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ABSTRACT 

 

 

Compressed sensing is an optimization based formalized framework based upon sub-

Nyquist sampling principle of exploiting only the sparse signal of interest. It exploits 

the sparsity of the signal to reconstruct it from less number of measurements than 

required by the Nyquist sampling criteria. A nascent field of compressive sensing is 

explored in this paper for accurate acquisition and reconstruction of signals, images and 

video sequences.  The algorithm is proposed for compression and efficient recovery of 

image and video based on the concept of compressive sensing. Three basic 

reconstruction techniques (Basic Pursuit (l1) Minimization, Least Square (l2) 

Minimization and Orthogonal Matching Pursuit) are applied on image samples and they 

are compared based on quality performance criteria. The performance parameters like 

compression ratio, peak signal to noise ratio and structural similarity index are 

evaluated for different image and video samples for critical analysis of these 

performance parameters is done for different reconstruction schemes. Finally it is 

concluded that compressive sensing based approach is better than the traditional 

compression schemes and Basic Pursuit (l1) methods gives the better image quality with 

a tradeoff among other parameters enabling faster acquisition, compression and 

reconstruction. 
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CHAPTER 1 

INTRODUCTION 

 

Compression is basically a competent solution for signal representation in a more 

compact and robust form so as to facilitate efficient storage and transmission. In the past 

few decades, compression techniques and its applications have developed quite 

significantly. Image and video coding standards like JPEG [1], MPEG and H.26x [2] 

are widely explored. But these coding standards do not provide simple and quick 

compression and decompression as they involve complex encoders and decoders [2, 3].  

Thus these conventional coding techniques are needed to be re-evaluated for 

applications like video surveillance, telemedicine, space and satellite imaging, sports 

broadcasting, etc. There are numerous facts motivating for the need of compression in 

the modern technological world. NASA satellites generate terabytes of data per day, 

hospitals generate terabytes of data per year and data amount is very large for ultra high 

definition. Specifically concerning telemedicine, patients are diagnosed from a distance 

using tele-radiology under the supervision of basic technician. In this application, there 

is a need for faster communication so that the diagnostic radiologist can examine the 

patient without delay. In case of emergency, time is an important issue thus 

compression is needed not only for storage but also to increase the processing time [4]. 

Conventionally in image and video capturing systems, sampling is based on Nyquist 

Criteria in which the original signal is sampled at a rate greater than or equal to twice 

the signal bandwidth. In some applications, the Nyquist rate is too high and it increases 

computational complexity for compression specifically at the encoder side. This 

increased sampling rate enhances the complexity of the sensing hardware [5]. Various 

spatial and temporal redundancies are exploited for compression at the encoder end 

causing the encoding process to be more computationally complex than the decoder. It 

leads to tremendous wastage of resources in terms of power and complexity at the 

encoder side [6]. Thus to facilitate the need of image and video compression to deliver 

the modern applications there is a need to develop an efficient system having reduced 

acquisition complexity combined with flexible decoding process. 

Therefore an emerging technology of compressive sensing incorporates a new paradigm 

for signal acquisition and reconstruction and has drawn a lot of researcher’s attention. It 
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is a novel approach for data acquisition and compression which overcomes the 

limitations of the traditional methods. Compressive sampling is based on sub-Nyquist 

sampling of sparse signals of interest [7]-[9]. CS utilizes the sparse or nearly sparse 

signal to recover the original signal using less number of linear measurements by the 

means of convex optimization approaches or some greedy recovery algorithms, relative 

to conventional schemes exploiting the entire ensemble of signal samples [10]. 

In the following sections of this chapter, firstly the main focus is drawn on the need of 

compression in the present scenario. Further the discussion is elaborated to various 

image and video compression techniques. 

 

 1.1 Compression 

Compression is the basic need of the present scenario for efficient storage and 

transmission of data and this data may be in the form of a signal, image, video, etc. 

Compression basically reduces irrelevance and redundancy from the data. There is the 

need for compression for the following purposes. 

 Save time, better transmission and storage. 

 Compact representation. 

 Bandwidth utilization. 

There are various types of signal compression techniques like bandwidth compression, 

data compression, lossy compression, lossless compression, image and video 

compression. Main focus of this work is drawn on image and video compression 

techniques, specifically concerning the compression and reconstruction of image and 

video signals. 

 

1.1.1 Image Compression Techniques 

Image compression basically relies on two types of compression techniques 

those are lossless and lossy compression.  

Lossless compression involves run-length encoding, Huffman coding, LZW 

coding, etc. whereas lossy compression comprises of transform coding, vector 

quantization, fractal coding, etc. Specifically concerning the transform based 

image compression techniques, there are three mostly used techniques; JPEG, 

JPEG2000 and wavelet transform [1]. 
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Figure 1.1: Transform based Image Compression Techniques 

 

1) JPEG: It is a DCT based Image Coding Standard designed for compressing colored 

or grayscale images by firstly partitioning the image into non overlapped 8×8 

blocks. Then Discrete Cosine Transform (DCT) is applied to each block to convert 

the gray levels of pixels in the spatial domain into coefficients in the frequency 

domain. The coefficients are normalized by different scales according to the 

quantization table provided by JPEG standard. The quantized coefficients are then 

rearranged in an order to be further compressed by an efficient lossless coding 

strategy like run length coding Huffman coding, arithmetic coding, etc. The loss of 

information is only encountered in the coefficient quantization process. To achieve 

better decoding quality, an adaptive quantization table may be used instead of using 

the standard quantization. 

 

2) JPEG2000: This is an improved version of JPEG compression standard for lossy 

and lossless compression and is nearly same as JPEG. It extends the initial JPEG 

Wavelet

Transorm

JPEG 
2000

JPEG
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standard to provide increased flexibility in both the compression of continuous tone 

still images and access to the compressed data. 

 

3) Wavelet Transform: The functions that are defined over a finite interval having the 

average value zero are referred to as wavelets. The idea of wavelet transform is to 

represent any arbitrary function as superposition of a set of such wavelets or basis 

functions. These basis functions or baby wavelets are obtained from a single 

prototype wavelet called the mother wavelet, by dilation or scaling or shifting. The 

Discrete Wavelet Transform of a finite length signal x(n) having N components is 

expressed as an N×N matrix.  

 

1.1.2 Video Compression Techniques  

Various video compression techniques are as follows: 

 

 

 

Figure 1.2: Video Compression Techniques 

 

Motion JPEG 
and JPEG 2000 

MPEG-1

and MPEG-2

MPEG-4
H.26x standards 
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1) Motion JPEG: A digital video can be represented as a series of JPEG pictures 

displayed over time referred to as motion JPEG. Similar to the advantages of single 

still JPEG picture, Motion JPEG is also flexible in terms of quality as well as 

compression ratio. But it has the limitation that since it uses only a series of still 

pictures it does not make the usage of video compression techniques, therefore 

resulting in slightly lower compression ratio for video sequences as compared to 

other video compression techniques. 

 

2) Motion JPEG 2000: Similar to JPEG and Motion JPEG, JPEG 2000 can also be 

used to represent a video signal. The advantages are equal to JPEG 2000, i.e., a 

slightly better compression ratio compared to JPEG but at the cost of complexity. 

The disadvantage is also same as that of Motion JPEG. Since it is a still picture 

compression technique it doesn’t take any advantages of the video sequence 

compression resulting in a lower compression ratio as compared to real video 

compression techniques. 

 

3) MPEG-1: MPEG-1 video compression standard is the first public standard of the 

MPEG committee that is based upon the same technique that is used in JPEG. In 

addition to that it also includes techniques for efficient coding of a video sequence. 

In MPEG video, only the new parts of the video sequence is included together with 

information of the moving parts during the transmission of the video sequence to 

limit the bandwidth consumption. When displayed it appears as the original video 

sequence again. This technique basically focuses on compression ratio rather than 

picture quality.  

 

4) MPEG-2: MPEG-2 is the "Generic Coding of Moving Pictures and Associated 

Audio" targeted at TV transmission and other applications capable of 4 Mbps and 

higher data rates. MPEG-2 features very high picture quality. MPEG-2 supports 

interlaced video formats, increased image quality, and other features aimed at 

HDTV. MPEG-2 is a compatible extension of MPEG-1, meaning that an MPEG-2 

decoder can also decode MPEG-1 streams. MPEG-2 audio will supply up to five 

full bandwidth channels (left, right, center, and two surround channels), plus an 

additional low-frequency enhancement channel, or up to seven commentary 
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channels. The MPEG-2 systems standard specifies how to combine multiple audio, 

video, and private-data streams into a single multiplexed stream and supports a wide 

range of broadcast, telecommunications, computing, and storage applications. 

MPEG-2 also provides more advanced techniques to enhance the video quality at 

the same bit-rate on the expense of the need for far more complex equipment. 

Therefore these features are not suitable for use in real-time surveillance 

applications. As a note, DVD movies are compressed using the techniques of 

MPEG-2. 

 

5) MPEG-4: MPEG-4 supports even lower bandwidth consuming applications along 

with high picture quality and almost unlimited bandwidth. Most of the differences 

between MPEG-2 and MPEG-4 are features not related to video coding and 

therefore not related to surveillance applications. MPEG involves fully encoding 

only key frames through the JPEG algorithm and estimating the motion changes 

between these key frames. Since minimal information is sent between every four or 

five frames, a significant reduction in bits required to describe the image results. 

The MPEG encoder is very complex and places a very heavy computational load for 

motion estimation. Decoding is much simpler and can be done by desktop CPUs or 

with low cost decoder chips. 

 

6) H.261: H.261 is a motion compression algorithm video coding standard developed 

specifically for videoconferencing, though it may be employed for any motion video 

compression task. H.261 encoding is based on the discrete cosine transform (DCT) 

and allows for fully-encoding only certain frames (INTRA-frame) while encoding 

the differences between other frames (INTER-frame). The main elements of the 

H.261 source coder are prediction, block transformation, quantization, and entropy 

coding. While the decoder requires prediction, motion compensation is an option. 

 

7) H.263: H.263 is the video codec introduced with ITU recommendation "Multimedia 

Terminal for Low Bit-rate Visual Telephone Services". H.324 is for 

videoconferencing over the analog phone network. While video is an option under 

H.324, any terminal supporting video must support both H.263 and H.261. H.263 is 

a structurally similar refinement to H.261 and is backward compatible with H.261. 
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At bandwidths under 1000 kbps, H.263 picture quality is superior to that of H.261. 

Images are greatly improved by using a required 1/2 pixel new motion estimation 

rather than the optional integer estimation used in H.261. Half pixel techniques give 

better matches, and are noticeably superior with low resolution images. 

8)  H.264: H.264 is the result of a joint project between the ITU-T’s Video coding 

Experts group and the ISO/IEC Moving Picture Experts Group (MPEG). ITU-T has 

named it as H.264, whereas it is called MPEG-4 Part 10/AVC by ISO/IEC since it is 

presented as a new part in its MPEG-4 suite. H.264 has some goals and supports the 

following services: 

 At fixed video quality, it delivers an average bit rate reduction of 50% as 

compared to any other video standard. 

 Provides error robustness to tolerate the transmission errors over various 

networks. 

 Supports low latency capabilities along with better quality for higher latency. 

 It provides simpler implementation with straightforward syntax specification. 

 Exact match decoding defined by how some calculations are to be made by an 

encoder and a decoder so as to avoid errors from accumulating. 

After reviewing various image and video compression techniques [11] in detail, it was 

found that traditional image or video capturing systems samples at Nyquist Shannon 

sampling theorem that requires a sampling rate greater or equal to twice the bandwidth 

of the signal. This sampling rate is sometimes too high for many applications leading to 

an increase in computational complexity at the encoder end and adds to the complexity 

of the sensing hardware. Thus reduced acquisition complexity combined with flexible 

decoding process is required to facilitate the need of image and video compression to 

deliver the modern applications. 

Therefore an emerging technology of compressive sensing, overcoming the limitations 

of the traditional methods, incorporates a new paradigm for signal acquisition and 

reconstruction and it is briefly discussed in the next section. 
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 1.2 Compressive Sensing 

The theory of compressive sensing was built from the idea that signal may still be 

recovered through the less number of samples that was considered to be insufficient for 

Shannon’s sampling criteria.  

Compressive sampling deals with the sampling of sparse signals of interest rather than 

collecting the entire set of signal samples. CS exploits the sparse or nearly sparse signal 

representation for efficient acquisition using less number of linear measurements via 

convex optimization approach [12]. 

The aim of compressive sensing is to achieve sensing and compression in a single step 

by changing the sensing pattern [13]. This process is shown in figure 1.3. 

 

 

Figure 1.3: Block diagram of Compressed Sensing 

 

CS recovery is based upon two principles –  

 Sparsity  

 Incoherence 

Sparsity represents the signal of interest, while isometric property of incoherence 

restricts the sensing scheme. 
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a) Sparsity: Sparsity of a signal signifies that it has smaller amount of non- zero 

coefficients and many zero coefficients. For applying compressed sensing on a 

signal, that signal should be sparse in any domain. Majority of signal information 

lies in the fewer non-zero coefficients and the other coefficients are not exactly zero 

but have very small value. Thus for such signals, exact reconstruction is not possible 

but the signal can be approximately estimated considering only large coefficients for 

computation and tending the small coefficient values to zero [14]. In this way we 

have a sparse signal.   

Specifically a signal x is considered sparse if it has k non-zero values i.e.  𝑥 𝑝 =

𝑘 , where  𝑥 𝑝  represents the p-norm of signal x.  

The idea of sparsity and redundancy are interchangeable. Thus a signal that is non-

sparse, but redundant, can be expressed as a sparse signal in some another basis. 

Any redundant signal x can be expressed as a sparse signal 𝑥  where, 

x = Ψ𝑥                  (1) 

where Ψ ∈ 𝑅𝑁×𝑁  is a suitable basis for sparse expression [15]. 

 

b) Incoherence: Coherence basically refers to a statistical quantity that evaluates the 

highest correlation between any two elements from two different matrices. Let us 

consider two orthonormal basis Φ and Ψ of R
n
. The coherence between these two 

bases is defined by 

𝜇 Φ, Ψ =  𝑛 ∙ 𝑚𝑎𝑥  Φk , Ψk                         (2) 

which gives the largest correlation between any two elements of the two bases. It 

can be shown that  

𝜇 Φ, Ψ ∈ [1,  𝑛]                         (3) 

The compressibility of a signal is computed by both these factors; sparsity and 

incoherence. A signal is more compressible if it has higher sparsity in the 

representation domain Ψ that is less coherent to the sensing domain Φ [16]. 

 

 1.3 Sensing and Sampling 

Sensors are used to sample a signal and record a reading. But in case of CS, the sensors 

have to sense and compress at the same time in a single step. This can be achieved by 

taking a linear measure of the signal to be sensed. Rather than measuring the entire 
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ensemble of the signal, the CS sensor measures the signal on an alternate vector space 

using a pre-defined set of vectors. This sampling constitutes a measurement of the 

signal having lower dimensions than the signal itself.  

Considering the matrix, M (less than N) measurements on k-sparse N dimensional 

signal using a sensing matrix Φ∈ 𝑅𝑀×𝑁  as  

𝑦 = 𝛷𝑥               (4) 

Each element in y represents a linear combination of the signal vector x with the vectors 

in the sensing matrix Φ. It was mentioned earlier that CS is based on the principle of 

sparsity.  

Thus the above equation assumes x to be k-sparse and if x is not sparse itself, it can be 

re-expressed as a sparse signal 𝑥  in Ψ domain as in eq. (1) using eq. (4) this can be 

modified as 

𝑦 = 𝛷𝛹𝑥                (5) 

Or       𝑦 = 𝛩𝑥  where ΦΨ = Θ        (6) 

here Φ is referred to as sensing matrix or measurement matrix and Ψ as sparsifying 

matrix. It is assumed that x is k-sparse with Ψ = I, identity matrix [17]. 

 

 1.4 Reconstruction Methods 

The core requirement of CS problem is to find the solution to the under-determined 

system of equations 𝑦 =  𝛷𝑥 and then reconstruct the signal.  

Optimal signal reconstruction relies on better stability, uniform guaranteed and efficient 

reconstruction. There are various approaches to find reconstructed signal some of those 

are investigated and are described below. 

 

1.4.1 Minimum l2 norm reconstruction  

The most commonly used scheme to solve a system of equation (y = Φx) to find the 

minimum energy solution. The main advantage of the l2 norm minimization scheme is 

the simplicity of the solution, but the solution is almost always an incorrect one. The 

signal reconstruction is completely away from the optimum solution and the image has 

unwanted “aliasing-like” artifacts [18]. 
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1.4.2 Minimum l0 norm reconstruction 

It is an algorithm that can implement this will be guaranteed to find the exact solution. 

A k-sparse signal can be exactly recovered by using as few as 2k random 

measurements. However, the solution involves checking every combination of K-sparse 

vectors in an N-dimensional space for one that satisfies the given system of equation i.e. 

y = Φx. This is an NP-complete problem and cannot be implemented [18]. 

 

1.4.3 Basic Pursuit (l1 minimization) 

Basis Pursuit or l1 minimization was one of the first methods that were suggested for 

reconstruction in the CS problem. This allowed the use of the convex l1 norm to find the 

optimum solution. It consists of convex optimization methods which provide a robust 

solution giving a stable and guaranteed reconstruction. The l1 norm minimization 

technique serves as a compromise between the l0 norm and the l2 norm methods. The l1 

norm is a convex optimization technique and due to the very high dimensionalities of 

the signals involved, this convex relaxation almost always finds the exact solution. 

There are a wide variety of efficient and accurate convex optimization software 

packages that can be used to solve the problem as min x  1 , subject to   Φx − y 2 ≤∈ 

where ∈ represents the upper tolerance bound for the energy of the reconstruction error. 

This method is not optimally fast as involves number of iterations increasing the 

computational complexity. However, it is the most preferred reconstruction method as it 

provides guaranteed high quality reconstruction [19]. 

 

1.4.4 Minimum Total Variation Reconstruction 

Total Variation (TV) minimization is a modified l1 minimization technique that is 

particularly successful for imaging applications. TV minimization is based on the fact 

that most images are sparse in the gradient, and hence have few intensity variations. 

min x  𝑇𝑉  , subject to   Φx − y 2 ≤∈ defines the TV minimization method for 

reconstruction from CS measurements, where ∈ represents the upper tolerance bound 

for the energy of the reconstruction error [18]. 

 

1.4.5 Greedy Pursuit 

Algorithms like Compressive Sampling Matching Pursuit, stage-wise Orthogonal 

Matching Pursuit and Regularization Orthogonal Matching Pursuit falls into this 
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category. Apart from the ll norm minimization techniques described above, there have 

been a wide array of greedy algorithms designed to iteratively find the best solution 

satisfying  y = Φx. Subsequent to every iteration the algorithm finds an estimated signal 

by finding the maximum correlation between the measurement residual and the columns 

of the measurement matrix. The residual is in turn computed by subtracting the 

contribution of the current signal estimate from the measurements. The new signal 

estimate comes from the measurements and the columns of the matrix that have high 

correlation with the residual. There are multiple alternatives of greedy algorithms used 

for compressed sensing reconstruction [20]. This reconstruction method gives simpler 

implementation and faster running speed as compared to l1 minimization. This method 

delivers smaller recoverable sparsity compared to l1 minimization and less guaranteed 

reconstruction [21]. 

 

1.5 Performance Evaluation Parameters 

Various performance evaluation parameters are used in this research work like mean 

square error (MSE), percentage root mean square difference (PRD), and peak signal-to-

noise ratio (PSNR). Other parameters like structural similarity index (SSIM) and 

dissimilarity index (DSSIM) are based on human visual system are also utilized. 

 

1.5.1 PSNR (Peak Signal to Noise Ratio): This image quality based parameter is 

calculated using MSE i.e. given by averaging the squared intensity of the 

original and recovered image or video pixels. 

𝑀𝑆𝐸 =    
𝑒𝑟𝑟𝑜𝑟2

𝑟𝑜𝑤𝑠 × 𝑐𝑜𝑙𝑢𝑚𝑛𝑠
 

𝑃𝑆𝑁𝑅 = 10 log
(𝑝𝑒𝑎𝑘 𝑣𝑎𝑙𝑢𝑒  256 )2

𝑀𝑆𝐸
 

 

1.5.2 PRD (Percentage Root Mean Square Difference): It gives the percentage root 

mean square difference of the MSE value i.e. the averaged measure of squared 

intensity of original and recovered image or video pixels. 

𝑃𝑅𝐷 =   𝑀𝑆𝐸 × 100 % 
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1.5.3 SSIM (Structural Similarity Index): SSIM is based on statistical values of 

image or video attributes like luminance, brightness, texture, contrast and 

orientation. Its value lies between 0 and 1 and the reconstructed signal is structurally 

similar to the original signal if it approaches 1. SSIM between original image x and 

reconstructed image y is given by,  

𝑆𝑆𝐼𝑀  𝑥, 𝑦 =  
(2𝜇𝑥𝜇𝑦 + 𝑐1)(2𝜎𝑥𝑦 + 𝑐2)

 𝜇𝑥
2 + 𝜇𝑦

2 + 𝑐1 (𝜎𝑥
2 + 𝜎𝑦

2 + 𝑐2)
 

 

Dissimilarity index giving the similarity variation of reconstructed signal as compared 

to the original one is given by,  

𝐷𝑆𝑆𝐼𝑀 =  
1 − 𝑆𝑆𝐼𝑀(𝑥, 𝑦)

2
 

 

1.5.4 CR (Compression Ratio) and Space Saving: Compression ratio (CR) and 

space saving is calculated at the encoder side by taking the ratio of compressed bits 

to the original image bits. 

𝐶𝑅 =  
𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑏𝑖𝑡𝑠

𝑈𝑛𝑐𝑜𝑚𝑟𝑒𝑠𝑠𝑒𝑑 𝑏𝑖𝑡𝑠
 

𝑆𝑝𝑎𝑐𝑒 𝑠𝑎𝑣𝑖𝑛𝑔 =  1 −
1

𝐶𝑅
 × 100% 
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CHAPTER 2 

OBJECTIVES AND SCOPE 

 

The major motivation to develop this project is the need of compression in the present 

scenario for efficient storage and transmission of data. Data amount is very large 

usually in terabytes for hospitals, NASA satellite imaging and also for ultra high 

definition applications. All these tangible statistics motivated for the need for fast and 

efficient image and video compression technique as proposed in this project. 

Thus, to facilitate the need of image and video compression to deliver the modern 

applications the following objectives are framed: 

 To develop an efficient approach for better acquisition, compression and 

reconstruction technique using CS is the main aim of this research work. 

 Formulation of an efficient image and video compression using compressed sensing 

technique which would result in reduction in data size to reduce the storage and 

bandwidth requirements. 

 Critical analysis of a number of performance metrics evaluated for different 

reconstruction schemes so as to provide performance guarantees for better recovery 

and less distortion in compressed image and video sequence. 

Project Scope 

For applications like video surveillance, telemedicine, space and satellite imaging, 

sports broadcasting, etc. there is a need to reassess the conventional coding techniques. 

The proposed work can be used for efficient compression and reconstruction of image 

and video data. This project has scope in various fields like; 

 Telemedicine: Telemedicine was originally created as a way to treat patients who 

were located in remote places, far away from local health facilities or in areas of 

with shortages of medical professionals. In emergency conditions, the patient wants 

to waste less time and get immediate care for urgent conditions when they need it. 

This expectation for more convenient care collectively with the unavailability of 

overburdened medical professionals has led to an increase in the requirement for 

faster and proficient telemedicine facility. Hence, there is a need for better image 
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compression to serve the need of telemedicine and provide the immediate medical 

healthcare service.  

 Multimedia applications: Multimedia is content that uses a combination of 

different content forms such as text, audio, images, animations, video and 

interactive content. Multimedia can be recorded and played, displayed, interacted 

with or accessed by information content processing devices like electronic 

devices. Hence there is a need for better image compression to facilitate these 

multimedia applications. 

 Digital video and video-conferencing: Digital video is a representation of moving 

visual images in the form of digital data. Digital video comprises a series digital 

images displayed in rapid succession.  Video-conferencing is the conduct of 

telecommunication technologies to facilitate the two-way video and audio 

transmissions at two or more locations simultaneously. This also needs faster 

storage and transmission service and thus compression is needed.  

 Medical imaging: Medical imaging is the technique of creating visual 

representations of the interior body organs or tissues for clinical analysis and 

medical intervention. Medical imaging seeks to reveal internal structures hidden by 

the skin and bones to aid medical diagnose to treat the diseases. Thus there is a need 

for better image compression to facilitate medical imaging. 

 Space and satellite imaging: Satellite imaging consists of collecting 

the images of Earth or other planets by the means of satellites. These imaging 

satellites are government owned and also some of them are operated by businesses 

around the world. Organizations such as NASA generate terabytes of imaging data 

per day raising the need for image compression in this field to facilitate faster 

communication. 

 Weather forecasting: Weather forecasting is the application of science and 

technology that is used to predict the atmospheric state for a given location. Weather 

forecasts are made by collecting the quantitative images or data about the present 

atmospheric state at a given place and using scientific understanding of atmospheric 

processes to predict the atmospheric changes. Thus there is a need for better 

compression to facilitate weather forecasting applications. 
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CHAPTER 3 

LITERATURE REVIEW 

 

The literature review deals with critical analysis of any published piece of knowledge 

through study of the literature and comparison of those prior research findings to draw a 

conclusion which supports the proposed research work. 

The literature review of the research work provides an overview of the technical 

perspective of various researchers on the topic of compressive sensing technique. 

Emmanuel Candes, mutually with Justin Romberg and Terry Tao, contributed to the 

theory of Compressed Sensing (CS) [7-9] to be applied for audio, image or video 

signals but the condition is that the signal should be sparse in any domain. A signal can 

be acquired at much lower rate than the Nyquist criteria using this sampling theory. 

Thousands of research papers are motivated by CS technique from 2006 till date.  

In [22] it was examined that CS can prove to be a revolutionary technique for signal 

acquisition and recovery. The key advantages are faster data acquisition using fewer 

samples, decreased computational complexity, low transmission power, small traffic 

volume and time delay. In [23], various issues of emerging technologies were 

highlighted predicting the growth in demand for bandwidth. Thus, in this paper, author 

discussed various video compression techniques and concluded that H.264/AVC has 

various improvements in terms of better coding efficiency, like flexibility, robustness 

and application domains. It was found that still a lot of possibilities were there for 

improving video compression techniques.  

In [ 24], authors used Orthogonal matching Pursuit (OMP) and Non- Linear Mapping 

techniques and compared these techniques with the convex optimization methods. It 

gives lower complexity, fast running speed, better reconstruction and low power 

consumption than convex optimization approach. But on the contrary, convex 

optimization approach gives guaranteed reconstruction. In [25], a video reconstruction 

framework was proposed from frame-by-frame 2D CS acquisition, based on 3D total 

variation (TV). On comparing the scheme with the existing reconstruction methods, it 

was found that 3D-TV regularization outputs gives better qualitative properties than the 

conventional methods especially for sharp edges and fewer motion artefacts.  
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In [26], a hierarchical frame framework to address video recovery problem based on 

video compressed sensing theory was explored. Spatial and temporal correlation of 

video sequence is utilized to improve recovery by employing unequal sub-rate in 

different layers and incorporating the techniques like 3D patch matching, hard 

thresholding and gradient descent in iterative fashion. Experimental results depicts that 

the developed video CS recovery strategy is able to increase the recovery to a great 

extent as compared to the existing methods.  In [27] authors proposed a compressed-

sensing-domain l1 norm maximization scheme for compressed-sensed surveillance 

video processing. Both qualitative and quantitative results depict the effectiveness of the 

adaptive CS- l1-PCA methods as compared to its non- adaptive counterparts for 

different types of video surveillances. Future scope in this work is to deal video 

surveillance challenges like detecting moving objects with static parts, removing 

shadow cast by the objects and addressing the camouflage problem.  

In [28], a multi-hypothesis compressed video sensing strategy is recommended that 

exploits video frames sparsity for signal reconstruction at the decoder end. The 

simulation results for different video sequences verify that the proposed technique 

attains higher reconstruction accuracy for video frames along with less computational 

complexity. Authors in [29] discussed a two-stage MH reconstruction scheme 

integrating measurement-domain MH prediction with the pixel-domain MH prediction. 

The technique proposed in this paper gives better results than the state-of-the-art MH 

prediction algorithm at 1dB gain when 0.1 sampling rate is taken. It also increases the 

prediction accuracy. In [30] authors employed a support estimate scheme that focuses 

the measurements coefficients having larger values of a signal i.e. compressible. The 

recovery performance of standard CS using l1 minimization is compared with the 

adaptive recovery using weighted l1 minimization. Better reconstruction quality is 

experienced because adaptive l1 minimization is used. 

Literature review for this dissertation work includes the study of numerous research 

papers contributing to the research field of compressive sensing. Table 3.1 and table 3.2 

give the tabular representation about the existing techniques of compressive sensing 

applied on images and video signals. The discussion includes the problem addressed by 

the authors, techniques used by the researchers to mitigate the problems and the 

inference  drawn from the study including the performance parameters investigated 

along with the limitations of the work. 
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Table 3.1: Reviews of CS Techniques applied on images given by Prior Researchers 

 

Sr. 

no.  

Authors Problem 

addressed 

Techniques 

used 

Inference 

drawn and 

Parameters 

evaluated 

Limitations 

1. Han 

[31]-

2008 

Image 

reconstruction to 

remove sense and 

sparse 

components. 

Compressive 

sensing (CS) 

and Projection 

onto convex 

set (POCS) 

PSNR, Rate 

distortion, 

Total error 

Computational 

complexity 

2. Ma [32]-

2008 

To minimize non-

smooth function 

on large datasets 

for better 

reconstruction. 

Total 

Variation 

(TV), L1-

minimization,

Wavelets 

SNR, Relative 

error 

Needs better 

image quality 

and storage. 

3. Nagesh 

[33]-

2009 

Recognition and 

recovery of 

invariant facial 

expressions along 

with feature 

extraction. 

Compressive 

sensing (CS) 

Storage space, 

Recognition 

rate 

Uses multiple 

views of 

scenes. 

4. Wright 

[34]-

2009 

Human face 

recognition with 

invariant 

expression from 

illumination and 

disguise. 

Sparse 

representation 

via L1- 

minimization 

technique 

Recognition 

rates, Sparsity 

Concentration 

Index(SCI) 

In addition to 

recognition, 

object detection 

is also needed. 

5. Yang 

[35]- 

2010 

Fast signal 

reconstruction 

using Fourier data 

for CS. 

RecPF-

reconstruction 

from partial 

Fourier data 

Stable, robust 

and efficient. 

Relative error, 

Objection 

function 

Computational 

complexity is 

more. 



19 

 

6. Sen 

[36]- 

2011 

CS application for 

reduction in 

rendering rate to 

find unrendered 

pixel values. 

Compressive 

rendering 

Better quality 

and accurate 

reconstruction 

MSE is 

calculated. 

 

Uses very low 

sampling 

densities. 

7. Chen 

[37] 

2012 

Object detection 

and tracking for 

video surveillance 

with minimum 

data samples. 

Real time CS 

L1 tracking, 

Motion 

detection 

algorithms. 

Faster 

tracking with 

high 

resolution, 

less storage 

and better 

recovery 

Outcomes not 

benchmarked. 

8. Serwuth

isarn 

[38]-

2012 

Better image 

reconstruction 

along with the 

removal of 

Gaussian noise 

effect. 

OMP-PKS 

and RS based 

on 

Compressed 

sensing. 

PSNR 

Better image 

quality with 

low 

measurements

. 

Reconstruction 

needs to be 

improved for 

impulsive and 

Gaussian noise. 

9. Hemalat

ha [39]-

2013 

Energy 

consumption 

analysis for image 

transmission suing 

CS along with rate 

distortion analysis. 

BinDCT and 

Noiselet 

based CS. 

PSNR, 

reduced bit 

rate and 

compression 

ratio 

Energy 

consumption is 

to be reduced 

more. 

10. Liu 

[40]- 

2013 

Signal recovery 

using sub-Nyquist 

samples with CS 

for Biomedical 

signals.  

L1-TV, TV-

minimization, 

Nuclear norm 

minimization. 

Mean L1 error, 

accurate 

recovery 

No 

benchmarked 

outcomes. 

 



20 

 

Table 3.2: Reviews of CS Techniques applied on videos given by Prior Researchers 

 

Sr. 

no.  

Authors Problem 

addressed 

Techniques 

used 

Inference 

drawn and 

Parameters 

evaluated 

Limitations 

1. Pudlewsk

i [41]-

2010 

 To outline the 

video parameters 

on received video 

of CS for multi-hop 

WSN. 

Adaptive 

parity based 

channel 

coding 

SSIM, BER, 

Quantization 

rate, image 

quality, low 

degradation 

Enhanced 

recovered 

signal 

quality 

2. Chaozhu 

[42]-2011 

To improve 

compression 

efficiency and 

reduce System 

complexity. 

Distributed 

video coding 

based on CS, 

L1- 

minimization

. 

PSNR, 

compression 

ratio, better 

quality, less 

complex. 

Not much 

significant 

novelty 

3. Mansour 

[43]-2012 

Measurements to be 

focused on large 

valued coefficients 

of compressible 

signal. 

Adaptive CS 

scheme, 

weighted L1 

minimization 

SNR, QCIF Less 

extensive 

outcome 

analysis 

4. Sankaran

arayanan[

44]-2012 

CS is exploited for 

Spatial 

Multiplexing 

Cameras 

CS multi-

scale video 

sensing and 

recovery 

framework, 

L1-norm 

recovery  

Relative speed, 

frame rate 

Outcome not 

benchmark 

5. Chen[45]

- 2013 

Noise analysis for 

heterogeneous 

receiver 

CS based 

wireless 

video 

multicast  

PSNR, low 

complexity 

encoding, better 

transmission 

Less visual 

perception 
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6. Pudlewsk

i [46]- 

2013 

Better video quality 

transmission by 

evaluating 

transmission power 

at multimedia 

sensor nodes. 

Relay 

assisted CVS 

SNR, MSE, 

SSIM 

Gives better 

quality video. 

Minor PSNR 

enhancement 

only. 

7. Pudlewsk

i [47]- 

2013 

Reduced energy, 

computational 

complexity and 

lack to resilience to 

channel error. 

CVS, 

H.264/AVC 

intra, Motion 

JPEG. 

SSIM, BER, 

good video 

quality, low 

energy 

consumption. 

Main focus 

is on h.264 

and M-

JPEG. 

8. Yuan 

[48] 2013 

Motion estimation 

within the scene 

and to adapt 

compression ratio 

for video capturing. 

Adaptive 

temporal CS 

for video, 

Block 

matching 

algorithm 

PSNR, 

Compression 

ratio 

Embed the 

real time 

framework 

into 

hardware 

prototype. 

9. Liu [49]-

2013 

Direct video 

acquisition from CS 

sampling with no 

sophisticated 

encoding 

Karhunen-

Loeve based 

technique 

(KLT), K- 

SVD 

PSNR 

Good 

reconstruction 

quality 

No efficient 

encoding 

and 

decoding 

scheme. 

No recovery 

algorithms 

considered. 

10. Iliadis 

[50]- 

2013 

Video compressive 

sensing framework 

for single pixel 

camera 

Multiple 

measurement 

vectors 

PSNR, Visual 

quality 

Only minor 

SNR 

enhancement 

Not 

evaluated on 

other 

datasets. 
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CHAPTER 4 

METHODOLOGY ADOPTED 

 

In chapter 1, various image and video compression techniques are discussed and based 

on the drawbacks of traditional compression schemes, CS technique is chosen for better 

compression and reconstruction using less number of samples than required by the 

Nyquist criteria. 

In this work, a compressive signal sensing technique is proposed for various signals 

may be 1D, 2D or 3D enabling faster acquisition, compression and reconstruction as 

compared to traditional compression schemes. Algorithms for compressed sensing 

applied on images, reweighted l1 minimization and algorithm of CS applied on video 

are explained in the following sections. Details of encoder, decoder and performance 

parameters are also given in the following sections. 

 

4.1 Dataset 

In this work, a compressive sensing technique is assessed for various benchmark 

datasets enabling faster acquisition, compression and reconstruction. Algorithm is 

checked on random signal, numerous standard images and also on benchmark video 

sequences. 

 

4.2 Algorithm for CS 

For x being an input signal of dimension N×1 and Φ representing a M×N measurement 

matrix. CS acquisition can be expressed as 

𝑦 =  Φx                                                                                       (7) 

where y is M×1 vector representing the obtained measurements. 

Assuming that x is represented in the form of N×N sparsifying basis matrix Ψ such that 

x = Ψ𝑥 .  

If 𝑥  (i.e. N×1 transform vector) only consist of K<<N significant coefficients, then x is 

K-sparse in Ψ domain. Thus using CS theory, a K-spare signal can be reconstructed if 

matrix ΦΨ satisfies the isometric property [4, 5]. 
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The signal x could be reconstructed by solving the following optimization problem; 

 

min Ψ−1x 
𝑝
 , subject to  𝑦 =  Φx                                             (8) 

Here the subscript p represents the signal sparsity. If p is 0, solving the above 

optimization problem the solution becomes complex and gives a NP-hard problem. 

Therefore, to reduce complexity and to make the convex problem easier, p is taken as 1.  

The flowchart of compressive sensing algorithm is depicted in figure 4.1. 

 

 

Figure 4.1: Flowchart of Compressed Sensing Algorithm 

 

4.3 Reweighted 𝒍𝟏 minimization 

It is a basic iterative convex optimization method providing uniform guaranteed 

reconstruction, stability and robustness but on the cost of increased complexity [4, 5]. 

The computed value of the current solution gives the weights used for next iteration.  

 

The algorithm is described as follows: 

1) The iterative count is set to 0 and initial weight is given by 𝑤𝑖
(0)

= 1,  

for 𝑖 = 1, … , N. 

2) The  weighted 𝑙1 minimization problem is solved by using the following solution; 

To reconstruct the signal, matrix ΦΨ should satisfy the following property

θ =  ΦΨ

A measurement vector y (M×1) is obtained as follows; 

y  =  Φx

Randomly generate measurement matrix (Φ) of M×N

Read N dimensional input signal (image/video) x 
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min W𝑥  1 , subject to  𝑦 =  Φx           (9) 

3) Weights are updated for each 𝑖 = 1, … , N. 

𝑤𝑖
(𝑗+1)

=
1

 𝑥 
𝑖
(𝑗)

 +∈
                                             (10) 

Here ϵ is a small positive number to prevent zero-valued denominator. 

4) After j has attained a specific maximum number of iteration jmax the convergence 

is terminated; otherwise j is incremented and steps 2 and 3 are repeated. 

 

4.4  Design of Encoder 

The Compressive Sensing System Encoder is designed as follows.  

 

 

Figure 4.2: Flow chart of Compressive Sensing System (Encoder) 

 

Firstly, a signal, image or a video sequence is taken as the input and is checked for its 

RGB content and then it is further converted to grayscale matrix coefficients. The 

coefficients having values smaller than a predefined threshold value are discarded using 

normalization process. A very few remaining significant coefficients are left, only a 

small subset of the original signal, reducing the number of measurement samples to 

represent the signal. It gives a method to acquire only fewer significant coefficients by 

sampling them at a rate less than that required by Shannon’s theorem. After 

Obtain Compressed bits of the original signal

Perform Quantization and Encoding

Apply Compressed Sesing

Perform Normalization

Take an input signal, image or a video
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normalizing, compressed sensing is applied by exploiting the fewer measurements. 

Further the compressed bits are quantized and encoded and it results in the generation of 

compressed bits.  

The compressed bits are then stored and transmitted. Compression ratio (CR) and space 

saving is also calculated at the encoder side by taking the ratio of the original image bits 

to the compressed bits. 

 

4.5 Design of Decoder 

At the decoder side, the compressed bits are taken and de-quantization and decoding is 

performed on the compressed bits. This step is followed by l1- minimization and the 

final outcome is then results into the reconstructed signal, image or video sequence. 

Finally the proposed system is checked for its signal quality by calculating its peak 

signal to noise ratio (PSNR), structural similarity index (SSIM) and percentage root 

mean square difference (PRD). These parameters for the reconstructed signal are 

compared with the original signal. The flowchart of decoder side of compressive 

sensing system is depicted in the following figure 4.3. 

 

 

Figure 4.3: Flow chart of Compressive Sensing System (decoder) 

Obtain the reconstrcuted signal, image or video

Execute l1 minimization 

Perform Dequantization and decoding

Obtain the compressed bits
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Performance parameters of original and the reconstructed image using l1 technique are 

compared and evaluated.  

These performance parameters are important which give an idea of the image quality of 

the reconstructed image and compare it to the original image quality.  Thus PSNR, 

MSE, RMS value, PRD, SSIM and DSSIM are important signal quality parameters 

which are calculated at the decoder side. 

 

4.6 Algorithm for CS applied on video 

The dissertation work also aims at applying the Compressive sensing technique on 

video signals. Therefore motion compensation technique is used for accurate recovery 

of a video signal by exploiting the motion vector for a reference frame. The 

compressive sensing algorithm for CS applied on video signal is given in the following 

figure 4.4. 

 

 

Figure 4.4: Algorithm for CS applied on video 

• Reference frame: xr 

• Motion vector: m_vector

• Measurement vector: y = Φx

• Sparsifying basis matrix: Ψ 

Given

• Motion Compensated frame is 
obtained as: xc = MC (xr, m_vector)

• Original MC frame residual is given 
as: ѓ= y – Φ. xc

• Reconstruction of this residual is done 
using l1 minimization technique
l1(r,Φ,Ψ)

• Reconstructed current frame is 
obtained by: ẋ = xc+ ѓ 

Output
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CHAPTER 5 

RESULTS AND DISCUSSION 

 

Different methods for each aspect of the compressive signal sensing are explored for 

benchmark images to assess and critically evaluate the performance of CS. Compressive 

sensing is firstly applied on random signal and the reconstructed signal is observed. 

Then compressive sensing is applied on images and further on video signals. All 

simulations are done using Matlab 2013a.   

 

5.1 Simulation results for CS applied on random signal 

The compressed sensing recovery scheme is applied for a random signal with original 

signal samples N=128, peaks P=4 and varying measurement samples K from 64 to 16 to 

analyze the changes in the recovered signal. The results obtained are the graphs shown 

in figure 5.1. 

 

Figure 5.1: Results for N=128 (total samples), Peaks =4 and K (measurement values of samples) is 

varied from 64 to 16 
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The recovered signal after compressed sensing for N=128, peaks (P) = 4 (fix) and 

setting K=64 is observed to be exactly same as the original signal. On changing K from 

64 to 32, a little distortion is noticed which can be ignored. While on changing K from 

32 to 16, the original signal is not recovered and distortion becomes noticeable.  

Thus from this compressive sampling performed on a random signal, it is depicted that 

the value of K measurement samples should be taken such that sampling rate is also low 

and original signal is recovered accurately. 

 

5.2 Simulation results for CS applied on different images 

5.2.1  Priliminary Results:  

Initially in partial part of this dissertation work, compressive sensing was applied on the 

different test images and then they were reconstructed based on two reconstruction 

techniques that are basic pursuit (l1) and least square minimization (l2). Then the subplot 

of the original reshaped image was taken along with the reconstructed images by both 

these techniques. Subplots of original reshaped image along with the reconstructed 

images were taken and also there histograms were also taken to analyze which one is 

the better reconstruction approach. PSNR and MSE were compared for both these 

techniques. Output screenshots for some test images are shown in figure 5.2(a) to 

5.2(b).   

 

Figure 5.2(a): Comparison of original (grayscale) image with reconstructed using BP (l1) and l2 
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Figure 5.2(b): Comparison of original (monalisa) image with reconstructed using BP (l1) and l2 

 

A comparison of PSNR, MSE and CR for different test images was listed in table 5.1. 

From this table, it was seen that PSNR for BP (l1) reconstruction method is twice as 

better as that of reconstructed using l2 method and on the other hand, MSE for l2 is more 

than that of BP (l1). 

 

Table 5.1: PSNR, MSE and CR comparison for different images 

Sr. 

No. 

Test Images PSNR 

using BP 

(l1) (dB) 

PSNR 

using 

l2(dB) 

MSE using 

BP (l1) 

MSE using 

l2 

CR 

1.  Baboon 18.6148  6.5361  894.5456 1.4437e+04 8.723 

2.  Bird  13.5346  7.4631  1.1061e+03 1.9529e+04 6.810 

3.  Cameraman  15.5750  6.0799  1.8013e+03 1.6036e+04 5.989 

4.  Coast_guard 19.4760  2.6398  733.6373 3.5408e+04 8.241 

5.  Flowers 18.1913  3.8248  986.1686 2.6953e+04 7.783 

6.  Girlface 16.6828  8.7488  1.3957e+03 8.6737e+03 7.109 

7.  Grayscale 16.6078  6.1687  1.4200e+03 1.5711e+04 6.415 
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8.  Lena  15.8718 6.5726  1.7469e+03 1.1393e+04 6.042 

9.  Monalisa  16.3648  8.0088  1.5018e+03 1.0285e+04 7.880 

10.  Peppers  17.0955  4.7555  1.2692e+03 2.1754e+04 5.984 

11.  Random  18.6212  9.4452  893.2333 7.3886e+03 7.571 

12.  Yellow_flower1 19.5236  9.7151  725.6324 6.9433e+03 6.107 

 

On evaluating both the reconstruction techniques, it was analyzed that reconstruction 

using BP (l1) gives better result than least square (l2) method but still the reconstructed 

images were not of good quality. Thus there was a scope for further improvement in 

results for its image quality in the later part of the dissertation. 

 

5.2.2 Modified Results for CS applied on images: 

 

Then in this part of the dissertation, compressive sensing technique is applied on image 

samples which are reconstructed based on three reconstruction techniques that are basic 

pursuit (l1), orthogonal matching pursuit (OMP) and least square minimization (l2). 

Subplots of the histograms along with the recovered signals are taken for comparison of 

original image with the reconstructed one and to choose the best reconstruction 

approach out of three evaluated reconstruction methods are shown in figure 5.3(a), 

5.3(b), 5.3(c) and 5.3(d).  

Various performance parameters are also compared for all the reconstruction 

techniques. 

 Performance parameters evaluated for some benchmark images using all the three 

reconstruction methods is tabulated in tables 5.2(a), 5.2(b), 5.3(a), 5.3(b), 5.4(a), 5.4(b), 

5.5(a) and 5.5(b). 
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Figure 5.3(a): Reconstructed images and histograms for image sample bird using l2, l1 and OMP 

reconstruction techniques 

Table 5.2(a): Image Quality Performance Parameters for CS applied on image sample- bird 

Image 

sample 

Technique 

used  

PSNR  MSE  SSIM  DSSIM  RMS  PRD  

Bird  L1(BP)  23.513 289.612 0.455 0.273  17.021 9.983  

L2(Least)  9.017  8.15e+03  0.134 0.433 90.292 71.831 

OMP  21.817 427.937  0.388 0.306  20.685 12.186 

 

 

Table 5.2(b): Compression Performance Analysis for CS applied on image sample- bird 

Image 

sample 

CR  Space saving  

Bird  6.810 85.316 
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Figure 5.3(b): Reconstructed images and histograms for image sample peppers using l2, l1 and OMP 

reconstruction techniques 

Table 5.3(a): Image Quality Performance Parameters for CS applied on image sample- peppers 

Image 

sample 

Technique 

used  

PSNR  MSE  SSIM  DSSIM  RMS  PRD  

Peppers  L1(BP)  26.371 149.971  0.824 0.088  12.247 9.157 

L2(Least)  10.229 6.167e+03  0.180  0.410  78.534 73.609  

OMP  22.793 341.839  0.696 0.152 18.489  13.841 

 

Table 5.3(b): Compression Performance Analysis for CS applied on image sample- peppers  

Image 

sample 

CR  Space saving  

Peppers 5.964 

 

83.232 
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Figure 5.3(c): Reconstructed images and histograms for image sample monalisa using l2, l1 and OMP 

reconstruction techniques 

 

Table 5.4(a): Image Quality Performance Parameters for CS applied on image sample- monalisa 

Image 

sample 

Techniqu

e used  

PSNR  MSE  SSIM  DSSIM  RMS  PRD  

Monalisa  L1(BP)  29.191 78.259 0.854 0.073  8.846 7.565 

L2(Least)  11.803 4.294e+03  0.172 0.414 65.525 72.713 

OMP  25.896 167.286 0.736  0.132 12.934 10.989 

 

 

Table 5.4(b): Compression Performance Analysis for CS applied on image sample- monalisa 

Image 

sample 

CR  Space saving  

Monalisa 7.881 

  

87.315 
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Figure 5.3(d): Reconstructed images and histograms for image sample grayscale using l2, l1 and OMP 

reconstruction techniques 

 

Table 5.5(a): Image Quality Performance Parameters for CS applied on image sample- grayscale 

 

Image 

sample 

Technique 

used  

PSNR  MSE  SSIM  DSSIM  RMS  PRD  

Grayscale  L1(BP)  26.967  130.713 0.775  0.112  11.433  8.121 

L2(Least)  10.100  6.35e+03  0.159  0.421  79.715  72.646  

OMP  23.186  312.198  0.629  0.185  17.669  12.587  
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Table 5.5(b): Compression Performance Analysis for CS applied on image sample- grayscale 

Image 

sample 

CR  Space saving  

Grayscale 6.415 

  

84.412  

  

 

 

On evaluating the different reconstruction techniques, it was analyzed that 

reconstruction l1 gives better result than OMP and l2 method as it gives near 

resemblance to the original image.  

Peak signal to noise ratio is an important image quality parameter that gives the quality 

measure in terms of pixel value of the image. PSNR is calculated using mean square 

error (MSE) that is indicates the error value given by averaging the squared intensity of 

the original and recovered image or video pixels. Percentage root mean square 

difference gives the square root of MSE value in percentage terms. Higher is the quality 

lower will be the PRD value. 

It was observed that PSNR for l1 reconstruction method is best among all the three 

reconstruction methods and on the other hand, PRD for l2 is more than that of l1 and 

OMP technique. PSNR is highest for the image sample having maximum number of 

pixels and it also depends upon pixel intensity.  

SSIM is based on statistical values of image attributes like luminance, brightness, 

texture, contrast and orientation. Its value lies between 0 and 1 and the reconstructed 

signal is structurally similar to the original signal if it approaches 1. It can be noted that 

SSIM value approaches to 1 for l1 norm- minimization and OMP technique and its value 

is more close to 1 for l1 (Basic pursuit) reconstruction method. 

Compression ratio is calculated by taking the ratio of compressed bits to the original 

image bits.  

A number of standard image samples are evaluated for three reconstruction techniques 

and list of those images along with their performance parameters is given in the 

following table 5.6(a) and 5.6(b). 
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Table 5.6(a): Performance Evaluation Parameters for different image samples 

Image 

samples  

Techniq

ue used  

PSNR  MSE  SSIM  DSSIM  RMS  PRD  

Baboon  L1(BP)  22.634  354.497  0.627  0.186  18.828  14.851  

L2(Least)  8.867  8.439e+03  0.089  0.455  91.869  99.482  

OMP  19.037  811.662 0.438  0.281  28.489  22.229  

Cameraman  L1(BP)  24.322  240.357  0.604  0.197  15.504  11.262  

L2(Least)  9.257  7.715e+03  0.121  0.439 87.834  85.621  

OMP  20.694  554.127  0.458  0.271  23.539  17.195  

Coast_guard  L1(BP)  28.601  89.747 0.661  0.169  9.474 4.635  

L2(Least)  5.357  1.894e+04  0.038  0.481  137.614  90.338  

OMP  25.207  196.041  0.485  0.257 14.002  6.847  

Einstien  L1(BP)  27.163  124.953  0.725  0.137  11.178  9.487  

L2(Least)  10.452  5.859e+03  0.091  0.455  76.545  87.763  

OMP  23.256  307.268  0.523  0.238  17.529  14.793  

Lena  L1(BP)  26.203  155.866 0.825  0.087  12.485  10.445  

L2(Least)  11.491  4.613e+03  0.217  0.392  67.917  73.624  

OMP  22.939  330.494  0.716  0.142  18.179  15.049  

Yellow_flow

er  

L1(BP)  29.125  79.527  0.834  0.083  8.918 9.219  

L2(Least)  13.734  2.752e+03  0.191  0.404  52.459  69.546  

OMP  25.226  195.173  0.687  0.156  13.970  14.112  
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Table 5.6(b): Compression Performance Analysis for different image samples 

Image sample CR  Space 

saving  

Baboon  8.732 88.536  

Cameraman 5.989  83.303  

Coast_guard 8.241  87.865  

Einstien  6.598  84.846  

Lena 6.042 83.449  

Yellow_flower 6.107  83.625  

 

 

A comparative graphical analysis of PSNR, SSIM, PRD and CR of different 

reconstruction methods is done below for pictorial representation of the performance 

parameters is shown in figure 5.4(a) to 5.4(f). 

 

 

 

Figure 5.4(a): Peak signal to noise ratio for different image samples 
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Figure 5.4(b): Percentage root mean square difference for different image samples 

 

The comparison chart in figure 5.4(a) and 5.4(b) gives the clear vision of PSNR and 

PRD outcome for the simulations done on different sample images for three 

reconstruction techniques. Form figure 5.4(a) it is clear that PSNR is highest for l1 than 

it is acceptable for OMP algorithm but for l2 norm minimization it falls down to 

approximately half the value of l1 norm minimization technique. PRD on the other hand 

is highest for l2 norm minimization and then it reduces for OMP and minimum for basic 

pursuit (l1) method. This is indicated in figure 5.4(b). 

 

 

Figure 5.4(c): Structural similarity index for different image samples 
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Figure 5.4(d): Structural Dis-similarity index for different image samples 

 

The graphs in figure 5.4(c) and 5.4(d) gives the similarity and dissimilarity comparison 

of different images. The SSIM value can be seen in figure 5.4 (c), it is approaching to 1 

for l1 method and it falls towards 0 for the other two methods. DSSIM as depicted in 

figure 5.4(d) is highest for l2 method and least for l1 norm minimization method. 

 

 

 

Figure 5.4(e): Compression Ratio for different image samples 
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Figure 5.4(f): Space Saving analysis for different image samples 

 

The bar chart in figure 5.4(e) gives the compression ratio of different image samples 

computed at the encoder side and depending upon the number of bits in the original and 

the compressed bits its value varies for different image samples. Also space saving 

comparison is shown in figure 5.4(f) and it shows that the maximum compressed image 

saves maximum of the space used to store that particular image.  

 

It should also be noted that all these performance parameters are evaluated for original 

N dimensional signal x for N = 6400 and the samples taken M = 4000. As the number of 

samples decreased recovered image quality reduces and so does the value of image 

quality performance parameters like PSNR and SSIM whereas it does not affect the 

parameters like CR and Space saving as they are calculated at the encoder side.  

This is evident from figures 5.5(a) and 5.5(b) that the image quality increases as the 

samples are increased and the graphical representation of increasing PSNR, PRD and 

SSIM is depicted in figures 5.5(c), 5.5(d) and 5.5(e) and their values are tabulated in 

table 5.7 (a), 5.7 (b) and 5.7 (c). 
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Figure 5.5(a): Reconstructed cameraman image for varying samples from 1000 to 4000 

 

 

Figure 5.5(b): Reconstructed Monalisa image for varying samples from 1000 to 4000 
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Table 5.7(a): PSNR table for varying samples from 1000 to 4000: Monalisa image 

Image 

sample 

Techniques 

used 

1000 

samples 

2000 

samples 

3000 

samples  

4000 

samples 

Monalisa  BP (l1) 13.85 16.36 22.04 29.19 

OMP 10.89 14.29 19.89 25.89 

l2 (least sq) 5.12 8 9.13 11.81 

 

 

 

 

Figure 5.5(c): PSNR comparison for varying samples from 1000 to 4000: Monalisa image 

 

From figure 5.5(c) is can be seen that PSNR value increases as the number of samples 

increases and maximum PSNR value is given by basic pursuit (l1) norm minimization 

technique  

Table 5.7(b): PRD table for varying samples from 1000 to 4000: Monalisa image 

Image 

sample 

Techniques 

used 

1000 

samples 

2000 

samples 

3000 

samples  

4000 

samples 

Monalisa  BP (l1) 20.287 17.25 12.017 7.565 

OMP 23.187 18.19 15.98 10.989 

l2(least sq) 92.38 88.19 82.96 72.713 
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Figure 5.5(d): PRD comparison for varying samples from 1000 to 4000: Monalisa image 

 

Table 5.7(c): SSIM table for varying samples from 1000 to 4000: Monalisa image 

Image 

sample 

Techniques 

used 

1000 

samples 

2000 

samples 

3000 

samples  

4000 

samples 

Monalisa  BP (l1) 0.467 0.512 0.678 0.854 

OMP 0.331 0.458 0.589 0.736 

l2(least sq) 0.003 0.09 0.11 0.172 

 

 

 

Figure 5.5(e): SSIM comparison for varying samples from 1000 to 4000: Monalisa image 
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From figure 5.5(d) it can be seen that PRD value reduces with increasing the number of 

samples. PRD value is minimum for 4000 samples taken for l1 norm minimization 

method. Also from figure 5.5(e), SSIM approaches to 1 for 4000 samples using l1 norm 

minimization reconstruction. 

For all the three reconstruction methods, namely, l2 norm minimization, basic pursuit 

(l1) norm minimization and orthogonal matching pursuit, the reconstruction quality 

increases with the increase in the number of samples. The best recovery is possible for 

4000 samples taken for basic pursuit (l1) norm minimization technique.   

 

5.3 Simulation result of CS applied on video 

 

Our research paper also aims at applying CS on video signals. The simulation results for 

21th to 25th frames of the video sequence are given in figures 5.6(a) to 5.6(e).  

 

 

 

Figure 5.6(a): Simulation result for 21
th
 frame when CS applied is on video 
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Figure 5.6(b): Simulation result for 22th frame when CS applied is on video 

 

 

 

Figure 5.6(c): Simulation result for 23th frame when CS applied is on video 
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Figure 5.6(d): Simulation result for 24th frame when CS applied is on video 

 

 

 

Figure 5.6(e): Simulation result for 25th frame when CS applied is on video 
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The original video has 145 frames but the time elapsed for applying the CS 

reconstruction algorithm on the entire video sequence is very large.  

Thus to reduce the running time and to check the validity of the algorithm the output 

video signal is obtained for 1
st
 25 frames of the original video having total 145 frames. 

Time elapsed for each frame to be reconstructed is 2-3 minutes (approximately).  

The input and output reconstructed 21
th
 to 25

th
 frames comparisons are done in figures 

5.6(a) to 5.6(e) for compressive sensing applied on a sample video and the PSNR values 

are observed between 60 to 65 dB. 
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CHAPTER 6 

CONCLUSION  

 

The performance of compressed sensing is evaluated for a random signal, for different 

benchmark images and also for video signals. For CS recovery of a random signal, 

value of samples should be taken such that there is a tradeoff between the accurate 

recovery and sampling rate.   

Various performance parameters are evaluated for different images and out of them, 

Basic pursuit (l1) reconstruction method is proved superior to other implemented 

methods. It was analyzed that reconstruction l1 gives better result than OMP and l2 

method as it gives near resemblance to the original image. Peak signal to noise ratio is 

an important image quality parameter that gives the quality measure in terms of pixel 

value of the image. PSNR depends upon pixel intensity and SSIM depends upon the 

human eye perception of similarity. Percentage root mean square difference gives the 

square root of MSE value in percentage terms. Higher is the quality lower will be the 

PRD value. PRD is minimum for BP (l1) and PSNR is maximum for this method.  

Trade off is maintained between the image quality and compression ratio. Compressed 

sensing is also applied on video signal and performance parameters are evaluated.  

In this research work, after evaluating numerous performance parameters for different 

reconstruction algorithms, it was concluded that that PSNR for l1 reconstruction method 

is best among all the three reconstruction methods. On the other hand, PRD for l2 is 

more than that of l1 and OMP technique. It was observed PSNR is highest for the image 

having maximum number of pixels and it also depends upon pixel intensity. Another 

performance evaluation parameter SSIM value also approaches to 1 for l1 norm- 

minimization reconstruction method. Compression ratio is calculated by taking the ratio 

of compressed bits to the original image bits. 

Thus a compressed sensing based system is considered that enables faster acquisition, 

compression and reconstruction as compared to traditional compression systems is 

obtained. 
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