~ "	
Roil	No:

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST - 3 EXAMINATION JUNE 2022

M.Tech (IoT) II Semester

COURSE CODE (CREDITS): 21M1WEC231(3)

MAX. MARKS: 35

COURSE NAME: Image Sensing and Real Time Processing

COURSE INSTRUCTOR: Dr. Nafis Uddin Khan

MAX. TIME: 2 Hours

Note: All questions are compulsory. Assume the data wherever necessary.

Q1. (a) Explain the process of image sampling and quantization in detail.

CO1 [3 Marks]

(b) Calculate the total number of bits required for transmission of a digital image of size 1024 ×1024 with 256 gray levels, if the transmission is accomplished in packets consisting of a start bit and a stop bit.

CO1 [2 Marks]

Q2. (a) Distinguish between point processing and neighborhood processing.

CO2 [2 Marks]

(b) Compute and draw the histogram, normalized histogram and cumulative normalized histogram for the following 4-bit image:

CO2 [3 Marks]

			111.	
	5	8	3	7
	1	3	4.3	9
į	6	8	2	3 7
	4	1 1	0	9

O3. Perform the discrete convolution on the following image matrices:

CO3 [5 Marks]

$$X_1 = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 5 & 6 \end{bmatrix}$$
 and $X_2 = \begin{bmatrix} 2 & 4 \\ 1 & 3 \end{bmatrix}$

Q4. (a) Explain the concept of Discrete Fourier Transform in image filtering.

CO3 [3 Marks]

- (b) Compute Discrete Fourier Transform of 1-dimensional sequence $x[n] = \{0, 1, 2, 1\}$. CO3 [3 Marks]
- Q5. Explain the detailed mechanism of edge detection in image segmentation using Laplacian operation.

 CO4[5 Marks]
- Q6. Explain the use of K-means clustering algorithm in image segmentation with proper example.

 CO4[5 Marks]
- Q7 Considering real time images, define the following morphological operations in detail: CO4[4 Marks]
 - 1. Erosion
 - 2. Dilation
 - 3. Opening
 - 4. Closing