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ABSTRACT 

 

Object detection is a computer technique that deals with finding instances of semantic items 

of a specific class (such as individuals, buildings, or automobiles) in digital photos and 

videos. It is linked to computer vision and image processing.  Face detection and pedestrian 

detection are two well-studied object detection areas. Object detection may be used in a 

variety of computer vision applications, such as picture retrieval and video surveillance. 

 

Detecting wheat heads in plant photos is crucial for assessing critical wheat attributes 

including head population density and head characteristics like health, size, maturity stage, 

and awn presence. Several research have used machine learning techniques to build 

approaches for detecting wheat heads from high-resolution RGB photography. These 

approaches, on the other hand, have often been calibrated and verified on small datasets. 

Wheat head detection is difficult for computer vision because of the wide range of observing 

settings, genotypic variances, developmental phases, and head orientation. This task is made 

significantly more difficult by the possibility of blurring due to motion or wind, as well as 

overlap between heads in dense crowds. 

 

The YOLO (You Only Look Once) technique was developed using a novel approach that 

reframed object identification as a regression issue that could be solved with a single neural 

network. As a result, the area of object detection has exploded, with far more amazing results 

than only a decade ago. 

 

YOLO has been improved to five versions and rated as one of the best object identification 

algorithms by merging several of the most original concepts from the computer vision 

research field. The fifth generation of YOLO, dubbed YOLOv5, is the most recent version 

that was not created by the original creator of YOLO. However, the YOLOv5 performs better 

than the YOLOv4 in terms of both the accuracy and speed.
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Chapter 1 INTRODUCTION  

 

1.1 Introduction  

Wheat is highly researched due to its prominence as a food and crop. Plant scientists utilise 

image identification of "wheat heads"—spikes atop the plant that carry grain—to obtain huge 

and reliable data about wheat fields throughout the world. The density and size of wheat 

heads in various types are estimated using these photographs. Farmers can use the 

information to gauge their fields' health and maturity while making management decisions. 

Wheat, “chawal” and corn, is the most widely planted staple part on the crop. Then Borlaug 

produced semi-dwarf changes of wheat also a supplementary-agronomy methord (the 

Doubly-Green Revolution) in the fifties, it protected three hundred million humans from the 

deprivation. Later, rising at a high rate for many years, wheat fields has declined from the 

year 1990. Traditional breeding still relies on manual observation to a considerable extent. 

Increased genetic gain may be achieved by genomic choosing, novel high output 

phenotyping approaches, and a connection of the two. The following methods are necessary 

for selecting crucial wheat features related to produce probable, bacteria protection, and 

adaptability for abiotic stress. Creating working and effective structure to get the attributes 

from raw database is still a serious issue, despite the fact that increased output of phenotypic 

information gathering is real. Crop-head volume (this amount of the wheathead in per land 

region) is an important producing attribute that is even today analysed manually in the 

breding experiments, This is time consuming so results in measurement faults of up to Ten 

percent. To assist breeders in manipulating the balance in the produced components (number 

of plants, head-density, grains/head, weight of grain) in the breding choices, photo based 

technologies to boost their output and efficacy of numbering the wheathead in the field are 

required. 

When people look at an image, they can immediately recognise things and where they are in 

the image. The capacity to identify items quickly mixed with a person's knowledge aids in 

making an appropriate judgement on the object's nature. Scientists are working on a model 

that can imitate the capacity of a person’s eye system to identify items. The two criteria for 

evaluating an object detection algorithm are speed and accuracy. 

One of the most well-known challenges in computer vision is object detection. It not only 

classifies but also locates the object in the picture. The ways implemented to solve the 
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problem in prior decades is made of 2 parts: (1) extracting distinct regions of the photo with 

a sliding-window with various widths, and (2) applying the prediction statement to identify 

which group the item belong to. These methods has a drawback of requiring a lot: processing 

and having split into several phases. As a result, speed optimization of the system is 

challenging. 

For the first time, in 2015, researcher [10] Joseph Redmon and colleagues unveiled the 

YOLO method, an item identification model that executes every of the necessary processes 

to recognise an item with a single NN (than known as YOLO). It transforms the obj. 

recognition to a one regresion issue, starting and then moving from picture pixel to BB co-

ordinates and class predictions. 

The singular model calculates several BB and class predictions for itmes surrounded by the 

multiple boxes at the same instance. The You Only Look Once model have achieved 

outstanding results, that outperform the leading methods in areas of both accuracy  and speed 

for predicting and calculating target co-ordinates at the time of its introduction (Redmon, 

[10] 2016). In the coming five years, the You Only Look Once model was refined to 5 types 

(which includes the real model also), including lot of the highly innovative ideas arriving 

from the machine vision study community. The initial 3 iterations were investigated and 

evolved by Joseph Redmon, the developer of the YOLO model. He said that he will leave 

the machine vision industry after the development of YOLO version 3. The YOLO’s updated 

version four, “YOLOv4”, was released on the official “YOLO Github” account in the start 

of 2020 by Alexey Bochkovskiy, the Russian researcher who developed the previous three 

versions of You Only Look Once which were based on the Joseph Redmon's Darknet-

architecture. Glenn Jocher with his Ultralytics LL-C research team, they created the YOLO-

7 model using the Python’s Pytorch-framework, published YOLO version 5 a month after 

YOLOv4 was launched, within a few adjustments and upgrades. 

Even though, the fact that, this was not developed by the model's creators, YOLO-v5 

surpassed the other three versions.  

 

1.2 Problem Statement  

Accurate wheat head recognition in outdoor field photos, on the other hand, might be 

visually difficult. The thick wheat plants often overlap, and the wind can cause the photos to 

blur. Single heads are difficult to distinguish in both cases. Maturity, colour, genetics, and 
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head orientation all influence looks. Finally, varied types, planting densities, patterns, and 

environmental conditions, planting materila must all be addressed since wheat is farmed all 

over the world. Wheat phenotyping models must be able to generalise across a variety of 

growth situations. Current detection approaches include one- and two-stage detectors (Yolo-

V3 and Faster-RCNN), however even when trained with a huge dataset, there is still a bias 

toward the training location. 

Wheat is a staple all over the world, thus this competition must take into consideration a 

variety of growth circumstances. Wheat phenotyping models must be able to generalise 

across different conditions. Researchers will be able to precisely evaluate the density and 

length or size of wheat heads in different types if they are successful. Farmers can better 

analyse their crops with enhanced detection, delivering cereal, toast, and other beloved foods 

to your table. 

 

1.3 Objectives  

Accurate wheat head recognition in outdoor field photos, on the other hand, might be 

visually difficult. The thick wheat plants often overlap, and the wind can cause the photos to 

blur. Single heads are difficult to distinguish in both cases. Maturity, colour, genetics, and 

head orientation all influence looks. Finally, varied types, planting densities, patterns, and 

environmental conditions, planting materila must all be addressed since wheat is farmed all 

over the world. Wheat phenotyping models must be able to generalise across a variety of 

growth situations. Current detection approaches include one- and two-stage detectors (Yolo-

V3 and Faster-RCNN), however even when trained with a huge dataset, there is still a bias 

toward the training location. 

With the problem at hand and the Methodology, Our Objective can be divided as followed: 

 Our primary objective is to develop a model that is able accurately to detect wheat 

heads for field images. 

 Improving the speed and accuracy of the model. 

 Further improving the model so that it can determine features like density, the 

number of spike heads Or such that it can be used for different cropes.  
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1.4 Methodology  

Object identification techniques are divided into two categories: NN-based and non-NN 

methords. Non-neural techniques require first defining features whith some of the algorithms 

listed below, followed by classification with a method like  Support Vector Machine. And 

on the other side, NN approaches, which are often based on convolutional neural networks, 

are capable of doing complete detection without specifying characteristics (CNN). 

 NN methods:  

o Region Pro-posals (RCNN , Fast RCNN, Faster RCNN, cascade 

RCNN) 

o Single-Shot MultiBox Detector (SSD) 

o You Only Look Once 

o DefineDet 

o Retina Net 

o Deformable Convolutional Network 

 Non-NN methods:  

o Viola Jones detection framework on Haar features 

o Scale invariant feature transform (SIFT) 

o Histogram of oriented gradients  

 

1.5 Organization  

In this section, we'll go through the arrangement of the report's chapter-by-chapter layout. 

We've previously seen the Introduction and Problem Statement in Chapter 1. Following that, 

we looked at the report's aims and methods. We are now at the Organization portion of the 

report, which will clarify the chapters and subjects covered further down. 

A brief description of the literature survey process will be presented in Chapter 2. This will 

include some of the resources we used in the past to gain necessary knowledge for this 

project, as well as other work we came across through the community that helped us get to 

the point where we were able to finish the project and lay the groundwork for future solutions 

to similar problems. Then we'll go on to Chapter 3, where we'll talk about how our model 

was conceived and evolved. First, we'll go through the dataset that we used to create this 

report and look at some of its fundamental aspects. We'll go through the fundamental 

architecture that leads to the random forest method, which includes decision trees and feature 
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selection. We'd compare the various models we used to the random forest and their 

comparative accuracies. We've gone through them briefly to help the reader comprehend 

them better. Following that, we've included a list of some of the mathematical formulae that 

were utilised in this study. 

In Chapter 4, we demonstrated how our system worked and compared it to other systems 

such as linear regression, decision trees, and others. Then, at various phases of our project 

activity, we begin to display the outcomes, which comprise numerous graphs and figures. 

This would be followed by the model's final result. 

Furthermore, in Chapter 5, we began the conclusion section by discussing what we were able 

to accomplish in the project and how this model was the ideal approach for us to study and 

explore this topic. Following that, we presented some future initiatives that may be realised 

through this project and added to it. 
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Chapter 2 LITERATURE SURVEY  

         

2.1 General 

The research are of crop detection is fairly important in the computer vision’s application in 

agriculture. The uses of machine learning techniques are not new and one can find its 

application in agriculture, decades back. What really makes the technique so successful in 

agriculture and other fields  is that it only needs a camera and a computer to run the model 

and find the crop in images. There are agro startups around the world that are using these 

techniques in not only wheat but, also in grapes, rice and other valuable crops. These 

methods are also not very expensive and are computationally cheap to execute. The only 

constraint with these techniques are trainable images, which are also not very difficult to 

find. This application will prove to be very important in future as global warming will 

damage much of the crop growth and it will be essential for farmers to use such techniques 

to assess health and maturity of their crop while managing the fields. But, training a model 

can be visually challenging as each crop can have different maturity, color, genotype and 

orientation. The model must also work world wide on different varieties of crop. 

 

2.2 Image recognition using classical machine learning algorithms 

 

If look at the earlier models used, to recognize and then assess the quality of grain, then we 

can look at the example of [1] Zhijun’s (2007) paper where the used Neural network to 

identify external quality of wheat grain. Since, most of the early image classifiers were based 

on SVM, SVM divides data points into two or more distinct pools using a hyperplane margin, 

and it uses a technique called kernel method to map data into higher dimension feature space, 

allowing it to do classification efficiently. Then there's Random Forest, which was developed 

by [2] Tim Kam Ho (1995). Random Forest is an ensembling-based strategy for creating a 

decision tree that's less prone to overfitting on training data. The most famous of these 

algorithms is the neural network, which was designed by Marvin Minsky in 1969 and is 

based on human brain neurons. In a network, a neuron is a function that collects and 

categorises data using a specified design. A neural network is made up of layers with 

interconnected nodes, like seen above. Each node functions similarly to a perceptron, taking 

input from the previous layer and feeding information into the next. In most cases, an input 
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layer with several neurons accepts the initial input, performs some calculations, and then 

feeds the results to a hidden layer (s). The information is then transferred to the output layer 

from this hidden layer. We can also use modified neural network called convolutional neural 

network which is popular for winning four image competition. The name "convolutional 

neural network" suggests use of mathematical convolutions that are used in the model. CNN 

has atleast one convolution layer rather than simple matrix multiplication  that most ANNa 

have. Every neuron has atleast one coupled neuron that creates a complex system of layers. 

It works in the same way as a multi-layer perceptron neural network (MLP). To categorise 

the photos, It functions similarly as a multilayer perceptron neural network. The flattened 

matrix is sent through a FC layer to categorise the photographs. Advanced neural networks, 

such as AlexNet, RCNN, and YOLOs, are built on CNN and perform well in image 

recognition applications.  

 

2.3 Crop detection using SVM and Random Forest. 

 

Early machine learning techniques includes SVM and Random Forest, before the invention 

of neural network these models were often used and gave good result considering the 

complexity of the problem. One such example is [3] Z Tong’s (2006) paper where they used 

SVM to detect grain pest and this proved to be better than ANNs under the condition of 

limited training samples. Another such example is Ibrahim et. al.’s [4, 2019] paper were they 

used multi class SVM to detect rice grains for faster sorting of grains, they were able to 

achieve 92.22% accuracy in their dataset. They used three  attributes  of  color  descriptor  

which are  saturation, hue  and  value,  four attributes such as area size,  length of perimeter,  

minor  axis length,  and  major  axis  length  and  . H Zhang[5, 2009] used the single fitness 

function was built to assess the feature subset using SVM and another optimizer for stored-

grain insects by incorporating the v_fold cross validation training model accuracy and the 

number of chosen features. Nine species of stored-crop insects decayed badly in crop-depots, 

including Tenebroidees mauritanicus(L.) and Rhizoperthae dominica Fabricius. The 

approach founded on PSO and SVM was used to select feature subsets for the stored-grain 

insects. H Kaur’s[6,2013] paper they used Multi class SVM for classification and grading 

SVM, after the rice kernels had been separated from background, the Maximum Variance 

approach was used to extract the chalk from the rice. Ten geometric parameters were used 
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to determine the amount of broken rice, head rice,and Brewers in rice samples. The 

Chalkiness, Shape and Percentage of Broken ( Broken, Head Rice and Brewers) kernels were 

used to classifying the rice by Multi-Class SVM. More than 86 percent of SVM 

classifications are correct. According to the findings, the method was adequate for 

classification and grading the various varieties of rice grains based on their exterior and 

internal quality. Random forest has been used to predict soil surface texture in a semiarid 

region. Other staple crops can also be graded and classified by the SVMs and Random 

Forest. We can also use Random forest for detecting pest in grains. Overall, it can be said 

that SVMs and random forest are useful in precision agriculture application. Also, many 

other algorithms such as logistic regression and artificial neural network can be used for this 

task. 

 

 

 

 

2.4 Crop detection using RCNNs 

 

To face the difficulty of picking a great number of areas, Ross Girshick et al.[7,2014] 

proposed a technique called region recommendations, in which we try to use selective search 

to extract just 2000 regions from a picture. As a consequence, instead of attempting to 

identify a vast number of locations, you may now focus on just 2000. The CNN works as a 

feature extractor, with the extracted features being used as input data into an SVM to 

categorise the object's existence inside the probable region suggestion. In addition to 

predicting the presence of an object within the specified zone, the method predicts four offset 

values to boost the precision of the BB. For instance, the algorithm might have predicted the 

presence of an object in an area recommendation, but that object’s part inside that region 

proposal may have been halved.  As a result, the offset values aid in altering the region 

proposal's bounding box.  RCNN still had some problems, You'd have to categorise two 

thousand region proposals every image to train the network, which would take a long time. 

Because every test image takes around 50 seconds, it can't be done in actual time. The chosen 

search algorithm is a fixed algorithm. As a result, there is no learning process at that 

moment.As a result, an instance of poor probable region ideas might be generated. Then 
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there's the same author's fast rcnn, which is similar to the R-CNN method. We feed the CNN 

the input picture instead of the region recommendations to build a convolutional feature map. 

We take the convolutional feature map's area of recommendations, distort them into 

quadrilaterals, and then rebuild them into a fixed size regions using a “RoI” pooling layer so 

they can be used as inputs into a fully connected layer. To anticipate the class of the proposed 

region as well as the BB offset values from the RoI feature vector, we use a softmax layer. 

"Fast R-CNN" is quicker than R-CNN since you don't have to input the convolutional neural 

network 2000 area suggestions every time. Instead, the convolution procedure, which is 

performed just once per picture, produces a feature map. When comparing the performance 

of Fast R-CNN during testing, using region proposals considerably slows down the 

algorithm compared to not utilising region proposals.As a result, region proposals become 

bottlenecks in the Fast R-CNN algorithm, slowing it down. To find region proposals, both 

of the above algorithms use selective search. Selective search is a slow and time-consuming 

operation that degrades network performance. As a result, Shaoqing Ren et al. created an 

object identification algorithm that does away with the selective search algorithm and allows 

the network to learn region proposals. The image is fed into a convolutional network, which 

outputs a convolutional feature map, similar to Fast R-CNN. Instead of using a selective 

search strategy on the feature map to identify the region suggestions, a separate network is 

used to anticipate the region proposals. After that, a RoI pooling layer is used to categorise 

the image inside the suggested region and predict the bounding box offset values, and the 

projected region proposals are reshaped.The research by Y Shen et al.[8,2018] employed a 

quicker rcnn to identify stored grain insects. 

A method for detecting and recognising stored-grain insects was built using RCNN. 

Cryptoleste Pusillius(S.), Sitophiluse Oryzae(L.), Oryzaephiluse Surinamensis(L.), 

Tribolium Confusume(Jaquelin Du Val), Rhizoperthae Dominicas (F.).These live insects' 

Red, Green, and Blue (RGB) images were assembled into a database.To extract regions in 

these pictures that potentially contain insects and categorise the insects in those spots, a faster 

R-CNN was utilised. An upgraded inception network was constructed to extract feature 

maps.Excellent results were obtained in the detection and categorization of these insects. 

Mean Average Precision (mAP) of 88.0, the developed method was shown to be capable of 

detecting and identifying insects in stored grain.  

 



10 

2.5 Crop detection using YOLOs 

In contrast to other region proposal classification networks, which perform detection task on 

large number of region proposals and performs predictions in multiple times for various 

regions in an image, Yolo architecture is more similar to  FCNN and passes the image (nxn) 

once through the Fully connected NN and outputs (mxm) prediction.The input picture is split 

into mxm grids, each of which is given two bounding boxes and class probabilities. YOLO 

has gone through several incarnations, the most recent of which is YOLO9000: Better, 

Faster, Stronger (i.e., YOLOv2), which can identify over 9,000 object detectors. By 

undertaking combined training for both object detection and classification, Redmon and 

Farhadi are able to obtain such a vast number of object detections. The authors used 

combined training to train YOLO9000 on both the ImageNet classification dataset and the 

COCO detection dataset at the same time. The outcome is the YOLO9000 model, which can 

forecast detections for object classes with no labelled detection data. YOLOv2's performance 

was interesting and original, however it fell short of the title and abstract of the article. 

YOLO9000 achieved 16 percent mean Average Precision (mAP) on the 156-class version 

of COCO, and while YOLO can recognise 9,000 distinct classes, the precision isn't nearly 

what we'd like. B Gong et. al.[9,2019] paper used Yolo model on GWHD dataset for 

detecting wheatheads.  
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Chapter 3 SYSTEM DEVELOPMENT  

 

3.1 Analysis/Design/Development/Algorithm 

 

3.1.1 RCNN 

R-CNNs (Region-basedConvolutional NN) are a example of machine-learning model used 

in computer vision and image processing. The basic purpose of any R-CNN, which is 

specifically built for item detection, is to detect objects in any input pictures and define 

boundaries around them. 

 

The RCNN model uses a method known as “selective search” to extract information about 

the region of interest from an input picture. 

 The rectangular boundaries can be used to illustrate the region of interest. 

 There could be over 2000 regions of interest depending on the scenario. 

 This region of interest is fed into CNN, which generates output features. 

 The objects presented in a region of interest are then classified using these 

output attributes by an SVM (support vector machine) classifier. 

 

Object localisation can be accomplished in a variety of ways in any object detection 

technique. 

One strategy, which we call an exhaustive search approach, is to use sliding filters of various 

sizes on the image to extract the object from image. 

In an exhaustive search technique, calculation work increases as the number of filters or 

windows increases. 

 

The selective search algorithm employs exhaustive search, but in addition to that, it works 

with the segmentation of the image's colours. In more formal terms, selective search is a 

technique for separating items from an image by assigning them distinct colours. 

 

This algorithm begins by creating a large number of small windows or filters, then grows 

the region using the greedy algorithm. Then it looks for colours that are similar in other 

places and combines them together. The similarity between the regions can be estimated 

using the following formula: 
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𝑆(𝑎, 𝑏) = 𝑆𝑡𝑒𝑥𝑡𝑢𝑟𝑒(𝑎, 𝑏) + 𝑆(𝑎,𝑏) Where Stexture(a,b) is visual similarity and Ssize(a,b) is 

region-to-region similarity. The model continues to use this approach to merge all of the 

regions together in order to increase the size of the regions.  

 

A selective search algorithm is depicted in the image. Following the region selection, the 

picture containing regions is passed through a CNN, which extracts the objects from the 

region. 

Because the image size must be regulated according to CNN's capability, reshaping the 

image will take some time, if not all, of the time. We wrap the region in 227 × 227 x 3 images 

in basic R-CNN. 

 

.1  Using a CNN, extract objects : The object of size 4096 dimensions will be extracted 

using a wrapped input for CNN. 

.2  Classification: The basic R-CNN uses an SVM classifier to categories things into 

their respective classes. 

 

R-entire CNN's process architecture can be expressed as: The boundary box repressor 

operates at the conclusion of the model to define items in the image by covering it with a 

rectangle. 

 

3.1.2 Fast RCNN 

 

Instead of conducting maximum pooling, we use ROI pooling in fast R-CNN to use a single 

feature map for all regions. This warps ROIs into a single layer, and the ROI pooling layer 

converts the features using max pooling. Because max pooling also works here, we can think 

of fast R-CNN as an update to the PSPNet. It simply creates one layer, rather than multiple 

layers in a pyramid shape. 

 

Using linear regression and softmax, create a fully connected network for categorization.  is 

shown in the image above. With linear regression, the bounding box is fine-tuned even more. 

R-CNN is quicker than PSPNet. 

 

3.1.3 Faster RCNN 
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PSPNet and Fast R-CNN did not have any methods for choosing regions of interest until 

now, as we saw in the article for region proposals. The fundamental difference in the Fast 

RCNN and the Faster RCNN is the following. To build the sets of regions, faster R-CNN 

uses a region proposal method. The regional proposal network, which we name the faster R-

CNN, has an extra CNN for acquiring the regional proposal. The proposal network in the 

training region accepts the feature map as input and produces region proposals. These 

recommendations are then forwarded to the Region of Interest pooling layer for further 

processing. 

 

3.1.4 YOLO 

With a research published in 2015 by Joseph Redmon [10], YOLO entered the computer 

vision landscape. YOLO: Unified, Real Time Object-Detection drew a high interest from 

other computer-vision experts right away. Prior to the invention of YOLO, Convolutional 

NeuralNetworks (C-NN) like as Region-Convolutional Network uses Regions-Proposal 

Network (RPN) to produce proposal bounding boxes on imputed data, after that run a 

prediction on the BB, and then apply post processing to delete duplicate predictions and 

improve the BB. Single levels of the RCNN network’s could not be trained independently. 

It was tough and time-consuming to optimise the R-CNN network. 

The author's goal is to use a neural network to create a unified representation of all stages. 

After running the input picture through a NN comprising many convolutional NN, the model 

provides prediction vector’s to every object in these pictures, whether it contains (or does 

not contain) the items. Rather of iterating process of  categorising individual regions on 

picture, YOLO system computes all of the image's characteristics at once and generates 

predictions for all items. "You Only Look Once" is based on this concept. [10] (Redmon and 

colleagues, 2016) 

 

3.1.5 YOLO Basic Concepts 

 

YOLOv1's core concept is, insert a gridcell with a shape of SxS (7x7 default) onto a picture. 

If an item's centre falls inside a gridcell, then the gridcell is in charge of predicting the object 

(Fig. 1). As a result, all the other cells ignore the apearance of an item that has been shown 

in numerous cells. 
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Every gridcell forecasts B B.B. with there parameters and the confidence ratings in order to 

execute object detection (Figure 1). (V Thatte,[11] 2020). The existence or absence of the 

object in the enclosing box is reflected by this confidence score. The confidence points is 

calculated as follows: 

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 points = 𝑝(𝑂𝑏𝑗.) ∗ 𝐼𝑂𝑈 𝑡𝑟𝑢𝑡ℎ 𝑝𝑟𝑒𝑑  

IOU pred truth is IOU of calcification box and base truth box, where P(obj.) this is  

possibility that there is an obj. within the cell, and P(obj.) is the possibility that there is an 

obj. within the cell. The confidence score is closer to 0 if no obj. is present within this cell 

since P(obj.) is in the range 0-1. Instead, the score will be equal to IOUpred truth. 

 

Figure 1: You Only Look Once algo. with 7x7 gridcell was applied on input photo’s.[10] 

Furthermore, every BB has 4 additional attributes (x, y, w, k) that correspond to the bounding 

box's (centre coordinate(x, y), width, and height) (Figure 2). Each bounding box has 5 

parameters when combined with the confidence score. 

The YOLO algorithm's goal is to predict an item by correctly calcification its BB and then 

localising it using the bounding box coordinates. As a result, anticipated BB vectors 

corespond to the resulting vector y and base truth B.B. vectors-to-vector label y. . Vector 

labeled y and calcification vector y may be shown in Fig.4, there the cell coloured purple 

has no item and the bounding box confidence score in cell coloured purple is equal to zero, 

therefore every remaining attributes are ignored. 
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3.1.6 YOLO v1 architecture 

 

The YOLO model includes an architecture that analyses all picture characteristics (dubbed 

Darknet architecture by the developers) and two fully linked layers that execute bounding 

box estimation for objects (Figure 2). The authors utilised S = 7.0, B = 2.0, also C = 20.0 in 

the Pascal VOC database to test this model. This clarifies why the output size was (7 * 7 * 

(2 * 5 + 20)) and the final feature maps were 7*7. 

 

Figure 2: Preliminary YOLOv1 architecture 

For uncomplicated datasets, the authors presented the fast YOLO structure with nine C-NN 

layers in the Darknet-architecture, while the normal YOLO structure with twenty four C-NN 

layers in the Darknet design can handle higher complex data and produce greater accuracy 

(Figure 3). The GoogLeNet (Inception) model, which can help to minimise the features space 

from preceding layers, inspired the sequences of 1x1 and 3x3 convolutional layers 

(Menegaz,[11] 2018). Rather than using Leaky Rectified Linear Unit (leaky ReLU) 

activation, the final layer utilises a Linear activation function: 
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Figure 3: Normal-YOLOv1 NN model having 24 C-NN layers and two fullyconnected layers 

 

3.1.7 YOLOv2 

 

In the deep learning model, batch normalisation is one of the most used ways of normalising. 

It provides for quicker and more stable deep neural network training by stabilising the input 
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layer distribution during training. The purpose of this method is to normalise the features 

(each layer's outputs after activating) to a 0 mean condition with a SD of one. 

 

𝑀𝑖𝑛𝑖 𝑏𝑎𝑡𝑐ℎ 𝑚𝑒𝑎𝑛: 𝜇 =
1

𝑚
∑ 𝑧(𝑖)

𝑚

𝑖=1

 

Equation 1: Mini-batch mean 

 

𝑀𝑖𝑛𝑖 − 𝑏𝑎𝑡𝑐ℎ 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒: 𝜎2 =
1

𝑚
∑(𝑧(𝑖) − 𝜇2)

𝑚

𝐼̇=1

 

Equation 2: Mini-batch variance 

 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒: 𝑧𝑛𝑜𝑟𝑚
(𝑖)

=  
𝑧(𝑖) − 𝜇

√𝜎2 + 𝜀
 

Equation 3: Normalize 

 

𝑆𝑐𝑎𝑙𝑒 𝑎𝑛𝑑 𝑠ℎ𝑖𝑓𝑡: �̃�(𝑖) = 𝛾𝑧𝑛𝑜𝑟𝑚
(𝑖)

+ 𝛽 

Equation 4: Scale and shift 

 

After batch normalisation, all of YOLO veraion2's layers are applied. This method not only 

cuts down on training time, but it also improves  network's generalisation. Batch normalising 

improved m-AP (mean precision) by roughly 2.0% in YOLOv2 (Redmon, [10] 2016). To 

avoid overfitting, the network does not need to utilise any more Dropouts. 

The very initial twenty convo-layers (in the YOLO version 1 model) were utilised to training 

the feature extractor (prediction networks) using 224x224 input picture in the original YOLO 

(YOLOv1). The remaining four convo-layers and two fully-linked layers were then included, 

and this input image's resolution was concurrently raised to 448 448 to be utilised as a 

detection algorithm. (Kamal, [13] 2019) 
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YOLOv2, on the other hand, after finishing the feature extractor's training phase with the 

224x224 input picture, the model continued the training of the extracted features for another 

15 epochs including the 448x448 input pictures already employing the framework for the 

object-detector training. Whenever the features extraction train phase transitions to the 

object-detector train phase, the model may "adapt" to a higher resolution of 448x448 in place 

of instantly improving the picture pixels. This high-resolution classification network results 

in a nearly 4% increase in mAP. 

 

3.1.8 Convolutional with anchor box 

 

The concept behind YOLOv1 is to utilise a grid cell to identify an item that has its centre 

within that grid cell. As a result, if two or more objects have their centres in the same grid 

cell, the forecast may be incorrect. The author attempted to tackle this challenge by allowing 

a grid cell to anticipate many objects. Instead of employing completely linked layers like in 

YOLOv1, the author used an anchor box architecture to anticipate bounding boxes in 

YOLOv2 ([10] Redmon, 2016). A collection of preconfigured boxes that’s the good  fit the 

Figure 4: model prediction bounding boxes 
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intended items is called an anchor box. Not only were ground truth boxes used to anticipate 

the bounding boxes, but also preset k anchor boxes. 

 

Rather than manually choosing the bestfit anchor-boxes, the training dataset BB (including 

every base truth box) were clustered using the k-means clustering algorithm, and the mean 

IOU was plotted with the nearest centroid (Fig.4). Rather then using Euclidean distance, the 

developer used IOU within the BB and the centroid. Having different values for k, k = 5.0 

is a great compromise between recall and model complexity. The developer evaluated in the 

VO-C and CO-CO datasets, and the right figure depicts the tradeoff in recall and model-

complexity as a function of the number of clusters (k).The right photo in both datasets 

displays 5 centroids (which may be used as anchor boxes).(Redmon and colleagues, 2016; 

Redmon and colleagues, 2016)  

 

When it comes to anticipating the boundary position of a box, YOLOv1 has no limitations. 

The bounding box may be predicted anywhere in the picture when attributes are randomly 

initialised. In the early stages of training, this renders the model unstable. The BB can be 

located far away from the gridcell that is important for anticipating that BB. 

In YOLO, every gridscell is described on a scale of 0 to 1, with the top-left point (0, 0) and 

the lower right point (1, 1)  As a result, YOLO-v2 employed the sigmoid function, f() to 

limit the bounding box centre value to the range 0-1, allowing it to establish the bounding 

box estimates all around grid cell. 

 

3.1.9 YOLOv3 

 

For Darknet architecture, YOLO v2 featured a proprietary deep 30-convolutional layer 

architecture, which was larger than YOLOv1's 11 layers. More layers in deep neural 

networks equals more accuracy. When forwarding to further layers, however, the input 

picture was downsampled, resulting in the loss of fine-grained characteristics. That's why 

YOLOv2 had a hard time detecting little objects. ResNet proposed the use of skip 

connections to aid activation propagation over deeper layers without vanishing the gradient 

(Figure 4). (He, [14] 2015). 
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Figure 5: ResNet skip connection architecture 

Redmon, et al. [10]  proposed a superior architecture in which the feature extractor was a 

combination of YOLO-v2, Darknet53, and the Residual NN. Inside each residual block, the 

network is created using a bottleneck structure (1x1 followed by 3x3 convolution layers) and 

a skip connection (Figure 6). 

Overlapping layers will not impact network performance thanks to ResNet's residual blocks. 

Furthermore, because the deeper layers receive more information directly from of the upper 

layers, the bulk of fine-grained characteristics is not lost. 
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Figure 6: Darknet-53 (5 residual blocks) 
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The model made use of the Darknet-53 architecture, which was designed with a 53-layer 

network for feature extraction training. The detecting head for training object detector was 

then layered with 53 additional layers, giving YOLO version 3 a complete of 106 layers of 

fully-convolutional under lying model. 

 

3.1.10 Multiscale detector 

 

After training in the feature extractor using Darknet architecture in two earlier versions of 

YOLO, the input was sent to a few additional layers before being used to make calcification 

in the final levels of the item calcifies. More over, instead of stacking the calcification layers 

at the final layers as before, YOLOv3 added them to the side network (Figure 7). YOLOv3's 

most significant feature is that it detects at three distinct scales (Redmon, et al.,[10] 2018). 

Three distinct scale detectors were created using the characteristics from the last three 

residual blocks.  

 

 

Figure 7: Multi-scale detector 
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 Specifically, YOLOv3 predicts at three scales in layers 82, 94, and 106, that are precisely 

determined by the network's stride of 32nd, 16th, and 8th, respectively. 

  

Unlike YOLO verssion1, where bounding boxes forecast by the same gridcell portion a 

combination of C class calcification probabilities, every gridcell is responsible for calcifying 

one obj., YOLOv2 introduces the concept of a gridcell having the ability to forcast the many 

objects at once. B.B. will predict different type of objects even if they are calculated by the 

same gridcell. As a result, rather of sharing a set of C class prediction probabilities, predicted 

Figure 8: YOLOv3 network architecture) 
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bounding boxes have their own (Figure 14). For each separate detector, the total YOLOv3 

output parameters will be S S (B (5 + C)). 

The 82nd layer is the first to notice something. The author chose the 416 416 input picture 

as the default for simplicity of understanding. After passing from the starting 81 layers, these 

input picture is down sampled by 32, resulting in a feature map with a size of 13x13 matching 

to 13x13 gridcells (Fig.9). Detection is carried out at each detection layer by using 1x1 

detection kernels on feature maps. The 1x1 kernel is in charge of estimating the B bounding 

box for each feature map grid cell. The COCO dataset was used to train YOLO version 3 

with B = 3.0 (three BB for every cell) and C = 80.0. (classes), 

As a result, the kernel size is 1 1 (3 (5 + 80) = 1 1 255. The final generated feature map at 

the first detection layer will be 13x13x255. (Fig.9). 

 

Figure 9: YOLO-v3 detecting an obj. by applying an 1x1 kernel 



25 

The same technique is followed again. Even though, the featuremaps at layer 79 and 91 are 

up-sampled before being forwarded to two more detection layers for prediction. Following 

down - sampling by the strides of 16 and 8, the feature maps have sizes of 26x26 and 52x52, 

respectively, equivalent to the 94th and 106th detection layers (Figure 9).  

Furthermore, detections at various size layers aid in addressing the problem of recognising 

small objects, which is a common criticism with YOLOv2. The detailed feature map is the 

one with the largest size. Small items are detected by the large-scale detection layer (52x52), 

whereas bigger objects are detected by the small-scale detection layer (13x13). 

The fine-grained characteristics from previous layers can be preserved by concatenating with 

the upper layers after up-sampling in the deeper layer (combines with layer 61 before 

reaching layer 91 and concatenate with layer 36 before reaching layer 103rd  as shown in 

Fig.9). This helps the largescale detection layer detect small objects. 

 

3.1.11 YOLOv4 

Joseph Redmon, the creator of the YOLO algorithm, is also the creator of the Darknet custom 

model. After 5 years of development and research on the 3rd version of the YOLO algorithm 

(YOLO version 3), J. Redmon said his departure from the field of machine vision and 

stopped researching the YOLO algorithm due to concerns that his technology will be 

misused in military applications. He does not, however, object to any individual or group 

continuing to do research based on the YOLO algorithm's early concepts. 

Alexey Bochkovsky,a soviet scientist and engineer who developed the Darknet architecture 

and three earlier You Only Look Once architectures in C based on Joseph Redmon's 

theoretical theories, collaborated with C. Yao and H. Yuan to release YOLO version 4 in 

April 2020.  

Along with the development of YOLO, several object identification systems using various 

methodologies have also made significant progress. Since then, two design object detection 

ideas have emerged: onestage sensor and twostage detectors (Fig.10). 
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Figure 10: 2 concepts of architectural object detection 

The input picture characteristics are compressed down by feature extractor (Backbone) and 

then forwarded to item detector (containing Detection Neck and Detection Head) in all object 

prediction architectures, as shown in Figure 10. The Detection Neck (or Neck) is a feature 

aggregator charged with mixing and combining the features created in the Backbone in order 

to prepare for the detection process in the Detection Head (or Head). 

In all object detection designs, the input picture features are compressed down by the feature 

extractor (Backbone) and then transmitted to the object detector, as illustrated in Figure 10. 

The Detection Neck (or Neck) is a feature aggregator responsible for mixing and merging 

the features developed in the Backbone in order to prepare the Detection Head for the 

detection process (or Head). 

For each aspect of the architecture, the YOLO author conducted a series of trials with several 

of the most sophisticated computer vision innovation concepts (Figure 11).  
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3.1.12 EfficientNet 

 

EfficientNet was released in 2019 in a research paper by Google. This new CNN family 

provide better accuracy and also improve the efficiency of the model. It does this by reducing 

Floating Point Operations Per Second and parameters.  

 Creating a small basic architecture: EfficientNet-B0 

 

 Provides an efficient compound scaling strategy for expanding model size and 

maximising precision improvements. 

Figure 11: YOLOv4 different architecture 
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EfficientNet-B0 Architecture 

 

Table 3.1: Architecture Details for the baseline network 

 

 

Conventional CNN designs, such as Mobile Net and ResNet, can benefit from the compound 

scaling strategy. Nevertheless, because the compound scaling approach only improves the 

predictive capability of the systems by reproducing the base network's fundamental 

convolutional processes and network structure, selecting a suitable basic network is 

important for attaining the best outcomes. 

Towards this purpose, the authors apply Neural Design Search to create EfficientNet-B0, an 

efficient network infrastructure. With only 5.3M parameters and 0.39B FLOPS, it achieves 

77.3 percent accuracy on ImageNet. (With 26M parameters and 4.1B FLOPS, Resnet-50 

delivers 76 percent accuracy.) 

Squeeze-and-excitation optimization is added to the fundamental building component of this 

network, which would be MBConv. MBConv is identical to MobileNet v2's inverted residual 

blocks. These provide as a quick link between the start and finish of a convolutional block. 

To improve the depth of the feature maps, the input initiation maps are first extended using 

1x1 convolutions. Following that, 3x3 Depth-wise with Point-wise convolutions are used to 
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minimise the number of channels in the final feature image. The thin layers are connected 

by shortcut connections, whereas the broader layers are present between the skip 

connections. This structure aids in reducing the overall number of operations as well as the 

length of the framework. 

 

Figure 12: Inverted residual block 

 

3.1.13 Compound Scaling 

 

The depth, breadth, and resolution of a convolutional neural network may be scaled in three 

dimensions. The number of layers in a network relates to the network's level. The breadth of 

a convolutional layer is proportional to the number of neurons inside the layer or, more 

specifically, the quantity of filters in the layer. The length and breadth of the supplied picture 

are used to determine the resolution. Fig.13 above depicts scaling in these three dimensions 

more clearly. 
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Figure 13: Model Scaling 

 

(a) is a baseline-network example; (b)-(d) are conventional scaling that only increases one 

dimension of network width, depth, or resolution. (e) is our proposed compound scaling method 

that uniformly scales all three dimensions with a fixed ratio. 

 

The neural network learns more complicated characteristics by increasing the depth by 

stacking additional convolutional layers. Deeper networks, on the other hand, are prone to 

disappearing gradients, making training more challenging. Although new approaches like 

batch normalisation and skip connections can help solve this challenge, empirical studies 

show that just expanding the network's depth would fast saturate the reliability 

improvements. Despite the additional layers, Resnet-1000 achieves the same rate of 

precision as Resnet-100. 
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Layers can learn more fine-grained information by increasing the network width. This notion 

has been applied in a variety of works, including Wide ResNet and Mobile Net. Increasing 

breadth, like increasing depth, stops the network from learning complicated characteristics, 

resulting in a decrease in efficiency gains. 

Increased input resolution gives the model more information about the picture, allowing it 

to explain about tiny objects and identify finer connections. However, like with the other 

scaling dimensions, this alone only delivers modest precision benefits. 

 

Figure 14: Scaling Up a Baseline Model 

 

3.1.14 StreamLit 

 

Streamlit is an open-source Python library that is used to make interactive machine learning 

and data science application that can run in a web browser without much front-end 

development required. Streamlit works with a simple python script that can customize the 

look of the application and add plots, charts, sliders, buttons and inputs. Every time the 
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application is runs, the whole python scripts is re-read. Streamlit supports magic commands 

that will basically read any variable on its own line and automatically parse it using st.write() 

method. st.write() can work with almost anything such as text, dataframe, plots, etc. and 

render it correctly. However, to customize the plots and other data types, you need to use 

data-specific functions like st.dataframe() and st.table(). Streamlit supports widgets and the 

user can add them using st.slider(), st.button() or st.selectbox(). 

  

Even when importing data from the web, handling enormous datasets, or conducting 

expensive computations, the Streamlit cache allows your app to run swiftly. When a function 

is marked with st.cache, the streamlit will automatically check input parameters called, value 

of any external variable, body of function, function used inside cache. Streamlit employs a 

particular hash function for both the key and the output hash that knows how to traverse 

code, hash special objects, and may have its behaviour adjusted by the user. One can also 

deploy a streamlit application on cloud and manage it using Streamlit Cloud 

 

 

Figure 15: StreamLit 1 
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For our application we have first called YOLOX.tools.demo, this import tools necessary for 

the application to run smoothly. st.title() is used to give a name to our application. 

st.file_uploader() is then called to import the image that will be processed by our algorithm. 

When clicking the RUN button image is passed to the algorithm, where inference is 

performed and we get the result. st.progress() can be used to add a progress bar that can show 

the time left.  

 

Figure 16: StreamLit 2 
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Figure 17: Processing on StreamLit 
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Figure 18: StreamLit Output 

 

3.2 Model Development   

 

A month following the introduction of YOLOv4, Glenn and his team produced YOLOv5, a 

new iteration of the YOLO family (Jocher, 2020). Glenn Jocher is the CEO of Ultralystics 

LLC and a scholar. YOLO models were created using Alexey Bochkovsky's own framework 

Darknet, which is primarily written in C. Ultralystic is a firm that transforms prior versions 

of YOLO to PyTorch, a well-known deep learning system developed in the Python 

programming language. 
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3.2.1 YOLOv5 

 

Glenn Jocher is also the creator of the Mosaic data augmentation, which was recognised in 

the YOLOv4 publication by Alexey Bochkovsky. Due to its nomenclature and advances, his 

YOLOv5 model attracted a lot of controversy in the computer vision area. Despite the fact 

that it was introduced a few months after YOLO version 4, the start of YOLO4 and YOLO5 

research was quite near (March to April, 2020). To avoid confusion, Glenn named his 

version of YOLO, YOLO5. Both researchers essentially employed the most cutting-edge 

breakthroughs in the area of object identification available at the time. Having a  output, the 

architectures of YOLO4 and YOLO5 are quite similar, and many people are dissatisfied with 

the appellation YOLO5 (5th generation of You Only Look Once) because it does not offer 

many substantial improvements over YOLO4. Glenn also failed to publish any YOLOv5-

related papers, which raised even more doubts.  

However, YOLOv5 seemed to have the advantage of engineering. Unlike previous versions, 

YOLO version 5 is available in Python not in C. This is the reason for its easier to 

implementation and integrate to Internet of Things devices. Lastly, the PyTorch community 

isa very bigger than that of the Darknet community, meaning that PyTorch will get higher 

rate of contributions and will have higher posibility for future expansion. Because YOLO 

version 4 and YOLO version 5 are implemented in two different languages and operate on 

two different frameworks, it's difficult to compare their performance. Still, in addition to 

YOLO version 4, YOLO version 5 has gained some trust in the computer vision community 

as a result of its greater performance over YOLOv4 in some conditions.  

 

3.2.2 Adaptive anchor boxes 

 

As previously indicated, the YOLO5 architecture incorporates the most current 

advancements in a way similar to the YOLOv4 architecture, therefore there are few 

significant differences in concept. In place of publishing a full article, the author created a 

Github’s repository and updated it on the platform. By deconstructing the structural program 

in file.yaml, the YOLO5 framework may be described as follows :  

- Head: YOLOv3 head using GIoU-loss 
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- Neck: SPP block, PANet 

- Backbone: Focus structure, CSP network 

The YOLOv5 author brings forth an interesting issue about an design difference. In 

YOLOv2,  Redmon presented the anchor box design as well as a method for picking anchor 

boxes that are similar in area and form to the ground truth B.B. in the training set. The authors 

chose the five best-fit anchor boxes for theCOCO (which has 80 classes) and used them as 

the default using the k-mean clustering approach with various k values. This minimises the 

amount of time it takes to train the network and improves its accuracy. 

Furthermore, when these five anchor boxes are applied to unique dataset (including a class 

that is not one of the eighty classes in the COCO dataset), they are unable to swiftly adapt to 

the unique dataset's ground truth bounding boxes. A giraffe database, for example, likes 

anchor boxes that are narrow and taller than square boxes. Computer vision engineers 

commonly start by running the kmean clustering method on the unique anatomical to find 

the best fit box for the given dataset. These settings will then be  configured in the 

framework. 

Glenn Jocher, suggested that the anchor box selection procedure be included into YOLOv5. 

As a consequence, the network does not need to take any of the databases as input; instead, 

this would "learn" and apply the optimal anchor-boxes for each database during train time. 

 

3.3 Analytical  

 

The GWHD collection is made up of tagged photos gathered between 2016 and 2019 by 9 

institutions in 10 distinct places (Table1), and it includes genotypes from Europe, North 

America, and Australia as well as Asia. Individual datasets are referred to as "sub-datasets." 

They were obtained through a series of tests diverse growth methods, with row spacing 

ranging from 12.5 cm to 25 cm (ETHZ_1) to 30.5 cm (USask_1). Table 1 summarises the 

features of the experiments. Low sowing density (UQ 1, UTokyo 1, UTokyo 2), average 

seeding density (Arvalis 1, Arvalis 2, Arvalis 3, INRAE 1, NAU 1), and large seeding density 

(RRes 1, ETHZ 1, NAU 1) are among them. The GWHD dataset includes a variety of 

pedoclimatic conditions, including highly productive environments such as the loamy soil 

of Picardy, France (Arvalis 3), silt-clay soil in mountainous environments such as the Swiss 

Plateau (ETHZ 1), and the Alpes de Haute Provence (Arvalis 1, Arvalis 2). The trials in 
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Arvalis 1, Arvalis 2, UQ 1, NAU 1 were meant to contrast irrigated and water-stressed 

ecosystems. 

 

Table 3.2: Attributes of the experiments used to acqire photos for dataset 

 

 

3.3.1 Image acquisition 

RGB photos recorded using a variety of groundbased phenotyping systems and cameras are 

included in the GWHD collection (Table 2). The picture capture height varies between 1.8 

and 3 metres high. With a variety of sensor sizes, the camera focal length ranges from 10 to 

50 mm. Because of the variances in camera configuration, the Ground Sampling Distance 

(GSD) varies from 0.10 to 0.62 mm, and the half field of view along the picture diagonal 
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varies from 10 to 46 degrees. The obtained GSDs are high enough to distinguish heads and 

even awns visually, assuming wheat heads have a diameter of 1.5 cm. Despite the fact that 

all of the photos were taken in the nadir-viewing direction, due to the varied lens properties 

of the cameras employed, some geometric distortion may be seen for a few sub-datasets. 

This problem is especially severe in the datasets UTokyo 1 and ETHZ 1. Images were 

collected on a variety of platforms, including handheld, cart, mini-vehicle, and gantry 

systems, by each organization. The large range of picture attributes produced by the variety 

of camera sensors and acquisition settings will aid in training deep learning models to 

generalise better across varied image acquisition situations. 

 

Table 3.3: Image Characteristics of the sub-datasets comprising the GWHD dataset 

 

3.3.2 Data Harmonization 
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Harmonizing the numerous sub-datasets was a key element in assembling the GWHD dataset 

Images were initially manually inspected to verify that they could be properly 

comprehended. When heads were not clearly visible, images taken at an early stage of 

development were eliminated . Because heads tend to overlap as stems begin to bend at this 

time, the majority of the photographs were taken before the advent of head senescence. 

 

Figure 19: Review of harmonization process conducted. 

Item scale, or the size of an object in pixels, is a critical consideration in the development of 

object detection algorithms. Object scale is determined by the object's size (in mm) and the 
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image's resolution. Wheat heads vary in size according on genotype and growing 

circumstances, but they are typically 1.5 cm in diameter and 10 cm long. The real picture 

resolution at the level of wheat heads changed dramatically between sub-datasets: the GSD 

changes by a factor of five, while the real resolution at the head level is further influenced 

by canopy height and the camera's panoramic effect. When photographs are taken too close 

to the canopy, the panoramic effect will be significantly greater. As a result, images were 

rescaled to maintain a more consistent resolution at the head level. The original photos were 

up- or down-sampled using bilinear interpolation. The factor that was used to scale each sub-

dataset is displayed in Table 2. 

 

3.4 Computational  

We utilised the machine with the following specifications for this project work at the time 

of training. CPU: The specifications of the PC we utilised were as follows: 

 

Table 3.4: CPU Specifications 

Parameter 

 

Specifications 

 

CPU Model name 

 

Intel(R)Core(TM) 

CPU frequency 

 

2.3 Ghz 

No of CPU cores 

 

8 

Available Ram 

 

15.56 GB 

Disk Space 

 

800 GB 
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These are the specifications of the computer we used to perform the calculations on. The 

GPU handles the majority of the computing effort. However, the CPU does the majority of 

the preprocessing. The huge quantity of RAM did not put a lot of strain on the system, 

making it simpler to load the entire dataset in a timely manner. We also didn't have to worry 

about system problems. The 2.3 Ghz clock speed of the CPU is the base clock speed, which 

may be increased to 5 Ghz if necessary. However, no overclocking was required because the 

machine could complete the task with its standard four cores. 

 

Table 3.5: GPU Specifications 

Parameter 

 

Specifications 

GPU 

 

NVIDIA-GeForce-GTX 

1060 

GPU-Memory 

 

16 GB 

GPU, Memory Clock 

 

1.40 Ghz 

GPU Release Year 

 

2016 

Cores 

 

4 

 

Available RAM 

 

 

16 GB 

Disk Space 

 

800 GB 
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Tools Used: We used the following tools in making our model. 

 Python 

 Matplotlib 

 Seaborn 

 Jupyter Notebook 

 Pandas 

 Plotly 

 Numpy 

 Scikit Learn 

These packages mentioned above were used in their latest upto date editions. The code works 

properly and would not cause any issue until any further updates in them. 

 

3.5 Experimental  

 

Now we tried a few algorithms just to check them in comparison to what we used.  

i. RCNN 

ii. Fast RCNN 

iii. Faster RCNN 

iv. YOLO-v5 

 

We've also included some basic descriptions of the aforementioned algorithms to make it 

easier to understand and investigate why they didn't perform as expected. 

i. R-CNN 

To overcome the difficulty of selecting a high range of areas, Ross Girshick et al. 

proposed a method called region recommendations, in which we use selective search 

to identify just 2000 areas from an image. As a consequence, instead of attempting 

to identify a vast number of places, you can now focus on only 2000. These 2000 

region concepts were compiled using a selective search strategy. 

 

Selective-Search: 

1. Produce starting sub-sagmentation, then create many candidate areas 
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2. Using greedy approach to iterative combine same areas to bigger areas  

3. Using the created areas to calculate the last candidate area proposals 

 

ii. Fast RCNN 

The Fast R-CNN detector, like the RCNN predictor, gives region recommendations 

implementing an model similar to Edge-Box.  Fast RCNN detector analyses the full 

image, unlike this RCNN predictor, which cuts and resizes region recommendations. 

Fast RCNN pools C-NN characteristics in related to every area pro-posal, whereas 

an RCNN predictor must categorise every area. Fast RCNN is greater efficient than 

R-CNN since the computation for intersecting areas are distributed in this Fast 

RCNN predictor. 

 

iii. Faster RCNN 

In place of employing an outside method same as Edge-Box, In Faster RCNN 

detecetor includes a area providing network (known as RPN) to create area 

suggestions straight to the model. For Object Detection, the RPN employs Anchor 

Boxes. The network-based generation of region recommendations is faster and more 

tailored to your data. 
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Figure 20: Faster R-CNN 

 

 

iv. YOLOv5 

These innovations were initially known as YOLOv4, however owing to the latest 

update of YOLO version 4 in Darknet structure, it was changed to YOLOv5 to 

prevent releases clashes. We produced an article differentiating YOLO version 4 

with YOLO version 5, In which you are able to run both YOLO’s together on your 
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dataset, because there was a lot of disagreement about the YOLO version 5 

nomenclature at first. In this essay, we'll avoid bespoke dataset comparisons and 

instead focus on the resent tech. and matrix’s that the You Only Look Once scientists 

are sharing in GitHub communications. 

 

 

 

Figure 21: YOLOv5 

 

3.6 Mathematical  

 

The core of You Only Look One’s loss function is the sum-squared error. There are some 

grid cells that have no items with a confidence score of 0. They completely overpower the 

gradients of cells that house the items. To reduce learning diveergence and system non-

stability, You Only Look Once uses the maximum penalty (𝜆𝑐𝑜𝑟𝑑 = 5.0) their calculations 
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from BB including items and its minimum penalty (𝜆𝑛𝑜𝑜𝑏 = 0.5) for calcification when no 

object is present (V Thatte, [11] 2020). The loss function of YOLO is determined by adding 

the loss functions of all BB variables (x, y, w, k, confidence point, and class probability). 

 

ℒ =  𝜆𝑐𝑜𝑜𝑟𝑑 ∑ ∑ 𝛱𝑖𝑗
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Equation 5: YOLO’s Loss Function 

 

 

The first portion of the eqn. calculates the loss associated with the estimated BB location and 

ground-truth BB location according to the co-ordinates (xcenter, ycenter).∏𝑖𝑗
𝑜𝑏𝑗

, where 1 

indicates if an item is detected in the jth forecasted BB in ith box and 0 indicates that it is not. 

Based on this assumption have the greatest resent IOU according to the base-truth, the 

predicted BB will be "responsible" for predicting an item. 

 

𝜆𝑐𝑜𝑜𝑟𝑑 ∑ ∑ 𝛱𝑖𝑗
𝑜𝑏𝑗[(𝑥𝑖 − �̂�𝑖)+

2 (𝑦𝑖 − �̂�𝑖)
2]

𝐵

𝑗=0

𝑠2

𝑖=0

 

Equation 6: YOLO's Loss Function Part 1 

In the same way as the first half of the equation, the 2nd portion of the “YOLO”, loss function 

determines the error in BB length and height prediction. The quantity of mistake in this large 

boxes, on the other hand, has less of an impact on the equation than it does in the tiny box. 

Because both side and length are standardised between 0.0 and 1.0, the roots of their square 
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roots magnify the discrepancies between smaller and bigger numbers. Therefore the output, 

instead of using the side and length of the enclosing box explicitly, the square root of those 

values that is utilised. 

 

𝜆𝑐𝑜𝑜𝑟𝑑 ∑ ∑ 𝛱𝑖𝑗
𝑜𝑏𝑗

[(√𝑤𝑖 − √�̂�𝑖)+

2
(√𝑘 − √�̂�𝑖)

2

]

𝐵

𝑗=0

𝑠2
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Equation 7: YOLO's Loss Function Part 2 

Either the item is visible in the BB or not, the loss of confedence points is calculated in both 

circumstances. The item certainty error is only penalised by the loss function if the forcast 

is accountable for that ground truthbox. When there is an item in the cell ∏𝑖𝑗
𝑜𝑏𝑗

, equals 1; 

otherwise, it equals 0. The reverse is  ∏𝑖𝑗
𝑛𝑜𝑜𝑏𝑗

. 
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Equation 8: YOLO's Loss Function Part 3 

 

Except for the ∏𝑖𝑗
𝑜𝑏𝑗

 term, the last half of the function used to calculate loss is comparable to 

the conventional prediction loss, that calculates the class probability’s loss. Since You Only 

Look Once doesn’t punish prediction errors since the obj. in not present the cell, this term is 

utilised.  

 

∑ 𝛱𝑖𝑗
𝑜𝑏𝑗

∑ (𝑝𝑖(𝑐) − �̂�𝑖(�̂�))2

𝑐∈𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑠2

𝑖=0

 

Equation 9: YOLO's Loss Function Part 4 
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3.7 Statistical  

3.7.1 General  

 

This GWH Detection database is made up of 4,698 squared patches derived from 2219 high-

resolution RGB pictures taken over eleven sub-database (Table no. 3). It has 188,445.0 

identified crop heads, with an average of 40 heads/image, which is in line having 15 to 65 

heads/image that were desired. Nether less, there is a wide range of distribution in-between 

and inside sub-databases. To replicate on-field captured situations and increase challenge to 

bench-marking, we included roughly 100 photos with no heads. Only a few photos have 

more than 100 heads, with the most having 120. Differences in head volume, which varies 

depending on the genotypes and external circumstances, result in many peaks corresponding 

to various sub-datasets.  

Table 3.6: Statistics for every attributes of the GWHD 
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A somewhat skeewed gausian distribution with a mean average shape of 77.0 pixel can be 

seen in the shape of the BB surrounding the head. The root of the surface that is included in 

the find the usual dimension. Eventhough the individual longitudinal region applied is really 

not correspond to this siting geometrical of the coloured camera, this goes nicely with the 

required scale, i.e. near about 1.50 cm x 10.00 cm head dimensions with an mean resolution 

near about 0.40 mm/pixel, that symbolises a normal side of 97.0 pixel for every top part. The 

visual confirmation of item scale harmonisation over sub-database may be found in Fig 15. 

 

 

Figure 22: Samples of images, provided by  different sites. 

 

3.7.2 Comparison to other datasets 

 

In the plant phenotyping industry, several open-source databases have previously been 

presented. For the counts of the leafs (rosette) and occasion segmentation, this CVPPP 

datasets have been frequently utilised. Segmented rosette leaves are also included in the 

KOMATSUNA collection, but only in time-lapse movies. Wheat head photos collected from 

a managed setting with single spike-lets tagged make up the Nottingham ACID Wheat 

database. However, photos from outside field situations, these are crucial in the use in real 

life of composition in the wheat breeding, are found in relatively few open-source databases. 

A few weeds categorization datasets have been released. Pictures of grazing grass and the 

semantic-segmentation classifications for field, weed plant, and clover plant categories are 
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included in the GrassClover database. Dot annotations have been added to data sets for 

measuring sorghum and wheat head.  

 

Figure 23: Comparing the GWHD dataset with other object datasets. 

 

The dataset we are using, the GWHD database is now the biggest available to all annotated 

dataset publicly accessible for object recognition for the research of plant pheenotyping in 

terms of phenotyping datasets for object detection. MinneApple,  the only similar collection 

in terms of phenotyping diversity, although it has fewer photos and less geographic variety. 

Additional datasets, such as MSCOCO or freely available Pictures of V4, has substantially 

bigger and sample a much wider range of item types, making them useful for a variety of 

other applications. Typically, the comparable photos include fewer items, usually below 10 

per image (Figure 16). However, other datasets, such as PUCPR, CARPK, and SKU-110K, 
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are specifically designed to solve the challenge of detecting objects (e.g., automobiles, items) 

in crowded environments. All of them have a greater item density than the GWHD dataset, 

but less photos for CARPK and PUCPR, whereas SKU-110 has greater number of pictures 

than the GWHD database (Figure 16). This GWHD dataset is notable for its high prevalence 

of overlapping and occluded items. This complicates labelling and identification, especially 

when contrasted to SKU-110K, which does not appear to have any occlusion. Furthermore, 

wheat heads are sophisticated targets  with a broad range of appearances, as earlier proven, 

and are enclosed by a diverse backdrop, making detection of wheat heads more challenging 

than recognising automobiles or tightly packed merchandise on shop tables. 
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Chapter 4 PERFORMANCE ANALYSIS  

 

Any image may be implied to detect the wheat head using trained weights. If a wheat head 

is identifyed, then a bounding box is created around the item to enclose it and represent the 

likelihood that it is a wheat head. 

The GWHD dataset contains 10 photos of outdoor wheat that are non-duplicated with the 

3422 images used in the training. The ground truth bounding boxes are likewise not labelled 

on these photos. They may be seen as photographs of a agronomist went in his/her field and 

tested using weights learned in the model wheat-head identification network before. 

Table 4.1 Result 

Model  IOU 

Faster RCNN 0.6889 

EfficientNet 0.7152 

YOLOv5 0.7644 

 

 

 

Figure 24: Model Testing 
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Figure 25: Result Example 1 

  

 

 

Figure 26: Result Example 2 
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Chapter 5 CONCLUSIONS  

 

5.1 Conclusions  

In the computer vision world, there is still a lot of debate concerning the naming and 

enhancements of YOLOv5 for advancements that haven't truly created a breakthrough. 

Regardless of the nomenclature, YOLOv5's performance in terms of speed and accuracy is 

comparable to that of YOLOv4. There's little question that YOLOv5 will get greater 

contributions and recive greater growth potential in the upcoming years, thanks to the built-

in Pytorch framework, which is more easy to use and has a greater community than the 

Da�́�knet framework. 

In reality, the subject of machine vision, particularly object identification, is only recently 

blossomed. As a result, even though the YOLO algorithm has evolved through five 

generations and is among the best object identification models, it is defective even right now. 

As a result, an AI system cannot be constructed just on the basis of an algorithm; it must 

incorporate other optimization methods as well as the most cutting-edge concepts in the 

study of machine vision in order for the given AI system to obtain these greatest results. 

 

5.2 Future Scope  

 

Artificial intelligence's contribution to several fields is growing all the time. 

Deep learning models are becoming increasingly intelligent, and they can now handle 

complex tasks with ease. Agriculture is a sector that can benefit greatly from technological 

advancements. With numerous countries failing to satisfy demand and supply, it is critical to 

implement technology that can help improve production and overall efficiency. Computer 

vision is making good progress in agriculture. Although there are hurdles, as with any 

technology on the market, AI-powered computer vision services will need to address the 

associated issues before the technology is fully adopted. Before integrating such modern 

technologies, there are a few things to consider. We are, nevertheless, entering a world of 

digitization as a result of technical breakthroughs and upheavals. It is only natural to focus 

on the positives in order to maximize agricultural productivity with future technologies. In 

today's world, phenotyping is widely used to detect agricultural features for precision 

agriculture. Phenotyping has become a more efficient method because to advanced computer 
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vision algorithms. Image processing characteristics are integrated with computer vision 

algorithms to remove unnecessary crop data or information from photos, leaving only the 

relevant information on precise measurements. Techniques like depth estimation, colour 

enhancement, and identifying and segmenting the region of interest are all options for 

producing accurate results for future research. The crop breeds have greatly improved as a 

result of this research. We are quite sure that precision agriculture will prove much more 

useful in future, as global warming will make farming challenging, people will turn to 

computer vision techniques. 

 

As for the new algorithms, the new RCNN and other region based Neural Network will come 

to light and researchers will be able to use them on new datasets for phenotyping and 

classifying grains from unwanted material. Also, as there is GWHD for grains, more datasets 

will come to surface. Our next step would be to use other datasets with other algorithms to 

create models that can be used with drones and other image capturing devices. Faster 

RCNN’s new and evolved models can be used in future work. Since, hardware is becoming 

cheaper and faster, we expect more computational power will help to increase accuracy and 

FPS rates. Since, GWHD has recently updated their dataset, we can use more images to train 

the model to achieve better performance. Another things that can be done is that we can 

extend the model to detect wheat heads from different angles. Datasets that contain images 

of other staple crops such as rice, grapes and grains of importance, can be used to extend 

model’s reach. 
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