

Distributed Task Allocation

In Dynamic Multi-Agent System

Thesis Report submitted in partial fulfillment of the

requirement for the degree of

Master of Technology

In

Computer Science & Engineering

Under the Supervision of

Deepak Dahiya

By

Vaishnavi Singhal (132211)

Jaypee University of Information and Technology

Waknaghat, Solan – 173234, Himachal Pradesh

i

CERTIFICATE

This is to certify that thesis report entitled “Distributed Task Allocation in Dynamic

Multi-Agent System”, submitted by Vaishnavi Singhal in partial fulfillment for the

award of degree of Master of Technology in Computer Science & Engineering to Jaypee

University of Information Technology, Waknaghat, Solan has been carried out under my

supervision.

This work has not been submitted partially or fully to any other University or Institute for the

award of this or any other degree or diploma.

Date: Supervisor’s Name………………

Designation……………………

ii

ACKNOWLEDGEMENT

This is my long but the task of my thesis work both theoretically and practically may

not have been completed without the help, guidance and mental support of the

following persons.

Firstly I would like to thank my guide Deepak Dahiya, Professor, Department

of Computer Science and Engineering, Jaypee University of Information Technology,

Waknaghat, who provided me the related material and idea for the project proposal.

He indeed guided me to do the task for my thesis in such a way that it seems to be

research work, encouraged me a lot for doing my thesis in very smooth manner. Even

if I made the mistake sometime he always tried to correct those mistakes and

endeavor always to take me in the right direction.

Secondly, I would like to thank my parents who have always been with me

for inspiring me that I can do the good thesis task with the hard work. Their

instigation always helped me to grow my mind focused towards the hard work for

implementation of thesis with having the research work in the mind.

Thirdly, I would like to thank GOD for keeping me enthusiastic, energetic and

healthy every time due to which I could complete my thesis work successfully.

Once again thanks a ton to all mentioned people in my life.

Date: ……………………… Signature………………………

 Name …………………………

iii

TABLE OF CONTENT

ABSTRACT ...viii

CHAPTER 1 ... 1

INTRODUCTION.. 1

1.1 Overview .. 1

1.2 Motivation .. 2

1.3 Objectives ... 3

1.4 Thesis Outline .. 4

CHAPTER 2 ... 5

BACKGROUND .. 5

2.1 Distributed Artificial Intelligence .. 5

2.1.1 What is an Intelligent Agent .. 5

2.1.2 Existing architectures of intelligent agent ... 7

2.1.3 Agent execution cycle ... 7

2.1.4 Agent environments ... 8

2.2 Multi-Agent System ... 9

2.2.1 Introduction ... 9

2.2.2 Characteristics of Multi-agent Systems ... 10

2.2.3 Applications of MAS ... 11

2.3 Agent communication language ... 12

2.3.1 Speech Acts ... 12

2.3.2 Knowledge Query Manipulation Language (KQML) 12

2.4 Agent interaction protocol .. 13

2.4.1 Coordination Protocol.. 14

2.4.2 Cooperation Protocol ... 14

2.4.3 Negotiation Protocol .. 14

2.4.4 Contract-net Protocol (CNP) ... 14

CHAPTER 3 ... 16

RELATED STUDY .. 16

3.1 Task-Allocation .. 16

3.1.1 Game-Theory based approach ... 17

iv

3.1.2 Markov Decision based approach .. 18

3.1.3 Auction Based Task Allocation ... 19

3.1.4 Negotiation Based Approach ... 19

3.1.5 Distributed Constraint Optimization Problems ... 20

3.1.6 Swarm Intelligence based Approach ... 21

3.2 Critical Review ... 21

3.3 Multi-agent System for Disaster Scenario ... 23

CHAPTER 4 ... 25

MULTI-AGENT SYSTEMS: JADE FRAMEWORK ... 25

4.1 FIPA Specification ... 25

4.2 Java Agent Development Framework (JADE)... 27

4.2.1 Agent Container ... 29

4.2.2 JADE Communication System .. 29

4.2.3 Agent Execution Model ... 31

CHAPTER 5 ... 33

PROPOSED APPROACH: TASK ALLOCATION IN FIRE FIGHTING 33

5.1 Problem statement .. 33

5.2 Problem Definition ... 34

5.3 Problem Formulation.. 35

5.3.1 Agent Definition .. 37

5.4 Proposed algorithm .. 37

CHAPTER 6 ... 44

EXPERIMENTAL SETUP ... 44

6.1 Start-up Frame .. 44

6.2 Main Frame .. 45

6.3 Fire-brigade Agent Frame .. 46

6.4 Task Allocation Processing .. 47

6.5 Report Frame .. 47

6.6 Event-Report.pdf Generation ... 48

CHAPTER 7 ... 49

OBSERVATIONS AND RESULTS ... 49

7.1 Simulation Results.. 49

7.2 Observations ... 52

v

CHAPTER 8 ... 57

CONTRIBUTIONS.. 57

8.1 Contribution to the Society ... 58

CHAPTER 9 ... 59

CONCLUSION AND FUTURE SCOPE ... 59

REFERENCES ... 61

APPENDIX- A .. 66

APPENDIX- B .. 67

PSEUDO-CODE OF PROPOSED ALGORITHM .. 67

B.1 Pseudo-code for the proposed approach .. 67

vi

LIST OF FIGURES

Figure 1- working of software agents .. 6

Figure 2- Agent Execution Cycle .. 8

Figure 3- Environment of Multi-agent Systems .. 10

Figure 4- Various Domains of multi-agent system .. 11

Figure 5- KQML working .. 12

Figure 6- Existing Agent Interaction Protocols ... 13

Figure 7- FIPA specified CNP ... 15

Figure 8- Task allocation Problem ... 16

Figure 9- Reference model of FIPA-97 specification .. 26

Figure 10- Software Architecture of single JADE Agent Platform 29

Figure 11- Front-End Agent Container .. 30

Figure 12- JADE intra-platform communication model .. 30

Figure 13- Agent Execution model .. 32

Figure 14-A multi-agent System architecture for assigning Fire-Brigades to fire event

.. 35

Figure 15- Flowchart for the proposed algorithm .. 38

Figure 16- snapshot of start-up frame .. 44

Figure 17- snapshot of Main-Frame and Fire-Station agent .. 45

Figure 18- snapshot for fire-brigade agent ... 46

Figure 19- snapshot when task allocation is going on ... 47

Figure 20- snapshot of the Report Frame after the simulation has been done 48

Figure 21- Event Report pdf snapshot ... 48

Figure 22- number of message transferred vs. total no. of events for experiment 1 ... 53

Figure 23- avg. waiting time for successful events vs. total no of events for exp. 1 ... 53

Figure 24- number of message transferred vs. total no. of events for experiment 2 ... 54

Figure 25-avg. waiting time for successful events vs. total no of events for exp. 2 54

Figure 26- number of message transferred vs. total no. of events for experiment 3 ... 55

Figure 27- avg. waiting time for successful events vs. total no of events for

experiment 3... 55

Figure 28- success rate of proposed approach for all the experiments 1, 2, and 3 56

file:///E:/Final%20Simulation%20results/Final%20Thesis%20Report/Thesis.docx%23_Toc419208160
file:///E:/Final%20Simulation%20results/Final%20Thesis%20Report/Thesis.docx%23_Toc419208163
file:///E:/Final%20Simulation%20results/Final%20Thesis%20Report/Thesis.docx%23_Toc419208164
file:///E:/Final%20Simulation%20results/Final%20Thesis%20Report/Thesis.docx%23_Toc419208173

vii

LIST OF TABLES

Table 1- Traditional System vs. Multi-agent system ... 7

Table 2- Characteristics of Multi-agent Systems ... 10

Table 3- Critical Review .. 21

Table 4- FIPA-97 and 98 Specification ... 25

Table 5- Simulation results for the experiment 1 ... 50

Table 6- Simulation results for the experiment 2 ... 51

Table 7- Simulation results for the experiment 3 ... 51

viii

ABSTRACT

Distributed task allocation has been the hot research topic from the last few years. It is

the heart of multi-agent systems. In multi-agent system, the agents coordinate and

cooperate with other agents to accomplish the complex task which cannot be

completed by an individual agent. Here, a distributed task allocation approach is

proposed in constrained cooperative multi-agent environment (dynamic, real-time and

uncertain). Agent allocates the task to multiple agents by considering the spatial,

temporal and communicational constraints of the environment. The proposed

approach considers the negotiation-based task allocation approach where the main

agent announces the task and then other agents sends their respective bids for the

received task. Best bid is chosen from all the received bids and then task is allocated

to winning agent or group of agents. The main objective is to minimize the waiting

time for a task to be accomplished and the number of messages transferred among

agents for task allocation process. Furthermore, due to uncertainty of dynamic

environment where the environment gets evolved at any point of time and plan gets

failed, a re-planning algorithm is proposed which enables the agents to re-coordinate

their plans when environment problem avoid it to fulfill them. The proposed approach

is applied to the fire-fighting multi-agent environment where the allocation of fire-

brigade agents is done to extinguish the fire in an efficient and effective manner. The

approach is simulated in a multi-agent framework JADE and the result shows that the

proposed approach requires less number of messages and less waiting time for the

successful task allocation.

1

CHAPTER 1

INTRODUCTION

This chapter introduces the work presented in this thesis. Particularly, the motivation,

objectives of the research work is described briefly. The chapter concludes with an

overview of structure and content of the thesis.

1.1 Overview

The multi-agent systems are composed of intelligent entities called agents. Multi-

agent system enables us to study the dynamic environments those are very similar to

the real-life systems. There are various applications where multi-agent system plays

an important role like transportation, disaster scenarios, coordinated defense systems,

networking and mobile applications in order to achieve high scalability, dynamic load

balancing and self-healing networks. The interaction of the agents can be selfish or

cooperative. That is, the agents can pursue their own interest or can share the common

goals of the system. It is very difficult for a single agent to achieve the system‟s goals

individually so it grouped to form a multi-agent system.

Distributed task allocation and coordination have been the hot research topic in

multi-agent system. In order to accomplish any task, there is requirement of a proper

task allocation scheme. When the task is so complicated that it is very difficult to

accomplish it by single agent then group of multiple agents have to be formed. To

achieve the system goals, these agents must have to coordinate with each other. The

coordination among the agent must have to be optimized so as to get an optimized

task allocation strategy. The distributed task allocation process may be more difficult

if the environment is dynamic, uncertain and real-time. Dynamic and uncertain means

that the environment may evolves at any point of time. The agents cannot know with

certainty that how the environment will evolve and what is the impact of its action on

the environment. And real-time systems are those which involve some sort of

constraints like spatial, temporal and communicational. To design any task allocation

process for real-time systems, these constraints must have to be kept in mind.

 In this sense, it is very important to design the task allocation process includes

spatial, temporal and communicational constraints. Spatial constraint is related to the

location of either agent or the task; temporal constraint is concerned with the deadline

2

to start any task. To accomplish any complex task, the agents need to communicate

with other agents. In multi-agent system, this communication is generally done via

message passing. Thus communication constraint is concerned with the number of

messages transferred for the allocation of the task among group of agents. This thesis

addresses a task allocation approach for dynamic environment with temporal, spatial

and communicational constraints. This also focuses on the coordination mechanism

i.e. how the agents coordinate with each other so as to accomplish complex task. Here

market-based auction strategy is used for the coordination problem. The

communicational constraint is applied during coordination so as to achieve optimized

task allocation process.

Briefly this thesis proposes:

 A task allocation algorithm which coordinates the agent using auction-based

negotiation. Here the task is delivered to that agent who can accomplish it in

lesser time. The agents are considered to be heterogeneous in the sense that, their

implementation and functionalities are same but capabilities are different. Thus if

the chosen agent cannot fulfill the task‟s requirement then negotiation is done.

The participated agents submit their bids and the group of agent having best bid

will be chosen for the task accomplishment.

 A trust model is also used for the task allocation purpose. On the basis of the trust

factor, the most trust worthy agent is chosen for the task accomplishment first.

 Re-planning of the task allocation is done when agents face problems in

accomplishing the assigned task due to uncertainty of environment.

1.2 Motivation

Disaster management has become an important and challenging issue in last few

years. Disaster management coordinates a large number of rescuers to rescue the

people or infrastructure so as to save them. A disaster environment is a dynamic

environment where the environment conditions are unpredictable. The Disaster

management includes various rescue activities like extinguishing the fire; rescue the

patients to hospitals, cleaning beaches etc. The disaster management is responsible for

allocating the rescue teams to accomplish these tasks for optimal recovery from the

disaster.

3

Let us consider the case of fire-fighting. When any fire incident occurs in the

society, the time to allocate the appropriate fire brigade to extinguish the fire is very

crucial. If the allocation process is not optimal then it may results in a severe damage

to the infrastructure as well as people. Multi-agent systems enable us to study such

type of dynamic real-time systems.

Thus we devise a task allocation approach for fire-fighting multi-agent

environment. Various intelligent fire-brigade agents cooperatively perform the rescue

operation to extinguish the fire. The simulation is done on the Java Agent

Development Framework (JADE), which facilitates the development of multi-agent

systems. The main challenge involved in fire-extinguishing scenario is the time to

response fire event by allocating the fire-brigades in less time.

This thesis discusses the approach of allocating the fire-brigade agents to the

location where the fire event has been occurred with minimum waiting time. The fire-

brigade agents are of heterogeneous in nature as they possess different capacities of

the water tanks. To fulfill the requirement of any fire event, a group of fire-brigade

agents have to be communicated with each other. The communication is done by

message passing. Thus the task allocation approach which is discussed in this thesis

considers the communication constraint along with spatial and temporal constraints.

The proposed approach allocates the fire-brigade agents at the location of fire event

with minimum waiting time and lesser number of message transfers.

1.3 Objectives

The main objective is to develop the algorithm that efficiently allocates the task in a

constrained-cooperative multi-agent environment. Particularly, the focus is on the

constrained environment of extinguishing the fire. The main aim of the proposed

work is to allocate the appropriate fire-brigade for the fire-event as soon as possible

and with less communication cost. The proposed algorithm must take the advantage

of distributed approach to allocate the task in a co-operative fashion and to be real-

time so as to allow the agents to face the changes in the scenario. To accomplish this

objective, this thesis deals with the following specific objectives:

4

1. To apply the negotiation based technique used by the contract-net protocol

with the inclusion of communicational constraint in order to improve the task

allocation among the fire-brigade agents.

2. To apply the trust model during task allocation process, so as to allocate the

task to most trust-worthy fire-brigade agent in order to minimize the failure of

the fire-event.

3. To design a re-planning algorithm in order to allow agents to face the changes

occurred in the environment due to the dynamic nature of environment.

1.4 Thesis Outline

This thesis is organized in the next 7 chapters:

Chapter 1 gave the introduction, motivation and the objectives of the research work.

Chapter 2 gives the overview of the background information related to the thesis work

i.e. introduction of software agents, multi-agent system and agent communication and

interaction protocols.

Chapter 3 presents the most relevant work related to the distributed task allocation in

multi-agent system. It also presents the critical review on the various existing

approaches of task allocation in multi-agent system.

Chapter 4 gives the brief overview of JADE multi-agent framework.

Chapter 5 describes the formalization of the task allocation approach and the proposed

approach is also explained in this chapter.

Chapter 6 shows the experimental setup for this thesis work.

Chapter 7 shows simulation results and observations of the proposed approach.

Chapter 8 gives the author contribution to the society.

Chapter 9 provides the conclusion and outlines the most promising directions for the

future work.

5

CHAPTER 2

BACKGROUND

This chapter introduces the basic concepts of software agents, multi-agent system,

agent coordination and communication and Multi-agent interaction protocols.

2.1 Distributed Artificial Intelligence

Distributed Artificial Intelligence (DAI) is the study, application and construction of

multi-agent systems. Multi-agent system is a system in which multiple intelligent

agents interact with each other in order to achieve some set of goals. DAI addresses

the research of developing the automated intelligent systems with an effective

interaction.

DAI field is broadly divided into two research areas: Distributed Problem Solving

(DPS) and Multi-agent system. DPS emphasizes on the problem and how to solve this

problem by multiple intelligent entities, working together in an efficient manner, i.e.

programmed computers. In multi-agent systems, the components are the intelligent

agents which have some autonomous properties. These agents cooperate with each

other in order to achieve the system goals. Contrariwise to the study on DPS, the

multi-agent systems possess the property of reasoning out the coordination problem

among the agents themselves.

There are various applications domain for multi-agent systems for example:

manufacturing system, industrial procurement, crisis management, and network

routing and airport traffic management. All of these applications require some

autonomous entities i.e. agents that efficiently and effectively coordinate with each

other to meet their design objectives in uncertain and dynamic environments [31].

2.1.1 What is an Intelligent Agent

Now-a-days, the intelligent software agents are popular research objects in the field of

psychology, sociology and computer science. Software agents have their roots in

work conducted in the fields of software engineering, computer-human interaction

and the artificial intelligence.

6

Selker (1994) defines agents as “computer programs that simulate human

relationship by doing something that another person could do for you”. Smith defines

it as “persistent software entity dedicated to a specific purpose”.

According to [Wooldridge and Jennings, 1995] [1], an agent is a computer system

which is situated in some environment and capable to perform the actions

autonomously in order to meet its design objectives.

Janca (1995) introduces agents as “a software entity to which tasks can be

delegated”.

Figure 1- working of software agents

In above figure, agents perceives some input from environment and then parse the

input using its environment knowledge (beliefs) and select a plan from plan library

which is acquired to achieve the desired goal. The action is then invoked and

performed back to the environment.

The software agents possess basic four properties i.e. autonomy, proactive, social

ability and reactive [2]:

•Autonomy, agents operate without the direct intervention of human or others, and

make their own decisions

•Proactive, agent exhibit goal-directed behavior by taking the initiative.

•Social ability, agents interact with each other via some kind of agent communication

languages.

•Reactive, agent respond immediately to change in the environment.

Generally intelligent agents are dependent on each other. They interact with other

agents in order to meet their design objectives. Thus agent forms group to achieve the

system goals. This grouping constitutes the multi-agent system. Agents in cooperative

multi-agent system coordinate their actions with other agents to fulfill its goals. For

7

cooperative multi-agent systems, task allocation is an important requirement. It

enables agents to know their individual goal so as to improve the overall system

goals. The difference between the traditional system and the multi-agent system is

shown in the Table 1.

Table 1- Traditional System vs. Multi-agent system

Traditional System Multi-agent System

Sequential execution of operations Parallel execution of the operations

Hierarchies of large programs Large networked of small agents

Centralized decision Distributed decision

Data driven Knowledge Driven

Predictability Self-organization

Instruction from top to bottom Negotiations

Striving to reduce the complexity Striving to thrive with the complexity

2.1.2 Existing architectures of intelligent agent

According to [3], there are four classes of agents:

i. Logic based agent architecture

In this architecture, the decision making is done through logical deduction

ii. Reactive agent architecture

In this architecture the direct mapping from situation to action is done for decision

making

iii. Belief-Desire-Intention agent architecture

The agent is represented using belief-desire-intention model. Belief stands for

knowledge about the world which can be incomplete knowledge, Desire stands for

event or the task which agents want to perform and Intention stands for the plan

which agent follows to accomplish its desire.

iv. Layered architecture

The decision making is done at different level of abstraction via various software

levels.

2.1.3 Agent execution cycle

According to [4], actions, percepts, events, goals, plans and beliefs are the key

components used to implement decision making of the agent. Agent‟s execution

8

follows sense-think-act cycle. That is, when any event occurs in the environment, the

agents‟ first sense that event then it thinks about the action which has to be performed

and then perform the action.

The agent execution cycle includes following steps:

1. To update the beliefs, events are processed and immediate actions are then

generated.

2. Updating the goals by generating the new goals and achieved and impossible goals

are dropped.

3. Available goals are achieved according to the plan from plan library

4. The plan is then executed.

2.1.4 Agent environments

The various type of environment from which agent can receive percept and performs

the corresponding action are [4]:

 Accessibility, whether the complete information about the environment can be

gathered or not?

 Determinism, whether effect of the action on the environment is definite?

 Dynamic, whether the entities can influence the environment at any moment of

time?

 Discreteness, whether the entities in the environment are finite?

Event Beliefs

Goals

Actions

Current Goals Plan Library

1

2

4 1

4

4

4

3

2

Figure 2- Agent Execution Cycle [4]

9

 Episodicity, whether the action of one agent influenced the other over some time

instance?

 Dimensionality, whether the agents consider the dimensionality constraints of the

environment?

2.2 Multi-Agent System

Multi-agent system is a system in which multiple agents interact with each other to

achieve their goals. Multi-agent system is a very active field of research as it enables

us to study the real-time applications in a more effective and efficient manner. This

section introduces the multi-agent system, its characteristics and the application.

2.2.1 Introduction

Imagine there is an agent who involves in e-commerce i.e. tracking available goods

on various e-shopping sites for sale and purchasing some items on the behalf of you.

For successful operation, the agent will cater your knowledge related to your

preference, your budget, and the environment where you want to use it and so on. For

this the agent will have to exemplify your knowledge with other agents like store

agent, transport agent and so on. Such agents collectively form the multi-agent

system.

Multi-agent systems are composed of multiple software agents who interact with

each another by exchanging messages through some computer network arrangement

[2].

In order to successfully interact, these agents will thus require 3 Cs.

 Coordinate; agents achieve a common goal by coordinating each other.

 Communicate; agents pass messages for the interaction among them.

 Cooperate; by cooperating with each other, agents achieve the common goal.

Multi-agent System focuses on system of autonomous agents who are self-motivated

and act in order to achieve their own personal task and increase their own personal

gain [4].

In multi-agent system, the agents coordinate their knowledge and activities with

each other to accomplish their desire and coordinate their knowledge. Thus the main

research challenges in multi-agent system are problem decomposition, coordination

and communication.

10

Figure 3- Environment of Multi-agent Systems [31]

2.2.2 Characteristics of Multi-agent Systems

The best way to depict the distributed computing systems is Multi-agent systems.

There are several characteristics of multi-agent systems given by [3]:

 An infrastructure with communication and interaction protocol is provided by the

Multiagent environment

 Multiagent environment doesn‟t require any centralized designer.

 Multi-agent systems are open and dynamic in nature.

 The agents those comprise the multi-agent system are autonomous and distributed in

nature.

There are numerous concerns in the multi-agent execution environment that can be

reckoned as the possible characteristics of multi-agent system.

Table 2- Characteristics of Multi-agent Systems [3]

Properties Values

Design Autonomy Platform / Interaction protocol

Communication infrastructure Shared Memory or Message-based

 Connected or Connectionless

 Point-to-point/ multicast/ broadcast

 Push or pull

Sequential

Dynamic

Continuous

Partially

observable

Stochastic

Agent Interaction Organization

Sphere of Influence

11

 Synchronous or Asynchronous

Directory Services White pages/ Yellow Pages

Message protocol KQML

 HTTP / HTML

 OLE/ CORBA/DSOM

Meditation services Ontology based/ Transaction

Security services Authentication/Time-stamp

Remittance services Billing/ currency

Operation support Archiving/ redundancy/ restoration/

accounting

2.2.3 Applications of MAS

There are various industrial and commercial applications for multi-agent systems.

Such applications are:

 E-Commerce, where “buyer” and “seller” agents are used to purchase and sell

the products on the behalf of users

 Student-scheduling system, here three agents namely student agent, lecture

agent and scheduling agent communicate for schedule decision

 Automatic- target recognition, the agents sense the target and communicate

with each other for the computation.

 Traffic-monitoring, agents are also used for traffic-monitoring. The traffic

agents sense the traffic and communicate with driver agent.

 Disaster-rescue operation, various agents communicate and coordinate with

other to perform the rescue operations.

Figure 4- Various Domains of multi-agent system

Artificial
Intelligence

Sociology
Vehicle

Tracking

Distributed
System

Wireless
communication

Decision
Theory

MAS

12

2.3 Agent communication language

To represent the properties of communicating concurrent systems, much formalism

have been developed in computer science. There are number of key issues that have

tended to focus when dealing with systems that can interact with one another.

Consider a scenario of agent-oriented programming. There are two agents „I‟ and „j‟,

where „I‟ has some capability to perform action „a‟. But there is no concept for agent

„j‟ to invoke the method of i, because of its autonomous property. It can‟t be taken for

granted that agent „i‟ will perform the action „a‟ because agent „j‟ want it to get

performed [2].

Generally an agent can‟t force the other agent to perform some action. This

doesn‟t mean that they can‟t communicate however they can perform communicative

action i.e. an attempt to influence other agents [2]. Agents communicate in order to

achieve their goals or system goals. By communication, agents can coordinate their

action and behavior, resulting in the systems that are more coherent. Coherence is

how well a system behaves as a group [3].

2.3.1 Speech Acts

The communication among the computational agents can be done by modeling

spoken human communication. Speech Act Theory [3] is a basis for analyzing human

communication. In Speech Act Theory, the human natural language is considered as

actions which can be a request, suggestions, commitments and replies. Speech Act

theory has three main aspects namely, location (speaker‟s physical utterance),

illocution (speaker‟s utterance meaning) and per-locution (locution‟s result action).

2.3.2 Knowledge Query Manipulation Language (KQML)

KQML is a protocol that exchanges information and knowledge [3] [2]. The beauty of

KQML is that the information to understand the content of message is included in the

communication itself.

Agent

1

Agent

2
KQML KQML

Figure 5- KQML working

13

Basic structure of KQML is:

(KQML-performative

 :sender <word>

 :receiver <word>

 :language <word>

 :ontology <word>

 :content <expression>

…)

KQML “wraps” the message in such a format that can be understood by any type of

agent.

2.4 Agent interaction protocol

To send a series of messages, interaction protocols play an important role. The agents

communicate by exchanging messages in order to accomplish the desired goals. The

self-interested agents try to maximize their own utility but in case of common goal for

all the agents, the objective is to maximize the overall system utility. The important

aspects involved during the interaction are determining the shared goals and common

tasks, avoid the conflicts those are unnecessary and collect knowledge and evidence.

Various protocols are discussed in [3]:

Coordination

Protocol

Cooperation

Protocol

Negotiation

Protocol

Contract Net

Protocol (CNP)

Agent Interaction

Protocols

Figure 6- Existing Agent Interaction Protocols

14

2.4.1 Coordination Protocol

Coordination protocol allows the agent to satisfy both the individual and group goals.

Coordination among the agents is required to maintain the dependencies between the

agents or to achieve system goals or when agents have no sufficient competence,

capability or information. These dependencies, actions and the required resources are

represented by the AND/OR goal graphs.

2.4.2 Cooperation Protocol

The Cooperation protocols follow the strategy of Divide-and-conquer. The task is first

decomposed and then distributed to multiple agents for its completion. There are

various methodologies to decompose and distribute the task such as game theory

approach, markov-decision based approaches, negotiation, auction-based market

approach, and Swarm intelligence based methods. These methods will be explained in

next chapter.

2.4.3 Negotiation Protocol

Negotiation is a process in which two or more agents reach to an agreement for

achieving some desires or objective. The main features of negotiation protocols are

the set of rules governed by the agents, language used for the negotiation purpose and

the criteria for the agreement. Negotiation can be done in two manners: agent-centric

and environment-centric. In environment-centric negotiation, the main emphasis is on

the rules followed by the agents instead of agent‟s capabilities. In agent-centric

negotiation, agents are designed so as to fit in the existing environment. During

negotiation, an agent may fall into one of the three states namely, conflict,

compromising or cooperative [36]. In conflict state, the agent will act individually

without any negotiation. In compromising state, the agent is forced to act so as to

achieve the system goals and in cooperative state, the negotiating agents accepts all

the requests and acts accordingly if they are capable to perform that task.

2.4.4 Contract-net Protocol (CNP)

The Contract-net protocol (CNP) is commonly used for the distributed task allocation

in multi-agent system. CNP exists between the initiator agent (IA) and contractor

agent (CA). CNP is based on the negotiation process where a task is announced by the

initiator agent for completing the task. It assumes that the communication network is

15

available for the agents to talk. FIPA has standardized contract net protocol. The flow

diagram showing the working of CNP is depicted in figure 7.

Figure 7- FIPA specified CNP [36]

CNP follows four phases for the task allocation namely, task announcement, bidding,

awarding and task execution [37].

In task announcement phase, the initiator agent broadcasts the task announcement

message to all the contractor agents for the required resources of new task. In bidding

phase, CNP enables the contractor agents to evaluate the received task announcement

message and decides whether to submit the bid for the respective task completion or

not and sends the bidding message to sender accordingly. If the initiator agent doesn‟t

receive any bid then it will repeat the task announcement phase again otherwise, it

will go for awarding phase. In awarding phase, the winning contractor agent is

selected on the basis of highest ranking bidder and the award message is sent to that

winning contractor agent. After receiving the winning message the contractor will go

for task execution.

FIPA- Contract Net Protocol

Initiator Participant

cfp m

i <=n
refuse

n

Deadline

j = n-i propose

Reject Proposal k <= j

Accept Proposal i = j-k

failure

Inform-done: inform

Inform-result: inform

16

CHAPTER 3

RELATED STUDY

A number of distributed task allocation algorithm for the dynamic multi-agent system

have been developed: namely, OPGA [8] based on markov game theory, Auction and

market based approaches [9], [10], DCOPs solution based approaches like LADCOP

[11], SDPOP [12], distributed anytime algorithm [13] based on FMS, negotiation

based approaches which include constraints optimization like CFSTP [14], and swarm

intelligence based approach [15].

In recent years, many centralized and decentralized algorithms have been

proposed for task allocation in cooperative multi-agent environment. The problem of

task allocation and its relationship with overall system performance is a major

research issue in distributed multi-agent system. The objective of each of the

researchers was to find the solution of task allocation problem which gives maximum

system utility and the successful accomplishment of task.

3.1 Task-Allocation

Task allocation is an important and challenging problem in Multi-agent systems. The

problem is to assign a set of tasks to a set of agents in order to accomplish the

maximum number of tasks successfully. There will be more tasks than agents thus

agents need to schedule themselves to attempt each task in turn. In case of

heterogeneous agents, where each agent may have different capabilities, agents

communicate and negotiate with other agents and form the group of agents , called

coalition, so as to successfully accomplish the requested task.

Figure 8- Task allocation Problem

Agent

1

Agent

4

Agent

5

Agent

3

Agent

2

task

 Resource

Negotiation

17

In dynamic environment, coordination among the agents is essentially important

because it enables a group of heterogeneous agents to find the best possible solution

as the environment evolves. Task allocation can be done in two ways [5]:

 Centralized task allocation

 Distributed task allocation

In centralized approach, a central agent is used to allocate the tasks to cooperative

agents. Here, single point of failure is usually inevitable which results in decreasing

robustness of the system.

In Distributed approach, the task can be arrived at any agent and the agents

communicate amongst themselves to complete the task and achieve the goals.

Example of task allocation problems include the allocation of sensing tasks to robots

[6] and rescue tasks to ambulances [7]. The researchers gave both the centralized and

distributed approaches for task allocation in static or dynamic environment. [6], [7]

gave the centralized approach of task allocation where they didn‟t consider the fact

that agents or tasks may change over the time. Thus if the task allocation problem

changes due to the arrival of a new agent or task, it need to be recomputed solutions

from scratch. The main research factors in task allocation problem are:

 Coordination problem, after receiving the task, how to coordinate with other agent

in an optimal way so as to fulfill the resources required for the completion of task.

 Coalition Formation, how to form an optimal group of agents so that the task is

accomplished without any conflict.

Many researchers gave various approaches for finding the optimal task allocation

in multi-agent systems. These are:

 Game-theory based approach

 Allocation based on markov decisions

 Auction based task allocation

 Negotiation based approach

 Distributed constraint optimization

 Swarm intelligence based approach

3.1.1 Game-Theory based approach

Here, each agent will be treated as a player and the process of allocating task to the

coalition is strategy. The goal is to find the best strategy in the nash-equilibrium

18

condition. For each player, the aim is to choose the strategy which will give its best

payoff [5]. When each agent will choose its best strategy, no one will wish to deviate

from their current strategy because they can‟t do any better than that. This is called

nash-equilibrium condition.

In [8], Chapman defines a game-theoretic technique for decentralized planning to

address dynamic task allocation named as OPGA. They considered that each agent

has to perform a sequence of tasks where the tasks may require more than one agent

for their successful completion. They considered that task is arriving dynamically in

the environment. They formulated the task allocation problem as Markov game. But

due to this formulation the agent‟s utility function became difficult to derive. Agent

utility is the reward gained by the agent after performing the task and the

global/system utility is the payoff gained by the whole system after accomplishing the

task. They approximated the global utility using a series of static potential game and

derive the agent‟s utility function. They also used the Distributed Stochastic

Algorithm to find equilibrium in these games. Implementation was carried out on

RoboCup Rescue simulator. The result shows that this approach outperformed the

centralized and decentralized greedy approach and is robust to restrictions on the

agents‟ communication and observation range. But this algorithm requires the

continuous negotiation and doesn‟t consider the environmental changes.

3.1.2 Markov Decision based approach

The agents take the decisions on the basis of markov theory. Given the current state at

particular time instant, the agent must have to take the action which results in optimal

next state. For the markov game approach, agent must have either global or the partial

view of the system.

Many researchers solved the task allocation problem of multi-agent system by

using Markov Decisions Processes. In [16] the author presented a system designed for

task allocation, staff management and decision support for scalable systems. The task

is allocated to workers according to the user‟s requirements, different goals of the

management, permanent staff and contractors. The system is designed on the basis of

Contract Net protocol, belief theory and Markov Decision Processes

19

3.1.3 Auction Based Task Allocation

The task allocation can also be done on the basis of auction based market theory.

Auction based task allocation is a type of centralized task allocation. There is a central

auctioneer that is responsible for the task handling and allocation. When any task

arrived at the central auctioneer than the auctioneer auctions for that task. Agents

those are interested to perform that task sends their contribution to the central

auctioneer. Then central auctioneer choose the winning agent whose contribution

maximizes the overall system utility. The winning message is then sent to the winning

agent to inform about the task execution.

In [17], the market-based allocation of the heterogeneous tasks to the

heterogeneous agents was discussed. The authors have presented a heterogeneous task

model and the metric task coverage for generating good heterogeneous teams. They

used the sequential auction with the Team-Fit bidding mechanism.

3.1.4 Negotiation Based Approach

The agents negotiate with the other agents via some communication link for the

efficient task allocation. The initiator agent if not capable to accomplish the received

task individually then it negotiates with other agents in the system. Agents via

negotiation form the coalition and then the coalition which maximizes the system

utility has been chosen for the task allocation.

O. Shehory and S. Kraus presented an anytime algorithm in [7] for task allocation

among computational agents via coalition formation. Here, the agent contacts to each

other agents for their capability and make some agreement of coalition then choose

the best coalition among disjoint and overlapping coalition. They also considered the

task precedence ordering and allocate the task only when all its‟ predecessor tasks

have assigned some coalition. This approach was implemented on RETSINA. The

actual performance was 0.9 time the optimal performance. In worst case, the actual

performance declined fast to less than 0.5 times of optimal performance.

In [18], the author constrained the agents‟ cooperation domain within a

community i.e. the agent can only negotiate with its intercommunity member agents.

This approach is inspired by the social sites like twitter or Facebook. They present

their approach in three phases. First, task selection where the desirable task is to be

selected preferentially. Second, allocation to community i.e. allocating the selected

task to community based on significant task-first heuristics. Third, allocation to agents

20

where the negotiation of resources for the selected task is done based on the non-

overlap agent first and breadth first resource negotiation mechanism. In this

community-aware model, because of dense intra-community connections, it is easy

for a community member to cooperate, which will produce less system

communication cost compared to the global-aware task allocation model. They

concluded that their community model can be exploited well in large-scale

applications because of the lower time complexity of the proposed algorithm. In this

paper, the community was fixed during the task allocation however in reality the

communities can be dynamic.

3.1.5 Distributed Constraint Optimization Problems

In DCOPs problem, each agent is given with a variable which has some assigned

value whose domain is the action that an agent can perform. The objective function is

to optimize some global constraint. From the literature surveyed there are various

constraints that can be used in dynamic multi-agent systems. Like spatial constraint,

temporal constraint, Communicational constraint etc. there are various DCOPs

approaches like max-sum, Fast-Max-Sum, ADOPT, LADCOP etc.

A new Algorithm, Fast-Max-Sum (FMS) was proposed in [20]. The FMS

algorithm is an extension of max-sum algorithm. It defines new function on variable

and factor nodes. This reduces the number of states over which each factor has to

compute its solution. Furthermore, the FMS algorithm allows each variable to decide

when to send messages to other connected factor, when the factor-graph changes.

The author has further extended the FMS algorithm by applying online domain

pruning and branch-and-bound methods as a novel approach [13]. This novel

approach achieved 23% more utility, 31% less time and 25% less messages than other

existing approaches in dynamic environment.

In [14], Ramchurn et. al. build the case for coalition formation with spatial and

temporal constraint. They gave the MIP formulation for various constraints like

completion constraint, deadline constraint, starting time, routing and service

constraint etc. they also devised a new anytime heuristic for task allocation. They

defined the set of feasible assignments and choose the best allocation which can

accomplish the task in less time and can participate in more number of future tasks.

CFTSP completes 97% tasks for the larger problems having 20 agents and 200 tasks.

21

In [21], ADOPT algorithm is proposed that converge to the optimal solution by

considering only localized and asynchronous communication. This algorithm is based

on the three key ideas, 1) agents explore the asynchronous partial solutions locally by

using distributed backtrack searching. 2) For more efficient search, it uses backtrack

threshold, 3) built-in termination detection. These ideas are responsible for the

bounded-error approximation for performing trade-offs between solution quality and

time-to-solution.

3.1.6 Swarm Intelligence based Approach

Swarm Intelligence has become a new field in the AI research, which is inspired by

the social insect behavior that displays intelligence on the swarm level with simple

interacting individuals. The swarm intelligence can be used for the task allocation in

multi-agent system. In [15], the author presented the swarm based approach of task

allocation. They implemented ant allocation algorithm for task allocation in random

dynamic environment and perform task re-allocation when working condition

changes. The author used hybridization of two approaches. For task selection,

Honeybee model was used and then ant colony optimization is used. First of all, each

agent is initialized with some response threshold. When task arrives at the system, the

probability of selecting a task by the agent is calculated on the basis of response

threshold. If Less response threshold then greater will be the chance of selecting that

task. After finishing the task, the response threshold is updated similar to ant colony

optimization.

3.2 Critical Review

We have studied various approaches for the task allocation in multi-agent system. As

every system has some pros and cons so these approaches also have some benefits as

well as shortcomings. Table 2 shows the critical review of the various task allocation

approaches proposed by the researchers.

Table 3- critical Review

S.No. Paper Title Approach Contribution Shortcomings

1 Decentralized Dynamic

Task allocation: A

practical Game theory

Approach,

AAMAS, 2009

Overlapping

Potential

Game

Algorithm

-Decentralized task allocation

-tractable mechanism

-consider future effect of

agent‟s current action for

decision window

-No partial contribution

of agents

-Continuous negotiation

-doesn‟t consider the

environmental change

22

2 Adaptive Task

Allocation in multi-

agent systems

ACM, New York, 2001

Computational

Market system

-Dynamic env.

-Heterogeneous agents

-Fairness in resource

allocation

- Adaptive MAS

- Considers the type,

deadline & priority of tasks

-Centralized

 approach

-Communication

overhead

-resource manager

overhead

-reorganization cycle is

fixed

3 A Distributed Anytime

Algorithm for Dynamic

Task Allocation in

MAS

AAAI, 2011

Fast-Max-Sum

approach

-Dynamic env.

-Heterogeneous agents

-Less communication

 overhead

-Less computation

 Overhead

-doesn‟t consider task

preference

-doesn‟t consider impact

of future task

-spatial & temporal

 constraints are not

 considered

4 Coalition Formation

with Spatial and

Temporal Constraints

AAMAS, 2010

Mixed Integer

Programming

-include spatial constraints

-include temporal constraints

-future task affect by CFLA

-minimize comp. time of

task and working time of

agents

-homogeneous agents

-one coalition can

perform only one

task at a time

-static env.

5 Task Allocation in

Multi-Agent Systems

with Swarm

Intelligence of Social

Insects (ICNC-2010)

Hybridization

of Honeybee

Selection

model & Ant

colony

optimization

-Random working env.

-diff cost for diff

 category of tasks

-learning method

-doesn‟t consider global

maxima

-time consuming

approach for task

completion

6 Community-Aware

Task Allocation for

Social Networked

Multiagent Systems

IEEE Transactions ,

2014

Social

Networked

Multi-Agent

Systems

-consider community

 constraint

-significant-task first, non-

overlap agent first and

breadth-first heuristic is

utilized

-reduce communication

 Cost

-cooperative agents

-centralized Algorithm

-fixed community

The game theory approach outperforms the static applications rather dynamic

application. The computational complexity in game theory approach is also very high.

Robustness, scalability and adaptability are difficult to achieve in game-theory

23

approach. The auction based approach depends on the communication link used for

the negotiation between the auctioneer and the other agents. It leads to slow decision-

making in case of unreliable communication line. Markov Decision processes results

in more time consuming approach. As it searches all the possible states which give

exponential time complexity. MDP also requires the complete view of the system

which can‟t be possible in dynamic environment. DCOP approaches require less

communication overhead as compared to auction-based approach and MDP-based

approach. Swarm-intelligence based approach considers the local maxima only but in

our problem we require the optimization of global maxima.

3.3 Multi-agent System for Disaster Scenario

In this section the research done in task allocation for disaster scenario is going to be

discussed.

Farinelli et.al [38] developed a multi-agent system based on RoboCup Rescue

Simulator that allows the monitoring and the decision support needed for the rescue

scenario. The authors developed a cognitive agent development kit that provides the

ability of information fusion, planning and coordination required for the agent

development. They performed a set of systematic simulation with different rescue

scenarios so as to plan the actions whenever a prompt action is required in typical

emergency scenario because of the partial information about the situation.

In [39], authors presented a multi-agent based framework that oriented towards

the fire-fighting and suppression. They proposed a web-based fire-control system that

assists fire-fighters and suggests the most optimal and feasible solution for controlling

the fire. The overall architecture of the proposed framework works as follows: There

is a user-interface agent that accepts the user request and forwards it to the global-

cooperative agent. The global-cooperative agent is responsible for finding out the

expert-agent for executing the requested task and forwards the request to Expert-

system coordination agent. The ECSA reacts to the external request by selecting the

appropriate expert agent for the task and assigns the task to that expert agent. The

expert multi-agent system used in proposed approach comprises of house-fire agent,

petroleum-fields fire agent, storehouse fire agent, petroleum tank fire agent and

electronic station fire agents. The architecture also includes the external information

agents like weather agent and traffic agent to give the information related to the

weather and traffic to the other agents. The authors concluded that this prototype

helps the user manager fire by enhancing the decision process and deriving the

optimal response.

Yunbo lu and his colleagues developed an agent-based model to study the fire-

fighting team‟s performance [40]. They focused on the relationship between the

distributions of fire-fighting team‟s authority and its performance. They considered

24

two types of authority distribution factor namely, the supervisor-centered factor

(rescue factor and fire-control factor) and self-management factor (fire putout factor).

The authors showed that the high performance can be obtained only when the

supervisor-centered factors are in the state of supervisor-centered and the self-

managing factors are in the state of self-management. They also showed that the

relationship between the authority distribution and the team performance is non-linear

and self-managing factor has a greater impact on the team performance.

In paper [41], the authors proposed a new algorithm based on the earliest deadline

first for the coalition formation. They grouped the rescue teams for various rescue

missions. They also presented the ungrouping of team after performing the assigned

rescue mission and then create the new rescue teams on the basis of new situations of

the environment. They used the earliest deadline first algorithm for solving the

ambulance problem and coalition formation. In ambulance problem, the task is

rescuing the victims and the task deadline is the time to death for a victim. For

rescuing the victim, they sorted the civilian victims based on the time to death and the

first candidate is selected for the rescue operation. Calculate the coalition size i.e. the

number of ambulances needed to rescue the civilian on time. If it is possible to rescue

that civilian according to the time then go for rescuing it otherwise remove the

candidate from the victim list and go for selecting the next civilian.

Beatriz Lópaz and his colleagues presented a multi-agent system for coordinating

the ambulances in emergency medical services [42]. The system is responsible for

assigning the most appropriate ambulance vehicle for the emergency patient

transportation. In this paper, the authors combined the auction protocol with trust

model and fuzzy filter. The trust model deals with the driver‟s expertise. This results

in inclusion of more number of variables in the decision process. They also improved

the decision making regarding the ambulance distribution by maintaining a region

coverage strategy. The proposed system ensures that the patient receives the proper

treatment by providing the quick response to the emergency request. In the proposed

architecture, the ambulance coordinator agent receives the request from the external

agents like patient‟s location, first-aid of patient, transporting the patient to

appropriate hospital. On receiving the service request, the coordinator agent assigns

the services to the appropriate ambulance team agent. The assignment of the

ambulance team to appropriate service has been done by using the contract-net

protocol. Here, the coordinator announced the service request to the team agents. The

team agents respond the request by sending the estimated arrival time with a bid.

Using the winner determination algorithm, which choses the best ambulance team for

the requested service, the coordinator selects the ambulance team agent to which it

will assign the service. If the human coordinator agrees with this suggestion then

coordinator will informs the team agents and external agent about this ambulance

assignment.

By reviewing these papers, we devise a distributed task allocation approach for

fire-fighting scenario.

25

CHAPTER 4

MULTI-AGENT SYSTEMS: JADE FRAMEWORK

Agent based technologies are widely used in distributed environment to design the

complex distributed systems with less effort. Agents are autonomous in nature i.e.

they take their own decisions without any user interventions. When agents work

together to achieve the common goal then the system is known as multi-agent system.

A lot of frameworks are available to develop the agent based systems like FIPA-OS,

JADE, JACK Intelligent Agent, and JLAC. These frameworks provide some pre-

defined agent tools and models to help the developer to design the multi-agent system

easily.

4.1 FIPA Specification

The Foundation for Intelligent Physical Agent (FIPA) is a non-profit International

association of organizations and companies which was registered in Geneva,

Switzerland. They aim to produce the standards for generic agent technologies. FIPA

was originated to produce the standard specifications for the agents which interact

with one another and are heterogeneous in nature. FIPA is not only applicable for a

specific application rather it is a generic technology for different applications. It is a

set of basic technologies which is integrated by the several developers in order to

develop the complex systems with high interoperability. FIPA was officially accepted

by IEEE as its eleventh standard committee on June 8, 2005 [32].

Table 4 shows FIPA-97 and FIPA-98 specifications and their parts [33].

Table 4- FIPA-97 and 98 Specification [33]

FIPA- 97 Specification

 Normative Informative

Part1 Agent Management

Part2 Agent Communication

Channel (ACC)

Part3 Agent Software Integration

Part4 Personal Travel Assistance

26

Part5 Personal assistant

Part6 Audio-Visual

Entertainment and

Broadcasting

Part7 Network Management and

Provisioning

FIPA-98 Specification

 Normative Informative

Part8 Human Agent Interaction

Part9 Product Design and

Manufacturing

Part10 Agent Security

Part11 Agent Mobility

Part12 Ontology Service

information, application,

specification

The first output document if the FIPA specification was FIPA-97. FIPA-97 described

the reference model for agent platform. This model is shown in the Figure 9.

Figure 9- Reference model of FIPA-97 specification [34]

Internal Platform Message Transport

Agent

Management

System

Directory

Facilitator
ACC

Agen

t

Software

Agent Platform

27

FIPA-97 includes seven parts. The first three parts namely Agent Management

System (AMS), Agent Communication Channel (ACC) and Directory Facilitator (DF)

are of normative type [34]. They emphasize on the technical aspects of multi-agent

systems. It identifies the roles of key agents that are required for the platform

management and specifies the agent content language for its management and its

ontology. AMS supervises the control to use and access the platform. It controls the

registration and authentication of resident agents. ACC enables the communication

between the agents inside and outside of the platform. It supports IIOP for the

interoperability between the different agent platforms. DF provides yellow page

services to the agents. The next four parts of FIPA-97 explains the use of AMS, ACC

and Agent/Software integration to implement the applications like Personal Travel

Assistance, Personal Assistant, Audio-Visual Entertainment and broadcasting and

Network Management and provisioning [33].

FIPA-97 also specifies the Agent Communication Language for allowing the

communication among agents [36]. It is based on the message-passing scheme where

agents communicate with each other by formulating and sending messages. FIPA

ACL specifies the encoding, semantics and the pragmatics of messages required for

the agent communication. The syntax of ACL is very similar to the existing

communication language KQML.

The second version of FIPA-97 is launched in 1998 named FIPA-98. It describes 6

parts [33]. Out of 6, the normative specifications are Human/Agent Interaction, Agent

Security, Agent Mobility and ontology Service whereas the informative specifications

are product design and manufacturing and FIPA-97 Developers‟ guide.

4.2 Java Agent Development Framework (JADE)

JADE is a software framework which allows the development of agent- based

applications. It compliances with FIPA standard therefore achieves high interoperable

intelligent multi-agent systems. JADE makes the development simpler through a

complete set of system services and agents. The following list of features is offered by

JADE so as to achieve an inter-operable intelligent multi-agent system [34]:

28

 FIPA- compliant Agent Platform, it includes three normative-type key agents

namely, AMS, ACC and DF. These agents are automatically activated with the

start-up of agent platform.

 Distributed Agent Platform, distributed environment can be achieved by splitting

the agent platform into several hosts. A single JVM will be executed on each host.

The agents are implemented similar to the java threads and parallelism can be

achieved by executing the several task s by a single agent in parallel. These

parallel tasks are scheduled in a more efficient manner than JVM.

 In order to implement multi-domain application, a number of FIPA-compliant

DFs can be started at run time.

 To simplify the registration of agent services with more than one domain, a

programming interface is provided.

 To send/receive messages to/from the agents, transport mechanism and interfaces

are provided.

 Different platforms are connected via FIPA-97 IIOP protocol.

 Light-weight transport of ACL messages within the same agent platform

 Libraries are specified to access FIPA interaction protocols

 AMS registers the agent automatically

 At the start-up, agents obtain their Global Unique ID (GUID) from the platform.

 To manage the agents and agent platform, graphical user interface is provided.

JADE Agent Platform agrees with FIPA-97 specifications. It includes all the

mandatory agents that manage the agent platform. The communication among the

agents are done via message passing through Agent Communication Language i.e.

Agent ACL.

The coexistence of the multiple JVMs is the basis for software architecture of JADE.

The communication between different VMs and event signaling within a single JVM

relies on Java RMI (Remote Method Invocation). In JADE, a multi-threaded

execution environment is provided by the Agent Container [34]. Each agent is

corresponds to one thread and Message dispatching is done through system threads

those are spawned by the RMI runtime system.

29

The software architecture of one JADE agent platform is shown in the fig. 10.

Figure 10- Software Architecture of single JADE Agent Platform [34]

4.2.1 Agent Container

Agent Container is a RMI server object which manages the set of agents locally. It is

responsible for executing an agent. The life cycle of agent consists of four stages

namely, agent creation, agent suspension, agent resuming and agent killing. The

communication aspects like dispatching of incoming ACL messages, routing the

message to destination, store them into message queue of private agent, outgoing

messages are also handled by the Agent container.

4.2.2 JADE Communication System

Whenever a new Agent Container is created, it registers itself in a RMI registry which

is maintained by the JADE front-end container. This registry is then stored in the

Agent Container Table. An Agent Global Descriptor table is also maintained to store

the name if each agent with its AMS data and RMI object reference of its container.

When a new front-end begins, an internal RMI registry is created on the current host.

This registry listen the specific TCP/IP port and start with the FIPA agents system.

Whenever a container sends a message to another container, it caches the object

0 0

A

G

E

N

T

1

A

G

E

N

T

2

A

G

E

N

T

3

A

G

E

N

T

4

Message Dispatcher

APPLET

BROWSER

A

G

E

N

T

5

A

G

E

N

T

6

D

F

A

C

C

Message Dispatcher

RMI Registry

A

M

S

AGENT PLATFORM FRONT-

A

G

E

N

T

0

A

G

E

N

T

9

A

G

E

N

T

8

D

F

Message Dispatcher

AGENT CONTAINER

Java
Java

Java

IIOP

30

reference of that container. It increases the performance of the system by avoiding the

looking-up of the Agent Global Descriptor table each time whenever a message is

sent.

The three cases can be possible when JADE agent send a message [34]:

1. Within same agent container, the message is passed in the form of a Java

object using an event object without any message translation.

2. Within the same JADE platform but different container, the Java RMI

framework is used to send the ACL message.

3. For the different agent platforms, FIPA compliance-standard IIOP and OMG

IDL interfaces are used to send the ACL messages.

Figure 11- Front-End Agent Container [34]

Figure 12- JADE intra-platform communication model [34]

Message

Dispatcher

Agent

2

Agent

1

AGENT

CONTAINER

Event

AGENT

CONTAINER

Agent

3
Event

Message Dispatcher

Local

Cache

Java

RMI

Message Dispatcher

Agent

Container

Table

Agent

Global

Descriptor

Table

AGENT CONTAINER (FE)

31

4.2.3 Agent Execution Model

The actual task that an agent can perform is carried out within “Behaviour” class and

agents instantiate their behaviours according to the requirements and capabilities.

JADE runs the agent platform by using the thread-per-agent concurrency model

instead of thread-per-behavior which results in less no. of threads generation. To

execute a task, agent creates an instance of corresponding Behaviour subclass and call

the addBehaviour() method of the Agent class. Each Behaviour class must implement

two methods namely, action() method and done() method. action() method represents

the “true” for the task that must be performed by the specific Behaviour class. done()

method is used by the agent scheduler which returns “true” if action of behavior is

finished and can be removed from the queue otherwise returns “false”.

On the basis of tasks executed by the agent, several types of behaviours are

defined in JADE framework. These are as follows [35]:

1. SimpleBehaviour: This is used to implement simple actions of the agent.

2. ComplexBehaviour: This is used to implement those Behaviours which are

composed of several sub-Behaviours. Agent scheduler follows the FIFO

policy i.e. selects the top-most task for the execution. After accomplishing the

top-most task, it assigns the control to next task in the ready queue.

3. OneShotBehaviour: The actions which must have to be accomplished only

once are modeled by this class.

4. Cyclicbehaviour: It models those atomic actions that never ends and executed

until the agent is killed.

5. SequentialBehaviour: It is ComplexBehaviour that executes the sub-

behaviours in a sequential manner.

32

Figure 13- Agent Execution model [35]

The development of JADE is still growing. Further implementations, enhancements

and improvements have already been discussed. For example, the support for agent

mobility has been included in FIPA-98 specification. JADE enables the agent

developer to develop the complex multi-agent system in a very effective, easy and

efficient manner.

Yes

No

No

Yes

Setup()

Agent

has been killed i.e

doDelete() called

?

Get the next behaviour from

the pool of active behaviours

b.action()

b.done() ?

Remove Current Behaviour

from the pool of active

behaviour

takedown()

Initialization &

Addition of

initial

behaviour

 “Agent Life “

(Execution of

behaviours)

Clean-up

operation

33

CHAPTER 5

PROPOSED APPROACH: TASK ALLOCATION

IN FIRE FIGHTING

This chapter presents the proposed task allocation approach for fire-fighting scenario.

This approach aimed at improving the waiting time and the communication cost

during the task allocation in constrained-cooperative multi-agent environment. The

fire-fighting scenario is considered for the research work. The problem statement &

description, formulization and algorithms for proposed approach are discussed in this

chapter.

5.1 Problem statement

The task allocation problem in multi-agent systems is the problem of allocating task

to the agents so as to maximize number of successfully accomplished tasks and the

system utility. In case of complex task where the task can‟t be accomplished by a

single agent, a group of agents are formed which requires some sort of coordination

and negotiation between multiple agents. Thus the main issue in task allocation

problem is the coalition formation and coordination among multiple agents. To

optimize the task allocation problem, there is need of appropriate coordination and

coalition formation mechanism.

The main problem addressed in this thesis is to improve the coordination and

coalition formation mechanisms in order to optimize the task allocation algorithm in

constrained-cooperative environment. Due to bad coordination among agents, these

environments result in lower performance. The lack of coordination among agents in

multi-agent systems is caused due to the inefficient task allocation among agents. The

task allocation guarantees agents an efficient determination of goals and successful

execution of tasks which permits agents to achieve their goals in a cooperative way.

Therefore, it is necessary to create and design the new task allocation and

coordination mechanism so that the agents can make efficient decisions in such

complex systems.

34

5.2 Problem Definition

The problem addressed in this thesis is to optimize the task allocation problem in

constrained-cooperative multi-agent system by improving the coordination and

coalition formation mechanism. The fire-fighting scenario has been taken for the

proposed approach. This scenario is highly dynamic, uncertain and real-time in

nature. When any fire incident occurs in the environment, the time to allocate the

appropriate fire brigades is very crucial. It is required to allocate the fire-brigade

which will take less time to reach at the destination. Thus spatial, temporal and

communicational constraints are considered in the proposed task allocation algorithm.

The proposed approach optimizes the task allocation approach by performing the

following objectives:

1. Coordination mechanism

In multi-agent systems, the coordination is done via message passing. Various

coordination approaches have been proposed which are already discussed in

chapter 2. In the proposed approach, Contract-net protocol (CNP) is used to

allow the coordination and negotiation among the multiple agents with some

improvements. In the proposed approach, the coordinator will send the task

request initially to only that agent which is nearest to the event location

instead of sending the request to all the agents available in the system. If the

receiving agent is capable to accomplish the task alone then it will inform to

the coordinator and the task is assigned to that agent otherwise coalition will

be formed by the receiving agent according to the CNP mechanism. This

approach results in less number of message transferred than conventional

CNP.

2. Coalition formation

In case of fire-fighting scenario, time to allocate the fire brigade agent is very

crucial. The proposed approach considers the two factors while forming the

coalition i.e. earliest start time and the trust model. The agent or group of

agents which can arrive to the event location early and has largest trust factor

will be chosen as the winner. The trust factor determines the driver‟s expertise

of the fire-brigade agent. It results in less waiting time and maximizes the

number of successfully extinguished fire events.

35

3. Re-planning algorithm

In dynamic environment, the execution errors may occur due to the

uncertainty and failure of action. An essential part of the planning system is

re-planning. In fire-fighting system, the action may get failed due to some

obstacle arrived when a fire-brigade is travelling towards the event location

like road blockage. In such cases, re-planning is required. In the proposed

approach, whenever an obstacle is detected, the fire-brigade agent will re-start

negotiation for the required capability with the other agents in the system. If

no set of agents will satisfy the requirement of the init-agent (agent who

detected the obstacle) then this init-agent will follow some alternate route to

reach to the event‟s destination. This will maximize the success rate of fire

events.

5.3 Problem Formulation

The proposed fire-fighting multi-agent environment consist of three types of

agents namely, fire station agent (FSA), fire-brigade agent (FBA) and fire-event agent

(FEA). For each and every fire-brigade vehicle, fire-brigade agents are created. Fire-

brigade agent is concerned with the location of its respective fire-brigade vehicle, its

capacity of water, status and the local view of the environment in its surrounding. The

fire-station-agent has the global view of the environment that is the knowledge of

event-agent like location and the required capacity of water to extinguish the fire-

event and the knowledge of fire-brigade like location, number of success and failure

of events for the fire-brigades available in the system. The fire-brigade agents are

heterogeneous in nature in the sense that the capacities of water of each fire-brigade

agents are different to one another.

 Figure 14-A multi-agent System architecture for assigning Fire-Brigades to fire event

Fire- Event

Fire-Station

Agent

Fire-Brigade

Agent 1
 Fire-Brigade

Agent 2

Fire-Brigade

Agent n ….

.

36

Whenever a fire event occurs, FEA get generated with the event location and event‟s

required water capacity and FSA gets called. It will get the event location and

required capacity. It assigns a unique name to this event for the sake of coordination

and task allocation problem. It coordinates with the available FBAs and informs FEA

about the assigned FBAs. FEA then reports either success or failure for the event. And

then that FEA gets killed.

Assumptions:

 The agents are heterogeneous in nature in terms of the capacity of water tank they

have.

 Agent can perform only one task at a time.

 The occurrence of fire-event is dynamic and the arrival of fire-event follows the

Poisson distribution.

 Task allocation is done in a distributed manner.

 The communication channel is considered to be reliable.

 Agents are cooperative in nature, means whenever they have required capacity and

ideal, they will co-operate the other agent and after starting the execution of any

task, the agent cannot leave the system before its completion.

 FSA has the global view of the system whereas FBA has the local view of the

environment.

 Coordinate plane system is used to locate the fire-brigade and the fire-event in the

environment for the sake of simulation.

 Fire-brigade follows the straight line to reach to the event location. There is only

one route to reach to the event location.

 To calculate the distance between fire-brigade location and fire-event location,

Euclidean distance is used.

 Only road-blockage condition is considered as an obstacle.

Let us consider the multi-agent system consists of one FSA and n FBA i.e. FBA=

{FBA1, FBA2, FBA3…. FBAn}. Here each agent will possess a unique ID.

The pseudo-code of the proposed approach is given into the Appendix-B.

37

5.3.1 Agent Definition

This section presents the Agent formulation for the proposed approach.

a) Fire-Station Agent

Fire-station agent has global view of the system. It contains an agent list which stores

the location of each fire-brigade vehicle provided by the corresponding FBA.

Whenever an event occurs, it stores the location, required-water-capacity and arrival

time of the event in a list named eventlist. FSA can be formulized as:

FSA-ID: the unique id of FSA generated by the agent platform

agentlist, the list of FBA‟s location,

 <ID(FBAi), x(FBAi), y(FBAi), no_of_success(FBAi), no_of_failure(FBAi)>

eventlist, list of event invoked in the system,

 <event_nm, x(ev), y(ev), eventcap(ev), arrivaltime(ev)>

b) Fire-Brigade Agent

For each fire-brigade vehicle available in the system, FBA will be created. FBA can

be formalized as:

FBAi-ID: unique ID of FBAi generated by the agent platform

x(FBAi): the location of corresponding fire-brigade at x-axis

y(FBAi): the location of corresponding fire-brigade at y-axis

cap(FBAi): the amount of water in the water tank of corresponding fire brigade

speed(FBAi): the speed of corresponding fire-brigade vehicle

status(FBAi): the status of corresponding fire-brigade. Here, three type of status has

been considered namely, “active”, “busy” and “inactive”.

“Active”, when fire-brigade is ready for assignment

“Busy”, when fire-brigade is assigned for some other event

“Inactive”, when fire-brigade is in refilling or recovery state

neighborlist, the list of neighbors of FBAi.

 <ID(neighbori), x(neighbori), y(neighbori), success(neighbori), failure(neighbori)>

5.4 Proposed algorithm

The proposed approach is divided into four phases namely,

 Task Arrival

38

 Resource Negotiation

 Coalition Formation

 Task Execution

The flowchart for the proposed algorithm is shown below:

Initially when the system gets started, FSA initializes the agent list with the

location of each fire-brigade agent.

Figure 15- Flowchart for the proposed algorithm

NO

NO

YES
Is assigned agent

reached at

destination?

START

Task Arrival

Get init_agent

Is

status(init_agent

)= “active” ?

Is

cap(init_agent)>=

event_cap ?

Task Execution

Is all assigned

 agents reached before

EST and tot_cap (assigned

agent) >=ev_cap?

Re-planning

Report Failure STOP

Resource

Negotiation

Coalition

Formation

NO

YES

NO

YES

NO

YES

YES

Is Obstacle

detected?

Report Success

Get best

 Coalition

YES

NO

39

5.4.1 Task Arrival

This phase encounters when the fire-event occurs in the environment and invokes the

fire-station agent.

Algorithm:

1. Event ev will invoke the FSA with its location and required capacity.

2. FSA find the nearest fire-brigade from its agentlist by calculating the

minimum Euclidean distance between the event location and fire-brigade

location and send the event request to corresponding FBA. This FBA is named

as init-agent.

3. On receiving the event-request, init-agent will check its status.

a. If the status is “active” then it will check its capacity in water tank.

i. If the cap (init-agent) > = eventcap then init-agent will send OK

message with its expected start time (EST), capacity to FSA.

<EST, cap (init-agent)>

ii. Else init-agent will go for “Resource Negotiation(eventcap –

cap(init-agent))”

b. Else init-agent will go for “Resource Negotiation(eventcap)”

4. If FSA receives OK message from the assigned agents, FSA will send

CONFIRM message to init-agent and informs to FEA about the assigned agent

and EST.

5. Else FSA will report failure.

6. On receiving the CONFIRM message, FBA will go for “Task Execution”.

7. If any obstacle detected by the assigned FBA the go for “Re-planning”.

8. If the assigned FBAs reached at the event location before the EST, then event

agent will report success and inform to FSA which shows the successful task

allocation and FSA will record this time as completion time.

9. Else it will report failure to FSA.

10. FSA also record the number of success or failure of the assigned agent on the

basis of success or failure of the event. This record is used to evaluate the trust

factor of respective FBA.

11. The waiting time for the event is calculated as

 Waiting time = completion time – arrival time (1)

The numbers of message transferred are calculated by counting the message during

the communication among multiple agents in multi-agent systems.

40

5.4.2 Resource Negotiation

This phase encounters when the init-agent is not able to fulfill the event‟s capacity. In

this phase the agent will negotiate with other agent. The resource negotiation

mechanism used in this proposed approach is based on the CNP protocol.

Algorithm

1. Init-agent sends the event request to its neighbor FBAs with the required

capacity of water.

2. The receiver FBAs will check their status.

3. If the status is “active” then it will send the ACCEPT message to the init-agent

with its EST and capacity.

4. Else it will send the REJECT message to init-agent

5. On receiving the response from all the FBAs, init-agent will go for “Coalition

Formation” for the agents who have sent the ACCEPT message.

6. The best coalition will be chosen from all the possible coalition.

a. If no coalition is possible that satisfies the required capacity then init-

agent will send CANCEL message to FSA

b. Else go for step-7 to step-13.

7. Init_agent send the INFORM message to all the member of winning coalition.

8. On receiving the INFORM message, the receiving agent will check its status

again.

9. If the status is “active” then it will send the OK message to the init-agent.

10. Else send the PRONE message to init-agent.

11. If all the winning agent responds with OK message then init-agent will send

the CONFIRM message to those agents and OK message to FSA with the set

of assigned agent and its EST.

12. Else init-agent will send the CANCEL message to all the winning agents and

to the FSA.

13. On receiving the CONFIRM message, the FBA will go for “Task Execution”

phase.

Here, one assumption has been taken that once a FBA send the OK message for one

event, it will not allow sending OK message for another event until it receives the

CANCEL message or accomplish the assigned task because agents are co-operative in

nature.

41

5.4.3 Coalition Formation

If the required capacity of fire event is not fulfilled by the init-agent then coalition

will be formed. In this proposed approach the coalition is formed on the basis of

earliest Expected Start Time (EST) and the trust factor of the fire-brigade agent.

Algorithm

1. Make the power set of all the agents who sent ACCEPT message to init-agent.

2. For all the set Si Є powerset

a. For all FBAj Є Si

b. tot_cap(Si) += cap(FBAj)

c. If tot_cap(Si) >= required_cap

d. Add Si to the coalition C // coalition which satisfies the event‟s

capacity

3. End for loop

4. For all Si Є C

a. For all FBAj Є Si

i. Chose the maximum starttime among all the FBAj and set it as

Starttime (Si)

b. End for loop

c. Arrange Si according to ascending order of the starttime(Si)

5. End for loop

6. Choose the set Si having minimum starttime. //coalition having min. EST

7. If there are more than one sets having same and minimum starttime

a. Then chose the coalition with smallest size. It is done because if less

number of agents is engaged in performing a particular task then

chance of assigning other agents to future task will become high.

i. If there are more than one sets having same and smallest

coalition size

ii. Then the set having maximum trust factor will be chosen. The

trust factor is used to determine how much a particular agent is

trust-worthy for accomplishing the task according to the

driver‟s expertise.

iii. Return the chosen set as the best coalition.

b.Else return any set having less number of agent

8. Else return any set having minimum starttime(Si)

42

5.4.4 Task Execution

This phase will encounter when FSA assigns the fire-event to the chosen FBA. On

receiving the CONFIRM message from the sender, the FBA will go under this phase.

FBA will set its status as busy and assigned for the received fire-event.

Algorithm

1. When winning agent receives the CONFIRM message from the init-agent

then it sets its status as “busy”.

2. The fire-brigade corresponding to that FBA will move towards the event‟s

location.

3. If any obstacle is detected then go for “Re-planning”.

4. If assigned FBA reached at the location before the Expected Start Time

a. if tot_cap(reached_agent) >= ev_cap

i. Then FEA will report success to the FSA

b. Else FEA will report failure.

5. Else FEA will report failure

6. After extinguishing the fire, the assigned FBAs will change their status as

“inactive” and go for refilling.

7. After refilling phase, the fire-brigades reach to their base location and update

their state as “active”.

5.4.5 Trust Model

The trust, a Fire-Station Agent has in its Fire-Brigade Agent, is its faith that the agent

can accomplish the assigned task successfully. The fire-brigade agent with a “skilled”

driver should have highest trust factor because it is expected that it can reached to the

destination more easily whereas a “beginner” driver could have a lowest trust value.

“Skilled” or “beginner” is related to the knowledge of area/regions covered by the

fire-brigade.

 To calculate the trust factor of FBA, Jigar Patel and his colleagues‟ applied the

probabilistic approach to trust. This trust model is used in the proposed approach in

order to get the best coalition for the requested event. They defined trust as a value in

the [0, 1] interval, 0 means completely untrustworthy agent and 1 means complete

reliability. Due to the insufficient information for defining the probability of trust, the

43

authors propose using the expected values given in the previous experience of all

interaction outcomes. Thus, the trust value tj for the FBAj can be calculated as:

 tj =

 (2)

where,

 + 1

 + 1 (3)

Here sj is the number of past successful task accomplished by FBAj and uj is the

number of unsuccessful task assigned to FBAj.

5.4.6 Re-planning Algorithm

The re-planning algorithm will be called when any obstacle is detected by the FBA

while travelling toward the event-destination.

Algorithm

1. FBA will send the event request to neighbor FBAs for the capacity equal to its

own capacity

2. FBA will form the coalition for all the agents sent ACCEPT message.

3. FBA will choose the group of agents, C which satisfies the required capacity.

4. For all Si Є C

a. Chose the coalition Cb for which

i. starttime(Si) <= EST(FBA) and smallest coalition size

5. end for loop

6. if Cb is non-empty

a. Then agent will send the INFORM message to all FBAj Є Cb

b. On receiving the OK message form all FBAj Є Cb, FBA will send them

CONFIRM message

c. On receiving the CONFIRM message, FBAj will go for “Task

Execution”.

7. Else FBA will choose some alternate route and go for the event‟s execution.

Instead of sending the CANCEL message directly after detecting the obstacle, The

FBA will go for re-planning so as to maximize the success rate.

44

CHAPTER 6

EXPERIMENTAL SETUP

This chapter represents the snaptsshots of the experimental setup which was used for

simulating the proposed approach.

6.1 Start-up Frame

Figure 16, is the startup frame generated with the intiatialization of Agent Platform.

As the project starts, the agent container gets started in JADE framework. The Agent

platform starts the agent container. This container is then create the Fire-Station

Agent. The Fire-station agent gets created and obtains a unique ID from agent

platform.

Figure 16- snapshot of start-up frame

In the figure 16, on clicking the arrow, the Fire-Station agent gets created in the Agent

Platform. Fire-Station agent is responsible for the monitoring the global view of the

environment. It keeps the record of all the fire-brigade agents, their location, and their

success count and failure count. Any fire event call is received by the fire-station

agent. The fire-station agent then allocates the appropriate fire-brigade agent to

extinguish the fire with minimum response time.

45

6.2 Main Frame

When the Agent platform gets intitialized, the Fire-Station agent will be created. The

Fire-Station Agent invokdes the “MAIN” frame window . This is the main frame in

which user will enter the number of fire-brigade agents available in the environemnt

and the number of fire-event for which the simulation has to be done. This is shown in

figure 17.

Figure 17- snapshot of Main-Frame and Fire-Station agent

The fire-station agent is responsible for receiving the fire-brigade agent details

whenever FBA gets created into the system. FSA also reduces the number of fire-

brigade agents when any FBA gets killed. The success and failure of the fire-brigade

allocation is also reported by the fire-station agent. Thus fire-station agent is

responsible for coordinating the whole simulation environment.

After the creation of Fire-Station Agent, the agent will call the “MAIN” frame

window. In main frame window, there are two input fields, one is for entering the

number of fire-brigade agents for the fire-brigade vehicle available in the environment

and second is the number of fire-events for which simulation has to be done. First of

all number of fire-brigade agents will be entered.

46

6.3 Fire-brigade Agent Frame

On clicking the “create” button, the fire-brigade agent will get created. Figure 3

shows the Fire-Brigade agent implementation and the fire-brigade frame. When the

fire-brigade agent gets created, it will randomly generate the (x,y) coordinate for the

location of fire-brigade vehicle, water-tank capacity and the speed of the fire-brigade

vehicle. The fire-brigade agent frame is shown in figure 18.

Figure 18- snapshot for fire-brigade agent

Here, “Kill Agent” button is used to terminate the respective fire-brigade agent. The

behaviors for which fire-brigade agent is responsible are:

1. sendCordinate, sends the details of their coordinate to FSA

2. GetEventRequest, when FSA sends request to FBA for the fire-extinguishing.

3. SendAgentInfo, sends the bid to FSA

4. GetTaskCompleteMsg, gets the success report of the task for which they are

assigned

5. GetAccept, if sender FBA/FSA receives the ACCEPT message. After

receiving the ACCEPT message, the sender FBA goes for coalition formation.

6. GetReject, if sender FBA/FSA receives the REJECT message.

7. GetInformMsg, when agent receives the INFORM message which

acknowledge the winning agent for the requested event.

8. GetConfirmMsg, when agent receives CONFIRM message, it will undergo for

the Task Execution phase.

47

6.4 Task Allocation Processing

After initializing the fire-brigade agents, fire-fighting scenario is ready for the

simulation. The number of events for which simulation is going to be done is entered

into the respective text field and starts the simulation. The location in terms of (x,y)

coordinate and its required water capacity is generated randomly and then FSA will

start the task allocation for the requested event. The snapshot of fire-brigade frame is

shown in figure 19.

Figure 19- snapshot when task allocation is going on

After the successful task allocation, the FSA informs the respective FEA about the

assigned agents and their expected start time. If the assigned agents reached at the

event location then the event will be reported as success otherwise it is reported as

failure of the event. When the event gets completed, the assigned FBA informed

about completion and it will undergo for refilling.

6.5 Report Frame

When the simulation gets completed, the report will be generated after clicking on the

“Show Report” button. The report will be displayed for each fire-event. The report

will include the fire-event name, its require capacity, the number of agents assigned

for that event completion, the waiting time for the event and the success or failure of

the event. The average waiting time and the success % is calculated on the basis of

waiting time and the success or failure of each and every fire-event. Figure 20 shows

snapshot of the “Report Frame”.

48

Figure 20- snapshot of the Report Frame after the simulation has been done

6.6 Event-Report.pdf Generation

The report is saved as the “Report.pdf” file in the computer system so as to analyze

the results for making the decision on the number of fire-brigade to be included in the

system so as to increase the success rate of event. Figure 21 shows the snapshot of the

pdf generated after clicking on the button “print to pdf” on the “Report Frame”.

Figure 21- Event Report pdf snapshot

49

CHAPTER 7

OBSERVATIONS AND RESULTS

This chapter shows the simulation results and observation drawn for the proposed

approach.

7.1 Simulation Results

For simulation, a simple simulator for fire-fighting multi-agent system is

developed in JADE framework. The simulator consist three types of agents namely,

fire-station agent, which handles the team of fire-brigade agents; fire-brigade agent,

which is responsible for the fire-brigade vehicle in the system and fire-event agent,

which is related to the fire-event and handles the success or failure of fire-event. Fire-

brigade can move freely i.e. they go straight to the target and do not follow the roads.

Fire-brigades have a limited amount of water they can carry. According to the

strength of the fire, the fire-event may require more water which is fulfilled by more

than one fire-brigade.

The environment is taken as a plane and the location of fire-brigade and fire-event

is taken by the (x,y) coordinate of the plane. Initially, the system will create a fire-

station agent and n fire-brigade agents. The number of fire-brigade agents is

determined by the number of fire-brigade present in the system. As mentioned earlier

that fire-station agent possesses the global view of the system and fire-brigade agent

possesses the local view of the system. As soon as the fire-brigade agent FBAi gets

created, it sends its location and capacity to the FSA. The obstacles are inserted at the

initialization phase by randomly inserting the coordinates representing the location of

obstacles.

The simulation is done three times with different number of agents and different

event details and corresponding waiting time and number of messages transferred for

the task allocation is calculated.

For simulating the proposed approach, the experiment is done on 100 numbers of

events. The distribution of arrival rate of an event is taken as a Poisson distribution.

The experiment is done for 100 event request and the result is observed after

50

processing of every 10 event request. The details for the fire-brigades and the fire-

event location and required capacity are generated randomly.

Table 5 shows the simulation result for fire-fighting multi-agent system with 3

fire-brigade agents. Task allocation without communicational constraint and task

allocation with communication constraint are simulated for the same dataset. The

location of fire-brigade vehicle is taken as (x,y) coordinate of the plane. The capacity

and speed of the fire-brigade agents are taken as inputs which are generated at

random. The event request is generated at random with Poisson distribution which

takes event‟s location and required capacity as input. The average waiting time and

number of messages transferred are observed after the processing of every 10 fire-

events.

Table 5- Simulation results for the experiment 1

No. of

events

No. of message Avg. waiting time of

successful events (in

seconds)

Success %

A B A B A B

0-10 130 95 18.52 16.67 30.0 40.0

10-20 266 175 18.48 13.47 35.0 40.0

20-30 402 277 18.61 17.16 36.0 43.34

30-40 506 383 18.10 17.42 32.0 45.0

40-50 636 460 18.04 16.59 32.0 40.0

50-60 751 527 17.99 15.56 31.0 38.36

60-70 903 619 18.22 15.89 34.0 38.57

70-80 1061 693 18.54 16.35 37.49 40.0

80-90 1208 784 18.71 16.80 38.88 41.11

90-100 1333 844 18.64 15.78 37.99 39.0

No. of agents = 3

Agent capacity= (1000-2000) and event capacity= (1000-5000)

A, task allocation without communicational constraint

B, task allocation with communicational constraint

Table 6 shows the simulation result for 6 fire-brigade agents. The simulation is again

done for 100 numbers of events and average waiting time and number of messages

51

transferred are observed after the processing of every 10 events. The success %

represents the percentage of number of events successfully accomplished by the

assigned fire-brigades.

Table 6- Simulation results for the experiment 2

No. of

events

No. of message Avg. waiting time of

successful events (in

seconds)

Success %

A B A B A B

0-10 251 167 18.89 11.89 50.0 60.0

10-20 502 325 18.95 11.72 50.0 60.0

20-30 701 476 18.26 10.23 43.33 56.0

30-40 983 611 18.78 9.51 47.49 55.0

40-50 1268 794 19.77 11.18 46.0 58.0

50-60 1580 983 19.92 11.40 46.66 58.33

60-70 1960 1187 20.54 12.38 51.42 60.0

70-80 2253 1324 20.62 11.79 52.0 58.75

80-90 2522 1525 20.81 15.08 54.44 63.0

90-100 2769 1690 20.76 14.82 54.0 63.0

No. of agents = 6

Agent capacity= (1000-2000) and event capacity= (2000-8000)

A, task allocation without communicational constraint

B, task allocation with communicational constraint

Table 7 shows the simulation result for 10 fire-brigade agents. Here, the simulation is

again done for 100 numbers of events and result is observed after the processing of

every 10 events.

Table 7- Simulation results for the experiment 3

No. of

events

No. of message Avg. waiting time of

successful events (in

seconds)

Success %

A B A B A B

0-10 490 279 35.15 33.19 70.0 90.0

10-20 920 606 35.16 32.47 70.0 90.0

52

20-30 1370 936 34.99 32.79 70.0 90.0

30-40 1789 1159 29.63 26.51 67.0 70.0

40-50 2364 1501 29.85 26.14 68.0 70.0

50-60 2759 1817 28.85 27.18 68.33 81.67

60-70 3249 2104 28.93 26.79 68.57 81.43

70-80 3764 2423 28.96 26.58 68.75 81.25

80-90 4289 2810 30.96 28.27 68.89 83.33

90-100 4749 3113 30.93 28.69 69.0 84.0

No. of agents = 10

Agent capacity= (1000-2000) and event capacity= (2000-10000)

A, task allocation without communicational constraint

B, task allocation with communicational constraint

7.2 Observations

From the results obtained in simulation of three experiments, following observations

has been drawn:

 The number of messages gets reduced when communicational constraint is

applied in the task allocation algorithm. This results in less communication cost

because in multi-agent system, the communication is done by message passing

only.

 The average waiting time is also reduced. The time is very crucial parameter for

any real-time systems. Especially for fire-fighting scenario. Because if the

response time is very high then it may results in severe damage to people and

infrastructure. It happens because of the inclusion of EST and trust factor for

choosing best coalition.

 The success rate of the events is dependent on the number of fire-brigade agents in

the system. As observed in experiment-1 where there are only 3 agents in the

system the maximum success rate is 45% whereas in case of 3
rd

 experiment the

success rate is 90% with 10 fire-brigade agents in the system. Thus by analyzing

the success rate of the incoming event-request, we can predict the optimal number

of fire-brigades that must be present in the system so as to increase the success

rate.

The results obtained from the simulation are visualized in fig.22 to fig. 29.

53

Fig. 22 shows the graph representing the number of messages transferred in proposed

approach for simulation experiment 1 with and without communicational constraint

respectively. This graph shows that the number of message transferred gets reduced in

the proposed approach. This happened because instead of sending the message to all

neighbor FBAs, proposed approach sends the message to the nearest FBA to the event

location.

Figure 22- number of message transferred vs. total no. of events for experiment 1

Fig. 23 shows the graph representing average waiting time for successful events after

the processing of every 10 events for task allocation for simulation experiment 1 with

and without communicational constraint respectively. It shows that proposed

approach gives better results.

Figure 23- avg. waiting time for successful events vs. total no of events for exp. 1

0

200

400

600

800

1000

1200

1400

10 20 30 40 50 60 70 80 90 100

N
o

. o
f

m
e

ss
ag

e
s

No. of events

without
communicational
constraint

with communicational
constraint

10

12

14

16

18

20

10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 w
ai

ti
n

g
ti

m
e

 f
o

r
su

cc
e

ss
fu

l e
ve

n
ts

 (
in

 s
e

co
n

d
s)

No. of events

without
communicational
constraint

with communicational
constraint

54

Fig. 24 and 25 shows the simulation result of experiment 2 for both the parameters i.e.

number of messages transferred and avg. waiting time. This shows that the

coordination mechanism with communicational constraint outperforms the

coordination without communicational constraint.

Figure 24- number of message transferred vs. total no. of events for experiment 2

Figure 25-avg. waiting time for successful events vs. total no of events for exp. 2

Fig. 26 and 27 visualizes the simulation result of experiment 3 for both the parameters

i.e. number of messages transferred and avg. waiting time.

0

500

1000

1500

2000

2500

3000

10 20 30 40 50 60 70 80 90 100

N
o

. o
f

m
e

ss
ag

e
s

No. of events

without
communicational
constraint

with communicational
constraint

5

7

9

11

13

15

17

19

21

23

25

10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 w
ai

ti
n

g
ti

m
e

 f
o

r
su

cc
e

ss
fu

l
e

ve
n

ts
 (

in
 s

e
co

n
d

s)

No.of events

without
communicational
constraint

with communicational
constraint

55

Figure 26- number of message transferred vs. total no. of events for experiment 3

Figure 27- avg. waiting time for successful events vs. total no of events for experiment 3

All above graphs show that in all three simulations, where the numbers of agents are

3, 6 or 10, the proposed approach outperforms the existing approach for both the

parameters i.e. number of messages transferred and waiting time.

Fig. 28 shows the success rate of proposed approach for all of the three

experiments. The success% is also observed after the processing of every 10 events

out of total 100 events.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

10 20 30 40 50 60 70 80 90 100

N
o

. o
f

m
e

ss
ag

e
s

No. of events

without
communicational
constraint

with communicational
constraint

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 w
ai

ti
n

g
ti

m
e

 f
o

r
su

cc
e

ss
fu

l
e

ve
n

ts
 (

in
 s

e
co

n
d

s)

No.of events

without
communication
al constraint

with
communication
al constraint

56

Figure 28- success rate of proposed approach for all the experiments 1, 2, and 3

It shows that the success rate increases with the increase of number of agents in the

system. This is helpful for getting the optimal number of fire-brigades in the system

on the basis of past history of success % of the fire-events.

From the fig. 28, it is observed that with 10 fire-brigade agents, the success % is

approximately 82%. The success% depends on the coalition formation and re-

planning algorithm of the proposed approach. As the coalition is formed on the basis

of expected earliest start time and the trust factor so the chance of failure of task

allocation will get reduced. The re-planning algorithm also results in increase in

success %. Whenever any obstacle detected, then instead of sending the failure

message the agent will perform the resource negotiation and if no response is received

then only it will send the failure message.

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

Su
cc

e
ss

 p
e

rc
e

n
t

(%
)

No. of Events

No. of Agents= 3

No. of Agents=6

No. of Agents=10

57

CHAPTER 8

CONTRIBUTIONS

This research work proposes the task allocation approach to allocate the appropriate

fire-brigade at the fire-event location in fire-fighting multi-agent system. In today‟s

era researchers‟ main focus is to make the universe autonomous. With the same aim,

I‟ve chosen the multi-agent environment in which agents can autonomously think

without any user intervention. Thus in this research work, the task allocation is done

autonomously. The task arrives at the agent and agent will try to accomplish it

successfully. To accomplish the complex tasks, which are not completed by an

individual agent, group of agents are formed for its completion. The agents

communicate and coordinate with each other to form the group of agents. Thus, the

main research issue in task allocation problem is coordination and coalition formation.

The task allocation will become more difficult when the environment is highly

dynamic and uncertain like disaster scenario. To allocate the task in such type of

environment some constraints need to be applied.

In this thesis, we devised an optimized task allocation approach by improving the

coordination and coalition formation mechanism. This results in better task allocation

with less waiting time and less communication cost. We also proposed a re-planning

algorithm to handle the difficulties occurred due to dynamic nature of environment.

The proposed approach is divided into four stages namely, Task Arrival, Resource

Negotiation, Coalition Formation, Task Execution. Whenever any request for

extinguishing the fire arrives, the fire-station agent will go for fire-brigade allocation.

The proposed approach allocates the most appropriate fire-brigade or group of fire

brigades which fulfill the requested capacity of fire-event on the basis of earliest

expected start time and trust factor. It results in increase in success rate of the

allocation process. The time and the communication cost are considered as the

primary factors for the allocation procedure. Thus the proposed approach allocates the

efficient fire-brigade with less amount of time and less communication cost.

58

8.1 Contribution to the Society

The proposed approach is allocating the appropriate fire-brigade to the fire-event‟s

location in less waiting time. This approach can be helpful for the various application

domains in our society.

1. The state of Himachal Pradesh is a very sensitive area in terms of seismic

point of view. This area suffers from the earthquake very often. Thus, there is

a very high requirement to automate the disaster management. The Fires

occurs due to the broken gas lines or electrical lines are one of the common

side effects of earthquakes. The things got more complicated when water lines

were also broken. The San Francisco earthquake of 1906 results in 90% of

damage by fire. To recover such type of disaster, the proposed approach can

be efficiently used. Whenever there is a request for extinguishing the fire, the

fire-station agent will be invoked and it will allocate the appropriate fire-

brigade by communicating with FBA, within less waiting time.

2. To extinguish the fire in residential area or industrial area, the proposed

approach can also be used and will give efficient results.

3. The proposed approach can also be used to allocate the emergency medical

services like ambulances to the patient‟s location so as to provide a quicker

treatment to the patient. With a slight modification in the proposed approach,

it can be used to allocate the ambulance. In case of medical services, in place

of water tank capacity, we can consider the first-aid facilities available in the

ambulance. Thus, according to the requirement of the patient, the appropriate

ambulance will be allocated for the patient. In this system, no coalition will be

required thus the init-agent will be chosen on the basis of Expected earliest

start time first and trust factor among the ambulances which fulfills the

required first-aid facilities of the patient.

59

CHAPTER 9

CONCLUSION AND FUTURE SCOPE

Task allocation problem in multi-agent system is hot research topic from the last few

years. The task allocation problem can be defined as allocating the task to the agents

so as to achieve the system goals without any conflict. The main problem issues with

distributed task allocation are coordination among multiple agents and coalition

formation. Many researchers are working on the task allocation issues in multi-agent

systems which are highly dynamic and uncertain in nature.

The main focus of this thesis work is to optimize the task allocation approach in

dynamic and real-time multi-agent system by improving thr coordination and

coalition formation mechanism.. This research considers the fire-fighting scenario for

the task allocation process. This scenario has been chosen because it is highly

dynamic, uncertain and real time system. The fire-fighting multi-agent system

consists of one fire station agent and n fire-brigade agent. The fire-station agent has

the global view of the system like the occurrence of event in the system and

knowledge of the fire-brigade agent available in the system. The fire-brigade agent

has the local view of the system i.e. the details of its respective fire-brigade vehicle

and the knowledge of its surroundings. The task allocation problem thus defined as,

allocating the appropriate fire-brigade or group of fire-brigades so as to fulfill the

required capacity of water with less waiting time and less number of messages

transferred for coordination among multiple agents. The proposed approach is divided

into four modules namely, Task Arrival, Resource Negotiation, Coalition Formation

and Task Execution.

The proposed approach optimizes the existing task allocation approach by making

following changes:

1. Improved coordination mechanism, applies the communicational constraint

during coordination. Instead of sending the request to all the participating

agent and chose the winning coalition, the proposed sends the request message

to the nearest agent of the event location only. If it is capable to fulfill the

required capacity alone then it will send the OK message and assigned for that

event. But in CNP, whether the nearest agent is capable to accomplish the

60

event, the request message sends to all participating agent. Though the

winning agent will be same in both the cases but the number of message

transferred increases as compared to the proposed approach.

2. Improvement in coalition formation, the best coalition will be chosen on the

basis of earliest expected start time, trust factor and smallest coalition size.

This is helpful to increase the success rate of task allocation approach.

3. Use the re-planning algorithm to handle the obstacles detected while travelling

toward the event-location.

The proposed approach is simulated with different number of fire-brigade agent

and following conclusion has been drawn:

 The proposed approach results in less waiting time

 The communication cost in terms of number of messages transferred for the

coordination and cooperation is also reduced.

 The success rate of event is also depends on the number of fire-brigade agent

available in the system.

The proposed approach thus results in an efficient task allocation process for

dynamic and uncertain environment with spatial, temporal and communicational

constraint. Though the proposed approach is very helpful for task allocation in

dynamic environment but it still possesses several limitations:

 The proposed approach considers the cooperative nature of agent but agent

can also possess selfish nature.

 The reliable communication channel is considered but in actual it is not

possible to have reliable communication channel.

 It only considers a single route from the agent‟s location to event‟s location.

 This proposed work is limited to only single region having one fire-station

agent. But it can be extended to the multiple regions where one fire-station of

one region can negotiate with the fire-station of another region in case of

failure.

Thus to overcome these limitation some work will be required in future. In future,

I will also try to enhance this approach for rescuing the victims after extinguishing the

fire. I‟ll also integrate the Google map to simulate the approach on real data.

61

REFERENCES

[1] Nick Jennings, Michael Wooldridge, “Software Agents”, IEEE Review, January 1996, pp.

17-20

[2] Michael Wooldridge, “Introduction to Multi-agent Systems”, England: John Wiley &

Sons Ltd., Aug. 2002.

[3] G. Weiss, “Multiagent Systems: A Modern Approach to Distributed Artificial

intelligence” London: The MIT Press, 1999.

[4] L. Padgam, M. Winikoff, “Developing Intelligent Agent Systems”, England: John Wiley

& Sons, 2004

[5] Kathryn S. Macarthur, “Multi-Agent Coordination for Dynamic Task Allocation”, PhD

[Dissertation], Southampton: University of Southampton, Dec. 2011.

 [6] Zheng X, and Koenig S ,”Reaction functions for task allocation to cooperative agents”, In

Proceedings of the 2008 7
th
 International conference on Autonomous Agents and Multi Agent

Systems, AAMAS 2008, May, 12-16., 2008, Estoril, Portuga, pp. 559–566.

[7] Shehory O and Kraus S, “Methods for task allocation via agent coalition formation”

Artificial Intelligence, vol. 101, pp. 165–200, May 1998.

[8] A.C. Chapman, R. A. Micillo, Ramachandra Kota and N.R. Jennings, “Decentralized

dynamic Task Allocation: A Practical Game- Theoretic Approach,” In Proceedings of 8
th

International Conference on Autonomous Agents and Multiagent Systems, AAMAS

2009,May 10-15, 2009, Budapest, Hungary, pp. 915-922

[9] S. Shaheen Fatime, Michael Wooldridge, “Adaptive task resource allocation in multi-

agent systems”, In Proceedings of 5
th
 International Conference on Autonomous Agents,

AGENTS‟ 01, ACM, New York, NY, USA, 2001, pp.537-544

[10] yan kong, Minjie Zhang, Dayong Ye, “A Group Task Allocation Strategy in Open and

Dynamic Grid Environments”, presented at 7
th
 International workshop on Agent based

Complex Automated Negotiations, ACAN 2014, Paris, France, May 5-6, 2014.

[11] Scerri P., Farinelli A., Okamoto S. and Tambe, “Allocating tasks in extreme teams”, In

Proceeding of 5
th
 International Conference on Autonomous Agents and Multi Agent System,

AAMAS 2005,Utrecht, Netherlands, 2005, pp. 727–734.

62

[12] Petcu, A., and Faltings, B. 2005. S-DPOP: Super stabilizing Fault containing Multiagent

Combinatorial Optimization”, In Proceedings of the National Conference on Artificial

Intelligence, AAAI-05,Pittsburgh, Pennsylvania, USA, July 2005, pp. 449–454.

[13] K.S. Macarthur, R. Stranders, S.D. Ramchurn and N.R. Jennings, “A Distributed

Anytime Algorithm for dynamic Multi-Agent Systems”, In proceeding of 25th National

Conference on Artificial Intelligence, AAAI-2011, Aug. 7-11, 2011, San Francisco, pp. 701-

706.

[14] S.D. Ramchurn, M. polukarov, Alessandro Farinelli, Cuong Troung, “Coalition

formation with spatial and temporal constraint”, In Proceeding of 9
th
 International Conference

on Autonomous Agents and Multi-agent System, AA-MAS 2010, May 10-14, 2010, Toronto,

Canada, pp-1181-1188

[15] Jipeng Du, Ling Zhou, Peng Qu, Zhen Shi, Yang Lin, “Task Allocation in Multi-Agent

Systems with Swarm Intelligence of Social Insects”, In proceedings of 6
th
 International

Conference on Natural Computation, ICNC-2010, Aug. 10-12, 2010, Yantai, China, pp-4322-

4326.

[16] Philip H.P.Nguyen, Minh-Quang Nguyen and Ken Kaneiwa, “A Belief-Based Multi-

Agent Markov Decision Process for Staff Management”, In Proceedings of International

Journal of Energy, Information and Communication, Vol. 2, Issue 2, pp.23-39, May 2011

[17] George Thomas, Andrew B. Williams, “Sequential Auction for Heterogeneous Task

Allocation in Multiagent Routing Domains”, In proceedings of the 2009 IEEE Conference on

Systems, Man and Cybernetics, SMC-2009, Oct. 11-14, 2009, San Antonio, TX, USA, pp.

1995-2000.

[18] Wanyuan Wang, Yichuan Jiang, “Community-Aware Task Allocation for Social

Networked Multiagent Systems”, IEEE Transactions on Cybernetics, vol. 44, No. 9, pp. 1529-

1543, September 2014.

[19] Danny Weyns, Nelis Bouck´e, Kurt Schelfthout, Tom Holvoet , “Dyncnet: A Protocol

For Flexible Task Assignment Applied in An AGV Transportation System”, In Proceedings

of the 1
st
 International Conference on Self-Adaptive and Self-Organizing Systems, SASO

2007, Boston, MA, USA, July 9-11, 2007, pp. 1-4.

 [20] S.D. Ramchurn, A. Farinelli, K.S. Macarthur, N.R. Jennings, “Decentralized

coordination in RoboCup rescue", Published in The Computer Journal, Vol. 53, pp. 1-15,

2010.

63

[21] Pragnesh Jay Modi, Wei-Min Shen, Milind Tambe, “ADOPT: Asynchronous Distributed

Constraint Optimization with Quality Guarantees “, Artificial Intelligence, vol. 161, pp. 149-

180, Sept. 2004.

 [22] James Odell, “Agent Technology: What is it and why do we care? “, Enterprise

architecture Advisory Services, Executive Report, vol. 10, No. 3, 2007. [Online]. Available:

http://www.jamesodell.com/Cutter-Exec_Rpt-July_2007.pdf.

[23] Prithviraj Dasgupta, “A Multi-agent swarming System for Distributed Automatic Target

Recognition Using Unmanned Aerial Vehicles”, IEEE Transaction on Systems, Man and

Cybernetics, vol. 38, No. 3 , pp. 549-563, May, 2008.

[24] Sofia Amador, Steven Okamoto an Roie Zivan, “Dynamic Multi-agent Task Allocation

with Spatial and Temporal Constraints”, In proceeding 13
th
 International Conference on

Autonomous Agents and Mutli Agent System, AAMAS-2014, May 5- 9,2014,paris, France,

pp. 1495-1496

[25] Yongcan Cao, Wenwu Yu, Wei Ren and Guanrong, “An Overview of Recent Progress in

the Study of Distributed Multi-Agent Coordination”, IEEE Transaction on Industrial

Informatics, vol. 9, No. 1, pp. 427-438, Feb. 2013

[26] Frank R. Kshischang, Brendan J. Frey and Hans-Andrea Loeliger, “Factor Graphs and

the Sum-Product Algorithm”, IEEE Transactions on Information Theory, Vol. 47, No. 2, pp.

498-519, Feb. 2001

[27] Zheng Xiao, Shengxiang Ma, Shiyong Zhang, “Learning Task Allocation for Multiple

Flows in Multi-agent Systems”, In proceedings of International Conference on

Communication Software and Networks, ICSSN‟09, Feb. 27-28, 2009, Macau, pp. 153-157.

[28] Xing Su, Minjie Zhang, Dayong Ye, “A Dynamic Approach for Task Allocation in

Disaster Environments under Spatial and Communicational Constraints”, AAAI workshop on

Multiagent Interaction without Prior Coordination, MIPC 2014,July 2014.

[29] Yichuan Jiang, Zhaofeng Li, “Locality-sensitive Task Allocation and load balancing in

networked multi-agent systems: Talent versus centrality”, Journal of Parallel Distributed

Computing, vol. 71, no. 6, pp. 822-836, June 2011.

[30] Hiroki Kitano and Satoshi Tadokoro, “Robocup Rescue: A Grand Challenge for

Multiagent and Intelligent Systems”, AI Magzine, SPRING 2001, Vol. 22, No. 1, pp. 39-52,

November 1, 2001.

64

[31] S.A. Suárez Barón, “Dynamic Task Allocation and Coordination in Cooperative Multi-

Agent Environments”, PhD [Dissertation], Girona: University of Girona,2010.

[32] Foundation for Intelligent Physical Agents Specification 1997. Available from

http://www.fipa.org

[33] Mohammad Ubaidullah Bokhari, Sadaf Ahmad, Faheem Syeed Masoodi, “Development

of Multi-Agent System Based on Frameworks, “In the proceedings of International

Conference on Reliability, Infocom Technology and Optimization, ICRITO‟2010, Nov. 4-6,

2010, Faridabad, India.

 [34] Fabio Bellifemine, Agostino Poggi, Giovanni Rimassa, “JADE- A FIPA- compliant

agent framework”, In proceedings of PAAM‟99, April 1999, vol. 99, pp. 97-108 .

[35] F. Bellifemine, G. Caire, D. Greenwood, “Developing multi-agent systems with JADE”,

England: John Willey & Sons Ltd., 2007.

[36] Rashmi Singh, Aarti Singh, Saurabh Mukherjee, “A Critical Investigation of Agent

Protocols in Multiagent Systems”, International Journal of Advancements in Technology,

IJoAT- 2014, vol. 5, no. 2, pp. 72-81 , March 2014.

[37] Yeung, W.L., “Short paper adapting the contract net protocol for publish/subscribe

messaging”, In the proceedings of International conference on high performance computing

and simulation, HPCS-2013, July 1-5, 2013, Helsinki, pp. 139-142.

[38] A. Farinelli, G. Grisetti, L. Iocchi, S. Lo Cascio and D. Nardi, “Design and Evaluation of

Multi Agent Systems for Rescue Operations”, in the proceedings of 2003 IEEE/RSJ

International conference on Intelligent Robots and Systems, October 2003, Las-Vegas,

Nevada, pp. 3138-3143

[39] Abeer el-korancy and Khalid el-bahnasy, “A multi-agent Cooperative model for Crisis

Management System”, In the proceedings of 7
th
 International conference on artificial

Intelligence, Knowledge engineering and Databases, AIKED‟08, Feb. 20-22,2008, University

of Cambridge, U.K. , pp. 170-175

[40] Yunbo Lu, Xu Yang and Xuebin Cui, “An Agent-Based Simulation Application on a

Multi-Agent Firefighting and Rescue System”, in the proceedings of 8
th
 international

conference on Supply Chain Management and Information Systems, SCMIS-2010, Oct. 6-9,

2010, Hong Kong, pp. 1-5.

http://www.fipa.org/

65

[41] Omid Amir Ghiasvand and Maziar Ahmad Sharbafi, “Using Earliest Deadline First

Algorithms for Coalition Formation in Dynamic Time-Critical Environment”, International

Journal of Information and Educational Technology, Vol. 1, no. 2, pp. 120-125, June 2011.

[42] Beatriz López, Bianca Innocenti and Dídac Busquets, “A Multiagent System for

Coordinating Ambulances for Emergency Medical Services”, IEEE Intelligent Systems, vol.

23, no. 5, pp. 50-57, 2008.

66

APPENDIX- A

PUBLICATIONS

[1] Vaishnavi Singhal and Deepak Dahiya, “Distributed Task Allocation in

Dynamic Multi-Agent Systems”, accepted In the Proceedings of International

Conference on Computing, Communication and Automation, ICCCA 2015,

May 15-16, 2015, School of Computing Science and Engineering, Galgotias

University, Uttar Pradesh, India.

[2] Vaishnavi Singhal and Deepak Dahiya, “Task Allocation in Fire-Fighting

Multi-Agent Systems”. [under submission]

67

APPENDIX- B

PSEUDO-CODE OF PROPOSED ALGORITHM

This chapter presents the pseudo-code for the proposed algorithm.

B.1 Pseudo-code for the proposed approach

The proposed approach improves the coordination mechanism and the coalition

formation algorithm so as to allocate the appropriate fire-brigade to the fore-event

location in more effective and efficient way.

The pseudo-code for the proposed approach is explained below.

Initialization:

1. Create fire-station agent, initialize the obstacles at some location

2. Create the fire-brigade agent with the location, cap(FBA), speed(FBAi)

3. Set status(FBA)= “active”

4. No_of_sucees =0, no_of_failure = 0

5. Agent_list(FSA).add(x(FBA),y(FBA), no_of_success(FBA), no_of_fail(FBA)

Algorithm 1: Task Arrival

Input: <FE> = {ev_name, x(ev), y(ev), req_cap(ev), arrivaltime(ev)}

Output: wait_time, msg_count

Algorithm:

For all FBAi Є agent_list(FSA)

 Init-agent = min(Eucledean_dist(x(FBAi), y(FBAi), x(ev), y(ev)))

End for loop

send event_req (x(ev), y(ev), req_cap(ev)) from FSA to init-agent

increase msg_count by 1

if(Receive (event_req(x(ev), y(ev), req_cap(ev))) by init_agent

If(status(init-agent) = “active”)

 if(cap(init-agent) > = req_cap(ev))

 EST = currenttime + (eucledean_dist(x(init_agent), y(init_agent),

x(ev), y(ev)) / speed(init_agent))

68

 Send OK(EST(init_agent)) to FSA

 task_execution(init_agent, EST)

 increase the msg_count by 1

 Else resource_negotiation(ev,x(ev), y(ev), req_cap(ev)-cap(init_agent))

Else resource_negotiation(ev, x(ev), y(ev), req_cap(ev))

End if

If(receive_OK(EST(<assigned_agentlist, EST)) from init_agent)

Send Allocationdone(<assigned_agentlist>, EST) to event_agent

increase the msg_count by 1

Else report failure

If (receive Allocationdone(<assigned_agentlist, EST)

while (currenttime != EST(init_agent))

 If reached(FBA)

 Reached_agentlist.add(FBA)

 End if

end while

 if (reached_agentlist.equals(assigned_agentlist))

 completion_time= current_time

Send success(ev, reached_agentlist, completion_time)

increase the msg_count by 1

 else send failure(ev)

If(receive success(ev, reached_agentlist, completion_time))

 For all FBAj Є reached_agentlist

 no_of_success +=1

 end for loop

wait_time(ev) = completion_time – arrival_time(ev)

Return wait_time and message count

Else report failure for event ev.

Algorithm 2: Resource Negotiation

Input: ev, x(ev), y(ev), req_cap(ev)

Algorithm:

For FBAi Є neighbor_list

send event_req (ev, x(ev), y(ev), req_cap(ev)) to FBAi

69

increase msg_count by 1

end for loop

if (receive event_req(ev, x(ev),y(ev),req_cap(ev))) by FBAi

if(status(FBAi) = “active”)

EST = currenttime + (eucledean_dist(x(FBAi), y(FBAi), x(ev), y(ev)) /

speed(FBAi))

Send ACCEPT(EST(FBAi), cap(FBAi))

increase msg_count by 1

Else send REJECT(ev) to sender and increase msg_count by 1

End if

If(receive ACCEPT(EST(FBAi), cap(FBAi))

 Add FBAi to S // S is the set of FBA who sent ACCEPT

<Best_coalition, EST> = Coalition_form(S, req_cap(ev))

If(! Best_coalition.isEmpty())

 For all FBAi Є Best_coalition

 Send INFORM(ev, EST) to FBAi

increase msg_count by 1

 end for loop

 If (receive INFORM(ev)) by FBAi

 If(status(FBAi) = “active”)

 Send OK(ev) to sender and increase msg_count by 1

 Else send PRONE(ev) to sender and increase msg_count by 1

 End if

If(receive OK(ev) from all FBAi Є Best_coalition)

Send CONFIRM(ev) to FBAi and send OK(Best_coalition, EST) to

FSA and increase msg_count by i+1

 Else send CANCEL(ev_name) to all FBAi Є Best_coalition

 If receiveCONFIRM(ev) by FBAi then go for task_exceution(FBAi, EST)

Else send CANCEL(ev) to FSA and increase msg_count by 1

Algorithm 3: Coalition Formation

Input: S, req_cap(ev)

Output: best_coalition, EST // set of winning agents

Algorithm:

70

X=powerset(S)

For all xi Є X

 For all FBAi Є xi

 tot_cap(xi) +=cap(FBAi)

 End for loop

 If(tot_cap(xi) >= req_cap(ev))

 Add xi to C

End for loop

For all xi Є C

 For all FBAi Є xi

 EST(xi)= max(EST(FBAi))

 coalition.put(xi , EST)

 End for loop

End for loop

sort_coalition= sort(coalition) // sort coalition in ascending order of EST

for all ci Є sort_coalition

 if(EST(ci) <= min)

 min= EST(ci)

 min_est_coalition.add(ci) // chose coalition with minimum EST

 end if

end for loop

if(min_est_coalition.size() > 1)

 for all ci Є min_est_coalition

 if(cI .size() <= min)

 min= ci. size()

 min_size_coalition.add(ci) // chose coalition having FBAs

 end if

 end for loop

else return min_est_coalition, EST(min_est_coalition)

if(min_size_coalition.size() > 1)

 for all ci Є min_size_coalition

 for all FBAi Є ci

 tot_trust(ci) += trust(FBAi) // trust model

 end for loop

71

 if(t <= tot_trust(ci))

 t= tot_trust(ci)

 max_trust_coalition.add(ci)

 end if

 end for loop

return max_trust_coalition(c0), EST(c0)

else return min_size_coalition, EST(min_size_coalition)

Algorithm 4: Task Execution

Input: FBA, EST

Algorithm:

If (receive CONFIRM(ev))

 Set status(FBA) = “busy”

 Start moving toward event location

 if(! reached(FBA))

 if(obstacle_detected)

 replanning(ev, x(ev), y(ev), cap(FBA), EST)

 else continue

 end if

If (reached(FBA))

 reached_FB.add(FBA)

 end if

wait until (currenttime != EST)

 if (assigned_agent(ev) = reached_FB) //all the assigned brigades reached

 if(curr_req__cap(ev) <= tot_cap(reached_FB))

 Send SUCCESS(ev, reached_FB)

 Else send failure(ev)

 if(fire_exitngushed)

 for all FBAi Є reached_FB

 set status(FBAi) = “inactive” go for refilling

 if refilling is over

 reached to its base location

 set status(FBAi) = “active”

 end if

72

 end for loop

 end if

 Else

 Send FAILURE(ev)

end if

Algorithm 5: Trust

Input: FBA

Output: trust_fac(FBA)

Set α = no_of_success(FBA)

Set β = no_failure(FBA)

Set trust_fac(FBA) = ⁄

Return reust_fac(FBA)

Algorithm 6: Replanning

Input : ev, x(ev), y(ev), cap, EST

Algorithm:

For all FBAi Є neighborlist

 Send event_req(ev, x(ev), y(ev)) and increase msg_count by 1

End for loop

If(receive event_req(ev, x(ev), y(ev))) by FBA

 If(status(FBA) = “active”)

 EST= current_time + Euclidean_dist(x(FBA), y(FBA), x(ev), y(ev))

/speed(FBA)

 Send ACCEPT(EST(FBA), cap(FBA)) and increase msg_count by 1

Else send REJECT(ev)

End if

If(receive(ACCEPT(EST(FBA), cap(FBA))))

 add FBA to S

end if

X= powerset(S)

For all xi Є X

 For all FBAj Є xi

 tot_cap(xi) += cap (FBAj)

73

 end for loop

if(tot_cap(xi) >= cap)

 add xi to C

 end if

end for loop

for all xi Є C

 for all FBAj Є xi

 EST(xi)= max(EST(FBAj))

 coalition.put(xi, EST)

 end for loop

end for loop

for all ci Є coalition

 if(EST(ci) <= EST)

 min_est_coalitio.add(ci)

 end if

end for loop

choose the coalition with smallest size and maximum trust factor as done in coaltiton

formation algorithm

Cb = min_est_coalition

Send INFORM(Cb, EST) and increase msg_count by 1

If (receive OK message form all FBAi Є Cb)

 send OK(Cb, ev, EST) to FSA and increase msg_count by 1

else send CANCEL(ev) message to FSA

if(receive CANCEL(ev)) the set no_of_failure (FBA)+=1

report failure(ev)

Algorithm 7: Euclidean_dist

Input: x(FBA), y(FBA), x(ev), y(ev) Output: dist

Algorihtm: Return Math.sqrt(((x(ev)-x(FBA))*(x(ev)-x(FBA)))+((y(ev)-

y(FBA))*(y(ev)-y(FBA))))

