JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

T-3, EXAMINATION- 2022

B. Tech. II Semester (BI/BT)

COURSE CODE (CREDITS): 18B11MA212 (04)

MAX. MARKS: 35

COURSE NAME: BASIC MATHEMATICS-II

COURSE INSTRUCTORS: Dr. MANDEEP SINGH

MAX. TIME: 2:00 H

Note: All questions are compulsory. Marks are indicated against each question in brackets. Scientific calculator is allowed.

Quest.(1) Examine the convergence of the following series

(a)
$$\sum_{n=1}^{\infty} \frac{n(2n-1)}{(2n+1)(2n+3)(2n+5)}$$

(b)
$$\frac{1}{(6)^2} - \frac{2}{(11)^2} + \frac{3}{(16)^2} - \frac{4}{(21)^2} + \frac{5}{(26)^2} - \dots + \dots$$

Quest. (2) (a) Show that the vector field defined by the vector function $\vec{V} = xyz(yz\,\hat{\imath} + xz\,\hat{\jmath} + xy\,\hat{k})$ is conservative.

(b) Find grad(f) and also compute the directional derivative of

$$f(x,y,z) = xy^2 + 4xyz + z^2$$

at the point (1,2,3) in the direction of 3 $\hat{i} + 4\hat{j} - 5\hat{k}$.

(CO-2) [3+3]

Quest. (3) (a) Solve the following differential equation

(CO-3)[3]

$$(1+x^2)\frac{dy}{dx} + 2xy - 4x^2 = 0.$$

(CO-4) [4+4]

$$x^{2}\frac{d^{2}y}{dx^{2}} + 2x\frac{dy}{dx} - 20y = (x+1)^{2}$$

Quest.(4) (a) Solve the following differential equation
$$x^2 \frac{d^2 y}{dx^2} + 2x \frac{dy}{dx} - 20y = (x+1)^2$$
(b) Solve the following differential equation
$$\frac{d^2 y}{dx^2} - 4 \frac{dy}{dx} + 4y = x^2 + e^{2x} + \cos 2x$$

Quest (5) Draw the histogram (on your answer sheet) from the following frequency distribution and also calculate the standard deviation by using Step-Deviation method (CO-5)[5]

Class Intervals	35-40	40-45	45-50	50-55	55-60	60-65	65-70	70-75	75-80	80-85
Frequency	7	8	12	26	32	42	42	15	17	9

Quest.(6) Find the mode and median for the following frequency distribution

(CO-5) [4]

Class	0 - 6	6-12	12 - 18	18 - 24	24 - 30	30 - 36	36 - 42	42 – 48
Frequency	5	11	25	20	15	18	12	6

Quest. (7) (a) Using Simpson's $\frac{1}{3}$ rd rule, estimate $\int_{1}^{7} f(t)dt$, where the table below shows the temperature f(t) as a function of time:

-							F & 1	<u> </u>
	t	1	2	3	4	5	600	7
	f(t)	81	75	80	83	78	70 60	0
							——————————————————————————————————————	

(b) Using Newton's forward formula, calculate the value of f(0.25) if

<u>x</u>	0.1	0.2	0.3	10.X	0.5
f(x)	1.40	1.56	1.76 e	A STATE OF THE STA	2.28