JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

TEST -3 EXAMINATIONS-2022

B.Tech-VIII Semester (CS/Civil/BT)

COURSE CODE (CREDITS): 21B1WEC732

MAX. MARKS: 35

COURSE NAME: Renewable Energy Systems

COURSE INSTRUCTOR: Pankaj Kumar

MAX. TIME: 2 Hours

Note: All questions are compulsory. Marks are indicated against each question in square brackets.

- Q1. Compare merits, demerits and deployment area of Lead acid, Sodium Sulphur and redox flow batteries. [4]
- Q2. What is the principle of Li-Ion battery? Mention its safety, charging procedure and application areas. [4]
- Q3. What is spectral sensitivity. Explain its characteristics. If external efficiency is 85% than calculate spectral sensitivity for radiation of 800 nm.
- Q4. Calculate the expression of maximum power point and Fill Factor for a solar cell. A typical PV Cell characteristic is given below in Fig.1, find the FF of Solar cell. I_0 is the reverse saturation current.

[2+1+3]

- Q5. Draw the diamond structure of Si. Find its atomic concentration if lattice constant of Si is 5.43 A^o. Also calculate its intrinsic carrier concentration at room temperature (27 0 C). N_C = 2.8 x 10 19 /cc, N_V = 1.04 x 10¹⁹ /cc. Impurities Boron 2 x 10¹⁶ and phosphorous 5 x 10¹⁶ are added to it. Find charge carrier concentration. Draw the fermi level with reference to conduction or valance band, what is the type of semiconductor?
- Q6. Consider a GaAs pn junction solar cell with the following parameters: $Na = 10^{17}$ cm⁻³, $Nd = 2 \times 10^{16}$ cm⁻³ ³, D_n = 190cm²/s, D_p = 10cm²/s, τ_{n0} = 10 ⁻⁷ s, and τ_{p0} = 10 ⁻⁸ s s. Assume a photocurrent density of $J_t = 20 \text{ mA/cm}^2$ is generated in the solar cell. (a) Calculate the open-circuit voltage and (b) determine the ratio of open-circuit voltage to built-in potential barrier. N_i for GaAs is 1.8 x 10^6 /cc.
- Q7. What is Betz's Limit. If wind is blowing at 4 m/s at height at 20m. A wind turbine with 50 m diameter is installed at 120 m. Density of air is 1.2 kg/m³ and friction coefficient is 0.3. What is the power that wind [2+2] turbine is generating?
- Q8. Explain Solar Flat plate collector. How its efficiency is calculated. How glazing improves the efficiency.

[2+1+1]