
SPEECH ARTICULATING SOFTWARE

Project report submitted in partial fulfilment of the requirement
for the degree of Bachelor of Technology

in

Computer Science and Engineering

By:

Ankit Saini (141214)

Under the supervision of

Amit Kumar

to

Department of Computer Science & Engineering and Information
Technology

Jaypee University of Information Technology, Waknaghat,
Solan-173234, Himachal Pradesh

Candidate’s Declaration

I hereby declare that the work presented in this report entitled “Speech Articulating Soft-

ware” in partial fulfilment of the requirements for the award of the degree of Bachelor of

Technology in Computer Science and Engineering/Information Technology submitted in

the department of Computer Science & Engineering and Information Technology, Jaypee

University of Information Technology Waknaghat is an authentic record of my own work car-

ried out over a period from December 2017 to May 2018 under the supervision of Amit Ku-

mar(Assistant Professor (Computer Science Department)). The matter embodied in the report

has not been submitted for the award of any other degree or diploma.

(Student Signature)

Ankit Saini 141214

This is to certify that the above statement made by the candidate is true to the best of my

knowledge.

(Supervisor Signature)

Mr. Amit Kumar
Assistant Professor
Computer Science Department

Dated:

!1

Acknowledgement

I owe my profound gratitude to my project supervisor Mr. Amit Kumar, who took keen in-

terest and guided me all along in my project work titled: Speech Articulating Software

which is used to segregate the reviews whether it’s true or fake, till the completion of my

project by providing all the necessary information for developing the project. The project de-

velopment helped me in research and I got to know a lot of new things this domain. I am real-

ly thankful to him.

!2

TABLE OF CONTENTS

CERTIFICATE i

ACKNOWLEDGEMENT ii

TABLE OF CONTENTS iii

LIST OF TABLES v

LIST OF FIGURES vi

ABSTRACT vii

CHAPTER-1
INTRODUCTION 1

1.1) Introduction 1

1.2) Problem Statement 2

1.3) Objective 3

1.4) Methodology 4

CHAPTER-2

LITERATURE SURVEY 6

2.1) Literature Review 6

CHAPTER-3

SYSTEM DEVELOPMENT 10

3.1) Algorithm 10

3.2) System Model 18

3.3) Analytical 22

3.4) Computational 27

3.5) Experimental 29

3.6) Mathematical 32

3.7) Statistical 35

!3

CHAPTER-4

PERFORMANCE ANALYSIS 40

CHAPTER-5

CONCLUSION AND FUTURE WORK 47

CHAPTER-6

REFERENCES 48

!4

LIST OF TABLES

TABLES PAGE NO.

Table 3.1. Sphinx-4 performance. 32

Table 3.2. Initial Data Set Load Times 35

Table 3.3. Initial FreeTTS and Flite’s processing metrics 36

Table 3.4. Comparison of Tokenization 38

Table 3.5. ASCII vs Binary Load Times 38

Table 3.6. Comparing Different Methods of Loading

FreeTTS

39

Table 3.7. shows a comparison of Flite and FreeTTS run-

ning with the client and the server compiler.

43

Table 3.8. Comparison of Client and Server Compiler 43

Table 3.9. Single vs Multiple CPU Performance Compar-

ison

44

Table 3.10. Time to First Sample 45

!5

LIST OF FIGURES

FIGURES PAGE NO.

Fig 3.1 Block 1 of System Model 18

Fig 3.2 Block 2 of System Model 19

Fig 3.3 Block 3 of System Model 20

Fig 3.4 Block 4 of System Model 21

Fig. 3.5. Sphinx-4 FrontEnd. 22

Fig. 3.6. Example Search Graph. 27

Fig 4.1.Sphinx 4 Front End Components 46

!6

Abstract

Giving command or to search something on the computer requires keyboard for input.An

easy task but not for everyone even this is a barrier for people suffering from blindness or

arms disability.Even after having potential they can never become a programmer because

of there disabilities.Blind people can speak the commands, type documents and search

flights and make reservation online through speech.And that is where the speech recogni-

tion helps to give them the means to achieve something they were initially not able to.But

this is not the only advantage that SR has , even it has other potential like saving time,

helps in learning new languages as it can act both as a translator and interpreter.Our project

is divided into two parts one for speech recognition: Sphinx-4 and other for speech synthe-

sis: FreeTTS library.

!7

CHAPTER-1
 INTRODUCTION

1.1 Introduction

Speech recognition(SR) which means the ability of computer to recognise or match a

voice against a provided or acquired vocabulary and to perform the required task.The

basic task of computer is to understand the spoken language and by understand we mean

to react and convert the input speech into another medium example text.That is why it is

also known as automatic speech recognition or computer speech recognition or speech-

to-text(STT).

A Speech recognition needs a microphones that a person can speak into the SR software.

A computer to understand and interpret the speech a good quality sound card is needed

for a proper and good pronunciation input and output.In our project we will be using

Sphinx 4 Speech Recognition system.The software is made with the collaboration of

Carnegie Mellon University ,Sun Microsystems Laboratories and Mitsubishi Electric Re-

search Laboratories (MERL).The platform for the software was chosen to be Java™ pro-

gramming language and was built on it.It is made to be simple and flexible and that is

why it is able to support every HMM-based acoustic models, language models and search

strategies.The Algorithmic innovations in the software able it to use simultaneously mul-

tiple data streams.The software is made to be an open source project and was available

publicly at SourceForge™ since its origination.

Every detail related to the project whether it is design, results or meeting notes all are

publicly accessible.As the system has been made on Java, it has inherited all its advan-

tages as well which includes its portability: once compiled the byte code can be used on

any system that supports Java, to maintain memory management it has garbage collection

which helps the system to from any memory considerations, it also provides means to

write multithread applications for multiprocessor machines.Also it extracts the info the

code and creates hypertext mark-up language files that provide documentation concerning

the software system interface.

!1

 1.2 PROBLEM STATEMENT

To develop a programme which will perform the specified task victimisation by recognis-

ing command through speech and scrutiny it with the in-built word vocabulary. together

with all this it additionally must offer output within the variety of speech for interacting

with the user.

One of the biggest challenges in the research of Speech Recognition Systems is its accu-

racy.The accuracy is affected by many factors including noise, different speakers, differ-

ent language, the size and domain of vocabulary.Even the design has its own challenges

like varied kinds of Speech classes and Speech illustration, Speech Preprocessing stages,

Feature Extraction techniques, info and Performance analysis.

!2

1.3 OBJECTIVE

We have divided our task into two parts: -

Speech-to-Text

This is the tough part, the speech recognition, where through speech input terminals we'll

attempt to acknowledge what the person is saying. For this we've to make the recognition

grammar for the software package. we'll be recognising through Sphinx 4 library frame-

work that Is written entirely in Java programming language so has inherent advantage of

code maintenance.

Text-to-Speech

This is the half where when recognition and performing the task the system can output

Speech as stating the completion or failure of the task and requesting following task. we

are going to be achieving this through FreeTTS. FreeTTS could be a speech synthesis

system written entirely within the Java programming language.

 Requirements: -  

!

Files Needed: -

1. Grammar File

2. Java File

3. Configuration File  

!3

 1.4 METHODOLOGY

STEP 1: - Building the grammar file

A grammar in the Java Speech API can be defined as the speech that the recogniser listen

to.Grammar are the set of words or tokens which a user say and also the sentences or pat-

terns within which these tokens are said.

Rule grammar and dictation grammar are the two types which are supported by the Java

Speech API.They are distinguished by the way the patterns of token are represented and

their programmatic use.An application defines the rule grammar where as a recogniser

defines the dictation grammar , also the dictation grammar is built int the recogniser.

An application provides the rule grammar to recogniser which defines the rules and re-

strict the speaker what he can say.Words or tokens defines rules and by references to oth-

er rules and logical comb.

CODE: -

#JSGF V1.0

grammar hello

public <greet> = (hy|hello|Power Options|blank |Program|calculator | Browser | Blue |

Device Manager |Control | Player |task manager | Windows Security Centre)

public <command> = (Open | Close) (command| word | access |pad | paint |task manag-

er)

public <action> = (start | stop) (excel |photo shop |nero |word pad|fire wall | recognise)

public <net> = (site) (face book | goo gall | mail)

STEP 2: - Building the Java File

Config manager is the main class that collects info regarding the machine and from the

configuration file and additionally obtains resources from the machine.

Resources are allocated to recognizer. Recognizer provides the basic functionality of

grammar management and the results which are produced if the active grammar matches

to what the speaker has said.To provide this function the Recognizer interface extends

Engine interface.

About to be mentioned are the list which provides the functionality and the ways in which

these functions are specialised and is inherited by the javax.speech package from

javax.speech.recognition package.

!4

As the Engine interface is extended by Recognizer all the properties of speech engine are

applied to the recognizer. Another class RecognizerModeDesc put together information

regarding the dictation abilities of recognizer and people who trained the engine.

javax.speech package’s central class search, select and create the recognizers. Defined

properties, selection and creation procedure helps in defining recognizer.

Basic state system of an engine in inherited by the Recognizer from engine interface

which includes four states for allocation , the pause and resume state , the state monitor-

ing methods and the state update events.

EngineListener interface is also extended by the javax.speech.recognition package as this

helps the RecognizerListener to get the events specific to recognizers.

STEP 3: - Installing FreeTTS library

FreeTTS is based on Flite and written solely on the java language. Flite is a small run-

time engine for speech synthesis which was produced at Carnegie Mellon University.

Flite is produced by two universities the first is University of Edinburgh and uses its Fes-

tival Speech Synthesis System, the second is Carnegie Mellon University and uses its

Fest Vox project.

FreeTTS uses and supports many voices:

US English voice ,an 8 kilo hertz diphone, male

male US English voice , a 16 kilo hertz diphone

 male US English voice, a 16 kilo hertz limited domain

FreeTTS helps in Synthesis of speech by first breaking the input text into many sets of

grammar and then converting the grammar into audible and clear speech.This is done

through a procedure of successive operations on the text. An utterance structure than

stores the cumulative results of every operation , also holds the complete analysis of it.

!5

CHAPTER-2

LITERATURE SURVEY

 2.1 LITERATURE REVIEW
1. Speech Recognition System: A Review 2015

 Nitin Washani

 M. Tech Scholar

 DIT University

 Dehradun (Uttarakhand, India)

 Sandeep Sharma, Ph.D.

 Head of Department of ECE

 DIT University

 Dehradun (Uttarakhand, India)

In this paper we are attempting to give a review regarding the Speech Recognition Tech-

nology and how this technology has improved in the previous years. There is no doubt

regarding that the speech recognition is a much needed technology but that only makes it

a difficult and challenging problem to handle.The performance of SR depends on many

factors but the most important one and which has significant effect on it is the Signal Pre-

processing Stage. It consists of many parts including an EPD, Filtering, Framing, Win-

dowing, Echo Cancellation, etc. and any improvement in individual part can play a signif-

icant role in improving the overall performance of the system. More efforts should be put

in FrontEnd for effective working for BackEnd. To counter noise one can use MFCC

technique for Feature Extraction as it generates the training vectors by transforming

speech signal into frequency domain.

2. Sphinx-4: A Flexible Open Source Framework for Speech Recognition 2014

 Willie Walker, Paul Lamere, Philip Kwok,

 Bhiksha Raj, Rita Singh, Evandro

 Gouvea, Peter Wolf, Joe Woelfel

The Sphinx-4 framework is developed carefully and after that different implementations

were created for every module in the framework.For example- MFCC, PLP and LPC is

supported by the FrontEnd implementations.

!6

Just like FrontEnd the Linguist and Decoder supports different implementations, the Lin-

guist supports language models like CFGs, FSTs, and N-Grams where as Decoder uses a

variety of SearchManager implementations such as traditional Viterbi, Bushderby, and

parallel searches.With the help of ConfigurationManager we were able to combine differ-

ent implementations of modules in many ways and that supports our claim foe developing

a flexible pluggable framework.The results seems to be fruitful as the performance re-

garding both speed and accuracy has improved.Various works like the parallel and

Bushderby SearchManagers as well as a specialized Linguist that can apply “unigram

smear” probabilities to lex trees are proving the Sphinx-4 framework to be “research

ready” as it supports them easily.Well this is just the beginning and we expect it to sup-

port our future areas also.Now the sphinx-4 is available freely (BSD-style license).This

gives permission to do research and develop it without any cost.

3. FreeTTS - A Performance Case Study 2012

 Willie Walker

 Paul Lamere

 Philip Kwok

Considering the native-C counterpart of FreeTTS - Flite we started our research of the

performance characteristics of FreeTTS. We were expecting it to be equally fast with the

Flite .But we were pleased to see the results as the FreeTTS was running two or three

times faster by just simple optimizations and some of the aggressive optimizations which

were performed by the Java HotSpot.

And now we are thinking to implement those optimisations in Flite to improve its perfor-

mance . Clearly as the FreeTTS is running on java platform it has its benefits including

the garbage collection and high performance collection utilities.However, these optimisa-

tions are time consuming for Flite considering programming point of view.

!7

4. THE CMU SPHINX-4 SPEECH RECOGNITION SYSTEM 2015

 Paul Lamere1, Philip Kwok, Evandro Gouvêa, Bhiksha Raj,

 Rita Singh2, William Walker, Manfred Warmuth, Peter Wolf

 1. Sun Microsystems Laboratories, USA

 2. Carnegie Mellon University, USA

 3. Mitsubishi Electric Research Labs, USA

 4. University of California, Santa Cruz, USA

The main aspect of this paper is that we have described the salient features of Sphinx-4

speech recognition system related to its architecture.We have looked for the advantages of

its modular design and the flexibility it provides in using different type of acoustic and

language representations as well as also including the advantages that it gets due to its

java platform.A new algorithm related to search which is Bush-derby algorithm is used by

the Recognizer where as the traditional Viterbi search algorithm is also present.The algo-

rithm is really helpful as it enables the software to add all the paths into the score for the

unit.Not only that it allows the use of many sources of information including the audio

and visual features or parallel streams. High-likelihood features contributes relatively be-

cause of the parameters associated with the Bush-derby algorithm also giving them an

elegant way.Some of the Benchmarks shows that Sphinx-4 is faster than Sphinx-3 and is

equally or better in recognition.But still not all tests are done and performed but as soon

as they are completed the results will be shown to SourceForge.

!8

5. Hands free JAVA (Through Speech Recognition) 2013

 Rakesh Patel, Mili Patel

 Department of Information Technology

 Kirodimal Institute of Technology Raigarh

Our work primarily concerns for making the use of voice recognition easy for the pro-

grammers.Working for long hours on keyboard is really difficult to adapt and is always a

problem for disabled people or for programmers those are suffering from repetitive

strange injuries.

We provide a robust solution for speech recognition that uses java. The solution primarily

focuses on finding different words having the same sound and finding the solution for it.-

For example lets consider “for” the sound is similar to “four”, “far”.Now what we do is

that all the spoken word is written by the software but if that is not the word which is de-

sired by the speaker , the speaker can just say incorrect and the it will be removed. Also

freeing the user from remembering the syntax we created a special program constructs for

the user sake.We provide the system suitable for anyone whether he is disabled or not,

having injuries and that is why our system is not limited to only textual programming but

also for visual programming languages.  

!9

CHAPTER-3
SYSTEM DEVELOPMENT

 3.1 ALGORITHM

1. Get resources information from the config file.

2. Create an object of ConfigurationManager class.

3. Create an object of Recognizer class.

4. Create an object of Microphone class.

5. Allocate resources to object of Recognizer class.

6. IF microphone starts recording then

 Print Say: (Command | Program| Browser | Bluetooth | Device Manager |Power

Options |Cal | Control | Player |task manager | Windows Security Center)

 Print Say: (open word | open photoshop|open Access|start Excel|start nero |start

fire wall| open Pad |open Paint)

 Else

 Print can’not start microphone

 Deallocate resources.

7. Print What can I do for you Sir

 Call the method recognize of Recognizer class recognizer.recognize()

8. Get best result using result.getBestFinalResultNoFiller()

9. IF resultText.equalsIgnoreCase("hy")||resultText.equalsIgnoreCase("hello") then

 Try String[] greet = {"Hello there"

 ,"Hi","What is it"}

 Speak greet

10. IF resultText.equalsIgnoreCase("command")

 Try Process p

 Speak Opening command prompt please wait

 p = Runtime.getRuntime().exec("cmd /c start cmd")

 resultText = result.getBestFinalResultNoFiller()

 Print ("You said: " + resultText + "\n")

11. IF resultText.equalsIgnoreCase("close command")

 Try Process p

 p = Runtime.getRuntime().exec("cmd /c start taskkill /im cmd.exe /f")

 resultText = result.getBestFinalResultNoFiller()

!10

 Print ("You said: " + resultText + "\n")

12. IF (resultText.equalsIgnoreCase("Power Options"))

 Try Process p

 Speak ("The Power Options are on the screen sir")

 p = Runtime.getRuntime().exec("cmd /c powercfg.cpl")

 resultText = result.getBestFinalResultNoFiller()

 Print ("You said: " + resultText + "\n")

13. IF resultText.equalsIgnoreCase("Blue")

 Try Process p

 p = Runtime.getRuntime().exec("cmd /c fsquirt")

 resultText = result.getBestFinalResultNoFiller()

 Print ("You said: " + resultText + "\n")

14. IF resultText.equalsIgnoreCase("start photo shop")

 Try Process p

 p = Runtime.getRuntime().exec("cmd /c start photoshop")

 resultText = result.getBestFinalResultNoFiller()

 Print ("You said: " + resultText + "\n")

15. IF resultText.equalsIgnoreCase("calculator")

 Try Process p

 p = Runtime.getRuntime().exec("cmd /c start calc")

 resultText = result.getBestFinalResultNoFiller()

 Print ("You said: " + resultText + "\n")

16. IF resultText.equalsIgnoreCase("Windows Security Center")

 Try Process p

 p = Runtime.getRuntime().exec("cmd /c wscui.cpl")

 resultText = result.getBestFinalResultNoFiller()

 Print ("You said: " + resultText + "\n")

17. IF resultText.equalsIgnoreCase("Player")

 Try Process p

 p = Runtime.getRuntime().exec("cmd /c start wmplayer")

 resultText = result.getBestFinalResultNoFiller()

 System.out.println("You said: " + resultText + "\n")

!11

18. IF (resultText.equalsIgnoreCase("Program"))

 {

 Try Process p

 Speak ("Opening Programmes please wait")

 p = Runtime.getRuntime().exec("cmd /c start appwiz.cpl")

 resultText = result.getBestFinalResultNoFiller()

 System.out.println("You said: " + resultText + "\n")

19. IF resultText.equalsIgnoreCase("Control")

 Try Process p

 p = Runtime.getRuntime().exec("cmd /c control")

 resultText = result.getBestFinalResultNoFiller()

 Print ("You said: " + resultText + "\n")

20. IF resultText.equalsIgnoreCase("open paint")

 Try Process p

 p = Runtime.getRuntime().exec("cmd /c start mspaint")

 resultText= result.getBestFinalResultNoFiller()

 Print ("You said: " + resultText + "\n")

21. IF resultText.equalsIgnoreCase("close paint")

 Try Process p

 p = Runtime.getRuntime().exec("cmd /c start taskkill /im mspaint.exe /f")

 resultText = result.getBestFinalResultNoFiller()

 Print ("You said: " + resultText + "\n")

22. IF resultText.equalsIgnoreCase("close calculator")

 Try Process p

 p = Runtime.getRuntime().exec("cmd /c start taskkill /im calc.exe /f")

 resultText = result.getBestFinalResultNoFiller()

 Print ("You said: " + resultText + "\n")

23. IF resultText.equalsIgnoreCase("Browser")

 Try Process p

 p = Runtime.getRuntime().exec("cmd /c start chrome.exe")

 resultText = result.getBestFinalResultNoFiller()

 Print ("You said: " + resultText + "\n")

24. IF resultText.equalsIgnoreCase("close Browser")

 Try Process p

!12

 p = Runtime.getRuntime().exec("cmd /c start taskkill /im chrome.exe /f")

 resultText = result.getBestFinalResultNoFiller()

25. IF resultText.equalsIgnoreCase("open task manager")

 Try Process p

 p = Runtime.getRuntime().exec("cmd /c start taskmgr.exe")

 resultText = result.getBestFinalResultNoFiller()

26. IF resultText.equalsIgnoreCase("Adobe")

 Try Process p

 p = Runtime.getRuntime().exec("cmd /c start acrord32.exe")

 resultText = result.getBestFinalResultNoFiller()

 Print ("You said: " + resultText + "\n")

27. IF resultText.equalsIgnoreCase("site face book")

 Try Process p

p = Runtime.getRuntime().exec("cmd /c start chrome www.facebook.com")

 resultText = result.getBestFinalResultNoFiller()

 Print ("You said: " + resultText + "\n")

28. IF resultText.equalsIgnoreCase("site go gall")

 Try Process p

 p = Runtime.getRuntime().exec("cmd /c start chrome www.google.com")

 resultText = result.getBestFinalResultNoFiller()

 Print ("You said: " + resultText + "\n")

29. IF resultText.equalsIgnoreCase("site mail")

 Try Process p

 p=Runtime.getRuntime().exec("cmd /c start chrome https://mail.google.com")

 resultText = result.getBestFinalResultNoFiller()

 Print ("You said: " + resultText + "\n")

30. IF resultText.equalsIgnoreCase("close task manager")

 Try Process p

 p = Runtime.getRuntime().exec("cmd /c start taskkill /im taskmgr.exe /f")

 resultText = result.getBestFinalResultNoFiller()

 Print ("You said: " + resultText + "\n")

31. IF resultText.equalsIgnoreCase("open pad")

 Try Process p

 p = Runtime.getRuntime().exec("cmd /c start notepad")

!13

 resultText = result.getBestFinalResultNoFiller()

 Print ("You said: " + resultText + "\n")

32. IF resultText.equalsIgnoreCase("close pad")

 Try Process p

 p = Runtime.getRuntime().exec("cmd /c start taskkill /im notepad.exe /f")

 resultText = result.getBestFinalResultNoFiller()

 Print ("You said: " + resultText + "\n")

33. IF resultText.equalsIgnoreCase("open word")

 Try Process p

 p = Runtime.getRuntime().exec("cmd /c start winword")

 resultText = result.getBestFinalResultNoFiller()

 Print ("You said: " + resultText + "\n")

 Speaker ("What type of document do you want")

34. IF resultText.equalsIgnoreCase("blank")

 try

 {

 Robot robot = new Robot()

 // Simulate a key press

 robot.keyPress(KeyEvent.VK_ENTER)

 robot.keyRelease(KeyEvent.VK_ENTER)

 Speak ("Please speak the text to enter in the document")

 while(true)

 {

 Result result1 = recognizer.recognize()

 if (result1 != null)

 {

 String text = result1.getBestFinalResultNoFiller()

 StringSelection stringSelection = new StringSelection(text)

 Clipboard clipboard = Toolkit.getDefaultToolkit().getSystemClipboard()

 clipboard.setContents(stringSelection, stringSelection)

 robot.keyPress(KeyEvent.VK_CONTROL)

 robot.keyPress(KeyEvent.VK_V)

 robot.keyRelease(KeyEvent.VK_V)

 robot.keyRelease(KeyEvent.VK_CONTROL)

!14

35. IF resultText.equalsIgnoreCase("close word")

 Try Process p

 p = Runtime.getRuntime().exec("cmd /c start taskkill /im winword.exe /f")

 resultText = result.getBestFinalResultNoFiller()

 Print ("You said: " + resultText + "\n")

36. IF resultText.equalsIgnoreCase("start word pad")

 Try Process p

 p = Runtime.getRuntime().exec("cmd /c write")

 resultText = result.getBestFinalResultNoFiller()

 Print ("You said: " + resultText + "\n")

37. IF (resultText.equalsIgnoreCase("stop word pad"))

 Try Process p

 p = Runtime.getRuntime().exec("cmd /c start taskkill /im wordpad.exe /f")

 resultText = result.getBestFinalResultNoFiller()

 Print ("You said: " + resultText + "\n")

38. IF resultText.equalsIgnoreCase("start Excel")

 Try Process p

 p = Runtime.getRuntime().exec("cmd /c start excel")

 resultText = result.getBestFinalResultNoFiller()

 Print ("You said: " + resultText + "\n")

39. IF resultText.equalsIgnoreCase("stop Excel")

 Try Process p

 p = Runtime.getRuntime().exec("cmd /c start taskkill /im excel.exe /f")

 resultText = result.getBestFinalResultNoFiller()

 Print ("You said: " + resultText + "\n")

40. IF (resultText.equalsIgnoreCase("start firewall"))

 Try Process p

 p = Runtime.getRuntime().exec("cmd /c start firewall.cpl")

 resultText = result.getBestFinalResultNoFiller()

 Print ("You said: " + resultText + "\n")

41. IF resultText.equalsIgnoreCase("close fire wall")

 Try Process p

 String status = "status eq Windows Firewall"

!15

 p = Runtime.getRuntime().exec("cmd /c taskkill /f /fi " +status)

 resultText = result.getBestFinalResultNoFiller()

 System.out.println("You said: " + resultText + "\n")

42. IF resultText.equalsIgnoreCase("start nero")

 Try Process p

 p = Runtime.getRuntime().exec("cmd /c start nero")

 resultText = result.getBestFinalResultNoFiller()

 Print ("You said: " + resultText + "\n")

43. IF resultText.equalsIgnoreCase("open Access")

 Try Process p

 p = Runtime.getRuntime().exec("cmd /c start msaccess")

 resultText = result.getBestFinalResultNoFiller()

 Print ("You said: " + resultText + "\n")

44. IF resultText.equalsIgnoreCase("close access")

 Try Process p

 p = Runtime.getRuntime().exec("cmd /c start taskkill /im msaccess.exe /f")

 resultText = result.getBestFinalResultNoFiller()

 Print ("You said: " + resultText + "\n")

45. IF resultText.equalsIgnoreCase("speech recognize complete")

 try

 System.out.println("Thanks for using !")

 recognizer.deallocate()

 System.exit(0)}

46. IF resultText.equalsIgnoreCase("speech recognize start")

 Try recognizer.notify()

 System.out.println("Hello again :-) ")

 System.exit(0)

47. IF resultText.equalsIgnoreCase("stop recognize")

 try

 System.out.println("See you later!")

 System.exit(0)

 Else

 System.out.println("I can't hear what you said.\n")

48. Else

!16

 System.out.println("Cannot start microphone.")

 recognizer.deallocate()

 System.exit(1)

 System.err.println("Problem when loading HelloWorld: " + e)

 System.err.println("Problem configuring HelloWorld: " + e)

 e.printStackTrace()

!17

 3.2 SYSTEM MODEL

The following system model shows the flow of how the data will be transmitted and

processed.

!

BLOCK 1 FIG 3.1 

!18

BLOCK 2 FIG 3.2 

!19

 BLOCK 3 FIG 3.3

!20

!

BLOCK 4 FIG 3.4

!21

3.3 ANALYTICAL

Frontend

The function of the FrontEnd is to convert the input signal into the sequence of results or out-

put. As seen in fig. 2, the FrontEnd is made of Data Processors . Data processors is one or

more parallel chains of replaceable communicating processing modules.Computation of

many different types of parameters is possible in FrontEnd because of multiple chains sup-

port.This helps in decoding multiple signals simultaneously using different parameters for

e.g. MFCC and PLP, including the parameters derived from video signals.

 !

 Fig. 3.5. Sphinx-4 FrontEnd.

The frontEnd permits long sequences of chains as every DataProcessor present in the Front-

End gives input and output and are able to connect to other DataProcessor.End-point detec-

tion are the data classification events which are indicated by the markers. DataProcessor in-

put and output are made up of data objects that encapsulate the input data to be processed and

the markers.Decoder uses the Features which are basically the last Data object that are com-

posed by the endmost DataProcessor, these Data object are made up of parameterised signals.

Sphinx-4 also has the ability just like AVCSR system to produce parallel sequence of fea-

tures.But as the sphinx-4 is able to randomly allows many parallel streams it has become

unique. The process uses a pull design to communicate between different blocks.In this de-

sign the the request is only made by the DataProcessor from the earlier module when there is

need which is contrary towards its counterpart of push design which follows conventional

method in which the output os send to the succeeding module when the output is generated.

The pull design has its own benefits as it helps in buffering which is to look back and forward

!22

in time.This ability helps the decoder to perform different searches including the frame-syn-

chronous Viterbi searches, depth search and A*.common signal techniques is utilised by the

Sphinx-4 within the FrontEnd framework.

The implementations has benefits and are main support for some which includes the follow-

ing: PLP which represents perceptual linear prediction , MFCC represents mel-cepstra fre-

quency coefficient extraction, CMN represents cepstral mean normalisation, LPC represents

linear predictive encoding, DCT representing discrete cosine transform, mel frequency filter-

ing, bark frequency warping , Fourier transform, cosine transform via windowing e.g. ham-

ming windows, pre emphasis, reading from a variety of input formats for batch mode opera-

tion, reading from the system audio input device for live mode operation.

With the help of ConfigurationManager the user has liability to chain Sphinx-4 Data Proces-

sor in any way or manner but also able to implement and incorporate the data processor de-

sign.The sphinx-4 is not only limited to low-level structure but its simplicity and pluggable

nature applies to high level also for eg the FrontEnd is a pluggable module but also consists

of pluggable module itself.

Linguist

Just like all other Sphinx-4, the Linguist is also a pluggable module which permits the mod-

ule to dynamically configure the software with many other implementations.The linguist has

two key functions the first is to produce the SearchGraph that indeed is utilised by the De-

coder while doing the search and the other one is to hide the complexities produced during

the generation of this graph.

A particular LanguageModel and topological structure of AcousticModel(HMMs for the ba-

sic sound units used by the system) represents the language structure which helps the Lin-

guist to generate the SearchGraph.With the help of Dictionary the Linguist maps the words

produce in LanguageModel into the sequences of AcousticModel.If provided the Linguist can

include Sub-words units with context of random lengths.

Linguist permits different implementations to plugged at runtime and Sphinx-4 allows users

to different configurations for recognition requirements and different system.A simple Lin-

guist might be used by a simple numeric digit’s recognition application and also keeping the

search space entirely in memory.

!23

On contrary if we look at a dictation application which is using a 100k word vocabulary the

that might keep entirely a small portion of potential search area inside the memory bur only

at a time using a sophisticated Linguist.The Language Model, the dictionary, and also the

Acoustic Model are the three components of Linguist itself and are explained with in the fol-

lowing sections.

 LanguageModel

The language structure can be represented by a range of pluggable implementations and that

world-level language structure is provided by the Language Model of the Linguist.There are

two primary categories in which these implementations come under: stochastic N-Gram

models and graph driven grammars.In graph driven model the nodes represents single word

and arc is used to represent the the probability of a word transition taking place, it is directed

word graph.Where as stochastic N-Gram models uses a different approach by utilising the n-1

words to find the probability of the next word.

Aforementioned are some of the implementations that is supported Sphinx-4 in a variety of

formats:

• SimpleWordListGrammar: it helps to define two things firstly the grammar which is sole-

ly based upon listing of words and other is to determine whether the grammar is in loop or

not.The grammar are used for isolated word recognition if there is no loop. But if the gram-

mar loops it will provide unigram grammar with same possibilities that is utilised to support

trivial connected word recognition.

• JSGFGrammar: it uses the JavaTMSpeech API Grammar Format (JSGF) which helps to

define like vendor-independent Unicode representation of grammars, platform

independent ,a BNF-style.

• LMGrammar: This grammar is well utilised by smaller unigram and bigram grammar

which does not exceed 1000 words .It generates one grammar node per word and is based

on a statistical language model.

• FSTGrammar: supports a finite-state transducer (FST) in the ARPA FST grammar format.

• SimpleNGramModel: It is efficient and better perform with small language models be-

cause it does not try to optimise memory usage , it supports in APRA format for ASCII N-

Gram models.

!24

• LargeTrigramModel: It works well with large files which can even exceed 100 MB.This is

due to its property of optimisation of memory storage.It can also provide support for the

CMU-Cambridge Statistical Language Modelling Toolkit generated N-Gram models.

Dictionary

The LanguageModel uses dictionary to find the pronunciations for words which are found

within it.The words are broken into sub words with in the AcousticModel.Pronunciations

help in breaking of the word.Dictionary also allows a word to go in many categories and then

conjointly classify the words.

The CMU is supported by the implementations done by the dictionary, the Sphinx-4 provides

it.The size of the active vocabulary is supported by the implementations which are also opti-

mised for the usage patterns.lets consider this example where one implementation can load

the complete vocabulary at system initialisation time, whereas another implementation can

solely acquire pronunciations on demand.

AcousticModel

The function of AcousticModel is to map the unit of speech provided by the FrontEnd and

also HMM will be scored against the incoming speech. The word position and discourse are

also taken into considerations by the mapping just like the alternative systems.

Lets take an example - considering the tri-phones the position of the word is given at three

places the beginning , middle and the end of the word which represents the position of Tri-

phone because the the context only represents the grammar or phonemes to either left or right

of the particular phonemes.Sphinx-4 does not mount the definition and allows the Acoustic-

Models to still be the AcousticModels even after containing allophones and no change in the

definition is there.

So first the Linguist brakes the words into sub words which are in sequence and afterwards

send it to the AcousticModel in which the HMM Graph is retrieved From the sub-words.

Then the LanguageModel works in conjugation with the HMM and produce a SearchGraph.

The Sphinx-4 HMM is a directed graph unlike other speech recognition system who uses set

of structures in memory has offered entirely different topologies after the implementation of

AcousticModel.In the graph there are nodes and arcs , the nodes represents the state of HMM

and the arc represents the transition of states which is likely to happen from one to another in

the HMM.

!25

The AcousticModel allows the HMM to have transitions states and the amount out of any

state , it even allows to move flexibly that is it can move both forward and backward . The

states can vary accordingly from one unit to another in the same AcousticModel.

Every state has the ability to generate the score which is determined by a particular feature.

The HMM state itself completes the code required for the value of the scores and that is why

the implementations can be concealed from the remaining system and this allows the HMM

state to use different probability functions per state.The elements are also shared among the

HMM states at each and every level for eg if own element is conjured a state like transition

matrices, gaussian mixtures then the mixture weights are shared among the states to a fine

degree.

Sphinx-4 has one AcousticModel which has the capability to load and use the models which

are generated by the Sphinx-3 trainer .People use the implementations according to their own

needs by applying different implementations they will put together the Sphinx-4 as their

wants.

!26

3.4 COMPUTATIONAL

Search Graph

Search Graph is the main data structure that is used to decode.As the Linguist is implemented

in different ways and all the topologies of the search spaces generated vary greatly , all the

reach spaces are called the SearchGraph. As shown by the Figure-3.6

!

 Fig. 3.6. Example Search Graph.

Search Graph is composed of two components the search state and search state arcs and all

the search state has transition possibilities.Search Graph is a directed graph.The states are

composed of three , The LanguageModel which is represented by words in rectangle,Dictio-

nary represented by the sub-words units in dark circles and AcousticModels.All nodes are in

two states either emitting or non emitting , the nodes are called the SearchState. The arcs rep-

resent the possibility of state transitions and every node has the likelihood of going from one

state to another. The Emitting states can be scored against incoming acoustic features while

non-emitting states are generally used to represent higher-level linguistic constructs such as

words and phonemes that are not directly scored against the incoming features.

All the assumptions and the hard constraints that were put on the Search Graph because of

the previous systems were solved because of the Search Graph to permit a wide range of

choices to implement . Particularly the Linguist has imposed several restrictions , following

are the places where its restrictions don't apply:

• Overall search space topology

• Phonetic context size

!27

• Type of grammar (stochastic or rule based)

• N-Gram language model depth

One of the main aspects of Search Graph is that it has several ways to implement Search

State and because of that implementation of them not necessarily be fixed.Every Search State

can have different implementation and also the implementation of them can vary even though

the Linguist gives a concrete implementation.For e.g. there can be a simple one-to-one map-

ping of the in-memory search state but if a Linguist represents a large and complex vocabu-

lary but gives a compact representation of the search graph then there will be successors pro-

duced by dynamically increasing the compact representation of Search state on demand.

There are other factors also which are affected by the way Search Graph are created like

speed, memory footprint, recognition accuracy.But however the Sphinx-4 modularised design

permits for the compilation of search state strategy without interrupting or changing other

aspects of system.HMM can be produced from the system and depends on the Language

model, Vocabulary size and desired memory footprint.

!28

3.5 EXPERIMENTAL

Implementations

Just like the FrontEnd the Sphinx-4 has provided with many implementations to support sev-

eral different tasks of the linguist.

Recognition tasks are perfectly suited for the Flat Linguist that uses finite-state grammars

(FSG), context-free grammars (CFG),small N-Gram language models and finite-state trans-

ducers (FST).External grammar formats are converted into the internal formats by the Flat

Linguist.Basically the grammar is a word graph in which the nodes are the single word and

the arc represents the possibility for the transition , it is a directed graph.The SearchGraph is

stored in memory after the Flat Linguist produce the Search Graph from the internal Gram-

mar graph.Still after being this fast it still has problem dealing with the high branching

grammar.

The Dynamic Flat Linguist is similar to some extent with the Flat Linguist and that is why is

able to perform the tasks by the Flat Linguist but the difference is that it is able to produce the

Search Graph on demand and that is why it is able to handle complex Grammar with ease But

it also has a drawback because this causes a decrease in the run time performance.

To handle the large N-Gram language models which uses Vocabulary Recognition of large

sizes we have another implementation The Lex Tree Linguist.N-Gram has a random order

and try N-Gram decoding is supported by the Lex Tree Linguist. The Lex Tree Linguist uses

a compact method to define the large vocabulary by organising the words in a Lex Tree.These

trees dynamically produce the search trees and this enables it to handle much larger vocabu-

lary and by only using little memory.This implementation supports the Binary Language

Models and ASCII. The binary language model is produced by CMU.

!29

Decoder

The main role of the Sphinx-4 Decoder is to create the results or the output by making use of

both the FrontEnd and SearchGraph to work in conjugation.The Decoder simplifies the de-

crypting process as it contains the pluggable SearchManager and other supporting code.The

component that makes the decoder interesting and is the main component is the SearchMan-

ager.The SearchManager receives the command from the Decoder to recognise a set of fea-

ture frames.The SearchManager works at each step and then creates a result object which has

all the paths that has reached the non-emitting state.Sphinx-4 also has other capabilities

which also produce a lattice and score related to the result which also helps in better perfor-

mance of the results.But the results objects can be modified between each steps by many ap-

plications which allows it to become partner in a recognition process.Just as the Linguist

SearchManager has many implementations some of the algorithms are A*,frame-synchronous

Viterbi, bi-directional and many more.

Token passing algorithm is the algorithm which is used by all the implementations of the

SearchManager.The algorithm was described by Young.A Sphinx-4 token is an object which

is related to the search state and has information like language and overall acoustic scores of

the path at a given point, a reference to an input Feature frame, a reference to the SearchState

and other important information. The SearchState reference allows the SearchManager to re-

late a token to its state output distribution, context-dependent phonetic unit, pronunciation,

word, and grammar state. Every partial hypothesis terminates in an active token.

At every step an ActiveList is formed by the SearchManager which is consist of art of tokens,

but there is no necessary requirement of it.As the technique is common,To support the

SearchManagers having ActiveList the Sphinx-4 provides the Sub-framework having a scorer

and a pruner and with the help of Pruner it generates an ActiveList from the active tokens in

the search trellis with the use of pluggable pruner.There are two types of pruning performed

by Pruner relative and absolute beam pruning and applications can configure the Sphinx-4 for

their implementations and this implementation has become easy because of the java platform

which provides the garbage collection.By removing the terminal token of any path from the

ActiveList the pruner can prune easily with the garbage collection.The act of removing the

terminal token identifies the token and any unshared tokens for that path as unused, allowing

the garbage collector to reclaim the associated memory.

!30

The sub-framework of the SearchManager forms a conjoint connection with the Scorer, the

value of the state output density is provided by the module-pluggable state probability esti-

mation and the values are given in demand.First the SearchManager request the score for a

particular state at a particular time and then after receiving the feature vector is accessed by

the scorer for that given time it starts performing mathematical operations to compute the

score.All the data related to state densities is retained by the SearchManager and that is why

it does not understand the difference, how the grading is completed, the grading can be com-

pleted with continuous, semi-continuous or separate HMMs.Each HMM state is isolated.The

scorer provides the feature by which any algorithm which is used to increase the scoring pro-

cedure can also be done inside the scorer.The scorer can also be benefited with multiple

CPU’s if provided.

The Sphinx-4 implementation currently provides pluggable SearchManagers implementations

and support parallel decoding, Bushderby and frame synchronous Viterbi:

•SimpleBreadthFirstSearchManager: on each frame a pluggable pruner is called and per-

forms the frame synchronous Viterbi search.The results are produced by the search manager

which have active paths at the processed last frame .Relative and absolute beams are all

managed by the default Pruner.

•WordPruningBreadthSearchManager: on each frame a pluggable pruner is called and

performs the frame synchronous Viterbi search.WordPruningBreadthSearchManager does not

manage only one ActiveList but instead manages set of active lists, Linguist defines the state

type for each.The linguist defines the state types in sequence order where as pruning is exe-

cuted in decomposition.

•BushderbySearchManager: As opposed to likelihood it performs the classifications on the

basis of free energy and uses the Bushderby algorithm to perform generalised frame-syn-

chronous breadth-first search.

•ParallelSearchManager: Unlike AVCSR which uses a coupled HMM search approach, it

uses a factored language HMM approach and executes the frame synchronous Viterbi search

on multiple feature streams. The basic advantage of the search is that it is far compact and

much faster than a full search done over a compound HMM.

!31

3.6 MATHEMATICAL

 Discussion

 Table 3.1. Sphinx-4 performance.

Two measurement for comparing the performance of system are WER and RT. Word Error

Rate is represented by the WER and is measured in percent. Real time represented by RT is

described as the rain between vocalisation duration and the decipher time of the vocalisation.

For better performance both must have lower values.The above table’s information is mea-

sured between different Sphinx on dual hardware 1015 Mega hertz R 3 with 2GB RAM.

The framework for Sphinx-4 is much better and the tasks which were first considered to be

hard has now become to easy , for example the implementations like Bushderby SearchMan-

ager implementations and the parallel implementations both are created in short amount of

time and even after that did not need modification.The basic ability of Sphinx-4 has helped it

to use different implementations which varies from general to specific applications regarding

formula. Considering the example in which we add or plug a new linguist while the rest of

the system remains same, we were able to improve the run time speed for the regression RMI

TEST WER RT

S P H I N X

3.3

SPHINX 4 S P H I N X

3.3

SPHINX 4

(1 CPU)

SPHINX

4 (2 CPU)

TI46 (11 WORDS) 1.217 0.168 0.14 0.03 0.02

T I D I G I T S (1 1

WORDS)

0.661 0.549 0.16 0.07 0.05

AN4 (79 WORDS) 1.300 1.192 0.38 0.25 0.20

RM1 (1000 WORDS) 2.746 2.739 0.50 0.50 0.40

W S J 5 K (5 0 0 0

WORDS)

7.323 7.174 1.36 1.22 0.96

H U B - 4 (6 4 0 0 0

WORDS)

18.845 18.878 3.06 4.40 3.80

!32

test by two orders of magnitude.Even many good tasks are able to get support because of

modularity of the system for e.g. SearchManager is able to implement efficiently vary vocab-

ulary ranging from little vocabulary tasks such as TIDIGITS and TI46 to large vocabulary

tasks such as HUB-4.Considering another example related to Linguist which allows the

Sphinx-4 to support different tasks such as applications that use random language models to

traditional CFG-based command-and-control applications. Java Platform utilised by the

Sphinx-4 has enabled its standard nature.the java platform helps the system to load at runtime

which provides an easy support for pluggable framework, some of the advantages of java

programming languages are:

• Sphinx-4 will is platform dependent and can run on any platform.

• The coding time is reduced by its rich platform.

• The decoding tasks are distributed into different thread because of the built -in property of

multithreading

• Instead of memory leaks developer can focus on the development because of garbage col-

lection

Still after having so many advantages there is the drawback of memory footprint for the java

platform.To optimise the memory output some speech engines access the platform directly

which in turn helps in optimisation and this direct access is not allowed in the java program-

ming language. people mostly have a doubt related to Java programming language that it is

very slow. After the development of Sphinx-4 we have the basic tendency to carefully ob-

serve the results compared to its predecessor. That is why we compare both Sphinx-3.3 and

Sphinx-4 on basis of RT and WER and table 3.1 shows the performance of both of them.

The results were merely to show the and demonstrate the strength of Sphinx-4’s pluggable

and modular design as compared to its predecessor.Relatively Sphinx-3.3 was designed for

higher and complicated vocabulary with N-Gram language model.That is why it was not able

to perform well for the easier tasks like TIDIGITS and TI46 but the property of Sphinx-4

having different implementations for Linguist and SearchManager helps in increasing its per-

formance and was able to perform better.For e.g. look at the table showing the values for

WER and RT performance for the easier task of TI46.

Another important and interesting aspect that came in light to us that when considering the

RT performance the raw computing speed is not the major criteria. We used the scorer which

!33

divided the task equally among all the accessible CPUs, the rise in the speed was expected

but not that much what we aspected , there was no dramatic increase and this helps us to veri-

fy that at the actual scoring of the acoustic model states only 30% CPU time is spent and the

remaining time is spent at other activities like Pruning and Growing. Garbage collection uses

around 2-3% of CPU usage.

!34

3.7 STATISTICAL

Data Set Loading Baseline

Table 3.2. Initial Data Set Load Times

Flite is counterpart for FreeTTS as it is based on C.All dat for Flite is static constants and are

directly added to the source code .Due to which the data and the code is loaded simultaneous-

ly because of which it has zero effective load time. The Flite does not load the datasets from

file where as the FreeTTS load it from the data sets that is why we are calculating for how

much time will it take to load the data. Table 3.2 shows how much time it took to load a large

data sets .

The experiment simply proves that it takes a significant amount of time to load data from lex-

icon and unit database.

Execution Speed Baseline

After seeing the results our main concern shifted towards the FreeTTS , to make it run faster

otherwise improving the performance of others is worthless.But before working on improv-

ing the execution speed we first compared it with the Flite to form a baseline.To form the

baseline we used a large data sets by inputing a large data set consisting of Alice In The

Wonderland, the text contains 4293 words and the time taken was approximately 25 minutes

Data Set Bytes Load Time (seconds)

All Carts 36,496 0.41

Lexicon 1,705,833 6.25

Letter to sound rules 261,318 0.65

Unit Database 7,828,514 13.76

Total 9,832,161 21.07

!35

to speak.Table 3.3 shows the timings when they were ran on SPARC® processor (v9) operat-

ing at 296 MHz with 128MB.

!

The experiment shows us that FreeTTS is approximately two times slower than its counter-

part and that our first version for FreeTTS took quite some time for the execution of the data.

Data Set Loading Improvements

After realising the results it was unacceptable that FreeTTS took so much time to synthesise

the data.Still considering as penalty that occurred one time we will keep on developing the

FreeTTS and will frequently improve the development phase.The development will be this

much effective that this will ultimately affect the overall turnaround time.

For the first attempt we took the Flite approach by making the data static and was added di-

rectly in the code but we came across an interesting fact and result which shows the limit of

pools per class, there can be only 64k pools per class.Moreover the code is restricted too the

limit fir it was also 64k bytes.So to overcome this disability we created many classes and then

break the data and add in it.But the classes number was much larger, this was also caused be-

cause of java programming language as in java when the array is defined the compiler also

generate a code to initialise members of array. lets look at the code:

private static float[] floatArry =

{

!36

Table 3.3. Initial FreeTTS and Flite’s processing metrics

 1.0f, 2.0f, 3.0f, 4.0f, 5.0f

}

Results in code that looks like this:

newarray float # allocate the array dup

iconst_0 # store the first value fconst_0 fastore dup

iconst_1 # store the second value fconst_1 fastore etc.

Comparing it with its C counterpart in space allocation the FreeTTS is taking three times the

space for the initialisation of array, Each element is consuming four bytes to store the value ,

four bytes for itself and and another four bytes for the index of array.This has created a prob-

lem as now the time required to load the class files were more than when it was reading from

the data from the file.THe problem was not only because it has three times more data to read

but also because a large amount of dates checked by the byte code verifier.The experiments

convinceed us to look for the alternative method.

Lazy Tokenization

After completing the previous experiment we start looking for other important causes for the

delay and found that the much of the delay in loading the data was because of parsing the

ASCII data sets.Now to overcome this we try to delay the parsing of data as much as possible

and only doing it if necessary.

Lets look at the entry of the Lexicon Data Sets.

abdicating0 ae1 b d ih k ey1 t ih ng

Each word consists of two parts the first one is the speech and other one is phonemes list.Ini-

tially every single word was parsed completely and then the list of phoneme is stored in a list

of array and speech part and combined word becomes a key for the Hash Map.So to improve

the time the phonemes list which was initially read first was stopped until necessary .Now the

list was only read when it is necessary and was saved in one string.Now the results were good

and can be seen in table 3.4

!37

!

This process is called the lazy tokenisation and because of that we were able to save the de-

crease the load time by half .The table shows the total time spent to find the word Alice. An-

other benefit was that there is no degradation in the lookup time.

Binary Data

The next Approach we used to reduce the load time was the conversion of ASCII files in their

binary representation.Initially it was inefficient to load the data files into ASCII files because

of two points ,first it takes a lot more space and it also took a lot of time to convert the ASII

into desired format such as the Diphone which is made up of numerical data.

Now only to convert the strings into a particular format it first parse all the strings and there

are more than 1.8 million strings in the ASCII format of Diphone data.

Now to overcome this we thought to parse or read the final format and removing the burden

of converting it into primitive format first.We knew that Diphone has the largest database so

our main concern was that and we put all our efforts on it.we were able to succeed and this

gives us the best results so far later on we even tried some new packages for loading the bina-

ry data.

!

!38

Table 3.4. Comparison of Tokenization Strategies

Table 3.5. ASCII vs Binary Load Times

The success of this experiment led us to revisit the lexicon and tried it over there but there

was not that much increase in performance, the results were almost similar.We found that in

lexicon the java virtual machine was more focused on hash map and in the creation of

strings.This was causing the hinderance in binary format of lexicon and that is why we chose

not to use binary data in lexicon.

JAR Files

The final step we chose was to put the binary data into JAR files to increase the performance

and the results were promising and is shown in the above table.

 Data Set Loading Summary

There were other methods also to improve the load time ,foe e.g in lexicon we can use other

mapping function than the hash map but the results from binary conversion was really

promising we were able to reduce the load time from 21 to 4 seconds.That is why we chose to

reduce the execution time.

!39

PERFORMANCE ANALYSIS

Execution Time Improvements

Initially to compute the word Alice it took more that 45 seconds which was really a lot if we

compare it with Flite which was able to complete this easy task in just 12 seconds.There are

two possibilities where the optimisation can be done:

1. to perform buffer copies more time is being spent.

2. Inner loop calculation time was more.

Eliminating Buffer Copies

Due to an architectural decision, the audio output classes expect data in the form of byte ar-

rays, but the audio wave synthesiser generates data as short arrays. In our first implementa-

tion, we wrote the audio wave synthesiser data to an in-memory

ByteArrayOutputStream wrapped in a DataOutputStream, and then finally normalised the

data in yet a third byte buffer. By modifying the wave synthesiser to generate byte data di-

rectly (a simple modification), we eliminated two buffer copies. This reduced the wave syn-

thesis time for "Alice" by 13 seconds, a significant improvement.

Optimizing the Inner Loops

LPC linear predictive algorithm is used to produce audio sample which is the final stage for

the synthesis process.To produce an output sample LPC creates 22 floating-point operations

per frame , LPC filters the last 10 sample outputs with a set of filter coefficients associated

with the sample frame. Because of which to generate the output for Alice the test cases con-

sists of over 220 million floating point.

In java programming language it is more expensive to access the array that its C counter-

part.This is due to its property of checking all the array at the runtime.Conducting experi-

ments we were able to find that the excess time spent in in inner loop was because of the ar-

ray indexing . Array indexing was taking a significant amount of time.

So to solve this we used data structure linked list instead of array to maintain the output buf-

fer and this solves all the array indexing problems inside the loop. we were able to save the

time by 12.5 seconds which was really good as it has reduced time from 34 to 21.5 seconds.

!40

Even the compilers for optimisation like JAVA HotSpotTM also works well with the linked

lists.

After optimising other factors we were able to reduce time by 1.1 seconds but this show us

that we need to improve other areas .

Utterance Structure Modifications

By conducting experiments we were able to find yet another area of development which is

the Utterance structure.we discovered that a lot of time was used to traverse the utterance

structure. They use a query text for referring the results of previous utterance structure.They

usually refers to the item ,before or after a given item. The queries are mostly rational.

All the utterance items are stored by java.util.List, and that is why all the search for the items

are linear searches.We decide to use link list in this as well and were able to save time by 4

seconds.

Algorithm Improvement

Till this point we were mainly focusing on improving the code , to make it run fast , to im-

prove the performance but we still followed the Flite algorithms.But even still we were able

to bring the most out of it just by using the necessary algorithms related to Flite even for

High performance data structures such as hash map.All the improvements were successful

and was able to match the processing time of Flite.

We initially tried to improve the performance following a non algorithmic procedure and can

bring more out of it but we decided to use algorithmic changes that will make a significant

improvement.

By analysing the data we took our attention towards the intonation processor.We were able to

find that a query text was used throughout FreeTTS and every time it was parsed on every

use, we were able to find this by simple process of elimination.So to overcome this we pre-

processed the data first and then send the output directly into subsequent queries.The results

came out to be drastic by simply this we were able to save almost 12.5 seconds of total

time .Moreover the results were almost similar if we preprocessed the query or the query is

processed at load time.By improving this we were able to improve the performance of other

processors as well such as utterance as the same query was used many time by it.

!41

Java programming language grants the permission to make changes to the algorithm faster ,

easier and much better.we tried doing the same changes to its counterpart but were stopped

because of the hindrances caused by not being a Java programming language.

A New Java 2 Platform Release

We were trying to improve the performance by all means now a new version of java came

Java 2 Platform, standard Edition (J2SETM) version 1.4.we tried our FreeTTS to check the

performance improvement and were shocked to find that its performance just increased sim-

ply by the up gradation of the version.The time to synthesise the word Alice now dropped

from 21 seconds to 14 seconds while the total time comes down to 24 seconds from 34 sec-

onds.

One notable improvement within the J2SE 1.4 upgrade was improved vary check elimination.

The Java HotSpot compiler will notice certain array access idioms, notably for loop accesses,

and eliminate the vary checking on the array index if it determines the index continuously

falls within range of the array. some of the aforementioned optimizations that we performed

on FreeTTS to eliminate array accesses to avoid index vary checking became unnecessary

because of these Java HotSpot compiler enhancements.

Improving Performance with the Java Hotspot Virtual Machine

The Java HotSpot virtual machine is Sun Microsystems' virtual machine for the Java plat-

form. The J2SE 1.4 release provides two flavours of the Java HotSpot virtual machine: a con-

sumer compiler that provides for quicker program start times, and a server compiler that max-

imises program speed however with a extended program start time and a bigger memory

footprint. The server compiler performs a large range of optimisations including aggressive

inlining of virtual ways, loop unrolling, dead code elimination, common sub-expression elim-

ination, and array range check elimination.

Speech applications are usually constructed as client/server applications with the recognition

and synthesis engines running as separate servers presumably on separate machines. This ar-

chitecture can improve the measurability, flexibility and reliability of a system. With this in

mind, we developed a client/server version of FreeTTS that permits the synthesis engine to

receive synthesis requests via a socket connection, synthesise the wave data and return it to

the client via the socket. when used in contexts like this where startup time is less necessary

!42

than overall TTS performance, FreeTTS can be run using the server compiler with a major

performance boost.

!

Table 3.7. shows a comparison of Flite and FreeTTS running with the client and the server

compiler.

We were perplexed by these results. first of all, the timings with the server compiler were in-

consistent, starting from 38 to 47 seconds. Secondly, the performance of the server compiler

was worse than the client compiler. Some investigation showed that the Java HotSpot server

compiler wants a longer amount of time to spot and compile the hot spots. we ran the test

once more replacing the “Alice” input text with the text of Jules Verne's Journey to the center

of the planet, that is about twenty times as long. Table 7 shows the results of this check.

Giving the server compiler a extended amount of time to optimize the hot spots proved bene-

ficial: FreeTTS using the server compiler is about 30 minutes quicker than running it using

the client compiler.

!

!43

Table 3.8. Comparison of Client and Server Compiler

Multiple CPU Improvements

The U.S. created the FreeTTS as multithread application because of its predecessor Flite

which was a single thread application and was not able to utilise the multiCPU system. But

FreeTTS being a multithreaded system was overcome this disability as it creates different

threads for different process and then send these threads among different CPUs to obtain per-

formance boost .

Table 3.9 shows the results of process the “Journey” text on a 2-CPU 360 MHz SPARC®

processor (v9) with 512 Mb of memory.

2-CPU 360 MHz SPARC® processor (v9) w/512 Mb

!

This table shows that, as expected, FreeTTS shows a 33% improvement in runtime when

running on a 2-CPU system. Whereas Flite achieves nearly identical run-times when running

on a single or multi-CPU system.

Time-to-First-Sample Performance Tuning

The most important Benchmark in FreeTTS synthesis is the time-to-first-Sample. It is the

time the synthesiser gets the text and then synthesise and produce the first audio sample.

This is really important to decrease the time so out FreeTTS has two approaches to counter

this , The first one to separate the wave outputs and wave synthesis into different threads.So

what it does is , it allows vocalisation generation to come at the same time with the audio

output and wave synthesis.This helps the samples to execute fast and the output is generated

as audio fast and also allowing the other portioned vocalisation to overlap and reduce the

time.Moreover the as the wave synthesis is in different thread the JVM will send it to differ-

ent and its own CPU, and thus giving extra boost and reducing the time-to-first-sample.

!44

Table 3.9. Single vs Multiple CPU Performance Comparison

The other method is similar to Flite in which as soon as the output is generated it is send to

sound system to play.so first the whole audio is generated and then the output is send to the

player.

!

Table 9 compares the time-to-first-sample for Flite and FreeTTS while running on single

CPU 296 MHz (1-CPU) system and a dual CPU 360 MHz system (2-CPU).

As Flite is designed in C Programming language the improvements to improve the perfor-

mance was getting a lot difficult.

Memory Footprint Analysis

The main and the basic goal regarding the development of FreeTTS was to find out the per-

formance of the system developed and written in Java Programming language.Our main ef-

forts in that were regarding the time to first sample and the overall processing time but we

didn't try to reduce the memory footprint of it .Right now Flite has muss less memory Foot-

print.

Helpful Features of the Java platform

Aforementioned are some of the features of JAVA which has led to the successful execution

of our project :

Object Oriented Language -The pluggable and configurable requirements of the system

was easily handled because of object oriented programming .

Dynamic Loading of Code -The new voices we were able to add easily in the system be-

cause offering a JAR file and executing it separately all thanks for the dynamic nature pro-

vided by the JAVA platform.

!45

Table 3.10. Time to First Sample

Multi-threaded Language -The first sound time has decreased and thus we were able to

compute fast and get good results because of adding multithreading to FreeTTS.

Garbage Collection -this has just make the things really easy regarding the memory optimi-

sation which could be really difficult with other features.

Vast API-The Java platform has many large API’s has made the work for developing the

FreeTTS easier and simple.We were able to give give extra boost because of the J2SE high

quality implementations of data structures and algorithms.Also gaining extra features like the

Java Sound API, regular expressions API ,the collections API are appreciated.

Portability - Unlike Flite where it should be ported or built specifically for every platform

we were able to use the FreeTTS jar files on different platforms without any modification like

Windows, Linux, Solaris 8 operating environment.

Documentation - We were able to use the source code to create a good-quality API docu-

mentation for the FreeTTS by writing FreeTTS with the Javadoc documentation standards.

FRONT-END ANALYSIS

!

 Fig 4.1. Sphinx 4 Front End Components

There are two components of SR system’s FrontEnd the first one is Speech Preprocessing and

the other being the Feature Extraction Block.Many issues are present like the noise and am-

plitude difference can have hard influence on word, while even the slightest variations in the

time can cause a large difference among different words.These issues are solved by the Signal

preprocessing part which uses the Framing,Windowing,Noise Filtering,End Point

Detection,Echo Cancelling e.t.c.

!46

CHAPTER-4

CONCLUSIONS AND FUTURE WORKS

In the beginning of our study of the routine characteristics of a speech synthesis engine pro-

grammed in the Java programming language, we expected that it would positively be able to

run almost as fast as the native-C counterpart. By using few straightforward optimisations

and relying on the aggressive optimisations performed by the Java HotSpot compiler, we

found that FreeTTS runs two to four times faster than its native-C counterpart, Flite.  

Evidently, it is possible for us to utilize some of these optimisations back into Flite with the pos-

sible result of enhancing Flite's performance to levels alike to FreeTTS. The absence of Java plat-

form features for example garbage collection and high-performance collection utilities, though

performing these optimisations in Flite makes much more time consuming from a programming

point of view. Sphinx-4 now provides just one application of the AcousticModel, which includes

Sphinx-3.3 models created by the SphinxTrain acoustic model trainer. HMMs with a fixed num-

ber of states, fixed topology, and fixed unit contexts is produced by The SphinxTrain trainer.

Moreover, the constraint tying [5] between the SphinxTrain HMMs and their related probability

density functions is extremely rough. Since, the Sphinx-4 framework does not have any of these

limitations, it is capable of handling HMMs with an random topology over an arbitrary number

of states and variable length left and right unit contexts. Furthermore, the Sphinx-4 acoustic

model design allows for very fine parameter tying. We expect that taking advantage of these ca-

pabilities will significantly rise both the speed and accuracy of the decoder.

So far, we have generated a design for a Sphinx-4 acoustic model trainer that can produce

acoustic models with some of these favourable characteristics [31]. As with the Sphinx-4 frame-

work, the Sphinx-4 acoustic model trainer has been designed to be a modular, pluggable system.

Such an undertaking, however, represents an important effort. As an interim step, another area for

experimentation is to create FrontEnd and AcousticModel implementations that support the mod-

els generated by the HTK system. The architectural modifications that would be needed to sup-

port segment-based recognition frameworks such as the MIT SUMMIT speech recogniser were

also considered. [32]. A cursory analysis indicates the modifications to the Sphinx-4 architecture

would be negligible, and would provide a platform to do significant comparisons between seg-

mental and fixed-frame-size systems. Finally, the SearchManager delivers fertile ground for im-

plementing a number of search approaches, including A*, fast-match, bi-directional, and multiple

pass algorithms.

!47

CHAPTER-5

REFERENCES

[1] S. Young, “The HTK hidden Markov model toolkit: Design and philosophy,” Cambridge

University Engineering Department, UK, Tech. Rep. CUED/FINFENG/TR152, Sept. 1994.

[2] N. Deshmukh, A. Ganapathiraju, J. Hamaker, J. Picone, and M. Ordowski, “A public do-

main speech-to-text system,” in Proceedings of the 6th European Conference on Speech Com-

munication and Technology, vol. 5, Budapest, Hungary, Sept. 1999, pp. 2127–2130.

[3] X. X. Li, Y. Zhao, X. Pi, L. H. Liang, and A. V. Nefian, “Audio-visual continuous speech

recognition using a coupled hidden Markov model,” in Proceedings of the 7th International Con-

ference on Spoken Language Processing, Denver, CO, Sept. 2002, pp. 213–216.

[4] K. F. Lee, H. W. Hon, and R. Reddy, “An overview of the SPHINX speech recognition

system,” IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 38, no. 1, pp. 35–

45, Jan. 1990.

[5] X. Huang, F. Alleva, H. W. Hon, M. Y. Hwang, and R. Rosenfeld, “The SPHINX-II

speech recognition system: an overview,” Computer Speech and Language, vol. 7, no. 2, pp.

137–148, 1993.

[6] M. K. Ravishankar, “Efficient algorithms for speech recognition,” PhD Thesis (CMU

Technical Report CS-96-143), Carnegie Mellon University, Pittsburgh, PA, 1996.

[7] P. Lamere, P. Kwok, W. Walker, E. Gouvea, R. Singh, B. Raj, and P. Wolf, “Design of the

CMU Sphinx-4 decoder,” in Proceedings of the 8th European Conference on Speech Communi-

cation and Technology, Geneve, Switzerland, Sept. 2003, pp. 1181–1184.

!48

