JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

TEST - 3 EXAMINATIONS-2022

B.Tech - IV Semester (ECE)

COURSE CODE (CREDITS): 18B11EC412 (4) / 10B11EC301 (4)

MAX. MARKS: 35

COURSE NAME: Fundamentals of Signals & Systems / Signals and Systems

COURSE INSTRUCTORS: Dr. Vikas Baghel

MAX. TIME: 2 Hours

Note: All questions are compulsory. Marks are indicated against each question in square brackets.

Q1. a) What is the difference between continuous and discrete signal?

[1] [CO1]

b) What are the conditions for the existence of Fourier transform?

[1]

c) Explain Gibbs phenomenon with example.

[2]

d) What are the limitations of Fourier transform and use of Eaplace transform?

[1]

Q2. a) Find $x(0^+)$ for given LT of x(t)

[1] [CO4]

$$X(s) = \frac{2s^3 + 5s^2 + 12s}{s^3 + 4s^2 + 14s + 20}$$

b) How many signals have a Laplace transform that may be expressed as

[4]

$$X(s) = \frac{1}{(s+1)(s+2)}$$

in its region of convergence? Write all signals expression.

Q3. a) Suppose that we are given the following information about an LTI system:

[3] [CO4]

- i. The system is causal.
- ii. The system function is rational and has only two poles, at s = -2 and s =

4

iii. If
$$x(t) = 1$$
, then $y(t) = 0$

iv. The value of the impulse response at $t = 0^+$ is 4.

From this information determine the system function of the system.

b) Show that

[2]

$$\frac{t^{n-1}}{(n-1)!}e^{-at}u(t) \xrightarrow{LT} \frac{1}{(s+a)^n} \qquad \Re\{s\} > -a$$

- Q4. a) Find inverse z-transform of following sequences. Sketch the pole-zero plot and [3] [CO4] indicate the region of convergence.
 - i. $x[n] = 7 \left(\frac{1}{3}\right)^n u[n] 6 \left(\frac{1}{2}\right)^n u[n]$
 - ii. $x[n] = \left(\frac{1}{3}\right)^n \sin\left(\frac{\pi}{4}n\right) u[n]$
 - b) Find inverse z-transform of
 - i. $X(z) = \log(1 + az^{-1}), \quad |z| > |a|$
 - ii. $X(z) = 4z^2 + 2 + 3z^{-1}$, $0 < |z| < \infty$
- Q5. a) Determine whether following systems with given system functions are causal or [2] [CO4] not!
 - i. $H(z) = \frac{z^3 2z^2 + z}{z^2 + \frac{1}{4}z + \frac{1}{8}}$
 - ii. $H(z) = \frac{1}{1 \frac{1}{2}z^{-1}} + \frac{1}{1 2z^{-1}}$, |z| > 2
 - b) Suppose that we are given the following information about an LTI system: [3]
 - i. If the input to the system is $x_1[n] = \left(\frac{1}{6}\right)^n u[n]$, then the output is

$$y_1[n] = \left[a\left(\frac{1}{2}\right)^n + 10\left(\frac{1}{3}\right)^n\right]u[n]$$

where a is a real number.

ii. If the input to the system is $x_2[n] = (-1)^n$, then the output is

$$y_2[n] = \frac{7}{4}(-1)^n$$

Determine the system function using given information.

Q6. a) Show that

[2] [CO4]

[2]

$$na^{n}u[n] \stackrel{ZT}{\longleftrightarrow} \frac{az^{-1}}{(1-az^{-1})^{2}} \qquad |z| > |a|$$

b) Consider a causal and stable LTI system for which the input x[n] and output y[n] satisfy the linear constant-coefficient difference equation

$$y[n] - \frac{1}{2}y[n-1] = x[n] + \frac{1}{3}x[n-1]$$

Determine impulse response of the system.

Q7. a) Let x(t) be a signal with Nyquist rate ω_0 . Determine the Nyquist rate for each [3] [CO5] of the following signals:

[2]

- i. $\frac{dx(t)}{dt}$
- ii. x(t) + x(t-1)
- iii. $x(t)\cos(\omega_0)$
- b) Impulse-train sampling of x[n] is used to obtain

$$g[n] = \sum_{k=-\infty}^{\infty} x[n]\delta[n-kN]$$

If $X(e^{jw}) = 0$ for $\frac{3\pi}{7} \le |\omega| \le \pi$, determine the largest value for the sampling interval which ensures that no aliasing takes place while sampling x[n].

