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ABSTRACT 

 

The discrete Fourier transform (DFT) plays a significant role in analyzing characteristics of 

stationary signals in the frequency domain in signal processing. The DFT can be implemented 

in a very efficient way using the fast Fourier transform (FFT) algorithm. However, many 

actual signals by their nature are non-stationary signals which make the choice of the DFT to 

deal with such signals not appropriate. Alternative tools for analyzing non-stationary signals 

come with the development of time-frequency distributions (TFD). The Wigner-Ville 

distribution is a time-frequency distribution that represents linear chirps in an ideal way, but it 

suffers from the problem of cross-terms which makes the analysis of such tools unacceptable 

for multi-component signals. Consequentially, for the analysis of the chirp signal Fractional 

Fourier Transform (FrFT) has been reported. The FrFT converts a chirp signal from time 

domain to another domain corresponding to fractional order α. It provides us with an 

additional degree of freedom (order of the transform α). Later the DLCT is discussed in the 

literature which is not a time- frequency transform but rather a frequency chirp-rate transform. 

It converts a non-sparse signal into sparse one using its property of modulation and duality.   

In this dissertation, we have studied the applications of discrete linear chirp transform 

(DLCT) and its performance analysis with various other transforms like the fractional Fourier 

transform (FrFT) and the discrete cosine transform (DCT). The discrete linear chirp transform 

(DLCT) can be considered a generalization of the DFT to analyze non-stationary signals. The 

DLCT is a joint frequency chirp-rate transformation, capable of locally representing signals in 

terms of linear chirps. Important properties of this transform are discussed and explored. The 

efficient implementation of the DLCT is given by taking advantage of the FFT algorithm. 

Since DLCT transform can be implemented in a fast and efficient way, this would make a 

candidate to use it for many applications, including elimination of the cross-terms in the 

Wigner-Ville distribution, signal compression, filtering, signal separation, communication 

systems, and in chirp rate estimation. In this dissertation work we have studied the sparsity of 

DLCT and the application of DLCT in data compression. The simulation results in Matlab 

shows that the discrete linear chirp transform (DLCT) has higher sparsity and thus higher 

resolution, this property is used in data compression. 



vii 

 

LIST OF ABBREVIATIONS  

 

AF Ambiguity Function 

B Frequency Spread 

CLCT Continuous Linear Chirp Transform 

Cr Compression Ratio 

CS Compressive Sensing 

DCCT Discrete Cosine Chirp Transform 

DCFT Discrete Cosine Fourier Transform 

DCT Discrete Cosine Transform 

DFrFT Discrete Fractional Fourier Transform 

DFT Discrete Fourier Transform 

DLCT Discrete Linear Chirp Transform 

DSP Digital Signal Processing 

EMD Empirical Mode Decomposition  

FFT Fast Fourier Transform 

FM Frequency Modulation 

FrFT Fractional Fourier Transform 

FT Fourier Transform 

ICLCT Inverse Continuous Linear Chirp Transform 

IDCCT Inverse Discrete Cosine Chirp Transform 

IDCFT Inverse Discrete Cosine Fourier Transform 

IDFrFT Inverse Discrete Fractional Fourier 

Transform 

IDLCT Inverse Discrete Linear Chirp Transform 

IFrFT Inverse Fractional Fourier Transform 

IMF Intrinsic Mode Function 

ISAR Inverse Synthetic Aperture Radar 

LFM Linear Frequency Modulator 

MSE Mean Square Error  

PCT Polynomial Chirp Transform 

SAR Synthetic Aperture Radar  



viii 

 

SNR Signal to Noise Ratio 

STFT Short Time Fourier Transform 

TB Time Bandwidth Product 

TF Time Frequency 

TFD Time Frequency Distribution 

TFM Time Frequency Method 

WT Wavelet Transform 

WVD Wigner Ville Distribution 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 

 

LIST OF FIGURES 

 

Figure 1.1 : Time localized Fourier transform. 5 

Figure 1.2 : Wavelet transform with different scaling shift of basic wavelet. 6 

Figure 3.1 : FrFT of the chirp signal with different order of transform. 16 

Figure 3.2 : Relation between the fractional order   and the discrete chirp rate   19 

Figure 3.3 : (a) Signal )(1 nx  in time domain; (b) The DLCT of )(1 nx  with 1.0 ; (c) The 

 )(1 nxDFrFT  with  44.0  and (d) The  )(1 nxDCT . 32 

Figure 3.4 : (a) Signal )(2 nx  in time domain; (b) The DLCT of )(2 nx  with 1.0 ; (c) The 

 )(2 nxDFrFT  with  44.0  and (d) The  )(2 nxDCT . 34 

Figure 4.1 : Compression algorithm. 39 

Figure 4.2 : Structure of the coefficients . 40 

Figure 4.3 : (a) signal )(3 nx  in time domain; (b) the DLCT of signal  )(3 nxDLCT . 41 

Figure 4.4 : (a) signal )(4 nx  in time domain; (b) the DLCT of signal  )(4 nxDLCT . 42 

 

 

 

 



1 

 

CHAPTER 1  

INTRODUCTION 

1.1 OVERVIEW 

The term chirp is a short pulse, high-pitched sound. This pulse is called a chirped pulse. 

Scientifically, the term chirp means a wave whose instantaneous frequency fluctuates over 

time. Often chirps arise in nature as a result of the Doppler effect, the phenomenon by which 

the perceived frequency of a wave is changed whenever the wave is coming from or 

reflecting-off a moving body. Chirps come in many frequency sweep such as : linear chirp, 

quadratic chirp, logarithmic-chirp, etc. 

Application of chirp signal : 

 Radar 

 Sonar and  

 Spread spectrum communication  

Over the past several decades, the field of digital signal processing has been significantly 

contributing to the different areas of human endeavours in one way or the other. While 

conventional signal processing by and large expects stationary behaviour of the signal during 

the window of observation, it is worthwhile to note that, most of the man-made and natural 

signals are non-stationary in nature and hence time-frequency methods are more suitable than 

conventional Fourier based signal processing techniques. 

1.2 HISTORY OF FOURIER TRANSFORM 

Fourier Transform (FT) is one of most common spectral analysis technique. Fourier 

transformation maps one-dimensional time domain signal into a one dimensional frequency 

domain signal, i.e., the signal spectrum. Although, the Fourier transform provides the signal’s 

spectral content, it fails to indicate the time location of the spectral components, which is 

important, for example, when we consider non-stationary or time-varying signals. In order to 

describe these signals, time-frequency representations are used. A time-frequency 

representation maps one-dimensional time domain signal into a two-dimensional function of 

time and frequency. Prime reason for the failure of FT is “the analyzing function’’ which are 
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complex sinusoid, are spread throughout the time. So, if we want to capture local feature in 

time, we need basis function that are highly localized in time. 

The Fourier transform is the basis for some of the time-frequency representations. The Fourier 

transform decomposes a signal (a function of time) into the frequencies that make it up. The 

Fourier transform of a function of time itself is a complex-valued function of frequency, 

whose absolute value represents the amount of that frequency present in the original function, 

and whose complex argument is the phase offset of the basic sinusoid in that frequency. The 

Fourier transform is called the frequency domain representation of the original signal. The 

term Fourier transform refers to both the frequency domain representation and the 

mathematical operation that associates the frequency domain representation to a function of 

time. A time signal is decomposed into its different frequency components by calculating the 

Fourier integral. Mathematically, Fourier transform of a function 𝑥(𝑡) is as given below 

𝑋(𝑓) = ∫ 𝑥(𝑡)𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡
∞

−∞
                                                                                         (1.1)                      

In above equation 𝑥(𝑡) is a time domain signal, 𝑋(𝑓) is the Fourier transform of an integrable 

function, 𝑓 is the value of the angular frequency, 𝑗 is the imaginary number. 

To compute the 𝑋(𝑓), it is needed to integrate 𝑥(𝑡) overall time. Mathematically, due to both sine 

waves and cosine waves are significant in the whole time domain, so Fourier transform is 

available at any given time. This means that during the whole intervals, Fourier transform cannot 

provide simultaneous time, frequency localization and the Fourier coefficients (amplitude) which 

are depended on the behaviour of the function. 

Inverse Fourier transform is given by 

  𝑥(𝑡) =
1

2𝜋
∫ 𝑋(𝑓)𝑒𝑗2𝜋𝑓𝑡𝑑𝑓

∞

−∞
                                                                                              (1.2) 

1.3 TIME-FREQUENCY (TF) ANALYSIS 

 There are three ways to explore the information about any signal in literature. 

 Time domain representation: Any signal can be described naturally as a function of 

time. It gives the information about amplitude variation with respect to time. But it 

tends to obscure information about frequency, because it assumes that the two 

variables time and frequency are mutually exclusive and orthogonal.   
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 Frequency domain representation: Any practical signal can be represented in the 

frequency domain by its Fourier transform. The Fourier transform is in general a 

complex quantity. Its magnitude is called the magnitude spectrum and phase is defined 

as the phase spectrum [51]. The square of the magnitude spectrum is the energy 

spectrum and shows signal energy distribution over the frequency domain. But the 

magnitude spectrum tells about frequencies that are present in the signal, the “time of 

arrival” of those frequencies. Therefore, frequency domain representation hides the 

information about timing, as FT of a signal does not mention the variable time.  

 Time-frequency representation: As time and frequency domain representations are 

inadequate to give all the information possess by the signal, an obvious solution is to 

seek a representation of the signal as a ‘two-variable’ function or distribution whose 

domain is two-dimensional time-frequency space. Its constant-time cross section 

shows the frequencies present at any time and constant-frequency cross-section shows 

the times at which those frequencies are present [52], [53]. Such a representation is 

called time-frequency distribution (TFD). Similarly, the plane in which signal is 

analyzed is defined as time-frequency plane. 

1.4 TIME FREQUECY ANALYSIS METHODS (TFM) 

TFMs are used to analyze a signal in time and frequency domains simultaneously. A straight 

forward extension of the conventional Fourier transform, called Short-Time Fourier transform 

(STFT) attempts to bring out the evolutionary nature of the signals, both in time and 

frequency. Other than STFT, TFMs have been largely limited to academic research because of 

the complexity of the algorithms and the limitations in computing power. TFMs are mainly of 

two categories: 

(i) Linear TFMs such as STFT, WT. 

(ii) Quadratic TFMs, also called Energy Distributions such as WVD. 

In contrast with the Linear TFMs, which decompose the signal on elementary components, 

the purpose of the Quadratic TFMs is to deal out the energy of the signal over the two 

variables viz. time and frequency. Among the Quadratic TFMs, WVD is the simplest and the 

most powerful, in representation and characterization. 
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 1.4.1 SHORT-TIME FOURIER TRANSFORM (STFT) 

Short-Time Fourier transform (STFT) is known to be the first TFM that was applied in 

practical applications like speech processing systems, ISAR imaging, order tracking etc. 

Fourier analysis becomes inadequate when the signal contains non-stationary or transitory 

characteristics like transients, trends etc. In an effort to correct this, Dennis Gabor [56] 

adapted the Fourier transform to analyze small sections of the signal at a time. In order to 

introduce time-dependency in the Fourier transform, a simple and intuitive solution consists 

in pre-windowing the signal to be analyzed x(t) around a particular time t, calculating its 

Fourier transform, and doing that for each time instant t. The resulting transform called the 

Short-Time Fourier transform, is therefore defined as: 

dtetgtxdttgtxfSTFT ftj

ft 










 

 2

,
)()()()(),(                                                          (1.3) 

where, )(tg  is a short time analysis window, localized around 0t  and 0f . Because 

multiplication by the relatively short window )( tg  effectively suppresses the signal 

outside a neighbourhood around the analysis time point t , the STFT is a local spectrum of 

the signal )(tx . This relation expresses that the total signal can be decomposed as a weighted 

sum of elementary waveforms 
ftj

ft etgtg  2

, )()(  . These waveforms are obtained from the 

window )(tg  by a translation in time and a translation in frequency. The corresponding group 

of translation in both time and frequency is called Weyl-Heisenberg group. 

A time-localized Fourier transform performed on the signal within the window as shown in 

Figure 1.1. Subsequently, the window is removed along the time, and another transform is 

performed. The signal segment within the window function is assumed to be stationary. As a 

result, the STFT decomposes a time signal into a 2D time-frequency domain, and variations 

of the frequency within the window function are revealed While the STFT’s compromise 

between time and frequency information can be useful, the drawback is that once a particular 

size is chosen for the time window, it remains the same for all frequencies. The time 

resolution of the STFT is proportional to the effective duration of the analysis window )(tg . 

Similarly, the frequency resolution of the STFT is proportional to the effective bandwidth of 

the analysis window )(tg . 
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Consequently, for the STFT, we have a trade-off between the time and frequency resolutions. 

On one hand, a good time resolution requires a short window )(tg . On the other hand, a good 

frequency resolution requires a narrow-band filter i.e. a long window )(tg . This is the major 

drawback of STFT. 

 

Figure 1.1 : Time localized Fourier transform. 

 

1.4.2 WAVELET TRANSFORM (WT) 

The wavelet transform is similar to the Fourier transform (or much more to the windowed 

Fourier transform) with a completely different merit function. The main difference is that: 

Fourier transform decomposes the signal into sines and cosines, i.e. the functions localized in 

Fourier space; in contrary the wavelet transform uses functions that are localized in both the 

real and Fourier space. Generally, the wavelet transform can be expressed by the following 

equation:  

dt
s

t
tx

s
xsWT s 













 



  )(

1
,),( ,                                                                         (1.4) 

where   shifts time, s  modulates the width (not frequency), and )(t  is mother wavelet. 

By comparing the signal with a set of functions obtained from the scaling and shift of a base 

wavelet, it is realized as shown in Figure 1.2. 
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Continuous Wavelet Transform is a transform by which signals can be modeled as a linear 

combination of translations and dilations of a simple oscillatory function of finite duration 

called a mother wavelet )(t . It provides very good spectral resolution at low frequencies at 

the expense of temporal resolution and very good temporal resolution at high frequencies at 

the expense of spectral resolution. This distinct feature of the Wavelet Transform makes it 

suitable for analyzing non-stationary acoustic signals. Wavelet transforms have been widely 

applied to the problem of transient detection and processing, primarily because the transform 

basis functions provide good time localization and it involves the tracking of local transform 

maxima across analysis scales. 

 

Figure 1.2 : Wavelet transform with different scaling shift of basic wavelet. 

 

To overcome the problems of redundancy and computational load, Mallat’s filter bank 

implementation called discrete Wavelet transform is now widely used. According to multi 

scale filtering structure, Wave packet transform can divide the entire time-frequency plane 

into subtle tilings, while the classical WT can only find its finer analysis for lower-band only. 

Hence Discrete Wave packet transform is more competent to handle wide-band and high-

frequency narrow band signals like transients. As a tool to process data from multiple 

channels, even this transform is computationally intensive. However, Win Sweldon’s Lifting 

based implementation is a practical solution for the fast implementation of Wavelet and Wave 

packet transforms. 
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 1.4.3 WIGNER VILLE DISTRIBUTION 

The Wigner-Ville distribution (WVD) is one member of the Cohen class which is a simple yet 

powerful tool to analyze the Doppler history of SAR signals [60]. Wigner originally 

developed the distribution for use in quantum mechanics in 1932, and it was introduced for 

signal analysis by Ville sixteen years later. To obtain the Wigner-Ville distribution at a 

particular time, we add up pieces made from the product of the signal at a past time multiplied 

by the signal at a future time. The continuous WVD of a signal is derived as [60]: 


  detstsftWVD fj2

22
),( 







 
















                                                                             (1.5) 

The WVD can be regarded as the TF distribution offering the best resolution in the form of 

delta-pulses along the instantaneous frequency of a signal [60]. Additionally, the lack of 

smoothing maximally conserves the information content of the signal. The WVD is always 

real-valued, preserves time and frequency shifts, and satisfies the marginal properties. A more 

thorough description of the properties of the WVD is offered in [54], [55], [60]. 

One disadvantage is that problems arise in using the WVD for signals consisting of multiple 

components. Since it is a non-linear transformation, the WVD signal is not simply the sum of 

the WVD of each part. For instance, given a signal composed of two parts 1s  and 2s  such that   

)()()( 21 tststs                                                                                                                   (1.6) 

 

the spectrum of s is the sum of the Fourier transforms of each component: 

 

                                                                                                       (1.7) 

 

However, the energy density (which is related to the WVD of the signal) is not the sum of the 

energy densities of each part [54]: 

 221

2
sss                                                                                                                      (1.8) 

 21

2

2

2

1 *2 ssRss   

2

2

2

1 ss                                                                                                                          (1.9) 

21 sss 
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where the R  operation retains the real component of its argument. 

The non-linearity of the WVD emphasizes the need to remove all clutter contributions to the 

signal prior to computing the TF transform. If clutter is not removed, even if the signal 

occupies a bandwidth well-separated from the clutter, the WVD cross-terms may obscure the 

target signal [55]. If the clutter is removed but the processed signal data contains multiple 

moving targets, cross-terms between these signals will still be present in the WVD. Generally, 

detection and tracking of the instantaneous frequency for multiple targets is completed by 

combining the WVD with the Hough transform. The Hough transform is typically used for 

detecting straight lines in noisy imagery, although it may also be used to find higher-order 

polynomials (such as parabolas) traced out by accelerating targets in the time-frequency 

domain. 

1.5 DISSERTATION ORGANIZATION 

This dissertation includes five chapters. An outline of each chapter is given below: 

Chapter 1st gives an overview of various time-frequency analysis techniques and the need of 

time-frequency analysis. 

Chapter 2nd   is dedicated to the literature survey. The research papers which are relevant to this 

dissertation are discussed here. 

Chapter 3
rd 

presents a study of linear chirp signal and various sparsity analysis tools. It also 

discussed the performance of DLCT, DFrFT and DCT. 

Chapter 4th presents the application of DLCT for data compression. Data compression is 

typically done by transforming the signal into frequency and thresholding it to keep the more 

significant components. Sparseness of the signal, in either time or frequency, is required for 

the convex optimization in compressive sensing to perform well.  

Chapter 5
th 

concludes this dissertation, summarizing the major results and offering 

suggestions for future work on this topic. 
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CHAPTER 2 

LITERATURE SERVEY 

 

In order to start the dissertation, the first step is to study the research papers that have been 

published by other researchers. The papers that are related to this title are chosen and studied. 

With the help of this literature review, it gives more clear understanding to write this 

dissertation. 

The topic of time-frequency methods is one of the modern DSP tools for nonstationary signal 

processing. Like all fields and particularly emerging ones, it has a plethora of different 

motivations. Many applications are reported in the fields of speech and image processing, 

communications, radar etc. 

The application of Fractional Fourier Transform (FrFT) in parameters estimation of radar 

echo is the latest topic of interest. Many Time–Frequency methods are proposed including 

FrFT in the field of radar signal processing. 

Namias et al. introduced Fractional Fourier Transform in the field of quantum mechanics for 

solving some classes of differential equations efficiently [57]. Since then, a number of 

applications of Fractional Fourier Transform have been developed, mostly in the field of 

optics. The FrFT has the ability to process chirp signals better than the conventional Fourier 

Transform. FrFT is basically a time-frequency distribution, a parameterized transform with 

parameter  , related to the chirp-rate. It provides us with an additional degree of freedom 

(order of the transform), which in most cases results in significant gains over the classical 

Fourier transform. It is well known that in sonar systems, chirp processing can be applied in a 

number of areas. Some FrFT applications are reported in radars. 

Ozaktas et al. [58], [64] have come up with a discrete implementation of Fractional Fourier 

Transform. Like Cooley-Tukey’s FFT, this efficient algorithm computes FrFT in O(NlogN) 

time which is about the same time as the ordinary FFT. Hence, in applications where FrFT 

replaces ordinary Fourier transform for performance improvement, no additional 

implementation cost will occur. 
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Candan et al. [64] gives a satisfactory definition of the discrete FrFT that is fully consistent 

with the continuous transform. This definition has the same relation with the DFT as the 

continuous FrFT has with the ordinary continuous Fourier Transform. 

Almeida et al. [65] has interpreted FrFT as a rotation in the time-frequency plane. This paper 

describes its relationship with other TFMs such as WVD, AF, STFT and spectrogram, which 

support’s the FrFT’s interpretation as a rotational operator. 

Ozaktas et al. [52] has interpreted filtering method in fractional Fourier domains, which may 

enable significant reduction of MSE compared to ordinary Fourier domain filtering. This 

reduction comes at essentially no additional computational cost because of the availability of 

the efficient algorithm for computing FrFT. 

Capus et al. [61], [62] gives the short-time implementation of FrFT. STFT variants of FrFT 

can be implemented in two ways, depending on how the optimum alpha is chosen. The 

optimum alpha can be selected for the whole data block, or one for each processing block 

length. This shows improvements in time-frequency resolutions with bat signals, linear and 

non-linear chirps. Individual chirps in a mixture of chirps can be extracted using FrFT by a 

filtering and reconstruction technique. Both linear as well as non-linear chirps can be 

extracted by this method. 

Song et al. [66] gives two iterative interpolation algorithms for the parameter estimation of 

linear frequency modulation (LFM) signal using fractional Fourier transform (FrFT). The 

estimated parameter of an LFM signal can be obtained by locating the peak of the 

periodogram in the FrFT domain. These algorithms improve the accuracy of parameter 

estimation by employing the FrFT coefficients relative to the true parameters and applying 

interpolation algorithms iteratively to refine the parameter estimation approach. The proposed 

algorithms can utilize more information from FrFT results, thereby achieving improvements 

in either accuracy or efficiency. 

Alkishriwo et al. [43] we have studied Compressive sensing to simplify the frequency 

transformation and thresholding steps, commonly done in data compression, into one. 

Sparseness of the signal, in either time or frequency, is required for the convex optimization 

in compressive sensing to perform well. Although sparseness of certain signals, in either time 

or frequency, is guaranteed by the uncertainty principle signals composed of chirps are not 

however sparse in either domain. This paper proposes an orthogonal linear-chirp transform, 
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the discrete linear chirp transform (DLCT), to represent any signal in terms of linear chirps, 

with modulation and dual properties. Using the DLCT the sparseness of the signal in either 

time or frequency can be assessed, and if not sparse in neither of these domains, the 

modulation and dual properties of the DLCT provide a way to transform the signal into a 

sparse signal.  

Alkishriwo et al. [44] gives the discrete linear chirp transform (DLCT) for decomposing a 

non-stationary signal into intrinsic mode chirp functions. The decomposition of a signal into a 

finite number of intrinsic mode functions (IMFs) was introduced by the empirical mode 

decomposition (EMD). It exploits the local time-scale signal characteristics of the signal and 

provides spectral estimates obtained via the Hilbert transform. Although efficient, the EMD 

does not provide an analytic representation of the IMFs and is susceptible to noise and to 

closeness or overlap of the frequency of the IMFs. Using linear chirps as IMFs, the DLCT, a 

joint frequency instantaneous frequency procedure, provides a parsimonious local orthogonal 

representation of nonstationary signals. Moreover, the DLCT allows a parametric estimation 

of the instantaneous frequency of the signal that is robust to noise and to closeness or overlap 

in the instantaneous frequency of the modes. More importantly, the DLCT can be used to 

represent and process signals that are sparse in a joint time–frequency sense.  

Hari et al. [46] we have studied a method for non–stationary decomposition using the 

Discrete Linear Chirp Transform (DLCT) for FM Demodulation. Non–stationary signal 

decomposition can be done using either the empirical mode decomposition (EMD) or the 

Discrete Linear Chirp Decomposition (DLCT) methods. These methods decompose non-

stationary signals using local time-scale signal characteristics. While the EMD decomposes 

the signal into a number of intrinsic mode functions (IMFs), the DLCT obtains a parametric 

model based on a local linear chirp model. Analytically the DLCT considers localized zero–

mean linear chirps as special IMFs. The DLCT is a joint frequency instantaneous–frequency 

orthogonal transformation that extends the discrete Fourier transform (DFT) for processing of 

non–stationary signals. FM demodulation is commonly done by computing the signal 

derivative to convert it into an amplitude demodulation. This paper shows that the 

demodulation can be approached with the EMD and the DLCT and that the second method 

provides better results.  

Alkishriwo et al. [6] have studied an algorithm based on the fractional Fourier transform to 

separate the different components of a signal in the Wigner time-frequency domain. Its target 
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is to obtain a compressed representation for such a signal containing a minimal number of 

parameters. The procedure gets rid of the noise and the cross-terms after separating the signal 

components. For the signals under consideration having chirps and sinusoids, the fractional 

Fourier transform is used to rotate the components to obtain a sinusoidal or impulsive sparse 

representation. The procedure relies on filtering or windowing after obtaining the order of the 

fractional Fourier transform for each of the components. This approach is very effective in 

extracting the linear chirps and sinusoids from the noise and in eliminating the cross-terms 

from the Wigner distribution. 

Alkishriwo et al. [45] studied a signal compression technique to decrease transmission rate 

(increase storage capacity) by reducing the amount of data necessary to be transmitted. The 

discrete linear chirp transform (DLCT) is a joint frequency instantaneous-frequency transform 

that decomposes the signal in terms of linear chirps. The DLCT can be used to transform 

signals that are not sparse in either time or frequency, such as linear chirps, into sparse 

signals. On the basis of the reviewed literature following objectives for the study have been 

selected. These objectives are : 

 Study the performance of discrete linear chirp transform (DLCT) for sparsity analysis. 

 Performance analysis of DLCT for data compression. 
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CHAPTER 3 

SIGNAL PROCESSING TOOLS FOR SPARSITY ANALYSIS 

 

Sparsity or compressibility reflects the fact that information carried by certain signal is much 

smaller than their bandwidth. Most signals are not sparse in the time domain, so linear 

transformations are used to make them sparse in either time or frequency using certain basis. 

In this chapter the signal processing tool FrFT and DLCT have been studied for sparsity 

analysis. 

3.1 FRACTIONAL FOURIER TRANSFORM (FrFT) 

Chirps are signals which exhibit a change in instantaneous frequency with time (either linear 

or non-linear) and are of particular interest in sonar, radars, acoustic communications, seismic 

surveying, ultrasonic applications, etc. The potential of FrFT lies in its ability of FrFT to 

process chirp signals better than the conventional Fourier Transform. The transform absorbs 

the chirp parameters in its kernel by a parameter α. 

Namias et al. introduced Fractional Fourier Transform [57] in the field of quantum mechanics 

for solving some classes of differential equations efficiently. Later, Ozaktas et al [58] came 

up with the discrete implementation of FrFT. Since then, a number of applications of FrFT 

have been developed, mostly in the field of optics. However, it remains relatively unknown in 

signal processing. As a generalization of the ordinary Fourier transform, the FrFT is only 

richer in theory and more flexible in applications at low cost. Therefore, the transform is 

likely to have something to offer in every area in which Fourier transforms and related 

concepts are used. The FrFT is basically a time- frequency distribution. It provides us with an 

additional degree of freedom (order of the transform), In most of the cases fractional Fourier  

transform perform better than the classical Fourier transform. With the development of FrFT 

and related concepts, we see that the ordinary frequency domain is merely a special case of a 

continuum of fractional Fourier domains. So in every area in which Fourier transforms and 

frequency domain concepts are used, there exists the potential for improvement by using the 

FrFT. 
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3.1.1 BASIC CONCEPT OF FRACTIONAL TRANSFORM 

Before formally defining the Fractional Fourier Transform, we want to know that “What is a 

fractional transform?” and “How can we make a transformation to be fractional?” First we see 

a transformation T, we can describe the transformation as following: 

  )()( uFxfT                                                                                                                       (3.1) 

where, f  and F  are two functions with variables x  and u  respectively. As seen, we can 

say that F  is a T  transform of f . Now, another new transform can be defined as below: 

                                                                                                            (3.2) 

 

We call T  here the “α-order fractional T  transform” and the parameter α is called the 

“fractional order”. This kind of transform is called “fractional transform”. 

Which satisfy following constraints: 

1. Boundary condition: 

 

  )()(

)()(

1

0

uFxfT

ufxfT




                                                                                                            (3.3) 

2. Additive property: 

    )()( xfTxfTT                                                                                             (3.4) 

3.1.2 LINEAR CHIRP SIGNAL 

A linear chirp signal, its phase and its instantaneous frequency are given by the following 

equations. Two parameters completely define a chirp namely the start frequency 0f  and slop 

of the chirp. 

 ctfktj
e


 0

2

 signal Chirp     

ctfkt  0

2 Phase  

02frequency  ousInstantane fkt   

  )()( uFxfT 
 
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where, 0f , c and k2  are the starting frequency, initial phase and chirp rate or slope 

respectively. 

3.1.3 DEFINATION OF FrFT 

The continuous fractional Fourier transform (FrFT) is defined as [51], [52], [56] 





 dtutKtxuX ),()()(                                                                                                      (3.5) 

Where 2/2/    is called the fractional order and ),( utK  is the kernel of the 

transformation which is defined as : 
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22

nt

nt

njut
ut

j
j

utK                                    (3.6) 

When 0 , the FrFT of the signal )(tx  is the signal itself, and if 2/  , the FrFT 

becomes the Fourier transform of the signal. That is why it is considered a generalization of 

the Fourier transform.  

The signal )(tx  can be obtained by the Inverse Fractional Fourier Transform (IFrFT) as :  

   duutKuXtx ),()()( 


                                                                                                  (3.7) 

Where  “*” stands for complex conjugate. 

FrFT computation can be interpreted as a sequence of steps viz. a multiplication by a chirp in 

one domain followed by a Fourier transform, then multiplication by a chirp in the transform 

domain and finally a complex scaling. So, chirps form the basis functions of FrFT. There are 

various other definitions of the FrFT. Of all these, the definition given above is particularly 

desirable because of its many properties and the relation to the classical Fourier transform. 



16 

 

 

Figure 3.1 : FrFT of the chirp signal with different order of transform. 

 

3.1.4 PROPERTIES OF FRACTIONAL FOURIER TRANSFORM 

In this section, we list some fundamental properties of FrFT : 

(1) Linearity  

Let F  denotes the αth order fractional operator. Then 

      
l lll ll ufFbufbF                                                                                          (3.8) 

(2) Integer order 

When α is equal to an integer l , the th  order fractional Fourier transform is equivalent to the 

thl integer power of the ordinary Fourier transform. It means that 

  FF                                                                                                                             (3.9) 

 Moreover, it has following relation 

PF 2                   (parity operator)                                                                                   (3.10) 

  113   FFF    (inverse transform operator)                                                                (3.11) 

IFF  04           (identity operator)                                                                                (3.12) 
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4modjj FF                                                                                                                          (3.14) 

(3) Inverse  

   
 FF

1
                                                                                                                       (3.15) 

(4) Index additivity 

2121  
 FFF                                                                                                                  (3.16) 

(5) Commutativity  

1221 
FFFF                                                                                                                 (3.17) 

(6) Associativity 

   321321 
FFFFFF                                                                                                (3.18) 

(7) Time reversal 

Let P denotes the parity operator.     ufufP  , then 

 PFPF                                                                                                                          (3.19) 

    ufufF  
                                                                                                           (3.20) 

3.1.5 DISCRETE FEACTIONAL FOURIER TRANSFORM (DFrFT) 

Many authors have proposed a discrete fractional Fourier transform (DFrFT) [12], [13]. 

Different approaches are available to evaluate DFrFT, which can be divided into four 

different classes on the basis of their methodology of evaluation. These classes are : 

i. Eigenvector based method 

ii. Sampling based method 

iii. Linear combination method 

iv. Weighted summation based method  

The discrete fractional Fourier transform (DFrFT) is defined in terms of a particular set of 

eigenvectors  
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  





1

0

)(),()(
N

n

nxnKX                                                                                                    (3.21) 

where the kernel ),(  nK of the transformation has the following spectral expression 

)()(),( nvevnK k

Mk

kj

k


 
                                                                                             (3.22) 

Where )(nvk  is the kth discrete Hermite-Gaussian function as defined in [12] and 

 2mod,2,,0 NNNM  .  

The signal )(nx can be recovered using the inverse discrete fractional Fourier transform 

(IDFrFT) as : 

 





1

0

)(),()(
N

XnKnx


                                                                                                   (3.23) 

The most important property of FrFT is the rotation property [14], [15]. It can be used to 

rotate a linear chirp in the time-frequency plane to become a sinusoid or an impulse by setting 

the fractional order ( ) to an appropriate value-which is the fractional order that corresponds 

to the chirp rate of the signal. Now, we have to find the connection between the chirp-rate    

and the fractional order   of the FrFT. 

For a discrete signal )(nx , we can define the relation between the fractional order ( )and the 

chirp rate ( ) as : 

  )
2

1
(tan 1


                                                                                                      (3.24) 

If x(t) is a continuous linear chirp given by  

))(exp()( 2 ttjtx    

Substitute )(tx  into equation (3.5) we get 

dteee
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)
2

exp()cot
2

exp(
cot1 22

a

bu
j

a

j



  

Where  2cot jja   and  jjub csc . )(uX , when 

  02cot                                                                                                          (3.25) 

From the above equation, we can write the relation between  and   as   

)
2

1
(tan 1


                                                                                                                    (3.26) 

The signal )(nx  can be defined in discrete form as 

))(
2

exp()( 2 knn
N

jnx  


 

So, we can write the relation between the discrete chirp rate   and the fractional order   as                       

 )
2

1
(tan 1


                                                                                                                   (3.27) 

The relation between   and   was shown geometrically in [16], [17]. Figure 3.2 illustrates 

the plot of equation (3.27).                       

 

Figure 3.2 : Relation between the fractional order   and the discrete chirp rate   
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3.2 DISCRETE CHIRP FOURIER TRANSFORM 

The discrete chirp-Fourier transform (DCFT) was defined in [12]. Assumed a signal )(nx of 

length N, the discrete chirp-Fourier transform (DCFT) of this signal is  

  ))(
2

exp()(
1

),( 2 knrn
N

jnx
N

rkX c


                                                                   (3.28) 

 1,0  Nkr                                                      

where k  represents the frequencies and r is an arbitrarily fixed integer that represents the 

chirp rates. The DCFT is the same as the DFT when  0r . The inverse discrete chirp 

transform (IDCFT) is given as 







1

0

2 )
2

exp(),(
1

)
2

exp()(
N

k

c kn
N

jrkX
N

rn
N

jnx


                                                           (3.29) 

Where 10  Nn                                                            

The DCFT approximates the chirp rate by integer numbers r  . So, when using the DCFT to 

detect a chirp signal, the discrete chirp rate 0r  of the signal should be an integer to assure that 

the parameter can be matched and that the peak will not be lost. This restriction affects the 

practical applications of the DCFT. 

3.3 DISCRETE COSINE TRANSFORM 

Discrete cosine transform (DCT) of a signal )(nx is given by 

  
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

                                                                       (3.30) 

Where Nk  ,2,1   , N is the length of signal )(nx  and )(kw  is given by 
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DCT is clearly related to the DFT. We can often reconstruct a sequence very accurately only 

from a few coefficients, a useful property for the applications requiring data reduction.  

 

3.4 DISCRETE LINEAR CHIRP TRANSFORM  

3.4.1 LINEAR CHIRP BASIS 

The term “chirp” derives from the bird chirp or cricket sounds- a short pulse, high-pitched 

sound. This pulse is called a chirped pulse. Scientifically, the term chirp means a wave whose 

instantaneous frequency fluctuates over time. Chirps come in many frequency sweep forms: 

linear chirp, quadratic chirp, logarithmic-chirp, etc. 

A linear chirp is a function whose frequency changes linearly with time. For example, while a 

wave function of the form )exp( 0tj has constant frequency 0 , the chirp

))(exp( 0

2

0 ttj   has an instantaneous frequency t00 2  at time Rt . Often chirps 

arise in nature as a result of the Doppler effect, the phenomenon by which the perceived 

frequency of a wave is changed whenever the wave is coming from or reflecting off  a moving 

body. Chirps have historically been of great interest in applications such as sonar and radar. 

Therefore, we need to use linear chirp bases instead of the classical Fourier bases because 

they are more suitable for representing the frequency changes of Non-stationary signals. 

3.4.2 CONTINUOUS LINEAR CHIRPS 

Let the space )(2 RL  be a Hilbert space of complex functions such that 

 



dttxx

2
)(  

The inner product of )(, 2 RLyx  is defined by 

dttytxyx 




 )()(,  

where )(ty  is the complex conjugate of )(ty . 

The continuous linear chirp transform (CLCT) of )()( 2 RLtx   is defined as  
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




 dtetxX ttj )( 2

)(),(                                                                                                (3.31) 

The inverse continuous linear chirp transform (ICLCT) is given by 






  deXtx ttj )( 2

),()(                                                                                                (3.32) 

Where   . We can prove that )(tx  is the inverse continuous linear chirp transform 

(ICLCT) of ),( X as follows. We have 






  deXtx ttj )( 2

),()(   

Using equation (3.32), we get 

    ddeex tjtj )()( 22

)(  

Using the following integral  

)()(  




 tde tj
 

We have  






  )()()( )( 22

txdtex tj  
 

The CLCT is the generalization of the conventional Fourier transform. The CLCT can remove 

the effect of the chirp rate on the channel bandwidth of chirp communication systems if we 

filter the signal at the corresponding chirp rate. Therefore, we present the CLCT to overcome 

the broadness of the channel bandwidth. 

3.4.3 DISCRETE LINEAR CHIRPS 

In this section, we develop an orthogonal representation using linear chirps for a discrete 

signal )(nx of finite length 10  Nn . A discrete-time linear chirp  

))(
2

exp()( 2

, knn
N

jnk  


                                                                                            (3.33) 
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is characterized by the discrete frequency Nk /2  and by its chirp rate  , a continuous 

variable connected with the instantaneous frequency of the chirp 

)2(
2

)( kn
N

nIF  


                                                                                              (3.34) 

Assuming a finite support for  , i.e.,   , we can construct an orthonormal basis 

 )(, nk  with respect to k  in the supports of    and n  as 

 

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    dmkNdnn
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,,  

                                     )(2 lkN                                                                                  (3.35) 

Thus, we have the linear-chirp representation for a discrete signal )(nx , 10  Nn , to be 

  
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                                                                  (3.36) 

where the coefficients ),( kX  are obtained by using the orthogonality of the basis as 
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To get the discrete transformation, we approximate the chirp rate as  

Cm  , where 
L

C



2

 

So that        1
22


L
m

L
 is integer 

So we have the discrete linear-chirp transform (DLCT) [43], [45] 
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                                                                        (3.38) 

Where 10  Nk  and 1
22


L
m

L
 

Inverse discrete linear-chirp transform (IDLCT) is given by 
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Where 10  Nn  and 
L

C



2

 

 The DLCT is not a time-frequency transformation, but a frequency chirp-rate transformation. 

One could think of the DLCT as a generalization of the discrete Fourier transform 

(DFT).Actually, 


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jDFTkX
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mkX
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                                                                      (3.40) 

Where “ ”is the circular convolution. If 0m , then )0,(kX  is the DFT of )(nx  or the 

representation using chirp bases with zero chirp rates. 

3.4.4 PROPERTIES OF DLCT 

The properties of the DLCT are very much similar to those of the DFT. We are mainly 

interested in the modulation and the duality properties which will be useful in time-frequency 

shifts and in representing time-impulses and functions of them which cannot be represented 

when the chirp rate is assumed to be finite. 

 

(1) Modulation property :  if ),( mkX  is the DLCT of )(nx then the linear-chirp modulated 

signal  

))(
2

exp()()( 0

2

00 nknmC
N

jnxny 


                                                                               (3.41) 

 Where CC 0 , has a DLCT 

),(),( 00 mmkkXmkY                                                                                               (3.42) 

Where   should be an integer to preserve the discrete nature of the transform. This shifting 

property allows the transformation of one chirp representation into another, and in precise, the 

transformation of chirp representations into sinusoidal representations. 
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(2) Duality property : Though the finite chirp rate assumption made before permits a   large 

range of values for the chirp rate it cannot be used to represent signals that are impulses and 

functions of impulses in time. To include them we consider a duality property for the DLCT.  

Interchanging the time and frequency variables and using equation (3.38) and (3.39) 
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                                                            (3.43) 

Where 10  Nn  and 1
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Then we have  
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Where 10  Nk  and 
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Using the same procedure, we can show that 
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Which is also equal to )( kx  . So, if )(nx  is an impulse or a function of impulses, then its 

DFT would be a constant or a sinusoid of zero frequency, and its DLCT can be calculated. 

We can find the relation between m  and 
_

m  or (   and 
_

 ) from the time-frequency 

distribution of a linear chirp. The IF of a linear chirp has a slope of 2   from the time axis and 

a slope of 2
_

  from the frequency axis. Given a linear chirp 

)exp()( 2tjth          for  t , its Fourier transform is 
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If we calculate the dual of )(H , we get 
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As,  

tttIFtIF tHth _)()(

4

2
2)()(



   

Hence  



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  

In the discrete form, we have 

Cm
mC

4

1_

  or 



4

1_

  

If 5.0
_

  , then the slope of the IF is equal to 45  which separates the time-frequency 

space into two symmetric  halves. 

(3) Linearity property : a signal 10),()()( 2211  Nnnxanxanx  has the DLCT 

transform  

),(),(),( 2211 mkXamkXamkX                                                                                      (3.46) 

3.5 DISCRETE COSINE CHIRP TRANSFORM 

In the last section we consider the local representation of signals in terms of complex linear 

chirps, and therefore develop the discrete linear chirp transform (DLCT). This is a joint chirp-

rate frequency transform, that generalizes the discrete Fourier transform (DFT). The presented 

discrete cosine chirp transform (DCCT) is more applicable to signal compression application. 

For a discrete real-valued signal )(nx  of finite support 10  Nn  , we define its DCCT as 









1

0

2

)
2

)12(
cos()(),(

N

n N

nknCm
nxmkX


                                                                      (3.47) 



27 

 

Where 10  Nk  and 1
22
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L
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L
 

A representation in terms of cosines with instantaneous frequency 

NkNnknIF //),(    

The assumptions made for the DLCT associated to the chirp rate   are still valid for the 

DCCT. That is, we consider its support finite,   , and that mC , and LC /2 . 

We can think of the DCCT as a generalization of the discrete cosine transform as )0,(kX  is 

equal to the DCT of )(nx . The DCCT decomposes a signal using real linear chirp as  
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The inverse discrete cosine chirp transform (IDCCT) for reconstructing the original signal is 

given by 
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Where  10  Nn  

Linearity property :  the DCCT is a linear transform, as for any )(1 nx and )(2 nx  with a DCCT 

transform ),(1 mkX  and ),(2 mkX respectively then the signal  

)()()( 21 nbxnaxnx   

has the DCCT transform given by 

),(),(),( 21 mkbXmkaXmkX                                                                                         (3.49) 

Where a and b are constants. This property can be easily proved because the summation is a 

linear operator. 

If )(1 nx  and )(2 nx  are real finite signals in the time support 1,,0  Nn  and their 

discrete cosine chirp transforms respectively are  
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that is  
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Then for )()()( 21 nbxnaxnx  , DCCT can be written as 
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which gives 

),(),(),( 21 mkbXmkaXmkX   

Linearity is very important property for the DCCT since it can be used in many applications 

such as signal modelling, compressive sensing, signal separation and other applications. 

Therefore, we can decompose a real signal )(nx  in terms of real chirps as 
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where id , i , and ik  are amplitudes, chirp rates, and frequencies of p  real linear chirps. 
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3.6 SPARSITY COMPARISON OF DLCT, DFRFT AND DCT 

Sparsity or compressibility reflects the fact that information carried by certain signal is much 

smaller than their bandwidth. Most signals are not sparse in the time domain, so linear 

transformations are used to make them sparse in either time or frequency using certain basis 

[18]. The Discrete Cosine Transform (DCT) can be used to obtain a sparse representation in 

frequency for such signals. However, non-stationary signals, such as chirps may not be sparse 

in either time or frequency, but rather in an intermediate domain. 

Sparseness is an essential signal characteristic in many applications such as compressive 

sensing, compression, and de-noising. It can be defined as a concentration of a signal energy 

on a few coefficients and the rest of them have low energy so that they can be neglected. 

Therefore, the transform that can give higher sparsity (few coefficients) is considered better 

than the one that gives low sparsity (too many coefficients). For mono-component signals, we 

can measure the sparsity of a signal analytically by measuring the broadness of its support in 

the transformed domain (could be time or frequency). 

 The frequency spread ( B ) can be defined in the discrete form as [19] 
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                                                                                       (3.50) 

Where Nkk /2   for 1,,1,0  Nk  and k  is the expected value given by 
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Similarly, the time spread (T ) can be defined as 
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Where n  is the expected value by 
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In equation (3.52) and (3.53), for finite energy signals and without loss of generality we can 

assume the energy of the signal is normalized 
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                                                                                          (3.52) 

The idea of measuring the sparsity by determining the broadness of the time spread or the 

frequency spread for mono-component signals can be generalized to multi-component signals. 

Since the DLCT can separate the components of the signal, we can define the sparsity 

measure in the frequency domain for multi-component signals as 
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                                                                                                                            (3.53) 

and the time spread as  
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                                                                                                                             (3.54) 

where iT  and iB  are the time and frequency spread for each component of a signal which has 

p  components. We can also define the sparsity metric for multi-component signals in the 

form of time-bandwidth product (TB ) as 
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3.7 SIMULATION RESULTS 

 To evaluate the sparsity of the DLCT and the DFrFT, we use a synthetic signal )(1 nx  which 

is generated as follows 
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The signal )(1 nx  having chirp rate 1.0  and frequencies )35,10(),( 21 kk  is shown in 

Figure 3.3(a) and the discrete linear chirp transform of )(1 nx with 1.0  is shown in Figure 

3.3(b) while Figure 3.3(c) shows the discrete fractional Fourier transform of )(1 nx  with 

1.0  )44.0(    and Figure 3.3(d) shows the discrete cosine transform of )(1 nx . 
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(c) 

 

(d) 

Figure 3.3 : (a) Signal )(1 nx  in time domain; (b) The DLCT of )(1 nx  with 1.0 ; (c) The 

 )(1 nxDFrFT  with  44.0  and (d) The  )(1 nxDCT . 

 

And signal )(2 nx  which is generated as follows 
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The signal )(2 nx  having chirp rate 1.0  and frequencies )50,30,20(),,( 321 kkk  is shown 

in Figure 3.4(a) and the discrete linear chirp transform of )(2 nx with 1.0  is shown in 

Figure 3.4(b) while Figure 3.4(c) shows the discrete fractional Fourier transform of )(2 nx  

with 1.0  )44.0(    and Figure 3.4(d) shows the discrete cosine transform of )(2 nx  
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(d) 

Figure 3.4 : (a) Signal )(2 nx  in time domain; (b) The DLCT of )(2 nx  with 1.0 ; (c) The 

 )(2 nxDFrFT  with  44.0  and (d) The  )(2 nxDCT . 

 

From Figure 3.3 and Figure 3.4, It is clear that, the DLCT gives a transformed signal that is 

sparser than the transformed signal that we obtain using the DFrFT and DCT.  

We find the frequency spread of the signals in Figure 3.3 and Figure 3.4 for DLCT is less as 

compared to that of DFrFT. Since DCTDFrFTDLCT BBB  , this implies that the transformed 

signal that we obtain using the DLCT is much sparser than the transformed signal using the 

DFrFT and DCT. 

In general for any combination of ideal linear chirps, the resolution of the DLCT is finer than 

the resolution of the DFrFT and the DCT. All the algorithms that use the DLCT or the DFrFT 

or the DCT for parametric characterization of chirps depend on searching for peaks for all 

possible chirp rates or fractional orders to obtain the optimal chirp rate or the optimal 

fractional order that maximizes the  )(nxDLCT  or equivalently  )(nxDFrFT . 

When the chirp rate of the DLCT matches the optimal chirp rate or (the fractional order of the 

DFrFT matches the optimal fractional order ), then the transformed signal at the optimal chirp 

rate (optimal fractional order) will be sparser than for any other chirp rate or fractional order 

because the time-bandwidth product will be minimum. 
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3.8 SUMMARY 

Sparsity or compressibility reflects the fact that information carried by certain signal is much 

smaller than their bandwidth. Most signals are not sparse in the time domain, so linear 

transformations are used to make them sparse in either time or frequency using certain basis. 

Non-stationary signals, such as chirps may not be sparse in either time or frequency, but 

rather in an intermediate domain. DLCT is used to convert such signal into sparse one with 

the help of modulation and duality property. The simulation result shows that the sparsity of 

DLCT is much better than that of FrFT and DCT. 
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CHAPTER 4 

APPLICATION OF DLCT FOR DATA COMPRESSION 

4.1 SIGNAL COMPRESSION 

With the growth of communication systems and information technology, and their ability to 

serve image, video and voice, requires more data to be transmitted or stored. Signal 

compression transforms a signal into an efficient squeezed form, for transmission or storage, 

that can be decompressed back to produce a close approximation of the original data. The aim 

of signal compression is to minimize data rate to preserve bandwidth, while keeping the 

quality and intelligibility of the original signal. Unfortunately, the compression ratio is 

inversely proportional to the quality of the signal. Hence, there is always a trade-off between 

compression ratio and quality [47]. 

The performance of compression algorithms is measured by the signal to noise ratio SNR and 

the compression ratio Cr : 

 22 /log10 doSNR                                                                                                             (4.1) 

signal compressed ofLength 

signal original ofLength 
Cr                                                                                        (4.2) 

where 2

o  is the variance of the original signal and 2

d  is the variance of the difference 

between original and rebuilt signals. Another factor that plays an important role in 

compression is the threshold value. After calculating the DLCT of a signal, many of the 

coefficients of the resulted signal are close to or equal to zero. Thus, we can amend those 

coefficients to produce more zeros by zeroing them out using certain threshold. 

4.2 COMPRESSIVE SENSING  

The conventional standard in digital signal processing for reconstructing signals from 

measured data follows Shannon sampling theorem. This approach promises the preservation 

of the information that is in the signal being sampled, but the cost is reflected in the number 

of samples that are required to represent the signal. Recently, the new theory of compressive 

sensing, also known as compressive sampling or sparse recovery has emerged [33] as an 

substitute to the traditional sampling theory. Compressive sensing states that we can 
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reconstruct certain signals using fewer samples than those required by the sampling theory if 

we satisfy two conditions: sparsity and incoherence which means the sensing vectors are as 

different as possible from the sparsity basis. If we satisfy those conditions, signal 

reconstruction can be attained from cardinally smaller measurements by using 1l

minimization [48]. 

Compressive sensing (CS) [48] goals to take advantage of the signal’s sparser representation 

dictated by the uncertainty principle. Although CS offers very good results for signals that are 

sparse in either time or frequency, it does not for signals that are not significantly sparse in 

either time or frequency domains such as the case of chirp signals [49], [50]. Time-frequency 

analysis is needed to get an intermediate domain where the signal is sparser than in time or in 

frequency. The Fractional Fourier Transform or the polynomial time-frequency transforms 

can be used, to obtain a sparse representation of a signal that is not sparse in time or 

frequency, or sparse in either of these domains a joint frequency instantaneous-frequency and 

its dual joint time and instantaneous-frequency transform. 

Consider a finite support real signal with values given by a vector nRx , and that is 

expressed in terms of the basis ].........[ 1 n   [48] as 





N

j

jjsx
1

   or   sx                                                                                                       (4.3) 

where    is an NN   matrix, and s  is a vector of size 1N . The basis that transforms x  

into a sparse signal s  can be, for instance, the one for the discrete cosine transform for a 

certain class of signals. 

When the signal x  is sparse it can be represented with NK   nonzero coefficients. 

Compressive sensing assumes that the K  nonzero coefficients are not extracted directly, but 

we project the vector x  onto a matrix   of size NM   where NM  . The matrix   is 

called the measurement matrix and it satisfies the condition that the columns of the sparsity 

basis   cannot sparsely represent the rows of the measurement matrix   (incoherence 

condition). 

We can represent the measurement signal z as follows 

ssxz                                                                                                               (4.4) 
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where z  is a vector of size 1M . Reconstruction of the signal is a convex optimization 

aimed at recovering the signal via 1l -minimization as shown in  

1
minarg ss 



   subject to   sz                                                                                     (4.5) 

from which we can recover s , and then we use the inverse basis to obtain the original signal 

x . 

4.3 SIGNAL COMPRESSION USING DLCT 

Signal compression goals to decrease transmission rate (or increase storage capacity) by 

reducing the amount of data needed to be transmitted. DLCT is a joint frequency 

instantaneous-frequency transform that decomposes the signal in terms of linear chirps. The 

DLCT can be used to transform signals that are not sparse in either time or frequency, such as 

linear chirps, into sparse signals [45]. 

Compressive sensing attempts to simplify the frequency transformation and thresholding 

steps, commonly done in data compression, into one. Sparseness of the signal, in either time 

or frequency, is required for the convex optimization in compressive sensing to perform well. 

Although sparseness of certain signals, in either time or frequency, is assured by the 

uncertainty principle signals composed of chirps are not however sparse in either domain. The 

discrete linear chirp transform (DLCT) is an orthogonal linear-chirp transform, used to 

represent any signal in terms of linear chirps, with the help of modulation and dual properties. 

Using the DLCT the sparseness of the signal in either time or frequency can be achieved, and 

if not sparse in neither of these domains, the modulation and dual properties of the DLCT 

provide a way to transform the signal into a sparse signal. 

The main goal of signal compression is to reduce the amount of data that we want to transmit 

or store. The direct and the dual DLCT are used to represent signals that can be better 

represented by one of them locally [45]. Considering that a sinusoid has a chirp rate 0 , 

while an impulse has as chirp rate  , we separate signals into two groups: one having 

5.00   , corresponding to a linear chirp with a slope with an angle in ]45,45[  , and the 

other for  5.0  corresponding to a linear chirp with a slope with an angle in ]90,45[   

or ]90,45[   . The value of 5.0  is not arbitrarily chosen since it relates to the slope of 

the instantaneous frequency such that 
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   2tanSlope                                                                                                                (4.6) 

If 5.0 , then 4/   which is the angle that separates the time-frequency space into two 

symmetric halves. 

4.3.1 COMPRESSION ALGORITH  

Algorithm for signal compression using DLCT is shown is Figure 4.1. [45], 

Consider the local representation of a signal )(nx , 10  Nn , as a superposition of p  

linear chirps 

 














1

0

22
exp)(

P

j

jjjj inkn
N

ianx 


                                                                                (4.7) 
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Figure 4.1 : Compression algorithm. 

 

where  
jjjj k  ,,,  are the amplitude, phase, frequency, and chirp rate of the thi  linear 

chirp. The algorithm has two paths for the signal, the upper which is the dual path and the 

lower which is the direct path. Depending on the minimum value of the extracted s  for 

certain segment of the signal, we can do the compression either by the dual path or by the 

direct path. The coefficients  
jjjj ka  ,,,  are extracted and from theses coefficients we can 
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reconstruct an approximation for the signal )(nx , where the arrangement of these coefficients 

is done according to following the data structure. 

4.3.2 STRUCTURE OF THE COEFFICIENTS   

Structure of the coefficients for sending or storing the extracted parameters is shown in 

Fig.4.2 [45], we choose P chirp rates that correspond to the peaks of chirps which forms the 

signal and P is the order of the chirp model. Then, from each vector which corresponds to the 

chosen chirp rates from the chirp transform ),( kX  or  ),( nx


 matrix, we select jM  

amplitudes, phases and frequencies or samples that have more power of the signal 

concentrated upon them.  

 

 
 

 

Figure 4.2 : Structure of the coefficients . 

 
 

4.4 SIMULATION RESULTS 

Consider a signal  
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Figure 4.3(a) shows the time domain representation of original signal )(3 nx  and figure 4.3(b) 

shows the 3-D plot of ),( kX .  At location )1.0,60(),( k  the transformation shows a 

peak corresponding to the given chirp with the given frequency and rate. 

 

(a) 

 

(b) 

Figure 4.3 : (a) signal )(3 nx  in time domain; (b) the DLCT of signal  )(3 nxDLCT . 
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Consider another signal  
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Figure 4.4 : (a) signal )(4 nx  in time domain; (b) the DLCT of signal  )(4 nxDLCT . 
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Figure 4.4(a) shows the time domain representation of original signal )(4 nx  and figure 4.4(b) 

shows the 3-D plot of ),( kX .  At locations )5.0,35(),( k  and )1.0,230(),( k  the 

transformation shows two peaks corresponding to the given chirp with the given frequencies 

and rates. 

The compression of signal using DLCT based on the above algorithm achieves better 

performance than DCCT because the sparsity is the main criteria in the compression which is 

better for DLCT.  

4.5 SUMMARY  

Compressive sensing (CS) aims to take advantage of the signal’s sparser representation 

dictated by the uncertainty principle. Although CS offers very good results for signals that are 

sparse in either time or frequency, it does not for signals that are not significantly sparse in 

either time or frequency domains such as the case of chirp signals. The DLCT is used to 

transform signals that are not sparse in either time or frequency, such as linear chirps, into 

sparse signals. Hence, the simulation shows that the CS using DLCT provides better result as 

compared to other existing CS techniques. 

 

 

 

 

 

 

 

 

 

 

  



44 

 

CHAPTER 5 

CONCLUSION AND FUTURE WORK 

 

5.1 CONCLUSION 

In this dissertation, we have compared performance of DLCT in terms of sparsity with DFrFT 

and DCT. The discrete linear chirp transform (DLCT) is based on discrete complex linear 

chirps. It is not a time-frequency transformation, but rather a frequency chirp-rate 

transformation that generalizes the discrete Fourier transform and can be implemented with 

the fast Fourier transform algorithm. The parameters of a chirp or combination of chirps can 

be clearly determined with this transform. It also provides a modulation property that allows 

shifting of chirps into other chirps or sinusoids. The representation of impulses or functions of 

impulses is possible via a duality property of the transform. We have analyzed and compared 

the results of the discrete linear chirp transform (DLCT) with the discrete fractional Fourier 

transform (DFrFT) and discrete cosine transform (DCT) in terms of sparsity and resolution. 

Simulations result shows that the DLCT outperforms the DFrFT and DCT over these 

important aspects. Also the Compressive sensing using DLCT achieves better performance 

than other tools used for data compression. 

5.2 FUTURE WORK 

In future DLCT may be applied for the following applications :  

 One dimensional and two dimensional signal (image) compression. 

  In image processing, the DLCT decomposition can be used to analyze images. Hence, 

we can apply image watermarking to the analyzed images, explore its robustness 

against attacks, and compare its performance with similar existed techniques such an 

EMD and wavelet. 

 For efficient utilization of bandwidth in communication  

 Signal de-noiseing  

 Speech processing etc. 
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