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Abstract 

 
In this work, an efficient technique is proposed to solve the travelling salesman problem 

(TSP) using Ant Colony Optimization. The main aim of this problem is to search the shortest 

tour for a salesman to visit all cities exactly once and finally return to the starting city. Ant 

Colony Optimization algorithm is a heuristic algorithm which has been proven a successful 

technique and applied to a number of combinatorial optimization problems and is taken as 

one of the high performance computing methods for Traveling salesman problem (TSP). The 

Traveling Salesman Problem (TSP) is one of the standard test problems used in performance 

analysis of discrete optimization algorithms. Till date, large numbers of algorithms are 

adopted to solve the TSP problem. In this project, a new meta-heuristic algorithm is proposed 

to solve the TSP problem. The performance of proposed hybrid algorithm will be 

investigated on ten different benchmark problems taken from literature and compared to the 

performance of some well-known algorithms. 
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Chapter-1 INTRODUCTION 

 

1.1 Introduction 

 

Travelling Salesman Problem is a classical NP hard problem. Travelling Salesman Problem 

is a problem in which a salesman intends to visit a large number of cities exactly once and 

returning to starting point while minimizing the total distance travelled or the overall cost of 

the trip. It is a NP-hard problem in combinatorial optimization and  also has its importance in 

operations research and theoretical computer science. TSP is also used as a benchmark for 

many optimization methods. Although the problem is computationally difficult, many 

heuristics and  algorithms are known which can be used to solve the problem with thousands 

of cities and even problems with millions of cities can be approximated within a fraction of 

one percent. The TSP has many applications, in the manufacture of microchips, planning and 

logistics. TSP also appears as a sub-problem in many areas, such as DNA sequencing. In 

these applications, the concept city represents DNA fragments, customers, or soldering points 

and the distance represents travelling time or overall cost of the trip, or a similarity measure 

between DNA fragments.  

 

TSP can be modeled as an undirected weighted graph, in which the vertices of the graph 

denote the cities and the paths are the graph's edges, and a path's distance is the edge's 

weight. It is a minimization problem starting and finishing at a specified vertex after having 

visited each other vertex exactly once. Often, the model is a complete graph with every 

vertices connected by an edge. If there is no path between two cities, then an additional 

arbitrary edge can be used to connect the cities without affecting the optimal path. The 

symmetric Traveling Salesman Problem can be represented as an undirected graph as the 

distance between two cities is the same in each opposite direction. This symmetry halves the 

number of possible solutions. In the asymmetric TSP, paths may not exist in both directions 

https://en.wikipedia.org/wiki/NP-hard
https://en.wikipedia.org/wiki/Combinatorial_optimization
https://en.wikipedia.org/wiki/Operations_research
https://en.wikipedia.org/wiki/Theoretical_computer_science
https://en.wikipedia.org/wiki/Benchmark_(computing)
https://en.wikipedia.org/wiki/Heuristic
https://en.wikipedia.org/wiki/Exact_algorithm
https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/Planning
https://en.wikipedia.org/wiki/Logistics
https://en.wikipedia.org/wiki/DNA_sequencing
https://en.wikipedia.org/wiki/Similarity_measure
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or the distances might be different, forming a directed graph. There can be many scenarios of 

symmetric TSP changing to asymmetric TSP like traffic collisions, one-way streets etc. 
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Adjacency Matrix: 

 

 A B C D E 

A 0 1 1 3 0 

B 1 0 0 2 0 

 C 1 0 0 2 1 

D 3 2 2 0 3 

E 0 0 1 3 0 

 

Table-1 

 

 

In literature, different formulation of TSP problem is considered. Some famous variants of 

TSP problem are mentioned below: 

 

1. Pickup and delivery TSP with multiple stacks 

Pickup and delivery travelingasalesmanaproblem with multiple stacks is a variation of well-

known travelingasalesmanaproblem [14]. In pickupaand delivery travelingasalesman 

problem a vehicleahas to serve the customer’s request of definite pair of pickupaand delivery. 

Every item is picked up from sourcealocation and is unloadedaat its destination location. The 

vehicle also contains fixedanumber ofastacks. Further, eachastack has a finiteacapacity and 

its loading and unloading sequence mustafollow thealast-in-first-out (LIFO) policy that is for 

each stack just the last item loaded can be unloaded at its correspondingadelivery location. 

 

2. Symmetric quadratic TSP 
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The symmetric quadratic travellingasalesmanaproblem (SQTSP) is a variation of theawell-

known Travelingasalesmanaproblem [5]. In SQSP a weight is associatedawith everyathree 

verticesatraversed inasuccession. The main goal of SQTSP is to findaa  leastacost in 

anaedge-weighted graph, in which every edge pair has a wait associated with it. If these 

weights correspond to the turningaangles ofathe tour then the problem can be modeled into 

an angular- metric travelling salesman problem. 

 

3. Colored TSP  

A colored travelingasalesmanaproblem (CTSP) is an extension of the well-knownamultiple 

travelingasalesmanaproblem [11]. In CTSP, two set of cities are defined i.e. every group has 

cities of single color and salesman is also allocated a color. The salesman has to visit the 

cities in group with same color as the salesman. This allows having many salesmen and each 

of them visiting the cities in group with same color as the salesman a color is allocated to the 

salesman and every city including many all salesmen’s colorsadepending on theaproblem 

types. In CTSP the salesman travels the city with the similar color exactly once. 

 

4. Multi-stripe TSP  

Multi-stripeaTSP  is an extensionaof the classical travelingasalesmanaproblem [8]. The main 

objective in traveling salesman problem toavisit everyacity exactlyaonce and summing the 

cost of visiting the city. The q-stripe TSP is a type of multi-stripe TSP in which q can take 

values anything greater than zero. The main objective of q-stripeaTSP is visita the cities 

while adding the cost of travelling from one city to each of nextaq cities in the tour. The 

resultingaq-stripe TSP generalizesathe TSP and forms a special case of theaquadratic 

assignmentaproblem. 

 

5. Close enough TSP  

Close enough TSP is a variation of the well-known travelingasalesmanaproblem [1]. In close 

enough TSP there are a set of targetapoints inaany Euclideanaspace. The main objective is to 
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determine the minimumalength of the tour which starts and ends at a depotawhile visiting 

each targetapoint exactly once. In CETSP each targetapoint is associatedawith a 

neighborhood. The neighborhood is a compactaregion of the spaceaconsisting of the target 

point. CETSP consist in finding the shortestatour that starts andaends at the depotaand 

intersects each neighborhoodaonce. 

 

6. Consistent TSP 

Consistent TSP is a variantaof the classicalaTravelling SalesmanaProblem. In consistent TSP 

the objective is to identify theaminimum cost routeathat a vehicle should takeaduring 

multiple timeaperiods. The routeashould enable theavehicle to serve all the givenaset of 

customers. Every customer may requireaservice in one or multipleatimeaperiods and the 

requirement for consistentaservice applies at each customeralocation that requires service in 

moreathan one timeaperiod. This requirementacorresponds to restrictingathe difference 

betweenathe earliestaand latest vehicleaarrival times, acrossathe multipleaperiods, to not 

exceedasome given allowablealimit. 

 

7. TSP with time windows (TSPTW) 

Travelling Salesman problem with Time window is an extension of the classical Travelling 

Salesman Problem (TSP) [17]. In TSPTW there are set of customers, service time and time 

window. A salesman has to travel and reach to every customer exactly once. There is due 

date before which the customer has to be visited. If the salesman reaches a customer before 

its ready time then, the salesman has to wait. Moreover, there are tours in which the due dates 

of customers are compromised and such a tour is called infeasible while the other tours in 

which the due dates of the customers are respected are called feasible tours. The main 

objective is to reduce the cost of the distance travelled. 

 

8. Black-and-white TSP 
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The black-and-whiteatravellingasalesmanaproblem (BWTSP) is a variation of the well-

known Travellingasalesmanaproblem [19]. InaBWTSP the vertices representing the cities are 

partitioned into black and white. Further, cardinality and length constraints are used to find 

the distanceabetweenatwo consecutiveablack and whiteavertices. BWTSP has many 

applications in telecommunication, logistics etc. 

 

9. Equality generalized TSP 

The equalityageneralizedatravelingasalesmanaproblem (EGTSP) is a variant of the 

travelingasalesmanaproblem (TSP) [21]. In EGTSP theacities are divided into set of clusters. 

The objective of EGTSP is that salesmanahasato visit every cluster exactlyaonceaand to 

minimize the overall cost of the tour. EGTSP can be modified into asymmetric TSP and can 

be solved using a regular TSP solver.  

 

10. Multi objective TSP 

The Multi objective TravelingaSalesmanaProblem (moTSP) is anaextension of theaclassic 

travelingasalesmanaproblem [12]. In moTSP more than one salesman canabe used toafind the 

optimalasolution. The characteristics of moTSP is more applicable to real life scenarios like 

vehicle routing problems by adding some additional variables and constraints. 

 

11. Physical TSP 

The Physical TravellingaSalesmanaProblem (PTSP) is a variant of theawell-known 

TravellingaSalesmanaProblem (TSP) [32]. PTSP has wide applications in converting TSP 

into single player real time game. In PTSPatheaplayer or theasalesman controls a spaceship 

and has to visit a number of points which are dispersed in a maze in shortest time possible. 

PTSPais realatimeagame and anaaction mustabe taken inaevery forty milliseconds. 

 

12. TSP with multiple time windows and hotel Selection 
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TravellingaSalesmanaProblem with MultipleaTimeaWindows and HotelaSelection (TSP-

MTWHS) is an extension of TravellingaSalesmanaProblem with TimeaWindows (TSPTW) 

[29]. TSP-MTWHS is a recently added extension to the TravellingaSalesmanaProblem with 

HotelaSelection. The TSP-MTWHSaconsists of finding the route foraaasalesman who has to 

visit different customers present atadifferentalocations with differentatimeawindows for each 

customer. The salesman has to travel for several days and need to stay at hotels. The main 

objective is to reduce theaoverall costaof theatour which includes the wages, hotelacosts, 

travellingaexpenses and also a penaltyaamount for every missed customer. 

 

13. Travelling salesman problem with draft limits 

Travelling salesmanaproblemawithadraftalimits (TSPDL) is aarecent extensionaof the well-

known travelingasalesmanaproblem [4]. TSPDLaarises inathe contextaof 

maritimeatransportation. In TSPDL the main goal is to find the optimal path in the 

Hamiltonian cycle for a ship. The ship has to travel and visit a set of ports. The ship has to 

deliver products at given ports within the draft limit of the port. 

 

 14. Asymmetric Traveling Salesman Problem 

The asymmetric travelingasalesmanaproblem (ATSP) is a well-known part ofatheaclassical 

travellingasalesmanaproblem [6].  In asymmetric traveling salesman problem the distance 

between pair of cities is different and the goal is to visit every vertex exactly once while 

minimizing the total distance travelled. The main objective is to reduce the overall cost of the 

trip while visiting each and every node. The asymmetric travelling salesman problem is one 

of the most studied and widely used variation of the classical travelling salesman problem. 

 

15. Traveling Salesman Problem with Pickups, Deliveries, and Draft Limits 

Travelingasalesmanaproblemawith pickup, delivery and draftalimitsais a new generalization 

of the classical traveling salesman problem [10]. This new extension uproots from the 

applications in maritime logistics. In TSP with pickup and delivery every vertex 
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representsaaaport and each port hasaaaknownadraftalimit. Each customer hasaa particular 

demand which is represented as a weight. The pickup and 

deliveriesaareaperformedabyaaaship with some weight capacity. The ship has to deliver the 

cargo to ports. The ship can fulfill a request only if its capacity is compatible with draft limits 

of the port. The main objective is to deliver the customer’s request while adhering to the draft 

limit of the ship. 

 

16. Indefinite period traveling salesman problem 

Indefiniteaperiodatravelingasalesmanaproblem is a new TSPaextension [43].In indefinite 

periodatravellingasalesmanaproblem the customeraneedsatoabeavisitedafiniteanumberaofa 

times withoutabeingavisitedamoreathanaonceaonaaasingleatrip. 

 

 

1.2 Problem Statement 

TSP is a famousaNP-hard combinatorialaoptimizationaproblem. It can beadescribedaas foraa 

given setaof cities, a salesman choose a city to start the tour, traverse all cities and reaches 

the city from where tour is started. The objective of the salesman is to traverse all the cities 

exactly once with minimum distance or tour length. A cost function is defined between the 

neighboring cities. Hence, the objective of the TSPaisatoafind theaoptimum wayato travel 

allatheacitiesaand return toastartingacity with minimum objective function value.  

 

 

1.3 Objective 

 The objectives of this research work are given as below. 

 To applied a new meta-heuristic algorithmafor solvingathe well-known travelling 

salesmanaproblem. 

 To incorporate global optimization strategy for enhancing the optimal solution. 
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 To hybridize the existing algorithm to achieve effective and efficient solution for 

travelling Salesman Problem. 

 

 

1.4 Organization 

The organization of this research work is given below:  

 Introduction: This chapter presents the travelling salesman problem. Further, in this 

chapter, different variants of TSP problem are also discussed. The motive of the 

research work is also outlined in this chapter. 

 Literature Survey 

 Experimental Work/Proposed Work: 

 Conclusion 
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                                         Chapter2 LITERATURE SURVEY  

 

     This chapter describes the recent related work for solving the TSP. Large numbers of 

meta-heuristic algorithms have been applied to find the optimum solution for TSP. Further, 

the different objective functions are also developed for solving the TSP efficiently and 

effectively. It is also observed that neighborhood information concept is also incorporated in 

meta-heuristic algorithm to achieve better solution for TSP. The recent studies on TSP are 

highlighted as below.    

 

Carrabs et al., have developed an approach to compute upper and lower bounds for the Close 

Enough Traveling Salesman Problem [1]. In this work, authors have introduced a new 

effective discretization scheme to find the optimal solution for both of bounds. Further, a 

graph reduction algorithm is used to determine optimal solution for TSP problem. The 

effectiveness and the performance of the proposed approach are tested on several benchmark 

instances. The computational results showed that the proposed algorithm gives better results 

compared to other algorithms.  It is also reported that new effective discretization scheme 

computes the more accurate and significantly outperform in terms of both computational time 

and quality of the bounds. 

 

A real in-port ship routing and scheduling problem faced by chemical shipping companies is 

presented in [2]. This problem can be modeled as a traveling salesman problem with pickups 

and deliveries using time windows and draft limits (TSPPD-TWDL).  The above mentioned 

problem is solved by using the dynamic programming (DP). A set of label extension rules are 

also applied to accelerate and enhance the performance of the proposed algorithm. The 

computational studies show that the label extension rules are essential part of DP algorithm 

and it is an efficient and effective method to solve real-sized in-port routing and scheduling 

problems for chemical shipping. 
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For solving the classical traveling salesman problem (TSP), Mjirda et al., have investigated 

the applicability of the sequential use of neighborhoods [3]. In this work, authors have 

explored TSP neighborhood structures, such as 2-opt and insertion neighborhoods using 

seventy six different heuristics. These heuristics are tested on 15,200 random test instances to 

find the neighborhood structures. It is observed that out of seventy six, two heuristics are 

selected as best heuristics for solving the TSP problem. Further, these two heuristics are 

tested on twenty three test instances of TSP which are taken from the TSP library (TSPLIB). 

Todosijeviel al. have presented variable neighborhood search (GVNS) based variants for 

solving the traveling salesman problem with draft limits (TSPDL) [4].It is a recent extension 

of the traveling salesman problem which can be discussed in context of maritime 

transportation.  This problem can be formulated as to find optimal Hamiltonian tour for a 

given ship that can visit and deliver products to a set of ports with respect to draft limit 

constraints. The proposed algorithm integrates the idea of sequential variable neighborhood 

descent with GVNS. The performance of the proposed algorithm is tested on a set of 

benchmark test instances reported in literature as well as on a new one generated by the 

authors. The experimental results show the efficiency and effectiveness of the newly 

proposed approach.  

 

The Quadratic Travelling Salesman Problem (QTSP) is a problem in which the least cost of a 

Hamiltonian cycle represented as  a weighted graph is found and the costs are defined for 

pairs of edges contained in the Hamiltonian cycle [5]. The problem is shown to be strongly 

NP-hard on a Halin graph. Woods et al. have considered a variation of the QTSP  called the 

k-neighbour TSP  TSP k  . Two edges e and f  e    f  are k-neighbours on a tour τ if and only 

if a shortest path  with respect to the number of edges  between e and f along τ and 

containing both e and f  has exactly k edges  for k ≥ 2. In  TSP  k    a fixed nonzero cost is 

considered for a pair of distinct edges in the cost of a tour τ only when the edges are p-

neighbors on τ for 2 ≤ p ≤ k. Further linear time algorithm was given to solve TSP (k) on a 

Halin graph for k = 3, extending existing algorithms for the cases k = 1, 2. The above said  
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algorithm can be extended further to solve TSP(k) in polynomial time on a Halin graph with 

n nodes when k = O(logn).TSP(k) can be used to model the Permuted Variable Length 

Markov Model in bioinformatics as well as an optimal routing problem for unmanned aerial 

vehicles (UAVs). 

 

Asadpour et al. have presented a randomized O (logn/loglogn) approximation algorithm for 

the asymmetric traveling salesman problem (ATSP) [6]. The key ingredient of their approach 

is a new connection between the approximability of the ATSP and the notion of so-called 

thin trees. To exploit this connection, authors have employed maximum entropy rounding—a 

novel method of randomized rounding of LP relaxations of optimization problems. In this 

paper  authors have provided the first asymptotic improvement over the long-standing Θ 

(logn)-approximation ratio by Frieze et al. (1982) for the asymmetric traveling salesman 

problem  ATSP .  The main idea was the concept of ―thin spanning trees‖ and ―maximum 

entropy rounding.‖  Further  authors have also developed a new randomized rounding 

technique called maximum entropy rounding to produce thin trees. This method was used to 

round a fractional spanning tree (derived from the Held-Karp relaxation of the ATSP) to an 

integral one such that the linear quantities defined on the tree remain approximately the same. 

The main intuition behind the approach  is that among all marginal-preserving and structure-

preserving ways of performing randomized rounding, maximum entropy rounding tries to 

lower the dependencies among the variables as  much as possible. 

 

Basu et al. have presented two hybrid metaheuristics, namely GA-SAG(Genetic algorithm-

Sparse asymmetric graphs) and RGC-SAG (Randomized greedy contract-Sparse asymmetric 

graphs) that, respectively, use genetic algorithm (GA) and randomized greedy contract 

(RGC) algorithm as preprocessing mechanisms, to sparsely a dense graph and apply an 

implementation of tabu search specifically designed for sparse asymmetric graphs  SAG  to 

further improve the solution quality [7]. In this work computational experience shows that 

proposed algorithm outperform the conventional implementation of pure tabu search. 
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Further, for benchmark instances, the proposed algorithm reaches a solution within 1%–5% 

of the optimal solution which is much faster than the best known heuristics. The proposed 

algorithm provides tour values better than those obtained by PATCH or KP heuristic on 50% 

and 75% of the benchmark instances, respectively.  

 

Cela et al. have proposed an algorithm for the  q-stripe TSP with q ≥ 1.In the proposed work 

the objective function sums the costs for travelling from one city to each of the next q cities 

in the tour. Further, the resulting q-stripe travelling salesman problem generalizes the TSP 

and forms a special case of the quadratic TSP problem. Cela et al. have analyzed the 

computational complexity of the q-stripe TSP for various classes of specially structured 

distance matrices. In this paper authors have derived NP completeness for (q+1)-partite 

graphs and for split graphs, and we derived polynomial time results for planar graphs (if 

q>=2) and for partial –trees (if k is a fixed constant). 

 

Ezugwu et al have proposed a Discrete Symbiotic Organisms Search (DSOS) algorithm for 

finding a near optimal solution for the Travelling Salesman Problem (TSP) [9]. The proposed 

SOS (Symbiotic Organisms Search) is a meta heuristic search optimization algorithm, which 

is  inspired by the symbiotic interaction often adopted by organisms in the ecosystem for 

survival and propagation. This new optimization algorithm has been proven to be very 

effective and robust in solving numerical optimization and engineering design problems.  In 

this paper, the SOS is improved and extended by using three mutation-based local search 

operators to reconstruct its population, improve its exploration and exploitation capability, 

and accelerate the convergence speed. Further in this work to prove that the proposed 

solution approach of the DSOS is a promising technique for solving combinatorial problems 

like the TSPs, a set of benchmarks of symmetric TSP instances are selected from the TSPLIB 

library which are then used to evaluate the algorithms performance against other heuristic 

algorithms. Numerical results obtained shows that the proposed optimization method can 

achieve results close to the theoretical best known solutions within a reasonable time frame.   
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Malaguti et al. have introduced a new generalization algorithm of the traveling salesman 

problem with pickup and delivery, which is derived from applications in maritime logistics, 

in which each node represents a port and has a known draft limit [10]. Each customer has a 

demand, characterized by a weight, and pickups and deliveries are performed by a single ship 

of given weight capacity. In this new generalization, the ship is able to visit a port only if the 

amount of cargo it carries is compatible with the draft limit of the port. A integer linear 

programming formulation was presented and it showed how classical valid inequalities from 

the literature can be adapted to the considered problem. Further in this work authors have 

introduced heuristic procedures and a branch-and-cut exact algorithm. Also it was also 

examined, through extensive computational experiments, the impact of the various cuts and 

the performance of the proposed algorithms. 

 

Meng et al.  have proposed an algorithmafor coloured travelling salesman problem (CTSP) 

which  is aageneralization of theawell-known multiple travelingasalesmanaproblem [11]. In 

the coloured travelling salesman problem eachasalesman is allocatedaa particular colour. The 

salesmen’s coloursadepending onathe problem types, allowsaany salesmenawith theasame 

colour to visitathe cityaexactly once .In this paper Meng et al. have presentedaa more 

common CTSP, in whichacity colours areadiverse, i.e., eachacity has oneato allasalesmen’s 

coloursawhile otheraelements of theaproblem keepsaunchanged. It is aageneralization ofthe 

existing CTSPs, i.e., the radialaand serial ones, and canabe used toamodel theascheduling 

problemsawith differentaaccessibility ofajobs towardaexecutors. A cityacolour matrixais 

introduced toadescribe theaaccessibility differenceaof citiesato all salesmen. Since CTSP is 

NP-hard, this paper presentsaa variableaneighbourhood search (VNS) approach, insteadaof 

computationallyaintractable exactasolutions. First, thearepetitive solutionaspace due toathe 

dualachromosome encodingafor the prioragenetic algorithmsacan be entirelyaavoided by 

usingadirect-route encoding. Then, a two-stageagreedy initialization algorithm isautilized by 

VNS to generateathe initialasolution. A cityaremoval mechanism and aareinsertion 
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operationaare introduced toachange theaneighbourhood space of theacurrent solution and 2-

opt method is adoptedafor the local search. Extensive simulation isaconducted and the results 

show that the proposed VNS is an efficient heuristics to solve CTSP. 

 

Congestionain large citiesaand populatedaareas is one ofathe majorachallenges inaurban 

logistics, andashould beaaddressed atadifferent planningaand operationalalevels [12]. The 

Time Dependent Travelling Salesman Problem (TDTSP) is a generalization of the classical 

Travelling Salesman Problem (TSP) in which the time to travel is not same throughout the 

day. Further in this work a  time dependency factor that enables to have better 

approximations to many problems is considered. Montero et al. have considered the Time-

Dependent Traveling Salesman Problem with Time Windows (TDTSP-TW), in which the 

time dependence is considered by integrating variable average travel speeds. In this paper the 

authors have proposed an Integer Linear Programming model and have developed an 

algorithm, which is then compared on benchmark instances with another approach from the 

related literature. Further, the results of proposed algorithm show that the approach is able to 

solve instances up to 40 customers. 

 

The travelling salesman problem (TSP) asks for a shortest tour through all vertices of a graph 

with respect to the weights of the edges [13]. The symmetric quadratic travelling salesman 

problem (SQTSP) an extension of classical TSP, associates a weight with every three vertices 

traversed one after the other. If  the weights corresponding to the turning angles of the tour 

are considered then problem can be modelled into an angular-metric travelling salesman 

problem (Angle TSP). In this paper, Oswin et al. have first considered the SQTSP from a 

computational point of view. In particular, authors have applied a rather basic algorithmic 

idea and perform the separation of the classical sub tour elimination constraints on integral 

solutions only. Surprisingly, it turns out that this approach is faster than the standard 

fractional separation procedure known from the literature. Further in this work authors have 

also tested the combination with strengthened sub tour elimination constraints for both 
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variants, but these turn out to slow down the computation. Secondly, authors have provided a 

completely different, mathematically interesting MILP linearization for the Angle TSP that 

needs only a linear number of additional variables while the standard linearization requires a 

cubic one. For medium-sized instances of a variant of the Angle TSP, this formulation yields 

reduced running times. However, for larger instances or pure Angle TSP instances, the new 

formulation takes more time to solve than the known standard model. Finally, the authors 

have introduced Max SQTSP, which is the maximization version of the quadratic travelling 

salesman problem. Here, it turns out that using some of the stronger sub tour elimination 

constraints helps. For the special case of the Max Angle TSP, authors can observe an 

interesting geometric property if the number of vertices is odd. In this paper it is shown that 

the sum of inner turning angles in an optimal solution always equals π. 

 

In this paper, Sampaio and Urrutia have considered the pickup and delivery traveling 

salesman problem (TSP) with multiple stacks in which a single vehicle must serve a set of 

customer requests defined by a pair of pickup and delivery destinations of an item [14]. The 

vehicle contains a fixed number of stacks  and every item is picked up at a location and 

dropped at its delivery location. Each stack has finite capacity, and its loading and unloading 

sequence must follow the last-in-first-out (LIFO) policy, that is, for each stack, just the last 

item loaded can be unloaded at its corresponding delivery location. Further, in this work 

authors have proposed a new integer programming formulation for this problem with a 

polyhedral representation described by exponentially many inequalities and a branch-and-cut 

algorithm for solving the proposed formulation. Computational results show that the above 

said approach is competitive with the best algorithm in the literature. Also, three new 

certificates of optimality are provided and several optimality gaps are reduced. 

 

A new variant of Ant Colony Optimization (ACO) for the Traveling Salesman Problem 

(TSP) is presented in [15]. ACO has been successfully used in many combinatorial 

optimization problems. However, in ACO there is a problem in finding the global optimal 
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solutions for TSPs, and the performance of the algorithm tends to degrade as the problem 

size increases. In the proposed modification, adaptive tour construction and pheromone 

updating strategies are embedded into the conventional Ant System (AS), to achieve better 

balance between intensification and diversification in the search process. Further in this work 

the performance of the proposed algorithm is tested on randomly generated data and well-

known existing data from the TSPLIB library. The computational results indicate that the 

proposed modification is effective and efficient for the TSP and at par with other Meta 

heuristic algorithm like Ant Colony System (ACS), Max-Min Ant System (MMAS), and 

Artificial Bee Colony (ABC) Meta-Heuristic.   

 

Subramanian et al. have developed an exact solution framework for the Consistent Traveling 

Salesman Problem [16]. This problem calls for identifying the minimum-cost set of routes 

that a single vehicle should follow during the multiple time periods of a planning horizon, in 

order to provide consistent service to a given set of customers. Each customer may require 

service in one or multiple time periods and the requirement for consistent service applies at 

each customer location that requires service in more than one time period. This requirement 

corresponds to restricting the difference between the earliest and latest vehicle arrival-times, 

across the multiple periods, to not exceed some given allowable limit. Further in this work 

authors have presented three mixed-integer linear programming formulations for this 

problem and introduced a new class of valid inequalities to strengthen these formulations. 

These new inequalities are then used in coalesce with classical traveling salesman 

inequalities in a branch-and-cut framework. The algorithm was then tested on a set of 

benchmark instances, which was compiled by extending traveling salesman instances taken 

from the well-known TSPLIB library into multiple periods. The results of the proposed 

algorithm indicate that when the algorithm was compiled with 50 customers requiring 5-

period horizon it performed better than the other well known algorithm. 
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The equality generalized travelling salesman problem (E-GTSP) is an addition of the 

classical travelling salesman problem. In E-GTSP the cities are partitioned into clusters, and 

the salesman has to visit every cluster exactly once [21]. In this paper authors have evaluated 

the performance of the state-of-the art TSP solver Lin–Kernighan–Helsgaun (LKH) on 

transformed EGTSP instances. Although LKH is used without any modifications  the 

computational evaluation shows that all instances in a well-known library of benchmark 

instances, GTSPLIB, could be solved to optimality in a reasonable time. In addition, to that it 

was also possible to solve a series of very-large-scale instances with up to 17,180 clusters 

and 85,900 vertices. Optima for these instances are not known but it is conjectured that LKH 

has been able to find solutions of a very high quality. The program’s performance has also 

been evaluated on a large number of instances generated by transforming arc routing problem 

instances into E-GTSP instances. A possible future path for research would be to find a 

method for reducing the size of the candidate set. This would not only reduce running time 

but also allow LKH’s high order k-opt sub moves to come into play and probably improve 

the solution quality. 

 

The multiple traveling salesman problem (MTSP) is an important combinatorial optimization 

problem [22]. It has been widely and successfully applied to the practical cases in which 

multiple traveling individuals (salesmen) share the common workspace (city set). However, 

it cannot be extended to some problems for example multiple traveling individuals have their 

own exclusive tasks and also share a group of tasks with each other. This work proposes a 

new MTSP called colored traveling salesman problem (CTSP) for handling such cases. Two 

different types of city groups are defined  i.e.  each group of cities of a single particular color 

for a salesman to visit and a group of shared cities of multiple colors allowing all salesmen to 

visit. Evidences show that CTSP is NP-hard and a multi depot MTSP and multiple single 

traveling salesman problems are its special cases. Li et al. have presented a genetic algorithm 

(GA) with dual chromosome coding for CTSP and analyze the corresponding solution space. 

Then, GA is improved by incorporating greedy, hill-climbing (HC), and simulated annealing 
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(SA) operations to achieve better performance. The results of experiments have shown the 

limitation of the exact solution method and the performance of the proposed GA algorithm is 

compared with exact solution method. The results suggest that SAGA can achieve the best 

quality of solutions and HCGA should be the choice making good tradeoff between the 

solution quality and computing time. 

 

Gunduz et al. have presented a new hierarchic method algorithm solving the classical 

traveling salesman problem [23]. The proposedaalgorithm is basedaon swarm intelligence 

algorithms. The swarm intelligence algorithms implementedain this studyaare divided into 2 

types: pathaconstruction-based and pathaimprovement-based methods. The path 

construction-based method i.e. antacolonyaoptimization producesagood solutions butatakes 

moreatime and theapath improvement-basedatechnique i.e. artificial bee colony produces 

resultsain less timeahowever doesanot achieve aagood solution in aareasonable time. 

Therefore, a newamethod which consistsaof ant colonyaoptimization and artificialabee 

colony is proposedato achieve a goodasolution in aareasonable time. ACO is usedato provide 

a betterainitial solutionafor the ABC, which usesathe pathaimprovement techniqueain order 

to achieveaan optimal oranear optimal solution. Computationalaexperiments are conducted 

ona10 instances ofawell-known dataasets availableain thealiterature. The resultsashow that 

ACO-ABCaproduces better qualityasolutions than individual approachesaof ACO and ABC 

with better central processing unit time. 

 

mTSP (Multiple Traveling Salesman Problem) is an NP-hard problem hence known 

deterministic algorithm cannot be used. Therefore, heuristics algorithms are usually applied 

[24]. In this paper, Rostami et al. have modified the Gravitational Emulation Local Search 

(GELS) algorithm to solve the symmetric mTSP. The Gravitational Emulation Local Search 

algorithm is based on the local search concept and uses two variables velocity and gravity. 

Experimental results show that GELS algorithm perform better than the well-known 

optimization algorithms such as the genetic algorithm (GA) and ant colony optimization 
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 ACO . Simulation results show superiority of the modified GELS over the other common 

optimization algorithms.  

 

In the Multi objective Traveling Salesman Problem (moTSP) simultaneous optimization of 

more than one objective functions is required [25]. Psychas et al. have proposed three hybrid 

evolutionary algorithms with common characteristics and to find the solution of the Multi 

objective Traveling Salesman Problem. One of the challenges of the proposed algorithms is 

the efficient application of an algorithm, the Differential Evolution algorithm, which is 

suitable for continuous optimization problems, in a combinatorial optimization problem. 

Thus, authors have tested two different versions of the algorithm, the one with the use of an 

external archive (denoted as MODE) and the other using the crowding distance (denoted as 

NSDE). Also, another novelty of the proposed algorithms is the use of three different 

mutation operators in each of the two versions of the Differential Evolution algorithm 

leading to six different algorithms  MODE1  MODE2 and MODE3 for the first version and 

NSDE1, NSDE2 and NSDE3 for the second version). In this work, authors have used a 

Variable Neighborhood Search (VNS) procedure in each solution separately in order to 

increase the exploitation abilities of the algorithms. The proposed algorithm is then tested on 

the classical Euclidean Traveling Salesman Problem  instances taken from the TSP library. 

Also, a number of different evaluation measures were used in order to conclude which of the 

three algorithms is the most suitable for the solution of the selected problem. In general, the 

proposed algorithms can easily be applied in all multi objective routing problems by 

changing the objective function and the constraints of the problem and they have the ability 

to use more than two objective functions. The hybridized use of the global search algorithm, 

the Differential Evolution, with the Variable Neighborhood Search increases the exploration 

and the exploitation abilities of the algorithms giving very effective evolutionary multi 

objective optimization algorithms. 
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The double traveling salesman problem with multiple stacks consists of two disjoint 

networks and finding a pair of routes for the vehicle [26]. It models a realistic transportation 

problem with loading / unloading constraints imposed by having a set of last-in-first-out 

(LIFO) stacks used for storing the goods being transported. The arrangement of the items in 

the container determines the loading plan that in terms constrains both routes. In this paper, 

Urrutia have proposed an oval local search approach. The local search heuristic is applied to 

the loading plan instead of working directly on the routes. A dynamic programming 

algorithm is then used to the loading plan solution into comparable optimal routes. 

Computational results show that the proposed approach is competitive with state-of-the-art 

heuristics for the problem. 

 

A novel TSP variation, called uncertain multi objective TSP (UMTSP) with uncertain 

variables on the arc, is proposed in [Wang et al. ] on the basis of uncertainty theory, and a 

new solution approach named uncertain approach is applied to obtain Pareto efficient route in 

UMTSP [27]. Considering the uncertain and combinatorial nature of UMTSP, a new ABC 

algorithm inserted with reverse operator, crossover operator and mutation operator is 

designed to this problem, which outperforms other algorithms through the performance 

comparison on three benchmark TSPs taken from the well-known TSPLIB library. Finally, a 

new benchmark UMTSP case study is presented to illustrate the construction and solution of 

UMTSP, which shows that the optimal route in deterministic TSP can be a poor route in 

UMTSP 

 

The objective of traveling salesman problem  TSP  is to find the optimal Hamiltonian circuit 

(OHC) [28]. The hybrid Max–Min ant system (MMA) integrated with a four vertices and 

three lines inequality is introduced to search the OHC. The four vertices and three lines 

inequality is taken as the constraints of the local optimal Hamiltonian paths (LOHP), 

including four vertices and three lines and all the LOHPs in the OHC conform to the 

inequality. At first  the MMA is used to search the approximate OHCs. Then  the local paths 
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of adjacent four vertices in the approximate OHCs are converted into the LOHPs with the 

four vertices and three lines inequality to get the better approximation. The hybrid Max–Min 

ant system (HMMA) is tested with tens of TSP instances. The result shows that the better 

approximations are computed with the HMMA than those with the MMA under the same 

preconditions. 

 

Zhang et al. have considered the online Steiner Traveling Salesman Problem [29]. Given an 

edge-weighted graph G = (V,E) and a subset D ⊆ V of destination vertices, with the 

optimization goal to find a minimum weight closed tour that traverses every destination 

vertex of D at least once. During the traversal, the salesman could encounter at most k non-

recoverable blocked edges. The edge blockages are real-time, meaning that the salesman 

knows about a blocked edge whenever it occurs. In this work authors have first shown a 

lower bound on the competitive ratio and present an online optimal algorithm for the 

problem. While this optimal algorithm has non polynomial running time, another online 

polynomial-time near optimal algorithm is presented for the problem. Experimental results 

show that the online polynomial-time algorithm produces solutions very close to the offline 

optimal solutions. 

 

Weise el al. have proposed an experimentation procedure for evaluating and comparing 

optimization algorithms based on the Traveling Salesman Problem (TSP) [30]. The authors 

have argued that end-of-run results alone do not give sufficient information about an 

algorithm’s performance  so the approach analyzes the algorithm’s progress over time. 

Algorithms are ranked according to a performance metric. Rankings based on different 

metrics are then aggregated into a global ranking, which provides a quick overview of the 

quality of algorithms in comparison. An open source software framework, the TSP Suite, 

applies this experimental procedure to the TSP. The framework can support researchers in 

implementing TSP solvers, unit testing them, and running experiments in a parallel and 

distributed fashion. It also has an evaluator component, which implements the proposed 
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evaluation process and produces detailed reports. Further the approach is tested by using the 

TSP Suiteto benchmark several local search and evolutionary computation methods. This 

results in a large set of baseline data, which will be made available to the research 

community. The experiments show that the tested pure global optimization algorithms are 

outperformed by local search, but the best results come from hybrid algorithms. 

 

Kaveh and Safari have proposed an algorithm based on CSS (Charged system search) for 

discrete problems with the focus on traveling salesman problem [31]. The CSS algorithm, 

based on some principles from physics and mechanics, utilizes the governing Coulomb law 

from electrostatics and Newtonian laws of mechanics. The CSS is more suitable for 

continuous problems compared to discrete problems. The authors have presented, a local 

search method and nearest neighbor are added to CSS for discrete problems with the focus on 

traveling salesman problem (TSP). The proposed algorithm is used to solve the TSP, and a 

method is presented for the solution of the single row facility layout problem (SRFLP). To 

show the efficiency of the new algorithm, the results are compared to those of some 

benchmark problems reported in the recent literatures. 

 

Perez et al. have presented a numberaof approachesafor solving aareal-time gameaconsisting 

of a shipathat mustavisit a numberaof  way pointsascattered around aatwo-dimensional maze 

full ofaobstacles [32]. Theagame, the Physical Travelling Salesman Problem (PTSP) 

providesaa goodabalance betweenalong-term planning (finding the optimal sequence of 

waypoints to visit), andashort-term planning (driving the ship in the maze). The authors have 

focusedaon the algorithmathat takes advantageaof the physicsaof the gameato calculateathe 

optimalaorder of waypoints, andait employs Monte CarloTree Search (MCTS) to driveathe 

ship. The algorithmauses repetitionsaof actions (macro-actions) to reduceathe searchaspace 

foranavigation. Variationsaof this algorithmaare presentedaand analyzed, inaorder to 

understandathe strengthaof each oneaof itsaconstituents and toacomprehend whatamakes 

such anaapproach the bestacontroller foundaso far forathe PTSP. 
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 Abeledo et al. have presented that time dependent travelingasalesmanaproblem (TDTSP) is a 

generalization of the classical travelingasalesmanaproblem (TSP), where arc costs dependaon 

their positionain the tourawith respect toathe sourceanode [33]. While TSPainstances with 

thousandsaof verticesacan be solvedaroutinely, there areavery challengingaTDTSP instances 

withaless thana100 vertices. In this work, the polytopeaassociated to theaTDTSP formulation 

by Picard and Queyranne is studied, whichacan be viewedaas anaextended formulationaof 

theaTSP. Theaauthors haveadetermined theadimension of theaTDTSP polytope and 

identifiedaseveral familiesaof facet-definingacuts. Furthur, goodacomputational resultsawere 

obtainedawith a branch-cut-and-priceaalgorithm usingathe new cuts, solvingaalmost all 

instancesafrom theaTSPLIB withaup to 107 vertices. 

 

Baltz et al. have proposed an algorithm for the TravellingaSalesmanaProblem with Multiple 

Time Windows and Hotel Selection (TSP-MTWHS), whichageneralizes the well-known 

TravellingaSalesmanaProblem with Time Windows and thearecently introducedaTravelling 

SalesmanaProblem with Hotel Selection [34]. The TSP-MTWHS consistsain determiningaa 

routeafor a salesmanawho visits variousacustomers atadifferent locationsaand differentatime 

windows. The salesmanamay require aaseveral-day touraduring whichahe mayaneed toastay 

inahotels. The goalais to minimizeathe tour costsaconsisting of wage, hotelacosts, travelling 

expensesaand penaltyafees for possiblyaomitted customers. The authors have presented a 

mixed integer linear programming (MILP) modelafor thisapractical problemaand aaheuristic 

combiningacheapest insert, 2-OPT and randomized restarting. Further, on randomainstances 

and onareal worldainstances fromaindustry thatathe MILP model canabe solved 

toaoptimality inareasonable time withaa standard MILP solverafor severalasmall instances. 

The authors have shown thatathe heuristicagives the sameasolutions foramost of theasmall 

instances, andais also fast, efficientaand practical foralarge instances. 
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The equalityageneralized travelingasalesmanaproblem (E-GTSP) is an extensionaof the 

travelingasalesmanaproblem (TSP) where the set of cities is partitioned into clusters, and the 

salesman has to visit every cluster exactly once [35]. It is wellaknown that anyainstance of E-

GTSP can beatransformed into aastandard asymmetricainstance of theaTSP, and therefore 

solvedawith a TSPasolver. In this paper Helsgaun evaluates theaperformance of theastate-of-

the artaTSP solveraLin–Kernighan–Helsgaun (LKH) on transformedaEGTSP instances. 

Although LKHais usedawithout anyamodifications, theacomputational evaluation shows that 

all instancesain a well-knownalibrary ofabenchmark instances, GTSPLIB, couldabe solved to 

optimalityain a reasonableatime. Further in this work, itawas possibleato solve aaseries of 

newavery-large-scale instancesawith up to 17,180aclusters and 85,900avertices. Optima for 

theseainstances areanot knownabut it isaconjectured thataLKH has beenaable to find 

solutionsaof a veryahigh quality. The program’saperformance hasaalso beenaevaluated on a 

largeanumber ofainstances generatedaby transforming arc routingaproblem instancesainto E-

GTSP instances. 

 

Bai et al. have proposed a model inducedamax-min antacolonyaoptimization (MIMM-ACO) 

to bridgeathe gapabetween hybridizations and theoreticalaanalysis [36]. The proposed 

methodaexploits analyticalaknowledge fromaboth the ATSPamodel and theadynamics of 

ACOaguiding theabehavior ofaants whichaforms theatheoretical basisafor theahybridization. 

The contribution ofathis paper mainlyaincludes threeasupporting propositionsathat lead to 

twoaimprovements inacomparison withaclassical max-minaACO optimization (MM-ACO):  

(1) Adjustedatransition probabilities areadeveloped byareplacing the staticabiasedaweighting 

factors withathe dynamicaones which areadetermined by theapartial solutionathat antahas 

constructed. As a byproduct, non-optimalaarcs will beaidentified and excludedafrom further 

considerationabased on theadual information derivedafrom solving theaassociated 

assignment problem (AP). 

 (2) A terminal condition isadetermined analyticallyabased on the stateaof pheromoneamatrix 

structure ratherathan intuitively as in most traditionalahybrid meta heuristics. Apartafrom the 
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theoreticalaanalysis, the authorsahave experimentallyashowed that theaproposedaalgorithm 

exhibitsamore powerfulasearching abilityathan classicalaMM-ACO andaoutperforms state of 

art hybrid Meta heuristics. 

 

The TravellingaSalesmanaProblem with PickupsaandaDeliveries (TSPPD) consistsain 

designing aaminimum costatour that starts at theadepot, providesaeither a pickupaor delivery 

serviceato each ofathe customersaand returns toathe depot, in suchaa way thatathe vehicle 

capacityais not exceededain any partaof theatour [37]. Subramanian and Battarra have 

presented a Meta heuristic algorithm basedaon IteratedaLocal Search withaVariable 

NeighborhoodaDescent and Random neighborhood ordering. The authors have proposed a 

fast, flexibleaand easy toacode algorithm, alsoacapable ofaproducing highaqualityasolutions. 

The results ofacomputational experienceashow that the algorithmafinds or improvesathe best 

knownaresults reportedain the literatureawithin reasonableacomputationalatime. 

 

Ouyang et al. have proposed a novel discreteacuckooasearch algorithm (DCS) for solving 

spherical TravelingaSalesmanaProblem (TSP) where all pointsaareaon theasurface ofaa 

sphere [38]. The algorithmais based onathe L’vy flight behavior and broodaparasitic 

behavior. The proposedaalgorithm appliesastudy operator, the ‖A‖ operator  and 3-opt 

operator toasolutions in theabulletin boardato speedaup theaconvergence. Optimization 

resultsaobtained foraHA30 (an instance from TSPLIB) andadifferent sizeaproblems are 

solved. Further the proposed algorithm is better and faster when compared with GA, DCS. 

 

Freitas and VazPenna have developed an algorithm to solve the TSP for drones or unnamed 

aerial vehicles (UAV) [39]. In their work they have proposed a scenario in which a drone 

works as a delivery truck to deliver parcels to customers. The Traveling Salesman Problem 

has some variables and constraints that make it insufficient. The scenario considers the flying 

time of the drone that prevents it from delivering all the parcels to the defined customers as 

the payload of the drone is defined and the parcel size must not exceed the payload limit. To 

https://www.sciencedirect.com/science/article/pii/S1571065318300593#!
https://www.sciencedirect.com/science/article/pii/S1571065318300593#!
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solve the above mentioned problem an initial solution is generated using the TSP solver. 

Further, a Randomized Variable Neighborhood Descent is used for local search to obtain the 

solution. The work is then tested on 11 heuristic instances taken from the TSPLIB library. 

 

Agatz et al. have proposed a model to tackle the problem of faster delivery of goods at home 

[40]. This new trend of faster delivery at home is forcing many companies to go an extra mile 

to fulfill their customers need. One recently technology addition is to use drones for such 

purpose. This has also given rise to a new variant of the classical travelling salesman problem 

i.e. travelling salesman problem with drones. In this paper the authors have proposed a model 

as an integer program and developed many fast route heuristics based on local search and 

dynamic programming. The proposed model was then tested by comparing it to optimal 

solution for small instances. Further in this work, the algorithm was applied to other artificial 

instances of various sizes. The results indicate that significant time can be saved by this 

approach. 

 

Gülcü et al. have proposed a parallel cooperative hybrid algorithm for solving the Travelling 

Salesman Problem [41]. Although other known heuristics and hybrid methods provide good 

solution however they get stuck in local optima and also take longer to process. Hence, to 

overcome these problems the authors have proposed a parallel cooperative hybrid algorithm. 

The parallel cooperative hybrid algorithm is based on the ant colony optimization. The 

proposed method uses 3-opt algorithm to solve the problem of getting stuck in local minima. 

The proposed method has master-slave paradigm. Each ant colony finds its own solution. 

Further, each colony runs 3-opy to find the optimal solution and then share it with other 

colonies. The experimental results show that the proposed algorithm works better than the 

other known algorithm. The proposed approach is fast and efficient. 

Freitas and Penna have proposed a model for parcel distribution of drones with an aim of 

logistic companies to achieve faster deliveries in lesser cost [42]. Flying Sidekick Traveling 

Salesman Problem (FSTSP) is new variant to classical travelling salesman problem in which 

https://pubsonline.informs.org/action/doSearch?text1=Agatz%2C+Niels&field1=Contrib
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the customers are served by truck or drone. This new extension of TSP has many new 

constraints like payload and endurance. The authors have proposed a hybrid algorithm in 

which the initial solution is created from the optimal TSP solution. Further in this work, a 

General Variable Neighborhood Search is used to find the route for the drone. The 

computational results show that the proposed algorithm improves the delivery time up to 

67.79%. Further a new set of instances is also provided based on TSPLIB library. 

 

LeiSun et al. have proposed a problem of indefinite period traveling salesman problem [43]. 

In this new TSP extension the customer need to be visited finite number of times without 

being visited more than once on a single trip. The authors have proposed a solution in which 

the customers are grouped with a number of different subset of customers. The proposed 

problem is NP-hard. The authors have proposed many exact and heuristic methods of solving 

the problem. The computational results show that the proposed algorithm can be 

implemented in decent time. Further in this work the authors have shown the importance of 

this TSP extension for cost reduction and scheduling solution. 

 

Yurek and Ozmutlu have proposed an iterative algorithm based on decomposition approach 

[44]. The new delivery problem emerges after attempts to use drone in operation by several 

companies. In the proposed work, a drone is carried by truck for efficiency and ability to 

travel in tough terrains and congestion. In this work the authors have first assigned customers 

to the drone and then mixed- integer linear programming model is used to optimize the path 

of the drone by fixing the routes and assignments made in the first step. The results of the 

proposed work are compared with state of the art formulations solved CPLEX. The results 

indicate that the proposed algorithm give faster solution for the instances that are generated 

with some specific constraints. 

Boland et al. have proposed an algorithm for TravelingaSalesmanaProblem withaTime 

Windowsais theaproblem of finding a minimum-costapath visitingaeach of a setaof cities 

exactlyaonce, whereaeach city mustabe visitedawithin a specifiedatime window [45]. The 



29 

 

problemahas receivedasignificant attention becauseait occurs asaa sub problemain 

manyareal-life routing andascheduling problems. A time-expandedainteger linear 

programming (IP) formulationais used withoutacreating the completeaformulation. Partially 

time-expandedanetworks are designedawhich are used toaproduce upper as wellaas lower 

bounds, andawhich are iterativelyarefined until optimalityais reached. Preliminary 

computationalaresults illustrateathe potentialaof the approachaas, for almostaall instances 

testedaoptimal solutionsacan be identifiedain onlyaa fewaiterations. 

Gambella et al. have proposed foracarrier–vehicle travelingasalesmanaproblem (CVTSP) 

[46]. Carrier–vehicleasystems generallyaconsist of aaslow carrier (e.g., a ship) withaa long 

operationalarange and aafaster vehicle (e.g., an aircraft) with aalimited operationalarange. 

The carrierahas the roleaof transporting theafaster vehicleaand of deploying, recovering, and 

servicingait. The goalaof the carrier–vehicleatraveling salesmanaproblem (CVTSP) isato 

permitathe faster vehicleato visit a givenecollection of targetsain the shortestatime while 

usingathe carrieraas a baseafor possibleamultiple trips. The authors have proposed aamixed-

integer, second-orderaconic programming (MISOCP) formulationafor the CVTSP. 

Computational results are shown forathe resolutionaof the modelawith commercialasolvers. 

The MISOCP structureaand the relationshipato theatraveling salesmanaproblem 

areaexploited for developingaa ranking-based solutionaalgorithm thataoutperforms the 

commercialasolvers. 

 

Veenstra et al. have introduced an algorithm forapickup and deliveryatraveling salesman 

problemawith handlingacosts (PDTSPH) [47]. In PDTSPH, a singleavehicle has toatransport 

loads fromaorigins to destinations. Loading andaunloading of theavehicle is operatedain a 

last-in-first-out (LIFO) fashion. However, if aaload must beaunloaded thatawas not loaded 

last, additionalahandling operations areaallowed to unloadaand reloadaother loads thatablock 

access. Since theaadditional handlingaoperations takeatime and effort, penaltyacosts are 

associatedawith them. The aimaof the PDTSPH is toafind a feasiblearoute suchathat theatotal 

costs, consistingaof travel costsaand penalty costs, areaminimized. We show thatathe 

https://pubsonline.informs.org/action/doSearch?text1=Gambella%2C+Claudio&field1=Contrib
https://www.sciencedirect.com/science/article/abs/pii/S037722171630546X#!
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PDTSPH is aageneralization of theapickup and deliveryatraveling salesmanaproblem 

(PDTSP) and theapickup and deliveryatraveling salesmanaproblem withaLIFO loading 

(PDTSPL). The authors have proposed a largeaneighborhood search (LNS) heuristicato solve 

theaproblem. The LNS heuristicais testedaagainst bestaknown solutionsaon 163 benchmark 

instancesafor the PDTSP and 42 benchmarkainstances forathe PDTSPL. The proposed 

algorithm providesanew best knownasolutions on 52 instancesafor the PDTSP andaon 15 

instancesafor the PDTSPL, besidesafinding the optimalaor bestaknown solutionaon 102 

instancesafor the PDTSP and on 23 instancesafor the PDTSPL. The LNS findsaoptimal or 

near-optimal solutionsaon instances forathe PDTSPH. Resultsashow that PDTSPH 

solutionsaprovide large reductionsain handlingacompared to PDTSP solutions, while 

increasingathe travel distanceaby only aasmallapercentage. 

 

In a singlealocal searchaalgorithm, severalaneighborhood structuresaare usuallyaexplored 

[48]. The simplestaway is toadefine a singleaneighborhood as theaunion of allapredefined 

neighborhoodastructures; the otherapossibility is toamake anaorder (or sequence) ofathe 

predefinedaneighborhoods, and toause them inathe firstaimprovement or theabest 

improvementafashion, followingathat order. In this paper the authors haveaclassified 

possibleavariants of sequentialause of neighborhoodsaand then, empiricallyaanalyzed them 

inasolving the classicalatraveling salesmanaproblem (TSP). The mostacommonly usedaTSP 

neighborhoodastructures, such as 2‐opt and insertionaneighborhoods. The proposed work the 

authors haveatested 76 differentasuch heuristicsaon 15,200 random testainstances. Several 

interestingaobservations wereaderived. In addition, the twoabest of 76 heuristicsa(used as 

local searches within a variable neighborhood search) are testedaon 23 testainstances taken 

fromathe TSP library (TSPLIB). It appeared that the unionaof neighborhoodsadoes not 

performawell. 

Asadpour et al. have proposed a randomizedaO(log n/log log n)-approximationaalgorithm for 

theaasymmetric travelingasalesmanaproblem (ATSP) [49]. This providesathe 

firstaasymptotic improvementaover the long-standingaΘ log n)-approximationabound 

https://pubsonline.informs.org/action/doSearch?text1=Asadpour%2C+Arash&field1=Contrib
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stemming fromathe work ofaFrieze et al. The keyaingredient ofatheir approachais a 

newaconnection betweenathe approximabilityaof the ATSPaand the notionaof so-called thin 

trees. Further in this workathe authors haveaemployed a maximumaentropy rounding—a 

novelamethod of randomizedarounding of LP relaxationsaof optimizationaproblems.  
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Chapter 3 SYSTEM DEVELOPMENT 

 

3.1 Ant Colony Optimization 

 Ant colonysoptimization (ACO) is developedafrom the typicalabehavior shownaby 

someaant species. Starting fromathe hiveathey are proneato walk randomlyaaround 

untilathey find aapoint ofainterest, e.g. a foodasource. When travelingaback to theahive, they 

willadeposit a chemicalasubstance calledapheromone as theyago, whichawill helpathem find 

theiraway back toawhere theyacame from. Theaants depositapheromone onathe groundain 

order toamark someafavorable pathathat shouldabe followedaby other membersaof colonyato 

reachathe foodasource. When otheraants encounterathe pathaof pheromone theyawill follow 

it, becomingaless randomainatheir movement. Theseawill then alsoadeposit pheromone, 

strengtheningathe alreadyaexisting path. Becauseapheromone is aavolatile substance, 

aaconstant streamaof ants isarequired toakeep up theastrength ofatheatrail. This meansathat if 

aashorter trailaexists, theapower of thisatrail’s pheromoneawill be stronger, as theaants 

willatraverse theatrail in aashorter amount ofatime, while theapheromoneastill evaporatesaat 

theasame speed. Afteraa (relatively) shortatime span, the majorityaof theaants willatherefore 

beafollowing theashortestapath, as thisapath hasathe strongestapheromone. At first the 

chances to take either left or right are 50/50, but as the ants traverse the two distances, the 

pheromone increases faster on the shorter route and more ants end up taking that route.  

 

3.11 Ant Colony Optimization Algorithm 

Set parameters, initializeapheromoneatrails 

whileatermination conditionanot met do 

ConstructAntSolutionsaaa 

ApplyLocalSearch (optional) 

UpdatePheromonesa 

end while 
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3.12 Double Bridge experiment 

In the doubleabridgeaexperiment the nestaof colonyaof Argentinaaants wasaconnected to 

foodasource by twoabridges. Initially, eachaant randomlyachoses oneaof bridges. However, 

dueatoarandom fluctuation, afterasome timeaone of bridgeashowed higherapheromone, 

thereforeaattracted moreaants. This bringsamore pheromoneaand attractedamore antsaas 

result theawhole colonyaconverges towardathe sameabridge. 

          E                                                                                              E 

 

D                            C                                                               D                                   C 

 

B                                                                                      15 ants B        15 ants 
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A                                                                                                    A 
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                                Figure 1 –Double Bridge Experiment 
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3.13 The Pheromone Trail Update 

 

The pheromoneabiologically definesathe modificationsaof the colonyatrail on theabranches 

in theaenvironment. As itais aavolatile substanceathere is aatime limitaon itsaimpact onathe 

otheraants. For suchareasons, itsacomputation isamade underatwo considerations: 

 

• The quantityaof pheromonealayer on a branchathat hasabeen used. Suchaquantity is 

expressedaby twoaparameters, theaparameter ofadeposit dependingaon theatype ofaants used 

forathe simulation, andaa parameteraof decayafor the depositaof pheromoneaevaluated as a 

probabilityabetween [0, 1].The parameteraof depositais usuallyaset proportionallyato the 

invertedalength ofathe branchesatraversed byathe ant, soathat shortabranches getsahigh 

pheromoneadeposit, simulatingathe environmentadescribedaearlier. 

 

• The quantityaof pheromoneaevaporated afterathe antahas crossedabranch. The evaporation 

isaset to controlathe evaporationaon a path, basedaon theaparameter ofadecay ofathe 

pheromoneadeposit byathe previousaant(s). However, foraant simulationsaand optimizations, 

thereahas beenadefined twoarules forathe pheromoneaupdate: 

1. The local update aaaaaaaaaaaaaa 

The localaupdate is theaupdate of theapheromone on aasingle branchawhen it isatraversed by 

anaant. 

2. The global update 

The global update isathe reinforcementaof the branchesain the bestapath found afteraeach 

iterationaof theaants in orderato findathe overallabestapath. 

 

3.2 Ant Colony Optimization for TSP  

In antacolonyaoptimization, the problemais tackledaby simulatingaa numberaof artificialaant 

moving on graphathat encodesatheaproblem. Eachavertex representsaa cityaand edge 
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representaa connection betweenatwo cities. A variableacalled pheromoneais associatedawith 

theaedge and canabe readaand modifiedaby theaants. Antacolonyaoptimization is anaiterative 

algorithm. Ataeveryaiteration, a numberaof artificialaants areaconsidered. Each ofathem 

builds aasolution byawalking fromavertex toavertex onathe graphawith theaconstraint ofanot 

visitingaany vertexathat she hasaalready visitedain herawalk. At eachastep of theasolution 

construction, anaant selects theafollowing vertexato beavisited accordingato a stochastic 

mechanism thatais biasedaby theapheromone. In particular, ifaj hasanot beenapreviously 

visited, itacan beaselected with aaprobability thatais proportionalato theapheromone 

associatedawithaedge (i, j). At theaend of anaiteration, on theabasis of theaquality ofathe 

solutionsaconstructed byathe ants, theapheromone valuesaare modifiedain orderato biasaants 

in futureaiterations to constructasolutions similarato the bestaones previouslyaconstructed. 

Given an n-city TSP with distances dij, the artificial ants are distributed to these n cities 

randomly. Each ant will choose the next to visit according to the pheromone trail remained 

on the paths just as mentioned in the above. 

 

3.21 ACO algorithmafor TSP 

Set parameters, initializeapheromone trails  

Calculateathe maximumaentropy Loop 

Each ant is positionedaon a startinganode accordingato distributionastrategy (eachanode 

hasaat leastaone ant) 

For k=1 to m  

     At the firstastep movesaeach antaat differentaroute 

Repeat 

    Select node j to be visitedanext  

    Until antak has completedaa tour  

End for  

Localasearch applyato improveatour  

Computaentropy value ofacurrent pheromone trailsaUpdate theaheuristic parameter 



36 

 

 Until End_condition  

End 
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Chapter 4 PERFORMANCE ANALYSIS 

 

4.1 Results 

The ant colonyaoptimization algorithm for the travelling salesmanaproblem is tested by 

considering different variations in inputs. Many coefficients like pheromone evaporation rate, 

ant’s eye sight  primary trace and number of cities are considered. The following are the 

results of algorithm by considering different number of cities: 

 Number of cities - 10 

Minimum tour length or cost of tour – 63.4353 

              Total time – 0.583s 

 

                                                         Figure 2 
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 Number of cities - 15 

Minimum tour length or cost of tour – 103.9245 

              Total time – 0.445s 

 

 

                                                              Figure 3 
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 Number of cities - 20 

Minimum tour length or cost of tour – 107.6694 

              Total time – 0.472s 

 

 

 

                                                                     Figure 4 
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 Number of cities - 25 

Minimum tour length or cost of tour – 134.4631 

              Total time – 0.449s 

 

 

 

                                                                Figure 5 
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 Number of cities - 50 

Minimum tour length or cost of tour – 234.2743 

              Total time – 0.942s 

 

 

 

 

Figure 6 
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 Number of cities - 100 

Minimum tour length or cost of tour – 481.7417 

              Total time – 2.189s 

 

 

 

Figure 7 
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 Number of cities - 200 

Minimum tour length or cost of tour – 766.03 

            Total time – 13.454s 

 

 

 

 

 

                                                         Figure 8 
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The advantage of ACO for TSP over the exact methods is that ant colony optimization 

provides good results with lesser number of iterations. Hence, ACO is better option to find a 

good solution in shorter time and is also useful and has its advantages for solving problems 

occurring in practical application. 

 

 

4.2 Comparison withaother methods 

To compareathe ACOawith other knownaheuristics twoasets of TSPaproblems are reviewed. 

The first set consists of fivearandomly generateda50-city problemsaand the   secondaset 

consists of threeageometric problemsaof betweena50 anda100 cities. The ant colony 

optimization algorithm is compared with other heuristics like simulatedaannealing (SA), 

elasticanet (EN), and self-organizingamap (SOM). ACO was run with considering ten ants 

and ACO almost always have the best average tour cost for every problem. ACO was 

compared with geneticaalgorithm (GA), evolutionary programming (EP), and simulated 

annealing (SA) on geometric instances. Again ACO gives almost the best result inanearly 

everyacase. Onlyafor the Eil50aproblem ACOagives a slightlyaworse solutionausing real-

valued distance as comparedawith EP, but theaACS only visitsa1830 tours, whileaEP 

useda100 000 suchaevaluations. 
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Chapter 5 CONCLUSIONS 

 

 

 

The Travelling Salesman Problem is a widely studied problem and has many applications in 

real world problems. Travelling Salesman Problem is a problem in which a salesman intends 

to visit a large number of cities exactly once and returning to starting point while minimizing 

the total distance travelled or the overall cost of the trip. TSP is also used as a benchmark for 

many optimization methods.The TSP has many applications, in the manufacture of 

microchips, planning and logistics The Ant Colony Optimization Algorithm is a Meta 

heuristic algorithm based on the behavior of some ant species. The ant colonyaoptimization 

algorithm for the travelling salesmanaproblem is tested by considering different variations in 

inputs. Many coefficients like pheromone evaporation rate  ant’s eye sight  primary trace and 

number of cities are considered. The results for 10,15,20,25,50,100,200 cities are reported in 

the above work. For each of the input condition minimum length of tour and time to execute 

are also noted. The Ant Colony Optimization gave better results when compared to other 

heuristics.  

 

 

 

 

 

 

 

 

                              

 

https://en.wikipedia.org/wiki/Benchmark_(computing)
https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/Planning
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APPENDICES 

 

Code of program 

 

function myaco() 

miter=10; 

m=10; 

n=10; 

% parameters 

e=.15;            % evaporation coefficient. 

alpha=1;          % effect of ants' sight. 

beta=4;           % trace's effect. 

t=0.0001*ones(n); % primary tracing. 

el=.97;           % common cost elimination.  

 

for i=1:n 

    x(i)=rand*20; 

    y(i)=rand*20; 

end     

subplot(3,1,1); 

plot(x,y,'o','MarkerFaceColor','k','MarkerEdgeColor','b','MarkerSize',10); 

title('Coordinates of Cities'); 

xlabel('x  (km)'); 

ylabel('y  (km)'); 

 

for i=1:n 

    for j=1:n 

        d(i,j)=sqrt((x(i)-x(j))^2+(y(i)-y(j))^2); 
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    end 

end 

for i=1:n 

    for j=1:n 

        if d(i,j)==0 

            h(i,j)=0; 

        else 

            h(i,j)=1/d(i,j); 

        end 

    end 

end 

for i=1:miter 

for j=1:m 

    start_places(j,1)=fix(1+rand*(n-1)); 

end 

 

    [tour]=ant_tour(start_places,m,n,h,t,alpha,beta); 

    tour=horzcat(tour,tour(:,1)); 

    [cost,f]=calculate_cost(m,n,d,tour,el); 

    [t]=update_the_trace(m,n,t,tour,f,e); 

    average_cost(i)=mean(cost); 

    [min_cost(i),best_index]=min(cost); 

    besttour(i,:)=tour(best_index,:); 

    iteration(i)=i; 

end 

 

subplot(3,1,2);plot(iteration,average_cost); 

title('Average of tour distance vs Number of iterations'); 
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xlabel('iteration'); 

ylabel('distance (km)'); 

 [k,l]=min(min_cost); 

 

for i=1:n+1 

    X(i)=x(besttour(l,i)); 

    Y(i)=y(besttour(l,i)); 

End 

 

subplot(3,1,3);plot(X,Y,'--o',... 

                'MarkerEdgeColor','k',... 

                'MarkerFaceColor','g',... 

                'MarkerSize',10) 

xlabel('x (km)');ylabel('y (km)'); 

title(['minimum cost (total length)= ',num2str(k)]); 

end 

 

 

function [t]=update_the_trace(m,n,t,tour,f,e); 

for i=1:m 

    for j=1:n 

        dt=1/f(i); 

        t(tour(i,j),tour(i,j+1))=(1-e)*t(tour(i,j),tour(i,j+1))+dt; 

    end 

end 

 

 

function [new_places]=ant_tour(start_places,m,n,h,t,alpha,beta); 
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for i=1:m 

    mh=h; 

    for j=1:n-1 

        c=start_places(i,j); 

        mh(:,c)=0; 

        temp=(t(c,:).^beta).*(mh(c,:).^alpha); 

        s=(sum(temp)); 

        p=(1/s).*temp; 

        r=rand; 

        s=0; 

        for k=1:n 

            s=s+p(k); 

            if r<=s 

                start_places(i,j+1)=k; 

                break 

            end 

        end 

    end 

end 

new_places=start_places; 

 

 

function [cost,f]=calculate_cost(m,n,d,at,el); 

for i=1:m 

    s=0; 

    for j=1:n 

        s=s+d(at(i,j),at(i,j+1)); 

    end 
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    f(i)=s; 

end 

cost=f; 

f=f-el*min(f); 

 

 

 

 

 

 


