"STRUCTURAL EVALUATION OF RURAL HILLY ROADS"

A PROJECT

Submitted in partial fulfillment of the requirements for the award of the degree of

BACHELOR OF TECHNOLOGY

IN

CIVIL ENGINEERING

Under the supervision of

Mr. Aakash Gupta

(Assistant Professor)

By

Somil Jain (141689) Shivam Sharma (141691)

to

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY WAKNAGHAT, SOLAN – 173 234 HIMACHAL PRADESH, INDIA MAY-2018

CERTIFICATE

This is to certify that the work which is being presented in the project report titled "STURCTURAL EVALUATION OF RURAL HILLY ROADS" in partial fulfillment of the requirements for the award of the degree of Bachelor of Technology in Civil Engineering and submitted to the Department of Civil Engineering, Jaypee University of Information Technology, Waknaghat is an authentic record of work carried out by Shivam Sharma (141691) and Somil Jain (141689) during a period from July 2017 to June 2018 under the supervision of Mr. Aakash Gupta (Assistant Professor), Department of Civil Engineering, Jaypee University of Information Technology, Waknaghat.

Thea above statement made is correct to the best of our knowledge.

Date:

Dr. Ashok Kumar Gupta Professor & Head of Department Department of Civil Engineering JUIT Waknaghat Mr. Aakash Gupta External Examiner Assistant Professor Department of Civil Engineering JUIT Waknaghat

ACKNOWLEDGEMENT

This Project was successful largely due to guidance of many wonderful people who have lended valuable advice to make this project a success. I would like to place my best regards to Mr. Ashok Kumar Gupta, Head of Department, Civil Engineering, for his precious advice throughout the duration of project. I might want to thanks our undertaking guide Mr. Aakash Gupta, Assistant Professor, Department of Civil Engineering for giving us the correct course and honest to goodness print with about the undertaking. Without his direction and bolster this would not have been conceivable.

I might likewise want to express gratitude toward Mr. Jaswinder Deswal, Lab specialist, Department of Civil Engineering.

Last however not the base, I generously welcome each and every one of those individuals who have helped me co-ordinate in making this undertaking a win. In this amazing condition, I should need to thank the diverse staff individuals, both instructing and nonpreparing, which have developed their favorable help and energized my undertaking.

ABSTRACT

Structural evaluation of a pavement focuses on the analysis of pavement to find out whether it is structurally stable enough to withstand daily routine traffic loading due to repetitive action of vehicles. The present study focuses on the Benkelman beam analysis of 12 stretches each of 2.5 kms on rural roads selected in vicinity of NH22. The characteristic deflection of each road is predicted for a future value to get the cost of future overlay on the given segment. The cost is then used to compare with the cost of regular maintenance, thus giving us the more economical option of the two methods. CBR value of subgrade soil is calculated to check the strength of the subgrade and it is also used in deflection prediction model to get the future deflection. This analysis gives us the better method for the maintenance of a flexible pavement. The analysis also requires the VDF value which is dependent on the different weight classes of the vehicles that are used daily on the pavement. The CSA value thus calculated using the VDF is used to calculate the required overlay that is needed for each of 12 selected roads using IRC81-1997.

CONTENT

1. INTRODUCTION & METHODOLOGY

1.1 Structural Evaluation of Pavement1
1.2 Basic Introduction and Need of Structural Evaluation1
1.3 Structural Parameters used for Evaluation of Pavement
1.4 Instruments used10
1.5 Literature Review

2. OBJECTIVES AND PROGRESS

2.1 Objectives	
2.2 Objectives achieved	
2.3 Selected Rural Stretches	17
2.4 Data Collection	19

3. BENKELMAN BEAM DEFLECTION STUDIES

3.1 BBD data collection	2
3.2 BBD Readings	4

4. (Cost	estimation	and	conclusion	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • •	26
------	------	------------	-----	------------	---	---------------------------------------	----

References	
Appendix	

LIST OF TABLES

TABLE NO.	DESCRIPTION	PAGE NO.
1.1(a)	Deflection Prediction Model of Rural Hilly Roads	14
1.1(b)	Deflection Prediction Model of Rural Hilly Roads	14
2.1	List of selected roads	17
3.1	Deflection data of RR1	30
3.2	Deflection of RR3	31
3.3	Deflection of RR5	32
3.4	Deflection of RR7	33
3.5	Deflection of RR4	34
3.6	Deflection of RR6	35
3.7	Deflection of RR8	36
3.8	Deflection of RR9	37
3.9	Deflection of RR10	38
3.10	Deflection of RR11	39
3.11	Deflection of RR12	40
3.12	Deflection of RR2	41
4.1	CBR Calibration Factor	42
4.2	CBR Reading RR 1	44
4.3	CBR Reading RR 2	46
4.4	CBR Reading RR 3	48
4.5	CBR Reading RR 4	50
4.6	CBR Reading RR 5	52
4.7	CBR Reading RR 6	54
4.8	CBR Reading RR 7	56
4.9	CBR Reading RR 8	58
4.10	CBR Reading RR 9	60
4.11	CBR Reading RR 10	62
4.12	CBR Reading RR 11	64
4.13	CBR Reading RR 12	66
5.1	Traffic Data RR 1	68
5.2	Traffic Data RR 2	68
5.3	Traffic Data RR 3	69
5.4	Traffic Data RR 4	69
5.5	Traffic Data RR 5	70
5.6	Traffic Data RR 6	70
5.7	Traffic Data RR 7	71
5.8	Traffic Data RR 8	71
5.9	Traffic Data RR 9	72
5.10	Traffic Data RR 10	72
5.11	Traffic Data RR 11	73
5.12	Traffic Data RR 12	73
6	Characteristic Deflection and Present Overlay	74
7	Future Deflection and overlay 2021	75
8.1	Vehicle class distribution and VDF values for RR 1	76
8.2	Vehicle class distribution and VDF values for RR 2	76

8.3	Vehicle class distribution and VDF values for RR 3	76
8.4	Vehicle class distribution and VDF values for RR 4	77
8.5	Vehicle class distribution and VDF values for RR 5	77
8.6	Vehicle class distribution and VDF values for RR 6	77
8.7	Vehicle class distribution and VDF values for RR 7	78
8.8	Vehicle class distribution and VDF values for RR 8	78
8.9	Vehicle class distribution and VDF values for RR 9	78
8.10	Vehicle class distribution and VDF values for RR 10	79
8.11	Vehicle class distribution and VDF values for RR 11	79
8.12	Vehicle class distribution and VDF values for RR 12	79
9	Cost Comparison of maintenance and overlay	80

LIST OF FIGURES

FIGURE NO.	DESCRIPTION	PAGE NO.
1.1	Benkleman Beam	2
1.2	Benkleman Beam Assembly	3
1.3	Placing of the Benkleman Beam	4
1.4	Moisture Correction Factor	5
1.5	Falling Weight Deflectometer	6
1.6	CBR Testing Machine	7
1.7	Use of Traffic Studies in Design of	8
	Overlay	
2.1	Flow Chart Representation of Project	15
	Work	
2.2	Мар	18
2.3	Sample Collection	19
2.4	Sample Collection from RR8	19
2.5	Mould filled with CBR sample	20
2.6	Testing on CBR sample	20
2.7	Soil sample failure	21
3.1	Loading of Truck	22
3.2	Placing of Benkleman Beam	23
3.3	Deflection Reading at 2.7m	23
3.4	Truck at 2.7m from initial position	24
3.5	Placing of probe	24
3.6	Benkleman Beam reading at RR2	25
3.7	Deflection Reading at point when truck	25
	moves 9m from the intermediate point	
4.1	Standard Calibration Curve	43
4.2	Load Penetration Curve of RR1	35
4.3	Load Penetration Curve of RR2	47
4.4	Load Penetration Curve of RR3	49
4.5	Load Penetration Curve of RR4	51
4.6	Load Penetration Curve of RR5	53
4.7	Load Penetration Curve of RR6	55
4.8	Load Penetration Curve of RR7	57
4.9	Load Penetration Curve of RR8	59
4.10	Load Penetration Curve of RR9	61
4.11	Load Penetration Curve of RR10	63
4.12	Load Penetration Curve of RR11	65
4.13	Load Penetration Curve of RR12	67

CHAPTER-1

1.1 Structural Evaluation of Pavement

It is important to maintain accurate and latest information about the current condition and remaining time in service life of pavements .It is fundamental for the efficient maintenance. It also provides the required information for planning networksand taking forward the work program for pavement rehabilitation or reconstruction. From a management perspective, it is desired to obtain pavement structural data of the pavement to provide a firm basis for informed decisions.

1.2 Need of Structural Evaluation

The Repetitive action of vehicular loads results in consequent deterioration of pavement. Heavy vehicles and repetitive action leads to many structural defects and deformities.Structural evaluation is required to inspect the working condition of pavement to determine the need of timely maintenance and overlay in case of immensely deteriorated pavements.Thus structural evaluation is vital for determination of serviceability of roads.

Pavements fall apart with age and activity stacking. Assessment of in benefit pavements is extremely fundamental for keeping them in great serviceable condition. To get an entire thought of the current state of any asphalt both basic and useful assessment are vital. The most essential Parameter of Structural Evaluation is Deflection (all the more regularly alluded to as BBD). Diversion is the auxiliary property of asphalt. Asphalt avoidance assessment is an imperative report. Shape and greatness of redirection is an element of auxiliary condition, temperature, dampness condition and movement write and volume influencing asphalt structure. Asphalt basic execution can be resolved through it surface condition, conduct under load, and material properties. A few viewpoints are promptly watched, (for example, surface condition), though subsurface data concerning the basecourse, subbase and subgrade is expensive to accumulate and decipher with dangerous testing; this is the reason non-ruinous techniques, especially avoidance testing with the Falling Weight Deflectometer (FWD), and the Benkleman Beam Deflection (BBD). BBD being the most efficient and simple to get is utilized everywhere throughout the world for avoidance estimation.

1.3 Parameters of structural evaluation:

1.3.1 Benkelman Beam Deflection

The Benkelman Beam, which was produced at the Western Association of State Highway Organization (WASHO) Road Test in 1952, is an effortlessly worked machine which depends on the lever arm standard principle. The Benkelman Beam is used with a loaded truck – typically 8.2 tonnes on the rear single axle with dual tires fully inflated to a standard value be 480 to 550 kPa (70 to 80 psi). The measurement is made by placing the tip of the benkleman beam also called probe, in between the dual tyres and the measurement of the pavement surface deflection is carried out. The Benkelman Beam is low cost but is also slow, labour intensive but is most widely all over the world for deflection measurement because of economical and principle attributes.

Standard Benkelman Beam tests are described in:

- AASHTO T 256: Pavement Deflection Measurements
- ASTM D 4695: General Pavement Deflection Measurements
- IRC 81

Figure 1.1: Benkelman Beam

11/25

Figure 1.2: Benkelman Beam Assembly

Figure 1.3: Placing of the benkelman beam

Temperature Correction

Standard temperature is 35°C Correction for temperature variation on deflection values measured at pavement temperature other than 35°C should be 0.01mm for each degree change from the standard temperature.

Moisture Content Correction

Correction for seasonal variation depends on type of soil subgrade. Deflection depends upon the change in the climate. Worst climate (after monsoon)-considered for design. Standard curves for variation of soil and rainfall are given in IRC 81.

Figure 1.4: Moisture correction factor

1.3.2 Falling Weight Deflectometer

All sudden load delivering mechanisms produces a sudden impulsive load to the road top surface. The consequent pavement response of the road surface (deflection) is measured by a series of highly sensitive sensors. The most commonly used method for deflection measurement is the use of an efficient but costly instrument called the falling weight deflectometer (FWD). The FWD can either be mounted in a vehicle or on a trailer and is furnished with a weight and a few speed transducer sensors. To play out a test, the vehicle is ceased and the stacking plate (weight) is situated over the coveted area. The sensors are then brought down to the asphalt surface and the weight is dropped. Numerous tests can be performed on a similar area utilizing distinctive weight drop statures (ASTM, 2000[1]). There are many advantages of using FWD. The advantage of an suddenly applie load inpact measuring device over a steady state deflection measuring device is that it is very rapid, the implusive load can be provided with an easy variation and it more precisely provides the simulation the transient loading of the vehilces moving over the surface of the road . Results from FWD tests are often referred to as using the <u>FWD AREA Parameter</u>.

Figure 1.5: Falling Weight Deflectometer

1.3.3 California Bearing Ratio (CBR Test)

The **California bearing ratio** (**CBR**) is a penetration test which is used for evaluation and analysis of the mechanical strength and stability of natural ground surfaced having sil and rocks, subgrades and basecourses below the newly constructed carriageways. It was firstdeveloped by the California Department of Transportation before World War II. It is used commonly since then.

The California bearing proportion (CBR) is an entrance test for assessment of the mechanical quality of normal ground, subgrades and basecourses underneath new carriageway development. It was created by the California Department of Transportation before World War II.The fundamental site test is performed by estimating the weight required to avoid soil or total with a plunger of standard region. The deliberate weight is then separated by the weight required to accomplish an equivalent infiltration on a standard pounded shake material. The CBR test is portrayed in ASTM Standards D1883-05 (for research center arranged examples) (for soils set up in field), and AASHTO T173. The CBR test is completely depicted in BS 1367 : Soils for structural building purposes. It is received in IRC 35 to check the quality of subgrade and for additionally plan of asphalt.

The CBR rating was created for estimating the heap bearing limit of soils utilized for building streets. The CBR can likewise be utilized for estimating the heap bearing limit of unchanged airstrips or for soils under cleared airstrips. The harder the surface, the higher the CBR rating. A CBR of 3 compares to worked farmland, a CBR of 4.75 likens to turf or wet mud, while damp sand may have a CBR of 10. Astounding pulverized shake has a CBR more than 80. The standard material for this test is smashed limestone which has an estimated CBR value of almost 100, implying that it isn't very surprising to see CBR estimations of values higher than 100 in very much compacted regions. The CBR data is included in "Annexure II".

Figure 1.6: CBR testing machine

1.3.4 Traffic Volume Studies

The design traffic is considered in terms of the cumulative number of standard axles. The cumulative number of Standard Axles to be catered for in the design. The traffic data is included on the "Annexure-III".

- A = Initial Traffic in the year of completion of construction on design lane
- r = Annual growth rate of commercial vehicles
- n = Design life in years
- F = Vehicle Damage Factor

$$N = \frac{365 \times [(1 + r)^n - 1]}{r} \times A \times D \times F$$

Equation 1: Calculation of number of Standard axles

Fig 1.7: Use of traffic studies in design of pavement

1.3.5Vehicle Damage Factor

The multiplier for converting the number of commercial vehicles of different axle load an axle configuration to the number of standard axle-load repetition is termed as vehicle damage factor (VDF). VDF = Equivalent of standard axles / commercial vehicle The vehicle damage factor depend upon the axle configuration, Axle loading, terrain, Type of road and hence the vehicle damage factor varies with the axle configuration, type of load, axle loading, terrain from region to region. We have used IRC:SP 72-2015 for the calculation of VDF value by using the different vehicle classes and their consequent impact on the pavement surface.

1.4 Instruments used

- **1.4.1** Benkleman Beam for Deflection Studies.
- **1.4.2** CBR Machine for Subgrade Strength Evaluation.
- **1.4.3** Glycerol and sensitive thermometer for temperature correction.
- 1.4.4 Oven for moisture content

1.5 Literature Review

Fontul Simona (November 2004), conducted structural evaluation of Flexible pavement using Non-Destructive tests. The aim of his project is to improve the existing methodologies which were being used to evaluate a flexible pavement. He evaluated the Bearing Capacity of the pavement by measuring in-situ deflection, Pavement thickness and then established a Response model of the pavement. The analysis of his result showed the suitability and advantages of proposed methodology for structural evaluation of pavement.

Subramaniam B., et al, (August, 2017), conducted Functional and Structural evaluation of road pavement. He evaluated the condition of a selected section from Budalpur to Pudupatti on State Highway 99. Structural evaluation of pavement was carried out by Benkelman Beam to determine the capacity to withstand future traffic loading. From this data, overlay thickness required to maintain the pavement in serviceable condition.

Deol Sunny, (july,2017), conducted structural evaluation of pavements using nondestructive techniques in low volume road. Light Weight Deflectometer is used for structural evaluating the pavement layer moduli and overlay design. Due to the extremely expensive set, destruction and handling constraints in the FWD, the benkleman beam is still the most widely used instrument for the deflection finding works.

Long Bing, (Sept,2011), conducted structural evaluation of rigid pavement sections. It addresses the structural performance of experimental rigid pavements constructed in California. Falling Weight Deflectometer (FWD) was utilized to conduct deflection testing for backcalculation of layer moduli and subgrade reaction moduli (K-value), evaluation of joint load transfer capacity, and detection of voids under the slabs. In addition, pavement distress condition was also evaluated as it relates to the integrity of pavement structure.

Umersalamet al. (2015) have collected required filled data like existing pavement structure, soil subgrade data, pavement surface condition, traffic data and rebound deflection by using Benkelman Beam Deflection (BBD) technique. They were evaluated total existing pavement thickness for site 1 and site 2 and compared them with new overall pavement thickness and it was evident that site 1 fall short by 360 mm and site 2 fall short by 320 mm. The required overlay thickness for site 1 and site 2 was 95 mm and 60 mm respectively to strengthening them.

Aghera V. Hardik, conducted a review on performance evaluation of Flexible pavement. structural evaluation of pavement by Benkelman Beam Deflection technique, evaluate pavement roughness and distress by Bump Integrator and visual observation at particular sections of the roads. Visual observation considers crack, patch, potholes, rutting and raveling. Roughness and visual distresses correlates each other. Regression model were developed between roughness and visual distress by using SPSS software.

Abaza, k (2005)

Pavement performance is evaluated using visual inspection. A performance curve is constructed, relating pavement performance to service time or equivalent single axle load of 80 KN. This further leads to the construction of flexible pavement overlay design models. An attempt is made to compensate for loss in pavement strength over service time. Relative strength are indicated by the structural number and gravel equivalent.

Prasad, D. et al (2014)

Performance evaluation of low volume roads is done to prioritize the maintenance order of the selected road stretches in Tumkur, Karnataka. Investigations were made regarding CBR of subgrade soil, Benkelman Beam deflection method, International Roughness Index (IRI). Roads were rated according to number of potholes, patching, rutting and cracking. A new parameter called as Modified Maintenance priority index(MMPI) is used to prioritize the roads.

Chou, P. et al (1993)

Pavement structural conditions are evaluated non-destructively to obtain pavement deflection. Pavement deflections are categorized by their elastic moduli from back-calculations of the surface deflections. It is a knowledge based system and Pavement Structural Evaluation System is developed. Thus it helps in improving the efficiency of interpreting Non Destructive Test Results.

Hoffman, M. et al (1983)

Different loading modes are used to collect Pavement deflection data. Various methods are static(Benkelman Beam), vibratory (Road Rater), impulse(Falling Weight Deflectometer). Performance of pavement is observed for different loading modes. Comparisons show that Falling Weight Deflectometer best stimulate the response of pavement under moving trucks. Benkelman Beam induces highest deflection in pavements.

Nayak, R. et al (2012)

Various factors that disrupt the road pavement conditions are analysed. The parameters used were road condition, traffic condition, environmental conditions that affect deflection values of pavement. Data is acquired from various sources and integrated to obtain useful information. The generated model shows the factors that affect or disrupt pavement deflection data.

1.5.1 Deflection model Selection on basis of Literature Review

The result of rigorous literature review, we have concluded the use of following deflection model for the prediction of deflection values. The following model is developed after 8 years of regular deflection data being collected and more importantly implied for low volume rural roads which is almost similar to our conditions.

 $Def_t = Def_i + 0.355(CSA*P_{age})^{Def} + SN^{-1.472}$

Equation 1- Deflection Prediction Formula

 $SN = 3.51(\log_{10} \text{CBR}) - 0.85(\log_{10} \text{CBR})^2$

Equation 2 Calculation of Structural Number

Def._i=Initial characteristic deflection (mm) at the beginning.

 $Def_t = Characteristic deflection (mm) after time 't' where 't' is age of pavement.$

CSA= Cumulative Standard Axles in billion

SN = Modified Structural Number

Page= Age of Pavement in years at the end of time interval 't'

 Table 1.1: Deflection prediction model of Rural hilly Roads

2.1 Objectives

- Literature review of Deflection Prediction Models.
- To predict the future overlay using present Benkelman Beam Deflection values for 12 selected rural stretches each of 2.5km with help of suitable prediction models using IRC81-1997.
- Comparing the cost estimation of future overlay and regular maintenance of pavement.

Figure 2.1: Flow chart representation of project work

2.2 Objectives achieved

- **1.)** Calculation of CBR value of soil from 8 of selected 12 stretches.
- **2.**) Learning the basics of Benkleman Beam and its practical application to calculate the pavement deflection values.
- **3.)** Collection of Deflection data of selected roads.
- 4.) Cost estimation and proving cost effectiveness of regular maintenance

2.3 Selected rural road stretches:

Twelve roads are selected for the structural evaluation of pavement. All selected roads are important rural roads connected to NH. Criteria for selection of road:

- i. All roads must be rural roads.
- ii. Minimum length of road stretch is about 2-2.5 km.

On each stretch the BBD reading will be taken at an interval of 100m. Total of 25 readings will be taken on each of selected stretches.

2.3.1 List of Selected Rural Roads

Road ID	Road Name	Road Width (m)	Road ID	Road Name	Road Width (m)
RR-1	Domehar-Waknaghat Road	3.5	RR -7	Shoghi Lagroo Road	3.35
RR-2	Salogra-Ashwini Khad Road	3.35	RR-8	Wakna link Road	3.25
RR-3	Kyari Bangla Road	3.35	RR-9	Saij Road	3.35
RR-4	Basha Road	3.35	RR-10	Chail Road	3.4
RR-5	Industrial Road	3.5	RR-11	Nain Basal Road	3.35
RR-6	Salana Road	3.3	RR-12	Dadhog Road	3.3

Table 2.1: List of selected Rural Roads

Figure 2.2: Selected Rural Roads

2.4 Data collection:

The soil samples from 8 of the selected 12 stretches have been collected and CBR values of each of the samples have been calculated. Atleast 5-6kg of soil is required from each of the selected stretches and CBR test is conducted.

Figure 2.3: Sample Collection

Figure 2.4: Sample Collection from RR 8

Figure 2.5: Mould filled with CBR sample

Figure 2.6: Testing on CBR sample

Figure 2.7: Soil sample failure after CBR test

CHAPTER-3

3.1 Benkelman Beam Deflection Data Collection

Benkelman Beam deflection readings for various selected flexible pavement roads was conducted by a loaded truck. The truck was loaded such that the rear axle load was 8.2 tonnes. Loading of truck took place in kyarighat (near waknaghat). The loaded truck was then used to get the deflection readings for various selected roads

Figure 3.1: Loading of truck to 8200kg

Figure 3.2: Placing of benkelman beam between the tyres at RR 7

Figure 3.3: Deflection reading when truck moves 2.7 metres from initial position

Figure 3.4: Truck is at 2.7 metres from initial point

Figure 3.5: Placing of probe of the benkelman beam

Figure 3.6: Benkelman beam reading at RR 2

Figure 3.7:Deflection data when truck moves 9m from intermediate point

Chapter-4

Cost estimation:

The cost estimation is done on the basis of survey conducted by the PMGSY. The survey yielded the average for the annual maintenance and overlay of premix carpet. The cost estimation done by us proved the economic advantage of regular maintenance over complete overlay after few years.

Conclusion:

The effective cost for regular annual maintenance is coming out to be much lower than cost of overlaying for most of the selected rural stretches. In accordance to study conducted by us overlaying after 4-5years is only suitable for roads with extremely low volume of daily traffic. The difference of cost effectiveness of maintenance is nearly half the cost of overlaying for some stretches with high traffic densities and relatively higher CSA value. Thus on the basis of our study we can conclude that the regular annual maintenance of low volume selected rural roads is more cost effective than the overlaying done after 4-5 years of daily use. The result can be justified by the following table and the same in "annexure VII".

	Future		Cost of regular	
	Overlay in	Age of	maintenance	Cost of Providing
	year 2021	pavement	(PMGSY)	overlay(PMGSY)
RR1	120 mm	7 yrs	2.45lakhs	4.25lakhs
RR2	150 mm	5 yrs	1.75lakhs	5.087lakhs
RR3	150 mm	7 yrs	2.45lakhs	5.087lakhs
RR4	60 mm	6 yrs	2.10lakhs	2.03lakhs
RR5	220 mm	6 yrs	2.10lakhs	7.79lakhs
RR6	200 mm	7 yrs	2.45lakhs	6.65lakhs
RR7	100 mm	5 yrs	1.75lakhs	3.39lakhs
RR8	70 mm	6 yrs	2.10lakhs	2.30lakhs
RR9	150 mm	7 yrs	2.45lakhs	5.08lakhs
RR10	200mm	8yrs	2.80lakhs	6.88lakhs
RR11	160 mm	6 yrs	2.10lakhs	5.42lakhs
RR12	130 mm	7 yrs	2.45lakhs	4.35lakhs

References:

- Kumar, R.S. (2014), Pavement Evaluation, Universities Press (India) Pvt Ltd, Hyderabad, India.
- Bexabith A G and Chandra S (2009), 'Comparative Study of Flexible and Rigid Pavements for Different Soil and Traffic Conditions', Journal of Indian Roads Congress, 153 - 162.
- Rokade S, Agarwal K, and Shrivastava R, "Study on performance of flexible highway pavements", International Journal of Advanced Engineering Technology, Volume 1, Issue 3, Oct.-Dec.2010, 312- 338.
- 4. DrUmesh Sharma, "Non-Destructive Evaluation of an Internal Road of Chandigarh
 A Critical Study", International Conference on Biological, Civil and Environmental Engineering, March 17-18, 2014, 67-71.
- 5. Setianingsih, A.I. et al (2017), "Road Maintenance and Rehabilitation Program Using Functional and Structural Assessment" IOP Conf. Ser.: Mater. Sci. Eng.
- Ankit Gupta 1+, Praveen Kumar2, and RajatRastogi "Pavement Deterioration and Maintenance Model for Low Volume Roads"
- K. P. GEORGE, A. s. RAJAGOPAL, AND L. K. LIM "Models for Predicting Pavement Deterioration"
- Ferreira, A., Picado-Santos, L., Antunes, A.: Pavement performance modelling: state of the art. In: Proceedings of Seventh International Conference on Civil and Structural Engineering Computing, pp. 157–264. Civil-Comp Press, Oxford (1999)
- Dr. Shah. N.C, Strength Evaluation of Flexible Pavement of Runway Using BBD Technique for Surat Airport Project; Civil Engg. Department NIT Surat.
- Allen H.S ,Bullock D.L, Evaluation of deflection data as criteria for the posting and removal of spring load limits, Transportation Research Record 1106, National Research Council,1987

- 11. Sunny DeolGuzzarlapudi, Vinod Kumar Adigopula, Rakesh Kumar "Comparative studies of lightweight deflectometer and Benkelman beam deflectometer in low volume roads" journal of traffic and transportation engineering, 1 October 2016.
- 12. Ujjval J. Solanki, Pradip J. Gundalia," A Review on Structural Evaluation of Flexible Pavements using Falling Weight Deflectometer" Trends in Transport Engineering and Applications (STM) Journals, January 2014. Highway Capacity Manual, 2000, "Transportation Research Board, Washington D.C
- Roy, T.K, Chattapadhyay, B. C and Roy, S. K. 2010. "California Bearing Ratio Evaluation and Estimation": A Study of Comparison, (Indian Geotechnical conference) IGC-2010, IIT, Mumbai, pp 19-22.
- Khanna .S.K & Justo C.E (March 2001)", Highway Engineering, Nem Chand & Bros Publications, Roorkee (U.A), Eighth Edition.
- 15. IRC-SP 72-2007, Guidelines for the Design of Flexible Pavements for Low Volume

Roads, IRC, New Delhi.

- 16. Cost Analysis of roads- Pradhan Mantri Gram Sadak Yojna
- 17.IRC: 81-1997 Guidelines For Strengthening of Flexible Road Pavement Using Benkelman Beam Deflection Techniquel IRC New Delhi.

APPENDIX
Annexure-I

Benkleman Beam deflection data of rural roads

RR 1: Domehar-Waknaghat Road

Do	Di	$\mathbf{D}_{\mathbf{f}}$	2*Di	
(mm)	(mm)	(mm)	(mm)	2*D _f (mm)
0	0.352	0.355	0.704	0.71
0	0.217	0.219	0.434	0.438
0	0.41	0.413	0.82	0.826
0	0.401	0.403	0.802	0.806
0	0.302	0.304	0.604	0.608
0	0.269	0.272	0.538	0.544
0	0.215	0.217	0.43	0.434
0	0.188	0.191	0.376	0.382
0	0.361	0.364	0.722	0.728
0	0.201	0.204	0.402	0.408
0	0.415	0.417	0.83	0.834
0	0.334	0.337	0.668	0.674
0	0.381	0.384	0.762	0.768
0	0.341	0.343	0.682	0.686
0	0.271	0.274	0.542	0.548
0	0.225	0.227	0.45	0.454
0	0.358	0.361	0.716	0.722
0	0.381	0.383	0.762	0.766
0	0.396	0.399	0.792	0.798
0	0.425	0.427	0.85	0.854
0	0.332	0.335	0.664	0.67
0	0.282	0.285	0.564	0.57
0	0.303	0.306	0.606	0.612
0	0.339	0.346	0.678	0.692
0	0.297	0.299	0.594	0.598

Table 2.1: Deflection data of RR 1(Domehar-Waknaghat Road)

RR 3: Kyari Bangla Road

Do(mm)	Di(mm)	Df(mm)	Di*2(mm)	Df*2(mm)
0	0.252	0.255	0.504	0.51
0	0.274	0.277	0.548	0.554
0	0.187	0.19	0.374	0.38
0	0.219	0.222	0.438	0.444
0	0.392	0.396	0.784	0.792
0	0.321	0.325	0.642	0.65
0	0.204	0.208	0.408	0.416
0	0.291	0.294	0.582	0.588
0	0.225	0.229	0.45	0.458
0	0.162	0.165	0.324	0.33
0	0.329	0.334	0.658	0.668
0	0.205	0.206	0.41	0.412
0	0.313	0.315	0.626	0.63
0	0.301	0.303	0.602	0.606
0	0.412	0.414	0.824	0.828
0	0.209	0.213	0.418	0.426
0	0.215	0.218	0.43	0.436
0	0.325	0.327	0.65	0.654
0	0.225	0.228	0.45	0.456
0	0.261	0.263	0.522	0.526
0	0.401	0.404	0.802	0.808
0	0.264	0.265	0.528	0.53
0	0.182	0.184	0.364	0.368
0	0.31	0.313	0.62	0.626
0	0.286	0.288	0.572	0.576

Table 3.2 : Deflection data of RR 3(Kyari Bangla Road)

RR 5: Industrial Road

Do(mm)	Di(mm)	Df(mm)	D _i *2(mm)	D _f *2(mm)
0	0.512	0.514	1.024	1.028
0	0.413	0.415	0.826	0.83
0	0.404	0.407	0.808	0.814
0	0.359	0.362	0.718	0.724
0	0.342	0.345	0.684	0.69
0	0.362	0.365	0.724	0.73
0	0.516	0.518	1.032	1.036
0	0.558	0.563	1.116	1.126
0	0.311	0.315	0.622	0.63
0	0.269	0.272	0.538	0.544
0	0.408	0.412	0.816	0.824
0	0.192	0.195	0.384	0.39
0	0.212	0.216	0.424	0.432
0	0.234	0.237	0.468	0.474
0	0.257	0.259	0.514	0.518
0	0.318	0.321	0.636	0.642
0	0.364	0.368	0.728	0.736
0	0.252	0.255	0.504	0.51
0	0.182	0.184	0.364	0.368
0	0.152	0.155	0.304	0.31
0	0.202	0.204	0.404	0.408
0	0.162	0.163	0.324	0.326
0	0.189	0.193	0.378	0.386
0	0.195	0.197	0.39	0.394
0	0.227	0.229	0.454	0.458

Table 3.3: Deflection data of RR 5(Industrial Road)

RR 7: Lagroo Road

Do(mm)	D _i (mm)	D _f (mm)	D _i *2(mm)	D _f *2(mm)
0	0.312	0.314	0.624	0.628
0	0.321	0.324	0.642	0.648
0	0.401	0.404	0.802	0.808
0	0.376	0.379	0.752	0.758
0	0.381	0.385	0.762	0.77
0	0.266	0.271	0.532	0.542
0	0.251	0.257	0.502	0.514
0	0.421	0.423	0.842	0.846
0	0.439	0.443	0.878	0.886
0	0.369	0.373	0.738	0.746
0	0.26	0.263	0.52	0.526
0	0.257	0.259	0.514	0.518
0	0.328	0.333	0.656	0.666
0	0.412	0.415	0.824	0.83
0	0.352	0.355	0.704	0.71
0	0.394	0.396	0.788	0.792
0	0.315	0.319	0.63	0.638
0	0.26	0.264	0.52	0.528
0	0.193	0.197	0.386	0.394
0	0.232	0.235	0.464	0.47
0	0.334	0.336	0.668	0.672
0	0.228	0.242	0.456	0.484
0	0.257	0.259	0.514	0.518
0	0.318	0.321	0.636	0.642
0	0.413	0.417	0.826	0.834

Table 3.4: Deflection data of Lagroo Road

RR 4: Basha Road

D _o (mm)	D _i (mm)	D _f (mm)	D _i *2(mm)	D _f *2(mm)
0	0.152	0.155	0.304	0.31
0	0.182	0.184	0.364	0.368
0	0.19	0.191	0.38	0.382
0	0.212	0.214	0.424	0.428
0	0.23	0.232	0.46	0.464
0	0.162	0.165	0.324	0.33
0	0.204	0.208	0.408	0.416
0	0.178	0.182	0.356	0.364
0	0.218	0.221	0.436	0.442
0	0.251	0.253	0.502	0.506
0	0.168	0.171	0.336	0.342
0	0.139	0.141	0.278	0.282
0	0.149	0.153	0.298	0.306
0	0.229	0.233	0.458	0.466
0	0.293	0.295	0.586	0.59
0	0.146	0.149	0.292	0.298
0	0.191	0.195	0.382	0.39
0	0.211	0.214	0.422	0.428
0	0.233	0.234	0.466	0.468
0	0.161	0.165	0.322	0.33
0	0.201	0.203	0.402	0.406
0	0.218	0.22	0.436	0.44
0	0.17	0.173	0.34	0.346
0	0.245	0.249	0.49	0.498
0	0.162	0.168	0.324	0.336

Table 3.5: Deflection data of RR 4(Basha Road)

RR 6: Salana Road

D _o (mm)	D _i (mm)	D _f (mm)	D _i *2(mm)	D _f *2(mm)
0	0.413	0.418	0.826	0.836
0	0.162	0.167	0.324	0.334
0	0.208	0.213	0.416	0.426
0	0.316	0.32	0.632	0.64
0	0.18	0.181	0.36	0.362
0	0.263	0.267	0.526	0.534
0	0.144	0.15	0.288	0.3
0	0.409	0.415	0.818	0.83
0	0.315	0.317	0.63	0.634
0	0.219	0.221	0.438	0.442
0	0.243	0.244	0.486	0.488
0	0.194	0.199	0.388	0.398
0	0.318	0.321	0.636	0.642
0	0.404	0.412	0.808	0.824
0	0.161	0.164	0.322	0.328
0	0.352	0.354	0.704	0.708
0	0.234	0.238	0.468	0.476
0	0.29	0.292	0.58	0.584
0	0.338	0.34	0.676	0.68
0	0.355	0.358	0.71	0.716
0	0.225	0.227	0.45	0.454
0	0.321	0.324	0.642	0.648
0	0.36	0.363	0.72	0.726
0	0.236	0.238	0.472	0.476
0	0.174	0.177	0.348	0.354

Table 3.6: Deflection data of RR 6(Salana Road)

RR 8:Vakna Road

D ₀ (mm)	D _i (mm)	D _f (mm)	Di*2(mm)	D _f *2(mm)
0	0.417	0.418	0.834	0.836
0	0.304	0.307	0.608	0.614
0	0.329	0.336	0.658	0.672
0	0.269	0.271	0.538	0.542
0	0.146	0.15	0.292	0.3
0	0.186	0.189	0.372	0.378
0	0.207	0.209	0.414	0.418
0	0.242	0.245	0.484	0.49
0	0.315	0.318	0.63	0.636
0	0.202	0.205	0.404	0.41
0	0.158	0.163	0.316	0.326
0	0.167	0.169	0.334	0.338
0	0.365	0.37	0.73	0.74
0	0.154	0.16	0.308	0.32
0	0.214	0.218	0.428	0.436
0	0.404	0.408	0.808	0.816
0	0.316	0.321	0.632	0.642
0	0.172	0.176	0.344	0.352
0	0.241	0.245	0.482	0.49
0	0.343	0.349	0.686	0.698
0	0.211	0.214	0.422	0.428
0	0.183	0.187	0.366	0.374
0	0.261	0.264	0.522	0.528
0	0.337	0.341	0.674	0.682
0	0.301	0.305	0.602	0.61

Table 3.7: Deflection data of RR 8(Vakna Road)

RR 9: Saij Road

D ₀ (mm)	D _i (mm)	D _f (mm)	Di*2(mm)	D _f *2(mm)
0	0.414	0.417	0.828	0.834
0	0.432	0.438	0.864	0.876
0	0.389	0.397	0.778	0.794
0	0.332	0.335	0.664	0.67
0	0.357	0.36	0.714	0.72
0	0.434	0.438	0.868	0.876
0	0.407	0.41	0.814	0.82
0	0.359	0.36	0.718	0.72
0	0.377	0.381	0.754	0.762
0	0.418	0.42	0.836	0.84
0	0.447	0.45	0.894	0.9
0	0.424	0.427	0.848	0.854
0	0.511	0.516	1.022	1.032
0	0.591	0.595	1.182	1.19
0	0.417	0.419	0.834	0.838
0	0.503	0.505	1.006	1.01
0	0.466	0.467	0.932	0.934
0	0.481	0.483	0.962	0.966
0	0.36	0.369	0.72	0.738
0	0.381	0.383	0.762	0.766
0	0.401	0.402	0.802	0.804
0	0.319	0.322	0.638	0.644
0	0.378	0.38	0.756	0.76
0	0.399	0.403	0.798	0.806
0	0.313	0.315	0.626	0.63

Table 3.8: Deflection data of RR 9(Saij Road)

RR 10: Chail Road

Do(mm)	D _i (mm)	D _f (mm)	Di*2(mm)	D _f *2(mm)
0	0.321	0.323	0.642	0.646
0	0.325	0.327	0.65	0.654
0	0.285	0.285	0.57	0.57
0	0.261	0.263	0.522	0.526
0	0.208	0.209	0.416	0.418
0	0.255	0.258	0.51	0.516
0	0.322	0.325	0.644	0.65
0	0.303	0.306	0.606	0.612
0	0.289	0.291	0.578	0.582
0	0.207	0.21	0.414	0.42
0	0.281	0.282	0.562	0.564
0	0.352	0.351	0.704	0.702
0	0.391	0.393	0.782	0.786
0	0.252	0.254	0.504	0.508
0	0.268	0.27	0.536	0.54
0	0.297	0.299	0.594	0.598
0	0.315	0.317	0.63	0.634
0	0.269	0.271	0.538	0.542
0	0.297	0.298	0.594	0.596
0	0.286	0.287	0.572	0.574
0	0.271	0.276	0.542	0.552
0	0.309	0.31	0.618	0.62
0	0.321	0.232	0.642	0.464
0	0.339	0.341	0.678	0.682
0	0.207	0.209	0.414	0.418

Table 3.9: Deflection Data of RR 1(Chail Road)

RR 11:Nain Road

D _o (mm)	D _i (mm)	D _f (mm)	Di*2(mm)	Df*2(mm)
0	0.521	0.524	1.042	1.048
0	0.563	0.567	1.126	1.134
0	0.582	0.586	1.164	1.172
0	0.501	0.504	1.002	1.008
0	0.483	0.485	0.966	0.97
0	0.612	0.613	1.224	1.226
0	0.552	0.554	1.104	1.108
0	0.556	0.558	1.112	1.116
0	0.421	0.424	0.842	0.848
0	0.489	0.492	0.978	0.984
0	0.561	0.563	1.122	1.126
0	0.512	0.515	1.024	1.03
0	0.525	0.527	1.05	1.054
0	0.533	0.536	1.066	1.072
0	0.53	0.532	1.06	1.064
0	0.545	0.546	1.09	1.092
0	0.549	0.551	1.098	1.102
0	0.487	0.489	0.974	0.978
0	0.561	0.564	1.122	1.128
0	0.497	0.5	0.994	1
0	0.449	0.452	0.898	0.904
0	0.503	0.506	1.006	1.012
0	0.602	0.604	1.204	1.208
0	0.561	0.562	1.122	1.124
0	0.532	0.534	1.064	1.068

Table 3.10: Deflection data of RR 11(Nain Road)

RR 12:Dadhog Road

Do(mm)	D _i (mm)	D _f (mm)	D _i *2(mm)	D _f *2(mm)
0	0.352	0.354	0.704	0.708
0	0.212	0.214	0.424	0.428
0	0.189	0.192	0.378	0.384
0	0.144	0.147	0.288	0.294
0	0.232	0.237	0.464	0.474
0	0.201	0.203	0.402	0.406
0	0.26	0.263	0.52	0.526
0	0.142	0.145	0.284	0.29
0	0.305	0.306	0.61	0.612
0	0.128	0.131	0.256	0.262
0	0.207	0.21	0.414	0.42
0	0.198	0.201	0.396	0.402
0	0.169	0.171	0.338	0.342
0	0.246	0.247	0.492	0.494
0	0.252	0.254	0.504	0.508
0	0.313	0.316	0.626	0.632
0	0.144	0.147	0.288	0.294
0	0.153	0.157	0.306	0.314
0	0.223	0.226	0.446	0.452
0	0.219	0.222	0.438	0.444
0	0.205	0.207	0.41	0.414
0	0.231	0.234	0.462	0.468
0	0.19	0.193	0.38	0.386
0	0.311	0.312	0.622	0.624
0	0.168	0.171	0.336	0.342

Table 3.11: Deflection Data of RR 12(Dadhog Road)

RR 2: Ashwanikhad Road

Do(mm)	D _i (mm)	D _f (mm)	Di*2	D f*2
0	0.178	0.181	0.356	0.362
0	0.242	0.251	0.484	0.502
0	0.277	0.279	0.554	0.558
0	0.153	0.163	0.306	0.326
0	0.189	0.191	0.378	0.382
0	0.221	0.223	0.442	0.446
0	0.118	0.119	0.236	0.238
0	0.221	0.224	0.442	0.448
0	0.118	0.121	0.236	0.242
0	0.185	0.189	0.37	0.378
0	0.133	0.135	0.266	0.27
0	0.232	0.233	0.464	0.466
0	0.211	0.215	0.422	0.43
0	0.176	0.178	0.352	0.356
0	0.155	0.159	0.31	0.318
0	0.123	0.125	0.246	0.25
0	0.171	0.173	0.342	0.346
0	0.188	0.19	0.376	0.38
0	0.134	0.137	0.268	0.274
0	0.165	0.169	0.33	0.338
0	0.113	0.116	0.226	0.232
0	0.175	0.176	0.35	0.352
0	0.212	0.216	0.424	0.432
0	0.161	0.163	0.322	0.326
0	0.178	0.18	0.356	0.36

Table 3.12: Deflection Data of RR 2(Ashwini khad Road)

Annexure-II

CBR Calibration Factor

Applied Force (Kg)	Standard proving Ring Reading(Divisions)
25	83.4
50	162.5
75	245.5
100	333.9
125	417.1
150	500.2
175	585.3
200	671.5
225	758.5
250	845.8

Table 4.1 CBR Calibration Factor

Proving Ring Constant- 3.164

Figure 4.1: Standard Calibration Curve

CBR data of selected road stretches

Table 4.2 CBR data RR1

Deflection(mm)	Load	Proving Ring Reading
0.5	78.4672	24.8
1	169.5904	53.6
1.5	252.4872	79.8
2	325.2592	102.8
2.5	399.9296	126.4
3	470.1704	148.6
3.5	536.6144	169.6
4	587.2384	185.6
4.5	632.1672	199.8
5	670.768	212
5.5	713.7984	225.6
6	755.5632	238.8
6.5	796.0624	251.6
7	832.132	263
7.5	861.8736	272.4
8	891.6152	281.8
8.5	920.0912	290.8
9	944.7704	298.6
9.5	972.6136	307.4
10	989.6992	312.8

California Bearing Ratio- 28.45%

Figure 4.2: Load Penetration Curve of RR1

Table 4.3 CBR data RR2

Deflection(mm)	load	Proving Ring Reading
0.5	103.7792	32.8
1	216.4176	68.4
1.5	307.5408	97.2
2	362.5944	114.6
2.5	435.11328	137.52
3	505.6072	159.8
3.5	558.7624	176.6
4	609.3864	192.6
4.5	658.7448	208.2
5	692.916	219
5.5	721.392	228
6	749.868	237
6.5	779.6096	246.4
7	802.3904	253.6
7.5	828.968	262
8	861.8736	272.4
8.5	895.412	283
9	923.888	292
9.5	952.364	301
10	980.84	310

California Bearing Ratio-29.62%

Figure 4.3: Load Penetration Curve of RR2

Table 4.4	CBR (data	RR3
-----------	-------	------	-----

Deflection(mm)	load	Proving Ring Reading
0.5	88.592	28
1	164.528	52
1.5	246.792	78
2	294.252	93
2.5	376.516	119
3	435.9992	137.8
3.5	485.9904	153.6
4	540.4112	170.8
4.5	583.4416	184.4
5	620.7768	196.2
5.5	658.112	208
6	700.5096	221.4
6.5	736.5792	232.8
7	767.5864	242.6
7.5	797.328	252
8	831.4992	262.8
8.5	862.5064	272.6
9	895.412	283
9.5	920.724	291
10	946.036	299

California Bearing Ratio-26.73%

Figure 4.4: Load Penetration Curve of RR3

Deflection(mm)	Load (Kg)	Proving Ring Reading
0.5	129.724	41
1	227.808	72
1.5	308.8064	97.6
2	375.8832	118.8
2.5	451.8192	142.8
3	514.4664	162.6
3.5	563.192	178
4	597.996	189
4.5	626.472	198
5	658.112	208
5.5	692.916	219
6	721.392	228
6.5	749.868	237
7	784.672	248
7.5	813.148	257
8	847.952	268
8.5	873.264	276
9	901.74	285
9.5	936.544	296
10	965.02	305

Table 4.5 CBR data RR4

California Bearing Ratio-30.76%

Figure 4.5: Load Penetration Curve of RR4

Deflection(mm)	Load (Kg)	Proving Ring Reading
0.5	66.444	21
1	142.38	45
1.5	219.5816	69.4
2	290.4552	91.8
2.5	350.5712	110.8
3	406.8904	128.6
3.5	460.0456	145.4
4	513.2008	162.2
4.5	563.192	178
5	608.1208	192.2
5.5	650.5184	205.6
6	689.1192	217.8
6.5	725.1888	229.2
7	758.0944	239.6
7.5	785.9376	248.4
8	813.148	257
8.5	838.46	265
9	863.772	273
9.5	889.084	281
10	911.232	288

Table 4.6 CBR data RR5

California Bearing Ratio-25.28%

Figure 4.6: Load Penetration Curve of RR5

Deflection(mm)	Load(Kg)	Proving Ring Reading
0.5	62.6472	19.8
1	122.1304	38.6
1.5	196.168	62
2	266.4088	84.2
2.5	333.4856	105.4
3	402.4608	127.2
3.5	459.4128	145.2
4	502.4432	158.8
4.5	541.044	171
5	578.3792	182.8
5.5	614.4488	194.2
6	654.948	207
6.5	698.9276	220.9
7	715.6968	226.2
7.5	759.36	240
8	798.5936	252.4
8.5	836.2452	264.3
9	870.1	275
9.5	904.904	286
10	927.052	293

Table 4.7 CBR data RR6

California Bearing Ratio: 23.56%

Figure 4.7: Load Penetration Curve of RR 6

Deflection(mm)	Load(Kg)	Proving Ring Reading
0.5	85.428	27
1	161.364	51
1.5	237.3	75
2	297.416	94
2.5	341.712	108
3	373.352	118
3.5	423.976	134
4	461.944	146
4.5	499.912	158
5	534.716	169
5.5	575.848	182
6	618.8784	195.6
6.5	658.112	208
7	689.752	218
7.5	720.1264	227.6
8	747.6532	236.3
8.5	781.508	247
9	809.984	256
9.5	847.952	268
10	883.0724	279.1

Table 4.8 CBR data RR7

California Bearing Ratio: 24.62%

Figure 4.8: Load Penetration Curve of RR 7

Deflection (mm)	Load(Kg)	Proving Ring Reading
0.5	87.9592	27.8
1	165.1608	52.2
1.5	248.6904	78.6
2	342.3448	108.2
2.5	409.4216	129.4
3	449.288	142
3.5	496.748	157
4	537.88	170
4.5	573.9496	181.4
5	603.0584	190.6
5.5	635.3312	200.8
6	663.1744	209.6
6.5	692.916	219
7	724.556	229
7.5	752.3992	237.8
8	777.0784	245.6
8.5	803.656	254
9	831.4992	262.8
9.5	857.444	271
10	893.1972	282.3

Table 4.9 CBR data RR8

California Bearing Ratio- 28.23%

Figure 4.9: Load Penetration Curve of RR8

Deflection(mm)	Load(Kg)	Proving Ring Reading
0.5	67.0768	21.2
1	151.2392	47.8
1.5	201.2304	63.6
2	248.0576	78.4
2.5	292.67	92.5
3	337.9152	106.8
3.5	359.7468	113.7
4	378.4144	119.6
4.5	396.7656	125.4
5	420.1792	132.8
5.5	436.632	138
6	463.8424	146.6
6.5	495.4824	156.6
7	530.9192	167.8
7.5	549.2704	173.6
8	568.8872	179.8
8.5	580.2776	183.4
9	599.8944	189.6
9.5	627.7376	198.4
10	652.4168	206.2

Table 4.10 CBR data RR9

California Bearing Ratio-21.37%

Figure 4.10: Load Penetration Curve of RR 9

		Proving Ring
Deflection(mm)	Load(Kg)	Reading(mm)
0	87.9592	27.8
0.5	163.2624	51.6
1	213.2536	67.4
1.5	256.9168	81.2
2	296.1504	93.6
2.5	336.6496	106.4
3	374.6176	118.4
3.5	403.41	127.5
4	431.5696	136.4
4.5	460.362	145.5
5	485.9904	153.6
5.5	513.8336	162.4
6	541.6768	171.2
6.5	569.52	180
7	596.7304	188.6
7.5	623.308	197
8	645.456	204
8.5	669.5024	211.6
9	691.0176	218.4
9.5	710.6344	224.6
10	730.884	231

Table 4.11 CBR data RR10

California Bearing Ratio-24.56%

Figure 4.12: Load Penetration Curve of RR11

Deflection(mm)	Load(Kg)	Proving Ring Reading
0.5	62.6472	19.8
1	103.1464	32.6
1.5	153.1376	48.4
2	197.4336	62.4
2.5	255.6512	80.8
3	284.1272	89.8
3.5	308.1736	97.4
4	330.9544	104.6
4.5	347.4072	109.8
5	360.696	114
5.5	378.4144	119.6
6	391.7032	123.8
6.5	403.7264	127.6
7	415.7496	131.4
7.5	429.6712	135.8
8	448.0224	141.6
8.5	460.0456	145.4
9	473.9672	149.8
9.5	484.7248	153.2
10	498.6464	157.6

Table 4.12 CBR data RR11

California Bearing Ratio- 18.67%

Figure 4.12: Load Penetration Curve of RR11
Deflection(mm)	Load(Kg)	Proving Ring Reading
0.5	74.6704	23.6
1	150.6064	47.6
1.5	200.5976	63.4
2	253.7528	80.2
2.5	310.7048	98.2
3	343.6104	108.6
3.5	372.7192	117.8
4	399.9296	126.4
4.5	422.7104	133.6
5	444.8584	140.6
5.5	466.3736	147.4
6	486.6232	153.8
6.5	511.3024	161.6
7	529.6536	167.4
7.5	544.8408	172.2
8	562.5592	177.8
8.5	579.6448	183.2
9	597.996	189
9.5	612.5504	193.6
10	626.472	198

Table 4.13 CBR data RR12

California Bearing Ratio- 22.66%

Figure 4.13: Load Penetration Curve of RR 12

Annexure III

Traffic data of Rural Roads

Time		Day 1		Day 2
Vehicles	9 A.M. to 12	2 P.M. to	9 A.M. to 12	2 P.M. to 5
	Noon	5 P.M.	Noon	P.M.
Cars	18	11	13	16
Buses	3	5	4	5
2-Wheels	29	31	30	24
Pickups	9	4	11	6
Trucks	13	11	9	10

Table 5.1 : Traffic data RR1

Table 5.2 : Traffic data RR2

Time		Day 1		Day 2
Vehicles	9 A.M. to 12	2 P.M. to 5	9 A.M. to 12	2 P.M. to 5
	Noon	P.M.	Noon	P.M.
Cars	21	19	28	17
Buses	2	6	3	4
2-Wheels	17	18	13	16
Pickups	3	7	10	9
Trucks	11	16	12	9

Time		Day 1		Day 2
Vehicles	9 A.M. to 12	2 P.M. to 5	9 A.M. to 12	2 P.M. to 5
	Noon	P.M.	Noon	P.M.
Cars	19	16	21	12
Buses	3	2	3	2
2-	12	16	14	11
Wheels				
Pickups	5	4	6	7
Trucks	5	6	7	8

Table 5.3 : Traffic data RR3

Table 5.4 : Traffic data RR4

Time		Day 1		Day 2
Vehicles	9 A.M. to	2 P.M. to 5 P.M.	9 A.M. to	2 P.M. to 5
	12 Noon		12 Noon	P.M.
Cars	14	11	15	13
Buses	4	5	4	5
2-Wheels	22	19	21	14
Pickups	6	9	8	5
Trucks	5	7	4	4

Time		Day 1		Day 2
Vehicles	9 A.M. to	2 P.M.	9 A.M. to 12	2 P.M. to 5
	12 Noon	to 5	Noon	P.M.
		P.M.		
Cars	17	19	21	15
Buses	3	4	3	4
2-Wheels	15	17	13	18
Pickups	12	15	10	15
Trucks	28	24	31	21

Table 5.5 : Traffic data RR5

Table 5.6 : Traffic data RR6

Time		Day 1		Day 2
Vehicles	9 A.M. to 12	2 P.M. to 5	9 A.M. to 12	2 P.M. to 5
	Noon	P.M.	Noon	P.M.
Cars	11	17	19	20
Buses	3	5	3	5
2-	21	24	17	25
Wheels				
Pickups	6	8	9	4
Trucks	15	22	19	27

Time		Day 1		Day 2
Vehicles	9 A.M. to 12	2 P.M. to 5 P.M.	9 A.M. to	2 P.M. to
	Noon		12 Noon	5 P.M.
Cars	17	19	15	18
Buses	5	4	5	4
2-Wheels	18	11	16	14
Pickups	6	8	5	9
Trucks	7	4	11	5

Table 5.7 : Traffic data RR7

Table 5.8 : Traffic data RR8

Time		Day 1		Day 2
Vehicles	9 A.M. to	2 P.M. to 5	9 A.M. to 12	2 P.M. to 5
	12 Noon	P.M.	Noon	P.M.
Cars	2	4	1	3
Buses	0	0	0	0
2-Wheels	7	5	4	7
Pickups	0	0	1	1
Trucks	8	9	3	6

Time		Day 1		Day 2
Vehicles	9 A.M. to 12	2 P.M. to 5	9 A.M. to 12 Noon	2 P.M. to
	Noon	P.M.		5 P.M.
Cars	13	9	10	11
Buses	0	0	0	0
2-Wheels	11	15	16	12
Pickups	2	4	3	4
Trucks	7	6	4	6

Table 5.9 : Traffic data RR9

Table 5.10 : Traffic data RR10

Time		Day 1		Day 2
Vehicles	9 A.M. to 12	2 P.M. to 5	9 A.M. to 12	2 P.M.
	Noon	P.M.	Noon	to 5
				P.M.
Cars	35	42	28	45
Buses	11	9	11	9
2-Wheels	37	28	25	33
Pickups	9	11	13	10
Trucks	16	12	18	6

Time		Day 1		Day 2
Vehicles	9 A.M. to 12 Noon	2 P.M. to 5	9 A.M. to 12	2 P.M.
		P.M.	Noon	to 5
				P.M.
Cars	28	19	21	14
Buses	5	2	5	2
2-Wheels	28	34	19	24
Pickups	7	9	11	4
Trucks	5	2	3	2

Table 5.11 : Traffic data RR11

Table 5.12 : Traffic data RR12

		Day 1		Day 2
Vehicles	9 A.M. to 12	2 P.M. to 5	9 A.M. to 12	2 P.M. to 5
	Noon	P.M.	Noon	P.M.
Cars	7	11	13	9
Buses	0	0	0	0
2-Wheels	8	7	11	4
Pickups	4	1	3	2
Trucks	5	4	3	6

Annexure IV

	CSA(in	Soil		Annual	Moisture	Characterstic	Reqd.
	msa)	type	PI	Rainfall	correction	Deflec.(mm)	Overlay
RR1	65.66MSA	Gravel		1518mm	1.38	1.088mm	100mm
RR2	70.2MSA	Clay	13.6	1518mm	1.85	0.825mm	95mm
RR3	18.3MSA	Clay	12.1	1518mm	1.85	1.269mm	105mm
RR4	17MSA	Gravel		1518mm	1.38	0.66mm	50mm
RR5	85.8MSA	Clay	14.23	1518mm	1.85	1.59mm	180mm
RR6	105.36MSA	Gravel		1518mm	1.38	0.99mm	100mm
RR7	21.1MSA	Gravel		1518mm	1.38	1.095mm	160mm
RR8	10.4MSA	Gravel		1518mm	1.38	0.9455mm	30mm
RR9	12.6MSA	Gravel		1518mm	1.38	1.323mm	60mm
RR10	173.62MSA	Clay	13.4	1518mm	1.85	0.918mm	200mm
RR11	18.6MSA	Gravel		1518mm	1.38	1.59mm	140mm
RR12	22MSA	Clay	11.25	1518mm	1.85	1.025mm	50mm

Characteristic Deflection and required present overlay

Table 6 : Characteristic deflection and present overlay

Annexure V

Predicted future characteristic deflection and overlay for year 2021

r		1					
	Characteristic			Structural	Future		Pavement
Road	Deflection	CBR	CSA	Number	Deflection	Overlay	age
						125	
RR 1	1.088	28.45%	65.66 msa	3.3066	1.4037 mm	mm	7 yrs
						150	
RR 2	0.825	29.62%	70.2 msa	3.324	1.417 mm	mm	5 yrs
						150	
RR3	1.269	26.73%	18.3 msa	3.2778	1.4693 mm	mm	7 yrs
RR 4	0.66	30.76	17 msa	3.3408	0.9165 mm	60 mm	6 yrs
						220	
RR 5	1.59	25.28%	85.8 msa	3.251	1.8898 mm	mm	6 yrs
			105.36			200	
RR 6	0.99	23.56%	msa	3.215	1.4318 mm	mm	7 yrs
						100	
RR 7	1.095	23.62%	21.1 msa	1.3177	3.2174	mm	5 yrs
RR 8	0.9455	28.23%	10.4 msa	3.303	1.1435 mm	70 mm	6 yrs
						150	
RR 9	1.323	21.37%	12.6 msa	3.1644	1.5207 mm	mm	7 yrs
RR10	0.918	24.56%	173.62msa	3.236	1.52	250mm	7years
RR						160	
11	1.59	18.67%	18.6 msa	3.088	1.8107 mm	mm	6 yrs
RR						130	
12	1.025	22.66%	22 msa	3.195	1.258 mm	mm	7 yrs

Table 7 : Characteristic deflection and overlay 2021

Annexure VI

VDF value and vehicle class distribution in accordance to IRC:SP 72-2015

Table 8.1 Vehicle class distribution and VDF value for RR1

Class	VDF(ACC to IRC SP 72-2015)
9 laden HCV	23.22
108 MCV	33.48
50 partially laden	15.5
HCV	
	NET VDF= 72.2

Table 8.2 Vehicle class distribution and VDF value for RR2

Class	VDF
10 laden HCV	25.8
102 partially laden	31.62
HCV	
64 MCV	19.84
	NET VDF=77.26

Table 8.3 Vehicle class distribution and VDF value for RR3

Class	VDF
6 laden HCV	15.48
39 Partially laden HCV	12.09
42 MCV	13.02
	NET= 40.59

Table 8.4 Vehicle class distribution and VDF value for RR4

Class	VDF
4 Laden HCV	10.32
30 for partially laden HCV	9.3
57 MCV	17.67
	NET=36.27

Table 8.5 Vehicle class distribution and VDF value for RR5

Class	VDF
15 laden HCV	38.7
104 partially laden HCV	32.24
64 MCV	19.84
	NET VDF = 90.78

Table 8.6 Vehicle class distribution and VDF value for RR6

Class	VDF
18 Laden HCV	46.44
110 Partially laden HCV	34.1
71 MCV	22
	NET VDF=102.54

Class	VDF
6 laden HCV	15.48
45 Partially laden HCV	13.95
44 MCV	13.64
	NET VDF=43.07

Table 8.7 Vehicle class distribution and VDF value for RR7

Table 8.8 Vehicle class distribution and VDF value for RR8

Class	VDF
5 Laden HCV	12.9
40 Partially Laden HCV	12.4
20 MCV	6.2
	NET VDF=31.5

Table 8.9 Vehicle class distribution and VDF value for RR9

Class	VDF
7 Laden HCV	18.06
40 Partially Laden HCV	12.4
20 MCV	6.2
	NET VDF=36.66

Class	VDF	
20 Laden HCV	51.6	
148MCV	46	
96 Partiallly laden HCV	29.76	
	NET VDF= 127.36	

Table 8.10 Vehicle class distribution and VDF value for RR10

Table 8.11 Vehicle class distribution and VDF value for RR11

Class	VDF
5 Laden HCV	12.9
29 partially laden HCV	9
57 MCV	17.67
	NET VDF=39.57

Table 8.12 Vehicle class distribution and VDF value for RR12

VDF
23.22
12.76
13.02
NET VDF=48.95

Annexure VII

Estimated cost comparison of regular maintenance of pavement and complete overlaying in year 2021 in accordance to PMGSY survey

-				
	Future		Cost of regular	
	Overlay in	Age of	maintenance	Cost of Providing
	year 2021	pavement	(PMGSY)	overlay(PMGSY)
RR1	125 mm	7 yrs	2.45lakhs	4.45lakhs
RR2	150 mm	5 yrs	1.75lakhs	5.087lakhs
RR3	150 mm	7 yrs	2.45lakhs	5.087lakhs
RR4	60 mm	6 yrs	2.10lakhs	2.03lakhs
RR5	220 mm	6 yrs	2.10lakhs	7.79lakhs
RR6	200 mm	7 yrs	2.45lakhs	6.65lakhs
RR7	100 mm	5 yrs	1.75lakhs	3.39lakhs
RR8	70 mm	6 yrs	2.10lakhs	2.30lakhs
RR9	150 mm	7 yrs	2.45lakhs	5.08lakhs
RR10	250mm	8yrs	2.80lakhs	6.88lakhs
RR11	160 mm	6 yrs	2.10lakhs	5.42lakhs
RR12	130 mm	7 yrs	2.45lakhs	4.35lakhs

Table 9 Cost Comparison of maintenance and overlay