

FPGA IMPLEMENTATION OF ARITHMETIC
OPERATIONS USING QUATERNARY SIGNED DIGIT
 Dissertation submitted in partial fulfillment of the requirement for the degree of

MASTERS OF TECHNOLOGY

IN

ELECTRONICS AND COMMUNICATION ENGINEERING

By

RADHIKA

 (152016)

UNDER THE GUIDANCE OF

Dr. SHRUTI JAIN

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

May 2017

TABLE OF CONTENTS

 PAGE NUMBER

DECLARATION BY THE SCHOLAR II

SUPERVISOR’S CERTIFICATE III

PREFACE AND ACKNOWLEDGEMENT IV

ABSTRACT V

LIST OF ACRONYMS AND ABBREVIATIONS VI

LIST OF SYMBOLS VII

LIST OF FIGURES VIII

LIST OF TABLES IX

CHAPTER 1

INTRODUCTION 1

1.1 QUATERNARY SIGNED DIGIT NUMBER 2

2.1 THESIS ORGANIZATION 5

CHAPTER 2

LITERATURE REVIEW 6

CHAPTER 3

ADDER AND SUBTRACTOR

3.1 BCD ADDER 10

3.2.1 BCD ADDER DESIGN 11

3.2.2 SIMULATION 13

3.2.3 RESULT 15

3.2 QSD ADDER 15

3.3.1 QSD ADDER DESIGN 15

3.3.2 DESIGN ALGORITHM 17

3.3.3 SIMULATION 23

3.3.4 RESULT 25

3.3 QSD SUBTRACTOR 26

3.4.1 DESIGN ALGORITHM 26

3.4.2 SIMULATION 29

3.4.3 RESULTS 31

3.4 COMPARISON 32

CHAPTER 4

MULTIPLIER 33

4.1 WALLACE TREE MULTIPLIER 33

4.2.1 WALLACE TREE DESIGN 33

4.2.2 SIMULATION 34

4.2.3 RESULT 36

4.2 BAUGH WOOLEY MULTIPLIER 36

4.3.1 SIMULATION 38

4.3.2 RESULT 40

4.3 QUATERNARY SIGNED DIGIT MULTIPLIER 40

4.4.1 DESIGN ALGORITHM 40

4.4.2 SIMULATION 45

4.4.3 RESULT 47

4.4 COMPARISON 48

CONCLUSION AND FUTURE WORK 50

REFRENCES 51

LIST OF PUBLICATION 53

ACKNOWLEDGEMENT

I wish to express my profound gratitude and indebtedness to Dr. SHRUTI JAIN ,

Associate Professor, Department of Electronics and Communication , Jaypee University of

Information Technology, Waknaghat, Solan, for introducing the present topic and for their

inspiring guidance and valuable suggestion for this thesis work.

Lastly , I feel immense pleasure to express my sincere gratitude to my parents and friends

who have always been source of encouragement and strength.

ABSTRACT

The primary problem in digital world is to minimize the area and increase the speed of

operations. Using efficient techniques we can overcome these problems. In digital circuits

arithmetic operations are very useful and important. Digital circuits are used in

microcomputers, signal processing and many other digital systems. Digital system use binary

number system which has two states. Binary is represented by binary digit '1'and '0' ,which

represents the two different voltage levels HIGH and LOW . The HIGH voltage level is used

to represent 1 and LOW voltage is used to represent 0.A microprocessor is a VLSI device that

performed arithmetic operations and many other operations. The microprocessor is used as the

central processing unit in microcomputers system so speed of the microprocessor depends

upon the maximum speed to accomplish the operations. However, propagation time delay, and

circuit complexities are the crucial problems in arithmetic operations. For quick results in

digital processor we have to increase the speed of the operation. In binary number system,

generation of carry in arithmetic operations create delay problems, reduce the speed of

microcomputers and increase the complexity of circuits. The problems of arithmetic

operations can be overcome by using Quaternary Signed Digit (QSD) number system rather

than binary number system.QSD is a higher radix number system, it implies that higher radix

number system is less complex than the lower radix number system. QSD is represented by

four decimal number 0,1, 2 and 3. QSD perform carry free addition, borrow free subtraction

and multiplication which reduce the complexity of circuit and has less delay than other

arithmetic circuits.

LIST OF ACRONYMS & ABBREVIATIONS

BCD Binary Coded Decimal

CSA Carry Save Adder

FPGA Field Programmable Gate Array

IC Intermediate Carry

IS Intermediate Sum

LUT Look Up Table

QSD Quaternary Signed Digit

VLSI Very Large Scale Integration

LIST OF SYMBOLS

bi Base of any number

D Decimal number

Xi Value from QSD set number

LIST OF FIGURES

Figure

Number

Caption Page

Number

1.1

Positive number representation

3

1.2 Negative number representation 3

1.3 Voltage level of QSD 4

3.1 Block diagram of BCD adder 12

3.2 Output of BCD adder 13

3.3 Schematic diagram of BCD adder 14

3.4 n digit QSD adder 16

3.5 Basic concept of QSD adder 17

3.6 Output wave form of QSD 24

3.7 Schematic diagram of QSD adder 24

3.8 Derive successfully programmed on FPGA board 25

3.9 Output wave form of QSD subtraction 30

3.10 Schematic diagram of QSD subtraction 31

4.1 Wallace tree multiplier diagram 34

4.2 Output wave form of Wallace multiplier 34

4.3 Schematic diagram of Wallace multiplier 35

4.4 Baugh Wooley multiplier 37

4.5 Output wave form of Baugh Wooley 38

4.6 Schematic diagram of Baugh Wooley 39

4.7 Flow chart of QSD multiplication 41

4.8 Output wave form of QSD multiplication 45

4.9 Schematic view of QSD multiplier 46

4.10 Derive successfully programmed on FPGA board 47

LIST OF TABLES

Table
Number

Caption Page
Number

1.1

Binary and decimal representation

2

3.1 Valid BCD representation 10

3.2 Valid and invalid representation of BCD between(10-15) 11

3.3 Design parameters of BCD 14

3.4 Possible maximum and minimum values of addition 17

3.5 All possible addition combination of two QSD number 19

3.6 Possible values of IC and IS 22

3.7 Design parameter of QSD addition 25

3.8 All possible combination of two QSD subtraction 27

3.9 Design parameter of QSD subtraction 31

3.10 Comparing the results of BCD and QSD adder 32

4.1 Design parameter of Wallace multiplier 36

4.2 Design parameter of Baugh Wooley 40

4.3 Show all possible values of multiplication of two QSD number 41

4.4 Possible output combination between -9 to +9 43

4.5 Design parameter of QSD multiplier 47

4.6 Comparison of QSD multiplier with different multiplier 48

4.7 Comparison of proposed design with the existing design 49

 CHAPTER 1

INTRODUCTION

Arithmetic operations has important role in digital electronic. Digital systems are widely used

over the analog because it has several advantages. One of advantage is the fast arithmetic

calculation which increases the speed of operation in digital system. Digital systems are highly

used in data processing, signal system, control system, computation and measurements. There

are several techniques to accomplish the arithmetic operation in digital system. One of them is

Binary Signed Digit Number, it allow the carry limited operation but with complex addition

process. So arithmetic operations have to compromise with the speed of operation, limiting

number of bits, delay and circuit complexity. These are the limitation of arithmetic operation

in digital system. Digital system performance depends upon the computational speed of

arithmetic operations. The growing worldliness of application continuously pushes the design

and manufacturing of electronic system to new level of complexity. So the major challenge for

the VLSI designers is to reduce the area of the chip without affecting the performance of the

system. Because small size leads to advantages in speed and power consumption, since it has

small resistance capacitance and inductance. Designer has to use the logical techniques to

reduce the area of chip and increase the performance of system. In today’s life millions of

instruction done by the microprocessors in seconds. Microprocessor is a digital device in

microcomputers that can be programmed to perform arithmetic and logic operation and other

functions. So designer has to increase the speed of operations so that the microprocessors

complete million of instructions fast. As reducing the number of component, the power supply

requirement and so on will reduce the system cost also. We generally overcome the arithmetic

operation problem of high complexity, delay and less speed of operations. For arithmetic

operation using the binary number system which generate carry and increase the usage of

storage in circuit. To overcome this problem we are using higher radix number system.

Quaternary Signed Digit (QSD) number is a higher radix number system than binary number

system. So we implemented different adders and multipliers using XILINX 14.7 ISE and

programmed successfully on SPARTAN 3E 100or250 FPGA board.

1.1 QUATERNARY SIGNED DIGIT NUMBER

Quaternary Signed digit number system is a higher radix number system. To perform the

arithmetic operations we use QSD Number system. QSD offers the carry free addition, borrow

free subtraction and multiplication. It helps microprocessors to accomplish the task with less

complexity and time delay. Microcomputers speed depends upon the operational speed. QSD

is the number system with radix 4 and it is represented by 4 numbers 0, 1, 2, and 3. Signed

digit is represented by 3 , 2 and 1 where 3 is -3, 2 is -2 and 1 . Whole QSD number set is

representing as { 3 , 2 , 1, 0,1,2,3}. Normally most of the arithmetic operation deals in decimal

number so decimal number D can be represented in form of QSD number system as

 𝐷 = ∑ 𝑋𝑖𝑏𝑖𝑛−1
𝑖=0 (1)

Where Xi is any value from the set of { 3 , 2 , 1, 0,1,2,3} and b is base of any number system.

In Quaternary Signed Digit number system b is 4 . Now the equation is rewrite with the base

number as

 𝐷 = ∑ 𝑋𝑖4
𝑖𝑛−1

𝑖=0 (2)

In QSD +3 is the maximum digit and -3 is the minimum digit as shown in TABLE 1.1.

Table 1.1: Binary and Decimal Representation of QSD

DECIMAL

NO.

QSD NO. BINARY

REPRESENTATION

-3 -3 101

-2 -2 110

-1 -1 111

0 0 000

1 1 001

2 2 010

3 3 011

 It required 3 bit to represent single decimal number , in which most significant bit represent

the sign of the number whether the number is positive or negative while other 2 bits

representing decimal number. If signed bit is ‘0’ then number is positive shown in figure

1.1and if sign bit is ‘1’ then number is negative shown in figure 1.2.

0 0 1 1 0 1

 MSB LSB MSB LSB

 Signed Bit Magnitude Bit Signed Bit Magnitude Bit

 Figure 1.1: Positive number representation. Figure 1.2: Negative number representation.

 Quaternary is overcome the problem of binary arithmetic. Binary operation is limited due to

carry generation that mean it need more interconnects in VLSI which occupy large area and

increase the complexity of the circuit. In VLSI 70% of area is dedicated to interconnects, 20%

dedicated to insulation and the remaining 10% is for device. For arithmetic operation if the

radix of numeral system is large than it required less number of digit to present the quantity.

As discussed QSD logic representation is 0, 1, 2 and 3 so it uses four voltage levels as shown

in figure 1.1.

Figure 1.3: Voltage levels of QSD

1.2 THESIS ORGANIZATION

This report is tidy in four chapters.

Chapter 1 of thesis gives the brief introduction of problem in arithmetic operations. This

chapter also provides a brief introduction of QSD number system.

In chapter 2 we introduce literature review, we summarized the objectives of existing

publication on arithmetic operations.

In chapter 3 we implement different types of adders such as BCD and QSD adder. We also

implement QSD subtractor in this chapter. We discuss design algorithm of adders and

subtractor along with the design parameters and simulation results. We also comparing the

results of QSD adder with the BCD.

In chapter 4 we implement different types of multiplier such as QSD multiplier, Wallace

multiplier and Baugh Wooley multiplier. We compare the simulation results and design

parameters of these multipliers.

Final is the conclusion of the thesis work and provides recommendation for future work.

CHAPTER 2

LITERATURE REVIEW

We have studied different papers.

1. Krishna M.N. and Ravisekhar T.,(2008)[5],conducted study for fast arithmetic operation

with QSD using Verilog HDL. This paper proposed a circuit of QSD which consume low

power and energy.

2. Rani R., Singh L. K., Sharma N., (2009)[3], conducted study for FPGA implementation of

fast adders using Quaternary signed digit number system. This paper proposed a design of

QSD addition and multiplication which will increase the operation speed. Design QSD

number uses 25% less space than BSD to store number, higher number of gates can be

tolerated for further improvement of QSD adder. BSD tolerance is low to store higher

number of gates.

3. Chattopadhyay T. and Sarkar T.,(2012)[11], conducted study for the logical design of

quaternary signed digit conversion circuit and its effectuation using operational amplifier In

this paper, they reported a new and easy method for conversion from binary number (2’s

compliment representation) to quaternary-signed digit (QSD).

4. Sahastrabudhey S.B., Bogawar K. M. (2012)[19], conducted study for arithmetical

operations in quaternary system using VHDL .The QSD adder is better than other binary

adders in terms of number of gates and higher number of bits addition within constant time.

Efficient design for adder block to perform addition or multiplication will increase operation

speed.

5. Shende P.Y. and Dr. Kshirsagar R.V(2013)[17], conducted study for the quaternary adder

design using VHDL. The proposed QSD adder is better than other binary adders in terms of

number of gates and higher number of bits addition within constant time. Efficient design for

adder block to perform addition or multiplication will increase operation speed.

6. Dubey S., Rani R., Kumari S., Sharma N. (2013)[3] , conducted study for VLSI

implementation of fast addition using quaternary signed digit number system.

Implementation for single digit addition, the dynamic power dissipation is 36.255W at 5GHz

frequency. These circuits consume less energy and less energy and power, and shows better

performance. The delay of the proposed design is 2ns.

7. Suneetha M. and Kumar S.N., Sivakrishna P.(2014)[16],conducted study for design and

implementation of 2-digit adder using Quaternary signed digit number system.

Implementation for 2 digit addition, the dynamic power dissipation 0.079mW at 5GHz

frequency. These circuits consume less energy and less energy and power, and shows better

performance. The delay of the proposed design is less

8. Mohan V. and Mohan K. M.,(2014)[6], conducted study for the implementation of

quaternary signed adder system. Proposed QSD adder is better than other binary adders in

terms of number of gates and higher number of bits addition within constant time QSD

number uses less space than BSD.

9. Paisa S. and Babu K.S.,(2014)[13], conducted study for the designing of QSD number

system for arithmetic operations. Implementation for single digit addition, the dynamic

power dissipation is 36.255—Wat 5GHz frequency. These circuits consume less energy and

less energy and power, and shows better performance. The delay of the proposed design is

2ns.

10. Reddy T.R. and Reddy C.V.V.,(2014)[21], conducted study for the high speed arithmetic

operations using quaternary signed digit number system. With the use of Quaternary SDN

system one can perform different arithmetic operations like addition, subtraction,

multiplication for single digit numbers, with this his number system one can perform high

speed operations with better performance. The delay is less.

11. Manasa G., Rao M.D., Miranji K.,(2014)[2], conducted study for the design and analysis of

fast addition mechanism for integers using quaternary signed digit number system .The

technique for conversion from binary number system to quaternary number system is

explained with examples. For the addition of the Quaternary number a different technique is

used i.e., for the addition of two QSD numbers first the intermediate sum and carry are

generated and then these intermediate sum and carry are added with each other with the help

of full adders. The result of this addition is always carrying free.

12. Ramya E. and Deepti P.R.,(2015)[12], conducted study for the implementation of fast

addition using quaternary signed digit number system. The implementation of QSD addition,

subtraction and multiplication are verified and compared with the Ripple carry adder. The

test confirms the superior performance of the QSD adder implementation over other adders

beyond 64-bits due to the carry-free addition scheme.

13. Babu M.K, Karthik C., Venkatesh C.,(2015)[14], conducted study for implementation of

carry free arithmetic operations by QSDN. The proposed QSD adder is better than other

binary adders in terms of number of gates and higher number of bits addition within constant

time. Efficient design for adder block to perform addition or multiplication will increase

operation speed. QSD number uses 25% less space than BSD.

14. Reddy M.R. and Reddy M.R., (2015) [20] conducted study for Implementation of fast

addition with QSD using Verilog. Implementation for single digit addition, the dynamic

power dissipation is 36.255W at 5GHz frequency. These circuits consume less energy and

less energy and power, and shows better performance. The delay of the proposed design is

2ns.

15. Reddy K.C.S and DR. Rao D.V.,(2015)[1] conducted study for high performance quaternary

arithmetic logic unit on programmable logic device, The Proposed QSD arithmetic logic unit

is better than other binary arithmetic unit in terms of number of gates and higher number of

bits operation with in constant time. Efficient design for adder block to perform addition and

multiplication will increase operation speed.QSD number uses 25% less space than BCD to

store number, higher number of gates can be tolerated for further improvement of QSD

adder.

CHAPTER 3

ADDERS AND SUBTRACTOR

Arithmetic circuits are important part of VLSI technology. Switching techniques of arithmetic

system is very high due this it consume more power than others. Arithmetic includes addition,

subtraction and multiplication. Now in this chapter we implementing different types of adders

and comparing results.

3.1 BCD ADDDER

BCD is Binary Coded Decimal number and also called Excess 3 number system. BCD needed

4 bit to represent decimal number 0-9. In 4 bit representation 1st 10 combinations is valid in

BSD as shown in TABLE 3.1.
TABLE 3.1: Valid BCD representation

DECIMAL NO. BCD REPRESENTATION

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

After 10 combination of BCD 6 combinations are invalid and their valid and invalid

representation shows in TABLE 3.2.

TABLE 3.2: Valid and invalid representation of BCD between (10-15).

DECIMAL NO INVALID BCD VALID BCD

10 1010 00010000

11 1011 00010001

12 1100 00010010

13 1101 00010011

14 1110 00010100

15 1111 00010101

To represent a single digit number BCD required 4 bits if to represent two digit number then it

required 8 bits. In two digit number four bits represent first digit and next four bit represents

second digit.

3.2.1 BCD ADDER DESIGN

As shown in block diagram in figure 3.1, 4bits of addend and 4 bits of augends are added in 4

bit of binary block. After addition the results will be of 4 bits S0, S1, S2 and S3. If the sum of

the BCD adder is up to 9 then result is representing by 4 bits.

Figure 3.1: Block diagram of BCD adder [27].

If result sum is greater than 9 then we add 6 to the sum so that the sum is valid BCD and it

represent by 8 bits as shown in table 3. Let’s take an example of BCD adder.

Example 3.1 Add two numbers 6 and 5 in BCD adder.

 Solution: (6)10 = 0110

 (5)10 = 0101

 Sum = 1011 invalid BCD number

 Adding 6 to the invalid sum

 1011

 0110

 Sum=0001 0001 valid BCD

In example we add 6 and 5, after adding the BCD result is invalid because the sum of addition

is greater than 9. So in next step we add 6 to sum so that it will be a BCD number. In final sum

carry represented by 4 bits and rest of sum represent by another 4 bits. Total sum of BCD

adder represented by 8 bits

3.2.2 SIMULATION

The code for BCD adder is written in Verilog and the design is simulated and analyzed using

Xilinx 14.7 ISE Simulator. Figure 3.2 shows the output waveform of BCD and figure 3.3

shows the schematic diagram. In figure 3.2 we are adding A[3:0] =1001 and B[3:0] =1001

after addition we get sum of 0010 with carry 1. Next step is to add 6 to the previous sum

(0010+0110) we get in result is 1000 ,now adding the carry to this result the final sum of

BCD adder is 1001.

Figure 3.2: Output of BCD adder

Figure 3.3: Schematic diagram of BCD adder

3.2.3 RESULTS

In table 3.3 shows design parameters of BCD. LUT is a look up table that contains array. Look
up table work is to replace runtime computation with array index operation.

TABLE 3.3:Design parameters of BCD

ADDER LUT SLICES DELAY CELL USAGE

LOGIC ROUTE BELS IO
BUFFERS

BCD 8 4 7.284ns 1.777ns 16 14

LUT of BCD is 24, slices is 12 ,delay 12.67ns and cell usage 28.

3.2 QSD ADDER

Binary signed digit (BSD) number is used in digital system. Binary has two logic levels 0 and

1. This shows the high and low logic level of binary. Here 1 represent high logic level and 0

represent low logic level. Binary operation is limited due to carry generation that mean it need

more interconnects in VLSI which occupy large area and increase the complexity of the

circuit. Generation of carry in binary arithmetic operations occupy large area which reduce the

speed of the microcomputers. To overcome these problems of binary adder we are using

Quaternary Signed Digit number System (QSD).

3.3.1 QSD ADDER DESIGN

QSD adder gives carry free addition. There are mainly two steps to describe the QSD addition

as shown in figure 3.4(n digit QSD adder). First step generates carry/sum and second step add

the Intermediate Carry and Intermediate Sum of first step result. The steps of QSD addition

briefly describe in further section 3.3.2.

Figure 3.4: n digit QSD adder [3].

3.3.2 DESIGN ALGORITHM

In this section we are studying about the steps and rules of QSD adder. The maximum value of

addition of two QSD number is +6 and minimum value is -6. QSD is represented by set of

numbers -3,-2,-1,0, 1, 2 and 3. If we add the two maximum values from the set of QSD

number the output value is 6. If we add the two minimum values from set then output result is

-6. In TABLE 3.4 shown all possible maximum and minimum values of QSD addition in

between (-6 to +6).

Table 3.4: Possible maximum and minimum values of addition[3]

Now we discuss how QSD addition will work, most of the arithmetic operation deals in

decimal number or base 10. The first step of the QSD addition is to convert decimal number

into QSD number as shown in figure 3.5.

Figure 3.5: Basic concept of QSD addition[6].

Let’s take an example for better understanding the steps of QSD addition. Add two unsigned

decimal numbers (102)10 and (220)10 using QSD number.

Step 1: In step 1 we convert decimal number into QSD number.

 (102)10

 (1212)4

 (220)10

 (3130)4

After conversion QSD representation of decimal number (102)10 and (220)10 is shown in

equation 1 and 2

(102)10 = (1212)4 (1)

(220)10 = (3130)4 (2)

Step 2: In this step we have two QSD numbers,we add addend and augends. After addition we

can get a sum which may or may not be a QSD number. If number is QSD then it will directly

converted from QSD into decimal number. Then it is not necessry to go through from step 3.

If in result any number at place of one’s ,ten’s, hundrad’s and so on is greater then 3 then

number is not QSD. Then we move on 3rd step. Let’s add two QSD numbers

 A = 1 2 1 2

 B = 3 1 3 0

 SUM = 4 3 4 2

Our target is to design a circuit which adds two QSD numbers. As we discussed if we get

number greater than 3 at any place of sum then it is not a QSD number. In result we are

finding that at ten’s and thousand’s place number is greater than 3 so it is not a QSD number.

So we move on 3rd step of basic concept of QSD addition.

Table 3.5: All possible addition combination of two QSD number[13]

INPUT OUTPUT

QSD BINARY DECIMAL QSD BINARY

Ai Bi Ai Bi SUM IC IS Ci Si

3 3 011 011 6 1 2 01 010

3 2

2 3

011 010

010 011

5

5

1 1

1 1

01 001

01 001

3 1

1 3

2 2

011 001

001 011

010 010

4

4

4

1 0

1 0

1 0

01 000

01 000

01 000

1 2

2 1

001 010

010 001

3

3

1 -1

1 -1

01 111

01 111

3 0

0 3

011 000

000 011

3

3

1 -1

1 -1

01 111

01 111

1 1

0 2

2 0

3 -1

-1 3

001 001

000 010

010 000

011 111

111 011

2

2

2

2

2

0 2

0 2

0 2

0 2

0 2

00 010

00 010

00 010

00 010

00 010

0 1

1 0

2 -1

-1 2

3 -2

-2 3

000 001

001 000

010 111

111 010

011 110

110 011

1

1

1

1

1

1

0 1

0 1

0 1

0 1

0 1

0 1

00 001

00 001

00 001

00 001

00 001

00 001

0 0

1 -1

-1 1

2 -2

-2 2

-3 3

3 -3

000 000

001 111

111 001

010 110

110 010

101 011

011 101

0

0

0

0

0

0

0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

00 000

00 000

00 000

00 000

00 000

00 000

00 000

0 -1

-1 0

-2 1

1 -2

000 111

111 000

110 001

001 110

-1

-1

-1

-1

0 -1

0 -1

0 -1

0 -1

00 111

00 111

00 111

00 111

-3 2

2 -3

101 010

010 101

-1

-1

0 -1

0 -1

00 111

00 111

-1 -1

0 -2

-2 0

-3 1

1 -3

111 111

000 110

110 000

101 001

001 101

-2

-2

-2

-2

-2

0 -2

0 -2

0 -2

0 -2

0 -2

00 110

00 110

00 110

00 110

00 110

-1 -2

-2 -1

-3 0

0 -3

111 110

110 111

101 000

000 101

-3

-3

-3

-3

-1 1

-1 1

-1 1

-1 1

11 001

11 001

11 001

11 001

-1 -3

-3 -1

-2 - 2

111 101

101 111

110 110

-4

-4

-4

-1 0

-1 0

-1 0

11 000

11 000

11 000

-2 -3

-3 -2

110 101

101 110

-5

-5

-1 -1

-1 -1

11 111

11 111

-3 -3 101 101 -6 -1 -2 11 110

Addition of any QSD number, results in the range between -6 to 6 because it has the maximum

range to represent any decimal number in between -3 to +3. Table 3.5 shows all possible

addition combinations of two QSD numbers.

Step 3: If the sum we are getting after addition is not a QSD number. Then to eliminate the

carry we add Intermediate Carry (IC) and Intermediate Sum (IS). Before adding IS and IC we

have to follow two rules given below.

Rule 1: While doing the addition the value of the IC should be in the range of -1 to +1.

Rule 2: The value of the IS should be in the range of -2 to +2.

Values of IC and IS evaluated from TABLE 3.6 which gives QSD code number of non QSD

numbers.

Table 3.6: Possible values of IC and IS [13].

SUM QSD CODE

NUMBER

IC IS

QSD ALSO
REPRESENTED BY

NUMBERS

-6 1 2 22, 1 2

-5 2 1 23, 1 1

-4 1 0 1 0

-3 1 1 11, 03

-2 0 2 1 2, 02

-1 0 1 13, 01

0 0 0 0 0

1 0 1 01, 13

2 0 2 02, 12

3 1 1 03, 11

4 1 0 1 0

5 1 1 11, 23

6 1 2 12, 22

The result we get after addition is (4342)4, for IC as Rule 1 said it should be in between -1 to

1. From table 7, QSD representaion for 3 and 4 is IC= 1, IS = 1 and IC = 1, IS = 0

respectively. Where IC in both the cases is 1 while IS is diferent for 3 and 4. For IC, at place

of 3 and 4 we write 1 because it generate carry 1 and write 0 at place of 2 while for IS we shift

right and at place of 3 and 4 we write 1 and 0 respectively, where 2 remain the same at its

place. We add IS and IC to get output result in QSD number.

 IC 1 1 1 0

 IS 0 1 0 2

 OUTPUT 1 1 0 0 2

Output is in QSD form (11002)4 now further we move on step 4.

Step 4: In step 4 we are converting QSD number into decimal number.

(11002)4= 1×44 +1×43 +0×42 +0×41 +2×40

 = 256+64+2

 = (322)10

So the final sum of adding two QSD number is (11002)4 in QSD and (322)10 in decimal.

3.3.3 SIMULATION

The code for QSD adder is written in Verilog. Design is simulated and analyzed using Xilinx

14.7 ISE Simulator. Figure 3.6 shows the output waveform of QSD and figure 3.7 shows the

schematic diagram. In figure 3.6 we are adding two QSD numbers 3 and 2, in result we get

sum 5. Sum is not a QSD number we move on step 3. In step 3 we add IC and IS. From table

3.6 IC of 5 is 1 and IS is also 1 .After addition of IC and IS final sum of two QSD number is

11. Final sum we get is a QSD number.

Figure 3.6: Output wave form of QSD

Figure 3.7: Schematic diagram of QSD adder

3.3.4 RESULTS

In table 3.7 shows design parameters of QSD. LUT is a look up table that contains array. Look
up table work is to replace runtime computation with array index operation.

Table 3.7: Design parameters of QSD addition

ADDER LUT SLICES DELAY CELL USAGE

LOGIC ROUTE BELS IO
BUFFERS

QSD 3 2 5.194ns 1.26ns 4 10

LUT of QSD is 3, slices is 2 ,delay 6.454ns and cell usage 14.

The final circuit was implemented on Xilinx SPARTAN 3E-100or250 FPGA board

successfully as shown in Figure 3.8.

Figure 3.8: Device successfully programmed on FPGA board

3.3 QSD SUBTRACTOR

Subtraction is one of the circuits from arithmetic operations and this logic circuit is used to

calculate the difference between two numbers. So in this section we implement a QSD

subtractor circuit. It also has four basic steps to complete subtraction of two numbers.

3.4.1 DESIGN ALGORITHM

Two understand the steps of QSD subtraction we take an example of subtraction.

Example: to perform QSD subtraction of 127 and 128.

Step 1: To convert the decimal number into QSD number

QSD number of (127)10 is (1333)4 and QSD number of (128)10 is (2000)4

Step 2: In this step we have two QSD numbers,we subtract these QSD number. After

subtraction we can get a sum which may or may not be a QSD number. If number is QSD then

it will directly converted from QSD into decimal number. Then it is not necessry to go through

from step 3. If in result any number at place of one’s ,ten’s, hundrad’s and so on is greater

then 3 then number is not QSD. Then we move on 3rd step. Let’s subtract two QSD numbers.

 A = 1 3 3 3

 B = 2 0 0 0

 SUM 1 3 3 3

 Our target is to design a circuit which subtracts two QSD numbers. In table 3.8 ,there is all

possible combination of QSD subtraction .

Table 3.8: All possible combination of two QSD subtractions [19]

INPUT OUTPUT

QSD BINARY DECIMAL QSD BINARY

A B A B SUBTRACTION D1 D0 D1 D0

-3 -3 101 101 0 0 0 000 000

-3 -2 101 110 -1 0 -1 000 111

-3 -1 101 111 -2 0 -2 000 110

-3 0 101 000 -3 -1 1 111 001

-3 1 101 001 -4 -1 0 111 000

-3 2 101 010 -5 -1 -1 111 111

-3 3 101 011 -6 -1 -2 111 110

-2 -3 110 101 1 0 1 000 001

-2 -2 110 110 0 0 0 000 000

-2 -1 110 111 -1 0 -1 000 111

-2 0 110 000 -2 0 -2 000 110

-2 1 110 001 -3 -1 1 111 001

-2 2 110 010 -4 -1 0 111 000

-2 3 110 011 -5 -1 -1 111 111

-1 -3 111 101 2 0 2 000 010

-1 -2 111 110 1 0 1 000 001

-1 -1 111 111 0 0 0 000 000

-1 0 111 000 -1 0 -1 000 111

-1 1 111 001 -2 0 -2 000 010

-1 2 111 010 -3 -1 1 111 001

-1 3 111 011 -4 -1 0 111 000

0 -3 000 101 3 1 -1 001 111

0 -2 000 110 2 0 2 000 010

0 -1 000 111 1 0 1 000 001

0 0 000 000 0 0 0 000 000

0 1 000 001 -1 0 -1 000 111

0 2 000 010 -2 0 -2 000 110

0 3 000 011 -3 -1 1 111 001

1 -3 001 101 4 1 0 001 000

1 -2 001 110 3 1 -1 001 111

1 -1 001 111 2 0 2 000 010

1 0 001 000 1 0 1 000 001

1 1 001 001 0 0 0 000 000

1 2 001 010 -1 0 -1 000 111

1 3 001 011 -2 0 -2 000 110

2 -3 010 101 5 1 1 001 001

2 -2 010 110 4 1 0 001 000

2 -1 010 111 3 1 -1 001 111

2 0 010 000 2 0 2 000 010

2 1 010 001 1 0 1 000 001

2 2 010 010 0 0 0 000 000

2 3 010 011 -1 0 -1 000 111

3 -3 011 101 6 1 2 001 010

3 -2 011 110 5 1 1 001 001

3 -1 011 111 4 1 0 001 000

3 0 011 000 3 1 -1 001 111

3 1 011 001 2 0 2 000 010

3 2 011 010 1 0 1 000 001

3 3 011 011 0 0 0 000 000

We get sum of (1333)4 which is a QSD number by definition, so we don’t need step 3. But we

have one rule also that IS is not greater than -2 and 2 so we are moving to step 3 even we are

getting a QSD number .

Step 3: If the sum we are getting not satisfied the rules and conditions of QSD arithmetic that

described below. Then to eliminate the carry we add Intermediate Carry (IC) and Intermediate

Sum (IS). Before adding IS and IC we have to follow two rules given below.

Rule 1: While doing the subtraction the value of the IC should be in the range of -1 to +1.

Rule 2: The value of the IS should be in the range of -2 to +2.

 IC = 0 1 1 1

 IS = 1 1 1 1

 SUM 0 0 0 0 1

For 3 we have values of IC is 1 and IS is 1 (from table 3.6).we are writing 1 at place of 3 in

IC and 1 at place of 3 in IS. After addition of IC and IS we get sum (00001)4. Now move on

to step 4 .

Step 4: in this step we are converting QSD number into decimal number.

(00001) = 0×44 +0×43 +0×42 +0×41 -1×40

 = (-1)10

So the final sum of subtracting two numbers (127-128) is -1 by using QSD number system.

3.4.2 SIMULATION

The code for QSD adder is written in Verilog. Design is simulated and analyzed using Xilinx

14.7 ISE Simulator and got the results. Figure 3.9 shows the output waveform of QSD

subtraction and figure 3.10 shows the schematic diagram.

Figure 3.9: Output wave form of QSD subtraction

In figure 3.9 we are subtracting two QSD numbers 3 and 1, in result we get sum 02. Which is

a QSD number we don’t need to move on step 3. It fulfills the rules of subtraction rule 1 and

rule 2. Rule 1 define that IC should be in between -1 to +1. Rule 2 define that IS should be in

range of -2 to 2. In sum we get 2 so it fulfills all the rules of subtraction, so it skips the 3rd

step.

Figure 3.10: Schematic view of QSD subtraction

3.4.3 RESULTS

In table 3.9 shows design parameters of QSD. LUT is a look up table that contains array. Look

up table work is to replace runtime computation with array index operation.
 Table 3.9: Design parameters of QSD subtraction

ADDER LUT SLICES DELAY CELL USAGE

LOGIC ROUTE BELS IO
BUFFERS

QSD 3 2 5.194ns 1.26ns 4 10

LUT of QSD is 3, slices is 2 ,delay 6.454ns and cell usage 14.

3.4 COMPARISON

We discuss in previous section that QSD number system is a higher radix number system. To

perform the arithmetic operations we use Quaternary Signed Digit Number system. QSD

offers the carry free addition, borrow free subtraction and multiplication. It helps

microprocessors to accomplish the task with less complexity and time delay. Now in this

section we are comparing the results of BCD adder with QSD system shown in table 3.10.

Table 3.10: Comparing the results of BCD and QSD adder

ADDER LUT SLICES DELAY CELL USAGE

LOGIC ROUTE BELS IO
BUFFERS

QSD 3 2 5.194ns 1.26ns 4 10

BCD 8 4 7.284ns 1.777ns 16 14

Design summary of QSD adder gives the parameters of design look up table (LUT),

slices, delay and cell usage. In Table 3.10 we have compared these design parameters of

QSD with BCD circuits. LUT is which contains the output of implemented function. If

LUT has “n” input then it can perform 2n Boolean function. After comparison of QSD

adder (shown in Table 3.10) with BCD circuits we come on conclusion that our proposed

QSD multiplier uses less LUT and less no. of slices. Also it has less delay and cell usage

than others. This shows that proposed QSD adder circuit is less complex than BCD adder.

CHAPTER 4

MULTIPLIERS

Multiplication is also an important part of arithmetic circuit. It consumes more area which

decreases the speed of system. So it is important to design more sufficient multiplier that

satisfied the design parameters (area, delay and speed). Now in this chapter we implement

different types of multipliers.

4.1 WALLACE TREE MULTIPLIER

Wallace tree is an implementation of a multiplier which using 3 steps to multiply any two

integers. Bit product term is generating after multiplying two integers multiplicand and

multiplier in first step. In 2nd step we are using half adder and full adder to reduce the result to

lower number of rows. In 3rd step using carry propagation adder two add the rows.

4.2.1 WALLACE TREE DESIGN

The method is rehashed until last stage contains just two lines. Planning a traditional Wallace

tree multiplier is appeared in Fig.4.1.Design of the ordinary Wallace multiplier is done in three

stages. Partial products are generated first in Wallace tree multiplier. At that point these are

collected in various stages. The Wallace tree has three steps:

1. Multiply each bit of one of the arguments, by each bit of the other, yielding outcomes.

Depending on position of the multiplied bits, the wires carry different weights.

2. Using half adders and full adders reduce the number of partial products into two layers.

3. Wires grouped in two numbers, and add them with adder.

Figure 4.1: Wallace tree multiplier diagram [23].

4.2.2 SIMULATION

The code for Wallace tree multiplier is written in Verilog. Design is simulated and analyzed

using Xilinx 14.7 ISE Simulator and got the results. Figure 4.2 shows the output waveform of

Wallace multiplier and figure 4.3 shows the schematic diagram.

Figure 4.2: Output waveform of Wallace multiplier

We multiply two binary number 1111 and 1111, first result of multiplication is partial product

. After that to reduce the complexity of the circuit we divide partial product into two layers of

half adder and full adder. Addition of binary number with the help of half adder and full adder

the result we get is 11100001.

Figure 4.3: Schematic diagram of Wallace tree multiplier

4.2.3 RESULTS

In table 4.1 shows design parameters of Wallace multiplier. LUT is a look up table that
contains array. Look up table work is to replace runtime computation with array index
operation.

Table 4.1: Design parameters of Wallace multiplier

ADDER LUT SLICES DELAY CELL USAGE

LOGIC ROUTE BELS IO
BUFFERS

QSD 32 18 8.714ns 4.518ns 32 16

LUT of Wallace is 32, slices is 18, delay 13.232ns and cell usage 48.

4.2 BAUGH WOOLEY
Baugh–Wooley technique handles the direct multiplication of Two’s compliment numbers.

Each of the partial products to be added is a signed numbers when multiplying two’s

compliment numbers directly. To form a correct sum by the Carry Save Adder (CSA) tree ,

each partial product has to be sign extended to the width of the final product. The block

diagram for 4 bit Baugh Wooley multiplier is shown in Fig 4.4

Figure 4.4: Baugh Wooley multiplier[23]

Baugh Wooley well understand by multiplying two numbers 1010 and 1111.

 1010 (this is 10 in decimal)

 x 1111 (this is 15 in decimal)

 ======

 1010 (this is 1010 x 1)

 1010 (this is 1010 x 1, shifted one position to the left)

 1010 (this is 1010 x 1, shifted two positions to the left)

 + 1010 (this is 101 x 1, shifted three positions to the left)

 =========

 10010110 (this is 150 in decimal)

4.3.1 SIMULATION

The code for Baugh Wooley multiplier is written in Verilog. Design is simulated and

analyzed using Xilinx 14.7 ISE Simulator and got the results. Figure 4.5 shows the output

waveform of Wallace multiplier and figure 4.6 shows the schematic diagram.

Figure 4.5: Output wave form of Baugh Wooley

In Baugh Wooley multiplier we do simple binary multiplication of two number. In each
partial product we shifted one position to left at every step till the multiplication is done.

In this section we multiplying two binary number x[3:0]=1111 and y[3:0]= 1111, we multiply
each bit of y with x and in result we get multiplication sum is 00000001.

Figure 4.6: schematic daigram of Baugh Wooley

4.3.2 RESULTS

In table 4.2 shows design parameters of Baugh Wooley multiplier. LUT is a look up table that

contains array. Look up table work is to replace runtime computation with array index

operation.

Table 4.2: Design parameters of Baugh wooley

ADDER LUT SLICES DELAY CELL USAGE

LOGIC ROUTE BELS IO
BUFFERS

QSD 29 17 9.418ns 4.721ns 29 16

LUT of Baugh Wooley is 29, slices is 17, delay 14.139ns and cell usage 45.

4.3 QUATERNARY SIGNED DIGIT MULTIPLIER

The binary number system for arithmetic operation generates carry which create delay and

reduce the speed of microcomputers. This problem can be overcome by using higher base

number system such as QSD number. It increases the speed of arithmetic operation than the

binary numbers. QSD multiplier capable of carry free operations and reduces the complexity

of the circuit.

4.3.1 DESIGN ALGORITHM

Our target is to design a circuit which multiplies two QSD numbers. Multiplication of any two

QSD number, results in the range between -9 to 9 shown in table 4.3.

Table 4.3: Shows all possible values of multiplication of two QSD number

Till now we have explained the QSD number system now we explain how we can multiply

two QSD numbers. Fig 18 explains the steps of QSD multiplication in form of flow chart.

There are four basic steps which are involved in the carry-free multiplication. Let’s take an

example to show all the possible step of multiplication.

Figure 4.7: Flow chart of QSD muliplication

Step 1:- The first step of QSD multiplication is converting decimal number into QSD number.

QSD reperesentation of decimal number (6)10 and (15)10 is shown in equation (3) and (4)

(6)10 = (12)4

(15)10 = (33)4

Step 2:- In step 2 we multiply two QSD numbers. In result we can get a sum which may or

may not be a QSD number. If number is QSD then it will not generate any carry than we

move on step 4 which convert QSD into decimal number as shown in fig 4.7 (flow chart of

basic logic design of multiplication).If number is not QSD then we move on step 3 in which it

generate Intermediate Sum (IS) and Intermediate Carry (IC).

In example we multiply two QSD numbers.

 A = 1 2

 B = 3 3

 3 6

 3 6

 SUM 3 9 6

After multiplying two QSD numbers : (12)4 and (33)4 we are getting sum as (396)4 which is

not a QSD number because at 1’s place 6 is not QSD number and at 10’s place 5 is not a QSD

number. It will generate carry, so performing carry free multplication we have to move on step

3.

Step 3:- If the sum we are getting after multiplication is not a QSD number then we add

Intermediate Carry (IC) and Intermediate Sum (IS) to remove carry.

Table 4.4: Possible output combinations between -9 To +9

MULTI
PLICA
TION

QSD CODE

NUMBER

IC IS

QSD CAN ALSO
REPRESENTED
BY NUMBERS

-9 2 1 2 1 , 33

-6 1 2 22, 1 2

-5 2 1 23, 1 1

-4 1 0 1 0

-3 1 1 11, 03

-2 0 2 1 2, 02

-1 0 1 13, 01

0 0 0 0 0

1 0 1 01, 13

2 0 2 02, 12

3 1 1 03, 11

4 1 0 1 0

5 1 1 11, 23

6 1 2 12, 22

9 2 1 21, 33

As we get sum a (396)4, we remove carry to perform carry free multiplication. There are two

rules for carry free multiplication:-

Rule 1: The value of IS should be in between -3 and 3

Rule 2: The value of IC should be in between -2 and 2.

The result we get after multiplication is (396)4, for IC as Rule 2 said it should be in between -2

to 2. From table 4.4, QSD representaion for 3 is IC= 1, IS = 1 , for 9 IC=2 ,IS=1 and for 6 is

IC = 1, IS = 2 respectively. For IC, at place of 3,9 and 6 we write 1 ,2 ,1because it generate

carry . For IS we shift right and at place of 3, 9 and 6 we write 1 , 1 and 2 respectively. We

add IS and IC to get output result in QSD number.

 IC 1 2 1

 IS 1 1 2

 OUTPUT 1 1 2 2

After addition the result is (1122)4 the Step 3 is completed here now we move on to step 4.

Step 4:- In step 4 we convert QSD number into decimal number.

 (1122)4= 1×43 +1×42 +2×41 +2×40

 = 64+16+8+2

 = (90)10

4.3.2 SIMULATION

The code for QSD multiplier is written in Verilog. Design is simulated and analyzed using

Xilinx 14.7 ISE Simulator and got the results. Figure 4.8 shows the output waveform of

Wallace multiplier and figure 4.9 shows the schematic diagram. In QSD multiplication we

multiply two QSD number 2 and 2 in result we get sum of 4 which is not a QSD number so we

move on to step 3 in which we add IC and IS . IC of 4 is 1 and IS is 0 so after addition we get

final sum is 10. Final sum that we get is a QSD number.

FIGURE 4.8: Output waveform of QSD multiplier

Figure 4.9: Schematic view of QSD multiplier

4.3.3 RESULTS

In table 4.5 shows design parameters of Wallace multiplier. LUT is a look up table that

contains array. Look up table work is to replace runtime computation with array index

operation.

Table 4.5: design parameter of QSD multiplier

Multiplier LUT SLICES DELAY CELL USAGE

LOGIC ROUTE BELS IO
BUFFERS

QSD 3 2 5.194ns 1.26ns 4 10

LUT of QSD is 3, slices is 2 ,delay 6.454ns and cell usage 14.

The final circuit was implemented on Xilinx 3E-100CP132 SPARTAN FPGA board

successfully as shown in Figure 4.10.

Figure 4.10: Device successfully programmed on FPGA board

4.4 COMPARISION

Now we are comparing the result of QSD multiplier with different multipliers. Table 4.6

shows the comparison of QSD multiplier with other multiplier.

Table 4.6: Comparison of QSD multiplier with different multipliers

MULTIPLIERS LUT NO. OF

SLICES

DELAY CELL

USAGE

LOGIC ROUTE

WALLACE 32 18 8.714ns 4.518ns 32

BAUGH

WOOLEY

29 17 9.418ns 4.721ns 29

Proposed QSD

MULTIPLIER

3 2 5.194ns 1.26ns 4

Quaternary is overcome the problem of binary arithmetic. Binary operation is limited due to

carry generation that mean it need more interconnects in VLSI which occupy large area and

increase the complexity of the circuit. In VLSI 70% of area is dedicated to interconnects,

20% dedicated to insulation and the remaining 10% is for device. So QSD circuit occupies

less area and increase the speed of arithmetic operations. After comparison of QSD

multiplier (shown in Table 4.7) with other multiplier circuits we come on conclusion that our

proposed QSD multiplier uses less LUT and less no. of slices. Also it has less delay and cell

usage than others. This shows that proposed QSD multiplier circuit is less complex than

other circuits. We also compare proposed design with the existing design in table 4.7.

Table 4.7: Comparison of proposed design with the existing design

Comparison of existing method of QSD multiplication with our proposed design

concludes that existing method uses large number of slices and LUT. Proposed design

has less delay than others. It concludes that proposed design is better than the existing

design.

MULTIPLIER METHOD LUT No. of

SLICES

TOTAL

DELAY

QSD

MULTIPLIER

EXCITING

[14]

12 15 11.620ns

QSD

MULTIPLIER

PROPOSED 3 2 6.454ns

CONCLUSION & FUTURE WORK

We already discuss that the major problem in digital world is to reduce the area and increase

the speed of operations. We can obtain these parameters by using efficient optimization

techniques. Arithmetic operations are very useful in any digital processor. However,

propagation time delay, and circuit complexities are the major problems in arithmetic

operations. For quick results in digital processor we have to increase the speed of the

operation. With the use of binary number system, generation of carry in arithmetic operations

create delay problems and reduce the speed of microcomputers. This paper proposes a circuit

diagram which is used for carry free addition of quaternary numbers. This circuit is less

complex and implemented with less delay. We have proposed QSD adder which is better than

the BCD adder. We compare the result of adders and find that QSD has less delay and using

less LUT in design. We also proposed QSD multiplier which is better than Wallace and Baugh

Wooley multiplier. The QSD arithmetic design was implemented in Verilog HDL. The

synthesis report gives us the accurate result summary of simulation in which delay of QSD

arithmetic design is 6.454ns. Design of QSD arithmetic circuit allows the fast arithmetic

operations without carry. These arithmetic circuits consume less energy than the other circuits.

REFRENCES
[1] Reddy K. C. S., Dr. Rao D.V., “High Performance Quaternary Arithmetic Logic Unit on

Programmable Logic Device” , International Journal of Advances in Applied Science and

Engineering (IJAEAS),Vol. 2,(2015).
[2] Manasa G., Rao M.D., Miranji K., “ Design And Analysis of Fast Addition Mechanism For

Integers Using Quaternary Signed Digit Number System”, International Journal of VLSI
and Embedded Systems-IJVES, Vol. 05, (2014)

[3] Rani R., Singh L.K., Sharma N.,Member IEEE, “FPGA Implementation of Fast Adder
using Quaternary Signed Digit Number System,” International Conference on Emerging

Trends in Electronic and Photonic Devices &System,(2009).
[4] Dubey S., Rani R., kumari S., and Sharma N., “VLSI implementation of fast addition using

Quaternary Signed Digit number system” , 2013 IEEE International Conference ON

Emerging Trends in Computing Communication and Nanotechnology (ICECCN), (2013).
[5] Krishna M.N. and Ravisekhar T., “ Fast Arithmetic Operation with QSD using Verilog

HDL”,International Journal Of Engineering Science And Innovative Technology, Vol

3.(2008).
[6] Mohan V., Mohan K. M., “Implementation of Quaternary Signed Adder System”,

International Journal of Research Studies in Science, Engineering and Technology, Vol. 1,
(2014).

[7] Bankar,Ameya N., Hajare S., “Design of arithmetic circuit using Quaternary Signed Digit
Number system", International Conference on Communication and Signal Processing,
(2014).

[8] Nagamni A.N., Nishchai S., “Quaternary high performance arithmetic logic unit design”,
14th Euromicro Conference on Digital System Design,2011.

[9] Dakhane S.A.,Shah A.M., “FPGA Implementation of Fast Arithmetic Unit Based on
QSD”,international journal of computer science and information technologies(IJCSIT),

Vol. 5,(2014).
[10] Hareesh P.,Chakravarti C.K.and Rao D.T., “Design Quaternary Multiplication Using

sign Digit Number Addition”,International Journal of Trend in Reasearch And

Development,Vol. 2,(2015).
[11] Chattopadhyay T. and Sarkar T., "Logical Design of Quaternary Signed Digit Conversion

Circuit and its Effectuation using Operational Amplifier"Bonfring International Journal of
power system and integrated circuits Vol.2, No. 3,(2012).

[12] Ramya E.,Deepti P.R., “VLSI implementation of fast addition using Quaternary signed
digit number system”, intenational journal of science engineering and technology research,”

Vol.4,(2015).
[13] Piasa S.,Babu S.K., “Design of QSD Number System for Arithmetic

Operations”,International Journal of Scientific Engineering and Technology Research Vol.

03,(2014).

[14] Babu M.K., “Implementation of Carry Free Arithmetic Operation by QSDN”, National

Conference On Emerging Trends in Information,Digital & Embedded System, Vol. 3,
(2015).

[15] Rajkumar G.,Srinivas V., “VLSI Implementation of Signed Multiplier using Quaternary
Signed Digit Number System”, International Journal of Scientific Engineering and

Technology Research, Vol. 04,(2015).
[16] Suneetha M., Anilkumar S. and Sivakrishna P., “Design and Implementation of 2 digit

Adder using Quaternary Signed Digit Number System” , International Journal of Electrical,
Electronics and Computer Systems (IJEECS),Vol. 2,(2014).

[17] Shende P.Y. ,Kshirsagar R.V, “Quaternary Arithmetic Logic Unit Design using
VHDL”,International Journal of Science and Research(IJSR),Vol. 3,(2013).

[18] Kumar C.V.S., Reddy P.J.R., “Implementation of a Fast Adder Using QSD for Signed and
Unsigned Numbers”, International Journal of Science,Engineering and Technology
Research (IJSETR),Vol. 3 (2014)

[19] Sahastrabudhey S.B., Bogawar K. M., “ Arithmetic Operation Using Quaternary System
using VHDL”, IJCSET , Vol 2,(2012).

[20] Reddy M.R., Reddy M.R., “Implementation of fast addition with QSD using
Verilog”,International Journal of Recent Advances in Engineering & Technology,”Vol.

3,(2015).
[21] Reddy T.R., Reddy C.V.V, “ High Speed Arithmetic Operations using Quaternary Signed

Digit Number System”, International Journal of VLSI System Design and Communication
Systems Vol .02,(2014).

[22] Manasa G., Rao M. D.,Miranji K., “Design And Analysis Of Fast Addition Mechanism For
Integers Using Quaternary Signed Digit Number System”, International Journal of VLSI
and Embedded Systems-IJVES, Vol. 5, (2014).

[23] Mohanty P., “An Efficient Baugh-Wooley Architecture for Signed & Unsigned Fast
Multiplication”,NIET Journal Of Engineering And Technology, Vol. 1,(2013)

[24] Mohantini P., Rajan R., “An Efficient Baugh-WooleyArchitecture forBothSigned &
Unsigned Multiplication”, International Journal of Computer Science & Engineering

Technology (IJCSET), Vol 3,No. 4 (2012)
[25] Dhivya C.,Thiruppathi M.,Sowmiya R., “Design of 8×8 Wallace Multiplier using MUX

Based Full Adder with Compressor”, International Research Journal of Engineering and
Technology (IRJET), Vol. 2(2015).

[26] Swathi A.C. , Yuvraj T. , Praveen J. , Raghavendra R.A., “A Proposed Wallace Tree
Multiplier Using Full Adder and Half Adder”, International Journal of Innovative Research

in Electrical, Electronics, Instrumentation and Control Engineering ,Vol. 4(2016).
[27] http://www.eeeguide.com/decimal-adder-bcd-adder/.

http://www.eeeguide.com/decimal-adder-bcd-adder/

LIST OF PUBLICATIONS

[1] Thakur R., Jain S., “ FPGA Implementation of Adder Circuit using Quaternary Signed
Digit Number System” , pp 6273-6277, Proceedings of the 11th INDIACom: 4th 2017
International Conference on Computing for Sustainable Global Development, BVICAM,
New Delhi,(2017).

[2] Thakur R., Jain S., “FPGA Implementation of Unsigned Multiplier Circuit Based on
Quaternary Signed Digit Number System” International Journal of Engineering.
 [Under review]

	DECLARATION BY THE SCHOLAR II
	SUPERVISOR’S CERTIFICATE III
	ACKNOWLEDGEMENT
	LIST OF ACRONYMS & ABBREVIATIONS
	LIST OF figures
	LIST OF tables

