT, AND, and OR. Even NOT and AND is
sufficient, because

xORy = NOT[(NOTx)AND(NOTy)].

2after George Boole, 1815–1864, English mathematician
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We also find, for example,

NOTx = xNANDx = xNAND1
xANDy = (xNANDy)NAND(xNANDy)
xORy = (xNANDx)NAND(yNANDy).

Indeed, it is found that all possible one- and two-bit operations can be
produced by implementing only the NAND operation.

There are (logically) reversible and (logically) irreversible operations.
Logical reversibility is not automatically identical to thermodynamic
reversibility. The NOT operation, for example, is logically reversible,
because one can infer from any output z the input x. This implies that
the loss of information L in a deterministic NOT gate is zero. As we
have seen, this is not the case for the logical AND operation which is
logically irreversible and a finite information loss L occurs.

A certain complete set of logical operations allows the construction of
a universal computer (‘Turing machine’). A universal computer can, in
principle, compute everything that is computable. Present-day comput-
ers are in principle special implementations of this universal computer in
which the logical operations are implemented using transistors within the
so-called CMOS technology (CMOS-technology means Complementary
Metal Oxide Semiconductor technology).

22.2.4 Reversible logic operations

It was mentioned in section 22.1.2 that reversible information processing
is the natural classical counterpart of quantum information processing.
We therefore introduce a few key concepts of reversible logical operations
here.

It is possible to find a complete set of reversible logical operations,
i.e., operations for which the information loss L = 0, such that the
input state can be inferred uniquely from the output state. Reversible
operations have the same number of input states and output states. If
we have n input bits there are 2n input states linked to the same number
of output states. There are 2n! n-bit operations.

One-bit operations. According to the above reasoning there must be
two one-bit operations. These are the operations NOT and IDENTITY
introduced before. We mentioned that they can be represented by ma-
trices acting on state vectors of the input bit. Table 22.6 Truth table of the con-

trolled not operation.

in out

00 00
01 01
10 11
11 10

Two-bit operations. There are 24 reversible two-bit operations. An
important example is the CONTROLLED NOT which has the truth
table shown in Table 22.6. The second bit of the output is identical to
the output of XOR operating on the input, the first bit of the output is
identical to the first bit of the input. The first input bit can be regarded
as the control bit. If it is one, then the NOT operation is applied to the
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second input bit delivering the second output bit, but if it is zero, the
second input bit is simply copied to the second output bit.

The action of the CONTROLLED NOT on a two-bit state vector can
be described by a 4 × 4 matrix. If we denote the four two-bit states as
|00〉 , |01〉 , |10〉 , and |11〉 , the matrix representation of the controlled
not is

CONTROLLED NOT ≡

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ . (22.11)

Another operation acting on two bits which is important in reversible
computing is the SWAP operator which changes |01〉 to |10〉 , but leaves
|00〉 and |11〉 unchanged. It has the matrix representation

SWAP ≡

⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠ .

It has been found that the operations NOT, CONTROLLED NOT
and CONTROLLED CONTROLLED NOT are a complete set of oper-
ations which allow us to construct all possible reversible logical opera-Table 22.7 Truth table of the CON-

TROLLED CONTROLLED NOT op-
eration.

in out

000 000
001 001
010 010
011 011
100 100
101 101
110 111
111 110

tions. The truth table of the CONTROLLED CONTROLLED NOT is
shown in Table 22.7. The first two input bits are the control bits that
are copied into the first two output bits. The third bit at the input is
only inverted, if both control bits are one.

It has been theoretically proven that reversible operations can be phys-
ically implemented in such a way that no energy is dissipated (Bennett,
1979) implying that computing without energy dissipation is possible.
The time evolution of such a computer would then correspond to the
time evolution of a conservative physical system. In principle, a univer-
sal computer can be built from reversible logical operations (Bennett,
1979; Toffoli, 1981; Fredkin and Toffoli, 1982; Bennett, 1982).

22.3 Brief survey of the theory of
quantum information processing

22.3.1 Quantum information theory: the basic idea

The fact that transistors switch smaller and smaller numbers of elec-
trons while operating at faster and faster rates, that we communicate
with larger and larger bandwidths over optical fibres, that we store larger
and larger numbers of bits in a given volume, poses questions about the
fundamental physical limits of these developments. Some of the most
cited statements made in this context stem from R. Feynman, for ex-
ample, ‘There’s plenty of room at the bottom’, the title of his talk for
the 1959 annual meeting of the American Physical Society at Caltech
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(Feynman, 1992). He made clear that there is no fundamental limit
prohibiting us from realizing individual bits of data storage with indi-
vidual atoms. At another place he stated that ‘... it seems that the laws
of physics present no barriers to reducing the size of computers until
bits are the size of atoms and quantum behavior holds dominant sway.’
(Feynman, 1985). If we follow the ideas of communication discussed in
the previous chapter, it is obvious to ask whether it would be possible
to communicate using individual photons, or electrons. We could envis-
age, for example, encoding a single classical bit of information into the
polarization state of the photon, or into the spin state of the electron.
We will return to these examples later on.

In general, quantum information processing makes use of our abil-
ity to control the coherent unitary time evolution of quantum states.
However, this coherent evolution is very fragile and is subject to deco-
herence as a result of coupling to environmental degrees of freedom, in
marked contrast to the time evolution of the states of classical informa-
tion processing machines which are usually very robust against environ-
mental disruptions. In order to avoid decoherence as much as possible,
quantum systems useful as building blocks for information processing
are usually small, avoid irrelevant internal degrees of freedom, and min-
imize coupling to the environment. Small systems have the virtue of
exhibiting large energy scales for excitations, which facilitates isolating
them dynamically. Furthermore, error correction schemes for quantum
information processing have been developed which allow us to correct
for disruptions due to the remaining undesired coupling, if it is small
enough. Quantum information processing is the extension of reversible
classical computing, because dissipation of energy and decoherence are
related.

The motivation for developing information processing with quantum
systems is that quantum algorithms can solve some information process-
ing tasks of practical interest much more efficiently than today’s classical
algorithms. The two most prominent examples are Grover’s search algo-
rithm, and Shor’s prime number factorization algorithm, the latter being
a major threat for the security of the widely used RSA3 method of data
encryption. Essentially, quantum mechanics enhances our possibilities
for processing digital information.

In general, any quantum mechanical two-level system may provide
us with the possibility of encoding a classical bit. The term qubit was
therefore coined as the quantum mechanical analogue of classical two-
state systems holding one bit of information. In contrast to a classical
bit, a qubit is a quantum mechanical system that can consist of a very
small number of particles. Therefore, a thermodynamic description is
typically not appropriate. Data storage is achieved by selecting two par-
ticular quantum states to represent one bit of information. In contrast to
a classical bit, the qubit can be in a superposition of these two quantum

3Named after R. Rivest, A. Shamir, and L. Adleman, who invented the scheme in
1977.
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states, i.e., in a superposition of zero and one.
According to the rules of quantum mechanics, measurements of qubits

(reading the qubit) do necessarily mean that we change the qubit signif-
icantly, and only probabilistic predictions about the result of the mea-
surement can be made.

On a more abstract level we stated on page 474 two basic ingredients
for the description of the properties of classical information. By analogy
we may require for quantum information systems:

(1) A Hilbert space spanned by orthonormal quantum states |n〉 . The
state of a particular system at a given instant is, for example,
described by a density matrix ρ̂.

(2) A probability distribution pn which allows us to write the state of
the system as ρ̂ =

∑
n pn |n〉 〈n| .

Seen from the quantum information perspective, the density matrix of a
quantum system describes our uncertainty about the state of the system,
as the probability distribution does in a classical statistical system.

22.3.2 Qubits

The smallest Hilbert space suitable for information storage is spanned by
two orthogonal quantum states. Such a system represents the abstract
realization of one qubit of information. Of course, the question arises as
to how the information stored in one qubit can be read by measurement.
It is immediately clear for us physicists that measurement of a quantum
system is very much different from measurement of a classical system,
as it usually completely changes the quantum state of the system being
measured. Before we go into more detail about how quantum informa-
tion differs from classical information, we summarize the way qubits are
represented in our quantum mechanical language.

The qubit is represented by the superposition of two orthogonal states,
i.e., by the general state of a two-level system. Examples for two-level
systems in physics are the electron spin (↑, ↓), the polarization state
of a photon (right or left circularly polarized), or two electronic energy
levels of an atom (ground state, excited state). In the following, we will
briefly introduce different notations that are commonly used to describe
qubits.

Dirac notation. In general, the state of a qubit can be written in Dirac
notation as

|ψ〉 = α0 |0〉 + α1 |1〉 , (22.12)

where normalization requires

α2
0 + α2

1 = 1. (22.13)

The qubit may be interpreted as a coherent superposition of the two
states 0 and 1 of a classical bit. Indeed, the two state vectors of a
classical bit can be formally seen as a small subset of the two qubit



22.3 Brief survey of the theory of quantum information processing 499

states (either α0 = 1, α1 = 0, or α0 = 0, α1 = 1). However, the physical
implementations of the two are vastly different.

The normalization condition (22.13) reduces the number of indepen-
dent qubit parameters from four (real and imaginary parts of the two
complex numbers α0 and α1) to three. In addition, the absolute phase
of the wave function is arbitrary such that we can always choose α0 to
be real, and reduce the number of relevant parameters to two. One way
to parametrize the basis states, such that the normalization condition is
automatically met, is

α0 = cos
θ

2
α1 = eiδ sin

θ

2
. (22.14)

Here θ parametrizes the probabilities p0/1 of finding the system in one
or other state (p0 = cos2 θ/2 and p1 = sin2 θ/2). The parameter δ is the
relative phase of the two states.

Systems with spin 1/2, such as the spin of an individual electron, are
natural realizations of two-level quantum systems. However, any other
two-level quantum system can be described in exactly the same way.
We will use the electron spin as a paradigmatic example for introducing
ways of describing qubits alternative to the Dirac notation in eq. (22.12).

A system of two qubits (we label them A and B) can be described
with state vectors in a Hilbert space spanned by four basis states. For
example, we can choose them to be (in Dirac notation)

|00〉 , |01〉 , |10〉 , |11〉 ,
where | ij〉 = | i〉A ⊗ |j〉B. The state of two classical bits would be
exactly one of these four orthogonal states. Systems of two qubits can
be in a state described by any of the linear combinations

|ψ〉 = α0 |00〉 + α1 |01〉 + α2 |10〉 + α3 |11〉 ,
where the coefficients are complex numbers obeying the normalization
condition

|α0|2 + |α1|2 + |α2|2 + |α3|2 = 1.

As for single qubits the overall phase of the wave function is of no signif-
icance, and one of the coefficients can be taken to be real-valued. The
remaining seven parameters (four absolute values and three phases) are
not independent as a result of the normalization condition. The wave
function is therefore determined by six real parameters, i.e., more than
the four parameters required for describing the states of two independent
(uncorrelated) qubits. The reason is that two qubits can be correlated,
or entangled.

Two qubits are called entangled if their wave function cannot be writ-
ten as the product of two single qubit states. Examples of entangled
states are

|ψ〉 =
1√
2

(|00〉 ± |11〉 )

|ψ〉 =
1√
2

(|01〉 ± |10〉 ) .
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In contrast, the following states do not describe entangled qubits:

|ψ〉 =
1√
2

(|00〉 ± |01〉 ) = |0〉A ⊗ 1√
2

(|0〉B ± |1〉B)

|ψ〉 = |01〉 = |0〉A ⊗ |1〉B

General n-qubit states (n is integer) can be written in Dirac notation
as a linear combination of the 2n basis states | i〉n, where the numbers i
are n-digit binary numbers (i.e., they may have trailing zeros) obeying
0 ≤ i < 2n. For example, one state of the eight three-qubit basis states
could be written as |5〉 3, or equivalently as |101〉 ; another one would be
|2〉3 ≡ |010〉 . With this notation, a general n-qubit state can be written
as

|ψ〉 =
2n−1∑
i=0

αi | i〉n ,

where the coefficients αi obey the normalization condition

2n∑
i=1

|αi|2 = 1.

Pauli notation. In the Pauli notation, the two orthogonal states |0〉
and |1〉 of a single qubit are written as spinors in vector notation. Using
the parametrization for a single qubit state introduced above, we can
write an arbitrary qubit state as the two-component spinor

|ψ〉 ≡
(

cos θ/2
eiδ sin θ/2

)
.

Some special states are given in Table 22.8.
Like the single-qubit states, two-qubit states can be written in spinor

notation by writing the coefficients of the four orthonormalized basis

Table 22.8 Special qubit states.

θ δ state polarization vector

0 - |0〉 (0, 0, 1)
π - |1〉 (0, 0,−1)
π
2 0 1√

2
(|0〉 + |1〉 ) (1, 0, 0)

π
2 π 1√

2
(|0〉 − |1〉 ) (−1, 0, 0)

π
2

π
2

1√
2

(|0〉 + i |1〉 ) (0, 1, 0)
π
2 −π

2
1√
2

(|0〉 − i |1〉 ) (0,−1, 0)
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functions in vector form as

|ψ〉 =

⎛
⎜⎜⎝

α0

α1

α2

α3

⎞
⎟⎟⎠ ,

and a general n-qubit state would be

|ψ〉 =

⎛
⎜⎝ α0

...
αN

⎞
⎟⎠ ,

where N = 2n − 1.

Polarization vector of a single qubit and Bloch sphere. A two-
level quantum state (i.e., a single qubit) may alternatively be uniquely
described by its polarization vector P = (Px, Py, Pz). Its components
are defined as the expectation values of Pauli’s spin matrices σx, σy, σz

[see eq. (3.14)], i.e., Pi := 〈σi〉. Expressing the components Pi using the
parametrization (22.14), we obtain

Px = sin θ cos δ
Py = sin θ sin δ
Pz = cos θ.

This is the parametrization of a three-dimensional vector of length 1
(|P| = 1). We can represent this vector in a three-dimensional coordi-
nate system by putting its starting point at the origin. Its end point will
be somewhere on the surface of a unit sphere as depicted in Fig. 22.12.
The polarization vector encloses the angle θ with the z-axis, and the
angle δ represents the azimuth. This representation of a qubit state on
the surface of a unit sphere is called the Bloch sphere representation.
The direction of the polarization for special states has been included in
Table 22.8 and is shown in Fig. 22.12. When applying this representation
in practice it is very important to remember that orthogonal quantum
states are represented here as antiparallel polarization vectors rather
than orthogonal vectors.

There is no commonly used representation of the states of two or more
qubits which is equivalent to the polarization vector notation, and also,
the Bloch-sphere visualization of single qubit states has no commonly
used generalization for many qubits.

Density matrix notation. The density matrix representing the
single qubit state (22.12) is given by

ρ̂ :=
(

|α|2 αβ�

α�β |β|2
)

=
(

cos2 θ
2

1
2e
−iδ sin θ

1
2e

iδ sin θ sin2 θ
2

)

=
1
2

(
1 + Pz Px − iPy

Px + iPy 1 − Pz

)
. (22.15)
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Fig. 22.12 Bloch sphere representation
of a qubit.

0 1

0 1

0 i 1 0 i 1

0

1

This density matrix uniquely represents a pure qubit state. It can, for
example, be used to calculate the expectation value of any arbitrary
observable Ô via 〈

Ô
〉

= tr
[
Ôρ̂
]
.

The diagonal elements of the density matrix are the probabilities p0/1

to find the qubit in state |0〉 or |1〉 . The off-diagonal elements are called
interferences.

The virtue of the density matrix representation is that it can not only
be used to describe pure quantum states, but it is also well suited to
describing statistical mixtures. The definition of uncertainty about a
quantum state and therefore the notion of quantum information is also
based on the density matrix notation. In quantum information theory,
the density matrix is interpreted as a mathematical description of our
uncertainty about a quantum system.

An arbitrary composite system made of the two subsystems A and B
can be described on the basis of the product basis

| iα〉 = | i〉 ⊗ |α〉 ,

and the general wave function of the composite system can be written
in Dirac notation as

|ψ〉 =
∑
iα

aiα | iα〉 .

Correspondingly, the expectation value of an arbitrary operator Ô is
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given by

〈
Ô
〉

=

(∑
iα

a�
iα 〈 iα|

)
Ô

⎛
⎝∑

jβ

ajβ |jβ〉

⎞
⎠

=
∑
iα

∑
jβ

〈 iα| Ô |jβ〉 ajβa
�
iα

= trace
(
Ôρ̂
)
,

where the elements of the density matrix ρ̂ have been defined using the
coefficients of the basis functions, i.e.,

ρjβ,iα = ajβa
�
iα.

Again, the diagonal elements of the density matrix are the probabilities
of finding the system in the corresponding basis states. The off-diagonal
matrix elements are the interferences.

We consider a few density matrices of two-qubit states as examples.
The density matrix of the state |01〉 is

ρ̂ =

⎛
⎜⎜⎝

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ .

For the state

|ψ〉 =
1√
2

(|00〉 ± |01〉 ) = |0〉A ⊗ 1√
2

(|0〉B ± |1〉B) ,

the density matrix is

ρ̂ =

⎛
⎜⎜⎝

1/2 ±1/2 0 0
±1/2 1/2 0 0

0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ .

The entangled state

|ψ〉 =
1√
2

(| ↑↑〉 ± |↓↓〉 )

has the density matrix

ρ̂ =

⎛
⎜⎜⎝

1/2 0 0 ±1/2
0 0 0 0
0 0 0 0

±1/2 0 0 1/2

⎞
⎟⎟⎠ .
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Reduced density matrix. A special case arises if the operator Ô acts
only on subsystem A. For example, if the composite system consists
of two electrons that are used as spin-qubits, a measurement on only
one of the two spins would be represented by such an operator. The
expectation value is then given by

〈
Ô
〉

=

(∑
iα

a�
iα 〈 iα|

)
Ô

⎛
⎝∑

jβ

ajβ |jβ〉

⎞
⎠

=
∑
iα

∑
jβ

〈 i| Ô |j〉 δαβajβa
�
iα

=
∑
ij

〈 i| Ô |j〉
∑
αβ

δαβρjβ,iα

=
∑
ij

〈 i| Ô |j〉
∑
α

ρjα,iα.

We now define the elements of the reduced density matrix, i.e., the
density matrix of the subsystem with the basis vectors | i〉A as

ρij =
∑
α

ρjα,iα,

i.e., we calculate the partial trace of the density matrix of the composite
system (we trace out subsystem B). Using this definition of the reduced
density matrix, we again find〈

Ô
〉

= trace
(
Ôρ̂
)
.

The reduced density matrix allows us to calculate all properties that can
be retrieved from measurements on subsystem A alone. It therefore con-
stitutes a complete description of subsystem A, for which an equivalent
wave function representation does not necessarily exist.

We consider again a few examples of two-qubit states. For the state
|01〉 the reduced density matrix is given by

ρ̂ =
(

1 0
0 0

)
.

For the state

|ψ〉 =
1√
2

(|00〉 ± |01〉 ) = |0〉A ⊗ 1√
2

(|0〉B ± |1〉B) ,

the reduced density matrix is again

ρ̂ =
(

1 0
0 0

)
,

telling us that a measurement on subsystem A is not sufficient to dis-
tinguish the two two-qubit states.
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The entangled states

|ψ〉 =
1√
2

(|00〉 ± |11〉 )

have the reduced density matrix

ρ̂ =
(

1/2 0
0 1/2

)
.

The sign ± obviously does not play a significant role for observations in
subsystem A, and the two different two-qubit states cannot be distin-
guished by observations of subsystem A alone.

General properties of density matrices. In general, density matri-
ces have the following three properties:

(1) they are self-adjoint, i.e., ρij = ρ�
ji,

(2) their trace is 1, i.e., traceρ̂ = 1,
(3) all their eigenvalues are larger than or equal to zero.

If we have a composite system consisting of subsystems A and B,
entanglement in the state of the composite system can be detected by
calculating the reduced density matrix for subsystem A. If the two sub-
systems A and B are not entangled, the reduced density matrix obeys

ρ̂2 = ρ̂,

and it represents a pure state that can also be represented by a wave
function. If the two subsystem A and B are entangled,

ρ̂2 �= ρ̂,

and it represents a mixed state that cannot be represented by a single
wave function, but by a statistical mixture of wave functions.

22.3.3 Qubit operations

In quantum mechanics, unitary transformations govern the time evo-
lution of physical systems. If we wish to process information encoded
in individual qubits, we have to control the unitary time evolution of
systems of qubits. As in classical information processing we distinguish
operations acting on only a single qubit (one-qubit gates), on pairs of
qubits (two-qubit gates), and on more than two qubits. Quantum in-
formation theory teaches us that arbitrary unitary transformations on
n qubits can be approximated (with arbitrary precision) by applying a
sequence of one- and two-qubit gates (DiVincenzo, 1995; Barenco et al.,
1995). This is in analogy to classical information processing where an ar-
bitrary computation can be broken down into a sequence of operations
acting only on single classical bits or two classical bits. As a conse-
quence, attempts to implement quantum computation can concentrate
on the realization of single-qubit and two-qubit gates.
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Given a particular single-qubit state represented as a vector ending
on the Bloch sphere, a general unitary transformation would allow us
to rotate this vector to an arbitrary other position on the Bloch sphere.
Operations on two qubits usually invoke interactions between them and
lead to control over entanglement. Arbitrary single-qubit rotations to-
gether with the implementation of a CONTROLLED NOT gate (22.11)
for two qubits are sufficient to perform any quantum computation.

A general single-qubit rotation is described by the 2 × 2-matrix

U1(α, β, γ) =
(

ei(β+γ)/2 cos(α/2) e−i(β−γ)/2i sin(α/2)
ei(β−γ)/2i sin(α/2) e−i(β+γ)/2 cos(α/2)

)
,

where α, β, and γ are real parameters (Euler angles).
The classical reversible operations on a single qubit have their quan-

tum analogues. The IDENTITY operation represented by the 2 × 2
unity matrix (22.9) is an operation that can also be applied to a qubit
leaving its state unchanged. Considering the above general single-qubit
rotation, it corresponds to U1(0, 0, 0). The matrix (22.10) representing
the classical NOT which acts on an arbitrary qubit like

σx |ψ〉 =
(

0 1
1 0

)(
α
β

)
=
(
β
α

)
is called a qubit flip and corresponds to −iU1(π, π/2, π/2).

Of course there are a large number of other single-qubit operations
without a classical analogue. For example, the Pauli matrix σz acts as

σz |ψ〉 =
(

1 0
0 −1

)(
α
β

)
=
(

α
eiπβ

)
,

which is a π-phase shift operation equivalent to −iU1(0, π/2, π/2). The
Pauli matrix σy is a combined qubit flip and π-phase shift operation:

σy |ψ〉 = iσxσz |ψ〉 =
(

0 −i
i 0

)(
α
β

)
=
(

−iβ
iα

)
,

corresponding to −iU1(π, π/2,−π/2). Another single-qubit operation
that is frequently encountered in quantum information processing is the
Walsh–Hadamard transformation,

H |ψ〉 =
1√
2
(σx+σz) |ψ〉 =

1√
2

(
1 1
1 −1

)(
α
β

)
=

1√
2

(
α+ β
α− β

)
,

corresponding to −iU1(π/2, π/2, π/2). Applied to the qubit state |0〉 it
gives the superposition (|0〉 + |1〉 )/

√
2.

22.4 Implementing qubits and qubit
operations

The challenge for experimental physicists trying to implement quantum
information processing schemes is to design tailored two-level quantum
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systems that can be prepared in a well-defined initial state, then coher-
ently manipulated with the desired one- or two-qubit gates, and then
measured in order to learn the result of the computation. The co-
herent manipulation stage requires that the time evolution is governed
by a well-known and well-controllable time-dependent hamiltonian Ĥ(t)
which brings about the desired unitary transformation of the prepared
initial state, usually by controlling time-dependent external parameters.
In particular, this latter aspect has inspired experimentalists in recent
years to perform novel experiments, a few of which we will discuss in
the following.

22.4.1 Free oscillations of a double quantum dot
charge qubit

We start the discussion of possible realizations of single-qubit gates by
showing an experiment performed on a double quantum dot system
which can be interpreted as a so-called charge qubit. The experiment was
performed by T. Hayashi and coworkers in 2003 (Hayashi et al., 2003).
Figure 22.13(a) shows the double quantum dot structure which has been
laterally defined based on a heterostructure with a two-dimensional elec-
tron gas. A channel of 500 nm width was defined by wet-chemical etch-
ing. The three gates GL, GC, and GR were fabricated right above the
channel in order to allow the formation of tunneling barriers controlled
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Fig. 22.13 (a) Schematic representa-
tion of the measurement setup com-
bined with an SEM image of the lateral
double dot structure. (b) Energy level
diagram with ‘bonding’ and ‘antibond-
ing’ branch resulting from the avoided
crossing of two levels. (c)–(e) Energy-
level diagram during qubit initializa-
tion (c), the time of coherent oscilla-
tion (d) and the read-out measurement
(e). (Reprinted with permission from
Hayashi et al., 2003. Copyright 2003
by the American Physical Society.)
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by the voltages on these gates. Two additional gates Gl and Gr serve
as plunger gates for the quantum dots L and R. For the experiment,
the central gate GC controlling the coupling between the dots, and the
plunger gates Gl and Gr were adjusted such that at zero source–drain
voltage a level in dot L and another level in dot R are degenerate and
split into a symmetric and an antisymmetric state as a result of the
tunneling coupling [see Fig. 22.13(d)]. Applying a finite source–drain
voltage lifts this degeneracy, the two levels separate in energy, and the
corresponding wave functions separate in space [Fig. 22.13(b), (d)].

The two basis states of the qubit are taken to be the two charge states
|L〉 ≡ |0〉 and |R〉 ≡ |1〉 with the additional electron in the left dot or
in the right dot, respectively. The time evolution of the qubit system is
governed by the hamiltonian matrix

Ĥ(t) =
(
εL(t) t
t� εR(t)

)
.

The energy levels of the additional electron in the left and right dot
depend on time, because they can be shifted by applying suitable time-
dependent gate or source–drain voltages.

The system is initialized by applying a suitable source–drain voltage
for a suitable time such that an electron can tunnel from the source
contact into the state |L〉 [Fig. 22.13(c)]. Then the source–drain voltage
is abruptly (nonadiabatically) switched to zero for a well-defined time
span tp [Fig. 22.13(d)]. During switching the electron remains in the
state |L〉 which is, however, no longer an eigenstate of the system. In
the new configuration the eigenstates of the double dot system are the
symmetric state |S〉 and the antisymmetric state |A〉 given by

|S〉 =
1√
2

(|L〉 + |R〉 )

|A〉 =
1√
2

(|L〉 − |R〉 ) .

The state of the system immediately after switching is therefore given
by

|ψ(t = 0)〉 = |L〉 =
1√
2

(|S〉 + |A〉 ) ,

which is a superposition of the two new eigenstates whose energies differ
by the symmetric–antisymmetric splitting ∆ [Fig. 22.13(b)]. The time

01
<p(t)>

t p
 (n

s)

|L>

|R>

Fig. 22.14 Coherent oscillations of the
charge qubit detected by the dc current
through the double quantum dot sys-
tem. (Reprinted from Fujisawa et al.,
2004 with permission from Elsevier.)

evolution of this superposition of states is given by

|ψ(t)〉 =
1√
2

(
|S〉 + |A〉 ei∆t/�

)
= cos

∆t
2�

|L〉 + i sin
∆t
2�

|R〉 . (22.16)

This time evolution is called the free oscillation of the qubit which is
periodic with frequency ∆/2h. The motion of the state vector on the
Bloch sphere (inset of Fig. 22.14) goes along the meridian given by the
time-dependent angles θ(t) = ∆t/� and δ(t) = π/2. The final state of
the system is given by |ψ(tp)〉 .
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The read-out of the qubit state after time tp [Fig. 22.13(e)] is started by
switching the system back to finite source–drain voltage. This gives the
electron the possibility of tunneling into the drain contact and thereby
contribute to the tunneling current. Of course, the current originating
from a single electron cannot be measured in this experiment. For this
reason, the sequence described above is repeated with a repetition rate
1/tr (in this experiment 100 MHz). If this rate is larger than the rate
with which an electron can leak from the left dot into the drain contact,
a time-averaged current results which depends on the pulse duration
tp. This current is proportional to the probability that the electron is
measured in the right dot

〈I〉 ∝ p(tp) = sin2 ∆tp
2�

.

The qubit state is measured by projection onto the basis state |R〉 . If
we could detect individual electrons that have left the right dot with a
sensitive charge detector, each cycle would give either a measurement
value ‘electron detected’ or ‘no electron detected’, with probabilities p(t)
and 1−p(t), respectively. By averaging over many cycles, the probability
p(t) can be measured via the average current 〈I〉.

If tp = (n− 1/2)h/∆ (n integer larger than zero), then the final state
is |R〉 and the current should be maximum. These tp values realize a
qubit flip (NOT). If tp = nh/∆ the final state is |L〉 and the current
is minimum. These tp values realize the IDENTITY operation. The
current is expected to oscillate as a function of pulse duration tp with
the frequency of the free oscillations.

Figure 22.14 shows these oscillations as measured in the experiment.
In contrast to the simple theory of the free qubit oscillations outlined
above, the oscillations decay within about 2 ns. The reason is the de-
coherence of the superposition state. The decoherence time extracted
from this experiment is about 0.8 ns.

22.4.2 Rabi oscillations of an excitonic qubit

The states of single qubits can also be rotated by coupling a charge qubit
to an external oscillating electric field. In the experimental example to be
discussed now (Zrenner et al., 2002), the qubit is formed by two states of
a single self-assembled quantum dot. Self-assembled quantum dots made
of In0.5Ga0.5As were embedded in a Schottky diode based on GaAs as
shown in Fig. 22.15(c). Using a large area top gate with openings of
100 to 500 nm diameter individual quantum dots were selected for the
illumination with laser light [see schematic Fig. 22.15(c)]. The laser light
can excite Coulomb-coupled electron–hole pairs, also called excitons, if
the excitation energy is above band gap, as shown in Fig. 22.15(b). The
two states of the corresponding qubit are shown in Fig. 22.15(a). The
two states are |0〉 (no electron–hole pair in the dot), and |X〉 (one
exciton in the dot).

The time evolution of the illuminated system is governed by the hamil-
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Fig. 22.15 (a) Schematic representa-
tion of the experimental system: a co-
herent laser pulse excites Rabi oscilla-
tions between the states |0〉 and |X〉 .
(b) Conduction band edge (CB) and va-
lence band edge (VB) of the structure
in growth direction. Photon absorption
creates an electron–hole pair (exciton)
in the quantum dot. These can leave
the dot as a result of the applied elec-
tric field. (c) Cross section through the
device and electronic setup. (Zrenner
et al., 2002. Reprinted by permission
from Macmillan Publishers Ltd, copy-
right 2002.)
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tonian
Ĥ = Ĥ0 + V (t),

where
V (t) = −eEx sinωt = −eEx 1

2i
(
eiωt − e−iωt

)
.

For getting insight into the time evolution of the system, we assume that
the time-dependent Schrödinger equation governed by Ĥ0,

i�∂t |ψn(t)〉 = Ĥ0 |ψn(t)〉 ,

is solved by the basis functions

|ψn(t)〉 = |n〉 e−iωnt,

where |n〉 can be |0〉 or |X〉 , but also any other possible excitation of
the system. We can now expand the solution of the full problem

i�∂t |ψ(t)〉 = Ĥ |ψ(t)〉 (22.17)

in terms of the time-dependent basis states of the unperturbed problem,
i.e.,

|ψ(t)〉 =
∑

n

an(t) |ψn(t)〉 =
∑

n

an(t) |n〉 e−iωnt.

Inserting this Ansatz into eq. (22.17) we obtain a system of equations for
the coefficients an(t):

i�∂tam(t) = −eE
2i

∑
n

an(t)xmn

(
ei(ωmn+ω)t − ei(ωmn−ω)t

)
.
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Here, ωmn = ωm − ωn. We now assume that our laser excitation has a
frequency ω which is very close to the energy difference ωfi between the
final state |X〉 and the initial state |0〉 , i.e.,

ω = ωfi + ε.

We further assume that at time t < 0 the system is in the initial state
|0〉 . The laser excitation is switched on abruptly at time t = 0. We
now use the so-called secular approximation, which means that we only
take the coefficients ai(t) and af(t) into account. This approximation
is reasonable as long as the perturbation is small compared to other
excitations in the system. This approximation leads to the two equations

i�∂tai(t) = −eE
2i
af(t)xife

+iεt

i�∂taf(t) = +
eE

2i
ai(t)x�

ife
−iεt.

This system of equations can be solved exactly. To this end we define

ai(t) = eiεt/2bi(t) and af(t) = e−iεt/2bf(t)

and obtain

i�∂tbi(t) =
�ε

2
bi(t) −

eE

2i
xifbf(t)

i�∂tbf(t) =
eE

2i
x�

ifbi(t) −
�ε

2
bf(t).

Solving for the two coefficients gives the harmonic oscillator equation

∂2
t bi/f(t) + Ω2bi/f(t) = 0,

where

Ω =

√(
eE

2�

)2

|xif |2 +
( ε

2

)2

.

The initial condition of our problem at time zero is bi(0) = 1 and bf(0) =
0. Using the system of differential equations, we obtain for the first
derivatives ∂tbi(0) = ε/2i and ∂tbf(0) = −eEx�

if/2� and the solution of
the problem is

bi(t) = cos Ωt− iε

2Ω
sinΩt

bf(t) =
−eEx�

if

2�Ω
sinΩt.

The system is therefore described by the wave function

|ψ(t)〉 = ai(t) |0〉 e−iω0t + af(t) |X〉 e−iωXt

= eiεt/2bi(t) |0〉 e−iω0t + e−iεt/2bf(t) |X〉 e−iωXt

= eiεt/2

[
cos Ωt− iε

2Ω
sin Ωt

]
|0〉 e−iω0t

−e−iεt/2

[
eEx�

if

2�Ω
sinΩt

]
|X〉 e−iωXt.
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This describes the so-called Rabi oscillations of the excitonic system.
In the experiment, a laser pulse with a finite length tp is applied to

the system. When the laser pulse is abruptly switched off, the system
will be in the state |ψ(tp)〉 . As a result of the internal static electric
field in the system [see Fig. 22.15(b)] the exciton can decay by tunneling
of the electron and the hole into the contacts, thereby contributing to
a photocurrent. This process acts as the read-out measurement of the
qubit state. As in the case of the double quantum dot charge qubit,
the current caused by a single electron–hole pair cannot be measured.
Therefore the laser pulse is repeated with a repetition rate 1/tr. If this
rate is larger than the rate for excitonic recombination, but smaller than
the tunneling rates, a time-averaged photocurrent results which depends
on the pulse duration tp, but also on the intensity of the laser pulse given
by the strength E of the electric field. The time-averaged photocurrent
is proportional to the probability that the exciton is excited, which is
given by

Pf(t) = |af(t)|2 =
(eE/2�)2 |xif |2

(eE/2�)2 |xif |2 + (ε/2)2
sin2 Ωt.

The Rabi oscillations in this probability reach an amplitude of one if the
excitation is resonant. The amplitude of the oscillations as a function
of the detuning ε is given by a Lorentz curve. On resonance (ε = 0), we
have Ω = eE|xif |/2�, i.e. the frequency of the Rabi oscillations depends
on the power of the incident radiation (via the electric field strength E).

If the excitation is switched off after half an oscillation period, the
system is in the state |X〉 with certainty. Pulses of this duration are
therefore called π-pulses because they flip the qubit state. If the pulse
duration is only a quarter of the oscillation period, the system is in a
coherent superposition of |0〉 and |X〉 (π/2-pulse).

It is important for this experiment that the pulses have a duration
that is small compared to the decoherence time τϕ > 500 ps, the recom-
bination time τrec ∼ 1 ns and the tunneling rate given by τtunnel ∼ 10 ps
in this experiment. The pulse duration used in the experiment was
therefore only 1 ps. The repetition rate 1/tr was 82 MHz. In the exper-
iment, the population oscillations of the state |X〉 were not measured
as a function of tp, but as a function of the applied laser power. Fig-
ure 22.16 shows the first oscillation period. The decay of the oscillation
amplitude is again due to undesired decoherence mechanisms.

22.4.3 Quantum dot spin-qubits

If we envisage to use the Zeeman-split spin states of a single electron in a
quantum dot as a qubit (called a spin-qubit), a hamiltonian allowing us
to perform all conceivable unitary single-qubit operations is the Zeeman
hamiltonian (Loss and DiVincenzo, 1998)

Ĥ = −1
2
g�(t)µBσB(t) = −1

2
g�(t)µB

(
Bz Bx − iBy

Bx + iBy −Bz

)
.

(22.18)
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Fig. 22.16 Rabi oscillations of an
exciton in a self-assembled InGaAs
quantum dot. (Zrenner et al., 2002.
Reprinted by permission from Macmil-
lan Publishers Ltd, copyright 2002.)

Here we have introduced a time-dependent g-factor (meaning the effec-
tive g-factor in a semiconductor) and a time-dependent magnetic field,
in order to indicate what the parameters are that can possibly be con-
trolled externally. While it is obvious that the magnetic field can be an
externally controlled parameter in an experiment on a qubit, it is less
obvious how the g-factor can be changed in time. A proposal as to how
this can be achieved is depicted in Fig. 22.17. The basic idea here is that
the electron is confined in a carefully designed layered material system
composed of layers with different effective g-factor. The g-factor expe-
rienced by the electron can be changed in time if suitable gate voltages
allow us to shift the confined electronic wave function from one layer to
the other in a time-controlled manner.

We now aim to deduce an equation of motion for the qubit state
expressed in terms of the polarization vector P. The equation of motion

back gates magnetized or
high-g layer

heterostructure
quantum well

ee ee
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B||
ac

Fig. 22.17 Prototype of a quantum
computer as proposed by theorists.
(Burkard et al., 2000, see also Cerletti
et al., 2005. Copyright Wiley-VCH
Verlag GmbH & Co. KGaA. Repro-
duced with permission.)
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for the density matrix is the von Neumann equation

i�∂tρ̂ = [Ĥ, ρ̂] = Ĥρ̂− ρ̂Ĥ,

which is equivalent to the Schrödinger equation for wave functions. For
a two-level system like a qubit, the hamiltonian can often be written in
the form

Ĥ =
(

∆/2 t
t� −∆/2

)
,

if the energy zero is chosen appropriately. Comparing with eq. (22.18) we
find equivalence with the Zeeman hamiltonian, if we define an effective
magnetic field

Bx = (t+ t�)/g�µB, By = (t� − t)/ig�µB, Bz = ∆/g�µB.

If we explicitly work out the commutator on the right-hand side of the
von Neumann equation and introduce the polarization vector, we find(

i(BxPy −ByPx) −(Bx − iBy)Pz + (Px − iPy)Bz

(Bx + iBy)Pz −Bz(Px + iPy) −i(BxPy −ByPx)

)
,

where we have omitted the prefactor −g�µB/2. Inserting the polariza-
tion vector also on the left-hand side of the von Neumann equation, we
obtain the equations for the components of the polarization vector

�∂tPx = −g�µB(ByPz −BzPy)/2
�∂tPy = −g�µB(BzPx −BxPz)/2
�∂tPz = −g�µB(BxPy −ByPx)/2.

This can be written in short as

∂tP(t) =
g�(t)µB

2�
P(t) × B(t).

This equation is called the Bloch equation. It corresponds to the classical
equation of motion of a magnetic moment in an external magnetic field.
For example, if the field B and g� are constant in time, this equation
describes the Larmor precession. In our context, it is the equation of
motion for a qubit under the influence of a very general, possibly time-
dependent, hamiltonian. Indeed, we could have described the free oscil-
lation of the qubit in terms of Bloch’s equation with a time-independent
B and g�. We could also have described the Rabi oscillations of the ex-
citonic qubit in terms of Bloch’s equation, by choosing the appropriate
time-dependent effective magnetic field. If we have a real magnetic field
with the time dependence

B(t) =

⎛
⎝ 0

0
B0

⎞
⎠+

⎛
⎝ B1 cos(ωt)

B1 sin(ωt)
0

⎞
⎠ ,

and g� is independent of time, i.e., there is a static field in z-direction of
strength B0 and a field rotating in the x-y plane with angular velocity
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ω, then Bloch’s equation describes the magnetic resonance phenomenon.
These few examples show the versatility of Bloch’s equation for the de-
scription of the time evolution of a single qubit.

Inelastic relaxation and decoherence can be included in an extended
version of the Bloch equation in an empirical way by regarding it as a
kind of rate equation for P. To this end we introduce relaxation times
T1 and T2 and write the equation of motion

∂tP(t) =
g�(t)µB

2�
P(t) × B(t) +

⎛
⎝ −Px/T2

−Py/T2

−(Pz − P
(0)
z )/T1

⎞
⎠ .

In order to get insight into the meaning of the relaxation times and the
new parameter P (0)

z , we consider the simple example of B = (0, 0, B0).
The stationary solution (∂tP = 0) of the extended Bloch equations is
P = (0, 0, P (0)

z ). This stationary solution describes the equilibrium state
of the qubit. For example, consider the qubit to interact with a heat
bath at temperature T . The ratio of the occupation probabilities p0 and
p1 of the two Zeeman split levels in thermodynamic equilibrium of the
qubit with the bath is given by

p0

p1
= e−∆/kBT ,

and Pz = 2p0 − 1 = 1 − 2p1. For very low temperatures kBT � ∆,
p0 → 0 and p1 → 1. The stationary ground state of the qubit is therefore
P = (0, 0,−1). If we start at time t = 0 with the qubit in the state
P = (1, 0, 0) (meaning p0 = 1 and p1 = 0, qubit energy ∆/2) the
qubit is not in thermal equilibrium with the bath. According to the
extended Bloch equation, the polarization vector will decay according
to P(t) = (0, 0, 2e−t/T1 − 1) into the thermal ground state (meaning
p0 = 0 and p1 = 1, qubit energy −∆/2). Doing this, the qubit loses
the energy ∆. The relaxation time T1 is therefore called the inelastic
relaxation time.

If the temperature of the thermal bath is kBT � ∆, p0/p1 → 1 and
the stationary ground state of the qubit is the completely mixed state
P = (0, 0, 0). If we start at time t = 0 again with the qubit in the state
P = (1, 0, 0), the qubit is again not in thermal equilibrium with the bath
and the polarization vector will decay according to the extended Bloch
equation as P(t) = (0, 0, e−t/T1) into the thermal ground state.

In order to see the meaning of T2 we assume a situation where T1 is
very long, i.e., T1 → ∞. In this case, the z-component of the relaxation
term in the extended Bloch equation is zero, i.e., there is no inelastic
relaxation. We further assume that B = (0, 0, B0) is time-independent
and that we start the qubit in the superposition state P = (1, 0, 0) at
t = 0. This is the case of the free qubit oscillation. For this direction of
the magnetic field, the z-component of P will be stationary, i.e., Pz = 0
for all times. The problem therefore reduces to the determination of



516 Quantum information processing

Fig. 22.18 Device designed for the
spin-resonance experiment. (a) The
double quantum dot defined in a first
step on a Ga[Al]As heterostructure
with a two-dimensional electron gas
by the deposition of suitably shaped
metallic top gates. (b) After covering
the double quantum dot structure with
a thin insulator, the shortcutted end
of an RF stripline is deposited above
the double dot. (Koppens et al., 2006.
Reprinted by permission from Macmil-
lan Publishers Ltd, copyright 2006.)
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Px(t) and Py(t). The corresponding equations are

∂tPx = ω0Py − Px/T2

∂tPy = −ω0Px − Py/T2,

where ω0 = g�µBB0/2�. We find the characteristic equation of this
system of differential equations with the Ansatz P = P0e

iωt and get the
solutions ω± = ±ω0 + i/T2. The corresponding eigenvectors are (1, i)
for + and (1,−i) for −. The general solution can therefore be written
as

P(t) =
[
A

(
1
i

)
eiω0t +B

(
1
−i

)
e−iω0t

]
e−t/T2 ,

with coefficients A and B to be determined from the initial condition at
t = 0. They are found to be A = 1/2 and B = −1/2 resulting in

P(t) =
(

cosω0t
− sinω0t

)
e−t/T2 .

The qubit rotates in the equatorial plane of the Bloch sphere with an-
gular velocity ω0 while the length of the polarization vector |P| decays
exponentially with time constant T2. This decay means an exponential
decay of the off-diagonal elements of the density matrix and is therefore
called the decoherence time. The final state at large times is given by
P = (0, 0, 0), i.e., by the completely mixed state.

Although an electron spin resonance experiment on an electron in
a single quantum dot is conceptually straightforward, it has not been
realized so far. However, experiments on double quantum dot devices
exist in which electron spin resonance was observed in the spin-blockade

h = g* BB

E (1,1)T+

(1,1)T

h = g* BB

Fig. 22.19 Energy levels of a two-
electron double quantum dot under
the influence of an external magnetic
field B and a small (random) nuclear
magnetic field. The latter mixes the
(1, 1)T0 and the (1, 1)S states into | ↑↓〉
and | ↓↑〉 . The spin resonance transi-
tions are indicated by arrows.

regime. The corresponding device is shown in Fig. 22.18. The double
quantum dot device is realized on the basis of a two-dimensional electron
gas in a remotely doped Ga[Al]As heterostructure by depositing suitable
metallic top gates [see Fig. 22.18(a)]. The whole structure is then covered
with a thin insulator on which a metallic radio-frequency (RF) strip-
line is fabricated. The strip line ends with a short above the quantum
dot [see Fig. 22.18(b)]. If an RF voltage is applied to the strip-line, an
alternating current flows through the short and creates an alternating
magnetic field at the position of the double dot.
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Fig. 22.20 Electron spin resonance
measured in the double quantum dot
device shown in Fig. 22.18. The sys-
tem is tuned in the spin-blockade.
The resonant microwave field lifts the
spin-blockade and a finite current is
detected. (Koppens et al., 2006.
Reprinted by permission of Macmillan
Publishers Ltd, copyright 2006.)

The system is adjusted in a situation with negative detuning and fi-
nite static magnetic field parallel to the sample surface [see Fig. 19.8(b)]
where the states (1, 1)S and (1, 1)T0 are still degenerate, but (1, 1)T+ and
(1, 1)T− are Zeeman split-off. The energy levels are shown in Fig. 22.19
as a function of magnetic field. In the spin-blockade situation, the sys-
tem gets stuck either in the (1, 1)T− or in the (1, 1)T+ state. A mag-
netic field oscillating with a frequency ω close to resonance (i.e., the
Zeeman energy) couples these states with the (1, 1)T0 state. This state
is mixed with the (1, 1)S state by a small randomly oriented magnetic
field originating from the nuclear spins in the two quantum dots (see
discussion on page 418). As a consequence, the spin-blockade is lifted by
the application of a resonant RF signal on the strip-line, and a transport
current can be detected. The result of the corresponding measurement
is shown in Fig. 22.20. The resonance frequency increases linearly with
magnetic field, as expected from the resonance condition �ω = g�µBB.
The frequency-independent peak in the current around zero magnetic
field is a result of the singlet–triplet mixing caused by the nuclear field.

The same experimental setup can also be used for a measurement
of coherent Rabi oscillations if the alternating magnetic field is pulsed.
To this end, the system is prepared in the spin-blockade, where it can
be described as a statistical mixture of (1, 1)T+ and (1, 1)T− . The RF
magnetic field pulse leads to Rabi oscillations with (1, 1)T0 . Depending
on the duration of the pulse, the system ends up in any superposition
of the two. The measurement is performed by detecting the average
current created by a large sequence of RF pulses. The result of such a
measurement is shown in Fig. 22.21. As expected, the measured current
oscillates as a function of pulse duration, and the oscillation frequency
depends on the applied RF power, giving larger frequencies for larger
power.
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Fig. 22.21 Rabi oscillations measured
as a function of RF pulse duration
(burst time) and RF power. (Koppens
et al., 2006. Reprinted by permission
of Macmillan Publishers Ltd, copyright
2006.)
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Later experiments (Nowack et al., 2007) have shown that coherent
oscillations between Zeeman-split spin states in the spin-blockade situ-
ation can also be induced by applying RF voltages to one of the gate
electrodes. This phenomenon is called electrically driven spin resonance
(EDSR). It is believed that the orbital motion of the electron induced by
the electric field translates into an effective magnetic field via spin–orbit
interaction.

Two electrons in a double quantum dot as a two spin-qubit
system

The controlled manipulation of a two-electron double quantum dot al-
lows us to perform a two-qubit operation on the two electron spins
called a swap operation (Petta et al., 2005). For explaining the se-
quence of steps required for the swap operation, we use Fig. 19.8(b). A
magnetic field splits the three (1,1) triplet states into (1, 1)T+ , (1, 1)T0 ,
and (1, 1)T− . In the first step the system is initialized in the (0, 2)S spin
singlet ground state. In the second step, the detuning is quickly swept
slightly beyond the crossing of the (0, 2)S and the (1, 1)T− states in or-
der to avoid an uncontrolled spin flip at the crossing point. In the third
step, the detuning between the two dots is further increased adiabati-
cally, i.e., slowly, such that the system evolves into the region where the
(1, 1)S state is degenerate with the (1, 1)T0 state. The adiabatic change
of δ allows the spins to align along the nuclear magnetic field and to form
the ground state | ↑↓〉 which is a superposition of (1, 1)S and (1, 1)T0 .
Once the system is settled in this state, pulsing the detuning close (but
not beyond) the (1, 1)T− state for a finite time t leaves the system in this
superposition, but the two components have energies differing by a finite
amount ∆(δ). This is the situation in which free oscillations between
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Fig. 22.22 Free oscillations between
the the (1, 1)S and the (1, 1)T0 state
for the energy splitting ∆(δ) decreasing
from a to d (Petta et al., 2005).

the two superimposed states occur in close resemblance to eq. (22.16).
A relative phase ∆(δ)t/� develops over time. If the dwell time at this
detuning is chosen to be tE = π�/∆(δ) (π-pulse), the spins have evolved
from | ↑↓〉 to | ↓↑〉 . This is the desired swap operation of the two spins.
The spin state can be read out with a charge detector by going through
steps one to four in reverse order after this pulse. The detected occupa-
tion pS of (0, 2)S is maximum after a 2π-pulse, while a π-pulse leads to
minimum occupation of this state. Therefore pS is found to oscillate as
a function of pulse duration t, as depicted in Fig. 22.22.

Further reading

• Books on classical information and computation:
Brillouin 1956; Feynman 1996; Cover and Thomas
1991.

• Paper on statistical mechanics and information:
Jaynes 1957.

• Books on quantum information and computation:
Williams and Clearwater 1997; Lo et al. 1998;
Nielsen and Chuang 2000; Vedral 2006; Mermin
2007.

• Lecture notes on quantum information and compu-
tation: Berthiaume 1997; Preskill 1998; Ekert et al.
2001.

• Reviews of quantum information and computation:
Steane 1998.

• Quantum information with spins in quantum dots:
Burkard et al. 2000; Cerletti et al. 2005.

• Einstein–Podolsky–Rosen paradox and Bell in-
equalities: Bell 1964; Aspect 2002.
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Exercises

(22.1) In this exercise you work on a data compression
problem. We consider an information source which
randomly picks letters from the string physics
is good for you and forms a stream of these
letters without spaces. An example would be
emitter→pyokosuphgo. . .→receiver. How many
bits are required to save the data stream if

(a) each letter is encoded with four bits,

(b) the letters are encoded with an optimized bit
sequence,

(c) the limit of the Shannon entropy could be
reached?

Discuss how many qubits would be needed to save
the data stream. Write down the letters and the
corresponding codes in a table and calculate in all
cases the Shannon entropy. Hint: For the decoding
process, the receiver must know when a new letter
begins. What are the implications for a sequence of
numbers without spaces? Emitter and receiver can
use certain rules that they agree on beforehand.

(22.2) A density matrix ρ describes the statistical state
of a quantum system. The need for a statistical
description arises when one considers either an en-
semble of systems or one system when its prepa-
ration history is uncertain. The expectation value

〈A〉 of any observable A can be calculated using the
density matrix. It is given by

〈A〉 = Tr[ρA].

(a) The ensemble is in the state |ψ〉 . Give an
explicit expression of the density matrix in
Dirac notation.

(b) The state |ψ〉 can be expanded in eigenstates
of the observable A, |ψ〉 =

�
n an |n〉 , where

〈n|m〉 = δnm. Give an alternative expression
for ρ using the eigenstates of A.

(c) The probabilities pn = |an|2 can be used to
specify the von Neumann entropy S,

S = −
�

n

pn log2 pn.

This relation is in close analogy to the Shan-
non entropy in information theory. Express S
in terms of the density matrix.

(d) What is the von Neumann entropy of a pure
state? How does a unitary transformation
(the time evolution of a quantum system)
change the entropy? How do you interpret
the result in the light of reversibility?



Fourier transform and
Fourier series A
A.1 Fourier series of lattice periodic

functions

Let u(r) = u(r + R) be a lattice periodic function. Its expansion in a
Fourier series is

u(r) =
∑
K

cKe
iKr

with

cK =
1
V0

∫
UC

d3r u(r)e−iKr,

where the space integration has to be taken over the unit cell (UC) with
volume V0, and K is a vector of the reciprocal lattice.

A.2 Fourier transform

The Fourier transform of a function is given by

U(r) =
∫

d3k

(2π)3
U(k)eikr

with the inverse transform

U(k) =
∫
d3r U(r)e−ikr.

A.3 Fourier transform in two dimensions

In two dimensions the Fourier transform of a function is given by

U(r) =
∫

d2k

(2π)2
U(k)eikr

with the inverse transform

U(k) =
∫
d2r U(r)e−ikr.
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If the function U(r) possesses radial symmetry, i.e. it depends only on
r = |r|, then

U(k) =
∫ ∞

0

dr rU(r)
∫ 2π

0

dϕ e−ikr cos ϕ = 2π
∫ ∞

0

dr rJ0(kr)U(r),

and correspondingly for the inverse transform

U(r) =
1

(2π)2

∫ ∞
0

dk kU(k)
∫ 2π

0

dϕ eikr cos ϕ

=
1
2π

∫ ∞
0

dk kJ0(kr)U(k).

We talk about the Fourier–Bessel expansion, because the J0(kr) are
Bessel functions.

Fourier transform of the Coulomb potentials. The two-dimen-
sional Fourier transform of the Coulomb potential

U(r, z) =
1√

r2 + z2

is given by

U(k) = 2π
∫ ∞

0

dr rJ0(kr)
1√

r2 + z2
=

2π
k
e−kz.



Extended Green’s theorem
and Green’s function B
B.1 Derivation of an extended version of

Green’s theorem

In order to solve eq. (7.1) formally, we need an extended version of
Green’s theorem which we will derive in the following (Smythe, 1939):
let φ, ε, and ψ be any scalar functions of the space coordinates r. Then

∇ [φε∇ψ] = φ∇ [ε∇ψ] + ∇φε∇ψ.
Application of Gauss’s integral theorem leads to∮

S

ds [φε∇ψ]n =
∫

V

dV {φ∇ [ε∇ψ] + ∇φε∇ψ} .

Here n is the outer normal of the surface element ds. Interchanging ψ
and φ, we obtain the relation∮

S

ds [ψε∇φ]n =
∫

V

dV {ψ∇ [ε∇φ] + ∇ψε∇φ} .

The difference of the two latter equations is∮
S

ds [ψε∇φ− φε∇ψ]n =
∫

V

dV {ψ∇ [ε∇φ] − φ∇ [ε∇ψ]} . (B.1)

This is the desired extended version of Green’s integral theorem.

B.2 Proof of the symmetry of Green’s
functions

Green’s function has the property

G(r1, r2) = G(r2, r1).

In order to prove this (Meetz and Engl, 1980) we replace in eq. (B.1) ψ
by G(r1, r2), ε by ε(r)ε0, and φ by G(r1, r3). We obtain∮

S

ds1 [G(r1, r2)ε(r1)ε0∇1G(r1, r3) − G(r1, r3)ε(r1)ε0∇1G(r1, r2)]n

=
∫

V

dV1 {G(r1, r2)∇1 [ε(r1)ε0∇G(r1, r3)]

− G(r1, r3)∇1 [ε(r1)ε0∇1G(r1, r2)]} .
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As a result of the boundary conditions for Green’s function, the surface
integral on the left-hand side gives zero. The right-hand side simplifies
if we consider the definition of Green’s function. We obtain

0 =
∫

V

dV1 {G(r1, r2)δ(r1 − r3) −G(r1, r3)δ(r1 − r2)}

= G(r3, r2) −G(r2, r3).

This completes the proof of the symmetry of Green’s function with re-
spect to interchanging the two arguments.



The delta-function C
Dirac’s delta function is a generalization of the Kronecker-symbol

δnm =
{

0 for m �= n
1 for m = n

.

Formally,

δ(x− y) =
{

0 for x �= y
∞ for x = y

.

However, the integral of the delta function gives∫ +∞

−∞
δ(x− y)dx = 1.

The delta function can be represented as the limiting case of integral
operators. For example,

δ(x− y) =
1
π

lim
k→∞

sin[k(x− y)]
x− y

=
1
π

lim
ε→0+

ε

(x− y)2 + ε2
.

Furthermore,

lim
ε→0+

1
x− y ± iε

= P
1

x− y
∓ iπδ(x− y).

Fundamental properties of the delta function are

δ(x) = δ(−x)
δ(ax) =

1
|a|δ(x)

δ(f(x)) =
∑

n

1
|f(xn)|δ(x− xn), where f(xn) = 0

f(x)δ(x− a) = f(a)δ(x− a)∫
δ(x− y)δ(y − a)dy = δ(x− a)

δ(x) =
1
2π

∫ +∞

−∞
eikxdk.

In cases where derivatives of the delta functions appear, the following
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rules can be applied:∫ +∞

−∞
δ(n)(x)f(x) = (−1)nf (n)(0)∫ +∞

−∞
δ′(x)f(x) = −f ′(0)

δ′(x) =
i

2π

∫ +∞

−∞
keikxdk.
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galvanomagnetic effects, 145
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Gauss distribution, 473
gaussian noise, 431
gaussian probability distribution, 431
gaussian white noise, 431
generalized Onsager relation, 209
geometric phase, 236, 239, 241, 242
germanium, 8, 11, 13

band gap, 7
band structure, 31
condution band minima, 39
spin–orbit interaction, 30
spin-orbit split off band, 31

graphene, 23, 309
band structure near K, 40
band structure, 27
bond length, 24
conductivity, 171
crystal structure, 24
density of states, 41
Drude–Boltzmann theory, 172
field effect, 171
first Brillouin zone, 24
k.p-theory, 40
mechanical exfoliation, 93
minimum conductivity, 173
quantum dots, 347
quantum Hall effect, 321
single layer, 93
tight-binding approximation, 23

graphite, 24
mechanical exfoliation, 93
single layer, 93

Green’s function, 96, 106, 118, 126
Green’s integral theorem, 96
group velocity, 157, 178, 293

H-function, 488
H-theorem, 488
Hall angle, 148, 150, 153, 159
Hall bar, 151, 153, 288, 306

current distribution, 151
direction of current, 148
direction of electric field, 148
fabrication, 89

Hall coefficient, 145
three dimensions, 146
two dimensions, 146

Hall effect, 145, 293
in gold, 145

Hall resistance, 298
Hall resistivity, 149, 161, 288
Hall voltage, 145, 149
harmonic oscillator, 289, 290, 359, 367,

511
Hartley function, 471
Hartree approximation, 105, 106, 109,

110, 119, 202, 372, 374
Hartree potential, 107, 112, 119, 120, 189
Hartree–Fock approximation, 105, 106,

112, 372

heavy holes, 46
Heisenberg equation, 388
Heisenberg uncertainty relation, 274, 348
Hermann–Weisbuch parameters, 44
heterostructure, 75, 105, 115

capacitance, 118, 121
depletion, 79
Fang–Howard variational approach,

118
field effect, 79, 81
parallel plate capacitor model, 79
quantization energy, 121
remote doping, 75

Hilbert space, 498
hopping transport, 309
Hund’s rules, 375
hydrogen-like impurity, 57, 72
hyperfine interaction, 284, 418, 517
hypothesis testing, 482

IDENTITY operation, 494, 506, 509
image charge potential, 105
impurity

hydrogen-like, 57
indirect semiconductor, 33
indium arsenide, 8, 11

band edge parameters, 45
band gap, 7
band structure, 31
effective mass, 37
self-assembled quantum dots, 83, 348
spin–orbit split off band, 31

induced charge on gate electrode, 98
induced electron density, 123
inelastic cotunneling, 401
inelastic relaxation, 190
inelastic relaxation time, 515
inelastic scattering length, 181
information, 469

analog, 469
and correlation, 480
and physics, 469
and thermodynamics, 488
and uncertainty, 470
bit, 471
classical, 470
data compression, 475
digit, 471
digital, 469, 497
energy dissipation, 492
environment, 478
Hartley entropy, 471
loss, 475, 479, 487
mutual, 477, 480, 484, 487, 488
noise, 475
probability, 470
probability distribution, 473
processing, 469
quantum, 470, 496
Shannon entropy, 473

speed of light, 475
storage, 490

information entropy, 488
insulating behavior, 277, 278
insulator, 303
insulators, 6
interaction parameter, 108, 338
interaction picture, 387
interband optical absorption, 49
interband optical emission, 49
interfaces, 65
interference, 225, 226, 250, 254, 331, 461,

462
double slit experiment, 225
photons, 225
spin, 239

interferences, 502
intersubband scattering, 162, 164, 166
intrasubband scattering, 166
inversion symmetry, 30
Ioffe–Regel criterion, 272
ionized donor scattering, 162
ionized impurities, 96
ionized impurity scattering, 162, 165

jellium model, 73, 116, 122
Johnson–Nyquist noise, 434
joint entropy, 477, 481
joint probability, 478

k.p-theory, 33
band edge parameters, 35, 43
effective g-factor, 45
effective mass, 36
extended Kane model, 44
Luttinger parameters, 44
spin–orbit interaction, 42

kinetic energy, 105, 107
Kirchhoff’s current law, 143, 201, 206
Kirchhoff’s voltage law, 143
Knudsen cell, 15
Kohn anomaly, 124
Kohn singularity, 124, 128–130
Kondo cloud, 403
Kondo effect, 403

unitary limit, 404
Kondo temperature, 403, 404
Koopman’s theorem, 373, 376

Landau fan, 291
Landau level, 290, 291, 293, 300, 307

density of states, 294
energy dispersion, 311

Landau level broadening, 293, 295
Landau level degeneracy, 291
Landauer’s principle, 490, 492, 493
Landauer’s resistivity dipole, 189
Landauer–Büttiker formalism, 202, 204,

212, 232, 312, 386
Laplace equation, 100
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Larmor frequency, 284
Larmor precession, 514
lattice constant, 11, 16, 17, 63
Laughlin–Jastrow factor, 324
LDA, 107
LEC method, 15
length scales, 279
lever arm, 350, 352, 364, 374
lifetime broadening, 275
lift-off technique, 89
light emitting diodes, 49
light holes, 46
likelihood, 483
likelihood ratio, 482
Lindhard’s dielectric function, 126, 336
linear conductance, 341
linear response, 158, 180, 184, 187, 199,

203
linear transport, 211
liquid phase epitaxy, 17
local anodic oxidation, 88, 91
local density approximation, 106, 107
localization, 272, 301, 303

by interaction, 304
length, 273, 275, 278, 279
scaling theory, 275
strong, 272, 274, 276, 279
weak, 265, 266, 279

logic operations
complete set, 494, 496, 505
reversible, 495

Lorentz approximation, 378, 459
Lorentz force, 146, 158, 215, 228, 230
lorentzian density of states, 294
low-pass filter, 432
LPE, 17
Luttinger parameters, 44

Mach–Zehnder interferometer, 330, 461,
465

magnetic field, 208
magnetic flux quantum, 179, 227, 289,

459
magnetic flux tube, 228
magnetic focusing, 215, 218
magnetic length, 289
magnetic moment, 138

electron, 27
in an electric field, 29, 243

magnetic resonance, 515
magnetic steering, 213
magnetocapacitance, 297, 298
magnetoresistance, 287, 298
magnetoresistivity, 300
mask, 88
mass inversion, 71
Maxwell equations, 151
Maxwell’s demon, 490
MBE, 15, 83, 84, 163
mean free path, 161, 176, 191, 212, 272

measurement, 252, 461
and communication, 491
qubit, 498

mesa, 89
mesoscopic systems, 4, 280
metal organic vapor phase epitaxy, 85
metal–insulator transition, 277
metal–semiconductor interface, 77
metal-organic chemical vapor deposition,

17
metallic behavior, 277
metals, 6

alloying, 81
eutectic mixture, 81
evaporation, 88
ohmic contacts, 80
Schottky contacts, 77

Miller indices, 11
miniaturization, 1
mobility, 148, 163, 307

determination, 150, 155
edge, 303

MOCVD, 17
mode mixing, 187
molecular beam epitaxy, 15, 83, 84, 163

cleaved-edge overgrowth, 85
self-assembling growth, 83
Stranski–Krastanov growth mode, 84

Moore’s law, 3
MOVPE, 85
mutual information, 477, 480, 484, 487,

488
MWNT, 87

NAND operation, 494
nanotubes, 87
nanowhisker, 86
nanowire, 85

heterostructure, 86
neutral defect scattering, 162
Newton’s equation, 146
noise, 254

in communication, 476
power spectral density, 487

noise current, 428
noisy channel capacitance, 488
noisy channel capacitance theorem, 487
nonequilibrium current, 179
nonlinear screening, 134
NOR operation, 494
NOT operation, 494, 509
Nyquist formula, 255

odds ratio, 482
Ohm’s law, 143, 149, 151, 169, 201
ohmic contacts, 77, 80, 90, 151, 213
one-dimensional channel, 110
one-dimensional modes, 111, 175
one-qubit operations, 505
Onsager relation, 209

open systems, 212
optical phonon scattering, 162
OR-operation, 494
organic semiconductors, 8
Overhauser field, 418

parabolic cylinder functions, 186
parabolic quantum wells, 71
parallel plate capacitor, 79
partitioning, 441, 465, 466
Pauli matrices, 27, 135, 501
Pauli notation, 474, 500
percolation, 135, 304
periodic table of elements, 9
phase, 250

spin–orbit induced, 246, 249
spin–orbit interaction induced, 244
uncertainty, 254

phase rigidity, 233
phase-coherence, 226
phase-coherence length, 256, 260, 267,

268, 279
ballistic, 255

phase-coherence time, 255, 256, 268, 464
phase-coherent backscattering, 281
phonons, 267
photolithography, 88

resolution, 89
photoluminescence, 150
photoresist, 88

image reversal, 88
negative, 88
positive, 88

piezoelectric scattering, 162
pinning of the Fermi level, 76, 79
plunger gate, 341
PMMA, 89
Poisson distribution, 437
Poisson equation, 74, 79, 95, 107, 109,

112, 126
Poisson’s summation formula, 295
polarizability, 123
polarization function, 124, 336
polarization vector, 28, 501, 513
potential fluctuations, 105, 122, 273, 303

mean amplitude, 132
power spectral density, 431, 487
prepatterned substrate, 84
primary thermometer, 435
probability, 470

amplitude, 226, 265
probability distribution, 474, 498
pseudomorphic layer, 63
pseudopotential method, 21

diamond lattice, 22
gallium arsenide, 23
silicon, 23
zincblende lattice, 22

pulse response function, 431

quantum billiard, 218
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quantum capacitance, 118
quantum communication, 226
quantum dot, 83, 85, 91, 105, 341, 465,

509
artificial atom, 361
as charge detector, 345
as Fabry–Perot interferometer, 377,

465
bias window, 351
capacitance model, 355
center of mass excitations, 367
charging energy, 346, 356, 359, 374
chemical potential, 356
coherent transmission, 459
conductance peak separation, 357
conductance resonances, 349
configuration interaction, 376
confinement energy, 346
constant interaction model, 375
correlation effects, 377
cotunneling, 398
Coulomb blockade, 351, 386
Coulomb blockade diamonds, 351, 357
current–voltage characteristic, 395
elastic cotunneling, 399
electrochemical potential, 350, 356, 374
electronic transport, 377
electrostatic energy, 345
electrostatic potential, 356
energy level spectroscopy, 360, 364
exact diagonalization, 376
excitations, 367
excited state spectroscopy, 353
Fano effect, 456
few-electron, 360, 362
Fock–Darwin model, 359, 361, 362
Hartree approximation, 372
Hartree–Fock approximation, 372
helium, 366, 402
Hund’s rules, 375
inelastic cotunneling, 401
Kondo cloud, 403
Kondo effect, 403
Kondo temperature, 403, 404
lateral, 362
lever arm, 350, 352, 356, 358, 364, 374
Lorentz approximation, 378
rate equations, 387, 392, 393
reflection amplitude, 454
resonant tunneling, 377
ring-shaped, 363
separation of conductance resonances,

351
sequential single-electron tunneling,

351
sequential tunneling, 387
shell structure, 361
side coupled to quantum point contact,

453
single particle level spacing, 347, 359

single-level transport, 397, 398
singlet state, 367, 371
singlet–triplet splitting, 417
spin, 375
spin blockade, 422
spin excitations, 367
spin states, 365
stationary occupation statistics, 394
triplet state, 368, 371
tunneling rate, 380
two-electron, 366
two-state model, 394
vertical, 360
Wigner parameter, 369

quantum dot molecule, 415
quantum Hall effect, 2, 465

at room temperature, 322
bulk models, 309
compressible and incompressible

stripes, 319
conditions for observation, 309
edge states, 310, 311
equilibrium currents, 319
fractional, 322
graphene, 321
Hall resistance plateaus, 306
integer, 305
Landauer–Büttiker description, 311,

315
phenomenology, 306
precision, 306
resistance standard, 307
self-consistent screening, 318
suppression of backscattering, 311
temperature dependence, 308
thermal activation, 308
toy model, 315
two-terminal resistance, 313

quantum information, 226, 496
quantum information processing, 417
quantum lifetime

determination, 300
quantum limit, 68, 71, 124, 125, 127, 139,

290
quantum point contact, 91, 105, 175,

204, 212, 213, 341, 344, 453
adiabatic approximation, 182
as beam splitter, 332
as charge detector, 344, 357, 465
as spin filter, 217
Fano resonances, 453
nonideal conductance, 188

quantum ring, 92, 227, 236, 244, 247,
250, 363

Fano effect, 457
p-type, 249

quantum well
density of states, 69
envelope function, 71
for electrons, 66

for holes, 70
parabolic, 71

quantum wire, 85, 100
Hartree approximation, 110
ideal, 177
quantized conductance, 175
transverse modes, 177
with single mode, 220

quasi-ballistic systems, 280
qubit, 29, 425, 497, 498
π-phase shift, 506
Bloch sphere, 501
charge qubit, 507
density matrix, 501
Dirac notation, 498
double quantum dot, 516
entanglement, 500
evolution according to Bloch equation,

515
exciton qubit, 509
flip, 506, 509
free oscillation, 507
measurement, 498
operations, 505
Pauli notation, 500
polarization, 501
Rabi oscillations, 509
read-out, 509, 512
reduced density matrix, 504
relaxation times, 515
rotation, 506
spin-qubit, 512
SWAP operation, 518
two-qubit states, 504
Walsh–Hadamard transformation, 506

Rabi oscillations, 509, 512
Raman spectroscopy, 138
random phase approximation, 126
random telegraph noise, 428
Rashba coefficient, 136, 246
Rashba field, 245, 247
Rashba spin–orbit interaction, 244
Rashba term, 135
rate equation, 387
rate equations, 515
reciprocal lattice, 19
reciprocal lattice vector, 19

fcc-lattice, 19
reduced charge, 367
reduced density matrix, 393
reduced mass, 367
reflection

amplitude, 194, 202
coefficients, 207
probability, 194, 203, 206, 209, 255

relative entropy, 482, 484
relaxation time approximation, 158
remote doping, 72, 74, 163

heterostructure, 75
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resistance, 143
between two points in a plane, 154
nonlocal, 215
quantized, 175
quantum, 306, 345, 348

resistivity dipole, 189
resistivity, specific, 5

tensor components, 149, 160
three dimensions, 144
two dimensions, 144

resonant tunneling, 377
Lorentz approximation, 378
two delta barriers, 381

reversibility
logic operations, 495
logical vs. thermodynamic, 495

RHEED, 16
Rydberg energy, 58, 140

S-matrix, 205, 206
and T-matrix, 207
for wire with single mode, 207
symmetry in magnetic fields, 208
unitarity, 206

saddle point model, 185
sampling theorem, 484
SAQDs, 83
scaling function, 276
scaling parameter, 276
scaling theory of localization, 275
scanning force microscope, 91
scanning tunneling microscope, 193, 195,

199, 314
scattering, 301
scattering cross-section, 170
scattering matrix, 205, 206
scattering mechanisms, 161
scattering rate, 168, 294
scattering states, 202
scattering time, 145–147, 149, 150, 158,

160, 165, 168, 170
electron density dependence, 169

Schottky barrier, 78, 122
Schottky contacts, 77, 509
Schottky formula, 438, 445
Schrödinger equation

effective mass approximation, 56
of the crystal, 19
variational approach, 119

screening, 98, 105, 168, 301
due to gate electrodes, 105
effect on impurity scattering, 168
linear, 125
nonlinear, 134
point charge, 131
single point charge, 128
within the electron gas, 122, 335

secular approximation, 511
self-assembled quantum dots, 83, 509

ordering, 85

self-assembling growth, 83
self-capacitance, 346
self-consistent Born approximation, 294,

295
self-consistent calculation, 108, 110, 189
self-consistent Schrödinger equation, 107
self-energy shift, 198
self-organized growth, 83
semiconductor, 5
semiconductor laser, 49
sequential tunneling, 351
shallow acceptors, 72
shallow donors, 72
Shannon entropy, 473, 475, 488
sheet doping, 73
shot noise, 427, 436, 444, 464, 466

classical, 438
Shubnikov–de Haas effect, 138, 287, 288,

298, 300, 305
signal-to-noise ratio, 477, 478, 481, 487,

488
silicon, 8, 11

band gap, 7
band structure, 31
conduction band dispersion, 38
conduction band minima, 38
fabrication, 11
inversion layer, 307
pseudopotential method, 23
purity, 13
Schottky barrier heights, 78
spin–orbit interaction, 30
spin–orbit split off band, 31

single-electron tunneling, 351
single-particle approximation, 106
single-particle confinement potential, 105
singlet state, 417
Slater determinant, 112, 326
source, 213
spectral density, 428–430
spherical approximation, 34
spin, 27, 365

as qubit, 498
Bir–Aronov–Pikus mechanism, 284
Bloch sphere, 28, 238
blockade, 422, 425, 517
D’yakonov–Perel mechanism, 283
degeneracy, 307
degeneracy in semiconductors, 30
diffusion, 281
electrically driven resonance, 518
electron spin resonance, 516
Elliott–Yafet mechanism, 284
excitations in a double dot, 417
filter, 217
hyperfine interaction, 418
in a static magnetic field, 28
in magnetic field gradient, 29
in quantum ring, 236
in rotating magnetic field, 241

interference, 239
operator, 27
Pauli matrices, 27
Pauli notation, 28
polarization, 218
polarization vector, 28
precession, 284, 419
qubit, 516
rotation operator, 281
scattering mechanisms, 283
selectivity, 217
singlet, 367, 371, 403
skew scattering, 283
spin–orbit interaction, 30
triplet, 368, 371
Zeeman energy, 28
Zeeman hamiltonian, 28

spin coating, 89
spin singlet, 423
spin triplet, 423
spin–orbit interaction, 30, 135, 243, 244,

280, 284, 518
BIA, 31, 135
bulk inversion asymmetry, 31, 135
Dresselhaus contribution, 31, 135
effect on band structure, 30
effective conduction band hamiltonian,

44
effective magnetic field, 136
experiments, 138
Rashba term, 135
SIA, 135
structure inversion asymmetry, 135
two-dimensional electron gas, 135
within k.p-theory, 42

spin–orbit relaxation length, 282
spin–orbit relaxation time, 281
spin–orbit split-off band, 31, 135
spin-galvanic photocurrent, 138
spinner, 89
spinor, 28, 236, 245, 500
split-gate, 91, 100, 105, 177, 213, 341
STM, 199
strain, 63, 83
Stranski–Krastanov growth mode, 84
structure factor, 22
subband, 68

energies, 68
states, 68

sum rule for conductance coefficients,
201, 205

surface, 76
charges, 95, 102
depletion, 77
reconstruction, 76
resonances, 76
states, 76

surface roughness scattering, 162
SWAP operation, 496, 518
SWNT, 87
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Szilard’s engine, 490

T-matrix, 205, 207
and S-matrix, 207

ternary compounds, 8, 63
textured magnetic field, 236, 245, 247
thermal averaging, 235
thermal length, 261
thermal noise, 427, 434, 444
thermal occupation of states, 47
thermionic emission, 80, 437
thermodynamic density of states, 298,

300
thermodynamics

and information, 488
second law, 490–492

Thomas factor, 30, 244
Thomas precession, 30
Thomas–Fermi approximation, 106, 112,

125, 127, 129
Thomas–Fermi screening length, 128, 140
Thomas–Fermi wave vector, 128
Thouless energy, 263, 273, 274
Thouless number, 274
tight-binding approximation, 23
time-reversal invariance, 208
time-reversal symmetry, 30, 265
time-reversed paths, 233, 265
top-down approaches, 83
transfer hamiltonian, 200
transfer matrix, 194, 205, 207
transistor, 1, 3
transmission, 182

amplitude, 185, 194, 202, 256, 459
and conductance, 202
coefficients, 207
matrix, 204
mean, per mode, 189
periodic in magnetic field, 227
phase, 226, 458, 466
phase lapses, 460
phase measurement, 460
phase randomization, 461
probability, 184, 186, 194, 203, 206,

209, 226, 239, 240, 256
resonance, 188

triplet state, 417
truth table, 494
tunneling, 80, 193

conductance, 199
current, 198
delta barrier, 193
lifetime, 198
linear response, 199
perturbative treatment, 195

rate, 198, 380
self-energy shift, 198
tunneling density of states, 200

tunneling density of states, 200
tunneling spectroscopy, 199, 314
Turing machine, 495
two-dimensional electron gas, 68, 69, 81,

91, 115, 213, 287
AFM-lithography, 91
characteristic quantities, 138
de Haas-van Alphen effect, 320
density of states, 69, 139
dielectric function, 127
electron density, 138
Fang–Howard variational approach,

118
Fermi energy, 139
Fermi velocity, 140
Fermi wave vector, 139
Fermi wavelength, 139
field effect, 79
Friedel-oscillations, 131
mobility, 163
nonlinar screening length, 140
on Cu(111), 131
on InSb surface, 314
parabolic dispersion relation, 139
percolation threshold, 140
polarizability, 123
polarization function, 124
quantum limit, 139
remote doping, 75
scattering mechanisms, 161
screening, 129
spin–orbit hamiltonian, 135
spin–orbit interaction, 135
Thomas–Fermi screening length, 140
Thomas–Fermi wave vector, 140
wave function, 139

two-dimensional hole gas, 70
two-level system, 497
two-qubit operations, 505
two-terminal conductance, 189, 233
two-terminal measurement, 152, 213
two-terminal resistance, 210

symmetry in magnetic fields, 211
type I interface, 66
type II interface, 66
type III interface, 66

uncertainty, 470
in quantum systems, 498

uncertainty relation, 274
undercut profile, 89

v-grooves, 85

vacuum level, 65
vacuum tube, 436
valence band

dispersion relation, 46
holes, 60
isotropic approximation, 46

valence band dispersion, 46
valence band offset, 65
valley degeneracy, 307
van der Pauw method, 155

geometry factor, 156
vapor phase epitaxy, 17
vapor–liquid–solid growth, 85
vertical optical transitions, 49
voids, 72
voltage contacts, 204
voltage terminal, 205
voltmeter, 205, 213
volume doping, 72
von Klitzing constant, 306
von Neumann equation, 387, 514
VPE, 17

wafer, 13, 15
wave function vs. envelope function, 59
wave packet, 438
wave vector, 157
wave–particle duality, 225
weak antilocalization, 138, 280, 284

positive magnetoresistance, 282
weak localization, 266, 279, 337

negative magnetoresistance, 269
one dimension, 271
suppresion in a magnetic field, 269
temperature dependence, 268, 271
three dimensions, 271

wet chemical etching, 88
which-path information, 252, 461, 463
white noise, 429
Wiener–Khinchin relations, 430
Wigner crystal, 305
Wigner parameter, 369
winding number, 233

XOR operation, 494

Zeeman effect, 247, 291, 308, 309,
365–367, 418, 419

Zeeman energy, 28
Zeeman hamiltonian, 28, 105, 512
Zeeman interaction, 236, 247
Zeeman-splitting, 244
zig-zag nanotube, 87
zincblende structure, 11
zone melting, 13
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