
WHEAT DETECTION USING COMPUTER VISION

Project report submitted in partial fulfilment of the requirement for

the degree of Bachelor of Technology

in

Computer Science and Engineering

By

Chirayushya M Singh (181300)

Shubham Chauhan (181316)

UNDER THE SUPERVISION OF

Dr. Pradeep Kumar Gupta

to

Department of Computer Science & Engineering and Information

Technology

Jaypee University of Information Technology, Waknaghat,

Solan- 173234, Himachal Pradesh

I

CERTIFICATE

Candidate’s Declaration

I hereby declare that the work presented in this report entitled “ wheat detection using

computer vision” in partial fulfillment of the requirements for the award of the degree of

Bachelor of Technology in Computer Science and Engineering/Information

Technology submitted in the department of Computer Science & Engineering and

Information Technology, Jaypee University of Information Technology Waknaghat is an

authentic record of my own work carried out over a period from January 2022 to May 2022

under the supervision of Dr. Pradeep Kumar Gupta, Associate Professor Department of

Computer Science and Engineering, Jaypee University of Information Technology,

Waknaghat.

The matter embodied in the report has not been submitted for the award of any other degree

or diploma.

Chirayushya M Singh (181300)

Shubham Chauhan (181316)

This is to certify that the above statement made by the candidate is true to the best of my

knowledge

Dr. Pradeep Kumar Gupta

Associate Professor

Computer Science & Engineering and Information Technology

Jaypee University of Information Technology, Waknaghat,

II

AKCNOWLEDGEMENT

Firstly, I express my heartiest thanks and gratefulness to almighty God for His divine

blessing makes us possible to complete the project work successfully.

I really grateful and wish my profound my indebtedness to Supervisor Dr. Pradeep Kumar

Gupta, Associate Professor, Department of CSE, Jaypee University of Information

Technology, Wakhnaghat. Deep Knowledge & keen interest of my supervisor in the field of

Computational and Machine Intelligence to carry out this project. His endless patience,

scholarly guidance, continual encouragement, constant and energetic supervision,

constructive criticism, valuable advice, reading many inferior drafts and correcting them at

all stage have made it possible to complete this project.

I would like to express my heartiest gratitude to Dr Pradeep Kumar Gupta, Department of

CSE, for his kind help to finish my project.

I would also generously welcome each one of those individuals who have helped me straight

forwardly or in a roundabout way in making this project a win. In this unique situation, I

might want to thank the various staff individuals, both educating and non-instructing, which

have developed their convenient help and facilitated my undertaking.

Finally, I must acknowledge with due respect the constant support and patients of my

parents.

Chirayushya M Singh

(181300)

Shubham Chauhan

(181316)

III

TABLE OF CONTENTS

Content Page No.

CERTIFICATE I

AKCNOWLEDGEMENT II

TABLE OF CONTENTS III

List of Abbreviations V

List of Figures VI

List of Equations VII

List of Tables VIII

ABSTRACT IX

Chapter 1 INTRODUCTION 1

1.1 Introduction 1

1.2 Problem Statement 2

1.3 Objectives 3

1.4 Methodology 4

1.5 Organization 4

Chapter 2 LITERATURE SURVEY 6

2.1 General 6

2.2 Image recognition using classical machine learning algorithms 6

2.3 Crop detection using SVM and Random Forest. 7

2.4 Crop detection using RCNNs 8

2.5 Crop detection using YOLOs 10

Chapter 3 SYSTEM DEVELOPMENT 11

3.1 Analysis/Design/Development/Algorithm 11

3.1.1 RCNN 11

3.1.2 Fast RCNN 12

3.1.3 Faster RCNN 12

IV

3.1.4 YOLO 13

3.1.5 YOLO Basic Concepts 13

3.1.6 YOLO v1 architecture 15

3.1.7 YOLOv2 16

3.1.8 Convolutional with anchor box 18

3.1.9 YOLOv3 19

3.1.10 Multiscale detector 22

3.1.11 YOLOv4 25

3.1.12 EfficientNet 27

3.1.13 Compound Scaling 29

3.2 Model Development 35

3.2.1 YOLOv5 36

3.2.2 Adaptive anchor boxes 36

3.3 Analytical 37

3.3.1 Image acquisition 38

3.3.2 Data Harmonization 39

3.4 Computational 41

3.5 Experimental 43

3.6 Mathematical 46

3.7 Statistical 49

3.7.1 General 49

3.7.2 Comparison to other datasets 50

Chapter 4 PERFORMANCE ANALYSIS 53

Chapter 5 CONCLUSIONS 55

5.1 Conclusions 55

5.2 Future Scope 55

REFERENCES 57

V

List of Abbreviations

NN: Neural Network

CNN: Convolutional Neural Networks

R-CNN: Region Based Convolutional Neural Networks

YOLO: You Only Look Once

ResNet: Residual Neural Network

PSPNet: Pyramid Scene Parsing Network

BB: Bounding Box

VI

List of Figures

Figure 1: You Only Look Once algo. with 7x7 gridcell was applied on input photo’s.[10] 14

Figure 2: Preliminary YOLOv1 architecture 15

Figure 3: Normal-YOLOv1 NN model having 24 C-NN layers and two fullyconnected layers 16

Figure 4: model prediction bounding boxes 18

Figure 5: ResNet skip connection architecture 20

Figure 6: Darknet-53 (5 residual blocks) 21

Figure 7: Multi-scale detector 22

Figure 8: YOLOv3 network architecture) 23

Figure 9: YOLO-v3 detecting an obj. by applying an 1x1 kernel 24

Figure 10: 2 concepts of architectural object detection 26

Figure 11: YOLOv4 different architecture 27

Figure 12: Inverted residual block 29

Figure 13: Model Scaling 30

Figure 14: Scaling Up a Baseline Model 31

Figure 15: StreamLit 1 32

Figure 16: StreamLit 2 33

Figure 17: Processing on StreamLit 34

Figure 18: StreamLit Output 35

Figure 19: Review of harmonization process conducted. 40

Figure 20: Faster R-CNN 45

Figure 21: YOLOv5 46

Figure 22: Samples of images, provided by different sites. 50

Figure 23: Comparing the GWHD dataset with other object datasets. 51

Figure 24: Model Testing 53

Figure 25: Result Example 1 54

Figure 26: Result Example 2 54

file:///C:/Users/ASUS/Desktop/Project/Report%208th%20sem.docx%23_Toc103179504
file:///C:/Users/ASUS/Desktop/Project/Report%208th%20sem.docx%23_Toc103179508
file:///C:/Users/ASUS/Desktop/Project/Report%208th%20sem.docx%23_Toc103179511

VII

List of Equations

Equation 1: Mini-batch mean 17

Equation 2: Mini-batch variance 17

Equation 3: Normalize 17

Equation 4: Scale and shift 17

Equation 5: YOLO’s Loss Function 47

Equation 6: YOLO's Loss Function Part 1 47

Equation 7: YOLO's Loss Function Part 2 48

Equation 8: YOLO's Loss Function Part 3 48

Equation 9: YOLO's Loss Function Part 4 48

VIII

List of Tables

Table 3.1: Architecture Details for the baseline network 28

Table 3.2: Attributes of the experiments used to acqire photos for dataset 38

Table 3.3: Image Characteristics of the sub-datasets comprising the GWHD dataset 39

Table 3.4: CPU Specifications 41

Table 3.5: GPU Specifications 42

Table 3.6: Statistics for every attributes of the GWHD 49

Table 4.1 Result 53

IX

ABSTRACT

Object detection is a computer technique that deals with finding instances of semantic items

of a specific class (such as individuals, buildings, or automobiles) in digital photos and

videos. It is linked to computer vision and image processing. Face detection and pedestrian

detection are two well-studied object detection areas. Object detection may be used in a

variety of computer vision applications, such as picture retrieval and video surveillance.

Detecting wheat heads in plant photos is crucial for assessing critical wheat attributes

including head population density and head characteristics like health, size, maturity stage,

and awn presence. Several research have used machine learning techniques to build

approaches for detecting wheat heads from high-resolution RGB photography. These

approaches, on the other hand, have often been calibrated and verified on small datasets.

Wheat head detection is difficult for computer vision because of the wide range of observing

settings, genotypic variances, developmental phases, and head orientation. This task is made

significantly more difficult by the possibility of blurring due to motion or wind, as well as

overlap between heads in dense crowds.

The YOLO (You Only Look Once) technique was developed using a novel approach that

reframed object identification as a regression issue that could be solved with a single neural

network. As a result, the area of object detection has exploded, with far more amazing results

than only a decade ago.

YOLO has been improved to five versions and rated as one of the best object identification

algorithms by merging several of the most original concepts from the computer vision

research field. The fifth generation of YOLO, dubbed YOLOv5, is the most recent version

that was not created by the original creator of YOLO. However, the YOLOv5 performs better

than the YOLOv4 in terms of both the accuracy and speed.

1

Chapter 1 INTRODUCTION

1.1 Introduction

Wheat is highly researched due to its prominence as a food and crop. Plant scientists utilise

image identification of "wheat heads"—spikes atop the plant that carry grain—to obtain huge

and reliable data about wheat fields throughout the world. The density and size of wheat

heads in various types are estimated using these photographs. Farmers can use the

information to gauge their fields' health and maturity while making management decisions.

Wheat, “chawal” and corn, is the most widely planted staple part on the crop. Then Borlaug

produced semi-dwarf changes of wheat also a supplementary-agronomy methord (the

Doubly-Green Revolution) in the fifties, it protected three hundred million humans from the

deprivation. Later, rising at a high rate for many years, wheat fields has declined from the

year 1990. Traditional breeding still relies on manual observation to a considerable extent.

Increased genetic gain may be achieved by genomic choosing, novel high output

phenotyping approaches, and a connection of the two. The following methods are necessary

for selecting crucial wheat features related to produce probable, bacteria protection, and

adaptability for abiotic stress. Creating working and effective structure to get the attributes

from raw database is still a serious issue, despite the fact that increased output of phenotypic

information gathering is real. Crop-head volume (this amount of the wheathead in per land

region) is an important producing attribute that is even today analysed manually in the

breding experiments, This is time consuming so results in measurement faults of up to Ten

percent. To assist breeders in manipulating the balance in the produced components (number

of plants, head-density, grains/head, weight of grain) in the breding choices, photo based

technologies to boost their output and efficacy of numbering the wheathead in the field are

required.

When people look at an image, they can immediately recognise things and where they are in

the image. The capacity to identify items quickly mixed with a person's knowledge aids in

making an appropriate judgement on the object's nature. Scientists are working on a model

that can imitate the capacity of a person’s eye system to identify items. The two criteria for

evaluating an object detection algorithm are speed and accuracy.

One of the most well-known challenges in computer vision is object detection. It not only

classifies but also locates the object in the picture. The ways implemented to solve the

2

problem in prior decades is made of 2 parts: (1) extracting distinct regions of the photo with

a sliding-window with various widths, and (2) applying the prediction statement to identify

which group the item belong to. These methods has a drawback of requiring a lot: processing

and having split into several phases. As a result, speed optimization of the system is

challenging.

For the first time, in 2015, researcher [10] Joseph Redmon and colleagues unveiled the

YOLO method, an item identification model that executes every of the necessary processes

to recognise an item with a single NN (than known as YOLO). It transforms the obj.

recognition to a one regresion issue, starting and then moving from picture pixel to BB co-

ordinates and class predictions.

The singular model calculates several BB and class predictions for itmes surrounded by the

multiple boxes at the same instance. The You Only Look Once model have achieved

outstanding results, that outperform the leading methods in areas of both accuracy and speed

for predicting and calculating target co-ordinates at the time of its introduction (Redmon,

[10] 2016). In the coming five years, the You Only Look Once model was refined to 5 types

(which includes the real model also), including lot of the highly innovative ideas arriving

from the machine vision study community. The initial 3 iterations were investigated and

evolved by Joseph Redmon, the developer of the YOLO model. He said that he will leave

the machine vision industry after the development of YOLO version 3. The YOLO’s updated

version four, “YOLOv4”, was released on the official “YOLO Github” account in the start

of 2020 by Alexey Bochkovskiy, the Russian researcher who developed the previous three

versions of You Only Look Once which were based on the Joseph Redmon's Darknet-

architecture. Glenn Jocher with his Ultralytics LL-C research team, they created the YOLO-

7 model using the Python’s Pytorch-framework, published YOLO version 5 a month after

YOLOv4 was launched, within a few adjustments and upgrades.

Even though, the fact that, this was not developed by the model's creators, YOLO-v5

surpassed the other three versions.

1.2 Problem Statement

Accurate wheat head recognition in outdoor field photos, on the other hand, might be

visually difficult. The thick wheat plants often overlap, and the wind can cause the photos to

blur. Single heads are difficult to distinguish in both cases. Maturity, colour, genetics, and

3

head orientation all influence looks. Finally, varied types, planting densities, patterns, and

environmental conditions, planting materila must all be addressed since wheat is farmed all

over the world. Wheat phenotyping models must be able to generalise across a variety of

growth situations. Current detection approaches include one- and two-stage detectors (Yolo-

V3 and Faster-RCNN), however even when trained with a huge dataset, there is still a bias

toward the training location.

Wheat is a staple all over the world, thus this competition must take into consideration a

variety of growth circumstances. Wheat phenotyping models must be able to generalise

across different conditions. Researchers will be able to precisely evaluate the density and

length or size of wheat heads in different types if they are successful. Farmers can better

analyse their crops with enhanced detection, delivering cereal, toast, and other beloved foods

to your table.

1.3 Objectives

Accurate wheat head recognition in outdoor field photos, on the other hand, might be

visually difficult. The thick wheat plants often overlap, and the wind can cause the photos to

blur. Single heads are difficult to distinguish in both cases. Maturity, colour, genetics, and

head orientation all influence looks. Finally, varied types, planting densities, patterns, and

environmental conditions, planting materila must all be addressed since wheat is farmed all

over the world. Wheat phenotyping models must be able to generalise across a variety of

growth situations. Current detection approaches include one- and two-stage detectors (Yolo-

V3 and Faster-RCNN), however even when trained with a huge dataset, there is still a bias

toward the training location.

With the problem at hand and the Methodology, Our Objective can be divided as followed:

 Our primary objective is to develop a model that is able accurately to detect wheat

heads for field images.

 Improving the speed and accuracy of the model.

 Further improving the model so that it can determine features like density, the

number of spike heads Or such that it can be used for different cropes.

4

1.4 Methodology

Object identification techniques are divided into two categories: NN-based and non-NN

methords. Non-neural techniques require first defining features whith some of the algorithms

listed below, followed by classification with a method like Support Vector Machine. And

on the other side, NN approaches, which are often based on convolutional neural networks,

are capable of doing complete detection without specifying characteristics (CNN).

 NN methods:

o Region Pro-posals (RCNN , Fast RCNN, Faster RCNN, cascade

RCNN)

o Single-Shot MultiBox Detector (SSD)

o You Only Look Once

o DefineDet

o Retina Net

o Deformable Convolutional Network

 Non-NN methods:

o Viola Jones detection framework on Haar features

o Scale invariant feature transform (SIFT)

o Histogram of oriented gradients

1.5 Organization

In this section, we'll go through the arrangement of the report's chapter-by-chapter layout.

We've previously seen the Introduction and Problem Statement in Chapter 1. Following that,

we looked at the report's aims and methods. We are now at the Organization portion of the

report, which will clarify the chapters and subjects covered further down.

A brief description of the literature survey process will be presented in Chapter 2. This will

include some of the resources we used in the past to gain necessary knowledge for this

project, as well as other work we came across through the community that helped us get to

the point where we were able to finish the project and lay the groundwork for future solutions

to similar problems. Then we'll go on to Chapter 3, where we'll talk about how our model

was conceived and evolved. First, we'll go through the dataset that we used to create this

report and look at some of its fundamental aspects. We'll go through the fundamental

architecture that leads to the random forest method, which includes decision trees and feature

5

selection. We'd compare the various models we used to the random forest and their

comparative accuracies. We've gone through them briefly to help the reader comprehend

them better. Following that, we've included a list of some of the mathematical formulae that

were utilised in this study.

In Chapter 4, we demonstrated how our system worked and compared it to other systems

such as linear regression, decision trees, and others. Then, at various phases of our project

activity, we begin to display the outcomes, which comprise numerous graphs and figures.

This would be followed by the model's final result.

Furthermore, in Chapter 5, we began the conclusion section by discussing what we were able

to accomplish in the project and how this model was the ideal approach for us to study and

explore this topic. Following that, we presented some future initiatives that may be realised

through this project and added to it.

6

Chapter 2 LITERATURE SURVEY

2.1 General

The research are of crop detection is fairly important in the computer vision’s application in

agriculture. The uses of machine learning techniques are not new and one can find its

application in agriculture, decades back. What really makes the technique so successful in

agriculture and other fields is that it only needs a camera and a computer to run the model

and find the crop in images. There are agro startups around the world that are using these

techniques in not only wheat but, also in grapes, rice and other valuable crops. These

methods are also not very expensive and are computationally cheap to execute. The only

constraint with these techniques are trainable images, which are also not very difficult to

find. This application will prove to be very important in future as global warming will

damage much of the crop growth and it will be essential for farmers to use such techniques

to assess health and maturity of their crop while managing the fields. But, training a model

can be visually challenging as each crop can have different maturity, color, genotype and

orientation. The model must also work world wide on different varieties of crop.

2.2 Image recognition using classical machine learning algorithms

If look at the earlier models used, to recognize and then assess the quality of grain, then we

can look at the example of [1] Zhijun’s (2007) paper where the used Neural network to

identify external quality of wheat grain. Since, most of the early image classifiers were based

on SVM, SVM divides data points into two or more distinct pools using a hyperplane margin,

and it uses a technique called kernel method to map data into higher dimension feature space,

allowing it to do classification efficiently. Then there's Random Forest, which was developed

by [2] Tim Kam Ho (1995). Random Forest is an ensembling-based strategy for creating a

decision tree that's less prone to overfitting on training data. The most famous of these

algorithms is the neural network, which was designed by Marvin Minsky in 1969 and is

based on human brain neurons. In a network, a neuron is a function that collects and

categorises data using a specified design. A neural network is made up of layers with

interconnected nodes, like seen above. Each node functions similarly to a perceptron, taking

input from the previous layer and feeding information into the next. In most cases, an input

7

layer with several neurons accepts the initial input, performs some calculations, and then

feeds the results to a hidden layer (s). The information is then transferred to the output layer

from this hidden layer. We can also use modified neural network called convolutional neural

network which is popular for winning four image competition. The name "convolutional

neural network" suggests use of mathematical convolutions that are used in the model. CNN

has atleast one convolution layer rather than simple matrix multiplication that most ANNa

have. Every neuron has atleast one coupled neuron that creates a complex system of layers.

It works in the same way as a multi-layer perceptron neural network (MLP). To categorise

the photos, It functions similarly as a multilayer perceptron neural network. The flattened

matrix is sent through a FC layer to categorise the photographs. Advanced neural networks,

such as AlexNet, RCNN, and YOLOs, are built on CNN and perform well in image

recognition applications.

2.3 Crop detection using SVM and Random Forest.

Early machine learning techniques includes SVM and Random Forest, before the invention

of neural network these models were often used and gave good result considering the

complexity of the problem. One such example is [3] Z Tong’s (2006) paper where they used

SVM to detect grain pest and this proved to be better than ANNs under the condition of

limited training samples. Another such example is Ibrahim et. al.’s [4, 2019] paper were they

used multi class SVM to detect rice grains for faster sorting of grains, they were able to

achieve 92.22% accuracy in their dataset. They used three attributes of color descriptor

which are saturation, hue and value, four attributes such as area size, length of perimeter,

minor axis length, and major axis length and . H Zhang[5, 2009] used the single fitness

function was built to assess the feature subset using SVM and another optimizer for stored-

grain insects by incorporating the v_fold cross validation training model accuracy and the

number of chosen features. Nine species of stored-crop insects decayed badly in crop-depots,

including Tenebroidees mauritanicus(L.) and Rhizoperthae dominica Fabricius. The

approach founded on PSO and SVM was used to select feature subsets for the stored-grain

insects. H Kaur’s[6,2013] paper they used Multi class SVM for classification and grading

SVM, after the rice kernels had been separated from background, the Maximum Variance

approach was used to extract the chalk from the rice. Ten geometric parameters were used

8

to determine the amount of broken rice, head rice,and Brewers in rice samples. The

Chalkiness, Shape and Percentage of Broken (Broken, Head Rice and Brewers) kernels were

used to classifying the rice by Multi-Class SVM. More than 86 percent of SVM

classifications are correct. According to the findings, the method was adequate for

classification and grading the various varieties of rice grains based on their exterior and

internal quality. Random forest has been used to predict soil surface texture in a semiarid

region. Other staple crops can also be graded and classified by the SVMs and Random

Forest. We can also use Random forest for detecting pest in grains. Overall, it can be said

that SVMs and random forest are useful in precision agriculture application. Also, many

other algorithms such as logistic regression and artificial neural network can be used for this

task.

2.4 Crop detection using RCNNs

To face the difficulty of picking a great number of areas, Ross Girshick et al.[7,2014]

proposed a technique called region recommendations, in which we try to use selective search

to extract just 2000 regions from a picture. As a consequence, instead of attempting to

identify a vast number of locations, you may now focus on just 2000. The CNN works as a

feature extractor, with the extracted features being used as input data into an SVM to

categorise the object's existence inside the probable region suggestion. In addition to

predicting the presence of an object within the specified zone, the method predicts four offset

values to boost the precision of the BB. For instance, the algorithm might have predicted the

presence of an object in an area recommendation, but that object’s part inside that region

proposal may have been halved. As a result, the offset values aid in altering the region

proposal's bounding box. RCNN still had some problems, You'd have to categorise two

thousand region proposals every image to train the network, which would take a long time.

Because every test image takes around 50 seconds, it can't be done in actual time. The chosen

search algorithm is a fixed algorithm. As a result, there is no learning process at that

moment.As a result, an instance of poor probable region ideas might be generated. Then

9

there's the same author's fast rcnn, which is similar to the R-CNN method. We feed the CNN

the input picture instead of the region recommendations to build a convolutional feature map.

We take the convolutional feature map's area of recommendations, distort them into

quadrilaterals, and then rebuild them into a fixed size regions using a “RoI” pooling layer so

they can be used as inputs into a fully connected layer. To anticipate the class of the proposed

region as well as the BB offset values from the RoI feature vector, we use a softmax layer.

"Fast R-CNN" is quicker than R-CNN since you don't have to input the convolutional neural

network 2000 area suggestions every time. Instead, the convolution procedure, which is

performed just once per picture, produces a feature map. When comparing the performance

of Fast R-CNN during testing, using region proposals considerably slows down the

algorithm compared to not utilising region proposals.As a result, region proposals become

bottlenecks in the Fast R-CNN algorithm, slowing it down. To find region proposals, both

of the above algorithms use selective search. Selective search is a slow and time-consuming

operation that degrades network performance. As a result, Shaoqing Ren et al. created an

object identification algorithm that does away with the selective search algorithm and allows

the network to learn region proposals. The image is fed into a convolutional network, which

outputs a convolutional feature map, similar to Fast R-CNN. Instead of using a selective

search strategy on the feature map to identify the region suggestions, a separate network is

used to anticipate the region proposals. After that, a RoI pooling layer is used to categorise

the image inside the suggested region and predict the bounding box offset values, and the

projected region proposals are reshaped.The research by Y Shen et al.[8,2018] employed a

quicker rcnn to identify stored grain insects.

A method for detecting and recognising stored-grain insects was built using RCNN.

Cryptoleste Pusillius(S.), Sitophiluse Oryzae(L.), Oryzaephiluse Surinamensis(L.),

Tribolium Confusume(Jaquelin Du Val), Rhizoperthae Dominicas (F.).These live insects'

Red, Green, and Blue (RGB) images were assembled into a database.To extract regions in

these pictures that potentially contain insects and categorise the insects in those spots, a faster

R-CNN was utilised. An upgraded inception network was constructed to extract feature

maps.Excellent results were obtained in the detection and categorization of these insects.

Mean Average Precision (mAP) of 88.0, the developed method was shown to be capable of

detecting and identifying insects in stored grain.

10

2.5 Crop detection using YOLOs

In contrast to other region proposal classification networks, which perform detection task on

large number of region proposals and performs predictions in multiple times for various

regions in an image, Yolo architecture is more similar to FCNN and passes the image (nxn)

once through the Fully connected NN and outputs (mxm) prediction.The input picture is split

into mxm grids, each of which is given two bounding boxes and class probabilities. YOLO

has gone through several incarnations, the most recent of which is YOLO9000: Better,

Faster, Stronger (i.e., YOLOv2), which can identify over 9,000 object detectors. By

undertaking combined training for both object detection and classification, Redmon and

Farhadi are able to obtain such a vast number of object detections. The authors used

combined training to train YOLO9000 on both the ImageNet classification dataset and the

COCO detection dataset at the same time. The outcome is the YOLO9000 model, which can

forecast detections for object classes with no labelled detection data. YOLOv2's performance

was interesting and original, however it fell short of the title and abstract of the article.

YOLO9000 achieved 16 percent mean Average Precision (mAP) on the 156-class version

of COCO, and while YOLO can recognise 9,000 distinct classes, the precision isn't nearly

what we'd like. B Gong et. al.[9,2019] paper used Yolo model on GWHD dataset for

detecting wheatheads.

11

Chapter 3 SYSTEM DEVELOPMENT

3.1 Analysis/Design/Development/Algorithm

3.1.1 RCNN

R-CNNs (Region-basedConvolutional NN) are a example of machine-learning model used

in computer vision and image processing. The basic purpose of any R-CNN, which is

specifically built for item detection, is to detect objects in any input pictures and define

boundaries around them.

The RCNN model uses a method known as “selective search” to extract information about

the region of interest from an input picture.

 The rectangular boundaries can be used to illustrate the region of interest.

 There could be over 2000 regions of interest depending on the scenario.

 This region of interest is fed into CNN, which generates output features.

 The objects presented in a region of interest are then classified using these

output attributes by an SVM (support vector machine) classifier.

Object localisation can be accomplished in a variety of ways in any object detection

technique.

One strategy, which we call an exhaustive search approach, is to use sliding filters of various

sizes on the image to extract the object from image.

In an exhaustive search technique, calculation work increases as the number of filters or

windows increases.

The selective search algorithm employs exhaustive search, but in addition to that, it works

with the segmentation of the image's colours. In more formal terms, selective search is a

technique for separating items from an image by assigning them distinct colours.

This algorithm begins by creating a large number of small windows or filters, then grows

the region using the greedy algorithm. Then it looks for colours that are similar in other

places and combines them together. The similarity between the regions can be estimated

using the following formula:

12

𝑆(𝑎, 𝑏) = 𝑆𝑡𝑒𝑥𝑡𝑢𝑟𝑒(𝑎, 𝑏) + 𝑆(𝑎,𝑏) Where Stexture(a,b) is visual similarity and Ssize(a,b) is

region-to-region similarity. The model continues to use this approach to merge all of the

regions together in order to increase the size of the regions.

A selective search algorithm is depicted in the image. Following the region selection, the

picture containing regions is passed through a CNN, which extracts the objects from the

region.

Because the image size must be regulated according to CNN's capability, reshaping the

image will take some time, if not all, of the time. We wrap the region in 227 × 227 x 3 images

in basic R-CNN.

.1 Using a CNN, extract objects : The object of size 4096 dimensions will be extracted

using a wrapped input for CNN.

.2 Classification: The basic R-CNN uses an SVM classifier to categories things into

their respective classes.

R-entire CNN's process architecture can be expressed as: The boundary box repressor

operates at the conclusion of the model to define items in the image by covering it with a

rectangle.

3.1.2 Fast RCNN

Instead of conducting maximum pooling, we use ROI pooling in fast R-CNN to use a single

feature map for all regions. This warps ROIs into a single layer, and the ROI pooling layer

converts the features using max pooling. Because max pooling also works here, we can think

of fast R-CNN as an update to the PSPNet. It simply creates one layer, rather than multiple

layers in a pyramid shape.

Using linear regression and softmax, create a fully connected network for categorization. is

shown in the image above. With linear regression, the bounding box is fine-tuned even more.

R-CNN is quicker than PSPNet.

3.1.3 Faster RCNN

13

PSPNet and Fast R-CNN did not have any methods for choosing regions of interest until

now, as we saw in the article for region proposals. The fundamental difference in the Fast

RCNN and the Faster RCNN is the following. To build the sets of regions, faster R-CNN

uses a region proposal method. The regional proposal network, which we name the faster R-

CNN, has an extra CNN for acquiring the regional proposal. The proposal network in the

training region accepts the feature map as input and produces region proposals. These

recommendations are then forwarded to the Region of Interest pooling layer for further

processing.

3.1.4 YOLO

With a research published in 2015 by Joseph Redmon [10], YOLO entered the computer

vision landscape. YOLO: Unified, Real Time Object-Detection drew a high interest from

other computer-vision experts right away. Prior to the invention of YOLO, Convolutional

NeuralNetworks (C-NN) like as Region-Convolutional Network uses Regions-Proposal

Network (RPN) to produce proposal bounding boxes on imputed data, after that run a

prediction on the BB, and then apply post processing to delete duplicate predictions and

improve the BB. Single levels of the RCNN network’s could not be trained independently.

It was tough and time-consuming to optimise the R-CNN network.

The author's goal is to use a neural network to create a unified representation of all stages.

After running the input picture through a NN comprising many convolutional NN, the model

provides prediction vector’s to every object in these pictures, whether it contains (or does

not contain) the items. Rather of iterating process of categorising individual regions on

picture, YOLO system computes all of the image's characteristics at once and generates

predictions for all items. "You Only Look Once" is based on this concept. [10] (Redmon and

colleagues, 2016)

3.1.5 YOLO Basic Concepts

YOLOv1's core concept is, insert a gridcell with a shape of SxS (7x7 default) onto a picture.

If an item's centre falls inside a gridcell, then the gridcell is in charge of predicting the object

(Fig. 1). As a result, all the other cells ignore the apearance of an item that has been shown

in numerous cells.

14

Every gridcell forecasts B B.B. with there parameters and the confidence ratings in order to

execute object detection (Figure 1). (V Thatte,[11] 2020). The existence or absence of the

object in the enclosing box is reflected by this confidence score. The confidence points is

calculated as follows:

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 points = 𝑝(𝑂𝑏𝑗.) ∗ 𝐼𝑂𝑈 𝑡𝑟𝑢𝑡ℎ 𝑝𝑟𝑒𝑑

IOU pred truth is IOU of calcification box and base truth box, where P(obj.) this is

possibility that there is an obj. within the cell, and P(obj.) is the possibility that there is an

obj. within the cell. The confidence score is closer to 0 if no obj. is present within this cell

since P(obj.) is in the range 0-1. Instead, the score will be equal to IOUpred truth.

Figure 1: You Only Look Once algo. with 7x7 gridcell was applied on input photo’s.[10]

Furthermore, every BB has 4 additional attributes (x, y, w, k) that correspond to the bounding

box's (centre coordinate(x, y), width, and height) (Figure 2). Each bounding box has 5

parameters when combined with the confidence score.

The YOLO algorithm's goal is to predict an item by correctly calcification its BB and then

localising it using the bounding box coordinates. As a result, anticipated BB vectors

corespond to the resulting vector y and base truth B.B. vectors-to-vector label y. . Vector

labeled y and calcification vector y may be shown in Fig.4, there the cell coloured purple

has no item and the bounding box confidence score in cell coloured purple is equal to zero,

therefore every remaining attributes are ignored.

15

3.1.6 YOLO v1 architecture

The YOLO model includes an architecture that analyses all picture characteristics (dubbed

Darknet architecture by the developers) and two fully linked layers that execute bounding

box estimation for objects (Figure 2). The authors utilised S = 7.0, B = 2.0, also C = 20.0 in

the Pascal VOC database to test this model. This clarifies why the output size was (7 * 7 *

(2 * 5 + 20)) and the final feature maps were 7*7.

Figure 2: Preliminary YOLOv1 architecture

For uncomplicated datasets, the authors presented the fast YOLO structure with nine C-NN

layers in the Darknet-architecture, while the normal YOLO structure with twenty four C-NN

layers in the Darknet design can handle higher complex data and produce greater accuracy

(Figure 3). The GoogLeNet (Inception) model, which can help to minimise the features space

from preceding layers, inspired the sequences of 1x1 and 3x3 convolutional layers

(Menegaz,[11] 2018). Rather than using Leaky Rectified Linear Unit (leaky ReLU)

activation, the final layer utilises a Linear activation function:

16

Figure 3: Normal-YOLOv1 NN model having 24 C-NN layers and two fullyconnected layers

3.1.7 YOLOv2

In the deep learning model, batch normalisation is one of the most used ways of normalising.

It provides for quicker and more stable deep neural network training by stabilising the input

17

layer distribution during training. The purpose of this method is to normalise the features

(each layer's outputs after activating) to a 0 mean condition with a SD of one.

𝑀𝑖𝑛𝑖 𝑏𝑎𝑡𝑐ℎ 𝑚𝑒𝑎𝑛: 𝜇 =
1

𝑚
∑ 𝑧(𝑖)

𝑚

𝑖=1

Equation 1: Mini-batch mean

𝑀𝑖𝑛𝑖 − 𝑏𝑎𝑡𝑐ℎ 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒: 𝜎2 =
1

𝑚
∑(𝑧(𝑖) − 𝜇2)

𝑚

𝐼̇=1

Equation 2: Mini-batch variance

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒: 𝑧𝑛𝑜𝑟𝑚
(𝑖)

=
𝑧(𝑖) − 𝜇

√𝜎2 + 𝜀

Equation 3: Normalize

𝑆𝑐𝑎𝑙𝑒 𝑎𝑛𝑑 𝑠ℎ𝑖𝑓𝑡: �̃�(𝑖) = 𝛾𝑧𝑛𝑜𝑟𝑚
(𝑖)

+ 𝛽

Equation 4: Scale and shift

After batch normalisation, all of YOLO veraion2's layers are applied. This method not only

cuts down on training time, but it also improves network's generalisation. Batch normalising

improved m-AP (mean precision) by roughly 2.0% in YOLOv2 (Redmon, [10] 2016). To

avoid overfitting, the network does not need to utilise any more Dropouts.

The very initial twenty convo-layers (in the YOLO version 1 model) were utilised to training

the feature extractor (prediction networks) using 224x224 input picture in the original YOLO

(YOLOv1). The remaining four convo-layers and two fully-linked layers were then included,

and this input image's resolution was concurrently raised to 448 448 to be utilised as a

detection algorithm. (Kamal, [13] 2019)

18

YOLOv2, on the other hand, after finishing the feature extractor's training phase with the

224x224 input picture, the model continued the training of the extracted features for another

15 epochs including the 448x448 input pictures already employing the framework for the

object-detector training. Whenever the features extraction train phase transitions to the

object-detector train phase, the model may "adapt" to a higher resolution of 448x448 in place

of instantly improving the picture pixels. This high-resolution classification network results

in a nearly 4% increase in mAP.

3.1.8 Convolutional with anchor box

The concept behind YOLOv1 is to utilise a grid cell to identify an item that has its centre

within that grid cell. As a result, if two or more objects have their centres in the same grid

cell, the forecast may be incorrect. The author attempted to tackle this challenge by allowing

a grid cell to anticipate many objects. Instead of employing completely linked layers like in

YOLOv1, the author used an anchor box architecture to anticipate bounding boxes in

YOLOv2 ([10] Redmon, 2016). A collection of preconfigured boxes that’s the good fit the

Figure 4: model prediction bounding boxes

19

intended items is called an anchor box. Not only were ground truth boxes used to anticipate

the bounding boxes, but also preset k anchor boxes.

Rather than manually choosing the bestfit anchor-boxes, the training dataset BB (including

every base truth box) were clustered using the k-means clustering algorithm, and the mean

IOU was plotted with the nearest centroid (Fig.4). Rather then using Euclidean distance, the

developer used IOU within the BB and the centroid. Having different values for k, k = 5.0

is a great compromise between recall and model complexity. The developer evaluated in the

VO-C and CO-CO datasets, and the right figure depicts the tradeoff in recall and model-

complexity as a function of the number of clusters (k).The right photo in both datasets

displays 5 centroids (which may be used as anchor boxes).(Redmon and colleagues, 2016;

Redmon and colleagues, 2016)

When it comes to anticipating the boundary position of a box, YOLOv1 has no limitations.

The bounding box may be predicted anywhere in the picture when attributes are randomly

initialised. In the early stages of training, this renders the model unstable. The BB can be

located far away from the gridcell that is important for anticipating that BB.

In YOLO, every gridscell is described on a scale of 0 to 1, with the top-left point (0, 0) and

the lower right point (1, 1) As a result, YOLO-v2 employed the sigmoid function, f() to

limit the bounding box centre value to the range 0-1, allowing it to establish the bounding

box estimates all around grid cell.

3.1.9 YOLOv3

For Darknet architecture, YOLO v2 featured a proprietary deep 30-convolutional layer

architecture, which was larger than YOLOv1's 11 layers. More layers in deep neural

networks equals more accuracy. When forwarding to further layers, however, the input

picture was downsampled, resulting in the loss of fine-grained characteristics. That's why

YOLOv2 had a hard time detecting little objects. ResNet proposed the use of skip

connections to aid activation propagation over deeper layers without vanishing the gradient

(Figure 4). (He, [14] 2015).

20

Figure 5: ResNet skip connection architecture

Redmon, et al. [10] proposed a superior architecture in which the feature extractor was a

combination of YOLO-v2, Darknet53, and the Residual NN. Inside each residual block, the

network is created using a bottleneck structure (1x1 followed by 3x3 convolution layers) and

a skip connection (Figure 6).

Overlapping layers will not impact network performance thanks to ResNet's residual blocks.

Furthermore, because the deeper layers receive more information directly from of the upper

layers, the bulk of fine-grained characteristics is not lost.

21

Figure 6: Darknet-53 (5 residual blocks)

22

The model made use of the Darknet-53 architecture, which was designed with a 53-layer

network for feature extraction training. The detecting head for training object detector was

then layered with 53 additional layers, giving YOLO version 3 a complete of 106 layers of

fully-convolutional under lying model.

3.1.10 Multiscale detector

After training in the feature extractor using Darknet architecture in two earlier versions of

YOLO, the input was sent to a few additional layers before being used to make calcification

in the final levels of the item calcifies. More over, instead of stacking the calcification layers

at the final layers as before, YOLOv3 added them to the side network (Figure 7). YOLOv3's

most significant feature is that it detects at three distinct scales (Redmon, et al.,[10] 2018).

Three distinct scale detectors were created using the characteristics from the last three

residual blocks.

Figure 7: Multi-scale detector

23

 Specifically, YOLOv3 predicts at three scales in layers 82, 94, and 106, that are precisely

determined by the network's stride of 32nd, 16th, and 8th, respectively.

Unlike YOLO verssion1, where bounding boxes forecast by the same gridcell portion a

combination of C class calcification probabilities, every gridcell is responsible for calcifying

one obj., YOLOv2 introduces the concept of a gridcell having the ability to forcast the many

objects at once. B.B. will predict different type of objects even if they are calculated by the

same gridcell. As a result, rather of sharing a set of C class prediction probabilities, predicted

Figure 8: YOLOv3 network architecture)

24

bounding boxes have their own (Figure 14). For each separate detector, the total YOLOv3

output parameters will be S S (B (5 + C)).

The 82nd layer is the first to notice something. The author chose the 416 416 input picture

as the default for simplicity of understanding. After passing from the starting 81 layers, these

input picture is down sampled by 32, resulting in a feature map with a size of 13x13 matching

to 13x13 gridcells (Fig.9). Detection is carried out at each detection layer by using 1x1

detection kernels on feature maps. The 1x1 kernel is in charge of estimating the B bounding

box for each feature map grid cell. The COCO dataset was used to train YOLO version 3

with B = 3.0 (three BB for every cell) and C = 80.0. (classes),

As a result, the kernel size is 1 1 (3 (5 + 80) = 1 1 255. The final generated feature map at

the first detection layer will be 13x13x255. (Fig.9).

Figure 9: YOLO-v3 detecting an obj. by applying an 1x1 kernel

25

The same technique is followed again. Even though, the featuremaps at layer 79 and 91 are

up-sampled before being forwarded to two more detection layers for prediction. Following

down - sampling by the strides of 16 and 8, the feature maps have sizes of 26x26 and 52x52,

respectively, equivalent to the 94th and 106th detection layers (Figure 9).

Furthermore, detections at various size layers aid in addressing the problem of recognising

small objects, which is a common criticism with YOLOv2. The detailed feature map is the

one with the largest size. Small items are detected by the large-scale detection layer (52x52),

whereas bigger objects are detected by the small-scale detection layer (13x13).

The fine-grained characteristics from previous layers can be preserved by concatenating with

the upper layers after up-sampling in the deeper layer (combines with layer 61 before

reaching layer 91 and concatenate with layer 36 before reaching layer 103rd as shown in

Fig.9). This helps the largescale detection layer detect small objects.

3.1.11 YOLOv4

Joseph Redmon, the creator of the YOLO algorithm, is also the creator of the Darknet custom

model. After 5 years of development and research on the 3rd version of the YOLO algorithm

(YOLO version 3), J. Redmon said his departure from the field of machine vision and

stopped researching the YOLO algorithm due to concerns that his technology will be

misused in military applications. He does not, however, object to any individual or group

continuing to do research based on the YOLO algorithm's early concepts.

Alexey Bochkovsky,a soviet scientist and engineer who developed the Darknet architecture

and three earlier You Only Look Once architectures in C based on Joseph Redmon's

theoretical theories, collaborated with C. Yao and H. Yuan to release YOLO version 4 in

April 2020.

Along with the development of YOLO, several object identification systems using various

methodologies have also made significant progress. Since then, two design object detection

ideas have emerged: onestage sensor and twostage detectors (Fig.10).

26

Figure 10: 2 concepts of architectural object detection

The input picture characteristics are compressed down by feature extractor (Backbone) and

then forwarded to item detector (containing Detection Neck and Detection Head) in all object

prediction architectures, as shown in Figure 10. The Detection Neck (or Neck) is a feature

aggregator charged with mixing and combining the features created in the Backbone in order

to prepare for the detection process in the Detection Head (or Head).

In all object detection designs, the input picture features are compressed down by the feature

extractor (Backbone) and then transmitted to the object detector, as illustrated in Figure 10.

The Detection Neck (or Neck) is a feature aggregator responsible for mixing and merging

the features developed in the Backbone in order to prepare the Detection Head for the

detection process (or Head).

For each aspect of the architecture, the YOLO author conducted a series of trials with several

of the most sophisticated computer vision innovation concepts (Figure 11).

27

3.1.12 EfficientNet

EfficientNet was released in 2019 in a research paper by Google. This new CNN family

provide better accuracy and also improve the efficiency of the model. It does this by reducing

Floating Point Operations Per Second and parameters.

 Creating a small basic architecture: EfficientNet-B0

 Provides an efficient compound scaling strategy for expanding model size and

maximising precision improvements.

Figure 11: YOLOv4 different architecture

28

EfficientNet-B0 Architecture

Table 3.1: Architecture Details for the baseline network

Conventional CNN designs, such as Mobile Net and ResNet, can benefit from the compound

scaling strategy. Nevertheless, because the compound scaling approach only improves the

predictive capability of the systems by reproducing the base network's fundamental

convolutional processes and network structure, selecting a suitable basic network is

important for attaining the best outcomes.

Towards this purpose, the authors apply Neural Design Search to create EfficientNet-B0, an

efficient network infrastructure. With only 5.3M parameters and 0.39B FLOPS, it achieves

77.3 percent accuracy on ImageNet. (With 26M parameters and 4.1B FLOPS, Resnet-50

delivers 76 percent accuracy.)

Squeeze-and-excitation optimization is added to the fundamental building component of this

network, which would be MBConv. MBConv is identical to MobileNet v2's inverted residual

blocks. These provide as a quick link between the start and finish of a convolutional block.

To improve the depth of the feature maps, the input initiation maps are first extended using

1x1 convolutions. Following that, 3x3 Depth-wise with Point-wise convolutions are used to

29

minimise the number of channels in the final feature image. The thin layers are connected

by shortcut connections, whereas the broader layers are present between the skip

connections. This structure aids in reducing the overall number of operations as well as the

length of the framework.

Figure 12: Inverted residual block

3.1.13 Compound Scaling

The depth, breadth, and resolution of a convolutional neural network may be scaled in three

dimensions. The number of layers in a network relates to the network's level. The breadth of

a convolutional layer is proportional to the number of neurons inside the layer or, more

specifically, the quantity of filters in the layer. The length and breadth of the supplied picture

are used to determine the resolution. Fig.13 above depicts scaling in these three dimensions

more clearly.

30

Figure 13: Model Scaling

(a) is a baseline-network example; (b)-(d) are conventional scaling that only increases one

dimension of network width, depth, or resolution. (e) is our proposed compound scaling method

that uniformly scales all three dimensions with a fixed ratio.

The neural network learns more complicated characteristics by increasing the depth by

stacking additional convolutional layers. Deeper networks, on the other hand, are prone to

disappearing gradients, making training more challenging. Although new approaches like

batch normalisation and skip connections can help solve this challenge, empirical studies

show that just expanding the network's depth would fast saturate the reliability

improvements. Despite the additional layers, Resnet-1000 achieves the same rate of

precision as Resnet-100.

31

Layers can learn more fine-grained information by increasing the network width. This notion

has been applied in a variety of works, including Wide ResNet and Mobile Net. Increasing

breadth, like increasing depth, stops the network from learning complicated characteristics,

resulting in a decrease in efficiency gains.

Increased input resolution gives the model more information about the picture, allowing it

to explain about tiny objects and identify finer connections. However, like with the other

scaling dimensions, this alone only delivers modest precision benefits.

Figure 14: Scaling Up a Baseline Model

3.1.14 StreamLit

Streamlit is an open-source Python library that is used to make interactive machine learning

and data science application that can run in a web browser without much front-end

development required. Streamlit works with a simple python script that can customize the

look of the application and add plots, charts, sliders, buttons and inputs. Every time the

32

application is runs, the whole python scripts is re-read. Streamlit supports magic commands

that will basically read any variable on its own line and automatically parse it using st.write()

method. st.write() can work with almost anything such as text, dataframe, plots, etc. and

render it correctly. However, to customize the plots and other data types, you need to use

data-specific functions like st.dataframe() and st.table(). Streamlit supports widgets and the

user can add them using st.slider(), st.button() or st.selectbox().

Even when importing data from the web, handling enormous datasets, or conducting

expensive computations, the Streamlit cache allows your app to run swiftly. When a function

is marked with st.cache, the streamlit will automatically check input parameters called, value

of any external variable, body of function, function used inside cache. Streamlit employs a

particular hash function for both the key and the output hash that knows how to traverse

code, hash special objects, and may have its behaviour adjusted by the user. One can also

deploy a streamlit application on cloud and manage it using Streamlit Cloud

Figure 15: StreamLit 1

33

For our application we have first called YOLOX.tools.demo, this import tools necessary for

the application to run smoothly. st.title() is used to give a name to our application.

st.file_uploader() is then called to import the image that will be processed by our algorithm.

When clicking the RUN button image is passed to the algorithm, where inference is

performed and we get the result. st.progress() can be used to add a progress bar that can show

the time left.

Figure 16: StreamLit 2

34

Figure 17: Processing on StreamLit

35

Figure 18: StreamLit Output

3.2 Model Development

A month following the introduction of YOLOv4, Glenn and his team produced YOLOv5, a

new iteration of the YOLO family (Jocher, 2020). Glenn Jocher is the CEO of Ultralystics

LLC and a scholar. YOLO models were created using Alexey Bochkovsky's own framework

Darknet, which is primarily written in C. Ultralystic is a firm that transforms prior versions

of YOLO to PyTorch, a well-known deep learning system developed in the Python

programming language.

36

3.2.1 YOLOv5

Glenn Jocher is also the creator of the Mosaic data augmentation, which was recognised in

the YOLOv4 publication by Alexey Bochkovsky. Due to its nomenclature and advances, his

YOLOv5 model attracted a lot of controversy in the computer vision area. Despite the fact

that it was introduced a few months after YOLO version 4, the start of YOLO4 and YOLO5

research was quite near (March to April, 2020). To avoid confusion, Glenn named his

version of YOLO, YOLO5. Both researchers essentially employed the most cutting-edge

breakthroughs in the area of object identification available at the time. Having a output, the

architectures of YOLO4 and YOLO5 are quite similar, and many people are dissatisfied with

the appellation YOLO5 (5th generation of You Only Look Once) because it does not offer

many substantial improvements over YOLO4. Glenn also failed to publish any YOLOv5-

related papers, which raised even more doubts.

However, YOLOv5 seemed to have the advantage of engineering. Unlike previous versions,

YOLO version 5 is available in Python not in C. This is the reason for its easier to

implementation and integrate to Internet of Things devices. Lastly, the PyTorch community

isa very bigger than that of the Darknet community, meaning that PyTorch will get higher

rate of contributions and will have higher posibility for future expansion. Because YOLO

version 4 and YOLO version 5 are implemented in two different languages and operate on

two different frameworks, it's difficult to compare their performance. Still, in addition to

YOLO version 4, YOLO version 5 has gained some trust in the computer vision community

as a result of its greater performance over YOLOv4 in some conditions.

3.2.2 Adaptive anchor boxes

As previously indicated, the YOLO5 architecture incorporates the most current

advancements in a way similar to the YOLOv4 architecture, therefore there are few

significant differences in concept. In place of publishing a full article, the author created a

Github’s repository and updated it on the platform. By deconstructing the structural program

in file.yaml, the YOLO5 framework may be described as follows :

- Head: YOLOv3 head using GIoU-loss

37

- Neck: SPP block, PANet

- Backbone: Focus structure, CSP network

The YOLOv5 author brings forth an interesting issue about an design difference. In

YOLOv2, Redmon presented the anchor box design as well as a method for picking anchor

boxes that are similar in area and form to the ground truth B.B. in the training set. The authors

chose the five best-fit anchor boxes for theCOCO (which has 80 classes) and used them as

the default using the k-mean clustering approach with various k values. This minimises the

amount of time it takes to train the network and improves its accuracy.

Furthermore, when these five anchor boxes are applied to unique dataset (including a class

that is not one of the eighty classes in the COCO dataset), they are unable to swiftly adapt to

the unique dataset's ground truth bounding boxes. A giraffe database, for example, likes

anchor boxes that are narrow and taller than square boxes. Computer vision engineers

commonly start by running the kmean clustering method on the unique anatomical to find

the best fit box for the given dataset. These settings will then be configured in the

framework.

Glenn Jocher, suggested that the anchor box selection procedure be included into YOLOv5.

As a consequence, the network does not need to take any of the databases as input; instead,

this would "learn" and apply the optimal anchor-boxes for each database during train time.

3.3 Analytical

The GWHD collection is made up of tagged photos gathered between 2016 and 2019 by 9

institutions in 10 distinct places (Table1), and it includes genotypes from Europe, North

America, and Australia as well as Asia. Individual datasets are referred to as "sub-datasets."

They were obtained through a series of tests diverse growth methods, with row spacing

ranging from 12.5 cm to 25 cm (ETHZ_1) to 30.5 cm (USask_1). Table 1 summarises the

features of the experiments. Low sowing density (UQ 1, UTokyo 1, UTokyo 2), average

seeding density (Arvalis 1, Arvalis 2, Arvalis 3, INRAE 1, NAU 1), and large seeding density

(RRes 1, ETHZ 1, NAU 1) are among them. The GWHD dataset includes a variety of

pedoclimatic conditions, including highly productive environments such as the loamy soil

of Picardy, France (Arvalis 3), silt-clay soil in mountainous environments such as the Swiss

Plateau (ETHZ 1), and the Alpes de Haute Provence (Arvalis 1, Arvalis 2). The trials in

38

Arvalis 1, Arvalis 2, UQ 1, NAU 1 were meant to contrast irrigated and water-stressed

ecosystems.

Table 3.2: Attributes of the experiments used to acqire photos for dataset

3.3.1 Image acquisition

RGB photos recorded using a variety of groundbased phenotyping systems and cameras are

included in the GWHD collection (Table 2). The picture capture height varies between 1.8

and 3 metres high. With a variety of sensor sizes, the camera focal length ranges from 10 to

50 mm. Because of the variances in camera configuration, the Ground Sampling Distance

(GSD) varies from 0.10 to 0.62 mm, and the half field of view along the picture diagonal

39

varies from 10 to 46 degrees. The obtained GSDs are high enough to distinguish heads and

even awns visually, assuming wheat heads have a diameter of 1.5 cm. Despite the fact that

all of the photos were taken in the nadir-viewing direction, due to the varied lens properties

of the cameras employed, some geometric distortion may be seen for a few sub-datasets.

This problem is especially severe in the datasets UTokyo 1 and ETHZ 1. Images were

collected on a variety of platforms, including handheld, cart, mini-vehicle, and gantry

systems, by each organization. The large range of picture attributes produced by the variety

of camera sensors and acquisition settings will aid in training deep learning models to

generalise better across varied image acquisition situations.

Table 3.3: Image Characteristics of the sub-datasets comprising the GWHD dataset

3.3.2 Data Harmonization

40

Harmonizing the numerous sub-datasets was a key element in assembling the GWHD dataset

Images were initially manually inspected to verify that they could be properly

comprehended. When heads were not clearly visible, images taken at an early stage of

development were eliminated . Because heads tend to overlap as stems begin to bend at this

time, the majority of the photographs were taken before the advent of head senescence.

Figure 19: Review of harmonization process conducted.

Item scale, or the size of an object in pixels, is a critical consideration in the development of

object detection algorithms. Object scale is determined by the object's size (in mm) and the

41

image's resolution. Wheat heads vary in size according on genotype and growing

circumstances, but they are typically 1.5 cm in diameter and 10 cm long. The real picture

resolution at the level of wheat heads changed dramatically between sub-datasets: the GSD

changes by a factor of five, while the real resolution at the head level is further influenced

by canopy height and the camera's panoramic effect. When photographs are taken too close

to the canopy, the panoramic effect will be significantly greater. As a result, images were

rescaled to maintain a more consistent resolution at the head level. The original photos were

up- or down-sampled using bilinear interpolation. The factor that was used to scale each sub-

dataset is displayed in Table 2.

3.4 Computational

We utilised the machine with the following specifications for this project work at the time

of training. CPU: The specifications of the PC we utilised were as follows:

Table 3.4: CPU Specifications

Parameter

Specifications

CPU Model name

Intel(R)Core(TM)

CPU frequency

2.3 Ghz

No of CPU cores

8

Available Ram

15.56 GB

Disk Space

800 GB

42

These are the specifications of the computer we used to perform the calculations on. The

GPU handles the majority of the computing effort. However, the CPU does the majority of

the preprocessing. The huge quantity of RAM did not put a lot of strain on the system,

making it simpler to load the entire dataset in a timely manner. We also didn't have to worry

about system problems. The 2.3 Ghz clock speed of the CPU is the base clock speed, which

may be increased to 5 Ghz if necessary. However, no overclocking was required because the

machine could complete the task with its standard four cores.

Table 3.5: GPU Specifications

Parameter

Specifications

GPU

NVIDIA-GeForce-GTX

1060

GPU-Memory

16 GB

GPU, Memory Clock

1.40 Ghz

GPU Release Year

2016

Cores

4

Available RAM

16 GB

Disk Space

800 GB

43

Tools Used: We used the following tools in making our model.

 Python

 Matplotlib

 Seaborn

 Jupyter Notebook

 Pandas

 Plotly

 Numpy

 Scikit Learn

These packages mentioned above were used in their latest upto date editions. The code works

properly and would not cause any issue until any further updates in them.

3.5 Experimental

Now we tried a few algorithms just to check them in comparison to what we used.

i. RCNN

ii. Fast RCNN

iii. Faster RCNN

iv. YOLO-v5

We've also included some basic descriptions of the aforementioned algorithms to make it

easier to understand and investigate why they didn't perform as expected.

i. R-CNN

To overcome the difficulty of selecting a high range of areas, Ross Girshick et al.

proposed a method called region recommendations, in which we use selective search

to identify just 2000 areas from an image. As a consequence, instead of attempting

to identify a vast number of places, you can now focus on only 2000. These 2000

region concepts were compiled using a selective search strategy.

Selective-Search:

1. Produce starting sub-sagmentation, then create many candidate areas

44

2. Using greedy approach to iterative combine same areas to bigger areas

3. Using the created areas to calculate the last candidate area proposals

ii. Fast RCNN

The Fast R-CNN detector, like the RCNN predictor, gives region recommendations

implementing an model similar to Edge-Box. Fast RCNN detector analyses the full

image, unlike this RCNN predictor, which cuts and resizes region recommendations.

Fast RCNN pools C-NN characteristics in related to every area pro-posal, whereas

an RCNN predictor must categorise every area. Fast RCNN is greater efficient than

R-CNN since the computation for intersecting areas are distributed in this Fast

RCNN predictor.

iii. Faster RCNN

In place of employing an outside method same as Edge-Box, In Faster RCNN

detecetor includes a area providing network (known as RPN) to create area

suggestions straight to the model. For Object Detection, the RPN employs Anchor

Boxes. The network-based generation of region recommendations is faster and more

tailored to your data.

45

Figure 20: Faster R-CNN

iv. YOLOv5

These innovations were initially known as YOLOv4, however owing to the latest

update of YOLO version 4 in Darknet structure, it was changed to YOLOv5 to

prevent releases clashes. We produced an article differentiating YOLO version 4

with YOLO version 5, In which you are able to run both YOLO’s together on your

46

dataset, because there was a lot of disagreement about the YOLO version 5

nomenclature at first. In this essay, we'll avoid bespoke dataset comparisons and

instead focus on the resent tech. and matrix’s that the You Only Look Once scientists

are sharing in GitHub communications.

Figure 21: YOLOv5

3.6 Mathematical

The core of You Only Look One’s loss function is the sum-squared error. There are some

grid cells that have no items with a confidence score of 0. They completely overpower the

gradients of cells that house the items. To reduce learning diveergence and system non-

stability, You Only Look Once uses the maximum penalty (𝜆𝑐𝑜𝑟𝑑 = 5.0) their calculations

47

from BB including items and its minimum penalty (𝜆𝑛𝑜𝑜𝑏 = 0.5) for calcification when no

object is present (V Thatte, [11] 2020). The loss function of YOLO is determined by adding

the loss functions of all BB variables (x, y, w, k, confidence point, and class probability).

ℒ = 𝜆𝑐𝑜𝑜𝑟𝑑 ∑ ∑ 𝛱𝑖𝑗
𝑜𝑏𝑗[(𝑥𝑖 − �̂�𝑖)+

2 (𝑦𝑖 − �̂�𝑖)
2]

𝐵

𝑗=0

𝑠2

𝑖=0

+ 𝜆𝑐𝑜𝑜𝑟𝑑 ∑ ∑ 𝛱𝑖𝑗
𝑜𝑏𝑗

[(√𝑤𝑖 − √�̂�𝑖)+

2
(√𝑘𝑖 − √�̂�𝑖)

2

]

𝐵

𝑗=0

𝑠2

𝑖=0

+ ∑ ∑ 𝛱𝑖𝑗
𝑜𝑏𝑗(𝑐𝑖 − 𝑐�̂�)

2

𝐵

𝑗=0

𝑠2

𝑖=0

+ 𝜆𝑛𝑜𝑜𝑏𝑗 ∑ ∑ 𝛱𝑖𝑗
𝑛𝑜𝑜𝑏𝑗(𝑐𝑖 − 𝑐�̂�)

2

𝐵

𝑗=0

𝑠2

𝑖=0

+ ∑ 𝛱𝑖𝑗
𝑜𝑏𝑗

∑ (𝑝𝑖(𝑐) − �̂�𝑖(�̂�))2

𝑐∈𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑠2

𝑖=0

Equation 5: YOLO’s Loss Function

The first portion of the eqn. calculates the loss associated with the estimated BB location and

ground-truth BB location according to the co-ordinates (xcenter, ycenter).∏𝑖𝑗
𝑜𝑏𝑗

, where 1

indicates if an item is detected in the jth forecasted BB in ith box and 0 indicates that it is not.

Based on this assumption have the greatest resent IOU according to the base-truth, the

predicted BB will be "responsible" for predicting an item.

𝜆𝑐𝑜𝑜𝑟𝑑 ∑ ∑ 𝛱𝑖𝑗
𝑜𝑏𝑗[(𝑥𝑖 − �̂�𝑖)+

2 (𝑦𝑖 − �̂�𝑖)
2]

𝐵

𝑗=0

𝑠2

𝑖=0

Equation 6: YOLO's Loss Function Part 1

In the same way as the first half of the equation, the 2nd portion of the “YOLO”, loss function

determines the error in BB length and height prediction. The quantity of mistake in this large

boxes, on the other hand, has less of an impact on the equation than it does in the tiny box.

Because both side and length are standardised between 0.0 and 1.0, the roots of their square

48

roots magnify the discrepancies between smaller and bigger numbers. Therefore the output,

instead of using the side and length of the enclosing box explicitly, the square root of those

values that is utilised.

𝜆𝑐𝑜𝑜𝑟𝑑 ∑ ∑ 𝛱𝑖𝑗
𝑜𝑏𝑗

[(√𝑤𝑖 − √�̂�𝑖)+

2
(√𝑘 − √�̂�𝑖)

2

]

𝐵

𝑗=0

𝑠2

𝑖=0

Equation 7: YOLO's Loss Function Part 2

Either the item is visible in the BB or not, the loss of confedence points is calculated in both

circumstances. The item certainty error is only penalised by the loss function if the forcast

is accountable for that ground truthbox. When there is an item in the cell ∏𝑖𝑗
𝑜𝑏𝑗

, equals 1;

otherwise, it equals 0. The reverse is ∏𝑖𝑗
𝑛𝑜𝑜𝑏𝑗

.

∑ ∑ 𝛱𝑖𝑗
𝑜𝑏𝑗(𝑐𝑖 − 𝑐�̂�)

2

𝐵

𝑗=0

𝑠2

𝑖=0

+ 𝜆𝑛𝑜𝑜𝑏𝑗 ∑ ∑ 𝛱𝑖𝑗
𝑛𝑜𝑜𝑏𝑗(𝑐𝑖 − 𝑐�̂�)

2

𝐵

𝑗=0

𝑠2

𝑖=0

Equation 8: YOLO's Loss Function Part 3

Except for the ∏𝑖𝑗
𝑜𝑏𝑗

 term, the last half of the function used to calculate loss is comparable to

the conventional prediction loss, that calculates the class probability’s loss. Since You Only

Look Once doesn’t punish prediction errors since the obj. in not present the cell, this term is

utilised.

∑ 𝛱𝑖𝑗
𝑜𝑏𝑗

∑ (𝑝𝑖(𝑐) − �̂�𝑖(�̂�))2

𝑐∈𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑠2

𝑖=0

Equation 9: YOLO's Loss Function Part 4

49

3.7 Statistical

3.7.1 General

This GWH Detection database is made up of 4,698 squared patches derived from 2219 high-

resolution RGB pictures taken over eleven sub-database (Table no. 3). It has 188,445.0

identified crop heads, with an average of 40 heads/image, which is in line having 15 to 65

heads/image that were desired. Nether less, there is a wide range of distribution in-between

and inside sub-databases. To replicate on-field captured situations and increase challenge to

bench-marking, we included roughly 100 photos with no heads. Only a few photos have

more than 100 heads, with the most having 120. Differences in head volume, which varies

depending on the genotypes and external circumstances, result in many peaks corresponding

to various sub-datasets.

Table 3.6: Statistics for every attributes of the GWHD

50

A somewhat skeewed gausian distribution with a mean average shape of 77.0 pixel can be

seen in the shape of the BB surrounding the head. The root of the surface that is included in

the find the usual dimension. Eventhough the individual longitudinal region applied is really

not correspond to this siting geometrical of the coloured camera, this goes nicely with the

required scale, i.e. near about 1.50 cm x 10.00 cm head dimensions with an mean resolution

near about 0.40 mm/pixel, that symbolises a normal side of 97.0 pixel for every top part. The

visual confirmation of item scale harmonisation over sub-database may be found in Fig 15.

Figure 22: Samples of images, provided by different sites.

3.7.2 Comparison to other datasets

In the plant phenotyping industry, several open-source databases have previously been

presented. For the counts of the leafs (rosette) and occasion segmentation, this CVPPP

datasets have been frequently utilised. Segmented rosette leaves are also included in the

KOMATSUNA collection, but only in time-lapse movies. Wheat head photos collected from

a managed setting with single spike-lets tagged make up the Nottingham ACID Wheat

database. However, photos from outside field situations, these are crucial in the use in real

life of composition in the wheat breeding, are found in relatively few open-source databases.

A few weeds categorization datasets have been released. Pictures of grazing grass and the

semantic-segmentation classifications for field, weed plant, and clover plant categories are

51

included in the GrassClover database. Dot annotations have been added to data sets for

measuring sorghum and wheat head.

Figure 23: Comparing the GWHD dataset with other object datasets.

The dataset we are using, the GWHD database is now the biggest available to all annotated

dataset publicly accessible for object recognition for the research of plant pheenotyping in

terms of phenotyping datasets for object detection. MinneApple, the only similar collection

in terms of phenotyping diversity, although it has fewer photos and less geographic variety.

Additional datasets, such as MSCOCO or freely available Pictures of V4, has substantially

bigger and sample a much wider range of item types, making them useful for a variety of

other applications. Typically, the comparable photos include fewer items, usually below 10

per image (Figure 16). However, other datasets, such as PUCPR, CARPK, and SKU-110K,

52

are specifically designed to solve the challenge of detecting objects (e.g., automobiles, items)

in crowded environments. All of them have a greater item density than the GWHD dataset,

but less photos for CARPK and PUCPR, whereas SKU-110 has greater number of pictures

than the GWHD database (Figure 16). This GWHD dataset is notable for its high prevalence

of overlapping and occluded items. This complicates labelling and identification, especially

when contrasted to SKU-110K, which does not appear to have any occlusion. Furthermore,

wheat heads are sophisticated targets with a broad range of appearances, as earlier proven,

and are enclosed by a diverse backdrop, making detection of wheat heads more challenging

than recognising automobiles or tightly packed merchandise on shop tables.

53

Chapter 4 PERFORMANCE ANALYSIS

Any image may be implied to detect the wheat head using trained weights. If a wheat head

is identifyed, then a bounding box is created around the item to enclose it and represent the

likelihood that it is a wheat head.

The GWHD dataset contains 10 photos of outdoor wheat that are non-duplicated with the

3422 images used in the training. The ground truth bounding boxes are likewise not labelled

on these photos. They may be seen as photographs of a agronomist went in his/her field and

tested using weights learned in the model wheat-head identification network before.

Table 4.1 Result

Model IOU

Faster RCNN 0.6889

EfficientNet 0.7152

YOLOv5 0.7644

Figure 24: Model Testing

54

Figure 25: Result Example 1

Figure 26: Result Example 2

55

Chapter 5 CONCLUSIONS

5.1 Conclusions

In the computer vision world, there is still a lot of debate concerning the naming and

enhancements of YOLOv5 for advancements that haven't truly created a breakthrough.

Regardless of the nomenclature, YOLOv5's performance in terms of speed and accuracy is

comparable to that of YOLOv4. There's little question that YOLOv5 will get greater

contributions and recive greater growth potential in the upcoming years, thanks to the built-

in Pytorch framework, which is more easy to use and has a greater community than the

Da�́�knet framework.

In reality, the subject of machine vision, particularly object identification, is only recently

blossomed. As a result, even though the YOLO algorithm has evolved through five

generations and is among the best object identification models, it is defective even right now.

As a result, an AI system cannot be constructed just on the basis of an algorithm; it must

incorporate other optimization methods as well as the most cutting-edge concepts in the

study of machine vision in order for the given AI system to obtain these greatest results.

5.2 Future Scope

Artificial intelligence's contribution to several fields is growing all the time.

Deep learning models are becoming increasingly intelligent, and they can now handle

complex tasks with ease. Agriculture is a sector that can benefit greatly from technological

advancements. With numerous countries failing to satisfy demand and supply, it is critical to

implement technology that can help improve production and overall efficiency. Computer

vision is making good progress in agriculture. Although there are hurdles, as with any

technology on the market, AI-powered computer vision services will need to address the

associated issues before the technology is fully adopted. Before integrating such modern

technologies, there are a few things to consider. We are, nevertheless, entering a world of

digitization as a result of technical breakthroughs and upheavals. It is only natural to focus

on the positives in order to maximize agricultural productivity with future technologies. In

today's world, phenotyping is widely used to detect agricultural features for precision

agriculture. Phenotyping has become a more efficient method because to advanced computer

56

vision algorithms. Image processing characteristics are integrated with computer vision

algorithms to remove unnecessary crop data or information from photos, leaving only the

relevant information on precise measurements. Techniques like depth estimation, colour

enhancement, and identifying and segmenting the region of interest are all options for

producing accurate results for future research. The crop breeds have greatly improved as a

result of this research. We are quite sure that precision agriculture will prove much more

useful in future, as global warming will make farming challenging, people will turn to

computer vision techniques.

As for the new algorithms, the new RCNN and other region based Neural Network will come

to light and researchers will be able to use them on new datasets for phenotyping and

classifying grains from unwanted material. Also, as there is GWHD for grains, more datasets

will come to surface. Our next step would be to use other datasets with other algorithms to

create models that can be used with drones and other image capturing devices. Faster

RCNN’s new and evolved models can be used in future work. Since, hardware is becoming

cheaper and faster, we expect more computational power will help to increase accuracy and

FPS rates. Since, GWHD has recently updated their dataset, we can use more images to train

the model to achieve better performance. Another things that can be done is that we can

extend the model to detect wheat heads from different angles. Datasets that contain images

of other staple crops such as rice, grapes and grains of importance, can be used to extend

model’s reach.

57

REFERENCES

[1] C. P. Z. J. Z. Wang Zhijun, "Method for identification of external quality of wheat grain based

on image processing and artificial neural network," 2007.

[2] T. K. Ho, "Random Forest," in IEEE, 1995.

[3] F. Y. ZHEN Tong, "Research of Grain Pests Detection and Classification Based on SVM,"

2006.

[4] N. A. Z. N. S. A. A. S. M. R. M. N. Shafaf Ibrahim, "Rice Grain Classification using Multi-

class Support Vector Machine (SVM)," in IAES International Journal of Artificial Intelligence,

2019.

[5] H. M. Hongtao Zhang, "Feature Selection for the Stored-grain Insects Based on PSO and

SVM," in 2009 Second International Workshop on Knowledge Discovery and Data Mining,

2009.

[6] B. S. Harpreet Kaur, "Classification and Grading Rice Using Multi-Class SVM," in

International Journal of Scientific and Research Publications, 2013.

[7] J. D. T. D. J. M. Ross Girshick, "Rich feature hierarchies for accurate object detection and

semantic segmentation," in 2014 IEEE Conference on Computer Vision and Pattern

Recognition, 2014.

[8] H. Z. J. L. Yufeng Shen, "Detection of stored-grain insects using deep learning," in Computers

and Electronics in Agriculture Vol.145, 2018.

[9] D. E. Y. C. B. M. Bo Gong, "Real-Time Detection for Wheat Head Applying Deep Neural

Network," in Sensors (Basel, Switzerland), 2020.

[10] J. Redmon, "You Only Look Once: Unified, Real-Time Object Detection," in IEEE conference

on computer vision and pattern recognition, 2016.

[11] V. Thatte, ". Evolution of YOLO — YOLO version 1," 2020.

[12] M. Menegaz, "Understanding YOLO," 2018.

[13] A. Kamal, "YOLO, YOLOv2 and YOLOv3: All You want to know," 2019.

[14] X. Z. S. R. J. S. K. He, "Deep Residual Learning for Image Recognition.," 2015.

58

